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ABSTRACT

This thesis describes studies regarding some mechanical properties of several binary tan-
talum compounds through ab initio calculations. In this work, tantalum carbides TaC and
TasC, as well as tantalum nitrides 5-TaN and e-TaN, were chosen due to the unusual com-
bination of physical and chemical properties that they exhibit. Although these compounds
contain the same elements, Ta and C, and Ta and N, the differences in stoichiometry or
crystal structure conduct to different mechanical behaviour. Studies on crystal tantalum and
diamond were also performed.

Elastic properties, such as bulk and Young moduli, Poisson ratio and the elastic stiffness
coefficients, for TaC, TasC, §-TaN and e-TaN, were determined, along with phonon dispersion
curves for tantalum, diamond, TaC and TayC. In addition, the phonon density of states and
heat capacity for tantalum, diamond, TaC and TasC were obtained. For the TaC case, the
elastic stiffness coefficients c¢i;; and c44, as well as the heat capacity curve, were obtained
experimentally.

Ab initio total-energy plane-wave pseudopotential calculations were performed based on
the Density Functional Theory (DFT). The exchange-correlation potential has been deter-
mined using the Local Density Approximation (LDA) and the Generalized Gradient Approx-
imation (GGA). The code ABINIT, which uses norm-conserving pseudopotentials, was used
to determine the phonon dispersion curves. On the other hand, elastic properties were deter-
mined with the CASTEP code, that uses ultrasoft pseudopotentials.



Results of elastic properties were compared with early published data, when available, and
sets of predicted values are given of properties not studied yet or with notorious discrepancies
in their published values. The phonon dispersion curves and specific heat curves for Ta,
diamond and TaC agree within a few percent with experimental values already published and
with those measured here for the specific heat of TaC. For TasC no experimental data is
available and its phonon dispersion curve and specific heat curve can be seen as a prediction
for future measurements.

Keywords: ab initio calculations, DFT, elastic properties, carbides, nitrides, phonons, specific
heat.



RESUMEN de la tesis de LAURA LIZETH LOPEZ DE LA TORRE, presentada como
requisito parcial para la obtencién del grado de DOCTOR EN CIENCIAS en FISICA
DE MATERIALES. Ensenada, Baja California, México. Mayo de 2006.

RELACIONES ENTRE LA ESTRUCTURA ELECTRONICA Y LAS
PROPIEDADES MACROSCOPICAS DE COMPUESTOS
BINARIOS DE TANTALIO

En esta tesis se describe el estudio de las propiedades mecanicas de algunos compuestos
binarios de tantalio mediante calculos ab initio. Para este trabajo se seleccionaron los carburos
de tantalio TaC y TagC, asi como los nitruros de tantalio §-TaN y e-TaN, dada la combinacién
de propiedades fisicas y quimicas que poseen. A pesar de que estos compuestos contienen los
mismos elementos, Ta y C, o Ta y N, las diferencias en su estequiometria o en su estructura
cristalina conducen a diferentes comportamientos mecéanicos. De la misma manera que los
compuestos antes mencionados, se estudiaron también el tantalio y el diamante.

Entre las propiedades elasticas en estudio se encuentran los moédulos de volumen y de
Young, la razén de Poisson y los coeficientes de elasticidad, que se determinaron para los
compuestos TaC, TayC, §-TaN y e-TaN. Ademds, se obtuvieron las curvas de dispersién de
fonones para el tantalio, diamante, TaC y TasC, asi como la densidad de estados de fonones
y el calor especifico. En el caso del TaC, se determinaron experimentalmente los coeficientes
elasticos c11 y cqq v la capacidad calorifica utilizando un monocristal.

Este estudio se realizé mediante calculos ab initio de la energia total basados en la teoria
del funcional de densidad (Density Functional Theory, DFT), utilizando pseudopotenciales
y una base de ondas planas. El potencial de intercambio y correlacién se calculé mediante
las aproximaciones de la densidad local (Local Density Approximation, LDA) y del gradi-
ente generalizado (Generalized Gradient Approximation, GGA). Las curvas de dispersién se
calcularon utilzando el programa ABINIT, el cual utiliza pseudopotenciales que conservan la
norma, mientras que las propiedades elasticas se calcularon con el programa CASTEP, que
utiliza pseudopotenciales ultrasuaves.

Los resultados obtenidos correspondientes a las propiedades elasticas han sido compara-
dos con valores reportados en la literatura. En los casos en que no se encontraron valores
reportados, o que éstos muestran notorias discrepancias, los valores obtenidos del céalculo se
consideran como predicciones de dichas propiedades. Las curvas de dispersién de fonones y del
calor especifico para Ta, diamante y TaC concuerdan razonablemente con los valores experi-
mentales reportados en la literatura y, en el caso del TaC, con los valores experimentales de
capacidad calorifica determinados aqui. Por otra parte, no se encontraron valores reportados
de dispersion de fonones ni del calor especifico del TasC, por lo que los resultados obtenidos
del calculo se consideran como una de las mencionadas predicciones a estos valores.

Palabras clave: calculos ab initio, calor especifico, carburos, fonones, funcional de la densidad,
nitruros, propiedades elasticas.



Resumen Ejecutivo

RELACIONES ENTRE LA ESTRUCTURA ELECTRONICA Y LAS
PROPIEDADES MACROSCOPICAS DE COMPUESTOS
BINARIOS DE TANTALIO

Introduccién

El presente resumen describe el trabajo de tesis doctoral sobre el estudio de las propiedades
mecanicas de diversos compuestos binarios de tantalio, determinadas mediante cédlculos de
primeros principios de la energia total, utilizando la teoria del funcional de densidad (DFT,
por sus siglas en inglés), pseudopotenciales y una base de ondas planas.

Los compuestos estudiados son los carburos TaC y TagC y los nitruros d-TaN y e-TaN.
Estos compuestos fueron seleccionados para su estudio ya que presentan una combinacién poco
usual de propiedades fisicas y quimicas. A pesar de que estos compuestos estan formados por
los mismos elementos, Ta y C, y Ta y N, las diferencias en estequiometria o en estructura
cristalina los hacen presentar diferentes comportamientos mecanicos.

Descripcion general de los compuestos en estudio

Los carburos y nitruros de los metales de transicién de los grupos IV (Ta, Zr y Hf) y V (V, Nb
y Ta) poseen propiedades que los mantienen en el interés de la investigacion cientifica bésica
y del area tecnolégica. En el caso de los carburos, sus principales aplicaciones comerciales
son como abrasivos, como materiales de corte y en superficies duras, debido a la alta dureza
y durabilidad que presentan [1, 2, 3]. Muchos carburos binarios de metales de transicién
muestran valores de microdureza entre 2000 y 3000 kg/mm? [1], lo que los hace comparables
a la dureza del diamante de 9000 kg/mm? [4], que es el material mas duro que se conoce
actualmente. Su alto punto de fusion, su excelente resistencia al esfuerzo a altas temperaturas
y su buena resistencia a la corrosion los convierte en materiales idéneos para la fabricacién
de filamentos y cabezas de impresién en ciertos aparatos [5]. Por otra parte, los carburos
y nitruros de metales de transicion son utlizados como recubrimientos épticos, contactos
eléctricos y barreras de difusion en las areas de electrénica, ingenieria eléctrica y en las ciencias
de materiales a altas temperaturas [6, 7].

TaC

El carburo de tantalio, TaC, es uno de los compuestos més representativos de los carburos
de metales de transiciéon y existe en un amplio intervalo de estequiometrias. Muestra una



estructura cristalina del tipo cloruro de sodio (ver figura 5.1) correspondiente al grupo espacial
Fm3m (225). Tiene una pardmetro de red de a=4.454 A (ver tabla 5.1) y una densidad
de 14.498 g/cm3 [8]. Posée propiedades muy sobresalientes tales como una alta dureza a
temperatura ambiente, un alto punto de fusién (3880 °C) y resistencia al ataque quimico y al
choque térmico [3, 9]. Ademas, el TaC muestra una excelente conductividad electrénica (42.1
p$2 cm a 25 °C), buena conductividad térmica (cerca de 22 Wm~1C~1) y alta resistencia a la
oxidacién [3, 10, 11]. Sus notables propiedades fisicas y quimicas son atribuidas a los enlaces
tipo covalente-metélico que muestra [12, 13, 14].

Varios autores han estudiado las propiedades eldsticas y los coeficientes elasticos de rigidez
del TaC mediante diferentes métodos, tanto experimentales como tedricos, desde la década
de los 60’s. [12, 15, 16, 17]. Sin embargo, los valores de los coeficientes eldsticos de rigidez
publicados anteriomente muestran diferencias entre si de hasta un 50%. Por otro lado, las
curvas de dispersion de fonones para el TaC han sido medidas por Smith y Gléser [18] y Smith
[19], y reproducidas con buena corcondancia mediante diversos modelos tedricos tales como la
aproximacién de la respuesta dieléctrica [20], el modelo de capas [21, 22] y el modelo de capas
de fuerza entre tres cuerpos [23]. Sin embargo, no hay ninguna referencia a estudios donde se
determinen las frecuencias fondnicas del TaC utilizando cédlculos de primeros principios con

DFT.

Ta2 C

El TayC presenta una estructura del tipo Cdly basada en una red hexagonal compacta formada
por los atomos de tantalio, mientras que los a&tomos de carbono ocupan la mitad de los sitios
octaedrales [24, 25]. Ademads, muestra una simetria triagonal correspondiente al grupo espacial
P3m1 (164). La figura 5.2 muestra la celda convencional del TasC con pardmetros de red
de a=3.1059 A y de ¢=4.946 A, y una densidad de 15.02 g/cm® [26]. A diferencia de los
monocarburos de tantalio, cuyas propiedades electrénicas y mecénicas han sido investigadas
experimentalmente y teéricamente, el TapC no ha sido estudiado todavia [9].

e-TaN y 6-TaN

La fase mas estable de los nitruros de tantalio es la fase e-TalN, con una composicén quimica
de la forma Taj gN1 g y con simetria hexagonal [27]. Tiene parametros de red de a=5.1918 A y
de ¢=2.9081 A, una densidad de 14.306 g/cm?® y pertenece al grupo espacial P6/mmm (191)
[28]. La fase e-TaN cambia, a través de una transicion de fase a altas temperaturas y altas
presiones, de una estructura hexagonal a una estructura tipo cloruro de sodio conocida como
la fase §-TaN [29, 30]. Sin embargo, la fase §-TaN es més utilizada en aplicaciones comerciales
que la fase e-TaN.

La fase §-TaN es un compuesto comtinmente no estequiométrico [31] con un pardmetro de
red de a=4.339 A (ver figura 5.3). Al igual que el TaC, pertenece al grupo espacial F'm3m
(225) y tiene una densidad de 15.842 g/cm?® [32]. Es un material superconductor con una
temperatura de transicién de 6.5 K in bulto [33] y 4.8 K como pelicula delgada [29].



Objetivos

En el presente trabajo se determinaron algunas propiedades mecanicas macroscépicas de los
carburos y nitruros de tantalio TaC, TasC, 6-TaN y e-TaN, mediante calculos de primeros
principios. Se determinaron, ademads, las propiedades estructurales asi como las propiedades
elésticas para el tantalio y el diamante.

Entre la propiedades mecanicas estudiadas se encuentran los coeficientes elasticos de
rigidez (c¢;;), el médulo de volumen (B) y su primera derivada (B’), el médulo de Young
(E) y la razén de Poisson (v). También se calcularon la curvas de dispersién de fonones
para el tantalio, el diamante y los carburos TaC and TasC. A partir de las relaciones de dis-
persién de fonones calculadas, se determiné la densidad de estados de fonones y la capacidad
calorifica para estos mismos compuestos. Dado que el TaC es el compuesto considerado de
mayor relevancia en este estudio por sus aplicaciones comerciales, ademas de ser el mas facil
de obtener como monocristal, sus coeficientes elasticos de rigidez y su capacidad calorifica,
fueron determinados experimentalmente.

Métodos

En este estudio se realizaron calculos ab initio de la energia total basados en la teoria del fun-
cional de densidad (Density Functional Theory, DFT) [34, 35], utilizando pseudopotenciales
y una base de ondas planas. La energia de intercambio y correlacién se calculé mediante la
aproximacién de la densidad local (Local Density Approximation, LDA) [35] y la aproximacién
del gradiente generalizado (Generalized Gradient Approximation, GGA) [36]. Las curvas de
dispersién se calcularon utilizando el cédigo ABINIT [37], el cual utiliza pseudopotenciales
del tipo Hartwigsen-Goedecker-Hutter (HGH) [38] que conservan la norma para calculos con
LDA, y del tipo Troullier-Martins [39], para cdlculos con GGA. Las propiedades eldsticas se
calculan utilizando el cédigo CASTEP [40], el cual utiliza pseudopotenciales ultrasuaves [41].
Los célculos se efectuaron considerando cristales perfectos en bulto y a una temperatura de 0
K.

Las mediciones realizadas de los coeficientes elasticos de rigidez se hicieron mediante una
técnica de resonancia de ultrasonido aplicada a un monocristal de TaC. Por otra parte, las
mediciones de la capacidad calorifica de una muestra de TaC, en forma de polvo, se llevaron
a cabo con un calorimetro de barrido diferencial.

Resultados y Discusiones

Tantalio y Diamante

Previo a los estudios de los carburos y nitruros de tantalio se llevaron a cabo céalculos de
las propiedades mecéanicas del tantalio y el diamante, con la finalidad de determinar los
parametros esenciales y la precisién de los calculos. Los resultados y las discusiones en refer-
encia a estos compuestos se presentan a continuacion.



Tantalio

El tantalio es un metal de transicion que se cristaliza en una estructura tipo cibica centrada
en el cuerpo (bce), con un pardmetro de red de a=3.305 A y pertenece al grupo espacial
Im3m (229). Con la finalidad de determinar los pardmetros éptimos para los calculos, se
realizaron pruebas de convergencia para la energia de corte de las ondas planas (figura 4.2) y
del nimero de puntos k (figura 4.3) necesarios para el muestreo de la zona de Brillouin. Los
valores obtenidos para estos pardmetros, y utilizados en los siguientes estudios, son de 1360.5
eV (50 Hartree) para la energia de corte y una malla de 6 x 6 x 6 de puntos k. La relacién
de la energia total con el pardmetro de red se muestra en la figura 4.4. El pardmetro de red
correspondiente a la energia minima se determind por un ajuste con un polinomio cibico a
los datos anteriores, obteniendo el valor de a=3.255 A. También se utilizé el procedimiento de
minimizacién de energia encontrado en el cddigo y con el cual se obtuvo un valor de ag=3.251
A.

La relacion de la presién con el volumen, obtenida mediante un ajuste con la ecuacion
de estado Birch-Murnaghan a 3er orden, se muestra en la figura 4.5. Los valores a presién
cero encontrados son de v9=34.39(2) A3 para el volumen, K=221(9) GPa para el médulo
de volumen y K'=4(1) para la primera derivada del médulo de volumen (los ntimeros entre
paréntesis indican la incertidumbre en los datos). El parametro de red asociado a este volumen
es de ap=3.25(2) A. La tabla 4.1 muestra los valores publicados y obtenidos aqui de los célculos
del pardametro de red, el médulo de volumen y su primera derivada para el tantalio. Los
pardmetros de red concuerdan en un 2% con el valor experimental publicado de ag=3.305 A
[42]. Por otra parte los valores para el médulo de volumen y su primera derivada muestran
una concordancia razonable con respecto a los valores de Cynn y Yoo [43] asi como también
con los valores de Katahara et al. [44]. La figura 4.7 muestra la curva de dispersién de fonones
calculada para el tantalio donde se observa que los valores de dicha curva son 0.5 THz maés
grandes que los valores experimentales publicados por Woods [45].

Diamante

El diamante se selecciond por ser un material a base de carbono, poseer una estructura ctbica
y mostrar el valor més alto conocido de dureza. Pertenece al grupo espacial Fd3m (227)
[46] y tiene un pardmetro de red de a=3.5668 A. Los pardmetros éptimos utilizados en los
céclulos fueron una energia de corte de 1360.5 eV (ver figura 4.9) y una malla de puntos k de
10x 10 x 10 (figura 4.10). La relacién de la energfa total con el pardmetro de red se muestra en
la figura 4.11. Los valores encontrados para el parametro de red son de a=3.536 A, utilizando
un ajuste con un polinomio cibico, y de a=3.531 A utilizando el cédigo ABINIT.

La variacion del volumen de la celda del diamante a diferentes presiones, obtenida mediante
un ajuste a la ecuacién de estado de Brich-Murnhagan a 3er orden, se muestra en la figura
4.12. Los valores obtenidos del ajuste para el volumen a presién cero es de vp=43.62(2) A3,
para el médulo de volumen es de B=471(8) GPa, y para la primera derivada del médulo de
volumen es de B'=3.7(2). El parametro de red asociado a estos valores es ap= 3.52(2) A. La
tabla 4.3 muestra los valores obtenidos del célculo y los valores publicados del parametro de
red, médulo de volumen y su primera derivada. El valor de a=3.531 A es menor en un 1%
respecto al valor reportado por Straumanis & Aka [46] de ap=3.5668 A. Ademss, el valor de



a=3.52(2) A obtenido por el ajuste a la ecuacién de estado, y el de a=3.536 A obtenido por el
ajuste al polinomio ciibico concuerdan en un 2% y en 1%, respectivamente, al compararlos con
dicho valor experimental. Por otra parte, el médulo de volumen de B=471(4) GPa obtenido
en el ajuste a la ecuacon de estado concuerda en un 6.5% con el valor de B=442 GPa reportado
por McSkimin et al. [47]. La figura 4.14 muestra la curva de dispersién de fonones calculada
para el diamante, donde se observa una excelente concordancia con los valores experimentales
publicados por Warren et al. [48] y Warren et al. [49].

Carburos y Nitruros de Tantalio

Las propiedades elasticas de los carburos y nitruros de tantalio se estudiaron utilizando los
codigos ABINIT y CASTEP. Los detalles de los cédlculos, los resultados y sus correspondientes
discusiones se presentan a continuacion.

TaC

Los célculos para el TaC utilizando el cédigo ABINIT se hicieron utilizando las aproximaciones
de la densidad local (LDA) y del gradiente generalizado. En el caso de LDA, se utilizaron
pseudopotenciales del tipo Hartwigsen-Goedecker-Hutter para el C (4 e™) y parael Ta (13 e7).
Para GGA se usaron pseudopotenciales del tipo Troullier-Martins para C (4e™) y Ta (57). Se
llevaron a cabo estudios de optimizacion de los pardmetros del cdlculo donde se obtuvieron
los valores para la energia cinética de corte de las ondas planas de F.ut rpa =1360.5 eV y
Eoi caa= 2176.8 eV. El muestreo de la zona de Brillouin se basé en el método establecido por
Monkhorst y Pack [50], el cual se encuentra implementado en ABINIT. Para dicho muestreo
una red de tamano de 8 X 8 x 8 ostré mejores resultados.

La relacion de la energia total con el pardmetro de red se muestran en las figuras 5.5 y
5.6 para LDA y GGA respectivamente. Estas curvas fueron ajustadas a un polinomio cubico
para determinar el parametro de red correspondiente a la minima energia. Los parametros de
red que resultaron del ajuste son ag ;pa=4.414 A v ag.gga=4.527 A. Ademads, se minimizé
la energfa del sistema usando ABINIT, donde los valores obtenidos fueron ag ,pa= 4.413 A
v ag.aga= 4.526 A. Estos tltimos valores del parametro de red del TaC fueron los utiliza-
dos en los célculos de las propiedades elasticas. Las figuras 5.7 y 5.8 muestran la relacién
presién-volumen para el TaC. Estos valores fueron ajustados a la ecuacion de estado de Birch-
Murnaghan a tercer orden. Para LDA, el parametro de red a cero presion es ag_rpa=4.406(2)
A y el volumen vy_rp4=85.65(2) A3. El médulo de volumen resulté ser de Brp4=365(4) GPa
con un valor de su primera derivada de B , ,=3.6(1). Para GGA, el pardmetro de red a cero
presién fue ag gga=4.52(2) A con un volumen de vy G4=92.79(2) A3. El médulo de volumen
tuvo un valor de Baga=316(2) GPa y By 4=3.99(8). Por otra parte, en los célculos realiza-
dos con CASTEP se utiliz6 la aproximacién del gradiente generalizado y pseudopotenciales
ultrasuaves. La energia de corte fue de 380 eV y para el muestreo de la zona de Brillouin se
us6 una malla de tipo Monkhorst-Pack de 16 x 16 x 16 puntos k. La relajacion de la estructura
del TaC (con pardmetros de la celda fijos) dié como pardmetro de red el valor de ap=4.525 A.

Dada la simetria ciibica de los cristales de TaC, solamente es posible tener tres coeficientes
elasticos de rigidez: ci11, c12 v cq44. Debido a la cercana relacién de los coeficientes elasticos



y los médulos de volumen y de Young, y de la razén de Poisson, es posible determinar
estas propiedades si los coeficientes son conocidos y viceversa. Los coeficientes de rigidez
obtenidos en estos cédlculos son ¢;;=621(3), ¢12=155.3(2) y ¢44=166.8(3) GPa, mientras que
los médulos de volumen y de Young obtenidos de estos coeficientes son B=318(4) y E=550
GPa, respectivamente. La razén de Poisson calculada tiene un valor de v=0.21.

Se midieron los coeficientes de rigidez c11 y c44 v la densidad de masa de un monocristal
de TaC con una técnica de ultrasonido. El monocristal tenia la forma de un disco de 5 mm de
didmetro y 1.4 mm de espesor. Las caras del disco estaban orientadas de manera paralela al
plano (100). La técnica consiste en excitar y medir las frecuencias resonantes en la muestra
provocadas con un transductor de cuarzo y, de éstas, determinar los coeficientes eldsticos de
rigidez. Los valores obtenidos de la medicién son ¢11=595(2) y c44=153(2)GPa, y p=14.64(5)
g/cm3.

La tabla 5.3 presenta los valores de parametro de red y de densidad de masa del TaC,
tedricos y experimentales, determinados en este trabajo y los reportados en la literatura. El
parametro de red del TaC esta bien establecido como ag=4.4547 A y su densidad como p=14.5
g/cm? [8], por lo que el valor de la densidad reportada por Brown et al. [16] es inconsistente.
Todos los demés valores experimentales, incluyendo el nuestro, estan dentro del 1%. En lo
que respecta al pardmetro de red, los valores obtenidos de los célculos que utilizaron GGA
con ambos cédigos se encuentran dentro del 2% respecto al valor experimental mencionado
anteriormente, mientras que la densidad de masa esta dentro del 5%. Esta sobreestimacion en
los valores es caracteristica de GGA. Por otro lado, los pardametros de red calculados usando
LDA estan dentro del 2% y la densidad de masa dentro de un 4%, comparados con los valores
establecidos. De manera contraria a GGA, LDA tiende a subestimar el valor del pardmetro
de red. Estas diferencias también se observan en los valores reportados por Sahnoun et al.
[51, 52].

No existen muchos valores reportados en la literatura de los coeficientes elasticos de rigidez
y de los médulos de volumen y Young, y de la razén de Poisson para el TaC. Aquellos que
encontramos, junto con los obtenidos en este estudio, tanto tedricos y experimentales, se
encuentran resumidos en la tabla 5.4. En ella es posible notar las grandes discrepancias de
hasta un factor de dos en los coeficientes c17 v ¢12 que no se justifican por diferencias en la
estequiometria de las muestras usadas en las mediciones. Como los valores de ¢11 obtenidos por
Brown et al. [16], Jun et al. [17], Weber [22] y aqui tedrica y experimentalmente concuerdan
razonablemente, se puede concluir que el valor méas problable, obtenido de promediar los
valores mencionados, es de ¢11=606 GPa. Haciendo un andlisis similar para cis se puede
deducir que los valores de Krajewski et al. [12], Bartlett y Smith [15] y Sahnoun et al.
[52] son demasiado bajos por més de 50 GPa. Promediando los valores que concuerdan
razonablemente, el mejor valor para ci2 es de 166 GPa. Previo a este trabajo sélo se habia
reportado una medicién de c¢qq = 79 GPa hecha por Bartlett y Smith. En su estudio los otros
dos coeficientes también muestran valores muy pequenos, por lo que probablemente también
lo es cq4. Ademas, los valores tedricos reportados por Sahnoun et al. utilizando LDA y GGA
muestran serias discrepancias al compararlos con los demas valores. El valor de c44=190 GPa
determinado por Weber [22], el de cyqy= 176 GPa calculado con LDA por Wu et al. [53] y
aquellos obtenidos aqui por la teoria y el experimento, 153(2) y 166.8(3) GPa, concuerdan de
manera aceptable. Esto sugiere que el mejor valor para c4q es de 170 GPa.



La tabla 5.5 muestra algunos valores de los médulos de volumen y de Young y la razén de
Poisson para el TaC encontrados en la literatura y los obtenidos aqui. La buena concordancia
de los coeficientes ¢;; obtenidos por Brown et al. [16] y Jun et al. respecto a los valores
calculados aqui implica que también los mdédulos de volumen y de Young presentan buena
concordancia. Ademas, los valores reportados por Dodd et al. [54] también estdn en buena
concordancia con los anteriores mencionados. Por lo tanto, se puede determinar un valor de
B=335 GPa de las mediciones. Los valores de B=369.83 y B=397.3 GPa obtenidos de los
célculos con LDA hechos por Sahnoun et al., concuerdan en un 9% con el valor de B=365(4)
GPa obtenido aqui usando la misma aproximacién. De forma similar los valores calculados
con GGA por Sahnoun de B=318.98 y los calculados en este estudio con ambos cddigos, de
B=318(4) y B=316(2) GPa, muestran una concordancia de un 1%. Al realizar un andlisis de
los valores de las propiedades elasticas, se encontraron como los mejores valores el de B=335
GPa para el mddulo de volumen y el de B'=4 para su primera derivada, y para el médulo de
Young de E=550 GPa y v ~0.22 para la razén de Poisson.

Las curvas de dispersién de fonones para el TaC, calculadas usando ABINIT, en las di-
recciones de alta simetria se muestran en la figura 5.14. En esta figura se puede observar la
gran brecha que separa las frecuencias actsticas de las Opticas. Las curvas de alta frecuencia
se originan principalmente en los 4tomos de carbono, por su bajo peso molecular. Las curvas
de dispersion obtenidas del calculo reproducen las caracteristicas principales de las curvas
medidas por Smith y Glaser [18].

TLLQ C

El estudio del TasC se realizé mediante cdlculos con el codigo ABINIT usando LDA y pseu-
dopotenciales del tipo Hartwigsen-Goedecker-Hutter para el C (4 e™) y para el Ta (13 e7).
La energia de corte fue de E.,; =1632.6 eV y para el muestreo en el espacio reciproco se usé
una malla de puntos k£ de 8 x 8 x 4. La optimizacién geométrica de la estructura dié como
pardmetros de red los valores de ag=3.089 A y ¢y=4.837 A. Con el c6digo CASTEP se cal-
cularon las propiedades elédsticas utilizando GGA, pseudopotenciales ultrasuaves, una energia
de corte de 330 eV y una malla de puntos k£ de 10 x 10 x 6. La minimizacién de la energia
realizada con el cédigo dié como pardmetros de red los valores de ag=3.152 Ay ¢p=4.99 A.
La simetria hexagonal del TasC s6lamente presenta cinco coeficientes eldsticos de rigidez.
Los valores obtenidos para estos coeficientes son ¢11=445(4), ¢12=172.6(1), ¢13=143.8(1),
c33=492(4) y c44=135.6(1) GPa. El médulo de volumen obtenido de estos coeficientes es
de B=256(5) GPa y el médulo de Young para cada direccién es E,=FE,=360.5 y E,=425.1
GPa. También debido a su simetria, el TaoC muestra seis valores de la razén de Poisson
correspondientes a tensiones y esfuerzos en las direcciones z, y y z, donde z y y son equiva-
lentes. Esto da como resultado sélo tres valores, los cuales son vy, =1,,;=0.32, v, =v,,=0.23
Y Vzo=1y>=0.197. Hasta el momento no se han reportado valores de las propiedades eldsticas
del TasC para comparar con los valores que se obtuvieron aqui. La tabla 5.6 resume los datos
calculados con ABINIT (LDA) y CASTEP (GGA) de los pardmetros de red. De esta tabla
se observa una sobreestimacién de los valores calculados con GGA del 2% para ag y del 1%
para ¢y en comparacién con los valores experimentales de la base de datos ICDD [32]. Por
otra parte, la subestimacién de los valores obtenidos con LDA estd dentro del 1% para ag y



del 2% para cy. Como no hay valores experimentales disponibles de las propiedades eldsticas
del TasC, los valores obtenidos del calculo podrian considerarse como predicciones.

Las relaciones de dispersién de fonones en las direcciones de alta simetria se calcularon
con el codigo ABINIT. Estas curvas se presentan en la figura 5.16. Debido a que el TasC tiene
asociados tres atomos, sus curvas de dispersién presentan 9 ramas: 3 aculsticas y 6 dpticas.
De forma similar al TaC, una gran brecha, de 12 THz, separa a las frecuencias acusticas de
las Opticas. Al tiempo de escribir esta tesis no han sido publicadas las relaciones de dispersién
de fonones del TasC, ni experimental ni tedricamente, por lo tanto las curvas obtenidas en
este trabajo pueden considerarse como una prediccién en futuras mediciones.

0-TaN

Los célculos para §-TaN realizados con el cédigo ABINIT estuvieron basados en LDA. Se
usaron pseudopotenciales del tipo Hartwigsen-Goedecker-Hutter para el N (5 e™) y para el
Ta (13 e7). La energia de corte fue de E.,; =1632.6 ¢V y la malla de puntos k de 8 x 8 x 8.
La relacion del pardametro de red y la energia total se muestra en la figura 5.17. El pardmetro
de red que minimiza la energfa tiene un valor de ag= 4.329 A. De la optimizacién geométrica
hecha con ABINIT se encontré un pardmetro de red de ag=4.3307 A. La figura 5.18 muestra
la relacién presién-volumen para d-TaN. Estos datos fueron ajustados a la ecuacion de estado
de Birch-Murnaghan a tercer orden y los valores obtenidos del ajuste fueron de ag=4.339(6) A
para el pardmetro de red y de vp=81.730(6) A3 para el volumen. El médulo de volumen fue de
By=373(6) GPa, mientras que su primera derivada fue de B'=4(1). Las propiedades eldsticas
del 0-TaN se obtuvieron con el c6digo CASTEP usando GGA y pseudopotenciales ultrasuaves
para Ta y N. La energia de corte fue de E.,;=380 eV, mientras que la malla de puntos k del
tipo Monkhorst-Pack fue de 16 x 16 x 16. De la minimizaciéon de la energia se encontro
como pardmetro de red el valor de ap=4.4905 A. Los coeficientes eldsticos obtenidos de este
célculo son ¢11=700(5), c12=128.8(7) y c44=34.7(4) GPa. Los médulos de volumen y de Young
obtenidos a partir de estos coeficientes son B=319(2) y E=659.7 GPa, respectivamente. El
valor calculado de la razén de Poisson es de v=0.155.

