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Existe un voraz interés en modelos precisos de transistores para el diseño de amplificadores 

de potencia de RF y microondas. Básicamente los modelos de transistores pueden ser 

divididos en modelos físicos y empíricos. Los modelos físicos son muy precisos, y como lo 

indica su nombre, están basados en las características físicas del dispositivo tales como 

longitud de compuerta, ancho del canal, campo eléctrico, carga y movilidad del electrón, 

etc. Por otro lado, los modelos empíricos están basados en mediciones, son más sencillos 

de  desarrollar y son computacionalmente eficientes.  

 El HEMT de AlGaN/GaN es un excelente candidato para ser usado como dispositivo 

activo en amplificadores de potencia (AP). Tiene una alta densidad de carga y alta 

velocidad de saturación, lo cual produce altos niveles de potencia de salida. Asimismo, 

tiene alta movilidad del electrón originando una baja resistividad de encendido, por 

consiguiente, se pueden obtener altos niveles de eficiencia de potencia agregada. Además, 

se pueden alcanzar altos voltajes de ruptura como resultado de su amplia banda prohibida, 

con una alta densidad de carga y un muy amplio rango de temperatura de operación. Todos 

estos factores indirectamente mejoran la linealidad del AlGaN/GaN. Sin embargo, la 

tecnología HEMT de AlGaN/GaN aún está bajo desarrollo, por lo tanto, se están 

investigando modelos confiables de pequeña y gran señal. 

 En años recientes, las redes neuronales artificiales (RNA) han probado ser una 

excelente herramienta en la mejora de la precisión de los modelos basados en mediciones 

debido a sus excelentes propiedades para la aproximación de funciones, teniendo estos 

modelos mejor desempeño que los basados en tablas los cuales usan funciones spline para 

interpolación de datos. Por consiguiente, existe una nueva tendencia por utilizar modelos 

no lineales de RNA basados en, ya sea mediciones lineales, o no lineales del transistor. Al 

usar una aproximación basada en redes neuronales la cual toma en cuenta la función 

original y sus derivadas en el proceso de entrenamiento, un modelo no lineal cuasi-estático 

del FET de GaN basado en mediciones I-V pulsadas y parámetros S pulsados es 

presentado. El modelo cuasi-estático basado en mediciones es implementado en ADS
TM

 de 

Agilent y consiste de tres redes neuronales utilizadas para representar las características de 

corriente y almacenamiento de carga del transistor. 

 

Palabras clave: Modelado no lineal, redes neuronales artificiales, AlGaN/GaN HEMT.  
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There is a keen interest in accurate transistor models for the design of RF and microwave 

power amplifiers, oscillators and mixers. Basically transistor models can be divided in 

physical and empirical models. Physical models are very accurate and, as it is stated in 

their name, are based on the physical characteristics of the device such as gate length, 

channel width, electric field, electron charge, electron mobility, etc. On the other hand 

empirical models are based on measurements of the device, simpler to develop and 

computationally efficient. 

 The AlGaN/GaN HEMT is an excellent candidate to be used as an active device for 

power amplifiers (PAs). It has high charge density and a high saturation velocity, which 

produces high output power levels. Besides, it has high electron mobility, originating a low 

turn on resistivity, and therefore, high power added efficiency levels can be reached. 

Furthermore, high breakdown voltage levels can be reached as a result of its prohibited 

band width, with a high charge density, and a very wide range of high temperature 

operation. All of these factors indirectly improve AlGaN/GaN linearity. However, 

AlGaN/GaN HEMT technology is still under development, and therefore, reliable small 

and large signal models are currently being investigated.   

 In recent years, artificial neural networks (ANNs) have proved to be an excellent aid in 

improving the accuracy of measurement based models due to their excellent function 

approximation properties, having these models better performance than table based models 

that use spline functions for interpolation. Hence, there is a newly born tendency for ANN 

nonlinear models based on either linear or nonlinear measurements of the transistor. By 

using a neural network approach that takes into account the original function and its 

derivatives in the training process, a nonlinear quasi-static model of a GaN FET based on 

measured pulsed I/V, pulsed S-parameters is introduced. The measurement based quasi-

static model is implemented in Agilent’s ADS
TM

 and consists of three different neural 

networks used to represent the current and charge storage characteristics of the transistor. 

 

Keywords: Nonlinear modeling, artificial neural networks, GaN HEMT.  
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Chapter 1 - Introduction 

 

 

 

Nowadays, the idea of being isolated without television, internet, cell phones, etc, 

can’t be conceived. This is the result of the huge peak the communication systems have had 

in the last few years. Besides the communication services boost the technological 

development, they also represent the economic development of a country. Hence, the 

demand of these services has increased in such an unimaginable way, giving rise to a 

vertiginous evolution of the communication systems, which every day are more 

sophisticated. 

Modern communication systems of third and fourth generation use different 

multiple access modulation diagrams such as: FDMA (Frequency Division Multiple 

Access), TDMA (Time Division Multiple Access), CDMA (Code Division Multiple 

Access). Thus, the power, linearity and efficiency of the radio frequency power amplifiers, 

located at the base stations, are essential characteristics required to ensure reliability and 

the quality of the services provided by modern communication systems. However, it is 

difficult to have all these characteristics satisfied at the same time. In this sense, LINC 

(Linear Amplification using Nonlinear Components) transmitters have been proposed, 

which utilize power amplifiers (nonlinear) and linearization circuits. LINC transmitters can 

obtain high efficiency and nice linearity. In these transmitters, the power amplifier operates 

at a saturation output power level and this level is adjusted by the operation voltage control 

of the active device (Stengel and Eisenstadt, 2000), (Woo Y. Y., 2003). 

In particular, wireless communication systems have considerably evolved, in part, 

due to the interest of designers of wireless communication systems to improve, protocols 

and communication channels, as well as, the devices that perform this task. The system that 

performs the communication function, in other words, the system that sends information 

from one point to another point using free space as media, is the transmitter/receptor. 
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The power amplifier (PA) is the most important element in transmitters. However, this 

element consumes a large quantity of energy. Because of this fact, it is desirable to obtain a 

PA which do not consumes a lot of energy; this is accomplished by improving its 

efficiency. One important reason to improve PA’s efficiency is to lower energy losses by 

dissipation, provoking at the same time, space reduction and an improvement of the 

capacity of the dissipation system, and as a consequence, a cost reduction of the PA. 

Another important point is that wireless communication systems need to administrate the 

battery energy in order to extend the working time of the device. Nevertheless, by 

improving the PA efficiency, linearity is diminished as well as the gain. This is why PA 

design is a big challenge and, hence, it is needed to define the PA requirements in order to 

establish a commitment between linearity, efficiency and output power.         

In order to face this challenge, it is necessary to research and study high efficiency 

amplifiers, which are classified as class F and class E amplifiers. Because of their 

operation, these types of amplifiers present efficiencies of 100% and they would seem ideal 

to be used in applications where efficiency is the parameter to be optimized. However, 

these amplifiers have the enormous disadvantage of being nonlinear, and in order to 

improve their linearity, linearization methods are used like EER (Envelope and 

Restoration) or the LINC.  

On the other side, class E amplifiers have limitations to operate at high frequencies. 

Meanwhile, class F amplifiers can be designed to operate at higher frequencies, because 

basically, it is a saturated class B amplifier. A class F amplifier can reach a maximum level 

of efficiency of 100% theoretically. This amplifier was analyzed by Snider in 1967, who 

defined it as a class B amplifier with optimum efficiency where it is characterized by a 

square wave shape voltage signal, and by a sinusoidal half wave rectified from the drain 

current signal. The load network must present a short circuit at the output of the active 

device for even harmonics and an open circuit for odd harmonics, where the voltage wave 

is formed by odd harmonics only and the current wave is formed by even harmonics. Next, 

Raab in 1997 performs a complementary analysis and demonstrates that an efficiency of 

77% can be achieved by knowing the load impedances of the first three harmonics. 

Subsequently, Colantonio (2001) introduces the idea of the voltage or current wave forms 
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can be formed by even or odd harmonics, that is to say, even and odd harmonics are 

present on either wave form at the same time, therefore efficiency is improved. Based on 

Colantonio’s work, Raab (2001 carried out a complementary analysis finds the maximum 

efficiency (81%) and output power that can be obtained by a class F amplifier with the first 

three harmonics control.   

Today, there are several technologies competing in the high efficiency power 

amplifiers market (Class E and Class F) based on field effect transistors. These 

technologies are: 

• Silicon FET-LDMOS,  

• Gallium Nitride (GaN) FET, 

• Silicon Carbide (SiC) FET. 

 

AlGaN/GaN HEMT is an excellent candidate to be used as an active device for base 

station PAs. It has high charge density and a high saturation velocity, which produces high 

output power levels. It also has high electron mobility, originating a low turn on resistivity, 

and therefore, high efficiency levels can be reached. Besides, high breakdown voltage 

levels can be reached as a result of its prohibited band width, with a high charge density, 

and a very wide range of high temperature operation. All of these factors indirectly 

improve AlGaN/GaN linearity. In high efficiency power amplifiers, parasitic elements of 

the transistor have a negative impact on the efficiency due to their contribution in the 

determination of the load impedance (Loo-Yau, 2007).  

Development of high efficiency PAs goes with the development of accurate 

nonlinear models of the active device. In spite of this, an accurate enough model to predict 

the behavior of AlGaN/GaN transistors hasn’t been developed yet. It is a goal of this 

project to investigate the nonlinear model of AlGaN/GaN transistors, by means of its 

equivalent electrical circuit. To evaluate power amplifiers performance equivalent circuit 

type nonlinear models are used, as well as AM-AM, AM-PM and two tones measures. The 

equivalent electrical circuit can be divided in three parts; one is formed by parasitic or 

extrinsic elements, which are bias independent but dependent of the package. The second 

part is formed by intrinsic elements, which are dependent of the voltage applied to the 
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transistor terminals and the fabrication technology. Finally, the third part is formed by a 

I(V) nonlinear current source. At CICESE’s electronics and telecommunications 

department, original methods have been developed to extract parasitic elements of field 

effect transistors based on technologies such as GaAs and GaN. Besides, methods to 

improve nonlinear models based on GaAs have also been developed. Since 2007, we have 

started to study emergent technologies of power FETs based on Gallium Nitride and 

Silicon Carbide (Zárate-de Landa et al 2007), (Reynoso-Hernández 2008). On the other 

hand, the most popular method used to determine the intrinsic elements is the method 

developed by Berroth, and Bosh (1990). This method consists on finding analytical 

expressions, dependent on the admittance parameters of the intrinsic elements (Ri, Rgd, Rds, 

Cgs, Cgd,  , gm0)  of the equivalent electrical circuit model. To evaluate the GaN FET an 

appropriate topology of the electrical circuit is required, in order to obtain the best 

equivalent electrical circuit (linear or nonlinear). There are several topologies where the 

location of the parasitic capacitances is the main difference between them. These 

capacitances depend on the geometry and the package of the transistor. 

 In the process of modeling the transistor, first the parasitic elements are obtained. 

Then, after a de-embedding process to eliminate the parasitic elements, the intrinsic 

elements are extracted. A good extraction of the device extrinsic elements, along with an 

adequate topology, lead to real values of the intrinsic transistor, and hence, to reliable 

models. 

Nonlinear FET equivalent circuit models are used in computer-aided-design (CAD) 

simulators for evaluating the performance of mixers, oscillators, power amplifiers, etc. 

Nonlinear FET models consist of two parts: the first is formed with the static or pulsed I-V 

characteristics and the second part is formed with the reactive elements, gate-source 

capacitance Cgs(Vgs,Vds), gate-drain capacitance Cgd(Vgs,Vds), and drain-source capacitance 

Cds(Vgs,Vds). In the last 30 years, several models have been proposed with the main goal of 

describe the nonlinearities present in FET devices such as current dispersion due to 

superficial and buffer traps, temperature dependence, and intermodulation distortion 

(IMD). Basically, these models can be divided in two categories: physical and empirical. 

Physical models are based, as it is stated in their name, in the physical characteristics of the 
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device such as gate length, channel width, electric field, electron charge, electron mobility, 

etc (Delagebeaudeuf, 1982), (Statz, 1987), (Roblin, 1990). These models, besides 

describing the transistor operation in terms of device physics, have the property to get a 

very good agreement between simulated and measured data. However, sometimes it is 

difficult to have control on the dimensions and physical properties of the transistor, making 

this approach not suitable for circuit designers who have no control over the fabrication 

process. 

On the other hand, empirical models eventhough they have no meaning related with 

the physics of the device, are simple to implement, computationally efficient and based on 

measured data, being these characteristics very convenient for circuit designers in the 

industry. Empirical models can be developed using analytical equations that describe 

measured data, these models are also named “equation-based analytical models.” (Curtice 

et al, 1985), (Materka et al, 1985), (Angelov et al, 1992), (Cabral et al, 2004). Analytical 

models are less accurate than physics based models and are technology independent. Also, 

parameter extraction can be complex and the range of validity is limited. Another approach 

is analytical models based on the use of power, Volterra or Chebyshev series (Närhi T, 

1996), although the difficulty in these methodologies is increased, a better prediction of the 

transistor behavior can be obtained taking advantage of the nonlinearities and memory 

effects capture of these approximations. Table based models interpolate the extracted small 

signal parameters using techniques like B-splines. These models require large memory 

storage and computational time which is less practical (Root et al, 1991), (Kompa, 1994), 

(Schreurs, 1996).   

Recently, a new analytical model approach has emerged which takes advantage of 

artificial neural networks (ANN) (Shirakawa et al, 1998), (Zhang et al., 2000), (Xu et al, 

2003, 2006), (Cao et al, 2009). In this technology, the equivalent circuit model is 

considered a black box. Then, based on input/output characteristics (measured data) the 

neural network is trained, giving as a result, a “small brain” which learned to behave like a 

transistor. Once the ANN is trained, it will be capable of accurately simulate the output for 

any given input even if it wasn’t part of the training. Large signal models using this 

technology take advantage of the nonlinearities inherent in the ANN structure making them 



6 
 

an excellent tool in the design of nonlinear microwave circuits such as high power 

amplifiers, oscillators and mixers. These models can learn the behavior of the device which 

is an advantage over equation based models. However, the main drawback is the need of 

very good measurements for training (and so the method is sensitive to technological 

dispersion). This thesis is focused on the design of FET models using artificial neural 

networks. 

 

1.1 Transistor Modeling Process 

In this section the overall processes to follow for model development and provide 

some insight into the tasks required is presented. It is these tasks that are to be presented in 

detail in subsequent chapters. In general the process of developing and extracting a model 

is shown in Fig. 1.  

At the beginning of the modeling process it is expected that the application of the 

model and the ranges within which it is expected to operate are defined. For example, the 

requirements of model to be used in a high-power Doherty or Class F are very different 

from those for a low-power Class A design. Although it is our objective to generate a 

model with a wide range of applicability, the model must function in its intended 

application. From our experience, this step of defining the model is very time-consuming 

and is often overlooked. A clear and complete definition of the scope and deliverables of a 

project should be received before moving into the execution phase; this is fundamental to 

project management methodology. The time taken to investigate and document the model 

specifications is well invested, as it forces the modeling engineer and the customer to agree 

upon a set of objectives and validation criteria for the model. The type of model that is 

required is determined from these discussions. Without completing this task, which is 

simple in concept, but difficult to achieve in practice, there is a high probability that a 

model will not match the desired application or expectations of the customer. Once the 

model topology has been finalized, data need to be gathered either through measurement or 

simulation. Typically, the frequency range, impedance ranges, and power levels are used 

for the specification of nonlinear models. For linear devices the frequency range and 

parametric variations of the geometry are often specified. 
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Figure 1. Flow chart illustrating the distinct processes required to generate a model. 

 

1.2 Objective 

The main objective of this thesis is to develop a model for AlGaN/GaN FETs based 

on artificial neural networks which will be capable of accurately reproducing the I/V, Q/V 

characteristics not just of the fundamental, but also up to the third order harmonics. First a 

reliable extraction of the parasitic elements will be performed, then, based on the 

admittance parameters of the intrinsic transistor and pulsed I-V measurements a neural 

network model will be defined to predict the nonlinearities inherent to the device.  
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Therefore, it is expected that the model developed in this project can help the circuit 

designer to develop a high efficiency power amplifier.  

 

1.3 Methodology and Dissertation Organization 

Fig. 2 displays a block diagram describing the methodology followed through this 

research. Every point will be explained thoroughly in the following chapters contained in 

this thesis. 

This thesis is organized as follows: In Chapter II a description of the AlGaN/GaN 

HEMT technology and physical properties of the device will be presented. A detailed 

discussion of the model analysis, extraction and construction choices is presented. We shall 

shift gears in Chapter III where artificial neural networks are studied and a modification of 

the classical backpropagation algorithm is introduced. In Chapter IV the extraction process 

of the small-signal model is described. Original methods for the extraction of parasitic 

elements of transistors are introduced. Chapter V covers the development of a 

measurement based quasi-static model of the transistor. In Chapter VI the compact model 

is implemented in Agilent’s ADS® and validation results are presented. Finally, Chapter 

VII is used to present the conclusions and contributions of this investigation.     
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Figure 2. Investigation methodology block diagram. 
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Chapter 2 - AlGaN/GaN HEMT Technology 
  

 

 

2.1 Introduction 

The high electron mobility transistor (HEMT) is a heterostructure field effect 

transistor. The term “HEMT” is applied to the device because the structure takes 

advantages of superior transport properties of electrons in a potential well of highly doped 

semiconductor material.  

Doped AlGaAs

Undoped GaAs

GaAs Substrate

DrainGateSource

2DEG + + + + + + + +  
Ec

Ef

qφb

Gate 

Metal

Doped

AlGaAs
Undoped

GaAs

(a) (b)
 

Figure 3. (a) Simplified AlGaAs/GaAs HEMT structure, (b) corresponding band diagram. (Jarndal, 2006 p. 
10) 

  

 

As shown in Fig. 3a, a wide bandgap semiconductor material (doped AlGaAs) lies on a 

narrow band material (undoped GaAs). The band diagram of correlated structure is shown 

in Fig. 3b. A sharp dip in the conduction band edge occurs at the AlGaAs/GaAs interface. 

This results in higher carrier concentration in a narrow region quantum well in the source-

drain direction. The distribution of electron in the quantum well is essentially two-

dimensional due to the small thickness of the quantum well in comparison to the width and 

length of the channel. Therefore, the charge density is called a two dimensional electron 

gas (2DEG) and quantified in terms of sheet carrier density ns.  

AlGaN/GaN HEMT has been fabricated in a similar way using doped or undoped 

AlGaN layer as shown in Fig 4a. It has been observed that a 2DEG is formed in the 

AlGaN/GaN interface even when there is no intentional doping of AlGaN layer. It has also 
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been observed that when the AlGaN layer is intentionally doped, the charge density in the 

2DEG is not proportional to the amount of doping. 

In AlGaN/GaN HEMT, the formation mechanism of the 2DEG at the 

heterointerface is different with that in the AlGaAs/GaAs HEMT. Due to the presence of a 

strong polarization field across the AlGaN/GaN heterojunction, a 2DEG with the sheet 

carrier density up to 10
13

cm
-2

 can be achieved without any doping (Ambacher et al., 1999). 

Ibbetson et al (2000) found that surface states act as a source of electron in 2DEG. The 

built-in static electric field in the AlGaN layer induced by spontaneous and piezoelectric 

polarization greatly alters the band diagram and the electron distribution of thee 

AlGaN/GaN heterostructure. Thus, considerable number of electrons transfer from the 

surface states to the AlGaN/GaN heterointerface, leading to a 2DEG with high density. The 

band diagram of the structure shown in Fig. 4a is illustrated in Fig. 4b. 
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GaAs

(a) (b)

+++++++++++++++++++++++++++++++++++++++

Polarization 

Charge

 
Figure 4. (a) Simplified AlGaN/GaN HEMT structure, (b) corresponding band diagram. (Jarndal, 2006 p. 11) 

  

 

2.2 AlGaN/GaN HEMT Material 

GaN material possesses fundamental electronic properties that make it an ideal 

candidate for high power microwave devices (Eastman and Mishra, 2002). As a wide 

bandgap material (Eg = 3.4 eV), GaN has very high electric breakdown field (Ebr > 

2MV/cm). As a result, GaN based devices can be biased at very high drain voltage (Vbr > 

50 V). It can also be operated at higher channel temperature (> 300 
o
C). It also possesses 
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high saturation electron velocity (2x10
7
 cm/s), which contributes to higher current density 

while Imax ≈ qnsvs where q is the electron charge (1.6x10
-19

 Coulomb), ns is the carrier 

density, and vs is the electron saturation velocity. Furthermore, GaN induces high 

frequency operating while fT ≈ vs/Leff. 