La tabla 5.7 muestra los valores del parametro de red ag y de la densidad de masa p para -
TaN. Todos los parametros de red obtenidos tedricamente se encuentran en buen concordancia
con el valor experimental de ap=4.339 A reportados por la National Bureau of Standards
[32]. Sin embargo, los valores obtenidos de los cdlculos con LDA en este estudio y por Sahnoun
et al. [52] muestran una subestimacién de un 1%, mientras que los célculos con GGA estan
sobreestimados por ~ 3.5 y 2%, respectivamente. A consecuencia de estos valores la densidad
de masa calculada presenta una sobreestimacién del 1%, usando LDA, al comparar con el
valor experimental de 15.842 g/ecm?, y una subestimaciéon del 10% cuando se usé GGA.
Los valores de los coeficientes eldsticos de rigidez para d-TaN reportados en la literatura
y aquellos obtenidos en este estudio se muestran en la tabla 5.8. Para ci1, el valor calculado
de 700(5) GPa concuerda dentro del 3.5% en comparacién del valor de 675.95 GPa calculado
por Sahnoun et al. [52] usando la misma aproximaciéon (GGA).

Por otro lado, los valores obtenidos por Sahnoun (886.9 GPa), y Wu et al. [53] (783
GPa), usando LDA muestran una concordancia del 26.7% y del 11.85%, respectivamente. Sin
embargo, el valor reportado por Sahnoun es cerca de 100 GPa mayor en comparacion con
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el valor reportado por Wu. Dado que los valores de Sahnoun et al. (usando GGA), Wu et
al. y los obtenidos aqui muestran una concordancia rasonable, un promedio de estos valores
nos indican que el valor mas probable es ¢11=720 GPa. Para el caso de ¢;12, todos los valores
muestran una concordancia razonable, por lo que de manera similar a c11, el valor de ¢1o=150
GPa es una buena prediccién. Aunque todos los valores de la tabla 5.8 fueron obtenidos
tedricamente usando DF'T, se pueden observar serias discrepancias en los valores de cyq4. Los
valores determinados por Sahnoun et al. se encuentran algunos cientos de GPa arriba de
los valores determinados por Wu et al. y de los calculados en este estudio. Como no se ha
reportado un valor experimental para cqq con el cual comparar, tomamos en consideracién
la concordancia que mostraron los resultados de los célculos para TaC y determinamos como
mejor valor a ¢g4=27 GPa. Sin embargo, es necesario determinar experimentalmente el valor
de cy44 para corroborar la propuesta de este valor. Las propiedades eldsticas como el médulo
de volumen y su primera derivada, el médulo de Young y la razén de Poisson para d-TaN se
encuentran en la tabla 5.9. Ya que todos los valores del médulo de volumen muestran una
buena concordancia entre ellos, el promedio de estos valores de B=350 GPa puede considerarse
como una predicién a esta propiedad. Para el médulo de Young, el valor de Sahnoun et al.
[52] obtenido de los célculos usando LDA es mucho mayor en comparacién con los valores
calculados con GGA, por lo que el valor de E=640 GPa seria el mejor valor. Haciendo un
andlisis similar para la razon de Poisson, el mejor valor para v seria el de 0.165.

e-TaN

Los célculos realizados utilizando ABINIT para e-TaN se basaron en la aproximacién LDA y
se emplearon pseudopotenciales del tipo Hartwigsen-Goedecker-Hutter [38] para el N (5 e™)
y para el Ta (13 e7). La energia de corte fue de E.,; =1632.6 eV y el muestreo de la zona
de Brillouin se hizo con una malla de puntos k£ de 4 x 4 x 8. La optimizacién de la geometria
de la estructura hecha con el cédigo dié como pardametros de red los valores de ap=5.343 A y
co=3.001 A.

Las propiedades elasticas del e-TaN se determinaron por medio del programa CASTEP
empleando GGA y pseudopotenciales ultrasuaves para el Ta y el N. La energia de corte fue
de 330 eV y para el muestreo del espacio reciproco se usé una malla del tipo Monkhorst-
Pack de 10 x 10 x 6 puntos k. La relajacién de la estructura dié como pardmetros de red
en el equilibrio los valores de ag=>5.4404 A y ¢y=3.1614 A. De manera similar al TayC, la
estructura hexagonal del e-TaN muestra cinco coeficientes elasticos de rigidez independientes
cuyos valores obtenidos del célculo son ¢;7=294(4), ¢12=239(4), c13=170.1(1), c33=374(4) y
c44=95.5(1) GPa. El médulo de volumen obtenido a partir de estos coeficientes es B=236(2)
GPa y el médulo de volumen para cada direccién son E,=FE,=97.16 y E,=266.17 GPa. Los
valores para la razén de Poisson son vgy=v,=0.74, v,;=1,,=0.32 y v;,=v,.=0.12.

La tabla 5.10 muestra los valores calculados con ABINIT (LDA) y CASTEP (GGA) de
los pardmetros de red ag y cg. En comparacién con los valores experimentales reportados
en el ICDD (International Center for Diffraction Data), los pardmetros calculados con LDA
muestran una sobreestimacion no esperada de un 3% para ambos pardmetros. Una razén de
esto seria que la descripcién de la estructura del e-TaN fue interpretada de manera errénea
en el codigo. Por otra parte, los parametros de red obtenidos del cleulos utilizando GGA



concuerdan dentro del 5% para ag y del 9% para cyp. De la misma manera que TasC, como
no se encontraron valores reportados de las propiedades elasticas en la literatura para e-TaN,
los valores determinados aqui pueden considerarse una prediccién para futuras mediciones.

Capacidad Calorifica

Las curvas de densidad de estados de fonones y de capacidad calorifica para el tantalio,
diamante, TaC y TasC se determinaron utilizando las relaciones de dispersion de fonones
anteriormente calculadas para dichos materiales.

Tantalio

La figura 6.1 muestra la densidad de estados de fonones del tantalio, normalizada de tal forma
que el area bajo la curva sea uno, obtenida de las curvas de dispersién de fonones mostradas
en la figura 4.7. Los intervalos de frecuencia utilizados son de 0.15 THz. Esta curva reproduce
las principales caracteristicas de la curva de distribucién de frecuencias para Ta calculada por
Woods [45] (ver figura 6.2), obtenida al ajustar un modelo general a curvas de frecuencias de
fonones medidas por dispersion inélastica de neutrones. La capacidad calorifica a volumen
constante C,, del Ta calculada de la densidad de estados de fonones se muestra en la figura
6.3. A temperaturas menores que 25 K, la capacidad calorifica calculada concuerda en ~ 1 J
K1 mol~! con los valores experimentales de White et al. [55]. Sin embargo, a temperaturas
mayores que 400 K la capacidad calorifica del Ta se aproxima al valor clasico de 3N Kp, el
cual, para el caso del Ta, es de 25 J K=! mol~.

Diamante

La densidad de estados de fonones del diamante, obtenida de las relaciones de dispersién
(figura 4.14) calculadas con el c6digo ABINIT, se muestra en la figura 6.4. Esta curva se
calcul6 utilizando intervalos de frecuencia de 0.15 THz. La figura 6.5 muestra la densidad de
estados de fonones del diamante determinada por Xie y colaboradores [56] mediante calculos
ab initio. De esta figura se observa que la curva determinada en este estudio reproduce las
principales caracteristicas de la curva obtenida por Xie. La capacidad calorifica a volumen
constante (C,) del diamante, que se muestra en la figura 6.4, se calculé a partir de la densidad
de estados en un intervalo de temperatura de 0 a 1100 K. Dado que las mediciones de la
capacidad calorifica se realizan a presién constante se le denomina como C,.

Para hacer una comparacién directa entre los datos calculados y los medidos, C, se debe
convertir en C),. Esta conversién se lleva a cabo mediante la ecuacién (6.14). A temperaturas
mayores o igual a 100 K, la concordancia entre los valores calculados aqui y los experimentales
publicados por DeSorbo [57], esta dentro de 1.5 J K~! mol~!. A altas temperaturas, T > 700
K, la concordancia entre valores tedricos y experimentales publicados por Victor [58] es de 1
J K~! mol™! (ver figura 6.7).



TaC

A partir de la relacién de dispersién calculada para el TaC (ver figura 5.14), se calculd la
densidad de estados de fonones g(w). Esta densidad se obtuvo calculando un histograma de

frecuencias utilizando un intervalo de frecuencia de 0.3 THz y normalizada de tal forma que
Wmax

J g(w)dw =1 (se muestra en la figura 6.8).
0

La figura 6.9 muestra la capacidad calorifica a volumen constante (C,) del TaC calculada,
asi como los valores experimentales obtenidos en este estudio utilizando un calorimetro de
barrido diferencial tipo Netzsch DSC F1 Phoenix 204. Los valores calculados de C, concuerdan
en 3 J K=! mol~! o menos, con los valores experimentales publicados de C, por Kelley [59], y
en 2.4 J K~ mol™! con los valores experimentales obtenidos en este estudio. En la figura 6.9
se observa que la capacidad calorifica calculada presenta valores notablemente més grandes
que los experimentales. Esto puede deberse a que las muestras utilizadas en las mediciones no
presentaban una estequiometia Ta;Cq, como sucede en los cdlculos. Ademaés, en los célculos
se considera al cristal sin imperfecciones y a una temperatura de 0 K.

Ta2 C

La densidad de estados de fonones para el TagC normalizada se muestra en la figura 6.10,
donde se utiliz6 un intervalo de frecuencia de 0.5 THz. La capacidad calorifica del TaxC se
muestra en la figura 6.11. De esta figura se observa que la curva alcanza el valor clasico de 74.7
J K=! mol~! después de una temperatura de 800 K. Debido a que no se encontraron valores
experimentales de la capacidad calorifica para este compuesto, los valores tedricos obtenidos
en este estudio se pueden considerar como una predicciéon para futuras mediciones.

Conclusiones

En ésta tésis se describié el uso de la teoria del funcional de densidad (DFT) en la prediccién
de las propiedades macroscopicas de carburos y nitruros de tantalio. Estos cdlculos muestran
una buena concordancia con los valores experimentales reportados en la literatura y, ademas,
proveen valores confiables de las propiedades para las cuales atin no se han hecho mediciones.

Propiedades Mecdnicas

Se calcularon las propiedades estructurales y las relaciones de presién-volumen (excepto para
TagC y e-TaN) para tantalio, diamante, TaC, TasC, §-TaN y e-TaN, con el cédigo ABINIT
utilizando DF'T, pseudopotenciales que conservan la norma y bases de ondas planas. Se utilizo
la aproximacién de la densidad local (LDA) en los cdlculos de todos los compuestos y sélo se
usé la aproximacién del gradiente generalizado (GGA) en célculos para el TaC.

También se determinaron los parametros de red, los coeficientes elasticos de rigidez, los
moédulos de volumen y de Young y la razén de Poisson para TaC, TaoC, §-TaN y e-TaN,
mediante calculos basados en DFT y GGA, usando pseudopoteciales ultrasuaves y bases de
ondas planas. Estos cédlculos se llevaron a cabo utilizando el cédigo CASTEP. Los resultados
obtenidos fueron comparados con valores reportados en la literatura y se sugirieren valores de



cada propiedad para cada compuesto. En el caso del TaC, se midieron los coeficientes eldsticos
de rigidez c11 y c44 utilizando un monocristal de TaC en forma de disco mediante una técnica
de ultrasonido. Estos valores tienen una concordancia del 8% respecto a los valores tedricos
obtenidos aqui.

Dinamica de la red

Se calcularon las relaciones de dispersion para tantalio, diamante, TaC y TasC en las direc-
ciones de alta simetria. En los casos del tantalio, diamante y TaC, las frecuencias obtenidas de
los fonones concuerdan dentro de un pequeno porcentaje respecto a los valores experimetales
publicados. Sin embargo, para el TasC no se han reportado valores experimentales, por lo
que los resultados tedricos obtenidos en este estudio pueden considerarse una prediccion.

Capacidad Calorifica

Las curvas de la densidad de estados de fonones y de la capacidad calorifica fueron obtenidas a
partir de las relaciones de dispersion para el tantalio, diamante, TaC y TayC. Para el tantalio
la capacidad calorifica calculada concuerda en ~ 1 J K~! mol~! con los valores experimentales
a temperaturas menores a 25 K. A altas temperaturas la curva tiende a mostrar un compor-
tamiento clasico. Los valores obtenidos de la capacidad calorifica del diamante concuerdan
en 1.5 J K~! mol~! a temperaturas menores a 100 K, y en 1 J K~ mol™! a temperaturas
mayores a 700 K, en comparacién a los valores experimentales publicados. Se midié la ca-
pacidad calorifica de un monocristal de TaC en un intervalo de temperaturas de 150 a 600
K. Los valores tedricos concuerdan en 2.4 J K~ mol~! respecto a los valores experimentales
medidos aqui, y en 3 J K1 mol~! respecto a los valores experimentales publicados.



A Ph.D. is more a matter of

tenacity than cleverness.
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Chapter 1

INTRODUCTION

The properties of materials determine their usefulness. However, for a given application, a
combination of properties is usually required. Mechanical properties such as tensile strength,
yield strength, elongation (ductility), toughness and hardness are frequently the properties
of greatest concern. But also optical, thermal, electrical and magnetic properties are useful
properties.

The physical properties of materials depend, in a general sense, on their electronic struc-
ture. Ab initio calculations, also known as first principles calculations, use quantum theory
to determine accurately the electronic structure of materials. Here the atomic numbers of
constituent atoms and, usually, some structural information are employed as the only input
data.

There are different computational methods to figure out such material properties from
first principles calculations, but those based on the density functional theory (DFT)[34] are
commonly carried out for solid state systems. In DF'T, the complicated many-body interaction
of all electrons is replaced by an equivalent but simpler problem of a single electron moving
in an effective potential. Although the basic results of such calculations are the electronic
structure (eigenvalues, wave functions, etc.) and the total energy of the ground state, many
other related physical properties can be deduced from them.

For a given material, the calculated total energy can be used to obtain equilibrium lattice
parameters, elastic moduli, relative stabilities of competing crystal structures, energies asso-
ciated with point and planar defects, etc. [60]. In addition, we also obtain information about
electronic density of states and charge density that enables us to attain a deeper insight. The
calculations are usually performed at zero temperature (0 K), but the results obtained often
constitute the basis for understanding finite-temperature properties.

The advances in ab initio electronic structure computation techniques have made possible
the calculation of crystal structures and elastic properties for many materials to within 2-5%
of experimental results [61]. Such advances in accurate theoretical modeling have created

new opportunities for studying hard materials. In addition, the computational modeling
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of materials properties is a useful tool that help to determine physical properties when the
experimental determination needs expensive apparatus, or special conditions impossible to
reproduce such as the temperatures or pressures similar to the Earth’s interior.

In the present work, tantalum carbides compounds TaC and TasC, as well as tantalum
nitrides §-TaN and e-TaN, were chosen to be studied due to the unusual combination of
physical and chemical properties that they exhibit. Although these compounds contain the
same elements, Ta and C, and Ta and N, the differences in stoichiometry or crystal structure
lead to different mechanical behaviours. The mechanical properties such as bulk and Young
moduli, Poisson ratio and the elastic stiffness coefficients, for TaC, TaoC, -TaN and e-TaN,
are determined along with phonon dispersion curves for tantalum, diamond, TaC and TayC.
In addition, the phonon density of states and heat capacity for tantalum, diamond and TaC
are obtained. For the TaC case, elastic stiffness coefficients c11 and cg4 as well as the heat

capacity curve were obtained experimentally.

1.1 Transition Metal Carbides and Nitrides: General Description

Transition metals in groups IV (Ti,Zr and Hf) and V (V, Nb and Ta) forming carbides and
nitrides are special compounds. Their physical and chemical properties are of interest for basic
research and several technological applications with notorious differences from other common
ceramics and metals. Toth [1] explains that, of all compounds formed between transition metal
atoms and light elements H, B, C, N, and O, only carbides and nitrides are closely related in
crystal structure types, phase relationships, bonding characteristics, and electric and magnetic
properties. This close relationship between transition metal carbides and nitrides is easy to
understand due to their similarities in electronic structure, size, and the electronegativity of
carbon and nitrogen atoms.

These compounds normally exist in substoichiometric phases with a substantial amount
of vacancies [15]. The ideal stoichiometry of transition metal carbides and nitrides (M;C;
and M1N7, M=metal) is not generally found, and deviations from stoichiometry are far more
common. Polymorphs exist in wide composition ranges and vacancies in the nonmetal sites
can exist up to a 50% [1]. Normally, it is expected that vacancies reduce the number of
chemical bonds and in consequence the strength of materials [62]. However, the hardness of
transition metal carbides and nitrides does not behave like this, and the vacancies can act as
pinning centers, inhibiting dislocation motion and thus enhancing mechanical strength [2].

The main commercial applications of transition metal carbides are as abrasives, in cutting
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tools forming the basis for cemented carbide, and hard coatings, due to their extreme hardness
and durability [1, 2, 3]. Many binary carbides have microhardness values between 2000 and
3000 kg/mm? [1], comparable to that of diamond of 9000 kg/mm? [4], which is the hardest
known material. Their high melting point, excellent high-temperature strength and good
corrosion resistance make them useful in heating elements such as filaments and thermal
printing heads, used in facsimile and other apparatus [5]. In recent years, transition metal
carbides and nitrides have been used as optical coatings, electrical contacts and diffusion

barriers in electronics, electrical engineering, and high temperature materials science [6, 7].

Tantalum Carbides

Tantalum carbides with a NaCl-type structure are obtained when the carbon atoms fill all
the octahedral sites available in the metallic fcc lattice formed by tantalum atoms. There
is one octahedral site for every metallic atom. When only one half of the octahedral sites of
a hexagonal closest-packed array formed by the tantalum atoms is filled, then carbides like
TayC are obtained [25].

Carbides rapidly change their properties when the carbon content increases the ratio
C/metal to more than 1. The increment of the amount of carbon atoms that fill the octa-
hedral free sites causes a gradual change in the nature of the chemical bond, going from the
predominantly metallic to the mixed metallic-covalent bond [12]. In addition, many transi-
tion metal carbides posses the NaCl-type structure, like TaC. Therefore, the chemical bond
in this kind of compounds is a superposition of covalent, metallic and ionic, which make an

interpretation of their electronic structure very difficult [63].

TaC

Tantalum carbide, TaC, is a typical representative among transition metal carbides as it has
some remarkable properties such as high hardness at room temperature, high melting point
(above 3880 °C), resistance to chemical attack and thermal shock [3, 9]. Rowcliffe and Warren
[13] mention that the maximum melting point occur at 3983 °C in the TaCy gg phase. Besides,
TaC shows excellent electronic conductivity (42.1 u2 cm at 25 °C), good thermal conductivity
(about 22 Wm~!C~1) and high resistance to oxidation [3, 10, 11].

Because of its high melting temperature, TaC can keep its mechanical properties at tem-
peratures as high as 3200°C [64], and has been used in many special working conditions, for

example, as heating element of electric resistance furnaces [7]. In addition, TaC has been pro-
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posed as a highly active catalytic material [65] and it is known that its catalytic and adsortive
properties are governed by their structure and stoichiometry near the surface [10]. All these
notable physical and chemical properties can be attributed to its mixed covalent-metallic bond
[12, 13, 14].

A number of authors have investigated TaC elastic stiffness coefficients and elastic prop-
erties, such as bulk and Young moduli and Poisson ratio, from diverse methods both experi-
mentally and theoretically since the 1960’s [12, 15, 16, 17]. However, the previously reported
values for the elastic stiffness coefficients exhibit a large variance of up to 50%. On the other
hand, TaC phonon dispersion curves have been obtained experimentally by Smith and Glaser
[18] and Smith [19], and reproduced by theoretical methods such as the dielectric-response
approach [20], the shell model [21, 22] and the three-body-force shell model [23], all with good
agreement. However, there is no reference yet about DF'T first principles calculations on TaC

determining phonon frequencies.

Tag C

TasC has a structure Cdls-type, based on a hexagonal closed-packed lattice formed by the
tantalum atoms with the carbon atoms filling one half of the octahedral holes [24, 25]. While
the electronic structure and physical properties of tantalum monocarbides, stoichiometric
and substoichiometric, has been investigated experimentally and theoretically, the tantalum

compound TapC has not been explored yet [9].

Tantalum Nitrides

Transition metals and nitrogen together make strong and very stable solids. Similar to transi-
tion metal carbides, transition metal nitrides are metallic in character with nitrogen occupying
interstitial positions of the metal atom arrangement in structures NaCl-type or with a hexag-
onal closest-packed lattice [66]. Several polymorphs of TaN are known [30]. They show large
hardness (1000 kg/mm? for e-TaN), high melting points near 3000° C, high conductivity, su-
perconductivity and wear resistance [1, 67]. It is known that these properties are due to their
strong bonds, and that these properties are the key in applications such as cutting tools, hard
coatings, catalysts and diffusion barriers due to their resistance to diffusion of foreign atoms
in electronic devices [2, 66, 68, 27]. Also, tantalum nitrides are chemically inert refractory

compounds [69].
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e-TaN and §-TalN

It is known that the most stable tantalum nitride phase is the e-TaN, with a composition of
Taj 0N and hexagonal symmetry [27]. e-TaN goes through phase transition from hexagonal
to face-centered cubic symmetry 6-TaN under high temperature and high pressures [29, 30]. In
conventional methods, the synthesis of cubic §-TaN requires temperatures greater than 1700°
C and pressures of minimum 160 bar of nitrogen [70]. However, 6-TaN is more commonly
employed than e-TaN.

The §-TaN phase has a broad composition range and is a typical nonstoichiometric com-
pound with the NaCl-type structure [31]. It is of considerable current interest due to its
uses as a diffusion barrier in Cu and Al interconnects on silicon chips, and in manufacturing
compact thin film resistors [71]. Also, 6-TaN exhibits superconductivity with a transition

temperature of 6.5 K in bulk [33] and 4.8 K as a thin film [29].

1.2 Objectives

The present work is about the determination of the macroscopic mechanical properties of tan-
talum carbides and nitrides, TaC, TaoC, §-TaN and e-TaN, from first principles calculations.
In addition, structural as well as elastic properties are determined for tantalum and diamond.
These are total-energy calculations based on the density functional theory (DFT) within the
local density approximation (LDA) and the generalized gradient approximation (GGA). A
plane-wave basis set and pseudopotentials are used.

The mechanical properties studied include the elastic stiffness coefficients (¢;;), bulk mod-
ulus and its first derivative, Young modulus and Poisson ratio. Phonon dispersion curves
were calculated for tantalum, diamond and the tantalum carbides TaC and TayC. Thermody-
namic properties such as heat capacity were determined from phonon dispersion curves and
phonon density of states for these compounds. Because TaC is the most relevant compound
treated here and easier to obtain as single crystal, only its elastic stiffness coefficients and

heat capacity were determined experimentally.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 goes through theories on which the quantum
mechanical modeling is based and presents brief descriptions of the two codes used, ABINIT

and CASTEP; Chapter 3 contains the fundamental concepts about mechanical properties
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concerning this work such as elastic properties and phonons; Chapter 4 contains results on
elastic properties and the lattice dynamics calculations for tantalum and diamond. Chapter
5 shows results obtained about mechanical properties calculated for tantalum carbides and
nitrides. Chapter 6 contains the phonon density of states (DOS) and heat capacity curves
as a function of temperature for diamond, tantalum and TaC determined theoretically, and
also experimentally for the latter. Conclusions reached in this work are found in Chapter 7.
Finally, some appendices are included in which complementary details are given, as well as

some input files of the ABINIT program of the studied compounds.



Chapter 2

QUANTUM MECHANICAL MODELING

The need of knowledge about physical properties of materials that are difficult, or in some
cases impossible, to measure was the most important reason that physicists had to develop

many methods to calculate them [72].

These methods are called ab initio, due to the fact that they only require a specification
of the ions present by their atomic number. The word ab initio means “from first principles”,
and the main purpose of this kind of methods is to obtain a reasonable approximation to the
solution of the Schrédinger equation through quantum mechanics, using only a small num-
ber of physical constants. This kind of quantum-mechanical modeling of physical properties
relies directly on the capabilities of the computer system used, i.e. the time required for the

computational calculation depends on the computer speed and features.

In this chapter, an overview of the most important concepts and theories related with
evaluating the ground-state electronic density and total energy using quantum-mechanical ab
initio calculations is treated. Also, general descriptions of the programs used in this work,
ABINIT and CASTEP, are included.

Total-Energy Pseudopotential Calculations

With most quantum mechanical methods, the total energy of a system of electrons and nuclei,
and the subsequent minimization of that energy with respect to the electronic and nuclear
coordinates, can be computed. On the other hand, we can say that several physical properties
are related to total energies or to differences between total energies. And, if it is possible to
calculate total energies from a quantum-mechanical calculation, then any physical property
that can be related to a total energy or to a difference of total energies can be determined com-
putationally. Since then, total energy techniques have been successfully used to predict with
accuracy properties such as equilibrium lattice constants, bulk moduli, phonons, piezoelectric

constants, and phase transition temperatures and pressures [72].

7
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2.1 Basic Approximations

A certain number of approximations and simplifications are indispensable to perform total
energy calculations. However, there are two fundamental simplifications to take into consid-

eration first.

Pairwise Additivity

One of the basic approximations used in total energy calculations is called pairwise additivity
[73]. The energy of a system of three or more particles can be represented as the sum of
interactions between the different pairs. An illustration of this is the following: the energy of
a system with two electrons, e; and eo, and an ion is the sum of the energies between ej-eo,

e1-ion and es-ion.

Born-Oppenheimer Approximation

Because electrons move much faster than the atom cores, the electrons are always in an
equilibrium configuration when the atom cores are moving [73]. Thus the nuclei can be treated
adiabatically, leading to a separation of electronic and nuclear coordinates in the many-body
wave function [72]. This approximation is known as the adiabatic or Born-Oppenheimer
approzimation. This adiabatic principle reduces the many-body problem to the solution of
the dynamics of the electrons in some frozen-in configuration of the nuclei.

Even with these simplifications, the many-body problem still remains difficult. Therefore,
further simplifications must be introduced allowing total energy calculations to be performed
accurately and efficiently. In a solid, there are two basic interactions that are important to

consider: electron-electron interactions and electron-ion interactions.

2.2 Electron-Electron Interactions

The most difficult problem in any electronic structure calculation is to take into account the
effects of the electron-electron interaction. Due to the Coulumb interaction between their
charges, electrons repel each other. The Coulomb energy of a system of electrons can be
reduced by keeping the electrons spatially separated, but this has to be balanced against
the kinetic energy cost of deforming the electronic wave functions in order to separate the

electrons. The effects of the electron-electron interaction is briefly described below.
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2.2.1 The Many-Body Schrodinger Equation

The electronic and structural properties of a given material can be predicted by solving the

Schrodinger equation of a N electrons system,

HU = BV, (2.1)

where W is the many-electrons wave function and is an antisymmetric function of the electron
coordinates r;:i=1,...,N. Problems arise in attempting to solve equation (2.1). The Hamilto-

nian, H, for a system of electrons and nuclei is given by

- h? Zye? 1 e? 717 e
H:_Tm;V Z\r R/| 5;@‘22.7\4 ;yR,—RJy
(2.2)

where electrons coordinates are denoted by r; and for nuclei, coordinates are Ry, charge Z
and mass M. The first term in the Hamiltonian is the kinetic energy of electrons, followed
by the expression for the potential acting on the electrons due to the nuclei and the potential
due to the electron-electron interaction, respectively. The last two terms correspond to the
kinetic energy of the ions and the classical interaction of nuclei with one another.

Following the Born-Oppenheimar approximation, the nuclei are considered fixed and their
kinetic energy can be ignored [74]. In addition, the last term in equation (2.2), corresponding
to the classical interaction of nuclei with one another, is included in a fixed potential external
to the electrons. Therefore, the three first terms are the key problem for ab initio prediction

of the properties of materials. Thus the fundamental Hamiltonian can be written as

e

Z VZ + Vet (r3) + Ve (13). (2.3)

2me

The eigenvalue E in equation (2.1) is the total energy of the system, essentially determined by
the external potential V.., which describes the Coulomb interaction between the electrons and
a given configuration of nuclei. The term V,_. gives the electron-electron Coulomb interaction,
and it is this term which introduces the coupling between the electronic coordinates, avoiding
a straightforward separation of the many-body wave function. This coupling is often referred
to as correlation. When an electron moves, the other electrons feel its Coulomb potential

experiencing a force and moving in response. Hence, the motion of electrons is correlated.
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Exchange and Correlation

As mention above, the wave function of a many-electron system must be antisymmetric under
exchange of any two electrons, because electrons satisfy the Fermi statistics. The antisymme-
try of the wave function produces a spatial separation between electrons that have the same
spin and thus reduces the Coulumb energy of the electronic system. The reduction in the
energy of the electronic system due to the antisymmetry of the wave function is called the
exchange energy [72].

The Coulomb energy of the electronic system can be reduced below its Hartree-Fock value
if electrons that have opposite spins are also spatially separated. In this case the Coulomb
energy of the electronic system is reduced at the cost of increasing the kinetic energy of the
electrons. The difference between the many-body energy of an electronic system and the
energy of the system calculated in the Hartree-Fock approximation is called the correlation

energy.

2.2.2 Density Functional Theory (DFT)

In section 2.2.1 it was noted that the term V._. in equation (2.3) introduces a coupling between
the electronic coordinates of the many electrons in the system known as correlation. Although
the physics to describe the correlation of electrons is well determined, the mathematics to solve
this problem become intractable for all but the simplest systems. Hohenberg and Kohn [34],
and Kohn and Sham [35], provided a simple method for describing the effects of exchange and
correlation in an electron gas.

Hohenberg and Kohn introduced the concept of electronic density n(r) as a basic variable
within the framework of the Density Functional Theory (DFT), showing that the exact total
energy FE, including exchange and correlation, of an electronic gas is a unique functional of

the electron density,

Eln(r)] = Fln(r)] + / Veur (1) (r)dr, (2.4)

where F[n(r)] is a universal functional, so that it is Vs (r) which uniquely describes any
particular physical system. They also showed that the minimum value of the total energy
functional is the ground-state energy of the system, and the density which minimized E in
equation (2.4) is the single particle ground-state density. Unfortunately, the functional is not

known and as a consequence the theory is not useful in this way.
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However, Kohn and Sham [35] showed how it is possible, formally, to replace the many-

electron problem by an exactly equivalent set of self-consistent one-electron equations.

a. Exchange and correlation Functionals

The Hohenberg-Kohn theorem provides some motivation for using approximate methods to
describe the exchange-correlation energy as a function of the electron density. The simplest
method of describing the exchange-correlation energy of an electronic system is the local
density approzimation (LDA) [35]. However, the generalized gradient approxzimation (GGA)

[36] has various theoretical improvements for an electron density that varies in space.