AlGaN/GaN heterostructure comprises 1) high sheet carrier density (ns ≈ 1x10
13

 cm
-2

), 

which produces high Imax, and 2) high electron mobility (µ = 1200 – 1500 cm
2
/Vs), which 

is largely responsible for low on-resistance (low-knee voltage) since the channel resistance 

is related to 1/(qnsµE) at low electric field. Consequently, AlGaN/GaN HEMT can achieve 

very high breakdown voltage, very high current density and sustain very high channel 

operating temperature. Furthermore, high operating frequency (fT) and high drain power 

added efficiency (PAE) could be achieved. Fig.5 illustrates the relationship of the 

electronic characteristics mentioned and device properties, meanwhile, the material 

properties of GaN compared to the competing materials is presented in Table 1. It can be 

observed that GaN has greater advantage over conventional semiconductors. 
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Figure 5. Electronic properties of AlGaN/GaN HEMT structure. 
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Table 1. Advantages of GaN over other semiconductors (Eastman and Mishra, 2002, p. 31) 

Gallium Nitride Advantages Over 

Other Semiconductor Materials 

Most Common Semiconductor Silicon Gallium 

Arsenide 

(AlGaAs/ 

InGaAs) 

Indium 

Phosphide 

(InAlAs/ 

InGaAs) 

Silicon 

Carbide 

(SiC) 

Gallium 

Nitride  

(AlGaN/ GaN) Characteristic Units 

Band Gap eV 1.11 1.43 1.35 3.2 3.49 

Electron Mobility 

@ 300
o
K 

cm
2
/Vs 1500 8500 5400 700 1000 - 2000 

Peak Saturation 

Velocity 

X10
7
 cm/s 1.0 1.3 1.0 2.0 2.5 

Breakdown 

Voltage 

MV/cm 0.3 0.4 0.5 3.0 3.0 

Termal 

Conductivity 

W/cm*K 1.5 0.5 0.7 4.5 >1.5 

Relative Dielectric 

Constant 

εr 11.8 12.8 12.5 10.0 9.0 

 

 

2.3 AlGaN/GaN HEMT Material 

As mentioned in section II.1, AlGaN/GaN HEMT exhibits large polarization 

effects, which origins in the high polarity of the GaN material itself and the larger lattice 

constant difference between GaN and AlGaN. Nowadays, different researchers have shown 

that the formation of 2DEG in undoped and doped AlGaN/GaN structure relies on these 

effects. In this section the relation between polarization effects and the formation of the 

2DEG channel will be explained. 
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2.3.1 Polarization Effects in AlGaN/GaN HEMT 

Polarization effects in AlGaN/GaN HEMT include spontaneous and piezoelectric 

polarization. The spontaneous polarization refers to the built-in polarization field present in 

an unstrained crystal. This electric field exists because the crystal lacks inversion 

symmetry, and the bond between the two atoms is not purely covalent. This results in a 

displacement of the electron charge cloud towards one atom in the bond. In the direction 

along which the crystal lacks inversion symmetry, the asymmetric electron cloud results in 

a net of positive charge located at one face of the crystal and a negative charged net at the 

other face. The electric field and sheet charges present in a Ga-face crystal of GaN and 

AlGaN grown on c-plane is illustrated in Fig. 6. 

On the other hand, piezoelectric polarization is the presence of a polarization field 

resulting from the distortion of the crystal lattice. Due to the large difference in lattice 

constant between AlGaN and GaN materials, the AlGaN layer, which is grown on the GaN 

buffer layer is strained. Due to the large value of the piezoelectric coefficients of these 

materials, this strain results in a sheet charge at the two faces of AlGaN layer. The total 

polarization field in the AlGaN layer depends on the orientation of the GaN crystal. 

MOCVD (Metal Organic Chemical Vapour Deposition) produces GaN crystal orientation 

that makes the sheet charges caused by spontaneous and piezoelectric polarizations added 

constructively. Therefore, the polarization field in the AlGaN layer will be higher than that 

in the buffer layer. Due to this discontinuity of the polarization field, a very high positive 

charge will be presented at the AlGaN/GaN interface as illustrated in Fig. 6. 

As the thickness of the AlGaN layer increases during the growth process, the crystal 

energy will also increase. Beyond a certain thickness the internal electric field becomes 

high enough to ionize donor states at the surface and cause electrons to drift toward the 

AlGaN/GaN interface. As the electrons move from the surface to the interface, the 

magnitude of the electric field is reduced, thereby acting as a feedback mechanism to 

diminish the electron transfer process. Under equilibrium condition, a 2DEG charge at the 

interface will be generated due to the transferred electrons and a positive charge on the 

surface will be formed from ionized donors as illustrated in Fig. 6. 
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2.3.2 Trapping in GaN HEMTs 

Trapping is a major source of memory effects in some devices. Fig. 7 shows various 

trapping mechanisms potentially taking place in these devices. They include trapping at the 

AlGaN surface and trapping in the buffer, which affect, respectively, the source and drain 

resistance and the threshold voltage (Roblin 2011).  

 
Figure 7. AlGaN/GaN HEMT structure, showing surface and buffer trapps. (Roblin,2011 p. 112). 

 

 

   S G D 

2DEG 

Figure 6. AlGaN/GaN HEMT structure, showing polarization induced and 2DEG charges. 
(Jarndal, 2006, p. 15) 
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2.3.2.1 Surface States (Traps) 

The mechanism of formation of charged surface states and the importance of these 

states for generation of the 2DEG channel in AlGaN/GaN HEMT was investigated by 

Ibbetson et al (1979). For non-ideal surface with available donor-like states, the energy of 

these states will increase with increasing AlGaN thickness. At certain thickness the energy 

states reach the Fermi level and electrons are then able to transfer from occupied surface 

states to empty conduction band states at the interface, creating 2DEG and leaving behind 

positive surface sheet charge. For ideal surface with no surface states, the only available 

occupied states are in the valence band. Here, the 2DEG exists as long as the AlGaN layer 

is thick enough to allow the valence band to reach Fermi level at the surface. Electrons can 

then transfer from AlGaN valence band to the GaN conduction band, leaving behind 

surface holes. These accumulated holes produce a surface positive sheet charge. This 

means that in all cases, a positive sheet charge at the surface must exist in order for the 

2DEG to be present in the AlGaN/GaN interface. 

The surface states act as electron traps located in the access regions between the 

metal contacts. Proper surface passivation prevents the surface states from being 

neutralized by trapped electrons and therefore maintains the positive surface charge. If the 

passivation process is imperfect, then electrons, leaking from the gate metal under the 

influence of a large electric field present during high power operation, can get trapped 

(Vetury et al, 2001). The reduction in the surface charge due to the trapped electrons will 

produce a corresponding reduction in the 2DEG charge, and therefore reduce the channel 

current. The amount of trapped electrons and therefore the current reduction depends on the 

applied bias voltages and the extent to which the device is overdriven beyond the linear 

gain. The trapped electrons are modulated with the low frequency stimulating voltages and 

therefore can contribute to the 2DEG channel current. However, they cannot follow the 

high frequency stimulating voltages producing channel current reduction. This reduction in 

the current under RF operation is called current dispersion, or more precisely, current 

dispersion induced by surface traps. 
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2.3.2.2 Buffer Traps 

Buffer traps refer to the deep levels located in the buffer layer or in the interface 

between the buffer layer and the substrate. Under high electric field condition, due to high 

drain-source voltage, electrons moving in the 2DEG channel could get injected into buffer 

traps. Due to the longer trapping time constant (in the order of 0.1ms), the trapped electrons 

cannot follow the high frequency signal and hence, they are not available for conduction. 

The trapped electrons produce a negative charge, which depletes the 2DEG, and therefore 

reduce the channel current. This reduction in the current under RF operation is called 

current dispersion, or more precisely, current dispersion induced by buffer traps. 

Buffer traps are primarily related to the existing large number of threading 

dislocation in the GaN layer due to the large lattice mismatch between the GaN and the 

substrate. These threading dislocations manifest themselves as electron traps (Hansen et al, 

1998). Therefore, to reduce these generated traps, a relaxation layer is added between the 

GaN buffer and the substrate. Another source of traps is the buffer compensation process to 

obtain high insulating material. Availability of background electron concentration in the 

buffer material due to native shallow donors cannot be avoided. These donors are mostly 

compensated by adding deep acceptors. If the buffer is not completely compensated, then a 

leakage current through the buffer will be generated deteriorating the pinch-off 

characteristic of the device. In the case of over compensation, empty deep acceptors will be 

generated in the buffer material. These empty acceptors behave as electron traps. The kink 

effect in the DC characteristic, shown in Fig. 8 can be assumed as a signature of buffer 

trapping effect, which is attributed to hot electrons injected into the buffer traps under the 

influence of high drain voltage. These trapped electrons deplete the 2DEG and result in a 

reduction of the drain current for subsequent Vds traces (Jarndal 2006).  
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Figure 8. Kink effect in DC characteristics. 
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Chapter 3 - Compact Modeling Basics for FETs 
 

 

 

3.1 Introduction 

In Chapter I the importance of developing accurate transistor models, their 

applications in modern communication systems, different types of models and the 

modeling extraction process was discussed. With this background in place, we can now 

discuss in greater detail some of the modeling issues that need to be considered carefully in 

order to construct an accurate transistor model that can be used in the design of RF power 

amplifiers. Our aim is to build models for the transistors that can be used in circuit 

simulators for the design of power amplifiers and power amplifier integrated circuits. 

These models are known as compact models. To achieve this objective, the models must be 

able to reproduce with acceptable fidelity the measured electrical and thermal properties of 

the transistors, and to simulate them quickly, with robust convergence. Another common 

modeling objective is to be able to inform the physical device design: in other words 

indicate which of the material and structural properties of a given transistor affect its 

electrical performance. The accuracy with which any model can achieve this depends on 

the level of abstraction of the model in the first place, Fig. 9, describes a hierarchy of the 

modeling approach. 
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3.2 Physical Models 

The “physics of operation” of a given transistor are best described using a physical 

model simulation, in which the geometry, topography, and the material properties of the 

semiconductors, metals, and insulators that form the transistor are captured in the model 

description in the simulator. In physical modeling, the nonlinear partial differential 

equations (PDEs) that describe charge distribution, charge transport, current continuity, and 

so forth, in the transistor structure are solved in the simulator. As the transistor geometries 

become smaller, quantum-mechanical (QM) effects also need to be incorporated into this 

solution. In the simulation, the transistor geometry is discretized in two or three 

dimensions, and the solution of the PDEs and QM equations is performed for each cell or 

node in the structure. This requires complex solution techniques to be used, such as finite-

difference and finite-element methods. These numerical methods are also found in 

commercial software for physical transistor modeling, for example: ISE and Silvaco. This 

class of device modeling is also known as ‘TCAD’ – Technology CAD. 