Local Density Approximation (LDA)

In the local density approximation the exchange-correlation energy of an electronic system
is constructed by assuming that the exchange-correlation energy per electron at a point r
in the electron gas, exc(r), is equal to the exchange-correlation energy per electron in a

homogeneous electron gas that has the same density as the electron gas at point r [72]. Thus

Excl(e)] = [ exc(nd’s (2.5)
and
OExc(n(r)] _ O[n(r)exc(r)]
on(r) on(r) ’ (26)
with
exc(r) = 8 n(r)]. (2.7)

LDA assumes that the exchange-correlation energy is purely local. Several parameteri-
zations (Ceperly and Alder [75], Perdew and Zunger [76] and other) exist for the exchange-
correlation energy of a homogeneous electron gas, all of which lead to total energy results
that are very similar. These parameterizations use interpolation formulas to link exact re-
sults for the exchange-correlation energy of high-density electron gases and calculations of
the exchange-correlation energy of intermediate and low-density electron gases. LDA, in
principle, ignores corrections to the exchange-correlation energy at a point r due to nearby
inhomogeneities in the electron density, i.e., it ignores the fact that the electron density varies

from one point to the next. Initially, it was thought that LDA would apply only if the electron
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density were a slowly varying functions of position, and that rapid variations in an atom or in
the solid would avoid its use, but it worked extraordinarily well even in atoms and solids [77].
However, the failures of LDA are now well established and it is known that has a tendency to

favor more homogeneous systems and overbinds molecules and solids [74].

General Gradient Approximation (GGA)

The generalized gradient approximation (GGA) [36] for the exchange-correlation energy im-
proves upon the LDA description of atoms, molecules and solids. It has been developed
obeying the sum-rule and provides better description of weak molecular bonds than the LDA.
GGA treats an electron density that varies in space, i. e. in the GGA approach exc(n) is a

function of the density and the gradient of the density at each point [78].

There are many GGA’s because the approximation is not universal. However, the effect
of all these approximations is: (i) to increase the magnitude of the exchange energy, i. e.
lower the total energy; and (ii) to decrease the magnitude of the correlation energy, i. e.
raise the total energy. But this last is a smaller effect than that of the exchange. The term
generalized-gradient (GGA) denotes a variety of ways proposed for functions that modify the
behavior at large gradients in such a way as to preserve the desired properties. Thus, the

functional in a generalized form is defined as

EGGA

3
, /drn rlexc(n

rn(r)ei™ (n) Fxc(n!

T’ ‘Vn

(2.8)

T‘ ‘Vn

where F'xc is dimensionless and sl)l(om(

n) is the exchange energy of the unpolarized gas [74].
GGA expands and softens bonds, an effect that sometimes corrects and sometimes overcorrects
the LDA prediction. Typically, GGA favors density inhomogeneity more than LDA and, in
comparison, GGA tends to improve total energies, atomization energies, energy barriers and

structural energy differences [36].

In this study, a functional type Perdew-Burke-Ernzerhof (PBE) [36] was used in calcula-
tions where the GGA approach was employed. A detailed description of the general gradient

approximation is found in the reference [74], and for the PBE functional in the reference [36].



2.2. ELECTRON-ELECTRON INTERACTIONS 13

b. The Kohn-Sham energy Functional

The Kohn-Sham approach consists in replacing the difficult interacting many-body system
obeying the Hamiltonian in equation (2.2) with a different auxiliary system that can be solved
more easily. Kohn and Sham assumed that the ground-state density of the original interacting
system is equal to that of some chosen non-interacting system. This leads to independent
particle equations for the non-interacting system that can be considered exactly soluble with
all the difficult many-body terms incorporated into an exchange-correlation functional of the
density. By solving the equations one finds the ground-state density and energy of the original
interacting system with the accuracy limited only by the approximations in the exchange-
correlation functional [74].

Explicitly, Kohn and Sham chose to write the density in terms of a set of orthonormal

functions, one for each of the N electrons in the system

N
n(r) = 3 Joi(x) . (2.9)
=1

F[n(r)] from equation (2.4) is separated into three terms:

Fln(r)] = Tsln(r)] + En[n(r)] + Excln(r)], (2.10)

where T is the kinetic energy term,

h? .
T, = Z o /% VZidr. (2.11)

This is not equal to the true electronic kinetic energy for the system, but it is of similar
magnitude and most important it can be computed exactly. This term is known as the non-
interacting kinetic energy. The term Fg describes the Coulomb energy of the electron density

n(r), which is the same as the electron-electron energy in the Hartree approximation

_1 n(t)n(r) 5 13
EH_Q// g (2.12)

Thus far, the terms in the total energy have been defined to be exact. Ex¢ describes the

rest of the contributions to the total energy, making up the difference between Ty + Ey and
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the true functional F'. It is known as the exchange-correlation energy, and is the only quantity
that is approximated in the Kohn-Sham approach.

Only the minimum value of the Kohn-Sham energy functional has a physical meaning. At
the minimum, the Kohn-Sham energy functional is equal to the ground-state energy of the

system of electrons with the ions in positions Rj.

Kohn-Sham Equations

It is necessary to determine the set of wave functions 1; that minimize the Kohn-Sham energy

functional. These are given by the self-consistent solutions to the Kohn-Sham equations [35]:

32
TN 4 Vi) + Vear () + Vo () | 4i(e) = cuti(r) (2.13)

where 1); is the wavefunction of the electronic state ¢, £; is the Kohn-Sham eigenvalue, and

Vi is the Hartree potential of the electrons

_ 9Bgn(r)]

Vir(r) an(r)

(2.14)

The exchange-correlation potential, Vx ¢, is given formally by the functional derivative

Vxe(r) = ngi([:)(r)] (2.15)

These equations are known as the Kohn-Sham equations, and resemble the non-interacting
particle Schrodinger equations where 1; are the eigenstates and ¢; the corresponding eigenval-
ues. The Kohn-Sham equations represent a mapping of the interacting many-electron system
onto a system of non-interacting electrons moving in an effective potential due to all the other
electrons. The potentials Vg and Vx¢ depend on the charge density which, through equation
(2.9), depends of the Kohn-Sham eigenstates. Therefore, the Kohn-Sham equations must be
solved self-consistently so that the occupied electronic states generate a charge density that
produces the electronic potential that was used to construct the equations.

The bulk of the work involved in a total energy pseudopotential calculation is related
to the solution of this eigenvalue problem once an approximate expression for the exchange-

correlation energy is given.
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2.3 Periodicity

In spite of the fact that the many-body problem can be mapped into equivalent observables
in an effective single-particle problem, still remains the difficult task of handling an infinite
number of noninteracting electrons, moving in the static potential of an infinite number of
nuclei or ions. A wave function must be calculated for each of the infinite number of electrons
in the system, and since each electronic wave function extends over the entire solid, the basis
set required to expand each wave function is infinite. The use of periodic boundary conditions
through Bloch’s theorem allow the treatment of very large number of electrons in a crystal

using highly desirable plane-wave basis [72].

Bloch’s Theorem

Bloch’s theorem states that in a periodic solid each electronic wave function can be written
as the product of a cell-periodic part and a wavelike part. For example, in the one-electron
Hamiltonian in equation (2.13), if the potential has a lattice periodicity U(r) = U(r + R) for
all R, where R is a lattice vector, the eigenstates of the Hamiltonian can be chosen to have

the form of a plane-wave times a cell-periodic function written as

YR (r) = € u(r), (2.16)

where u}(r) is the cell-periodic function such that uj(r) = uj(r + R) for all lattice vectors

R. This implies that

YR (r + R) = " Ry(r). (2.17)

When 7 (r) is substituted in equation (2.13) a new set of eigenequations for wuj(r) is

found, one for each continuous variable k [79].

2.3.1 Plane-wave Basis Set and their Representation in Kohn-Sham Equations

Bloch’s theorem states that the electronic wave functions at each k point can be expanded in
terms of a discrete plane-wave basis set. However, an infinite plane-wave basis set is required
to expand the electronic wave functions. The Kohn-Sham eigenstates when plane-waves are

used as a basis set are expressed as
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Yie(r) =) (Gl ST, (2.18)
G

where the sum is over all reciprocal lattice vectors G. The plane-wave basis set can be trun-
cated to include only plane waves that have kinetic energies less than some particular cutoff
energy. The sum in the basis set is limited to a set of reciprocal lattice vectors contained

within a sphere with a radius defined by the cutoff energy, F.y, such that

h? |k 4+ G|?

< Eout. 2.1
2m - t ( 9)

The introduction of an energy cutoff to the discrete plane-wave basis set produces a finite
basis set. In total energy calculations, the cutoff energy should be increased until the calcu-
lated energy has converged, but it is possible to perform calculations at lower cutoff energies
[72].

2.3.2 Brillouin Zone Integration: k-point Sampling

The boundary conditions applied to a bulk solid determine the set of k points at which
electronic states are only allowed. The density of allowed k points is proportional to the
volume of the solid. The infinite number of electrons in the solid are accounted for by an
infinite number of k points, and only a finite number of electronic states are occupied at each
k point.

The Bloch theorem changes the problem of calculating an infinite number of electronic
wave functions to one of calculating a finite number of electronic wave functions at an infinite
number of k points. The occupied states at each k point contribute to the electronic potential
in the bulk solid so that, in principle, an infinite number of calculations are needed to compute
this potential. However, the electronic wave functions at k points that are very close together
will be almost identical. Hence it is possible to represent the electronic wave functions over
a region of k space by the wave functions at a single k point. In this case the electronic
space at only a finite number of k points is required to calculate the electronic potential and
hence determine the total energy of the solid [72]. This suggests that the DFT expressions
that contain a sum over k points, or equivalently an integral over the Brillouin zone, can
be efficiently evaluated using a numerical scheme that performs a summation over a small

number of special points in the Brillouin zone. In addition, symmetry considerations suggest
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that only k points within the irreducible segment of the Brilloiun zone should be taken into
account.

Many methods have been developed for generating such points and corresponding weights
to be used in the summation. Using these methods one can obtain an accurate approximation
of the electronic potential and the total energy of an insulator by calculating electronic states
at a very small number of k points. The calculations for metallic systems require a more

dense set of k points to determine the Fermi level accurately.

Monkhorst-Pack Scheme

Here, the method used for generating k points is the one developed by Monkhorst and Pack
[50]. This scheme produces a uniform grid of k point along the three axes in reciprocal space.
The Monkhorst-Pack grid is defined by three integers, ¢; where ¢ = 1,2, 3, which specify the
number of divisions along each of the axes. These integers generate a sequence of numbers

according to the following:

(27’ qi 1)
= = =/ 2.20
Uy 2 ) ( )

where r varies from 1 to ¢;. The Monkhorst-Pack grid is obtained from these sequences by

kprs = upbl + urbg + usbs. (221)

This set of g1g2g3 distinct points is further symmetrized and weights are assigned according

to the number of symmetry images of a given point in the symmetrized set.

2.4 Electron-Ion Interactions

It is well known that the chemical bond between atoms is essentially determined by the valence
electrons, i.e. the outer shells electrons. The core electrons are in fully occupied shells, and in
principle do not contribute to the chemical bond. But this does not mean that core electrons
are unimportant. These electrons determine the actual states and energies of the valence
electrons, and due to this, core electrons must be included in the Hamiltonian of quantum
mechanical descriptions of the electronic structure of atoms, molecules or solids. However,

the pseudopotential theory allows one to replace the strong Coulomb potential of the nucleus



2.4. ELECTRON-ION INTERACTIONS 18

and the effects of the tightly bound core electrons by an effective ionic potential acting on the
valence electrons [74].

Besides, in order to solve the Schrodinger equation of atoms with more than three elec-
trons, one has to rely on numerical techniques. The pseudopotential approximation is a
tool that substantially increases the range of problems in solids that can be treated within

computational reach [80].

2.4.1 Pseudopotential Approximation

The description of the potential produced by the atom core needs a very large number of
plane waves to expand the tightly bound core orbitals and to follow the rapid oscillations of
the wave functions of the valence electrons in the core region. Hence, a plane-wave basis set is
usually poorly suited to expanding electronic wave functions. In the pseudopotential approach
ion cores are considered to be frozen. This means that properties of molecules or solids are
calculated on the assumption that the ion cores are not involved in chemical bonding and do
not change as a result of structural modifications.

The pseudopotential approximation is about to replace the strong electron-ion potential
with a much weaker potential, a pseudopotential. In this approach, only the valence electrons
are explicitly considered, the effects of the core electrons are integrated within a new ionic
potential. Thus the original solid is now replaced by pseudo valence electrons and pseudo ion
cores [72]. The valence wave functions need no longer be orthogonal to the core states, and so
the orthogonality oscillations disappear, hence far fewer plane waves are required to describe
the valence wave functions. These new pseudo electrons experience exactly the same potential
outside the core area as the original electrons, but have a much weaker potential inside the
core area [39]. A pseudopotential allows to have a simpler solution of the Schréodinger equation
by the expansion of the wave functions in a small set of plane-waves.

A pseudopotential is constructed in the following way. An all electron DFT calculation
is performed for an isolated atom. A core radius 7. is chosen so that the core regions of
neighboring atoms in future studies will not overlap. The smaller the core radius the greater
the transferability of the pseudopotential, i.e. the more chemical environments it will be valid
in [39]. The all electron valence wave functions are altered within r. to remove the nodal
structrure. These new functions are the pseudowave functions. The Schrédinger equation
is then inverted to find the potential that would produce these wave functions, and this is

the pseudopotential. Figure 2.1 illustrates schematically an ionic potential, the valence wave
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function and the corresponding pseudopotential and pseudo wave function [72]. In the region
occupied by the core electrons, the valence wave functions oscillate rapidly due to the strong
ionic potential. Outside the core region the two potentials are identical, and the scattering

from the two potentials is indistinguishable.

Most pseudopotentials are constructed such that they satisfied four general conditions: (i)
the valence pseudowave functions generated from the pseudopotential should contain no nodes;
(ii) the normalized atomic radial pseudowave function is equal to the normalized radial all-
electron wave function beyond a chosen cutoff radius; (iii) the charge enclosed within the
cutoff radius for the two wave functions must be equal; and (iv) the valence all-electron and
the pseudopotential eigenvalues must be equal. Pseudopotentials that meet these conditions
are known as norm conserving pseudopotentials, and simplifies many aspects of their imple-
mentation [81]. Constructing a pseudowave function that fulfills these requirements can be

accomplished using different schemes.

In this study we used norm-conserving pseudopotentials type Hartwigsen-Goedecker-Hutter

(HGH) [38] for LDA calculations, and type Fritz-Haber-Institute based on the Troullier-

Figure 2.1: Schematic illustration of all-electron (solid lines) and pseudoelectron (dashed lines)
potentials and their corresponding wavefunctions [72].

Figura 2.1: [lustracion esquemdtica donde se muestra el potencial debido a todos los electrones
(linea sdlida) y el potencial de los pseudoelectrones (linea punteada), y sus correspondientes
funciones de onda [72].
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Martins scheme [39] for GGA calculations performed with ABINIT. The pseudopotentials
type HGH are dual-space Gaussian pseudopotentials constructed from a generalization of the
norm-conservation property to the relativistic case, in which the parameters are given in the
context of the local density approximation [38]. In both real and Fourier space, the projectors
which describe the pseudopotentials have the form of a Gaussian multiplied by a polyno-
mial. Due to this property dual-space Gaussian pseudopotentials are the optimal compromise
between convergence properties in real and Fourier space [38]. In addition, these type of
pseudopotentials take into account the explicit inclusion of semicore electrons into the pseu-
dopotentials of several elements. Particularly, the semicore pseudopotentials for transition
metals (groups IIIb-VIIIb) treat the (n-1)s and the (n-1)p electrons as semicore electrons.
Hence, the semicore pseudopotential for tantalum used in this study treats 13 electrons: 6s2

and 5d> as valence electrons, and 5s% and 5p® as semicore electrons.

On the other hand, the pseudopotentials generated under the Troullier-Martins scheme
[39] are pseudopotentials that show as main characteristic to be smoother. A smooth pseu-
dopotential is one in which there is a rapid convergence in the calculated total energy of a
system, and therefore a rapid convergence of the properties of the system with respect to
an increase in the plane-wave basis set. The smoothness can be achieved by increasing the
cutoff radius at which the pseudopotential is generated [39]. Besides, this method improves
the transferability of pseudopotentials. Pseudopotentials type Trouillier-Martins can be used

to study crystals containing elements from any region of the periodic table [39].

In general, pseudopotentials should have the following characteristics: accuracy, softness
and transferability. The accuracy and transferability of a pseudopotential are the conditions
that the pseudoatom must fulfill in order to reproduce the behavior of the all-electron atom in
a wide variety of chemical environments. This is essentially the reason why a pseudopotential
constructed in one environment, usually an atom, can faithfully describe the valence prop-
erties in different environments including atoms, ions, molecules, and condensed matter [74].
An important concept in pseudopotential applications is the degree of softness or hardness of
a pseudopotential. Soft pseudopotentials are those that converge fairly rapidly with respect
to the number of plane-waves and require a small number of Fourier components for their
accurate representation. Otherwise, they are hard pseudopotentials. Vanderbilt [41] intro-
duced the ultrasoft pseudopotential scheme in which the pseudowave functions are allowed
to be as soft as possible within the core region, so that the cutoff energy can be reduced

dramatically. Also, these pseudopotentials show the advantage of being much softer than
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the norm-conserving potentials. Ultrasoft pseudopotentials are employed on calculations with
CASTEP. These pseudopotentials were taken from the CASTEP database.

2.5 Iterative Solution of Kohn-Sham Equations

A pseudopotential total energy calculation requires a sequence of steps in which the solutions
are found self-consistently. A flow chart representing this procedure is shown in figure 2.2.
The procedure begins with an initial guess on the electronic charge density, from which
the Hartree potential and exchange-correlation potential can be calculated. The Kohn-Sham
equations are Schrodinger-like independent-particle equations which must be solved subject
to the condition that the effective potential V.;f(r) and the density n(r) are consistent. This
is, the Hamiltonian matrices for each of the k points included in the calculation must be con-
structed and diagonalized to obtain the Kohn-Sham eigenstates. Normally, these eigenstates
generate a different charge density from the one originally used to construct the electronic
potentials, and hence a new set of Hamiltonian matrices must be constructed using the new
electronic potentials. The eigenstates of the new Hamiltonian are obtained, and the process
is repeated until the solutions probe to be self-consistent. To speed the convergence to self-
consistency, the new electronic potential is constructed as a combination of the electronic

potentials generated by the old and the new eigenstates.

2.6 The ABINIT Program

In the last two decades, the development of faster and more sophisticated computers have
allowed the implementation of diverse codes to perform a widely kind of physical calculations.
In materials science, first principles or ab initio calculations have been used for the determina-
tion of electronic and structural properties of materials through electromagnetic and quantum
mechanical procedures. To reach the goals of the present work, an ab initio computational
code named ABINIT was used.

The ABINIT code is a computer software package specialized in ab initio calculations
and it is comprised of a main code and some utilities programs. It comes from the effort
and collaboration of a group of computer scientists from different countries, interested in an
advanced and useful tool to perform calculations of physical properties. The ABINIT program
is under the GNU General Public License and is available in a public web site [37]. The
ABINIT program has different density-functional based calculations covering a wide spectrum

of properties such as the computation of equilibrium cell parameters and atomic positions,
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Figure 2.2: Schematic flow chart describing the self-consistent loop for the solution of the
Kohn-Sham equations on DFT total energy calculations [74, 72].

Figura 2.2: Esquema del diagrama de flujo donde se describe el ciclo de auto-consistencia
para la solucion de las ecuaciones de Kohn-Sham en cdlculos de la energia total basados en
la teoria del funcional de densidad (DFT) [72, T4].

vibrational properties, prediction of phase (meta)stability or instability, elastic properties,

dielectric and piezoelectric properties, non-linear optical properties, thermodynamic behavior

(entropy, free energy, specific heat), electronic properties (metal/insulator characterization),
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magnetic properties, space group analysis and many more.

Some of the most relevant calculations perform with ABINIT are the following: (i) the
electronic ground-state calculations that allow to find the total energy, charge density and
electronic structure of systems made of electrons and nuclei, molecules and solids, within
density functional theory (DFT) using pseudopotentials and a plane-wave basis; (ii) the
structure-related calculations allow, according to the DFT forces and stresses, to optimize
the geometry or to perform molecular dynamics simulation using these forces. Finally, (iii)
the response function calculations like vibrations and dielectric or piezoelectric properties are
calculated using the Density Functional Perturbation Theory (DFPT)[82] implemented in the
program. This kind of calculation allows to consider the responses to atomic displacements
and static homogeneous electric fields, producing the generation of dynamical matrices at
selected wavevectors, the Born effective charges and the dielectric constant. Another couple
of important ABINIT capabilities are the spin-orbit coupling treatment and the adiabatic-
connection fluctuation dissipation theorem [83, 84]. With ABINIT it is possible to manage
different approximations to the exchange-correlation energy functional such as several versions
of the Local Density Approximation and the Generalized Gradient Approximation. In addi-
tion, there is a extensive library of norm-conserving pseudopotentials for the whole periodic

table.

In the case of the self-consistent cycle, ABINIT uses an iterative minimization algorithm
which is a combination of a fixed potential preconditioned conjugated gradient optimization of
the wavefunction and a choice of different algorithms for updating the potential, one of which
is a potential-based conjugate gradient algorithm. The ABINIT code has two basic versions,
sequential and parallel. The sequential version is designed to work on single computers, PC’s
or workstations. The parallel version allows the use of different processors at the same time
distributing the computational work between them. The code has shown to be very portable
and can be installed in many different computer platforms including several varieties of Unix
(or Linux) and also Windows. A more detailed description of ABINIT and its documentation

can be found in the references [37, 83, 84].

One disadvantage the user could find working with ABINIT is the indispensable knowledge
of each command needed on every calculation. ABINIT performs a calculation through an
input file designed by the user, which consists of a group of commands that most of the times
are not as user friendly as one would wish. The user must clearly understand the function

and its characteristics in order to write a correct input file.
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2.7 The CASTEP Program

The CASTEP program (CAmbridge Serial Total Energy Package), similar to ABINIT, is a
quantum mechanics based program that performs first-principles calculations employing the
DFT plane-wave pseudopotential method [40]. Diverse materials such as ceramics, metals,
semiconductors, zeolites and minerals (as crystals or surfaces) can be studied employing this
code. Some other studies are about surface chemistry, structural properties, band structure,
density of states and optical properties. It is also possible to calculate the full tensor of second
order elastic constants and related mechanical properties of a crystal, such as bulk modulus,
Poisson ratio and Lamé constants. In addition, the vibrational properties of solids such as
phonon dispersion, total and projected density of phonon states and thermodynamic proper-
ties, using the linear response methodology, can be calculated for some materials. Properties
of point defects such as vacancies, interstitials and substitutional impurities, and extended
defects (grain boundaries and dislocations) of semiconductors and other materials, can be
calculated with CASTEP.

A CASTEP calculation allows one to select input options such as the basis set, the ex-
change correlation potential and convergence criteria, and to specify the required properties to
study: structural, electronic or vibrational. After a calculation is performed, the analysis of re-
sults is possible through volumetric visualizations, as well as plot of band structure, density of
states, optical, vibrational and thermodynamic properties. The CASTEP program provides
an implementation of DFT which is based on the following concepts: (i) pseudopotenctial
description of the electron-ion interaction; (ii) supercell approach with periodic boundary
conditions; (iii) plane-wave basis set; (iv) extensive use of fast Fourier transform (FFT) for
evaluation of the Hamiltonian terms; (v) iterative schemes for the self-consistent electronic
minimization and, (vi) implementation of the most popular DFT expressions for the exchange-
correlation functional. CASTEP can be used in a PC as well as workstation computers with
the ability to control the current calculation and some running parameters from the program

itself. It is a user friendly program with a very detailed and useful help file.



Chapter 3

MECHANICAL PROPERTIES: FUNDAMENTAL
CONCEPTS

In many cases, mechanical properties are the most important factor in determining potential
applications. The stiffness, tensile strength, and elastic coefficients of materials are considered
important in applications as seemingly diverse as the sound production from piano strings,
to the strength of dental porcelain to the protective use of a bulletproof vest and many more
[85].

Elastic properties such as elastic stiffness coefficients ¢;;, bulk and Young moduli, Poisson
ratio, the fit of the Birch-Murnaghan equation of state, and the determination of phonon

dispersion relations, are studied here for some tantalum carbides and nitrides.
3.1 Hooke’s Law and Elastic Coefficients c;;

When a solid body is subjected to stress, its shape changes. If the applied stress is below a
certain limit value called the elastic limit, the strain is recoverable, that is, when the stress
is removed the body returns to its original shape. It has been observed that for sufficiently
small stresses the amount of strain is proportional to the magnitude of the applied stress.
This relation is known as Hooke’s Law.

For example, suppose a bar of an isotropic solid is loaded in pure tension so that the
tensile stress is 0. The longitudinal strain e equals Al/l, where Al is the increase in length

and [ is the original length. Hooke’s law states that

€ = s0, (3.1)

where s is called the elastic compliance coefficient or simply the compliance, for this particular

arrangement of stress and strain directions. As an alternative we could write
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Figure 3.1: The forces on the faces of a unit cube in a homogeneously stressed body [86].

Figura 3.1: Esquema de las fuerzas en las caras de un cubo debidas a la tension aplicada
homogéneamente a un cuerpo [86].

and
c=-, (3.3)

where c is the elastic stiffness coefficient, also known as the Young modulus or modulus of
elasticity [86].

As a general example consider a crystal to be under an homogeneous stress, where all
the crystal parts are in statical equilibrium, and there are no body-forces or body-torques.
Figure 3.1 shows a unit cube within a crystal under homogeneous stress. The edges of the
cube are parallel to the axes x1, w9, and x3. A force will be transmitted across each face of
the cube, exerted by the material outside the cube upon the material inside the cube. The
force transmitted across each face may be resolved into three components.

We will consider first the three faces over the three positive ends of the axes. o;; denotes
the force component in the +z; direction transmitted across that face of the cube which is
perpendicular to x;. Here, the sign convention indicates that o;; is the force exerted in the
x; direction on the face normal to x;. Since the applied stress is homogeneous, the forces
exerted on the cube across the three opposite faces must be equal in magnitude but opposite
in direction to the three ones shown in figure 3.1. 011, 092, and o33 are known as the normal
components of stress and o019, 021, 093, etc. are the shear components. A positive value of 011,

092, 033 implies a corresponding tensile stress, while a negative value implies a compressive
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stress [86].

The assumption that the unit cube should be in statical equilibrium imposes the condition

o,.=0... (3.4)

(¥l Ji

This condition continues valid even when the stress is inhomogeneous, when the body is not
in statical equilibrium, and when body-forces are present.

In a general case, the stiffness and compliance coefficients are defined as follows. If a
general homogeneous stress o;;, as in the latter example, is applied to a crystal, the resulting
homogeneous strain ¢;; is such that each component is linearly related to all the components

of the stress. For example, €11 can be written as

e11 = 811110—11 + 811120—12 + 811110—13+
51121021 + S11220-22 + 811310-31+
81131031 + 81132032 + 811330-337
as well as eight other similar equations for the rest of the eight components ¢;;, where the s’s

represent constants. The Hooke’s law in a generalized form may therefore be written as

€5 = Sijml

o (3.5)

where s;;1; are the compliances of the crystal. Here, the Einstein’s summation convention is
used, and when a letter suffix occurs twice in the same term, summation with respect to that
suffix is to be automatically understood. Equation (3.5) stands for nine equations, each with
nine terms on the right-hand side. There are 81 s;;z; coefficients. If one component of stress
is applied, for example 011, equation (3.5) indicates that all the strain components €;; would
be different from zero. Alternatively, the stresses in equation (3.5) can be expressed in terms

of the equations

0ii = Cijn

€kt (3.6)

where the c;;1; are the 81 stiffness coefficients of the crystal. The solution of the simultaneous
equations formed with equation (3.5) for the o;; would give a set of solutions of the form of

equation (3.6), where the coefficients ¢;jx; are functions of the s;jx.
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The physical meaning of the s;j,; may be appreciated by imagining the crystal to be
subjected to various simple stress conditions. o;; may always be taken as symmetrical. Hence,
if a shear stress is applied about the z3 direction, both 19 and o091 would be present and we

obtain

611 = 811120-12 + 81121021 - (81112 + 81121)012' (37)

where the coefficients s,,,, and s,,,, always occur together. It is in principle impossible to
devise an experiment by which s;;;; can be separated from s;j;;. Therefore, to avoid an

arbitrary constant, the two components can be set equal

Sijkt = Sijik- (3.8)

If, on the other hand, a uniaxial tension is applied parallel to x3, the components of the

stress would be given by

€17 = 51133033, €59 = Sy933033, €LC. (3'9)

In particular,

€10 = 51933033 and €,) = 8,,,,033. (3.10)

But, from the definition of the components of the strain tensor, €12 = €21. Hence, s1233 = S2133

and, in general, it is possible to state that

Siikt = Sjikt- (3-11)

Relations (3.8) and (3.11) show that only 36 components of the 81 are independent. On
the other hand, the physical meaning of ¢;ji; on equation (3.6) can be understood if we
imagine a set of stress components applied to the crystal, and chosen in such a way that all
the components of strain, except for one normal component or a pair of shear components,

vanish. Thus the required stresses to produce the tensor shear strain components €12, €21 are
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0,5 = Cij12€12 + Cijo1€21 = (cijIQ + Cij21)612‘ (3'12)

In this relation, the pair of coefficients that always occur together are equal to one another,

and in general

Cisit = Cijik- (3-13)

In a similar way that with the s;;;, if special cases are considered, one can find that

Cisit = Clim- (3-14)

These equations, (3.13) and (3.14), reduce the number of independent ¢;;j; from 81 to 36
as it happened with the s;;,; in the most general case. The 81 compliances s;;1;, as well as
the 81 elastic stiffness coefficients c;ji;, form a fourth-rank tensor [86]. However, the number
of independent elastic coefficients will be further reduced by the symmetry operations of
the respective crystal classes. For example, there are only 9 independent constants for the
orthorhombic classes, 5 for the hexagonal classes, and 3 for the cubic classes.

It its possible to introduce matrix notation to manage the compliance and stiffness coeffi-
cients, s;j11 and ¢z, due to its symmetry in the first two and the last two suffixes. The two
first suffixes of the s;;1; and ¢;;x; coefficients are abbreviated into a single one running from
1 to 6, and the last two in a similar way but with some factors introduced only in the case of

sijki- Then, equation (3.5) takes the shortest form
€ =5,0,(i,5=1,2,...,6). (3.15)
For c;jiy if it is simply written as

¢,y = Con i3,k l=1,23;m,n=1,..,6), (3.16)

ijkl

it may be shown by writing out some typical members that equations (3.6) take the form

o,=c,€(i,j=1,2,...,6). (3.17)

i ij
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3.2 Elastic properties: Bulk and Young Moduli and Poisson Ratio

Mechanical properties such as tensile strength, elongation or ductility, toughness and hardness
are frequently the properties of greatest concern in metals. The elastic properties under study
are the bulk and Young moduli, and Poisson ratio. A description of these properties is given

in this section.