Despite the many recent mathematical developments in the solution techniques for 

large systems of nonlinear PDEs, such as parallelization of the problem, using harmonic 

balance methods instead of traditional time stepping, or modern advanced matrix 

mathematics, and the advances in computer technology such as increases in processor 

speed and available memory, this is still a huge problem to solve. The solution of these 

nonlinear PDEs takes a long time, and the accuracy of the solution depends on how well 

the physical properties and dimensions of the device are estimated, on the approximations 

used in the fundamental semiconductor equations, and on the numerical techniques applied 

in the solution of the system of equations. This means that physical modeling is generally 

unsuitable for circuit design. However, these modeling techniques have been applied 

successfully to the technology development cycle for new generations of transistors. 

Physical model simulations can be used to generate DC I–V characteristics and bias-

dependent S-parameter data directly from the simulation. These data can then be used to 

assess how the physical and geometrical design of the transistor needs to be adjusted to 

improve the device RF performance. Even “computational loadpull” simulations can be 

performed using the physical device model loaded by a tunable impedance to assess the 
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large signal performance of the transistor design and technology, and to inform the device 

designers of how the nuances in the physical structure of the transistor can influence the RF 

behavior. Such TCAD simulations are performed at huge computational cost, though it 

could be argued that this is time better spent, in terms of economy and resources, than 

building up an array of process lot variations and measuring the electrical performance of 

each transistor. 

A further development of the physical modeling approach is known as global 

modeling. Here, the physical model simulation describing the semiconductor equations and 

device geometry is coupled with a thermal model describing the heat transfer in the 

transistor, and an electromagnetic simulation of the device geometry, metallizations, and 

substrate. This brings all of the physical principles of operation of the device together in 

one simulation. Such an approach can provide valuable feedback to the device design team, 

especially for the physically large structures typical of RF power transistors. For example, 

the thermal distribution in the transistor under RF drive can be understood and related to 

the metallization, feeding structures and manifolds, and device structural features such as 

source-to-drain spacing. Global modeling enables the complete design space of the 

transistor to be investigated to arrive at the optimal semiconductor and structural 

arrangement to meet a given design brief. 

 

3.3 Compact Models 

While physical modeling provides a viable route for detailed device design and 

technology development and optimization, it is generally impractical for circuit design. 

Aside from the computational overhead involved, it is usually expected that the transistor 

or integrated circuit (IC) process has been determined by the time circuit design begins, 

and therefore we can devise a more appropriate model that can be used in the circuit 

simulator for the design of the IC or discrete transistor product. Such models generally fall 

under the rubric compact. In fact, in many new device technology developments, compact 

models can be created from the physical model simulations, and hence the circuit or IC 

design can begin well before the process is finally frozen. The compact models can be 
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updated as the technology develops, so that the circuit design is always in step with the 

latest technology improvements, enabling a much reduced new product introduction cycle.  

 

3.3.1 Measurement-Based Equivalent Circuit Models 

Generally, compact models are “equivalent circuit” representations of the transistor. 

The electrical measurements that are performed during the characterization of the transistor 

can be mapped directly onto a network of circuit components to mimic this electrical 

behavior. The values of the equivalent circuit parameters are extracted directly from the 

DC I–V and S-parameter measurements (Dambrine et al 1988). For example, at a given DC 

bias point and RF frequency, we can measure the S-parameters, which can then be readily 

converted into generalized two-port Y-parameters using standard conversion relationships. 

After de-embedding the extrinsic components, this yields an equivalent circuit containing 

conductance and susceptance components that can be readily incorporated into the circuit 

simulator. An example is shown in Fig. 10, where the admittance elements in the gate-

source and gate-drain branches were transformed into series R–C networks. The values of 

the equivalent circuit components should, generally speaking, be independent of frequency. 

This approach works well for small-signal models; the extraction of the equivalent 

circuit parameter values can be carried out over a range of bias voltages (Vgs, Vds), and the 

values can be stored in a table indexed by the bias, using interpolation to find the required 

component values for the given bias voltages, to produce a bias-dependent linear transistor 

model (Wood and Root, 2000). The equivalent circuit parameter values can be fitted with 

parameterized functions of the bias voltages, and the model extraction consists of finding 

these function parameters for each of the circuit elements in the model. 

Large-signal models can also be implemented in the simulator using equivalent 

circuit components, but now the component parameter values are dependent on the large-

signal voltages. The example circuit topology shown in Fig. 11 is the Motorola electro-

thermal (MET) model (Curtice et al 1999). 
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Figure 10. Small-signal equivalent circuit model of the intrinsic transistor 

 
 
 

 
Figure 11. Large-signal equivalent circuit (compact) model from Curtice et al 1999. 

 



25 
 

For a compact model that can be used for small- and large-signal applications, the 

functional dependences of the equivalent circuit parameter values on the instantaneous 

terminal voltages are required. We cannot simply use the DC bias voltages as indices and 

expect the dynamic behavior of the transistor to be predicted correctly. The small-signal 

model is a representation of the first moment of the Taylor series expansion of the terminal 

admittances about the DC bias point, that is, the slopes defined by the infinitesimal voltage 

swings around the quiescent condition. In the large-signal model, we need to include the 

responses to large excursions of the terminal voltages. This can be done by integrating the 

voltage-dependent admittances over the voltage space, subject to some fundamental 

physical constraints.  

We can then apply mathematical function fitting techniques to these derived large-

signal equivalent circuit parameters, to obtain a nonlinear functional description for the 

large-signal model. An example of this mathematical function-fitting approach is the 

description of the FET Id–Vds characteristics using a hyperbolic tangent (tanh(x)) curve. 

The hyperbolic tangent itself has no physical meaning in the context of FET operation, but 

describes the basic shape of the curve from quasi-linear through saturation regions 

reasonably well. This function is used in several examples of FET compact models (Curtice 

et al, 1985, 1999), (Statz et al, 1987), (Parker and Skellern, 1997), and is generally 

modified with other parameters to describe the sharpness of the ‘knee’ region, output 

conductance, and so forth. Instead of fitting these derived parameters with some function 

approximation, we can simply store them in table form, indexed by the instantaneous 

terminal voltages (Vgs(t), Vds(t)) (Root and Meyer, 1991), to produce a “table model”. 

 

3.3.2 Physically-Based Equivalent Circuit Models 

The main alternative to the measurement-based approach to compact modeling, 

described above, is a physically-based approach in which the fundamental device physics is 

used as a basis for a set of “phenomenological” equations that describe the terminal 

behavior of the transistor in terms of macroscopic physical qualities or parameters, such as 

the thickness of the active semiconductor layer, gate length, active layer doping, electron 

mobility, gate oxide thickness, and so forth.  
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In physically-based compact models, significant simplifications are usually made to 

the real underlying physics of the FET device operation, in order to construct a model that 

can run quickly enough in the circuit simulator to be of use in circuit design. Classic 

examples of such an approach are found in Shockley’s original drain current model of the 

silicon JFET (Shockley, 1952), and in the extension of this for MESFETs by Pucel et al 

(1975), in which the electron velocity saturation is modeled by a two-zone velocity field 

relationship, shown in Fig.12; similar long-channel and velocity saturation models exist for 

MOSFETs (Ytterdahl et al 2003). In these models the transistor I–V characteristics are 

calculated using the phenomenological equations. Thus, the influence of the material and 

device parameters on the terminal I–V characteristics can, in principle, be determined. In a 

similar manner, the gate current and depletion capacitances associated with the Schottky 

gate contact in MESFETs and HEMTs are often modeled using simple one-dimensional 

expressions for the rectifying diode. This simple one-dimensional description of the charge 

storage as a two-terminal capacitance neglects charge conservation principles and results in 

an incorrect description of the bias-voltage dependence of the measured FET capacitances. 

 

 
Figure 12. Two-zone electron velocity vs electric field relationship used in physically-based models for 
short gate-length FETs. (Aaen Peter H., Plá Jaime A. and Wood John, 2007, p. 58) 
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In contrast, physically-based compact models for bipolar transistors are relatively 

straightforward: their basic physics of operation can be described by back-to-back diodes 

and controlled current sources found in Ebers–Moll and Gummel–Poon models. These 

models are implemented in simulators and can be used successfully in circuit design. 

Extensions of these basic models to accommodate second-order effects and transport 

effects in III–V semiconductor heterojunction bipolar transistors (HBT) have been made, 

resulting in the VBIC model for silicon-based transistors (McAndrew et al, 1996), and the 

AgilentHBT model for III–V HBTs (Iwamoto et al, 2003). 

For any given FET transistor device, we will need to perform measurements to 

determine the values of the parameters that are used in the equations describing the device 

physics. This process is known as parameter or model extraction. To extract the parameters 

for a physically-based compact model, we will generally measure the I–V and C–V or S-

parameters of the transistor, and fit the simplified equations by adjusting the parameters in 

these equations. As we try to improve the model by accounting for higher-order physical 

phenomena into the equations, we create more parameters that need to be extracted from 

the measurements. We therefore need to make more measurements to illuminate these 

higher-order effects. The higher-order parameters are usually determined after the first 

order model is created, often by using optimization methods. This can lead to a 

complicated measurement and extraction procedure, and result in a large number of 

parameters to describe fully the operation of the transistor. An example of this approach is 

the BSIM MOSFET model (Liu, 2001) with the ‘level 4’ model containing around four 

hundred extractable parameters to describe the detailed physics of short-gate MOSFET 

operation. Even the BJT/HBT physically-based compact models contain many parameters; 

the AgilentHBT model uses about one hundred extractable parameters. 

There are several potential problems with a model that comprises a large number of 

model parameters. The parameter extraction process generally takes a long time, and can 

be open to interpretation by the modeler. It may also be difficult to know which parameters 

are the most important and that should be determined accurately for a given device 

application. The presumed physical origins of the components of the MESFET equivalent 

circuit model of Fig 10. are illustrated in Fig. 13. The extrinsic or parasitic elements have 
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also been included. While this can be useful in relating circuit performance to device 

design, it should be remembered that these circuit elements are derived from two-port 

small-signal measurements, and not from a physically-based model. This can lead to some 

confusion between small-signal and large-signal model parameters. For instance, the 

elements Rgs and Rgd (often called Ri and Rj, respectively) are often described as providing 

a ‘charging path’ with resulting characteristic time constants for the capacitances Cgs and 

Cgd, whereas they are simply small-signal component values determined from a 

measurement. Further, there is the often irresistible temptation to ascribe poor circuit 

performance to specific physical properties, leading to ‘tweaking’ of individual equivalent 

circuit component values to demonstrate this behavior without paying any attention to how 

these element values depend on each other in the complete model. 

 
Figure 13. Physical origins of the components of the equivalent circuit model of a MESFET shown in Fig. 
10. (Aaen Peter H., Plá Jaime A. and Wood John, 2007, p. 60) 

 
 
 

3.3.3 Modeling Approach Implemented  

In this thesis we shall focus on creating a compact model of GaN HEMTs. These 

models will be designed to represent the quasi-static characteristics of the transistor, while 

being simple to develop and extract based on an artificial neural network approach. We 

adopt a two-port structure to describe the intrinsic part of the transistor under large-signal 
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conditions, as shown in Fig. 14. The model consists of controlled current and charge 

sources that are each dependent on the instantaneous voltages Vgs and Vds applied to the 

transistor (intrinsic) terminals. These current and charge source functions are determined 

from pulsed bias-dependent S-parameter measurements. The data is transformed, 

preserving the device dynamics, and is then fitted in the two-dimensional Vgs–Vds space 

using neural network functions. The model structure will preserve small-signal to large-

signal consistency.  

 
Figure 14. Two-port representation adopted for the large-signal FET model used in this thesis. 

 
 

3.4 Memory Effects 

The expression memory effects has become increasingly common currency in the 

discussion of the nonlinear behavior of RF power amplifiers. Indeed, it has become 

something of a catch-all phrase to describe any of the distortions arising from the 

nonlinearities inherent in the active device – the RF power transistor. In the context of 

nonlinear systems the term “memory” was proposed by Chua (1987), to describe the 

influence on the output of a system at a time t of the input signal(s) not only at time t, but 

also spanning a finite history of the input signal, to some time in the past, t–τ. This is 

known as a fading memory, as the influence of the input signals deep in the past fades to 

zero. Essentially, we describe memory effects as the dynamical behavior of the device or 

system, such dynamics usually being associated with either charge storage or hysteretic 

phenomena that occur over a wide range of timescales. By this we mean capacitive or 

inductive behavior with characteristic times that are generally either of the same timescale 
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as the signal frequency – short-term memory – or at much slower rates – long-term 

memory. From a modeling point of view, it is important to be able to identify the causes of 

memory effects in the RF power transistor, and then describe them in the model of the 

device. 

While talking about memory effects in RF power amplifiers, four major sources can 

be identified; these are shown in Fig. 15. The causes of memory fall into two main 

categories: those inherent to the transistor itself, and those associated with the external 

circuitry necessary for the transistor to function. Initially we may be tempted to ignore the 

external causes, those due to the bias and perhaps any matching circuitry inside the 

package as being the responsibility of the circuit designer. But in order to this, it would 

require ignoring how the transistor model works in the circuit, which is a major validation 

of the model itself. In particular, we would miss the interaction between the long-term 

memory effects and the short-term (RF) response, which can only occur through a correct 

description of the nonlinear behavior in our transistor model. Next, the major sources of 

memory effects in the nonlinear device or system will be outlined, and describe how we 

might accommodate them in the model of the RF power transistor. 

 
Figure 15. Origins of short-term and long-term memory effects in a transistor circuit. (Aaen Peter H., Plá 
Jaime A. and Wood John, 2007, p. 63) 
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3.4.1 Short-Term Memory Effects 

The high frequency dynamics of the transistor are determined by the reactances 

associated with the transistor. In the usual description of a transistor model, these 

reactances comprise the capacitances and inductances associated with the extrinsic or 

parasitic elements of the transistor model, and also the charge storage within the 

transistor’s active region, the intrinsic part of the model. The extrinsic components are 

usually considered to be linear elements, independent of bias, described simply by dv/dt 

and di/dt expressions for the capacitors and inductors, respectively. The intrinsic charge 

storage behavior is usually nonlinear, dependent upon the instantaneous voltage or current, 

and so the dynamic behavior will change with bias or drive signal. When linearized, these 

nonlinear charge storage components can be described by capacitances in the equivalent 

circuit representation. For small-signal characterization, the short-term memory effects are 

simply the frequency response of the transistor. We note that the frequency response is 

bias-dependent, which requires that the capacitances describing the linearized charge 

storage behavior in the transistor are also bias dependent: this is a bias-dependent linear 

transistor model. 

Under large-signal conditions, the voltage- or current-dependence of the charge 

storage functions becomes important. The changing dynamical behavior with signal drive 

is manifest in measured quantities such as AM-to-AM (gain compression) and AM-to-PM 

(phase transfer characteristic) of the transistor, and hence the amplifier or system as a 

whole. The phase transfer characteristic is usually defined as the change in phase of the S21 

of the transistor from its small-signal value as the signal drive is increased. The AM-to-PM 

effects are essentially the nonlinear behavior that is often referred to as short-term memory 

effects. The impact of AM-to-PM on the two-tone response of a transistor in a power 

amplifier circuit will result in extra components at the intermodulation frequencies that will 

add in a vector sense to the traditional AM-to-AM IM3 components, but with different 

phase. The phase of the AM-to-PM IM3 components is signal-dependent, generally 

resulting in an IM3 response that does not change uniformly with signal drive.  

At a system or power amplifier level of description, the matching networks are also 

a source of short-term memory effects. The matching networks are built from reactive 
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components – chip capacitors and inductors – or transmission lines. These all have obvious 

frequency dependence and hence contribute to the short-term dynamics. A less obvious 

effect is a result of the interaction between the transistor and the matching circuit. The 

output matching network in a power amplifier is generally designed to present the optimum 

load resistance to the transistor for maximum power output. This is generally not the 

conjugate of the small-signal output reflection coefficient, and so there will be reflections 

at the transistor-circuit interface under large signal conditions: the reflected signals will not 

see the small-signal reflection coefficient of the transistor, but the hot-S22 (Verspecht, 

2002), whose dynamical behavior is different from the small-signal case: short-term 

memory effects. The transistor model must be able to predict both, the small-signal and 

large-signal behaviors.   

 

3.4.2 Long-Term Memory Effects 

The long-term memory effects are due to dynamics that take place on a timescale 

that is much longer than the period of the RF signal. In RF power amplifiers, ‘long-term’ is 

generally considered to be on the order of the timescale of the signal envelope, or even 

longer. Within the transistor, there are considered to be two main causes of long-term 

memory: thermal effects, and charge trapping. Additionally, there is a circuit-dominated 

effect, related to the bandwidth of the DC bias network. 

 

3.4.2.1 Thermal Effects 

 Under conditions of constant drive, the transistor channel heats up uniformly in 

cross-section. When driven using a modulated information signal, we may find that at some 

instant the signal is high amplitude, and hence high energy: the transistor channel heats up 

a little in response to this signal. A short time later, the signal has returned to a low value, 

but the channel has not cooled down instantaneously: it is still at a slightly higher 

temperature. Because of this local change in temperature, some of the transistor’s 

parameters will be slightly different; for instance, the gain may be slightly reduced from 

the equilibrium-temperature value. This later signal will see the reduced gain, and therefore 

the output from the transistor will be slightly reduced from the expected equilibrium-gain 
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value. The transistor parameters are exhibiting a memory of the previous signal. The time 

constants associated with thermal transients are generally of the order of milliseconds to 

microseconds. This timescale is significantly longer than the RF period, and is closer to the 

timescale of the information signal in the envelope: RF information channel bandwidths are 

in the range 200 kHz to 20 MHz and beyond. These long-term memory effects can be seen 

in the AM-to-AM characteristics of RF power amplifiers, as a ‘spread’ around the mean 

gain compression curve (de Carvalho and Pedro, 1999). A memoryless device or circuit 

should have a response that is a single line. However, as shown in Figure 16, the memory 

effects here are indicated by the spread of the compression characteristic: the actual point 

response depends on the signal value at some previous instant of time. This compression 

characteristic is obtained using a modulated signal (Wood et al 2006). The thermal memory 

effects can be included in the transistor model through a dynamic coupling of the electrical 

and thermal signals. 

 

 
Figure 16. Long term memory effect on the compression characteristic of a power amplifier. (Aaen Peter 
H., Plá Jaime A. and Wood John, 2007, p. 67) 

 

3.4.2.2 Charge Trapping 

Imperfections and defects in the semiconductor occur in the channel itself, at 

interfaces between the semiconductor and oxide, at the surface of the semiconductor, and at 

the channel–buffer interface. These imperfections often manifest themselves as available 

states that can capture and release electrons or holes. The trapping and release are governed 
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by local potentials and temperature. The action of trapping or releasing an electron is 

effectively changing the charge density in the channel of the transistor. The rate of trapping 

and release is on a timescale of kilohertz through megahertz, depending on the nature of the 

trapping center. Therefore, the trapping mechanism is one that can change the signal 

current in response to local voltage changes, on a long timescale: a long-term memory 

effect. Contrary to LDMOS transistor where trapping effects are negligible, gallium 

arsenide and gallium nitride FETs display several trap related phenomena. One example is 

the well known dispersion of the small-signal transconductance and output conductance in 

GaAs FETs: the values of these parameters fall significantly from DC to RF, with the 

transition occurring between about 10 kHz and 10 MHz. At frequencies above this, the 

traps are unable to respond to the voltage signal. Other phenomena seen in GaN power 

transistors include knee collapse and walkout under RF drive, these effects recovering after 

the drive is removed (Green et al 2003). 

 

3.4.2.3 DC Bias Network 

In the strict sense, this may be considered to be a circuit design issue: the DC bias 

network provides a low impedance path for the DC bias connections that is simultaneously 

a high impedance to the RF signal. The bandwidth of the low impedance path is known as 

the video bandwidth, and it is limited by the reactive components that define it. In other 

words, this path has inductance and capacitance that control the frequency response of the 

video bandwidth from DC to a few tens of MHz. Any signal components in this frequency 

range will experience memory effects. 