Bulk modulus

The variation of the volume of a solid with pressure is characterized by the bulk modulus [87],
defined as

B = _VW’ (3.18)
where the negative sign indicates that the volume decreases as pressure increases. The bulk
modulus has units of pressure that normally are GPa (N/m?) and indicates the compressibility
or incompressibility of materials [88]. For an isotropic material with cubic symmetry subjected
to hydrostatic pressure, the bulk modulus written as function of the stiffness coefficients is
[86]

p=lut2) (3.19)
3

The determination of the bulk modulus on different materials has become more important

in the last decades. There are many studies in which the bulk modulus is obtained in relation
with other physical properties. As an example, He and Yan [89] determined the temperature
dependence of bulk modulus and the interatomic separation on sixteen ionic solids with the
NaCl-type structure, from room temperature to the melting temperature. A similar study was
performed by Makino and Miyake [90] where they empirically determined relations between
bulk modulus and interatomic distance for five groups of elemental substances. In a theoretical
work performed by Raju et al. [91], they attempted to develop certain simple thermodynamic
relations connecting thermal and elastic properties such as bulk modulus. Also, Ledbetter [92]
studied the relationship between the bulk modulus temperature dependence and the thermal

expansivity.
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Young modulus

The modulus for tensile and compressive stresses, i.e. the ratio of the stress to the strain, is

called Young modulus and is represented by the symbol E writen, from equation (3.2) as

=2 (3.20)
€
This modulus can be written also as a function of the compliance coefficient,
1
E=—. (3.21)
511

Although the Young modulus may be almost the same for both tension and compression,
the strength could be different for the two cases. For example, concrete is very strong in
compression but is so weak in tension that is almost never used in this way [88]. Young
modulus can be used to predict the elongation or compression of an object as long as the
stress is less than the yield strength of the material.

Most materials are strongly anisotropic in their elastic constants. Therefore, a polycrystal
such as a ceramic can vary its Young modulus depending on the preferred orientation texture.
In addition, the electronic structure is an important factor in determining the Young modulus
of elements. This was clearly seen by Krajewski et al. [12] on pure materials where the
periodicity of the modulus change with the atomic number. Transition elements seem to
have particularly high Young modulus values. This can probably be attributed to the strong

binding of atoms from electrons in the d shell [12].

Poisson ratio

When a metal is subjected to an axial tensile stress, it expands in the direction of the stress
and contracts laterally. The Poisson ratio is the ratio of transverse contraction strain to
longitudinal extension strain in the direction of the stretching force [88]. Tensile deformation
is considered positive and compressive deformation is considered negative. The Poisson ratio

is represented by the symbol v, and is defined as

—€y

UV =

, (3.22)

€z

where —e¢, is the lateral contraction and e, is the axial elongation.
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The Poisson ratio as a function of elastic properties is determined by

v=—s12F. (3.23)

The definition of Poisson ratio contains a minus sign so that normal materials have a
positive ratio. Poisson ratio values can vary for initially 0 to about 0.5, assuming that the
material volume do not change after loading. Generally, stiffer materials will have lower
Poisson ratios than softer materials. In addition, the brittle behavior of metals and metallic
compounds can be measured using the Poisson ratio. For ductile materials, the Poisson ratio
is 1/3. On the other hand, for brittle materials such as ceramics, the Poisson ratio is less than
1/3 [93].

3.3 Birch-Murnaghan Equation of State

An equation of state (EoS) gives a relationship between pressure, volume and temperature,
and it can take several different forms depending of the situation being modeled. In diffraction
experiments at high pressures, it is determined the variation of the sample unit cell parameters
as a function of pressure, and thereby the variation of its volume (or equivalently, its density)
with pressure and sometimes temperature. This variation of volume with pressure is known
as the ‘equation of state’ of the material [87].

To derive an EoS for solids, it is sufficient to note that there is no absolute thermodynamic
basis for specifying the correct form of the EoS of solids. Therefore, all EoS that have
been developed and are in use are based on a number of assumptions. The validity of such
assumptions can only be judged in terms of whether the derived EoS reproduces experimental
data for the volume or elasticity.

In the previous section, the bulk modulus of a solid was defined as the variation of volume
with pressure. When the equations of state are measured, they are usually parameterized in

terms of values of bulk modulus and its pressure derivatives B’ and B” defined as,

B
and
, 0*B

evaluated at zero pressure and symbolized as B, and BS, respectively.
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Birch-Murnaghan Equation of State at 3rd Order

The Birch-Murnaghan EoS is an isothermal equation of state derived in the assumption that
the bulk modulus varies linearly with pressure and treats finite strain. Finite strain are based
upon the assumption that the strain energy of a solid undergoing compression can be expressed
as a Taylor series in the finite strain f. Thus, the Birch-Murnaghan EoS is based upon the

Eulerian strain,

1
fE:§

() 1), (320

An expansion to fourth order in the strain yields an EoS:

P=3B,f,(1+2f,)? <1 + g(B’ —4)f, + ;(BOB” + (B —4)(B'—3) + %)fﬁ) . (3.27)

If equation (3.27) is truncated at second order, then the coefficient of fr must be zero,
and this requires that B’ has the fixed value of 4. The third order truncation, in which the
coefficient of fg? is set to zero yields a three parameter EoS (Vg, By and B’) [87]

P =3B,f,(1+2f,)? <1+g(B’—4)fE>, (3.28)

where fp is defined in equation (3.26) and an implied value of B” is given by

B = ;% ((3 -B)(4-B)+ %5> : (3.29)

In practice, data about the variation of volume with respect to pressure obtained experi-
mentally or theoretically is fitted with an EoS. The values of volume, bulk modulus and the

first derivative of bulk modulus are determined at zero pressure.

3.4 Lattice Dynamics

Lattice dynamics is about the vibrations of atoms inside a crystal. The static lattice model,
which is only concerned with the average positions of atoms and neglects their motions, can
explain a large number of materials features. However, there are some properties that are

not possible to be described by the static model. These include properties such as thermal
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expansion, phase transitions, transport properties, certain electrical properties, and many
other. Is then when the study of motion of atoms gives the expected answers through the
theory of lattice dynamics [73]. Calculations of vibrational frequencies provide useful tests
for any proposed model of interatomic interaction. Thus, given a working microscopy model,

lattice dynamics calculations enable the calculation of macroscopic thermodynamic properties
[94].

3.4.1 Dynamics of diatomic crystals: general principles

Lattice dynamics extends the concept of crystal lattice to an array of atoms with finite masses
that are capable of motion. This motion is not random, but is the superposition of vibrations of
atoms around their equilibrium sites due to the interaction with neighbor atoms. A collective
vibration of atoms in the crystal forms a wave of allowed wavelength and amplitude, and the
problem of lattice dynamics is to find the normal modes of vibration of the crystal [79].

In a similar way as photons are the energy quantized of light, phonons are the quantum of
vibrational energy. A phonon dispersion relation associates the frequency of the elastic wave in
terms of the wave vector that describes the wave. There are two possible modes of vibrations
of atoms in the crystal: longitudinal and transverse. In case of a longitudinal mode, the
displacement of atoms from their equilibrium position coincides with the propagation direction
of the wave, whereas for a transverse mode, atoms move perpendicular to the propagation
wave [94]. For one atom per unit cell, the phonon dispersion curves are represented only by
the so called acoustical branches. However, if there are two atoms or more in the primitive
cell, for each polarization mode in a given propagation direction the dispersion relation w
versus k develops two branches, known as acoustical and optical branches. Generally, for p
atoms in the primitive cell there will be 3p branches to the dispersion relation: 3 acoustical
branches, one longitudinal and two transverse, and 3p — 3 optical branches, p — 1 longitudinal
and 2p — 2 transverse [94].

The classical theory of lattice dynamics relies on the Newton equation, and considers the
solid as an arrangement of atoms joined by springs representing the interactions between
atoms. The simple model shown in figure 3.2 represents a harmonic chain with two different
atom types in the unit cell. From this figure, each atom is characterized by force constants
G and g, and masses M and m separated by a/2 when at rest. The displacements of atoms
U and u correspond to atoms M and m respectively. Each atom only feels the force of its

immediate neighbor, which is known as nearest-neighbor interaction [73] .
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Figure 3.2: Diatomic linear harmonic chain with masses M and m separated by a/2 and
connected by force constants G and g. The displacements of atoms M are denoted by U,_1,
Un, Uni1,..., and of atoms m by w1, Up, uny1 [73].

Figura 3.2: Cadena lineal diatomica en el modelo armdnico con masas M y m, separadas una
distancia a/2 y conectadas por las constantes de fuerza G y g. Los desplazamientos de los
atomos de masa M se denotan por Up—1, Un, Upi1,..., y los desplazamientos de los dtomos
de masas m por Up_1, Un, Unt1 [13].

The energy of the lattice is the same as the energy of a set of harmonic oscillators, so
this approximation is called the harmonic approrimation. Hence, the energy of this diatomic

model is given as

E=; > [GUn = un)? + glun—1 — Un)?] . (3.30)

n

The equations describing the motion for atoms of masses m and M are

Mo?U, oOF

oe? U,
= —G(Un — tn) — g(Up — tp_1) (3.31)

=—(G+ g)Up + gun—1 + Guy,

and

mo?u, B OF
o2 Ou,
= —g(un — Uny1) — G(up — Uy) (3.32)

= —(G+ g)un + gUp41 + GUy,.

The motion of the whole system will correspond to a set of traveling waves with form
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Up =Y Upe'hna=est) (3.33)
k

Up = Z et kna—wnt) (3.34)
k

where k is any wave vector, wy, is the corresponding angular frequency of a given mode, and
ﬁk and uy are the two amplitudes for a single given mode. In general, the amplitudes are
complex and contain the information about the relative phases of the two atoms motions.
The wave equations for the two atoms are defined so that they have the same origins,
by which it means that the exponents give the position of the origins of the unit cells rather
than the mean positions of the individual atoms. On substitution of the two solutions (3.33)
and (3.34) for an individual wave vector into the equations of motion (3.31) and (3.32), and
after cancelling the factors common to both sides of the resultant equations, the following

simultaneous equations are obtained,

—MwiUy = —(G + 9)Uy + (G + ge~*)y, (3.35)

—mwity, = —(G + g)ty + (G + ge* U, (3.36)
These linear equations can be written on the matrix form

Mwi = (G+g) G+ ge e Ue ) _ (3.37)
G + ge'ke mwi — (G + g) Uy, ' '

This equation have a solution only if the determinant is equal to zero,

(Mo — (G + g)llmwi — (G + 9)][G + ge™][G + ge~™*] = 0. (3.38)

Thus this gives a quadratic equation for w%:

Mmwi — (M +m)(G + g)wi + 4Ggsin®(ka/2) = 0. (3.39)
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Figure 3.3: Dispersion curves for the one-dimensional diatomic chain [73].

Figura 3.3: Curvas de dispersion para una cadena diatomica unidimensional [73].

The solution of equation (3.39) is found with the help of the known quadratic equation

solution, which gives

N

(M+m)(G+g) (M +m)* (G +g)* — 16MmGygsin®(5))

4
2Mm 2Mm (3.40)

wp =

This equation is known as the dispersion relation because it relates the angular frequency w
with the wave vector k. It contains two solutions that produce two branches, acoustical and
optical, in the dispersion diagram due to that the two atoms involve two motion equations.
Figure 3.3 represents a complete solution to equation (3.40) for all wave vectors [73]. There
is a band of frequencies between the two branches that can not propagate. The width of this
forbidden band depends on the difference of the masses. If three-dimensional motion were
considered, then one would have six equations of motion and six branches in the dispersion
diagram. Therefore, the number of branches in a three-dimensional crystal with z atoms in
the unit cell is 3z.

One important feature of the dispersion curve is the periodicity of the function. For a unit
cell length a, the repeat period is 27/a, which is equal to the unit cell length in the reciprocal
lattice. Therefore the useful information is contained in the waves with wave vectors lying

between the limits —7/a < k < mw/a. This range of wave vectors is called the first Brillowin
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zone [94]. At the Brillouin zone boundaries the nearest atoms of the chain vibrate in the

opposite directions and the wave becomes a standing wave.

Solution in the long-wavelength limit

For k small or long wavelengths, equation (3.40) can be solved by taking the linear limit of

the sine:

Mmwy — (M +m)(G + g)wi + 4Gga® = 0. (3.41)

Solving the quadratic equation for w,%,

(M+m)(G+g) 1 2 2 22%
M + Sim [(M +m)* (G + g)* — 4MmGgk-a }

(M +27;\%4)1(7Cj +9) [1 + (1 - (MQTZ)???ZV)]

Wi =
(3.42)

Note that a series expansion of the square root for the limit £ — 0 is taken, and only the

lowest order term is retained. Then equation (3.42) has the two roots for the frequency:

Ggk?a?
(M +m)(G+g)

—0(k?) ; (3.43)

Clearly the first frequency is large and varies weakly with k. The first branch, flat at
k = 0, is called the optic mode because its frequencies are near the optical region of the
electromagnetic spectrum. On the other hand, the second branch is directly proportional
to k and is called the acoustical mode, because the frequencies are similar to those in long
wavelength acoustical vibrations. In more complex crystal with z atoms in the unit cell, there
will always be 3 acoustic branches, one longitudinal and two transverse, and 3(z — 1) optic
branches [73].

3.4.2 Formal description of lattice dynamics

The lattice dynamics of a diatomic linear chain as was seen in section 3.4.1, is a simple model
which have given us a number of results that are of general use. However, the problems with
this simple approach are the following: (a) the simple approach only works in high-symmetry

cases, where any mode will contain only one direction of motion. Generally, there is a mixing
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of different motions in each vibrational mode, and different modes may correspond to different
mixtures of the same atomic motions. (b) The equations of motion are difficult to solve when
there are many (i.e. more than two) atoms in the unit cell. (c) The equations get cumbersome
when forces from distant neighbors are included. And finally, it is not explicitly considered
how to treat atoms in general positions in the unit cell.

Hence, it is necessary to define a general theoretical framework of the basic lattice dynamics
problem. To do this, the one-dimensional diatomic model discussed above will be of use to
develop the basic ideas of a formal description. The first step is to re-write the basic equations

of motion by making a change of variables

E= MUy e = m2ii, (3.44)

so that equations will be now solve for (E,e) instead of (U,u). The equations of motion in

matrix form are now

<§ > wi = D(k) (f ) (3.45)

where the matrix D(k), which is known as the dynamical matriz, is given by

(G+9) _ (G+ge<*i1’“‘>)
M
D) =  (Ggelita) ((C]\;/_[FZ))E . (3.46)
(Mm)? M

This matrix has two symmetry properties that are apparent, that D(-k)=D*(k), and that the
matrix is Hermitian, i. e. DT (k)=D*(k). This latter property gives the condition that the
eigenvalues of D (k) are real, that is that the squares of the frequencies of the lattice vibrations
are necessarily real. Equation (3.46) can be compared with equation (3.37). Equations (3.45)

and (3.46) have two general solutions,

solution 1: wi,(Ey,ey),
(3.47)
solution 2 : w3, (Es, e).

If both solutions are included in the matrix equation of motion (3.45), we obtain
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e-Q=D(k)-e, (3.48)

where the frequency and displacement matrices are, respectively, equal to

2.0 E, E
Q:(wl 2>;e:< ! 2). (3.49)
0 wj e1  es

The frequency matrix €2 can be obtained from the dynamical matrix D by a simple procedure.

Equation (3.48) can be simply rearranged to give

Q=e!-D-e. (3.50)

As the frequency matrix €2 is diagonal by definition, all we have done is to diagonalize
the dynamical matrix D. The elements of the diagonal matrix are the eigenvalues of the
diagonalized matrix, and the elements of the diagonalizing matrix (the displacement matrix
e) are the eigenvectors of the matrix being diagonalized (the dynamical matrix D). Thus, we
refer to the squares of the frequencies as the eigenvalues of the dynamical matrix, and the
displacements produced by the corresponding modes of vibration as the mode eigenvectors.
The solution to equation (3.50) contains an arbitrary scale factor on the eigenvectors, which

are therefore defined to be normalized such that

Ei 4 et =FE5+e3=1. (3.51)

The eigenvectors give the relative atomic displacements rather than their absolute values.

Also, they are orthogonal, which is described by the condition,

E1E> 4+ ejes = 0. (3.52)

The physical meaning is that different modes are independent, and can therefore be added
linearly without interacting. All the information that determines both the frequencies and
displacements associated with the sets of vibrations of a system is contained in the dynamical

matrix, and the task of calculating the dispersion curves resolves itself as the task of setting
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up the dynamical matrix. The hermitian character of the dynamical matrix is the condition
that the eigenvalues are real, although they may be negative. Negative eigenvalues imply
unphysical imaginary frequencies, and imaginary mode frequencies implies that the crystal
is unstable with respect to the distortion described by the corresponding eigenvector. In
general, calculations of dispersion curves are performed by evaluating the dynamical matrix,

and obtaining the eigenvalues and eigenvectors [73].

The equations of motion and the dynamical matrix

The lattice energy W as as sum over all atom-atom interactions is defined as:

1 i’
W= 3.53
5 o(0): (3.53)
Jgw
where j denotes an atom in the [—th unit cell, and the interaction energy ¢ is for the pair of

atoms (j1) and (j'"). The harmonic displacement energy is expressed in matrix form as

pharm _ % Z ul'(jl) - @ -u(jl) = % Z Zua(jl)¢aﬂuﬁ(j/l/)7 (3.54)

ga" 33" ap

where we define the 3 x 1 displacement matrix, u(jl), as

u(jl) = | () (3.55)

and u” is the transpose of w.

The force constant matrix ® is a 3 x 3 matrix, with elements

3"\ O*W
%(u') = GuaGDous 1) (3.36)

The subscripts @ and ( denote the cartesian vector components z, y and z. Thus, the

harmonic energy has the form

4 4
Jghu

B = 1S ) — a7 0 (1) - lat) — a1 (3.57)
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where the matrix ® has elements

i _ %)
¢“ﬁ<lw) = Bua()ous ) (3:58)

Equation (3.57) contains an extra factor 1/2 because of double counting backwards and
forwards. By expanding all the terms it is straightforward to show that equation (3.57) is

consistent with equation (3.54), with

.y . -
JJ JJ JJ]
@aﬂ<lll> — _%B<w> + 800 2%6(”") (3.59)
j//l//
The second term in equation (3.59) arises from the interaction of any atom (jl) with the
rest of the crystal, and it is known as the self term.

In the general case, therefore, the equation of motion of the j-th atom in the [-unit cell is

given by

iy
v/ 17 .
m;u(jl,t) = _,Z@(ll’) ~u(y'lt), (3.60)
Jll/
where m; is the mass of the j-th atom. We have now included the time dependence in the
displacement vector u(jl,t). The solution for u(jl,t) will be a linear superposition of travelling

harmonic waves of different wave vector & and mode label v

u(jl,t) =Y U, k,v)ellerihwlon), (3.61)
k,v

where r(jl) can be taken as either of two quantities. It can be taken as the equilibrium (or
mean) position of the atom(jl), or else it can be taken as the origin of the unit cell (I). When
we substitute the wave equation (3.61) into the equation of motion (3.60) we obtained the

standard equation of motion,

-
m;w?(k,v)U(j, k,v) = Z o ({);/) LU, k, t) el k@) —r(0) (3.62)
j/l/

where the reference atom is in the unit cell [=0.
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The equations of motion for a single solution (labelled ) can now be expressed in vector

form, where the following final result can be compared with equation (3.45)

w?(k,v)e(k,v) = D(k) - e(k,v). (3.63)

The column vector e(k, v) is composed of the displacement vector weighted by the square

root of the atomic mass, so that it has 3n elements (n is the number of atoms per unit cell)

UL (1, v)
VU (1,k,v)
vmiU,(1,k,v)

(2.k,v)

vm2U,(2,k
ek,p) = | VRS0 (3.64)

Vma Uz (n,k,v)

This is the generalization of equation (3.44). D(K) is the 3n x 3n dynamical matrix. We
write D(k) in terms of blocks of 3 x 3 matrices. Each block corresponds to pairs of atoms
labels j and j’, and the elements of each block have labels «, 3= 1,2,3, representing x, vy, z
respectively. The full matrix D(k) is composed of an n x n array of these smaller 3 x 3

matrices. The elements of the small 3 x 3 blocks of the dynamical matrix are given as

. 1 g5 e T (A1) (3
D, " k) = o, (ik-[r(5'V")—7(jO)]) 3.65
8(45" k) (mn)h Zz: ﬁ(oz,)e 7 (3.65)

where [=0 refers to the reference unit cell.

As equation (3.63) has 3n components, there will be 3n solutions corresponding to the 3n
branches in the dispersion diagram. We can compact the equations making the 3n x 3n matrix
e(k), by joining together the column vectors e(k, v), and defining the frequency matrix Q(k)

as the diagonal matrix of the squares of the angular frequencies;
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Q(k) = . (3.66)

w?(k,3n)

e(k) - Q(k) = D(k) - e(k). (3.67)

This formalism always gives real values for the solutions of w?. Moreover, it generates
the complete set of atomic motions associated with each wave. These motions are linearly
independent (orthogonal), in that the motions associated with one wave do not generate the

motions for any other. This can be expressed as

(e(k, )T - e(=k, V) = 6, (3.68)
These are called normal modes, and are the fundamental vibrational motions [73].

3.4.3 Lattice dynamics of Transition Metal Carbides with NaCl-Type Structure

The lattice dynamics of transition metal carbides has been studied in the last sixty years.
Particularly, transition metal carbides with structure NaCl-type such as TiC, ZrC, HfC, VC,
NbC and TaC, are crystals with ionic, covalent and metallic characters. These compounds
have phonon dispersion curves with acoustical and optical branches. Usually, the phonon
dispersion curves are measured and calculated in the high-symmetry directions. In addition,
it is well known that these dispersion relations show a degeneracy of the optical vibrations
frequencies at the I' point, and show a gap between the acoustical and optical branches [73].

The interest in these kind of materials is related with they extremely high melting points
and hardness, and to the fact that some of them are superconductors with temperatures higher
than the pure metals [95, 18]. In fact, TaC and NbC show superconductivity with transition
temperatures about 10 K. Their superconducting properties are closely related to the formal
valence of the metal and non-metal, while TiC, HfC and ZrC, have eight valence electrons

and are non-superconductors [96, 97].



3.5. Ab initio CALCULATIONS OF MECHANICAL PROPERTIES 45

Many authors have studied the lattice dynamics of diverse transition metal carbides with
structure NaCl-type experimentally and theoretically. Phonon dispersion curves were mea-
sured by inelastic neutron scattering in the high symmetry directions and at room tempera-
ture, for TaC and HfC by Smith and Gléser [18], and for TiCy g5 and TiCp g9 by Pinschovius
and coworkers [97], who also reproduced the phonon dispersion curves using a shell model
with free electron screening. Several theoretical models have been applied to reproduce and
predict the dispersion curves of carbides. Mostoller [20] applied the dielectric-response ap-
proach using pseudopotentials and free-electron screening to approximately reproduced the
phonon dispersion curves for HfC, NbC and TaC. The model failed in reproduce some details,
or anomalies, in the curves. Weber and coworkers [21] described the anomalies in the phonon
spectra of TaC and HfC as resonances in the electronic polarization using an extension of the
shell model. In addition, their model predicts an anomaly in the transverse acoustic mode in
the [110] direction for TaC. In another study, Weber [22] used a double shell model to calcu-
lated the dispersion relations for TaC ad NbC, and a shell model with a free-screening term
for HfC and ZrC. Verma and Gupta [23] used a three-body-force shell model to reproduce
the phonon dispersion curves for TaC and HfC. They concluded that this model presents a
good agreement with experimental values as do the different modified versions of the shell
model also applied to these crystals. Upadhyaya et al. [96] determined the phonon dispersion
curves and Debye temperature variations for TiC, ZrC and HfC, using the rigid shell model
by including effects of free-carrier doping and three-body interactions.

In the last years, ab initio calculations have been used to calculate phonon dispersion curves
which reproduce in good agreement the experimental curves and predict their anomalies.
Works by Jochym et al. for TiC [98] and ZrC [99], and Savrasov [100] for NbC using density
functional theory (DFT), reproduce the major anomalies found experimentally in phonon

dispersions.

3.5 Ab initio Calculations of Mechanical Properties

3.5.1 Calculation of elastic properties with the CASTEP code

It is well established that first principles studies based on density-functional theory (DFT) can
be used to obtain reliable elastic properties of inorganic compounds [93, 101, 102, 103, 104].
The elastic properties ¢;;, bulk and Young moduli, and Poisson ratio, were calculated with
the CASTEP code. Several methods are available for the computation of elastic stiffness

coefficients, but currently the ‘stress-strain’ method seems to be most commonly used. With
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this approach, the ground-state structure is strained according to symmetry-dependent strain
patterns with varying amplitudes. A subsequent computing of the stress tensor after a re-
optimization of the internal structural parameters, i.e. after a geometry optimization with fixed
cell parameters, is then carried out. The elastic stiffness coefficients are then the proportion-
ality coefficients relating the applied stress to the computed strain. The computational cost
of this procedure is reasonable compared to other approaches, as ultrasoft pseudopotentials
can be employed. The stress-strain method can be applied regardless whether the material
under investigation is an insulator or a metal. For high symmetry compounds it is reasonable

to expect deviations within a few percent from the experimentally observed values.

3.5.2 Calculation of phonon dispersion curves with the ABINIT code

The phonon frequencies of normal modes corresponding to wave vectors in the high symmetry
directions were calculated with the ABINIT code based in the harmonic approximation. Lin-
ear responses of the crystal, such as vibrations and other, were determined using the Density
Functional Perturbation Theory (DFPT) [82, 84] implemented in the code. First, a ground-
state calculation is performed in order to get the ground-state wave functions. Then, the
individual atomic displacement perturbations are performed at a given ¢ point to obtain the
dynamical matrix. As seen in section 3.4.2, the squares of the phonon frequencies w? at ¢ are
obtained as eigenvalues of the dynamical matrix D(q). The second derivative of the total
energy with respect to collective atomic displacements is related with the interatomic force
constants through equation (3.56). The total energy is made from a contribution of the elec-
tron system and from a contribution from the electrostatic energy between ions. In this way,

the dispersion relations of a material can be determined from first principles calculations.



Chapter 4

TANTALUM AND DIAMOND

In order to determine the essential parameters and the accuracy of the planned total energy
calculations of the carbides, convergence studies as well as the pressure-volume relation and
phonon dispersion curves were determined on crystalline tantalum and diamond, using the

ABINIT program.

4.1 Tantalum

The tantalum crystal study was performed using the ABINIT program and a pseudopotential
for tantalum from the ABINIT database. This pseudopotential is a Hartwigsen-Goedecker-
Hutter (HGH) pseudopotential and includes semi-core states, so that a total of 13 electrons
are explicitly included. Also, the local density approximation (LDA) was used in these calcu-

lations.

Figure 4.1: Conventional unit cell of tantalum. Tantalum crystallizes in a bce structure with
lattice parameter a=3.305 A (6.247 Bohr) [42].

Figura 4.1: Celda convencional del tantalio. El tantalio cristaliza en una estructura bec con
un pardmetro de red a=3.305 A (6.247 Bohr) [42].

47
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Tantalum: General Description

Tantalum is a transition metal that crystallizes in a structure with a body-centered cubic
(bee) lattice (see figure 4.1), with a lattice parameter of a=3.305 A(6.247 Bohr) [42]. The
primitive cell has a basis with one atom in position (0, 0, 0) and one in (1/2,1/2,1/2), in a
simple cubic lattice. It belongs to the space group Im3m (International Tables No. 229).
Tantalum shows a high hardness, high ductility and high melting temperature of 3269 K at
ambient pressure [43]. These properties make tantalum an outstanding material for tools and
high stress components. It has been an important high technology material due to its high
thermal, mechanical and chemical stability and is used in jet engines and electronic devices.
In addition, the incomplete d-shell of electrons defines, to a significant extent, its thermal and

vibrational properties [105].

Convergence Studies

The convergence studies for crystalline tantalum calculations have as a purpose the determi-
nation of the optimal amount of the kinetic energy cutoff of plane-waves (FE¢,:), the number
of k-points necessary to sample the Brillouin zone and the equilibrium lattice parameter, all
this for a determined pseudopotential. In this particular case, a pseudopotential type HGH
for tantalum is used. All determined values from this study are used in the subsequent cal-
culations in order to improve its convergence and speed and, as consequence, the accuracy of
the results. Because tantalum is a metal, it is necessary to consider as well the temperature of
smearing of electrons. Here, we used the Fermi-Dirac smearing with a value suggested by the
ABINIT documentation for d-band metals of 2.72 eV or 0.01 Hartree (1 Hartree=27.2 eV).

Figure 4.2, shows the dependence of E.; as a function of the total energy using the
tantalum experimental lattice parameter and a k-point grid of 2 x 2 x 2. In the case of
tantalum, the value of E.,; converges at 1360.5 eV (50.0 Hartree), which could be considered
computationally expensive, indicating that the pseudopotential used is a little hard.

The sampling of the Brillouin zone is performed by the ABINIT code using the Monkhorst-
Pack scheme [50]. The convergence study associated to this sampling needs to test different
k-point grids. Figure 4.3 shows the relation of total energy with respect to the number of
k-points in the Brillouin zone and grids tested. Similar to the E.,; convergence calculation,
the time for calculation will increase as the value of the k-point grid increases. For tantalum,
a k-point grid of 6 x 6 x 6 or greater gives good convergence. The found value of E.,;=1360.5

eV was used in this calculation.
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Figure 4.2: Relation of the kinetic energy cutoff of plane waves, E.,:, with respect to total
energy for Ta.

Figura 4.2: Relacion de la energia cinética de corte de las ondas planas, Eeu, con respecto a
la energia total para Ta.

Figure 4.4, shows the relation between the tantalum lattice parameter and the total energy
of the system, calculated using a F.,;=1360.5 eV and a k-point grid of 10 x 10 x 10 to sample
the Brillouin zone. The optimal value for the lattice parameter is that in which the total
energy is minimum. The data obtained were fitted with a cubic polynomial equation finding
the minimum energy at a lattice parameter of ap=3.255 A (6.154 Bohr). Also, using the
automatic geometry optimization feature in the ABINIT program, the minimum energy for
the crystalline tantalum was found at a lattice parameter of ap=3.251 A (6.146 Bohr), with
a remaining pressure of 5.74x10~* GPa. This latter lattice parameter value was used in the

following calculations.

Birch-Murnaghan equation of state for tantalum

The volume at zero pressure, bulk modulus and the first derivative of bulk modulus with

respect to pressure were obtained fitting a 3rd order Birch-Murnaghan equation of state (EoS).
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Figure 4.3: Relation of k-point number with respect to total energy for Ta.

Figura 4.3: Relacion del numero de puntos k con respecto a la energia total para Ta.

The data of volume and pressure used in this fitting were calculated from the convergence
study of lattice parameter and total energy mentioned above. The curve relating volume and
pressure for crystalline tantalum is shown in figure 4.5. Values at zero pressure found are
v9=34.39(2) A3 for volume, B=221(9) GPa for the bulk modulus and B'=4(1) for the first
derivative of B, where the values in brackets correspond to the variation in the values. The
lattice parameter associated with these values is ag=3.25(2) A (6.143 Bohr).

Table 4.1 shows values of lattice parameter, bulk modulus and first derivative of bulk
modulus for tantalum, both published and those obtained here from calculation. The lattice
parameter determined from the geometry optimization calculation ag=3.251 A (6.146 Bohr),
agrees within 2% with the reported value by the Inorganic Crystal Structure Database (ICSD)
of ap=3.305 A (6.247 Bohr)[42]. A similar agreement apply to the lattice parameter obtained
from fitting a 3rd order Birch-Murnaghan equation.

Values of the bulk modulus and its first derivative, B=221(9) GPa and B’'=4(1), deter-
mined here from fitting a Birch-Murnaghan EOS, show a reasonable agreement with published
values by Cynn and Yoo [43] of B=194.7(4.8) GPa and B'=3.4(0.1), obtained by fitting their
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Figure 4.4: Relation of lattice parameter with respect to total energy for Ta.

Figura 4.4: Relacion del pardmetro de red con respecto a la energia total para Ta.

measured compression data to an equation of state. A similar agreement can be observe from
values B=196 GPa and B'=3.79 by Katahara et al. [44], obtained from ultrasonic measure-

ments .

Lattice dynamics of Tantalum

Table 4.2 shows a comparative study of phonon frequencies calculations of tantalum for a wave
vector ¢=[0.3 0.3 0.3]. Different values of parameters such as shift of k-point grid, number
of k-point grids and number of electronic bands are used. As expected, the use of a large
k-point grid has a strong dependence with the time of computation. However, total energy
and pressure vary with little significance. In the case of different shifts of k-point grid and
number of bands, there is no relevant difference in results and time of calculation.

The phonon dispersion curves at high symmetry directions [00z], [0zz] and [zxz] (see
figure 4.6) for tantalum, at zero pressure and 0 K, are shown in figure 4.7. These curves were
calculated using the ABINIT program, with E.,;=1360.5 eV (50 Hartree) and a k-point grid
of 10 x 10 x 10. Transformations of wave vectors from coordinates in the conventional cell

to coordinates in the primitive cell were done as indicate in appendix A. Calculated phonon
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Figure 4.5: Pressure-volume relation for tantalum. Triangles show data points obtained from
the ABINIT calculation and the line is a fit with a 3rd order Birch-Murnaghan equation of
state.

Figura 4.5: Relacion presion-volumen para Ta. Los tridangulos muestran los valores obtenidos
en el calculo con ABINIT vy la linea representa el ajuste a la ecuacion de estado de Birch-
Murnhagan a tercer orden.

frequencies are represented with filled circles and lines drawn through the calculated points
are a guide to the eye. Triangles (transversal modes) and squares (longitudinal modes) show
experimental values by Woods [45] at 296 K obtained by inelastic neutron scattering. The
measured frequencies are about 0.5 THz higher than experimental data, particularly at high
symmetry points H and N. A reason to this could be that the unit cell volume used in these
calculations is smaller than the volume considered in experimental measurements. However,
all features from experimental curves are well reproduced. L and T branches at [00z] are
observed to cross at x ~ 0.7, and the tendency for the [00x] and [zx0] transverse branches to
avoid normal dispersive behavior is apparent.

Calculations on tantalum were performed using the ABINIT code versions 4.0.4 and 4.4.3,

for a windows platform on a personal computer with processor type Intel Pentium 4.
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Figure 4.6: First Brillouin zone of the bcc lattice showing high symmetry directions.

Figura 4.6: FEsquema de la primera zona de Brillouin corresponediente a la red tipo bce
mostrando las direcciones de alta simetria.

Table 4.1: Lattice parameter ag, bulk modulus and first derivative of bulk modulus for tan-
talum. Experimental values are at room temperature.

Tabla 4.1: Pardmetro de red ag, modulo de volumen y la primera derivada del mddulo de
volumen para el tantalio. Los valores experimentales son a temperatura ambiente.

Reference ap (A) B (GPa) B’
National Bureau of Standards [42] 3.305 .
Cynn & Yoo [43] 194.7(4.8) 3.4(0.1)
Katahara et al. [44] 196 3.79
Present work ABINIT (DFT-LDA)

from cubic fit 3.255

Present work ABINIT (DFT-LDA)

from geometry optimization 3.251

Present work ABINIT (DFT-LDA)from EOS  3.25(2) 221(9) 4(1)
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Figure 4.7: Phonon dispersion curves of Ta in the high symmetry directions. Filled circles
indicate calculated values and lines are a guide to the eye. Triangles (transversal modes) and
squares (longitudinal modes) represent experimental data by Woods [45].

Figura 4.7: Curvas de dispersion de fonones del Ta en las direcciones de alta simetria. Los
circulos indican los valores calculados y las lineas son una guia para la vista. Los tridangulos
(modos transversales) y cuadrados (modos longitudinales) representan los valores experimen-

tales obtenidos por Woods [45].
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4.2 Diamond

Because carbon is an element present in tantalum carbide compounds, a study of carbon in
the diamond structure were performed with the ABINIT program using LDA, at zero pressure
and 0 K, similar to the one described in section 4.1 for tantalum. The diamond structure
was chosen between other carbon structures due to its cubic structure and its remarkable
mechanical properties. The convergence studies necessary for an optimum calculation, as
well as its pressure-volume relation and phonon dispersion curves calculation, are given in
this section. From convergence studies, the optimal values of the cutoff kinetic energy of
plane waves, Fgy, k-point grid and equilibrium lattice parameter were determined. All these
calculations were performed using a Hartwigsen-Goedecker-Hutter (HGH) pseudopotential for

carbon taking into account the valence electrons, i.e. 4 electrons.

Diamond: General Description

Diamond has a face-centered cubic lattice (see figure 4.8). Its structure has a lattice parameter
a=3.5668 A (6.7425 Bohr) and it belongs to the space group Fd3m (227) [46]. The diamond
structure can be viewed as two interpenetrating face-centered cubic lattices shifted along the
body diagonal by (1/4, 1/4, 1/4)a. The primitive cell of diamond has a basis of two carbon
atoms in positions (0,0,0) and (1/4, 1/4, 1/4) associated with each point of the fcc lattice
[94]. Diamond most relevant characteristics are its unique high hardness, highest thermal
conductivity at room temperature and several of its mechanical properties, such as bulk
modulus, are also the highest known. The unusual bonding strength of diamond makes it an

extremely low compressible material, which is characterized by a very large bulk modulus [4].

Convergence Studies

Studies of convergence were done to test the carbon pseudopotential. These tests are used to
determine an optimal F.,; and appropriate k-point grid to sample the Brillouin zone. They
also indicate the expected accuracy of the equilibrium lattice parameter. Figure 4.9 shows the
relation of E.,; with respect to the total energy for diamond using the experimental lattice
parameter and a k-point grid of 2 x 2 x 2. The values converged to within 1360.5 eV (50
Hartree). Then, in order to do the calculation as computationally cheaper as possible, an
FE.u of 1360.5 eV was used in the following calculations.

Figure 4.10 shows the relation of number of k-points used, or the k-point grid, to sample

the Brillouin zone with respect to the total energy for diamond. A 4 x 4 x 4 grid shows the
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convergence necessary for good calculations. However, a 10 x 10 x 10 grid, corresponding
to 110 k-points, is used in the following calculations to perform a more detailed sampling,
getting more accurate values particularly in the phonon calculation.

The relation of the diamond lattice parameter with respect to the total energy is shown in
figure 4.11. Dots indicate the values obtained by calculation and the line is a fit employing a
cubic polynomial to find the equilibrium lattice parameter. The energy minima gives a lattice
parameter of 3.536 A (6.686 Bohr). In addition, an equilibrium lattice parameter for diamond
was calculated using the automatic geometry optimization feature in the ABINIT program.
The value found is 3.531 A (6.675 Bohr), with a remaining pressure of 2.219x10~3 GPa. This

latter lattice parameter was used in the next calculations.

Birch-Murnaghan equation of state of diamond

The variation of the unit cell volume of diamond at different pressures is shown in figure
4.12. The data points were obtained from the previous lattice parameter and total energy
calculation above discussed, and the line represents a fit with a 3rd order Birch-Murnaghan
equation of state. From the fit, the volume at zero pressure is vo=43.62(2) A3, the bulk
modulus at zero pressure is B=471(8) GPa, and the first derivative of B, B'=3.7(2). The
lattice parameter associated with these values is ag= 3.52(2) A (6.65(2) Bohr).

Table 4.3 shows some earlier published experimental values of lattice parameter and bulk
modulus, together with those obtained here from calculation. The lattice parameter a=3.531

A(6.675 Bohr), obtained from the geometry optimization calculation, is 1% smaller than the

Figure 4.8: Conventional unit cell of diamond. Diamond has a crystal structure with a fcc
lattice and a lattice parameter of a=3.5668 A(6.7425 Bohr).

Figura 4.8: Celda unitaria convencional del diamante. El diamante tiene una estructura
cristalina asociada a una red del tipo fcc, y un pardmetro de red a=3.5668 4(6 7425 Bohr).
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Figure 4.9: Relation of cutoff kinetic energy of plane-waves, F.,;, with respect to total energy
for diamond.

Figura 4.9: Relacion de la energia cinética de corte E.y de las ondas planas con respecto a
la energia total para el diamante.

experimental lattice parameter reported by Straumanis & Aka [46] of ag=3.5668 A (6.7425
Bohr). In addition, the ap= 3.52(2) A (6.65(2) Bohr) value obtained from fitting a 3rd order
Birch-Murnaghan equation, and the ag=3.536 A (6.686 Bohr) from a cubic fit, are better
within a 2% and a 1%, respectively, in comparison to the experimental value. On the other
hand, the bulk modulus B=471(4) GPa obtained from fitting a Birch-Murnaghan agrees
within a 6.5% with respect to the value of B=442 GPa reported by McSkimin et al. [47].
These relatively small differences with the reported values are indicative of the reliability of

further calculations.

Lattice dynamics of Diamond

The dispersion relations curves for the optical and acoustical branches of diamond were cal-
culated with ABINIT. An energy cutoff of E.,;=1360.5 eV (50 Hartree), a k-point grid of
10 x 10 x 10 and a lattice parameter of 3.531 A(6.675 Bohr) were used. The resulting disper-

sion curves at high symmetry wave vectors (see figure 4.13) in reduced coordinates are shown
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Figure 4.10: Relation of k-point number with respect to total energy for diamond.

Figura 4.10: Relacion del nimero de puntos k con respecto a la energia total para el diamante.

Table 4.3: Structural properties for diamond.

Tabla 4.3: Propiedades estructurales del diamante.

Reference ap (A) B (GPa) B’
Straumanis & Aka [46] 3.5668

McSkimin et al. [47] 3.5667  443(22)
Present work ABINIT (DFT-LDA)

from cubic fit 3.536

Present work ABINIT (DFT-LDA)

from geometry optimization 3.531

Present work ABINIT (DFT-LDA) from EOS 3.52(2) 471(4) 3.7(2)

in figure 4.14. Wave vectors were transformed from coordinates in the conventional cell to
coordinates in the primitive cell as indicated in appendix A. The labeling of directions of
wave vectors corresponds to the standard convention used in the Brillouin zone high symme-
try directions. Filled circles indicate calculated values and lines drawn through the calculated
points are a guide to the eye. Squares (transversal modes), triangles (longitudinal modes) and

diamonds represent experimental data obtained by inelastic neutron scattering from Warren
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Figure 4.11: Relation of diamond lattice parameter with respect to total energy.

Figura 4.11: Relacion del pardmetro de red con respecto a la energia total del diamante.

et al. [48] in directions [x00] and [zzz]|, and Warren et al. [49] for data in direction [zz0].
The calculated frequencies are in excellent agreement in comparison with the experimental
values. In addition, all features of the phonon curves are well reproduced.

These calculations were performed using ABINIT version 4.0.4. for a Windows platform

on a personal computer with an Intel Pentium 4 processor.
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of state.

Figura 4.12: Relacion presion-volumen para el diamante. Los tridngulos muestran los valores
obtenidos del cdlculo con ABINIT y la linea representa el ajuste con la ecuacion de estado de
Birch-Murnhagan a tercer orden.
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Figure 4.13: First Brillouin zone of the fec lattice showing high symmetry directions.

Figura 4.13: Esquema de la primera zona de Brillouin de la red tipo fcc mostrando las direc-

ciones de alta simetria.



4.2. DIAMOND 63

r A X K ) r A L
T T T T T T T T T T T T
401 s LO ]
RN v TO [
Y [ ] B
35| 10 " ¥ TO , " o ow ]
v oI
L 4 TO
sl [€00] ol | e 1
v v
= LA
—~ LA L] v
N 25| i
> i :
> 20 | /= . a _
S a
S TA \ &
o
© 151 TA : i
L
TA
10| A
5 | -
0 |

| | | | | | | | | | |
0 02 04 06 08 1 0.8 06 04 02 O 01 02 03 04 05
Reduced Wave Vector Coordinate, &

Figure 4.14: Phonon dispersion curves for diamond in the high symmetry directions. Filled
circles indicate calculated values and lines are intended to be a guide to the eye. Triangles
(longitudinal modes), squares and diamonds (transversal modes both) represent experimental
data by Warren et al. [49].

Figura 4.14: Curvas de dispersion de fonones del diamante en las direcciones de alta simetria.
Los circulos indican los valores calculados y las lineas son una guia para la vista. Los tridngulos
(modos longitudinales), cuadrados y diamantes (modos transversales ambos) representan los
valores experimentales obtenidos por Warren et al. [49].



Chapter 5

MECHANICAL PROPERTIES OF BINARY TANTALUM
CARBIDES AND NITRIDES

In this chapter are described the results of mechanical properties obtained by computation-
ally modeling the compounds TaC, TaoC, e-TaN and §-TaN. Some properties experimentally
determined for TaC are included. Analysis and discussions about these results are also pre-

sented.

5.1 Crystalline Structures of the Studied Tantalum Compounds

The tantalum compounds under study, TaC, TaoC, € and 4-TaN, show remarkable chemical
and physical properties which make them suitable for special mechanical applications. A brief
description of their crystalline structures is the following.

TaC crystallizes in the NaCl-type structure, with space group Fm3dm (225)[8], and exists
over a wide range of substoichiometries, i. e. there are diverse compounds with Ta; C, where
usually 0.5 < = < 1 [13]. The primitive cell of TaC has a basis of two atoms, one Ta at (0,
0, 0) and one C at (1/2, 1/2, 1/2), associated with each point of the fcc lattice. Figure 5.1
shows the conventional unit cell with a NaCl-type structure of TaC with lattice parameter
a=4.454 A (see table 5.1), and density of 14.498 g/cm?® [8]. The smaller carbon atoms fit in the
octahedral interstices of a face-center cubic metal sublattice giving the NaCl-type structure.
The chemical bonding is mixed covalent and metallic and large deficiencies in carbon content
are tolerated without a change in structure [15]. However, the mechanical properties are
correlated with vacancies in the carbon sublattice [62].

TasC has a trigonal symmetry corresponding to space group P3m1 (164), where the C
atoms occupy the Wyckoff 1(a) sites and the Ta atoms occupy the 2(d) sites [26]. Figure 5.2
shows the conventional unit cell of TapC with lattice parameters a=3.1059 A and ¢=4.946 A,
and density of 15.02 g/cm? [26].

The 6-TaN phase, similar to TaC, shows a NaCl-type structure with lattice parameter of
a=4.339 A (see figure 5.3). It belongs to the space group F'm3m (225) and has a density of
15.842 g/cm?® [32]. The primitive cell has a basis with two atoms, one Ta at (1/2, 1/2, 1/2)

64
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Table 5.1: Structure characteristics of tantalum carbides and nitrides.

Tabla 5.1: Caracteristicas de las estructuras de los carburos y nitruros de tantalio.

Compound Structure Lattice Space Density
Parameter(A) Group (g/cm?)

TaC [g] Cubic a=4.454 Fm3m (225) 14.498

TayC [26] Hexagonal a=3.1059 P3m1 (164) 15.02
c=4.946

e—TaN [28] Hexagonal a=5.191 P6/mmm (191) 14.306
¢=2.908

0—TaN [32]  Cubic a=4.339 Fm3m (225) 15.842

and one N at (0,0,0) associated with each point of the fcc lattice.

e-TaN has a hexagonal symmetry with lattice parameters a=5.1918 A and ¢=2.9081 A,
and a density of 14.306 g/cm3 [28]. e-TaN belongs to the space group P6/mmm (191) where
the N atoms occupy the Wyckoff sites 1(a) and 2(d), and the Ta atoms the 3(f) sites (see
appendix C). The crystal structure corresponding to the conventional unit cell of e-TaN phase

is shown in figure 5.4.

5.2 Elastic properties

The elastic properties of interest in this work are the elastic stiffness coefficients c;;, bulk
and Young moduli and Poisson ratio. These properties were determined theoretically with ab
initio calculations for the tantalum compounds TaC, TasC, e-TaN and §-TaN. The stiffness
coefficients as well as mass density for TaC were determined also experimentally.

To do this, the two ab initio total-energy pseudopotential codes mentioned earlier, CASTEP
and ABINIT, were used. The ABINIT code is used to relax the structures, finding the min-
imum ground-state energy, and to calculate the phonon dispersion curves of TaC and TayC.
Whereas the CASTEP code is utilized to calculate elastic properties such as stiffness coeffi-
cients (¢;;), bulk and Young moduli and Poisson ratio for all the studied compounds.

All calculations were performed using the ABINIT program versions 4.0.4, 4.4.3 and 4.6.5
for Windows and Linux, and CASTEP version 3.0 for Windows, on a personal computer with

a Pentium Intel 4 processor.
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Figure 5.1: Conventional unit cell of TaC (a=4.454 A) which has a NaCl-type structure with
space group F'm3m (225) [8].

Figura 5.1: Celda unitaria convencional del TaC (a=4.454 /i) la cual muestra una estructura
tipo NaCl correspondiente al grupo espacial Fm3m (225) [8].

Figure 5.2: Conventional unit cell of TapC with lattice parameters a=3.1059 A and ¢=4.946
A corresponding to the space group of P3m1 (164) [26].

Figura 5.2: Celda unitaria convencional del TayC con pardmetros de red a=3.1059 A y
c=4.946 A, perteneciente al grupo espacial P3m1 (164) [26].
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Figure 5.3: Conventional unit cell of §-TaN showing a NaCl-type structure (a=4.339 A)
corresponding to the space group Fm3m (225) [32].

Figura 5.3: Celda unitaria convencional del 6-TaN la cual muestra una estructura tipo NaCl
correspondiente al grupo espacial Fm3m (225) [32].

Figure 5.4: Conventional unit cell of e-TaN with lattice parameters a=5.1918 A and ¢=2.9081
A corresponding to the space group P6/mmm (191) [28].

Figura 5.4: Celda unitaria convencional del e-TaN con pardmetros de red a=5.1918 A y
c=2.9081 A correspondiente al grupo espacial P6/mmm (191) [28].
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5.2.1 TaC

Elastic properties from calculation for TaC

The ab initio calculations performed on TaC with the ABINIT code are based on the density
functional theory using the Local Density Approximation (LDA) and the General Gradi-
ent Approximation(GGA), with a plane-wave basis set. Pseudopotentials type Hartwigsen-
Goedecker-Hutter [38] with semi-core states for Ta (13 e7) and C (4 e~) were used in the LDA
case. These pseudopotentials were tested for tantalum and diamond in chapter 4. For GGA,
Troullier-Martins [39] type pseudopotentials were used taking into account 5 e~ for Ta and 4
e~ for C. All these pseudopotentials were taken from the ABINIT data base. In calculations
as those performed here, the influence of temperature is completely neglected.

Studies of convergence of two fundamental parameters, kinetic energy cutoff of plane waves
and number of k-points, are necessary to obtain accurate results in the less possible computing
time.

For TaC, the optimum kinetic energy cutoff value using LDA is E.;_.pa =1360.5 eV (50
Hartree, 1 Hartree= 27.211 eV), and E.y;.caa= 2176.8 eV (80 Hartree) for GGA. Using the
Monkhorst-Pack [50] scheme established and implemented in ABINIT, a grid of 8 x 8 x 8 for
the k-point sampling of the Brillouin zone was the best for both approximations.

The relation of the total energy of the system with respect to lattice parameter is shown
in figure 5.5 for LDA and figure 5.6 for GGA. Dots indicate calculated values and the dashed
line is a fit to these data with a cubic function in order to determine the lattice parame-
ter corresponding to the minimum energy in both cases. The lattice parameters related to
these fits are ag Lpa=4.414 A (8.34 Bohr) and ag gga=4.527 A (8.55 Bohr). The structure
relaxation optimization performed with the ABINIT code gives a value of ag ;pa= 4.413 A
(8.343 Bohr), with a remaining pressure of 2.096 x 10™* GPa and ag.gga= 4.526 A (8.556
Bohr), with a remaining pressure of 1.2x10~* GPa. These lattice parameters were used in the
following calculations for TaC using LDA and GGA.

Figures 5.7 and 5.8 show the pressure-volume relation of the TaC structure for LDA and
GGA, respectively. The data points were obtained from the previously mentioned lattice
parameter calculations, and the dashed line is a fit with a Birch-Murnaghan third order
equation of state. For LDA, the lattice parameter at zero pressure is ag ;pa=4.406(2) A
(8.33 Bohr) and the volume vy_r,p4=85.65(2) A3. The bulk modulus is Brpa=365(4) GPa
with a first derivative of B}, ,=3.6(1). For GGA, the lattice parameter at zero pressure
is ap.aga=4.52(2) A (8.54 Bohr) with a volume vy ¢g4=92.79(2) A%, The bulk modulus is
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Figure 5.5: Relation of total energy with respect to lattice parameter of TaC using LDA. A
kinetic energy cutoff of plane waves of 1360.5 eV (50 Hartree) and a k-point grid of 8 x 8 x 8
were used.

Figura 5.5: Relacion de la energia total con respecto al pardmetro de red del TaC usando LDA.
Se usé una energia de corte de 1360.5 eV (50 Hartree) y una malla de puntos k de 8 x 8 x 8.

Baaa=316(2) GPa and By ,=3.99(8).

The study of elastic properties of TaC was performed using a standard technique based
on the density functional theory implemented in CASTEP [40]. Ultrasoft pseudopotentials
were used from the CASTEP /MSI database in conjunction with a plane-wave basis set, and
the Generalized Gradient Approximation (GGA). The kinetic energy cutoff employed was
380 eV (13.96 Hartree) and for the sampling of the Brillouin zone a Monkhorst-Pack grid of
16 x 16 x 16 k-points was employed. A geometry optimization of the TaC structure with fixed
cell parameters gives a lattice parameter of ag=4.525 A (8.55 Bohr).

Due to their cubic symmetry, TaC crystals have only three elastic constants, c11, ¢12 and
c44, corresponding to a dilation normal to the stress, perpendicular to the stress, and shear
[15]. Due to the close relation between the elastic stiffness coefficients and the bulk and
Young moduli and Poisson ratio, it is possible to determine these properties if the elastic
coefficients are known, and vice versa. The stiffness coefficients obtained in this calculation
are ¢11=621(3), c12=155.3(2) and c44=166.8(3) GPa, and the bulk and Young moduli obtained
from these coefficients are B=318(4) and E=550 GPa, respectively. The calculated Poisson
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Figure 5.6: Relation of total energy with respect to lattice parameter of TaC using GGA. A
kinetic energy cutoff of plane waves of 2176.8 eV (80 Hartree) and a k-point grid of 8 x 8 x 8
were used.

Figura 5.6: Relacion de la energia total con respecto al pardmetro de red del TaC utilizando
GGA. Se uso una energia de corte de 2176.8 eV (80 Hartree) y una malla de puntos k de
8 x & x 8.

ratio has a value of r=0.21.

Experimental Determination of TaC Elastic Stiffness Coefficients c;;

Tantalum carbide discs with faces parallel to (100) and dimensions of about 5 mm in diameter
and 1.4mm in thickness were cut from a single crystal rod purchased from Applied Physics
Technologies Inc. using a low speed saw with a diamond wafering blade. The faces of the discs
were polished to be parallel within £1 gym. The orientation of all samples have been controlled
by Laue backscattering and Bragg diffraction methods. Figure 5.9 shows a x-ray diffraction
pattern showing the (100) plane obtained by Laue diffraction with a Philips Kristalloflex
710/710H type diffractometer. The mass density, p, was measured by the buoyancy method
on one of the raw crystals in pure water with a value of p=14.64(4) g/cm?3.

The longitudinal and shear stiffness, c;; and cyq4, were determined from ultrasonic res-
onance frequencies using a plate mode technique [106]. The propagation of plane waves

traveling along the normal of the plane parallel plates was studied. Modes were excited be-
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Figure 5.7: Pressure-volume relation for TaC. Circles show the data points obtained from
ABINIT calculation using LDA and the dashed line is a fitting to a 3rd order Birch-Murnaghan
equation of state.

Figura 5.7: Relacion presion-volumen para el TaC. Los circulos muestran los valores obtenidos
de los cdlculos con ABINIT usando LDA y la linea punteada muestra el ajuste a la ecuacion
de estado de Birch-Murnhagan a tercer orden.

Table 5.2: Resonance number and their frequencies of a TaC single crystal.

Tabla 5.2: Modos resonantes y sus frecuencias para un monocristal de TaC.

Resonance Frequency

number (THz)
11 13.035 17 20.110
12 14.211 18 21.285
13 15.390 19 22.455
14 16.572 20 23.634
15 17.740 21 24.812

tween 4 and 30 MHz with X- and Y-cut a-quartz transducers. Resonances were detected by
measuring the frequency dependence of the impedance of the generator-sample system. From

the mth and nth resonance frequency (table 5.2), f,,, and f,, the corresponding wave velocity
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Figure 5.8: Pressure-volume relation for TaC. Circles show the data points obtained from
ABINIT calculation using GGA and the dashed line is a fitting to a 3rd order Birch-
Murnaghan equation of state.

Figura 5.8: Relacion presion-volumen para el TaC usando GGA. Los circulos indican los
valores obtenidos de los cdlculos con ABINIT usando GGA vy la linea punteada muestra el
ajuste a la ecuacion de estado de Birch-Murnhagan a tercer orden.

v of a certain mode is obtained by v = 2D(f,, — fm)/(n —m), where D is the thickness of the
sample. Figure 5.10 shows the frequencies corresponding to the resonances produced in the
TaC single crystal. The effective elastic stiffness constant ¢ of a mode is related to its wave
velocity and the mass density, p, by ¢ = pv?. Due to the cubic symmetry of TaC, c11 and cyy
correspond directly to the effective stiffness of a longitudinal and transverse ultrasound wave,

respectively, traveling along [100].

TaC Elastic Properties: Results and Discussion

Table 5.3 presents experimental and theoretical values of mass density and lattice parameter
for TaC determined here and in early published works. It is well established that the lattice
parameter of stoichiometric TaC is ag=4.4547 A [8]. The dependence of TaC lattice parameter
on the composition is ap=4.3007 + 0.1563xc for 0.71 < x¢ < 0.994 [107], where x¢ is the

carbon content. The mass density of stoichiometric TaC is py_ray = 14.54 gcm™3. Obviously,
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the value reported by Brown et al. [16], who determined the density of TaCpggs samples
by dimension and weight measurements in air and mercury, is inconsistent with the expected
value, specially as they reported a near-ideal stoichiometry. All other reported experimentally
determined values for the density, including those obtained here, are within 1% of the value
derived from lattice parameter determinations.

Sahnoun et al. [51] determined the TaC lattice parameter ap=4.42 A from first principles
full-potential linearized augmented plane wave (FP-LAPW) calculations within DFT-LDA.
This value is 1% smaller than the experimental value. In addition, using FP-LAPW and
DFT-LDA and DFT-GGA, Sahnoun and coworkers [52] found ap=4.39 A and ap=4.48 A, re-
spectively. The value from DFT-LDA is within a 2% smaller in comparison with experimental
ag. The value of ag from DFT-GGA is better than 1%.

In this study, the agreement of lattice parameter ag calculated with DFT-GGA with
both codes, ABINIT and CASTEP, in comparison with the experiment is better than 2%

Film
Diffraction X-ray beam
Pattern ]
X-ray source | . TaC single

crystal disc

TaC (100) plane

Figure 5.9: X-ray diffraction pattern of TaC showing (100) planes obtained by Laue backscat-
tering with a Philips Kristalloflex 710/710H type diffractometer.

Figura 5.9: Patron de difraccion del TaC mostrando los planos (100) obtenido por retrodis-
persion de Laue con un difractdmetro tipo Philips Kristalloflex 710/710H.
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Figure 5.10: Resonances excited in a TaC single crystal to determine stiffness coefficients.

Figura 5.10: Resonancias producidas en un monocristal de TaC para determinar los coefi-
cientes eldsticos.

for ag and, consequently, better than 5% for the mass density. The slight overestimation of
the lattice parameter, the so-called ‘underbinding’, is a feature consistently encountered in
DFT-GGA calculations such as those presented here. On the other hand, results obtained
from calculations performed with DFT-LDA show an ag value smaller than 2% and a mass
density larger than 4% when compared with TaC ideal values. The underestimation of lattice
parameter with respect to the ideal value of 4.4547 A is due to the ‘overbinding’, which is a
general feature of LDA-based DFT calculations. These features are also presented in lattice

parameters determined by Sahnoun [51, 52].

There are some values of the elastic stiffness coefficients and moduli (bulk and Young,
Poisson ratio) of TaC reported from experimental and theoretical works. The measured
elastic stiffness coefficients at room temperature, along with the values obtained here in the
athermal limit from the theory and the results published earlier, are summarized in table 5.4.
Brown et al.[16], Jun et al. [17] and Krajewski et al. [12] reported measurements of Young

modulus £ and Poisson ratio v that were converted into ¢;;. This was done by computing
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Table 5.3: Lattice parameter ag and mass density p for TaC. Experimental values are at room
temperature.

Tabla 5.3: Pardmetro de red ag y densidad de masa p del TaC. Los valores experimentales
son a temperatura ambiente.