The appearance of signal components in this frequency range is a result of the even-

order nonlinearities in the transistor, which should be captured by the model. The finite 

impedance of the DC bias connections means that these low-frequency components will be 

impressed upon the transistor, causing small changes in the bias conditions on a timescale 

appropriate to the signal envelope. The small bias deviations will result in changes in the 

transistor’s RF behavior, (e.g. its gain) which will affect the output RF signal. These 

changes will occur at a slow rate compared with the RF signal frequency, and again fall 

under the rubric long-term memory effects. Essentially, the even-order components in the 



35 
 

video bandwidth are being remixed with the RF signal through this gain modulation effect: 

they re-appear at the IM3 frequencies, with amplitude and phase that reflect the frequency 

response of the video bandwidth. This can lead to asymmetry in the IM3 responses, which 

is often taken to be a characteristic of long-term memory effects (Carvalho and Pedro, 

1999). 
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Chapter 4 - Artificial Neural Networks 
 

 

 

4.1 Introduction 

Artificial neural networks (ANN) represent a technology that is rooted in many 

disciplines such as neurosciences, mathematics, statistics, physics, computer science, and 

engineering. Modeling, time series analysis, pattern recognition, signal processing and 

control are some examples of the applications of neural networks, all of which take 

advantage of the most important property of ANNs: the ability to learn from input data. 

Work on artificial neural networks, commonly referred to as “neural networks,” has 

been motivated right from its inception by the recognition that the human brain computes 

in an entirely different way from the conventional digital computer. The brain is a highly 

complex, nonlinear and parallel computer (information-processing system). It has the 

capability to organize its structural constituents, known as neurons, so as to perform certain 

computations (e.g., pattern recognition, perception, and motor control) many times faster 

than the fastest digital computer in existence today. The brain routinely accomplishes 

perceptual recognition tasks (e.g., recognizing a familiar face embedded in an unfamiliar 

scene) in approximately 100-200ms, whereas tasks of much lesser complexity may take 

days on a conventional computer. 

Another illustrative example is the sonar of a bat. Sonar is an active echo-location 

system. In addition to providing information about how far away a target is, a bat sonar 

conveys information about the relative velocity of the target, the size of the target, the size 

of the various features of the target, the azimuth and elevation of the target. The complex 

neural computations needed to extract all this information from the target echo occur 

within a brain size of a plum. Indeed, an echo-locating bat can pursue and capture its target 

with a facility and success rate that would be the envy of a radar or sonar engineer. 

How then, does a human brain or the brain of a bat do it? At birth, a brain has great 

structure and the ability to build up its own rules through what we usually refer to as 

“experience.” Certainly, experience is built up over time, with the most dramatic 
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development (i.e., hard-wiring) of the human brain taking place during the first two years 

from birth; but the development continues well beyond that stage. 

 A “developing” neuron is synonymous with a plastic brain: Plasticity permits the 

developing nervous system to adapt to its surrounding environment. Just as plasticity 

appears to be essential to the functioning of neurons as information-processing units in the 

human brain, so it is with neural networks made up of artificial neurons. In its most general 

form, a neural network is a machine that is designated to model the way in which the brain 

performs a particular task or function of interest; the network is usually implemented by 

using electronic components or is simulated in software on a digital computer. To achieve 

good performance, neural networks employ a massive interconnection of simple computing 

cells referred to as “neurons” or “processing units.” Thus, we can say that a neural network 

is a massively parallel distributed processor made up of simple processing units, which has 

a natural propensity for storing experiential knowledge and making it available for use. It 

resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environment through a learning 

process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge. 

The procedure used to perform the learning process is called a learning algorithm, the 

function of which is to modify the synaptic weights of the network in an orderly fashion to 

attain a desired design objective. 

Neural networks are also referred to in literature as neurocomputers, connectionist 

networks, parallel distributed processors, etc. Throughout the thesis the term “artificial 

neural network” or “neural network” is used. 

  

4.1.1 Benefits of Neural Networks 

It is apparent that a neural network derives its computing power through, first, its 

massively parallel distributed structure and, second, its ability to learn and therefore 

generalize. Generalization refers to the neural network producing reasonable outputs for 

inputs not encountered during training (learning). These two information-processing 
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capabilities make it possible for neural networks to solve complex (large-scale) problems 

that are currently intractable. In practice, however, neural networks cannot provide the 

solution by working individually. Rather, they need to be integrated into a consistent 

system engineering approach. Specifically, a complex problem of interest is decomposed 

into a number of relatively simple tasks that match their inherent capabilities. The use of 

neural networks offers the following useful properties and capabilities: 

1. Nonlinearity. An artificial neuron can be linear or nonlinear. A neural network, 

made up of an interconnection of nonlinear neurons, is itself nonlinear. Moreover, the 

nonlinearity is of a special kind in the sense that it is distributed throughout the network. 

Nonlinearity is a highly important property, particularly if the underlying physical 

mechanism responsible for generation of the input signal is inherently nonlinear. 

2. Input-Output Mapping. A popular paradigm of learning called learning with a 

teacher or supervised learning involves modification of the synaptic weights of a neural 

network by applying a set of labeled training samples or task examples. Each example 

consists of a unique input signal and a corresponding desired response. The network is 

presented with an example picked at random from the set, and the synaptic weights (free 

parameters) of the network are modified to minimize the difference between the desired 

response and the actual response of the network produced by the input signal in accordance 

with an appropriate statistical criterion. The training of the network is repeated for many 

examples in the set until the network reaches a steady state where there are no further 

significant changes in the synaptic weights. The previously applied training examples may 

be reapplied during the training session but in a different order. Thus, the network learns 

from the examples by constructing an input-output mapping for the problem at hand. 

3. Adaptivity. Neural networks have a built-in capability to adapt their synaptic 

weights to changes in the surrounding environment. In particular, a neural network trained 

to operate in a specific environment can be easily retrained to deal with minor changes in 

the operating environmental conditions. Moreover, when it is operating in a non-stationary 

environment (i.e., one where statistics change with time), a neural network can be designed 

to change its synaptic weights in real time. The natural architecture of a neural network for 

pattern classification, signal processing, and adaptive control applications, coupled with the 
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adaptive capability of the network, make it a useful tool in adaptive pattern classification, 

adaptive signal processing and adaptive control. As a general rule, it may be said that the 

more adaptive we make a system, all the time ensuring that the system remains stable, the 

more robust its performance will likely be when the system is required to operate in a non-

stationary environment. It should be emphasized, however, that adaptivity does not always 

lead to robustness; indeed, it may do the very opposite. For example, an adaptive system 

with short time constants may change rapidly and therefore tend to respond to spurious 

disturbances, causing a drastic degradation in system performance. To realize the full 

benefits of adaptivity, the principal time constants of the system should be long enough for 

the system to ignore spurious disturbances and yet short enough to respond to meaningful 

changes in the environment. 

4. Evidential Response. In the context of pattern classification, a neural network can 

be designed to provide information not only about which particular pattern to select, but 

also about the confidence in the decision made. This latter information may be used to 

reject ambiguous patterns, should they arise, and thereby improve the classification 

performance of the network. 

5. Contextual Information. Knowledge is represented by the very structure and 

activation state of a neural network. Every neuron in the network is potentially affected by 

the global activity of all other neurons in the network.  

6. Fault Tolerance. A neural network, implemented in hardware form, has the 

potential to be inherently fault tolerant, or capable of robust computation, in the sense that 

its performance degrades gracefully under adverse operating conditions. For example, if a 

neuron or its connecting links are damaged, recall of a stored pattern is impaired in quality. 

However, due to the distributed nature of information stored in the network, the damage 

has to be extensive before the overall response of the network is degraded seriously. Thus, 

in principle, a neural network exhibits a graceful degradation in performance rather than 

catastrophic failure.  

7. VLSI Implementability. The massively parallel nature of a neural network makes it 

potentially fast for the computation of certain tasks. This same feature makes a neural 

network well suited for implementation using very large scale integrated (VLSI) 
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technology. One particular beneficial virtue of VLSI is that it provides a means of 

capturing a truly complex behavior in a highly hierarchical fashion. 

8. Uniformity of Analysis and Design. Basically, neural networks enjoy universality 

as information processors. This means that the same notation is used in all domains 

involving the application of neural networks. This feature manifest itself in different ways: 

 Neurons, in one form or another, represent an ingredient common to all neural 

networks. 

 This commonality makes it possible to share theories and learning algorithms in 

different applications of neural networks. 

 Modular networks can be built through a seamless integration of modules. 

9. Neurobiological Analogy. The design of a neural network is motivated by analogy 

with the brain, which is living proof that fault tolerant parallel processing is not only 

physically possible but also fast and powerful. Neurobiologists look to artificial neural 

networks as a research tool for the interpretation of neurobiological phenomena. On the 

other hand, engineers look at neurobiology for new ideas to solve more complex problems 

than those based on conventional hard-wired design techniques.  

 

4.1.2 Human Brain 

The human nervous system may be viewed as a three-stage system, as depicted in 

the block diagram of Fig. 17. Central to the system is the brain, represented by the neural 

net, which continually receives information, perceives it and makes appropriate decisions. 

Two sets of arrows are shown in the figure. Those pointing from left to right indicate the 

forward transmission of information-bearing signals through the system. The arrows 

pointing from right to left signify the presence of feedback in the system. The receptors 

convert stimuli from the human body or thee external environment into electrical impulses 

that convey information to the neural net (brain).  The effectors convert electrical impulses 

generated by the neural net into discernible responses as system outputs. 
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Figure 17. Block diagram representation of the nervous system. 

  

 

Typically, neurons are five to six orders of magnitude slower than silicon logic 

gates; events in a silicon chip happen in the nanosecond (10
-9

s) range, whereas neural 

events happen in the millisecond (10
-3

s) range. However, the brain makes up for the 

relatively slow rate of operation of a neuron by having a truly staggering number of 

neurons (nerve cells) with massive interconnections between them. It is estimated that there 

are approximately 10 billion neurons in the human cortex, and 60 trillion synapses or 

connections. The net result is that the brain is an enormously efficient structure. 

Specifically, the energetic efficiency of the brain is approximately 10
-16

 joules (J) per 

operation per second, whereas the corresponding value for the best computers in use today 

is about 10
-6

 joules per operation per second. 