Reference a0 (A)  p (g/cm?)
Bartlett & Smith[15] (TaCy.90) 14.65
Brown et al.[16] (TaCp.g94) 4.4551 12.29
Jun et al.[17] (TaCyp.g9) 4.454 14.5
Krajewski et al.[12] 4.455 14.47
McKenna[108] (at 20° C) 4.445 14.48
National Bureau of Standards|[8] 4.454 14.498
Sahnoun et al.[51] FP-LAPW (DFT-LDA) 4.42

Sahnoun et al.[52] FP-LAPW (DFT-LDA) 4.39

Sahnoun et al.[52] FP-LAPW (DFT-GGA) 4.48
Present work (experimental) 14.64(5)
Present work from CASTEP (DFT-GGA) 4.525 13.83
Present work from ABINIT (DFT-GGA) from cubic fit 4.527

Present work from ABINIT (DFT-GGA) from geometry optimization 4.526
Present work from ABINIT (DFT-GGA) from EOS 4.52 (2) 13.88
Present work from ABINIT (DFT-LDA) from cubic fit 4.414

Present work from ABINIT (DFT-LDA) from geometry optimization  4.413
Present work from ABINIT (DFT-LDA) from EOS 4.406(2) 14.98

first the elastic compliances s11 and s19 through equations

1
EF=— 5.1
- (5.1)
and
—S812
v = . 5.2
o (5.2)

Then, the elastic stiffness coefficients were calculated according to equations [86].

S11 + S12
s11 — s12)(s11 + 2812)

C11 — ( (53)

—S12
Cc19 = . 54
2 (s11 — s12)(s11 + 2512) (54)

In table 5.4 it is possible to observe the large scatter, about a factor of 2 for ¢;; and c¢yo,

of the available data which cannot be explained by differences in the stoichiometry. While it
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is known that the mechanical properties of carbides, such as their hardness, depend on the
stochiometry, variations in excess of a few ten GPa are very unlikely.

As the data of Brown et al. [16], Jun et al. [17], Weber [22] and the experimental and
theoretical values obtained here are in reasonable agreement, it can be conclude that the most
likely value for the longitudinal elastic stiffness, obtained by averaging over these values, is
c11=606 GPa. A comparison with other transition metal carbides with rock salt structure,
which is describe below, confirms this finding.

From a similar analysis for cj9, it can be deduced that values by Krajewski et al. [12],
Bartlett and Smith [15] and Sahnoun et al. [52] for DFT-GGA, seem to be too low by about
50-70 GPa, and that the most likely value for c¢12, obtained from average, is ¢19=166 GPa.

Previously to this work, there had been only one experimental value published for cqyy =
79 GPa by Bartlett and Smith. In their study, the two other elastic stiffness coefficients are
systematically too low compared to other results, and this is probably true for the value of
cq4 as well. In addition, values calculated using DFT-LDA and DFT-GGA by Sahnoun et al.,
410.44 and 315.47 respectively, show serious discrepancies with respect to all other values.

The values ¢44=190 GPa determined by Weber [22] from extrapolations of neutron data,
csa= 176 GPa obtained from DFPT-LDA by Wu et al. [53], and those obtained here from
experiment and calculation, 153(2) and 166.8(3) GPa, are found in acceptable agreement. This
suggests a most likely value of ¢4y = 170 GPa. This will be discussed below and confirmed
by a comparison with data for other carbides.

In table 5.5, further elastic properties, namely the bulk and Young moduli and the Poisson
ratio are shown. Although Brown et al. [16] measured the density value of TaCpgg4 sam-
ples, they adjusted their elastic property data to theoretical densities obtained from X-ray
diffraction and chemical analysis. The Poisson ratio and bulk modulus values were obtained
by extrapolation of the reported elastic properties values to 0% porosity, in a study realized
by Jun and Shaffer [17] about percentage of volume porosity versus bulk moduli.

The good agreement of ¢;; obtained by Brown et al. [16] and Jun et al. with values
calculated here implies that the bulk and Young moduli are also in good agreement. In
addition, values of elastic properties reported by Dodd et al. [54] measured using an ultrasonic
technique, are in good agreement with those determined here. Hence, a preferred value of
B=335 GPa can be deduced from the experiments.

Results of B=369.83 and B=397.3 GPa from quantum mechanical calculations using DFT-
LDA performed by Sahnoun and coworkers, agree within 9% with that of B=365(4) GPa
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Table 5.4: Elastic stiffness coefficients ¢;; for TaC. Experimental values are at room temper-
ature.

Tabla 5.4: Coeficientes de elasticidad c;; del TaC. Los valores experimentales son a temper-
atura ambiente.

Reference ci1 (GPa) ci2 (GPa) cua (GPa)
Bartlett & Smith[15] (TaCo.o0) 505(10)  91(22) 79(6)
Brown et al.[16] (TaCp.g94) 634* 200*

Jun et al.[17] (TaCo.g9) 631° 168°

Krajewski et al.[12] 3474 1107 ..

Weber [22] 550 150 190

Sahnoun et al.[52] FP-LAPW (DFT-LDA) 880.37 156.24 410.44
Sahnoun et al.[52] FP-LAPW (DFT-GGA) 732.86  112.04  315.47
Wu et al.[53] PW-PP (DFT-LDA) 740 165 176
Present work (experimental) 595(2) 153(2)
Present work from CASTEP (DFT-GGA)  621(3) 155.3(2) 166.8(3)

“Values calculated from the reported Young modulus and Poisson ratio.
Values obtained from elastic properties extrapolated to 0% porosity.

obtained here for the same approximation. In a similar way, results from DFT-GGA calcu-
lations by Sahnoun of B=318.98, and those determined here using both codes of B=318(4)
and B=316(2) GPa, show an agreement better than 1%. The agreements on these results
confirms the reliability of quantum mechanical calculations in the determination of elastic
properties. After an analysis, a value of B=335 GPa is also in agreement with results from
quantum mechanical calculations. For the first derivative of the bulk modulus, a value of

B’=4 is preferred.

A comparison between values calculated with LDA and GGA shows some tendencies of the
approximations. As it has been mentioned above the calculations based on LDA, in contrast
to GGA, tends to ‘overbind’, i.e. give smaller lattice parameters. The 1% deviation in ag is
therefore expected. As consequence of the overbonding an overestimation of the bulk modulus

can be expected, and indeed Brospa > Be;; GGA-

Young modulus and Poisson ratio were computed from the elastic constants reported by
Sahnoun et al. [52]. This was done by computing the elastic compliances s1; and sj2 from

equations
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Table 5.5: Bulk modulus (By), first derivative of bulk modulus, Young modulus (F), and
Poisson ratio (v) for TaC.

Tabla 5.5: Mddulo de volumen (By), primera derivada del mddulo de volumen, mddulo de
Young (E), y razon de Poisson (v) para TaC.

Reference By (GPa) B’ E (GPa) v
Bartlett & Smith[15] (TaCg.go) 229% 4777 0.152¢
Brown et al.[16] (TaCg.g94) 344(8)° 537(7)  0.24(0)°
Dodd et al.[54] (TaCo.os) 332(39)° ... 567(68)  0.21(2)°
Jun et al.[17)(TaCq.99) 3294 5607 0.21
Krajewski et al.[12] 1884 294 0.24
Sahnoun et al.[51] FP-LAPW (DFT-LDA) from EOS 369.83 458 ...
Sahnoun et al.[52] FP-LAPW (DFT-LDA) 397.6 3.64 833.27¢ 0.15¢
Sahnoun et al.[52] FP-LAPW (DFT-GGA) 318.908 434 703.23°  0.13°
Present work from CASTEP(DFT-GGA) from c;; 318(4) 550 0.21

Present work from ABINIT (DFT-GGA) from EOS  316(2) 3.9(8)
Present work from ABINIT (DFT-LDA) from EOS 365(4) 3.6(2)

“Values calculated from elastic coefficients.

bCorrected to theoretical density.

“Values corrected to zero porosity.

%Values obtained from elastic properties extrapolated to 0% porosity.
“Calculated from c¢;;.

c11 +ci2
511 = , 9.9
M (c11 — c12)(e11 + 2¢12) (5:5)
and
—C
S12 = 12 (5.6)

(c11 — c12)(e11 + 2¢12)

and equations (5.1) and (5.2). Because their ¢;; value from both approximations, LDA and
GGA, are large in comparison with experimental values, the Young moduli computed are also
large and therefore Poisson ratios are too low.
Thus, the derived values of Young modulus and Poisson ratio for TaC from experimental
values and those obtained here from calculation are F=550 GPa and v ~0.22, respectively.
These data can be compared to data obtained for other cubic carbides crystallizing in
the rock salt structure, namely VC, TiC, NbC, HfC, ZrC. The average lattice parameters

of these carbides have been obtained from the Inorganic Crystal Structure Database [109],
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and from first principles calculations performed with the CASTEP code. The average lattice
parameters are 4.689(6) A for ZrC, 4.468(8) A for NbC, 4.16(1) A for VC, 4.640(2) A for
HfC and 4.323(5)A for TiC, where the values in brackets correspond to the variation in the

reported results, which will be mostly due to the non-stoichiometry.

Figure 5.11 demonstrates the linear relation between the lattice parameters and the ionic
radii of the metal ions. For the latter, the data published by Shannon [110] was used, for
six-fold coordinated cations formally in a 4+ oxidation state. An extrapolation of this graph
points towards the structures of carbides with even smaller lattice parameters, such as CoC.
This could, in principle, be used to search for very incompressible materials, as for several
classes of materials it has been shown that B x V{y = const. [111]. As the known carbides are
already incompressible, it seems possible to search for structures which are as incompressible
as diamond. However, figure 5.12 clearly shows that due to the very large scatter in the data
at the moment such an empirical correlation cannot be established. It is unlikely that small
changes in the stoichiometry will change the bulk modulus by a factor of two, and hence part

of the scatter may be due to the microstructures of the samples.

The scatter in the bulk moduli reflect the significant variations between individual data
sets of elastic stiffness coefficients of other rock salt structure transition metal cabides. For
example, values for cyq for TiC range from 175 - 217 GPa [113]. All these values, however,
are a factor of 2 larger than the only previously reported experimental value for TaC, cyq =
79(6) GPa [15]. This is also true for values of c44 reported for NbC, which range from 153 -
205 GPa [114, 113], and VC (155-192 GPa [113]).

This further supports the conclusion that the value obtained for ¢4y for TaC (170 GPa) is
preferable to the one reported earlier. For cqo the situation is less clear, as the scatter of data
is even larger than for the other elastic stiffness coefficients. This is problematic, as without
an accurate knowledge of ci2 the bulk moduli cannot reliably be obtained from the elastic

stiffness coeflicients.

As the experimental difficulties are obvious from the analysis of data published earlier, it
now has become clear that it would be very desirable if two complementary methods would
be employed to improve the quality of the available data. Compression studies with diamond
anvil cells could be used to determine bulk moduli, while resonant ultrasound spectroscopic
measurements will give all symmetrically independent elastic coefficients of a sample at once
with high internal consistency [115]. A combination of these two approaches seems to be the

only way to obtain data sufficiently accurate to establish the desired composition-properties
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Figure 5.11: The lattice parameters of cubic carbides, crystallizing in the NaCl-type structure,
depend linearly on the effective ionic radii of the metal cations. Lattice parameters have been
obtained from the ICSD [112], the effective ionic radii are from Shannon [110]. Filled circles are
experimental data, open circles are values obtained here from ab initio calculations. The two
lines are linear regression analysis to the experimental (upper line) and theoretical data (lower
line), respectively. The ‘underbinding’ of the DFT-GGA calculations leads to a systematic
shift in the lattice parameters.

Figura 5.11: Los pardmetros de red de carburos cibicos con estructura tipo NaCl varian li-
nealmente respecto a los radios idnicos efectivos de los cationes metdlicos. Los pardmetros de
red se obtuvieron de la base de datos ICSD [112] y los radios atémicos efectivos de Shannon
[110]. Los circulos rellenos muestran los valores experimentales y los circulos vacios indican
los valores obtenidos aqui mediante los cdlculos ab initio. Las dos lineas muestran una re-
gresion lineal resultado del andlisis de los valores experimentales (linea superior) y tedricos
(linea inferior), respectivamente. La baja estimacion en los valores que producen los cdlculos
utilizando DFT-GGA conduce a un corrimiento sistemdtico en los pardmetros de red.

dependencies.

Lattice Dynamics of TaC

The dynamics of the TaC lattice was studied through phonon dispersion relations calculated
with the ABINIT code, based on GGA and density function perturbation theory (DFPT), in

the high symmetry directions [200], [x20] and [xzz]. Figure 5.13 contains an schematic draw



5.2. ELASTIC PROPERTIES 81

400
° vC
350 A .TaC
g
NbC
S 300 A L]
@ )
3 TiC ® Nbe
o
= HfC
3 °
m Ve
200 A ° ZrC
150 T T T T T .
4.1 4.2 4.3 4.4 45 4.6 4.7 4.8

Lattice parameter (A)

Figure 5.12: Dependence of the bulk modulus as a function of lattice parameter of cubic
(NaCl-type structure) carbides. Data are from Kumashiro et al. for TiC, VC and NbC [113],
from Brown et al. for HfC and NbC [16], from Ledbetter et al. for NbC [114] and from Toth
for ZrC [1]. It is not yet clear whether the large scatter is only due to small differences in the
stoichiometry of the samples.

Figura 5.12: Dependencia del mdodulo de volumen en funcidn del pardmetro de red de carburos
cubicos (estructura tipo NaCl). Los valores para TiC, VC y NbC son tomados de Kumashiro
et al. [113], para HfC y NbC de Brown et al. [16], para NbC de Ledbetter et al. [114] y para
ZrC de Toth [1]. Todavia no es claro si las diferencias entre los valores se deben solamente a
pequenas diferencias en la estequiometria de las muestras.

of the Brillouin zone corresponding to the structure of TaC showing the path (dashed line) on
high symmetry directions followed in the calculation. The zone center (k=0) is designated by

I" while the interior lines by Greek letters and points in the zone boundary by Roman letters.

Convergence studies, structure relaxation and phonon dispersion relations were calculated
for diamond and tantalum as an initial study to test the accuracy of ab initio calculations
performed with the ABINIT code. Diamond dispersion curves were reproduced in good agree-
ment with experimental data and tantalum phonon frequencies are about 0.5 THz higher in
comparison with experimental values. However, the main dispersion relations features are well

reproduced by the calculations. More details about these calculations are found in chapter 4.
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(b)

Figure 5.13: (a) Brillouin zone of the fcc structure showing the high symmetry points and
lines. The dashed line indicates the path follow for calculations of TaC. (b) Brillouin zone in
two neighbor cells .

Figura 5.13: (a) Esquema de la zona de Brillowin de una red fcc donde se muestran los puntos
y lineas de alta simetria. La linea punteada indica la trayectoria que se recorrio en los cdlculos
para TaC. (b) La zona de Brillouin en dos celdas vecinas.
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Phonon dispersion relations calculated for diamond and tantalum provided us with confidence
for the phonon calculations of TaC.

Dispersion curves of TaC are shown in figure 5.14. Points indicate calculated values and
the lines drawn through the calculated points are a guide to the eye. Experimental values by
Smith and Gléser [18] are indicated by squares (transversal modes) and triangles (longitudinal
modes). In this figure we can observe a large frequency gap between acoustical and optical
branches of about 16 THz. High frequency curves originate mainly from the lower mass of
C atoms, while low frequency curves resulted mainly from vibrations of the higher Ta mass
atoms. However, Weber [22] states that the very high optic frequencies are due not only to the
high mass difference of the atoms, but also to much stronger force constants between nearest
neighbor metal and non-metal ions.

As dispersion curves were calculated with wave vectors ¢ at high-symmetry directions,
only purely transversal (perpendicular to ¢) and purely longitudinal (parallel to ¢) modes
were obtained. Also, the degeneracy of transversal acoustical (TA) and optical (TO) modes is
observed at directions [z00] and [zxx]. The polarization and degeneracy of dispersion curves
are intimately related to the crystal symmetry relative to the direction of propagation.

A number of authors have reproduced the phonon dispersion curves determined by inelastic
neutron scattering by Smith and Gléser [18], using phenomenological methods, the shell model
or a modified shell model [20, 21, 22, 23].

A third transverse acoustical and optical branches in the [zz0] direction were predicted
by Weber and coworkers [21] using an extension of the shell model. These branches also were
determined here from first principles calculations. Their model described well the overall
shapes of the dispersion curves of some transition metal carbides including TaC.

In addition, Weber [22] describes the sharp minima in most of the acoustic branches as
anomalies, and states that these phonon anomalies are caused by the metallic d-electron band.
Phillips [116] interprets the anomalies in stoichiometric TaC as due to an overscreening of the
ion-ion interactions by the electron-ion interactions. On the other hand, Zeller [117] suggests
that there is a linear dependence of phonon frequencies on carbon content using a theoretical
model. Weber [22] and Verma and Gupta [23] also believe that the anomalous behavior of

TaC phonon frequencies is related with the electron-phonon interaction.
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Figure 5.14: Phonon dispersion curves of TaC for the high symmetry directions calculated
using the GGA approach: (a) high frequencies and (b) low frequencies. Circles indicate
calculated values and lines drawn through calculated points are a guide to the eye. Triangles

(longitudinal modes), and squares and diamonds (transversal modes) represent experimental
data by Smith and Gléser [18] and Smith [19].

Figura 5.14: Curvas de dispersion del TaC' en las direcciones de alta simetria calculadas con
GGA: (a) altas frecuencias y (b) bajas frecuencias. Los circulos indican los valores calculados y
las lineas que unen los puntos son una guia para la vista. Los tridngulos (modos longitudinales)

y los cuadrados y diamantes (modos transversales) representan los valores experimentales
obtenidos por Smith y Gldser [18] y Smith [19].
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5.2.2 TayC

Ab initio calculations performed on TasC with the ABINIT code are based on DFT within
LDA using a plane-wave basis set. Pseudopotentials provided from the ABINIT data base
type Hartwigsen-Goedecker-Hutter [38] for C (4 e~) and Ta with semi-core states (13 e™)
were used. The energy cutoff of E.,; =1632.6 eV (60 Hartree) and a k-point grid of 8 x 8 x 4
for sampling the Brillouin zone were used. A geometry optimization of the structure produces
lattice parameters of ag=3.089 A (5.84 Bohr) and ¢y=4.837 A (9.145 Bohr), with a remaining
pressure of 7.1156x1073.

The CASTEP code was used to calculate the elastic properties of TasC using ultrasoft
pseudopotentials from the CASTEP/MSI database within the generalized gradient approxi-
mation (GGA) and a plane-wave basis set. The kinetic energy cutoff employed was 330 eV
(12.12 Hartree) and for the sampling of the Brillouin zone a Monkhorst-Pack grid of 10x 10x 6
k-points was used. The minimization of the energy with respect to lattice parameters per-
formed with the CASTEP minimizer module determined the equilibrium lattice parameters
of ap=3.152 A (5.958 Bohr) and ¢;=4.99 A (9.43 Bohr).

The hexagonal symmetry of TasC allows five independent elastic stiffness coefficients, and
those obtained in this calculation are ¢;1=445(4), c12=172.6(1), c13=143.8(1), c33=492(4) and
c44=135.6(1) GPa. The bulk modulus obtained from these coefficients is B=256(5) GPa and
the Young modulus for each direction are E,=FE,=360.5 and E,=425.1 GPa.

Due to its symmetry also, TaoC shows six values of Poisson ratio corresponding to the
relation of stresses and strains in the z, y and z directions, where z and y are equivalent, leading
to only three different values of Poisson ratios. These values are v,,=1,,=0.32, v,,=v,,=0.23
and v,,=1,,=0.197. There is not elastic properties data published available for TayC for

comparison with the values calculated here.

Table 5.6 shows the calculated values with ABINIT (DFT-LDA) and CASTEP (DFT-
GGA) for lattice parameters. It can be observed an overestimation of DFT-GGA lattice
parameters of less than 2% for ag and about 1% for ¢y in comparison with experimental
values reported by the International Centre for Diffraction Data (ICDD) [32]. On the other
hand, the underestimation of lattice parameters calculated by DFT-LDA of less than 1% for
ag and about 2% for ¢g is also evident. As no experimental data of mechanical properties
of TasC are available, the calculated values mentioned above can be considered as predicted

values.
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Table 5.6: Lattice parameters ag and ¢y for TasC. Experimental values are at room temper-
ature.

Tabla 5.6: Pardmetros de red ag y co del Tag C. Los valores experimentales son a temperatura
ambiente.

Reference ap (A) ¢y (A)
Lissner & Schleid (ICSD)[26] 3.1059 4.946
Present work from CASTEP (DFT-GGA) 3.152  4.99

Present work from ABINIT (DFT-LDA)  3.089  4.837

Lattice dynamics of TasC

Dispersion relations of phonon frequencies for the high symmetry directions [zz0],[z00] and
[00z] (see figure 5.15) were calculated with the ABINIT program using density functional
theory and LDA.

Figure 5.16, presents phonon dispersion curves of TasC at low (a) and high (b) frequencies.
As before, points indicate calculated values and the lines are intended to be a guide to the
eye. Because the primitive unit cell of TasC has associated three atoms, the dispersion curves
generated show 9 branches: 3 acoustical and 6 optical. Figure 5.16 shows the degeneracy of
the acoustical and optical branches in the direction [00z] due to symmetry.

Similar to TaC, a large frequency gap separating the branches about 12 THz is found.
Again, high frequency curves originate mainly from the lower mass of C atoms, while low
frequency curves result mainly from vibrations of the higher Ta mass atoms.

At the time of writing this thesis, we have not found any published data about TayC
phonon dispersion curves, neither theoretical or experimental. Thus, dispersion curves derived

here from calculation can be seen as a prediction.
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Figure 5.15: First Brillouin zone of the hexagonal lattice showing high symmetry points and
lines.

Figura 5.15: Esquema de la primera zona de Brillowin de una red tipo hexagonal mostrando
los puntos y lineas de alta simetria.
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Figure 5.16: Phonon dispersion curves of TapC at high symmetry directions calculated with
DFT-LDA at: (a) high frequencies and (b) low frequencies. The lines drawn through the
calculated points are a guide to the eye.

Figura 5.16: Curvas de dispersion de fonones del TaaC en las direcciones de alta simetria
calculadas con DFT-LDA: (a) altas frecuencias y (b) bajas frecuencias. Las lineas que unen
los puntos calculados son una guia para la vista.
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5.2.3 ¢-TaN

Elastic properties of cubic tantalum carbide §-TaN were studied from first principles calcula-
tions. As mentioned above, J-TaN has a rock-salt crystalline structure and exhibits mechanical

properties similar to those of TaC.

Elastic properties from calculation for §-TalN

Calculations on §-TaN were performed with the ABINIT code, based on DFT and LDA, using
a plane-wave basis set. Hartwigsen-Goedecker-Hutter type pseudopotentials [38] for N (5 e™)
and with semi-core states for Ta (13 e~) were used. These pseudopotentials were taken from
the ABINIT database. The kinetic energy cutoff E.,; =1632.6 eV (60 Hartree) and a grid of
8 x 8 x 8 to sample the Brillouin zone, which corresponds to 60 k-points, were used.

The relation of the lattice parameter and the total energy of the system is shown in figure
5.17. Dots indicate calculated values and the dashed line is a fit with a cubic function in order
to determine the lattice parameter. The lattice parameter that minimizes the energy is agp=
4.329 A (8.185 Bohr). The geometry optimization performed with ABINIT gives a lattice
parameter of ap=4.3307 A (8.186 Bohr), with a remaining pressure of 3.84 x 10~* GPa. The
latter lattice parameter was used in the following calculations.

Figure 5.18 shows the pressure-volume relation of the §-TaN structure. Circles represent
volume as function of pressure, and the dashed line is a fit with a 3rd order Birch-Murnaghan
equation of state. The lattice parameter at zero pressure obtained from this equation is
ap=4.339(6) A (8.204 Bohr) and the volume vp=81.730(6) A3. The bulk modulus is By=373(6)
GPa and the first derivative of the bulk modulus is B'=4(1).

The study of elastic properties of §-TaN were performed using the CASTEP program with
a standard technique based on DFT and GGA. Ultrasoft pseudopotentials for Ta and N were
used from the CASTEP /MSI database in conjunction with a plane-wave basis set. The energy
cutoff of E.,;=380 eV (13.96 Hartree) was used and, for the sampling of the Brillouin zone, a
Monkhorst-Pack grid of 16 x 16 x 16 k-points was employed. From the minimization of energy
performed with CASTEP, the equilibrium lattice parameter of ag=4.4905 A (8.48 Bohr) was
obtained.

The three independent stiffness coefficients obtained from this calculation are ¢;;=700(5),
c12=128.8(7) and c44=34.7(4) GPa. The bulk and Young moduli obtained from these coeffi-
cients are B=319(2) and E=659.7 GPa, respectively. The calculated Poisson ratio is v=0.155.
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Figure 5.17: Total energy vs. lattice parameter of 5-TaN. An energy cutoff of plane waves of
1360.5 eV (50 Hartree) and a k-point grid of 8 x 8 x 8 were used.

Figura 5.17: Energia total vs. pardmetro de red del d-TaN. Se utilizo una energia de corte
para las ondas planas de 1360.5 eV (50 Hartree) y una malla de puntos k de 8 x 8 x 8.

0-TaN Elastic Properties: Results and Discussion

Table 5.7 shows values of lattice parameter ag and mass density p for §-TaN. All lattice
parameters determined theoretically are in good agreement with the experimental value of
ap=4.339 A by the National Bureau of Standards [32]. However, lattice parameters derived
from DFT-LDA calculations performed here and by Sahnoun et al. [52] show an underesti-
mation of 1%, while DFT-GGA calculations are overestimated by ~ 3.5 and 2%, respectively.
As mentioned before, these effects are caused by the overbinding produced with LDA, and
the underbinding by GGA. Consequently, mass density computed from DFT-LDA calculated
lattice parameters are 1% overestimated in comparison with that determined experimentally
of 15.842 g/cm?, and the density computed from DFT-GGA calculated lattice parameters are

about 10% underestimated.

Published values of elastic stiffness coefficients of §-TaN and those obtained in this study
are contained in table 5.8. For c¢11, the calculated value of 700(5) GPa agrees better than
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3.5% in comparison with the value of 675.95 GPa calculated by Sahnoun et al. [52] using the
same approximation (DFT-GGA). On the other hand, values calculated with DFT-LDA by
Sahnoun (886.9 GPa), and Wu et al. [53] (783 GPa), show agreements of 26.7% and 11.85%,
respectively. Differences like these between the GGA and LDA approximations were expected.
However, the value by Sahnoun is about 100 GPa too large in comparison with that by Wu,
calculated also with DFT-LDA. As the values of Sahnoun et al. using DFT-GGA, Wu et al.
and that obtained here are in reasonable agreement, by averaging these values we can predict
a likely value of ¢11=720 GPa. In the case of cjo, all values show a reasonable agreement.

Thus, similar to ¢11, a value of c10=150 GPa can be predicted.

Although all values shown in table 5.8 were determined theoretically using DFT, serious

discrepancies are observed in cyqy values. Values of Sahnoun et al. are some hundreds GPa too

10
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Figure 5.18: Pressure-volume relation of §-TaN. Circles show data points obtained from
ABINIT calculation and the line is the fitting of a 3rd order Birch-Murnaghan equation
of state.

Figura 5.18: Relacion presion-volumen del §-TaN. Los circulos indican los valores obtenidos
por el cdlculo con ABINIT y la linea es un ajuste a la ecuacion de estado de Birch-Murnhagan
a tercer orden.
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Table 5.7: Lattice parameter ay and mass density p for J-TaN. Experimental values are at
room temperature.

Tabla 5.7: Pardmetro de red ag y densidad de masa p del 6-TaN. Los valores experimentales
son a temperatura ambiente.

Reference ap (A)  p (g/cm?)
National Bureau of Standards|32] 4.339 15.842
Sahnoun et al.[52] FP-LAPW (DFT-LDA) 4.33

Sahnoun et al.[52] FP-LAPW (DFT-GGA) 4.42 .
Present work from CASTEP (DFT-GGA) 4.4905 14.3
Present work ABINIT (DFT-LDA) from cubic fit 4.329 15.96
Present work ABINIT (DFT-LDA) from geometry optimization 4.3307  15.95
Present work ABINIT (DFT-LDA) from EOS 4.339(6) 15.85

Table 5.8: Elastic stiffness coefficients ¢;; for 6-TaN.
Tabla 5.8: Coeficientes de elasticidad c;; del 6-TaN.

Reference c11 (GPa) c12 (GPa) cyq (GPa)
Sahnoun et al.[52] FP-LAPW (DFT-LDA) 886.9 162.33 355.86
Sahnoun et al.[52] FP-LAPW (DFT-GGA) 675.95 154.48 266.92
Wu et al.[53] PW-PP (DFT-LDA) 783 167 20

Present work from CASTEP (DFT-GGA)  700(5) 128.8(7)  34.7(4)

large in comparison with those calculated by Wu et. al and this study. As no experimental
c44 value is available for comparison, and based on the reliability of the agreement found in
calculations of TaC with the pseudopotential approach used, a best value of cy4=27 GPa is
predicted. However, an experimental determination of cy4 is still needed to corroborate this

proposed value.

Further elastic properties such as bulk modulus and its first derivative, Young modulus
and Poisson ratio, are shown in table 5.9. As all bulk modulus values shown a reasonable
agreement, an averaged value of B=350 GPa can be taken as a predicted value. For Young
modulus, the value of Sahnoun et al. [52] from DFT-LDA calculations is too large in com-
parison with other values calculated with DFT-GGA. Hence, a best value of E=640 GPa is

preferred. From a similar analysis for Poisson ratio, the most likely value for v is 0.165.
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Table 5.9: Bulk modulus (By), first derivative of bulk modulus, Young modulus (F), and
Poisson ratio (v) for §-TaN.

Tabla 5.9: Mddulo de volumen (By), primera derivada del mddulo de volumen, mddulo de
Young (E), y la razén de Poisson (v) del 6-TaN.

Reference By (GPa) B’ FE (GPa) v
Kobayashi[118] PW-PP (DFT-LDA) 341
Sahnoun et al.[52] FP-LAPW (DFT-LDA) 403.85  4.28 836.87  0.154¢
Sahnoun et al.[52] FP-LAPW (DFT-GGA) 328.3 545 618.47¢  0.186°
Present work from CASTEP (DFT-GGA) from ¢;;  319(2) 659.7 0.155

Present work from ABINIT (DFT-LDA) from EOS 373(6) 4(1)

“Calculated from c;;.

5.2.4 eTaN

Pseudopotential total energy calculations were performed on e-TaN with the ABINIT code
based on DFT within the local density approximation (LDA) in conjuntion a plane-wave basis
set. Pseudopotentials taken from the ABINIT database type Hartwigsen-Goedecker-Hutter
[38] for N (5 e7), with semi-core states for Ta (13 e~), were used. The cutoff energy of
plane-wave basis is Fg,; =1632.6 ¢V (60 Hartree) and the sampling the Brillouin zone has
been performed with a k-point grid of 4 x 4 x 8. A structure optimization performed with the
ABINIT code determined lattice parameters ap=5.343 A (10.1 Bohr) and ¢y=3.001 A (5.673

Bohr), with a remaining pressure of 4.8 x 1072 GPa.

Elastic properties of e-TaN were calculated using the CASTEP code within the gradient
generalized approximation (GGA) using a plane-wave basis set. Ultrasoft pseudopotentials
taken from the CASTEP /MSI database for Ta and N were used. The energy cutoff employed
was 330 eV (12.13 Hartree) and for the sampling of the Brillouin zone a Monkhorst-Pack
grid of 10 x 10 x 6 k-points was used. A full optimization of the cell geometry, with fixed
cell parameters, was used to obtain the equilibrium lattice parameters ag=5.4404 A (10.28
Bohr) and cp=3.1614 A (5.97 Bohr). Similar to TayC, the hexagonal structure of e-TaN
shows five independent elastic stiffness coefficients, and those obtained in this calculation
are c11=294(4), c12=239(4), ¢13=170.1(1), c33=374(4) and ¢44=95.5(1) GPa. The bulk mod-
ulus obtained from these coefficients is B=236(2) GPa and the Young modulus for each
direction are E,=FE,=97.16 and E,=266.17 GPa. Values of Poisson ratio are v,,=v,,=0.74,

Ve =V2y=0.32 and v,;,=1,,,=0.12.
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Table 5.10: Lattice parameters ag and ¢y for e-TaN. Experimental values are at room tem-
perature.

Tabla 5.10: Parametros de red ag y co del e-TaN. Los valores experimentales son a temperatura
ambiente.

Reference ap (A) ¢ (A)
International Center for Diffraction Data [28] 5.1910 2.908
Present work from CASTEP (DFT-GGA) 5.4404 3.1614
Present work from ABINIT (DFT-LDA) 5.343  3.001

Table 5.10 shows the calculated values with ABINIT (DFT-LDA) and CASTEP (DFT-
GGA) for lattice parameters ap and cy. In comparison with experimental values by the
International Center for Diffraction Data (ICDD), parameters derived from DFT-LDA cal-
culations show an unexpected overestimation of 3% for both parameters. A reason for this
could be a wrong description of the e-TaN structure to the ABINIT code. On the other hand,
parameters derived from DFT-GGA calculations agree within 5% for ag and better than 9%
for ¢g. In the same way as with TasC, as no experimental data of mechanical properties of

e-TaN is available, the calculated values estimated here can be considered as predicted values.



Chapter 6

HEAT CAPACITY

This chapter covers the study of the specific heat of Tantalum, diamond and TaC. The phonon
density of states (DOS) and the curve of specific heat as function of temperature were obtained
from first principles calculated phonon dispersion relations. In addition, with the help of a
differential scanning calorimeter (DSC), the experimental curve of specific heat for 150 < T

< 600 was determined for a TaC single crystal, complementing the theoretical study.

6.1 Fundamental Concepts

The amount of heat necessary to increase the temperature of a certain given mass is different
for every material. The relation between the heat supplied to a mass and its corresponding
increase of temperature is known as heat capacity. The heat capacity per unit of mass is called
specific heat and is a characteristic of the material [88]. The thermodynamic properties of a
solid, such as heat capacity, are determined mostly by the vibrational degrees of freedom of
the lattice. However, a complete knowledge of the vibrational spectrum is required for the
calculation of these thermodynamic properties. The phonon density of states is determined
by the vibrational spectrum, and also is an important piece in the calculation of heat capac-
ity. This section summarizes the basic concepts that relate phonon vibrations with the heat

capacity based on the harmonic approximation.

Phonon Density of states

There are some approximations used to obtain the phonon density of states. A general
approximation in three dimensions consists on applying boundary conditions over N3 primitive
cells within a cube of side L of a periodic crystal, so that the wave vector k is determined by

the condition

e[i(kwx‘f'kyy‘f‘kzz)} = e{i[kw(5C+L)+ky(y+L)+kZ(Z+L)]} , (61)

95
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Therefore, there is one allowed value of k per volume (27/L)? in k space, or

<%>3 _ % (6.3)

allowed values of k per unit volume of k space, for each polarization and for each branch.
The volume of the crystal is V = L3.
The total number of modes N with wave vector less than & is found from equation (6.3)

to be (L/27)3 times the volume of a sphere of radius k. Thus

N (%)?@) (6.4)

for each polarization type. The density of states g(w) for each polarization is

- e

where we can obtain the group velocity dw/dk from the dispersion relation of w versus k [94].

In practice, the density of states for a crystal is evaluated by using dispersion relations to
calculate a large number of normal mode frequencies, with propagation vectors selected from
within the first Brillouin zone. The range of possible frequencies is divided into intervals of
width Aw and a histogram is plotted showing the number of modes obtained in each interval.
If Aw is small and the number of frequencies obtained is large, the histogram approximates
g(w)dw [119, 94].

Phonon Heat Capacity

In quantum theory, the energy levels of an N-ion harmonic crystal are described as 3N in-
dependent oscillators whose frequencies are those of the 3N classical normal modes. Each

particular normal mode with angular frequency ws(k) can have only the discrete set of values

(i + )oK (6.6)
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where ny, is the excitation number of the normal mode and only can have integer values
(0,1,2,...). An energy state of the entire crystal is specified by giving the excitation numbers
for each of the 3N normal modes. Then, the total energy is the sum of energies of the individual

normal modes:

E=) (m+ %)hws(k). (6.7)
ks

Because an arbitrary number of phonons may occupy a given k state, one can interpret
the excitations of a lattice as particles obeying Bose-Einstein statistics. Then, the probability

of exciting a phonon with frequency w, in a particular state k varies as

1

Ne = —5F—
S eﬂh"-)S—]_ ’

(6.8)

where § = 1/(kpT) and kp is Boltzmann’s constant [79].
Substituting equation (6.8) in equation (6.7), the vibrational total energy for a solid at

temperature T and angular frequency ws for a mode s has the form

hws
E:Zﬁ—kézm)s . (6.9)

This is equivalent to the internal energy; the harmonic model does not allow for thermal ex-
pansion, so therefore this function is for constant volume. The constant volume heat capacity,

Cy, is equal to

Co — (g_f;)V (6.10)

and thus,

eﬁhw

1y (6.11)

Cv = kp(Bhws)?

Equation (6.11) for the heat capacity can, in principle, be evaluated directly using a long
list of frequency values taken from the dispersion curves calculated over a fine grid of wave

vectors within the first Brillouin zone. Since the energy of a vibration depends only on its
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frequency, there is some advantage in developing a formalism that relies only in the frequency
distribution. Since all solids have a large number of normal modes, closely spaced in frequency,
the frequency spectrum can be treated as continuous and the sum in equation (6.9) can be
replaced by an integral. As mentioned above, a quantity called the density of states, g(w),
is defined such that the number of modes with angular frequencies between w and w + dw is
equal to g(w)dw. Thus the harmonic phonon energy of the crystal can be written in the new

form:

h 1
E:/ﬁg(w)dw+§/hwg(w)dw , (6.12)

where each integral is done over the entire frequency spectrum. This equation is valid for
both crystalline and amorphous solids. Therefore, from equation (6.10), the heat capacity at

constant volume can be written as

Cy = 3Nkp / (Bhw)?
0

eﬂﬁw

Wmax

if the normalization [ g(w)dw = 1 is used, where N is the number of atoms per unit cell
0

and wpqy is the largest phonon frequency [120, 121, 122, 123]. Equations (6.12) and (6.13)

are exact. In order to solve them numerically, we must know the function g(w).

6.2 Specific Heat of Tantalum

The phonon density of states of tantalum computed from dispersion relations calculated from
first principles (see figure 4.7) and normalized as w?ax g(w)d(w) = 1 is shown in figure 6.1.
A width of 0.15 THz was used as frequency intervalos w and w + dw. The phonon density of
states describes better the phonon frequency distribution if one samples the reciprocal space
with several wave vectors and for different directions. Due to limitations in computer time,
only phonon calculations of a few wave vectors at high symmetry directions were performed.
As a consequence of this simplification, the number of modes at zero frequency influences
negatively the expected w? behavior of the DOS curve at low frequencies. This influence is
corrected by not considering the number of modes at zero frequency in the density of states.

The DOS curve shown in figure 6.1 reproduces the main features of the frequency distri-

bution function calculated by Woods [45] (see figure 6.2), from a seventh-neighbor general
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model fitted to phonon frequencies obtained by inelastic neutron scattering.

The specific heat capacity at constant volume C,, of Ta calculated from computed DOS is
shown in figure 6.3. Line represents calculated values, circles show experimental data by White
et al. [55] at low-temperatures and squares show experimental data at high-temperatures by
Milogevié et al. [124].

At temperatures lower than 25 K (low-temperatures), the calculated specific heat capacity
agrees within ~ 1 J K= mol~! with the experimental values of White et al.. However, the
specific heat approaches the classical value of 3N Kp at temperatures higher than 400 K,
which in the case of tantalum corresponds to 25 J K= mol~!. Milogevié¢ and coworkers [124]

explain that according to the Dulong-Petit law, the specific heat of tantalum should enter
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Figure 6.1: Phonon density of states of tantalum obtained from calculated data and normalized

as wTaxg(w)d(w) =1.
0

Figura 6.1: Densidad de estados de fonones del tantalio obtenida mediante los cdlculos y
Wmax

normalizada tal que [ g(w)d(w) = 1.
0



6.2. SPECIFIC HEAT OF TANTALUM 100

a region of saturation above 230 K. At elevated temperatures, however, the experimental
results for tantalum exceeded such a prediction. These higher than predicted values have
been attributed to electronic contributions to the specific heat, thermal formation of lattice

imperfections at high temperatures and other possible causes.

g(v) (Arbritrary units)

1 2 3 4 5
% (1012 cps)

Figure 6.2: Frequency distribution of tantalum calculated by Woods [45] from a seventh-
neighbor general force model.

Figura 6.2: Distribucion de frecuencias del tantalio calculada por Woods [45] utilizando un
modelo de fuerza general al séptimo vecino.
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Figure 6.3: Specific heat of tantalum computed from phonon DOS. The line represents cal-
culated values, circles indicate low-temperature experimental data by White et al.[55] and
squares indicate high-temperature experimental data by Milosevié¢ et al. [124].

Figura 6.3: Calor especifico del tantalio calculado de la densidad de estados de fonones. La
linea representa los valores calculados, los circulos indican los valores experimentales a bajas
temperaturas obtenidos por White et al. [55] y los cuadrados indican los valores experimentales
a altas temperaturas obtenidos por Milosevié et al. [124).



6.3. SPECIFIC HEAT OF DIAMOND 102
6.3 Specific Heat of Diamond

The phonon density of states of diamond was computed from the dispersion relations calcu-
lated with the ABINIT code shown in figure 4.14 using a frequency width of 0.15 THz. The

Wmax
obtained DOS curve normalized as [ g(w)d(w) = 1 is shown in figure 6.4. Also, in the same
0

way as done with tantalum, the number of modes at zero frequency was not considered in
order to keep the w? behavior. Figure 6.5 shows the phonon density of states determined by
Xie and coworkers [56] from ab initio pseudopotential calculations in a study about thermo-
dynamic properties of diamond at high pressures. A comparison of the DOS by Xie with that
calculated here shows a noticeable influence of the finite sampling in the DOS curve caused

by the poor frequency data. However, main peaks in the DOS curve are well reproduced.
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Figure 6.4: Phonon density of states of diamond obtained from calculation and normalized as

Wmax

| glw)d(w) =1.
0

Figura 6.4: Densidad de estados de fonones del diamante obtenida del cdlculo y normalizada

tal que Taxg(w)d(w) =1.
0
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The specific heat at constant volume (C,) of diamond, shown in figure 6.4 has been
calculated from the density of states in a range of temperature from 0 to 1100 K. These
theoretical calculations are based on the harmonic approximation and at 0 K. Specific heat
measurements are performed at zero pressure and are called C),. In order to compare with
experimental data, calculated C, must be converted to C), because the harmonic model does
not predict the existence of thermal expansion. This conversion can be possible using the

relation between C, and C), expressed as

C, = C, + VTBd?, (6.14)

where V is the molar volume, T is temperature, « is the thermal expansion coefficient and B
is the bulk modulus or the inverse of compressibility. For the (), calculation, values of molar
volume of v=3.415 cm®/mol and bulk modulus of B=442 GPa, published by Victor [58], and
thermal expansion coefficient values reported by Slack & Bartram [125] were used.

For diamond, C,, and C, show differences within 1-2%. Hence, the calculated C, and C,
curves overlapped. In diamond, the higher frequency is so high that at low temperatures the
specific heat becomes very small. At temperatures of 100 K and lower, calculated values of C,,
agree within 1.5 J K~ mol~! with experimental values by DeSorbo [57]. A better agreement
may be obtained with a finer sampling of the Brillouin zone in the calculation of phonon

dispersion relations, which would improve the influence of acoustical phonons.

Density of states

0 10 20 30 40

Frequency v (THz)

Figure 6.5: Phonon density of states obtained by Xie et al. [56] from ab initio calculations.

Figura 6.5: Densidad de estados de fonones obtenida por Xie et al. [56] mediante cdlculos ab
mnitio.
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Figure 6.6: Specific heat of diamond. The line represents calculated values of C, and C),. Cir-
cles (Cp) and triangles (C,) indicate experimental data by Victor [58] and diamonds represent
experimental data of C), at low-temperatures by DeSorbo [57].

Figura 6.6: Calor especifico del diamante. La linea representa los valores calculados de Cy, y
Cp. Los circulos (Cp) y los tridngulos (Cy) indican los valores experimentales obtenidos por

Victor [58] y los diamantes muestran los valores experimentales de Cp a bajas temperaturas
obtenidos por DeSorbo [57].

At high temperatures (T > 700 K), calculated C, agree within 1 J K=! mol™! with the
experimental data of C, and C}, published by Victor. Figure 6.7 shows this experimental
data in comparison with calculated curves at high temperatures. From this figure it can be
observed, by comparing experimental C), with calculated Cp, the influence of anharmonicity
of about 0.75 J K~! mol™! at 1100 K. In addition, the calculated C, (dashed line) becomes
larger with respect to calculated C,, (solid line) after 500 K, showing a maximum difference

of ~ 0.04 J K~ mol~! at 1100 K.
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Figure 6.7: Specific heat of diamond at high temperatures. Lines represent calculated values
of Cy (solid) and C), (dashed). Circles (C,) and triangles (C,) indicate experimental data by
Victor [58].

Figura 6.7: Calor especifico del diamante a altas temperaturas. La linea representa los valores
calculados de C, (sdlida) y Cp (punteada). Los circulos (Cp) y tridngulos (Cy) indican los
valores experimentales obtenidos por Victor [58].
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6.4 Specific Heat of TaC

The specific heat for tantalum carbide (TaC) was determined both theoretically and experi-

mentally. Descriptions of these procedures are given in this section.

6.4.1 TaC Specific Heat from Experiment

The specific heat as function of temperature was measured for a TaC single crystal disc,
cut from a single crystal rod, purchased from Applied Physics Technologies Inc., using a
differential scanning calorimeter (DSC) type Netzsch DSC F1 Phoenix 204. The specific heat
was determined in a temperature range of 150 to 500 K.

A general brief description of the DSC technique is the following. Differential scanning
calorimetry is a technique for measuring the energy necessary to establish a nearly zero tem-
perature difference between a substance and an inert reference material that can be air. The
calorimeter contains a furnace in which usually two identical crucibles, one for the sample and
one as reference, are subjected to identical temperature regimes in an environment heated or
cooled at a controlled rate.

Because sample and reference have different thermal characteristics, one of them will need
more heat to reach the same temperature. Particularly, if the reference crucible is empty, the
sample will take more heat. By measuring how much more heat the sample needs to be at the
same temperature as the reference, the DSC determines the difference in heat as function of
the increasing temperature, this is, the heat absorbed by the sample in a certain temperature
range. On the other hand, as mentioned above, the specific heat is the heat necessary to
increase the temperature in a certain amount of mass. Consequently, the specific heat can be
determined from a DSC measurement.

For the heat capacity measurement for TaC, the first step consisted of performing a calibra-
tion by using two identical Ti crucibles with both lids empty, sample and reference. This was
done under the required conditions for the TaC measurement. This specific heat determina-
tion on the crucibles has the purpose of determining their contribution in later measurements,
allowing us to subtract their signal from the data measured for TaC. In subsequent measure-
ments, is essential to keep the crucibles in the place they where during calibration. Any
change of place will be reflected on the new data acquired.

Afterwards, the relation of specific heat as function of temperature for a sapphire standard

was measured in order to calibrate the DSC with a well known material. The crucible taken
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as reference was empty and both crucibles kept their lids. The signal obtained before for the
empty crucibles is subtracted from the sapphire signal.

Finally, a measurement of the heat for a TaC single crystal of 289.15 mg at zero pressure
with the reference crucible empty was made. The temperature range was from 150 to 500
K, increasing the temperature at a rate of 5 K/min. The TaC data were corrected with the
information obtained before for the crucibles and the sapphire sample. The resulting curve is

shown and discussed in the next section.

6.4.2 TaC Specific Heat from Calculation

The phonon density of states g(w) of TaC was determined as a frequency histogram, using
a frequency width of 0.3 THz, from the phonon dispersion relations of TaC (see figure 5.14)
obtained with DFT-GGA calculations performed with the ABINIT code. The phonon DOS
was normalized so that wTaX g(w)dw = 1 and is shown in figure 6.8.

0
The molar specific heat at constant volume (C,) of TaC calculated from equation (6.13)

using the phonon density of states obtained above is shown in figure 6.9, along with the
experimental data determined using a differential scanning calorimeter (DSC). Equation (6.13)
was used considering one TaC primitive cell with two atoms, so that N=2. In figure 6.9, the
line represents calculated C, and circles experimental values determined here. Diamonds show
experimental data of Cp, by Kelley [59].

Calculated values of C, agree within 3 J K=! mol~! with values of C, by Kelley, and
within 2.4 J K~! mol™! in comparison with the experimental values determined here. It is
noticeable in figure 6.9 that the calculated C, shows values larger than the experimental ones.
A reason for this may be the non-stoichiometry of TaC samples used for the measurements. In
these calculations we considered a perfect crystal (no defects) with stoichiometry Ta;C;. In
practice, conventional methods applied for the synthesis of tantalum carbide produce mainly
non-stoichiometric samples. Usually, impurities as carbon or metallic tantalum are contained

in samples, influencing the results of measurements.

6.5 Specific Heat for Ta,C

Figure 6.10 presents the phonon density of states of TasC computed from calculated disper-

sion curves using DFT-LDA (figure 5.16). A frequency width of 0.5 THz were used in this
Wmax
calculation. The phonon DOS was normalized so that [ g(w)dw = 1.
0
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The calculated specific heat of TayC is shown in figure 6.11. The curve reaches the pre-
dicted classical value of 74.7 J K=! mol~! after a temperature of 800 K. As no experimental
data is available for the specific heat of TasC, this theoretical result can be taken as a predic-

tion for future measurements.
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Figure 6.8: Phonon density of states of TaC obtained from calculation and normalized as

Wmax

| glw)d(w) =1.
0

Figura 6.8: Densidad de estados de fonones del TaC obtenida mediante el cdlculo y normal-
Wmax

izada tal que [ g(w)d(w) = 1.
0
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Figure 6.9: Experimental and calculated specific heat of TaC. Circles indicate experimental

data determined here and the line represents calculated values. Diamonds show experimental
values by Kelley [59].

Figura 6.9: Valores experimentales y calculados del calor especifico del TaC. Los circulos
indican los valores experimentales obtenidos aqui y la linea representa los valores calculados.
Los diamantes muestran los valores experimentales obtenidos por Kelley [59].
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Figure 6.10: Phonon density of states of Ta;C obtained from calculation and normalized as
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Figura 6.10: Densidad de estados de fonones del Tas C' obtenida mediante el cdlculo y nor-
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malizada tal que [ g(w)d(w) = 1.
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Figure 6.11: Calculated specific heat of TayC.

Figura 6.11: Curva teorica del calor especifico del TagC.



Chapter 7

CONCLUSIONS

This thesis has described the application of density functional theory to predict macroscopic
mechanical properties of binary tantalum carbides and nitrides. These calculations have shown
good agreement with published experimental data and provide reliable values for properties

not measured yet.

Mechanical properties

The structural properties and the pressure-volume relation (except for TaoC and e-TaN) have
been calculated for tantalum, diamond, TaC, TasC, §-TaN and e-TaN, with the ABINIT code
using DFT and norm-conserving pseudopotentials with a plane-wave basis set. The LDA
approach was used for all the compounds, and the GGA approach was used only for TaC.
In addition, the lattice parameter, elastic stiffness coefficients, bulk and Young moduli,
and Poisson ratio for TaC, TasC, 0-TaN and e-TaN have been obtained from DFT-GGA calcu-
lations using pseudopotentials in conjunction with a plane-wave basis set. These calculations
were performed with the CASTEP code. Results have been compared to earlier published
values, when available, and a preferred set of values has been obtained for each compound.
The elastic stiffness coefficients c1; and cqq were determined experimentally for a TaC
single crystal sample using a plane-wave ultrasound method. These values agree better than

8% with values obtained from the calculation.

Lattice dynamics

Dispersion relations have been determined from first principles calculations for tantalum, dia-
mond, TaC and TasC at high symmetry directions. For tantalum, diamond and TaC, phonon
frequencies are within a few percent with respect to experimental data reported. The main
dispersion relations features were well reproduced. In the case of TaC, a phonon transversal
optical branch, which have not been measured yet but predicted by other theoretical models

was obtained in the [zz0] direction.
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For TasC no published data about dispersion relations was available at the time of writing
this thesis. Thus, calculated dispersion curves of TasC can be considered as a prediction for

experimental studies.

Heat capacity

Phonon density of states and specific heat capacities were computed from phonon dispersion
relations of tantalum, diamond TaC and TagC. For tantalum, the calculated specific heat
curve agrees within ~ 1 J K~! mol™! with experimental values at temperatures lower than
25 K. However, at high temperatures the calculated curve behaves as predicted classically.

The agreement of the calculated specific curve of diamond in comparison with experimental
published data are within 1.5 J K~ mol~! at temperatures of 100 K and lower, and within
1 J K= mol™! for 700 K and higher.

The specific heat of a TaC single crystal was determined experimentally for temperatures
from 150 to 600 K. The calculated specific heat agrees within 2.4 J K~! mol~! with those
experimental data determined here, and within 3 J K=! mol~! with respect to published
experimental data.

For TasC there is not experimental data available. Thus, the theoretical heat capacity

obtained from this study can be taken as a prediction in future measurements.
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Appendix A

TRANSFORMATION OF THE COORDINATES OF WAVE
VECTORS ¢ OF THE CONVENTIONAL CELL TO
COORDINATES OF THE PRIMITIVE CELL

In the ABINIT program the coordinates of wave vectors q are used as coordinates in the
primitive cell in calculations of phonons. However, the description of crystalline structures are
made using coordinates in the conventional cell. Thus, the wave vectors must be transformed
to the primitive cell coordinates. To do this, the primitive vectors of the crystalline structure

forming a matrix are used as a transformation operator.
Body-centered cubic

In the case of tantalum, which shows a body-centered cubic structure, the transformations
for the three general directions [zzx],[xz0] and [z00], using Eq. (A.1) as the transformation

operator, are the following.

-1 11
2 2 2
1 -1 1
3 2 2 (A.1)
11 1
2 2 2
For a general wave vector q with direction [zzz],
-1 11 o
2 2 2 2
1 -1 1 _| =
5 2 2 =1 3 (A.2)
11 -1 x
2 2 2 x 2
For a general wave vector q with direction [zz0],
-1 1 1
2 7 2 x 0
1 -1 1 _
3 3 2 z |=10 (A.3)
11 -1
3 3 3 0 x
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And finally, a general wave vector q with direction [200] will be as

—1 1 1 —x
2 2 2 z 2
1 -1 1 _ z
3 3 2 0 [=1 3 (A.4)
1 1 —1 x
2 3 3 0 3

Face-centered cubic

For face-centered cubic structures such as TaC and diamond, a similar procedure as above is

applied using the primitive vectors forming the following matrix,

N= = O
N O N
O NI NI

—~

>

(@)

SN—

For a general wave vector q with direction [zzz],

0 % % T
0 4 x | = (A.6)
% % 0 T T

For a general wave vector q with direction [zz0],

11

0 3 3 x 3

Lo |le]=]s a7
11

For a general wave vector q with direction [200],

0 3 3 x 0

3 0 3 0 |=1¢% (A.8)
1 1

3 3 0 0 3

Hexagonal structure

For hexagonal structure phonon calculations, such as TasC, there is no q wave vector trans-

formation and the directions and paths desired for calculation are used directly.



Appendix B

RELATION BETWEEN COMPLIANCE s;; AND
STIFFNESS ¢;; COEFFICIENTS

The explicit general equations for the compliance coefficients s;; in terms of the stiffness
coefficients ¢;; are derived here for the cubic system, from the stiffness coefficients expressions
shown in Eq. (B.1), (B.2) and (B.3) [86],

811 + S12

11 = , B.1
T (511 — s12)(s11 + 2512) (B-1)
—812
clo = . B.2
2 (s11 — s12)(s11 + 2512) (B2)
1
Cyy = —. (B.3)
S44
From Eq. (B.1),
S11 + 8
(s11 — s12)(s11 + 2812) = SASELEY (B.4)
c11
Substituting Eq. (B.4) in Eq. (B.2),
—c11
C12 = . (B.5)
iT; +1
Obtaining s12 from Eq. (B.5),
—S511€12
S19 = B.6
12 c11 + c12 (B6)

Substituting Eq. (B.6) in Eq. (B.2),
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511C12
1y = — (B.7)
(CH + 612)5%1(1 + 011(12612 )(1 o C11j-1§12)

We obtained s1; from Eq. (B.7),

C11 + c12

S11 = . B.8
1 (c11 — c12)(e11 + 2¢12) (BE)

And replacing Eq. (B.8) in Eq. (B.6) we get si2,

—C12
S19 = . B.9
2 (c11 — c12)(c11 + 2¢12) (B-9)
Finally,

1

S44 — —. (B.lO)



Appendix C
CRYSTALLOGRAPHIC DATA

The crystallographic data used in calculations, such as lattice parameters and atomic po-
sitions, was taken from the International Centre of Diffraction Data (ICDD) and Inorganic
Crystal Structure Database (ICSD). In this appendix, the crystallographic data for tantalum,

diamond and the binary tantalum compounds are summarized.

Ta

04-0788 o Wavelength= 1.54056 *

Ta 20 Int  h k 1

Tantalum 38.472 100 1.1 0
55.549 21 2 0 0
69.581 3B 2 1 1
82.461 13 2 2 0

KA N 5 o 94.936 19 3 1 0

Rad.: CuKal A 1.5405 Filter: Ni Beta d-sp: 107.640 v 2 2 2

Cut off: Int.: Diffract 1/lcor.: 4.44 121.349 29 3 2 1

Ref: Swanson, Tatge. Natl. Bur. Stand. (U.S.), Circ. 539, 1. 29 A

(1953)

Sys.: Cubic S.G.: Im3m (229)

a: 3.3058 b: c: A C:

@l B: 1 72 mp:

Ref: Ibid.

Dx: 16.634 Dm: SS/FOM: F g = 109(.0092 . 8)

Color: Gray

Pattern taken at 26 C. Sample procured from Johnson Matthey
Company, Ltd.. London, England, UK. CAS #: 7440-25-7. The
material contained dissolved gases which caused broadening of
diffraction peaks, and TaH, which contributed extra reflections.
After annealing at 1500 C in vacuum for 30 minutes in a tantalum
boat, the sample gave very sharp reflections including only traces
of the hydride. Spectroscopic analysis shows faint traces of Nb, Al,
Si, Fe, Mn. Color from Merck Index, 8th Ed., p. 1012. W type. PSC:
cI2. Mwt: 180.95. Volume[CD]: 36.13.

L’l‘i’_,m;;,ll . 2003 JCPDS-International Centre for Diffraction Data. All rights reserved
PCPDFWIN v. 2.4
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*data for ICSD #76152
Coll Code 76152

Rec Date 2000/12/16
Chem Name Tantalum
Structured Ta

Sum Tal

ANX N

D(calc) 16.63

Title Standard X-ray diffraction powder patterns I

Author(s) Swanson, H.E.;Tatge, E.
Reference National Bureau of Standards (U.S.), Circular
(1953), 359, 1-95
Unit Cell 3.3058 3.3058 3.3058 90. 90. 90.
Vol 36.13
Z 2
Space Group I 'm -3 m
SG Number 229
Cryst Sys cubic
Pearson cI2
Wyckoff a
Red Cell I 2.862 2.862 2.862 109.471 109.471 109.471 18.063
Trans Red 0.500 0.500 -0.500 / -0.500 0.500 0.500 / 0.500 -0.500 0.500
Comments The structure has been assigned a PDF number: 4-788
Temperature in Kelvin: 298
No R value given in the paper.
At least one temperature factor missing in the paper.
Atom # O0X SITE X y z SOF H
Ta 1 +0 2a 0 0 0 1. 0
*end for ICSD #76152



Diamond

79-1467 B Wavelength= 1.54056

c 20 Int h k 1

Carbon 43.933 999* 1 1|
75.30 266 2 2

O -

Diamond 3C
Rad.: CuKal &: 1.54060  Filter: " d-sp: Calculated

Cut off: 17.7 Int.: Calculated I/lcor.: 1.10
Ref: Calculated from ICSD using POWD-12++. (1997)
Ref: Ownby, P.D., Yang. X.. Liu. J., J. Am. Ceram. Soc.. 75.
1876 (1992)

Sys.: Cubic S.G.: Fd3m (227)

a: 3.5667 b: c: A: C:
a: B: v 78 mp:
Ref: Ibid.

Dx: 3.517 Dm:

Peak height intensity. C type. PSC: cF8. See PDF 6-675 and
PDF 75-0220. No R value given. At least one TF missing. Mwt:
12.01. Volume[CD]: 45.37.

Tcopk - 2003 JCPDS—International Centre for Diffraction Data. All rights reserved
PCPDFWIN v. 24

COL ICSD Collection Code 28863

DATE Recorded Jan 1, 1980; updated Jun 26, 1998

NAME Carbon

MINR Diamond - from Belgian Congo, gray boart

FORM C
=C

TITL Precision Determination of Lattice Parameter, Coefficient o
Thermal Expansion and Atomic Weight of Carbon in Diamond

REF Journal of the American Chemical Society
JACSA 73 (1951) 5643-5646

AUT Straumanis M E, AkaEZ

CELL a=3.567(0) b=3.567(0) ¢=3.567(0) =90.0 =90.0 =90.0
V=45.4 Z=8

SGR Fd-3m$ (227) - cubic

CLAS m-3m (Hermann-Mauguin) - Oh (Schoenflies)

PRS <cF8

ANX N

PARM Atom__No 0OxStat Wyck ----- X-—-— —— Y--—-—— -— Z-—-—-
C 1 0.000 8a O. 0. 0.