Synapses are elementary structural and functional units that mediate the interactions 

between neurons. The most common kind of synapse is a chemical synapse, which operates 

as follows. A presynaptic process liberates a transmitter substance that diffuses across the 

synaptic junction between neurons and then acts on a postsynaptic process. Thus a synapse 

converts a presynaptic electrical signal into a chemical signal and then back into a 

postsynaptic electrical signal. In electrical terminology, such an element is said to be a 

nonreciprocal two port device. In traditional descriptions of neural organization, it is 

assumed that a synapse is a simple connection that can impose excitation or inhibition, but 

not both on the receptive neuron. 

Plasticity of the developing nervous system permits it to adapt to its surrounding 

environment. In an adult brain, plasticity may be accounted for by two mechanisms: the 

creation of new synaptic connections between neurons, and the modification of existing 

synapses. Axons, the transmission lines, and dendrites, the receptive zones, constitute two 

types of cell filaments that are distinguished on morphological grounds; an axon has a 
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smoother surface, fewer branches, and greater length, whereas dendrite (so called because 

of its resemblance to a tree) has an irregular surface and more branches. Neurons come in a 

wide variety of shapes and sizes in different parts of the brain. Like many types of neurons, 

it receives most of its inputs through dendritic spines. The pyramidal cell can receive 

10,000 or more synaptic contacts and it can project onto thousands of target cells. 

The majority of neurons encode their outputs as a series of brief voltage pulses. 

These pulses, commonly known as action potentials or spikes, originate at or close to the 

cell body of neurons and then propagate across the individual neurons at constant velocity 

and amplitude. The reasons for the use of action potentials for communication among 

neurons are based on the physics of axons. The axon of a neuron is very long and thin and 

is characterized by high electrical resistance and very large capacitance. Both of these 

elements are distributed across the axon. The axon may therefore be modeled as an RC 

transmission line, hence the common use of “cable equation” as the terminology for 

describing signal propagation along an axon. Analysis of this propagation mechanism 

reveals that when a voltage is applied at one end of the axon it decays exponentially with 

distance, dropping to an insignificant level by the time it reaches the other end. The action 

potentials provide a way to circumvent this transmission problem. (Haykin 1999). 

 

4.1.3 Artificial Neural Networks 

Artificial neural networks (ANNs) are distributed, adaptive, generally nonlinear 

learning machines built from different processing elements (PEs). Each PE receives 

connections from other PEs and or/ itself, hence, the interconnectivity defines the topology.  

The signals flowing on the connections are scaled by adjustable parameters called weights. 

The PE sums all these contributions and produces an output that is a nonlinear function of 

the sum. The PEs outputs become either system outputs or are sent to the same or other 

PEs.  

Processing elements are also called neurons, which can be arranged in different 

types of configurations in order to perform any given tasks. As shown in Fig. 18 there are a 

variety of neural networks with special features that have been developed to accomplish 

these tasks. 
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Figure 18. Types of artificial neural networks. (a) Single layer perceptron (b) Linear neuron (c) Multilayer 
perceptron (d) Competitive network (e) self-organizing map (f) Recurrent network (g). 

 

 

The common element between all these networks is that each one contains many 

links connecting inputs to neurons, and neurons to outputs. These links are called weights, 

and they facilitate a structure for flexible learning that allows a network to freely follow the 

patterns in the data. The weights are called free parameters, and the neural networks are 

therefore parametric models involving the estimation of optimum parameters. The flexible 

structure of these neural networks is what makes them capable of solving such a variety of 

complex problems.   
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Following the ideas of nonparametric training, the weights are adjusted directly 

from the training data without any assumptions about the data’s statistical distribution. 

Hence, one of the central issues in neural network design is to utilize systematic procedures 

(training algorithms) to modify the weights, so that, as accurate a classification as possible 

is achieved. The accuracy is quantified by an error criterion. 

On the training procedure of a neural network, as depicted in Fig. 19, first data is 

presented and an output is computed. Second, an error is obtained by comparing output 

with a desired response, and this error is used to modify the weights using a training 

algorithm, which usually, is based on the gradient of the error function. This procedure is 

repeated using all the data in the training set until a convergence criterion is met. Thus, in 

ANNs (and in adaptive systems in general), the designer does not have to specify the 

parameters of the system, due to the fact that they are automatically extracted from the 

input data and the desired response by means of the training algorithm, (Haykin, 1999), 

(Wang, 2011), (Samarasinghe, 2007). 

 
Figure 19. Simplified diagram of ANN’s training procedure. 

 

 

4.1.4 Models of a Neuron 

A neuron is an information-processing unit that is fundamental to the operation of a 

neural network. The block diagram of Fig. 20 shows the model of a neuron, which forms 

the basis for designing artificial neural networks. Here we identify some basic elements: 
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1. A set of synapses or connecting links, each of which is characterized by a weight of 

its own. Specifically, a signal xi at the input of synapse i connected to neuron j is multiplied 

by the synaptic weight wji. It is important to make note of the manner in which the 

subscripts of the weight wji are written. The first subscript refers to the neuron in question 

and the second subscript refers to the input end of the synapse to which the weight refers. 

2. An adder for summing the input signals, weighted by the respective synapses of the 

neuron; the operations described here constitute a linear combiner. 

3. An activation function for limiting the amplitude of the output of the neuron. The 

activation function is also referred to as a squashing function in that it squashes (limits) the 

permissible amplitude range of the output signal to some finite value. 

4. External bias, denoted by bj, which has the effect of increasing or lowering the net 

input of the activation function depending on whether it is positive or negative, 

respectively.  

.

.

.

x1

x2

xI

w11

w12

w1I

bj

vj
φ (vj)  Σ 

yj

 
Figure 20. Nonlinear model of a neuron 

 

 

In mathematical terms, we may describe a neuron j by writing the following pair of 

equations: 

𝑣 = ∑𝑤  𝑥 + 𝑏 

 

   

                                                                   (1) 

𝑦 = 𝜑 (𝑣 )                                                                                (2) 
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where x1, x2,…,xI are the input signals; wj1, wj2, …, wjI are the synaptic weights of neuron 

j; vj is the linear combiner output for the input signals; bj is the bias; φ(·)  is the activation 

function; and yj is the output signal of the neuron. The use of bias bj has the effect of 

applying an affine transformation to wjixi of the linear combiner. The bias bj is an external 

parameter of neuron j. Then if an additional input with a value of +1 is added to the model 

and the bias is considered as a weight, Eq. (1) is simplified as: 

𝑣 = ∑𝑤  𝑥 

 

   

                                                                          (3) 

 

4.1.4.1 Types of Activation Function 

The activation function denoted as φ(·), defines the output of a neuron in terms of the 

induced local field v. Here we identify three basic types of activation functions: 

1. Threshold Function. For this type of activation function, described in Fig. 21, we 

have 

𝜑(𝑣) = {
 1 𝑣   

1 𝑣   
                            ( ) 

 

 
Figure 21. Threshold function 

 

 

Such a neuron is referred to in the literature as the McCulloch-Pitts model, in recognition 

of the pioneering work done by McCulloch and Pitts (1943). In this model, the output of a 
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neuron takes on the value of 1 if the induced local field of that neuron is non-negative, -1 

otherwise. Sometimes it is desirable to use an activation function range of 0 to 1, in which 

case the activation function is considered symmetric with respect to the origin, contrary to 

the anti-symmetry of the  -1 to 1 range where the activation function is an odd function of 

the induced local field.   

2. Piecewise-Linear Function. For the piecewise-linear function described in Fig. 22 

we have 

𝜑(𝑣) =

{
 
 

 
  𝑣   

1

2

𝑣 +
1

2
 

1

2
 𝑣  

1

2

1 𝑣   
1

2

                                                      ( ) 

 

where the amplification factor inside the linear region of operation is assumed to be unity. 

This form of an activation function may be viewed as an approximation to a nonlinear 

amplifier. The following two situations may be viewed as special forms of the picewise-

linear function: 

 A linear combiner arises if the linear region of operation is maintained without 

running into saturation. 

 The piecewise-linear function reduces to a threshold function if the amplification 

factor of the linear region is made infinitely large. 

 
Figure 22. Piecewise-linear function 
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3. Sigmoid Function. The sigmoid function, which is any S-shaped function, is by far 

the most common form of activation function used in the construction of ANNs. It is 

defined as strictly increasing function that exhibits a graceful balance between linear and 

nonlinear behavior. An example of a sigmoid function is the logistic function defined by 

𝜑(𝑣) =
1

1 +     
                                                                         ( ) 

Fig. 23, shows the logistic function and its corresponding anti-symmetric form that is the 

hyperbolic tangent function, defined by 

𝜑(𝑣) =     ( 𝑣)                                                                        ( ) 

where a is the slope parameter of the sigmoid function (usually set to +1).  In the limit, as 

the slope parameter approaches infinity, the sigmoid function becomes simply a threshold 

function. Whereas a threshold assumes the value -1 or 1, the sigmoid function assumes a 

continuous range of values from 0 to 1 for the logistic function or -1 to 1 for the hyperbolic 

tangent function. Note also that a sigmoid function is differentiable, while on the contrary, 

the threshold function is not. (Differentiability is an important feature of neural network 

theory as described later in this chapter), (Haykin, 1999). 

 

Figure 23. Examples of sigmoid functions 

  

 

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

v


(v

)

Logistic Function

-10 -5 0 5 10

-1

-0.5

0

0.5

1

v


(v

)

Hyperbolic Tangent Function



49 
 

4.2 Feedforward Networks 

In this section we study multilayer feedforward networks, an important class of 

neural networks. Typically, the networks consists of a set of sensory units (source nodes) 

that constitute the input layer, one or more hidden layers of computational nodes, and an 

output layer of computation nodes. The input signal propagates through the network in a 

forward direction, on a layer-by-layer basis. These neural networks are commonly referred 

to as multilayer perceptrons (MLPs). 

 

4.2.1 Multilayer Perceptrons 

The perceptron is the simplest form of a neural network used for the classification 

of patterns said to be linearly separable (i.e., patterns that lie on opposite sides of a 

hyperplane). Basically, it consists of a single neuron with adjustable synaptic weights and 

bias. As introduced in the previous section, the McCulloch-Pitts is the most common 

processing element based on a single perceptron, which is simply a sum-of-products 

followed by a threshold nonlinearity. 

Multilayer perceptrons have been applied successfully to solve some difficult and 

diverse problems by training them in a supervised manner with a high popular algorithm 

known as the error back-propagation algorithm.  