WYCK a

REM TEM 293

REM M PDF 6-675
TEST No R value given in the paper. (Code 51)
TEST At least one temperature factor missing in the paper. (Code

£

53)
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TaC

_35-0801 Wavelength=_1.54056
TaC 2e Int h k 1
Tantalum Carbide 34855 100 1 1 1

40.460 70 2 00
58559 41 2 2 0
Tantalcarbide, syn 70.003 41 3 1 1
T - e - 73.609 14 2 2 2
Rad. 4 C 15 ¢ =
ad.: CuKal  i: 1.540598 Filter: Graph Mono d-—-sp: Diff. 87.501 6 4.0 0
Cut off: Int.: Diffract I/lcor.: 97.842 10 3 3 1
. t. B (Us. 2 101.311 12 4 2 0
Ref: Na ur. Stand. (U.S.) Monogr. 25, 21, 124 (1984) 115.777 3 4 2 2
127.916 5 5 1 1
Sys.: Cubic S.G.: Fm3m (225)
a: 4.4547(2) b: (o A: (e
o B: ¥: 7 4 mp:
Ref: Ibid.
Dx: 14.498 Dm: SS/FOM: F1g = 98(.0102 . 10)

Color: Dark brownish gray

Peak height intensity. The mean temperature of data collection
was 24.0 C. The sample was obtained from Aesar Division of
Johnson Matthey, Inc., Seabrook. New Hampshire, USA. CAS #:
12070-06-3. o(I ohs)= +0.01. C1 Na type. Halite Group, carbide
Subgroup. Silver used as an internal stand. PSC: ¢F8. To replace
19-1292. Mwl: 192.96. Volume[CD]: 88.40.

|
MIET555. . 2003 JCPDS—International Centre for Diffraction Data. All rights reserved
PCPDFWIN v. 24

COL ICSD Collection Code 38239

DATE Recorded Jan 1, 1980; updated Jun 13, 1985

NAME Tantalum carbide (1/1)

FORM Ta C
= C Ta

TITL Die Kristallstruktur von Tantalkarbid

REF Metallwirtschaft, Metallwissenschaft, Metalltechnik
METWA 12 (1933) 298

AUT Schwarz M von, SummaO

CELL a=4.446(1) b=4.446 c=4.446 =90.0 =90.0 =90.0
V=87.9 Z=4

SGR Fm-3m (225) - cubic

CLAS m-3m (Hermann-Mauguin) - Oh (Schoenflies)

PRS <cF8

ANX NO
PARM Atom__No OxStat Wyck ----- - - D Z
Ta 1 4.000 4a 0. 0. 0.
¢ 1 -4.000 4b 1/2 1/2 1/2
WYCK b a

REM XDP (X-ray diffraction from a powder)
TEST No R value given in the paper. (Code 51)

TEST At least one temperature factor missing in the paper.

(Code 53)
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Ta2 C

32-1280 Wavelength= 1.54056
Ta2C 20 Imt h k 1
Tantalum Carbide 33.292 19 1 0 0
36.296 17 0 0 2
38.066 100 1 0 1
50.077 25 1 0 2
Rad.: Az Filter: d-sp: 223;}; ;% } [1) g
Cut off: Int.: Diffract. 1/lcor.: 69.877 6 2 0 0
Ref: Korolev, M. et al.. Russ. J. Inorg. Chem. (Engl. Transl.). 7i7i4 45 112
20. 159 (1975) it s 6 0 4
T "‘ 81.419 10 2 0 2
Sys.: Hexagonal S.G.: P3m1 (164) 86.711 10 1 0 4
a: 3.1046 b c: 4.9444 A coisoe gods 23 2003
a B: 1 %1 mp: 101.513 45 2 1 1
Ref: Ibid. 105.811 3% 1 1 4
110.234 16 2 1 2
112.409 21 1 0 56
Dx: 15.044 Dm: SS/FOM: Fgy - 7(0.118 . 35) s 20 s oG
126.027 0 2 1 3
Cell parameters generated by least squares refinement. Schonberg, 11'31338513 42 g 8 g
Acta Chem. Scand.. 8 620 (1954) found parameters to vary 1:‘)0.8;16 65 2 0 5
between a=3.094. ¢=4.918. C=1.590 and a=3.111, c¢=4.948, C=1.590, 156‘476 32 3 0 3
while Mirnova, S.. Orment, Dokl. Akad. Nauk SSSR. 96 577 (1954) 157774 48 2 1 4
found them to increase from a=3.101, ¢=4.937, C=1.592 ( Ta C0.38 166.20 85 2 2 0

) to a=3.104, ¢=4.941, C=1.592 ( Ta C0.59 ). Reference reports:
a=3.1028, ¢=4.9374. Cd 12 type. PSC: hP3. To replace 18-1296.
Mwt: 373.91. Volume[CD]: 41.27.

I.ill‘,}ﬁ;‘ . 2003 JCPDS-International Centre for Diffraction Data. All rights reserved
PCI

PDFWIN v. 24

COL ICSD Collection Code 409555
DATE Recorded Sep 5, 2002;
NAME Tantalum carbide (2/1)
FORM Ta2 C
= Cl Ta2

TITL Refinement of the crystal structure of ditantalum monocarbide
REF zeitschrift fuer kristallographie - New Crystal Structures

(2001), 216, 329-330
AUT Lissner, F.; Schleid, T.

CELL a=3.1059(5) b=3.1059(5) c=4.9464(9) =90.0 =90.0 =120.0

V=41.32 Z=1
SGR P -3m1

(164) - trigonal/rhombohedral
CLAS -3m1 (Hermann-Mauguin) - Oh (Schoenflies)

PRS hP3

ANX NO

PARM Atom__No OxStat Wyck ----- - - D Z-———- -S0F-
¢ 1 -4.000 la 0. 0. 0. 1.0
Ta 1 2.000 2d 1/3 2/3 0.25201(8) 1.0

WYCK d a

REM XDP (X-ray diffraction from a powder)

TEST No R value given in the paper. (Code 51)

TEST At least one temperature factor missing in the paper.

(Code 53)

133



0-TaN
49- 1283 L - _____Wavelength= 1.54056
TaN 20 Int h k 1
Tantalum Nitride 35830 100 1 1 1
41605 68 2 0 0
60.257 43 2 2 0
72123 45 3 1 1
Rad: CuKa  a: 15418  Filter: Mono d-sp: Diff. ;g:i’;’s 13 f (2) g
Cut off: Int.: Diffract. 1/lcor.: 101377 14 3 3
Ref: Mashimo, T et al.. J. Mater. Sci.. 28, 3439 (1993) 105070 25 4 2 0
Sys.: Cubic S.G.: Fm3m (225)
a: 4.3399(2) b e A c:
L B: ¥ Z: [4] mp:
Ref: Ibid.
Dx: 15.842 Dm: SS/FOM: F g = 90(.0111 , 8)
Tantalum powder was nitrided at high temperature, then powdered.
sintered and enclosed in an iron capsule. The sample was
shock-loaded using a tungsten flal-flyer plate. Composition
estimated from Ta N0.96 Lo Ta N0.99. Cell parameter generated by
leasl squares refinement. Reference reports: a=4.33635(16). Cl Na
type. Silicon. PSC: cF8. To replace 32-1283. Mwt: 194.95,
Volume([CD]: 81.74.
o2 - 2003 JCPDS-International Centre for Diffraction Data. All rights reserved
PCPDFWIN v. 2.4
COL ICSD Collection Code 76457
DATE Recorded Dec 16, 2000
NAME Tantalum Nitride - Hp, Epsilon
FORM Ta N
N1 Tal
TITL Ta N, eine neue Hochdruckform von Tantalnitrid
REF Monatshefte fuer Chemie (-108,1977)
(1972), 103, 794-798
Journal of Solid State Chemistry
(1977), 20, 205-207
AUT Brauer, GP.;Mohr, E.;Neuhaus, A.;Skogan, A.
CELL a=5.186(1) b=5.186 c=2.913 =90.0 =90.0 =120.0
V=67.85 Z=3
SGR P 6/mmm (191) - hexagonal
CLAS m-3m (Hermann-Mauguin) - Oh (Schoenflies)
PRS hP6
ANX AX
PARM Atom__No 0OxStat Wyck ----- X-=——= == Y--——= - A -S0F-
Ta 1 +3.000 3f 1/2 0. 0.
N 1 -3.000 la O. 0. 0.
N 1 -3.000 2d 0.3333 0.6667 0.5
WYCK f d a
REM XDP (X-ray diffraction from a powder)
TEST No R value given in the paper. (Code 51)
TEST At least one temperature factor missing in the paper. (Code 53)
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e-TalN
391485 __Wavelength= 1.54056
TaN 20 Int h k 1
Tantalum Nitride 30.705 4 0 0 1
34.522 100 11 0
36.772 B 1 0 1
) 46.877 12 111
Rad: CuKal 4: 1.540598 Filter: Graph Mono  d—sp: Dif. oiooe & 2 0 1
Cut off: 5.0 Int.: Diffract. 1/lcor.. 63:345 23 2 1 1
Ref: Wong-Ng. W.. McMurdie, H., Paretzkin, B.. Hubbard, C.. 63989 5 0 0 2
Dragoo. A.. NBS (USA). ICDD Grant—in_Aid, (1987) ooy & =28 L
- - — 74.800 13 1 1 2
Sys.: Hexagonal S.G.: P6/mmm (191) 76.270 <t 3 1 0
a: 5.1918(3)  b: ¢ 29081(2) A coseor o0 L E o2l
a: B 1 7.3 mp: 94.551 3 4 0 1
Ref: Wong—Ng, W et al., Powder Diffraction, 3, 120 (1988) 1?)5}135% Z Z ? g
104.805 5 3 2 1
Dx: 14.306 Pm: SS/FOM: Foy = 60(.0116 . 39) looail 3003
Color: Black {??;g; ? ,i (1) ?
Peak height intensily. The mean temperature of data collection 116.028 1 113
was 23.7 C. The sample was obtained from Johnson Matthey, 119‘835 = 2 3
Incorporated, Seabrook, New Hampshire, USA. CAS #: 12033-62-4. The 125794 g 3 g 0
sample contained a small amount of Ta5 N4. The structure of TaN 127.374 2 5 0 1
was studied by Brauer and Zapp (1). Co Sn type. Silicon. 132,374 3 g 13

fluorophlogopite used as an internal stands. PSC: hP6. To replace
9-257, Brauer and Zapp (1). Mwt: 194.95. Volume[CD]: 67.89.

»k . 2003 JCPDS-International Centre for Diffraction Data. All rights reserved

PCPDFWIN v. 24

COL ICSD Collection Code 76456
DATE Recorded Dec 16, 2000

NAME Tantalum Nitride - Ht, Delta
FORM Ta N

TITL Das kubische Tantalmononitrid (B1-Typ) und seine Mischbarkeit mit den

isotypen Uebergangsmetallnitriden und -carbiden

REF Monatshefte fuer Chemie (-108,1977)
(1975), 106, 1137-1147
Fizika Metallov i Metallovedenie
(1975), 40, 177-179

Acta Crystallographica A (24,1968-38,1982)

(1975), 31, 99-99

AUT Gatterer, J.;Dufek, G.;Ettmayer, P.;Kieffer, R.
CELL a=4.331 b=4.331 c=4.331 =90.0 =90.0 =90.0

V= 81.24 Z=4

SGR Fm-3m (225) - cubic

CLAS 23 (Hermann-Mauguin) - T  (Schoenflies)

PRS CcF12

ANX AX

PARM Atom__No OxStat Wyck ----- X-=m== == Y- - Z-——-= -S0F-
Ta 1 3.000 4b 1/2 1/2 1/2
N 1 -3.000 4a 0. 0.

WYCK b a

REM XDP (X-ray diffraction from a powder)

TEST No R value given in the paper. (Code 51)

TEST At least one temperature factor missing in the paper.

(Code 53)
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Appendix D
ABINIT FILES

As examples, some input files for the ABINIT code are shown. These calculations are about
the ABINIT geometry optimization of the phases § and e of TaN, and the calculation of
phonons at the I' point and one specific wave vector for TaC and TasC.

o-TalN

B e
# TaN-d (cubic) : optimization of cell parameter,

# ngkpt 8x8x8, ecut 60.0 Ha, nband 12, nshift 4,

# acell 8.1867 value obtained from Geo. opt. by Abinit

B s e s s s s s s s s

ndtset 20
acell: 7.81 7.81 7.81 acell+ 0.03 0.03 0.03

###HH##H#E Specific to ground state calculation

kptopt 1 # Automatic generation of k points, taking
# into account the symmetry
tolvrs 1.04-16 # SCF stopping criterion
iscf 5 # Self-consistent calculation, using algorithm 5

Lizsiossionsinnsinnsinssiinsinsi i s sl s s s s s s s s S s s
#Common input variables

####### Definition of the unit cell

0.0 0.5 0.5 # this matrix converts the atoms positions
0.5 0.0 0.5 # from the crystalline system to the lattice
0.5 0.5 0.0 # system.

#Definition of the atom types

ntype 2 two type of atoms

zatnum 73 7 The keyword "zatnum" refers to the atomic number of the
possible type(s) of atom. The pseudopotential(s)

mentioned in the "files" file must correspond

to the type(s) of atom. Here, type 1 is Ta and type 2 is N.

H H H

#Definition of the atoms

natom 2 There are two atom
type 1 2 The type 1 is (Ta), and type 2 (N)
xred This keyword indicate that the location of the atoms

will follow, one triplet of number for each atom
Triplet giving the REDUCED coordinate of atom 1. (Ta)
Triplet giving the REDUCED coordinate of atom 2. (N)

H H HHHH
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#Gives the number of band, explicitely (do not take the default)

nband 12 # number of bands (Ta has 13 -e, and N has 5-e, and there are 1 atom
# of each one, so we need a minimun of more of 8 bands)
occopt 3 # d-TaN is metallic

tsmear 0.01

#Definition of the planewave basis set

ecut 60.0 # Maximal kinetic energy cut-off, in Hartree
ngkpt 8 8 8
nshift 4
shiftk 0.5 0.5 0.5
0.5 0.0 0.0
0.0 0.5 0.0
0.0 0.0 0.5

#Definition of the SCF procedure
nstep 50 # Maximal number of SCF cycles
diemac 1.0d+6 # Although this is not mandatory, it is worth to
# precondition the SCF cycle. The model dielectric
prtwf O # No will print the wave functions files.
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e-TalN

Lizsiossinsinnsinns s i s s s s s s s i s S s s s s s s s s
# TaN-e: Geometry optimization by ABINIT.

# acell a=b= 9.8034, c=5.5066 Bohr
# ecut Ha, ngkpt x x , nband 40, nshift 1.
# Hexagonal P6/mm (191).

HEBHHHHHHHHEEEEEEEEEE R R R R R R

####H#####H Automatic geometry optimization

optcell 1
ionmov 3
ntime 50

dilatmx 1.05
ecutsm 0.5

#i#HHH##HA#E Specific to ground state calculation

kptopt 1 # Automatic generation of k points, taking
# into account the symmetry
tolvrs 1.0d-16 # SCF stopping criterion
iscf 5 # Self-consistent calculation, using algorithm 5

Lizsiossionsinnsinnsinssinns s i s s i sl s s s s s s s S s s s
#Common input variables

#-—————— Definition of the unit cell -—-------
acell 2%x9.8034 5.5066 #

angdeg 90 90 120 # definition of hexagonal lattice
#-——m - Definition of the atom types ---—-----
ntypat 2 # Two type of atoms.
zatnum 73 7 # The keyword "zatnum" refers to the atomic number of the
# possible type(s) of atom. The pseudopotential(s)
# mentioned in the "files" file must correspond
# to the type(s) of atom. Here, type 1 is the tantalum and 2 is N.
#—————- Definition of the atoms --————---
natom 6 # There are 6 atoms.
typat 111222 # The type 1 is Ta, and type 2 is N.
xred # This keyword indicate the location of the atoms
0.5 0.0 0.0 # Ta atom
0.0 0.5 0.0 # Ta atom
0.5 0.5 0.0 # Ta atom
0.0 0.0 0.0 # N atom
1/3 2/3 0.5 # N atom
2/3 1/3 0.5 # N atom
nband 40 # number of bands (Ta has 13 -e, and N has 5-e, and there are 4 atoms.
# of each one, so we need minimun 34 bands)
occopt 3 # TaN-e is a metal.
tsmear 0.01
#—————— Exchange-correlation functional---——-—---
ixc 1 # LDA HGH.
#——————- Definition of the planewave basis set ---—-——------—-

ecut 60.0 # Maximal kinetic energy cut-off, in Hartree.
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#-————— Definition of the k-point grid set ------
ngkpt 4 4 8 # This is a grid based on the primitive vectors
# of the reciprocal space
# repeated one time, with differents shifts.
nshift 1 # nshift and shift values recommended in the ABINIT list of variables
shiftk 0.0 0.0 0.5

#o——— Definition of the SCF procedure --------

nstep 100 # Maximal number of SCF cycles.

diemac 1.0d+6 # Although this variable is not mandatory, it is worth to
# precondition the SCF cycle.

# - Use of memory ----- - -

mkmem O

mkgmem O

mkimem O
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TaC

HEBHHHHHRHEEEEE R R R R RS
# TaC : computation of the dynamical matrix at gamma q=(0 O 0)
HARHHHHHHHHHHHEEEEE R R

#Response Function calculation for the gamma point------------

rfphon 1 # Activate the calculation of the atomic dispacement perturbations
rfatpol 1 2 # All the atoms will be displaced
rfdir 111 # Need to consider the perturbation in the z-direction only
nqpt 1
qgpt 0.0 0.0 0.0
irdwfk 1 # Uses as input wfs the output wfs of the dataset 1
kptopt 2 # Automatic generation of k points.
iscf 5 # Self-consistent calculation, using algorithm 5.

tolvrs 1.0d4-8

B g R S
#Common input variables

#-—mm—- Definition of the unit cell
acell 3%8.5566 # Value obtained from geo. opt. by abinit.
rprim 0.0 0.5 0.5 # This matrix converts the atoms positions
0.5 0.0 0.5 # from the crystalline system to the lattice
0.5 0.5 0.0 # system.
#-————- Definition of the atom types
ntypat 2 # Two type of atoms.
znucl 73 6 # The keyword "zatnum" refers to the atomic number of the
# possible type(s) of atom. The pseudopotential(s)
# mentioned in the "files" file must correspond
# to the type(s) of atom. Here, type 1 is Ta and type 2 is C.
#-—————- Definition of the atoms
natom 2 # There are 2 atoms.
typat 1 2 # The type 1 is Ta, and type 2 C.
xred # This keyword indicate that the location of the atoms
0.0 0.0 0.0 # will follow, one triplet of number for each atom.
0.5 0.5 0.5 # Triplet giving the REDUCED coordinate of atom 1.
# Triplet giving the REDUCED coordinate of atom 2.

#Gives the number of band, explicitely (do not take the default)

nband 20 # Number of bands (Ta has 13 -e, and C has 4-e, and there are 2 atoms
# of each one, so we need a minimun of 9 bands).

occopt 3 # TaC is a metal.

tsmear 0.01

#-—mm - Exchange-correlation functional--------

ixc 11 # GGA, Perdew-Burke-Ernzerhof GGA functional.

#—————— Definition of the planewave basis set

ecut 50.0 # Maximal kinetic energy cut-off, in Hartree.

#-—mm - Definition of the k-point grid set ---—-



ngkpt 8 8 8 # This is a grid based on the primitive vectors
# of the reciprocal space (that form a FCC laticce!),
# repeated one time, with differents shifts.

nshift 4
shiftk 0.5 0.5 0.5

0.5 0.0 0.0

0.0 0.5 0.0

0.0 0.0 0.5
H#-—m Definition of the SCF procedure --------
nstep 100 # Maximal number of SCF cycles.
diemac 1.0d+6 # Although this is not mandatory, it is worth to

# precondition the SCF cycle.

# - Use of memory ----- -—= -
mkmem O
mkgmem O
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# TaC : computation of the dynamical matrix at gq=[xxx]=(0.5 0.5 0.5)
HEBHHHHRREEEEE R R

ndtset 3
#___ —_ —_ —_ —_ —_——
#Specific to ground state calculation----- DATASET 1--——----——————————-

kptoptl 1 # Automatic generation of k points, taking

# into account the symmetry.
iscfi 5 # Self-consistent calculation, using algorithm 5.

tolvrsl 1.0d4-18 # SCF stopping criterion.

prtdenl 1 # Will be needed for dataset 2.
#___ —_ —_ —_ —_——
#Response Function calculation for -------- DATASET 2 --—-——--—-————————-

#Non-self consistent ground-state calculation, with g=(0.5 0.5 0.5)
ngpt2 1
gqpt2 0.5 0.5 0.5 #

getwfk2 1 # Uses as input wfs the output wfs of the dataset 1.
getden2 1 # Uses as input density the output density of the dataset 1.
kptopt2 3 # Automatic generation of k points,
# no use of symetries to decrease
# the size of the k-point set.
iscf2 -3 # Non-self-consistent calculation.

tolwfr2 1.0d-16

#Response Function calculation for -------- DATASET 3------———----—--—-
rfphon3 1 # Activate the calculation of the atomic dispacement perturbations.
rfatpold 1 3 # All the atoms will be displaced.
rfdir3 111 # Need to consider the perturbation in the x-direction only.
nqpt3 1
qpt3 0.5 0.5 0.5 #
getwfk3 1 # Uses as input wfs the output wfs of the dataset 1.
getwfq3d 2 # Uses as input ddk wfs the output of the dataset 2.
kptopt3 3 # Automatic generation of k points,
# no use of symetries to decrease
# the size of the k-point set.
iscf3 5 # Self-consistent calculation, using algorithm 5.

tolvrs3 1.0d4-8

B S S S S s S S S S S S S S S S S e
#Common input variables

#-———— Definition of the unit cell

acell 3%8.5566 # Value obtained from geo. opt. by abinit.

rprim 0.0 0.5 0.5 # This matrix converts the atoms positions
0.5 0.0 0.5 # from the crystalline system to the lattice
0.5 0.5 0.0 # system.

#-————- Definition of the atom types
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ntypat 2
znucl 73 6

Two type of atoms.

The keyword "zatnum" refers to the atomic number of the
possible type(s) of atom. The pseudopotential(s)

mentioned in the "files" file must correspond

to the type(s) of atom. Here, type 1 is Ta and type 2 is C.

H H HHH

#-——m——— Definition of the atoms

There are 2 atoms.

The type 1 is Ta, and type 2 C.

This keyword indicate that the location of the atoms
will follow, one triplet of number for each atom.
Triplet giving the REDUCED coordinate of atom 1.
Triplet giving the REDUCED coordinate of atom 2.

x4
H
[0]
[N
W OHH B

#Gives the number of band, explicitely (do not take the default)

nband 20 # Number of bands (Ta has 13 -e, and C has 4-e, and there are 2 atoms
# of each one, so we need a minimun of 9 bands).

occopt 3 # TaC is a metal.

tsmear 0.01

#-—mm - Exchange-correlation functional--------

ixc 11 # GGA, Perdew-Burke-Ernzerhof GGA functiomnal.

#-————— Definition of the planewave basis set

ecut 50.0 # Maximal kinetic energy cut-off, in Hartree.

#-————— Definition of the k-point grid set ----

ngkpt 8 8 8 # This is a grid based on the primitive vectors

# of the reciprocal space (that form a FCC laticce!),
# repeated one time, with differents shifts.

nshift 4
shiftk 0.5 0.5 0.5

0.5 0.0 0.0

0.0 0.5 0.0

0.0 0.0 0.5
#—————— Definition of the SCF procedure --------
nstep 100 # Maximal number of SCF cycles.
diemac 1.0d+6 # Although this is not mandatory, it is worth to

# precondition the SCF cycle.

# - Use of memory -----—------———-----—————-
mkmem O
mkgmem O
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1?a2(3

HEBHHHHHRHEEEEE R R R R

# Ta2C(trigona\rhombohedral): computation of the dynamical matrix at gamma g=(0 O 0)
HARHHHHHHHHHHHEEEEE R R

ndtset 2

#Response Function calculation for the gamma point------------

rfphon 1 # Activate the calculation of the atomic dispacement perturbations
rfatpol 12 # All the atoms will be displaced
rfdir 111 # Need to consider the perturbation in the z-direction only
nqgpt 1
gqgpt 0.0 0.0 0.0
irdwfk 1 # Uses as input wfs the output wfs of the dataset 1
kptopt 2 # Automatic generation of k points.
iscf b # Self-consistent calculation, using algorithm 5.

tolvrs 1.0d4-8

I
#Common input variables

acell 2x%5.84 9.145

spgroup 164 # Space group.

spgaxor 1 # Orientation of the unit cell axis: 1 hexagonal axes.

brvltt 1 # Type of Bravais lattice, primitive with no associative translation.
angdeg 90 90 120 # Definition of hexagonal lattice. "Replaces rprim".

#—————— Definition of the atom types —-———-———----

ntypat 2 # Two type of atoms.

znucl 73 6 # The keyword "zatnum" refers to the atomic number of the

# possible type(s) of atom. The pseudopotential(s)
# mentioned in the "files" file must correspond
# to the type(s) of atom. Here, type 1 is Ta and type 2 is C.

#———m— Definition of the atoms -—=

natom 3 # There are 3 atoms.

typat 1 1 2 # The type 1 is C, and type 2 Ta.

xred # This keyword indicate that the location of the atoms:

0.33333333333333333333 0.66666666666666666667 0.2520 # Ta
0.66666666666666666667 0.33333333333333333333 -0.2520 # Ta

0.0 0.0 0.0 # C
#Gives the number of band, explicitely (do not take the default)
nband 20 # number of bands (Ta has 13 -e, and C has 4-e, and there are 2 Ta atoms.
# and 1 C atoms, so we need a minimun of 15 bands).
occopt 3 # Ta2C is a metal.
tsmear 0.01
#-————— Exchange-correlation functional--------

ixc 1 # LDA.



145

#———————- Definition of the planewave basis set

ecut 50.0 # Maximal kinetic energy cut-off, in Hartree.
#—————— Definition of the planewave basis set --————————————————-
ngkpt 8 8 4 # This is a grid based on the primitive vectors

# of the reciprocal space

# repeated one time, with differents shifts:
nshift 1 # nshift and shift values recommended in the ABINIT list of variables.
shiftk 0.0 0.0 0.5

#-————— Definition of the SCF procedure--------------——-----—————-
nstep 100 # Maximal number of SCF cycles.

diemac 1.0d+6 # For metals this should be large.

# - Use of memory ----- -—= -

mkmem O

mkgmem O

mkimem O
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# Ta2C(trigona\rhombohedral) :computation of the dynamical matrix at q=[00x]
# =(0 0 0.2)
HEHHHHHRHHEEEEE R R R R

ndtset 3
#___ —— o —_ —_——
#Specific to ground state calculation----- DATASET 1--——----——————————-

kptopt1l 1 # Automatic generation of k points, taking

# into account the symmetry.
iscfi 5 # Self-consistent calculation, using algorithm 5.

tolvrsl 1.0d4-18 # SCF stopping criterion.

prtdenl 1 # Will be needed for dataset 2.
#___ —_ —_ —_ —_——
#Response Function calculation for -------- DATASET 2 --—-—-—-——————————-

#Non-self consistent ground-state calculation, with g=(0 0 0.2)
ngpt2 1
gqpt2 0 0 0.2

getwfk?2 1 # Uses as input wfs the output wfs of the dataset 1.
getden2 1 # Uses as input density the output density of the dataset 1.
kptopt2 3 # Automatic generation of k points,
# no use of symetries to decrease
# the size of the k-point set.
iscf2 -3 # Non-self-consistent calculation.

tolwfr2 1.0d-16

#Response Function calculation for -------- DATASET 3------———--——-—-——-
rfphon3 1 # Activate the calculation of the atomic dispacement perturbations.
rfatpold 1 3 # All the atoms will be displaced.
rfdir3 111 # Need to consider the perturbation in the x-direction only.
nqgpt3 1
qpt3 0 0 0.2
getwfk3d 1 # Uses as input wfs the output wfs of the dataset 1.
getwfq3d 2 # Uses as input ddk wfs the output of the dataset 2.
kptopt3 3 # Automatic generation of k points,
# no use of symetries to decrease
# the size of the k-point set.
iscf3 3 # Self-consistent calculation, using algorithm 3.

tolvrs3 1.04-8
HHH

#Common input variables
#-—mmm - Definition of the unit cell------

acell 2%5.84 9.145
spgroup 164 # Space group.

spgaxor 1 # Orientation of the unit cell axis: 1 hexagonal axes.
brvltt 1 # Type of Bravais lattice, primitive with no associative translation.
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angdeg 90 90 120 # Definition of hexagonal lattice. "Replaces rprim".
#-—mm Definition of the atom types -——————----

ntypat 2 # Two type of atoms.

znucl 73 6 # The keyword "zatnum" refers to the atomic number of the

# possible type(s) of atom. The pseudopotential(s)
# mentioned in the "files" file must correspond
# to the type(s) of atom. Here, type 1 is Ta and type 2 is C.

#————————- Definition of the atoms-——--—---------------

natom 3 # There are 3 atoms.

typat 1 1 2 # The type 1 is C, and type 2 Ta.

xred # This keyword indicate that the location of the atoms:

0.33333333333333333333 0.66666666666666666667 0.2520 # Ta
0.66666666666666666667 0.33333333333333333333 -0.2520 # Ta

0.0 0.0 0.0 #C
#Gives the number of band, explicitely (do not take the default)
nband 20 # number of bands (Ta has 13 -e, and C has 4-e, and there are 2 Ta atoms.
# and 1 C atoms, so we need a minimun of 15 bands).
occopt 3 # Ta2C is a metal.
tsmear 0.01
#————— Exchange-correlation functional--------
ixc 1 # LDA.
#—————— Definition of the planewave basis set
ecut 50.0 # Maximal kinetic energy cut-off, in Hartree.
#-——————- Definition of the planewave basis set ----——————————————-
ngkpt 8 8 4 # This is a grid based on the primitive vectors

# of the reciprocal space

# repeated one time, with differents shifts:
nshift 1 # nshift and shift values recommended in the ABINIT list of variables.
shiftk 0.0 0.0 0.5

#—————— Definition of the SCF procedure- -
nstep 100 # Maximal number of SCF cycles.

diemac 1.0d+6 # For metals this should be large.

# - Use of memory -----—------————-—--——————-

mkmem O

mkgmem O

mkimem O