Basically, error back-propagation learning consists of two passes through the 

different layers of the network; a forward pass and a backward pass. In the forward pass, an 

activity pattern (input vector) is applied to the sensory nodes of the network, and its effect 

propagates through the network layer by layer. Finally, a set of outputs is produced as the 

actual response of the network. During the forward pass the synaptic weights of the 

network are all fixed. On the other hand, during the backward pass, the synaptic weights 

are all adjusted in accordance with an error-correction rule. Specifically, the actual 

response of the network is subtracted from a desired (target) response to produce an error 

signal. This error signal is then propagated backward through the network against the 

direction of synaptic connections, hence the name “error back-propagation.” The synaptic 

weights are adjusted to make the actual response of the network move closer to the desired 

response in a statistical sense. The error back-propagation algorithm is also referred to in 
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the literature as the back-propagation algorithm, or simply backprop. Henceforth we will 

refer to it as the back-propagation algorithm. The learning process performed with the 

algorithm is called back-propagation learning. A multilayer perceptron has three distinctive 

characteristics: 

1. The model of each neuron in the network includes a nonlinear activation function. The 

important point to emphasize here is that the nonlinearity is smooth (i.e., differentiable 

everywhere). A commonly used form of nonlinearity that satisfies this requirement is a 

sigmoidal nonlinearity defined by Eq (6)-(7). The presence of nonlinearities is 

important because otherwise the input-output relation of the network could be reduced 

to that of a single layer perceptron. Moreover, the use of the logistic function is 

biologically motivated, since it attempts to account for the refractory phase of real 

neurons. 

2. The network contains one or more layers of hidden neurons that are not part of the 

input or output of the network. These hidden neurons enable the network to learn 

complex tasks by extracting progressively more meaningful features form the input 

patterns (vectors). 

3. The network exhibits a high degree of connectivity, determined by the synapses of the 

network. A change in the connectivity of the network requires a change in the 

population of synaptic connection or their weights. 

 

It is through the combination of these characteristics together with the ability to 

learn from experience through training that the multilayer perceptron derives its computing 

power. These same characteristics, however, are also responsible for the deficiencies in our 

present state of knowledge on the behavior of the network. First, the presence of a 

distributed form of nonlinearity and the high connectivity of the network make the 

theoretical analysis of a multilayer perceptron difficult to undertake. Second, the use of 

hidden neurons makes the learning process harder to visualize. In an implicit sense, the 

learning process must decide which features of the input pattern should be represented by 

the hidden neurons. The learning process is therefore made more difficult because the 
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search has to be conducted in a much larger space of possible functions, and a choice has to 

be made between alternative representations of the input pattern. 

The development of the back-propagation algorithm represents a landmark in neural 

networks in that it provides a computationally efficient method for the training of 

multilayer perceptrons, (Haykin, 1999). 

 

4.2.1.1 Preface 

Fig. 24 shows the architectural graph of a multilayer perceptron with two hidden 

layers and an output layer. To set the stage for a description of the multilayer perceptron in 

its general form, the network shown here is fully connected. This means that a neuron in 

any layer of the network is connected to all the nodes/neurons in the previous layer. Signal 

flow through the network progresses in a forward direction, from left to right and on a 

layer-by-layer basis. 

Input 
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Input 
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Hidden 
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Output 
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Figure 24. Architectural graph of a multilayer perceptron with two hidden layers. 

 

 

Figure 25 depicts a portion of the multilayer perceptron. Two kinds of signals are identified 

in this network.  

1. Function Signals. A function signal is an input signal (stimulus) that comes in at the 

input end of the network, propagates forward (neuron by neuron) through the network, 

and emerges at the output end of the network as an output signal. We refer to such a 
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signal as a “function signal” for two reasons. First, it is presumed to perform a useful 

function at the output of the network. Second, at each neuron of the network through 

which a function signal passes, the signal is calculated as a function of the inputs and 

associated weights applied to that neuron. The function signal is also referred to as the 

input signal. 

2. Error Signals. An error signal originates at an output neuron of the network, and 

propagates backward (layer by layer) through the network. We refer to it as an “error 

signal” because its computation by every neuron of the network involves an error-

dependent function in one form or another. 

Function Signals

Error Signals

 

Figure 25. Directions of two basic signal flows in an MLP. 

 

 

The output neurons constitute the output layers of the network. The remaining 

neurons constitute hidden layers of the network. Thus the hidden units are not part of the 

output or input of the network, hence their designation as hidden. The first hidden layer is 

fed from the input layer made up of sensory units; the resulting outputs of the first hidden 

layer are in turn applied to the next hidden layer; and so on for the rest of the network. 

Each hidden or output neuron of a multilayer perceptron is designed to perform two 

computations: 

1. The computation of the function signal appearing at the output of a neuron, which is 

expressed as a continuous nonlinear function of the input signal and synaptic weights 

associated with that neuron. 
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2. The computation of an estimate of the gradient vector (i.e., the gradients of the error 

surface with respect to the weights connected to the inputs of a neuron), which is 

needed for the backward pass through the network. 

 

The derivation of the back-propagation algorithm is rather involved, therefore for 

simplicity, the back-propagation algorithm of a three layer neural network as shown in Fig. 

26 is presented in the next section. To ease the mathematical burden involved in this 

derivation, it is first presented a summary of the notations used in the derivation (Haykin, 

1999). 
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Figure 26. Three layer neural network architecture. 

 

 

Notation 

 The indices i, j and k refer to different neurons in the network. i = 1,2, …I is the 

number of inputs; j = 1,2, …H is the number of hidden neurons; and k = 1,2, …K is 

the number of outputs. 
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 The network is trained from a set of input vectors   
   

where q = 1, 2, …Q is the 

number of training samples. 

 The bias applied to a neuron is denoted by bj; its effect is represented by a synapse 

of weight wj0 = bj connected to a fixed input equal to +1. 

 The induced local field (i.e., weighted sum of all synaptic inputs plus bias) of a 

neuron is denoted by vj.  

 φ(vj) = φj is the activation function describing the input-output functional 

relationship of the nonlinearity associated with each neuron.   

 The input-output relationship at each layer is denoted by a. In that sense, at the 

input layer ai = pi; at the hidden layer aj = φj; finally, ak = φk represents the network 

output at neuron k. 

 d is the desired output (target) of the network. 

 e is the error signal at the output neuron. 

 The iteration number denoted by n is the time step of the training process where N 

is the maximum number of epochs. 

 E(n) refers to the mean square error function (MSE)  at iteration n. 

 The symbol wji(n) denotes the synaptic weight connecting the output of neuron i to 

the input of neuron j at iteration n. The correction applied to this weight at iteration 

n is denoted by Δwji(n).  

 

4.2.1.2 Forward Propagation 

Considering a three layer neural network as shown in Fig. 26., and by using the 

notation previously presented, the output at each neuron on the hidden layer can be 

expressed as 

𝑣 = ∑𝑤    

 

   

                                                                               (8) 

  = 𝜑 (𝑣 )                                                                          (9) 

where aj is the hidden layer output, and at the same time, the output layer input. Finally, the 

network output is defined as 
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𝑣 = ∑𝑤    

 

   

                                                                        (1 ) 

  = 𝜑 (𝑣 )                                                                           (11) 

The network output can be also expressed as 

  = 𝜑 (∑𝑤  𝜑 (∑𝑤    

 

   

)

 

   

)                                                        (12) 

 

 4.2.1.3 Update Rule 

The whole idea behind gradient descent is to gradually, but consistently, decrease 

the output error by adjusting the weights; strengthening an active synaptic weight if the 

postsynaptic neuron fails to fire when it should have fired; weaken an active synaptic 

weight if the neuron fires when it should not have fired.  Intuitively, we know that if a 

change in a weight will increase (decrease) the error, then we want to decrease (increase) 

that weight, (Wang, 2011).  

𝑤( + 1) = 𝑤( ) +  𝑤( )                                                (13) 

  

4.2.1.4  Back-Propagation Algorithm 

The error signal at the output of neuron k at iteration q (i.e., presentation of the qth 

training sample) is defined by 

  ( ) =   ( )    ( )                                                     (1 ) 

The instantaneous value of the error energy for neuron k is defined as ½ek
2
(q). 

Correspondingly, the instantaneous value ε(q) of the total error energy is obtained by 

summing ½ek
2
(q) over all neurons in the output layer; these are the only “visible” neurons 

for which error signals can be calculated directly. We may thus write  

 ( ) =
1

2
∑   

 ( )

   

                                                           (1 ) 

where the set K includes all the neurons in the output layer of the network. Let Q denote 

the total number of pattern samples contained in a training set. The average squared error 
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energy at iteration (n) is obtained by summing ε(q) over all q and then normalizing with 

respect to the set size Q, as shown by 

 ( ) =
1

 
∑  ( )

 

   

                                                          (1 ) 

 

Since the application of neural networks in this thesis is focused on function 

approximation, a single neuron will be defined at the output of the network architecture, 

simplifying then, the mean square error function (MSE) of Eq. (17) as 

 ( ) =
1

2 
∑   

 

 

   

                                                                         (1 ) 

Eq. (17) can be more clearly expressed as 

 ( ) =
1

2 
∑(       )

 

 

   

                                                       (18) 

where for simplification, eq = e(q), dq = d(q) and ak,q = ak(q). 

 

The MSE is a function of all the free parameters of the network (i.e., synaptic 

weights and bias). For a given training set, E(n) represents the cost function as a measure of 

learning performance. The objective of the learning process is to adjust the free parameters 

of the network to minimize E(n). In order to do this minimization, an approximation similar 

to the LMS algorithm is used. Specifically, it is considered a simple method of training in 

which the weights are updated on a pattern-by-pattern basis until one epoch, that is, one 

complete presentation of the entire training set has been dealt with. The adjustments to the 

weights are made in accordance with the respective errors computed for each pattern 

presented to the network.  The MSE computed at each iteration, is an estimate of the 

change that results from modifying the weights based on minimizing the cost function E 

over the entire training set. 

In a similar manner to the LMS, the back-propagation algorithm applies a 

correction Δw(n) to the synaptic weights, which is proportional to the gradient of the error 

function ∇E with respect to the network weights as defined in Eq. (14).  Thus, in order to 
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update the synaptic weights of the network a minimization of the cost function must be 

performed. Hence, the gradient of the error function can be calculated by the following 

expression 

∇ ( ) =  
1

 
∑(     )

  

 𝑤

 

   

                                                 (1 ) 

 

Eq. (19) can be written in matrix form as 

  ( ) =  
1

 
   ( )                                                                   (2 ) 

where J is q by m Jacobian matrix of the error vector e(n), and m is the number of inputs at 

the operating neuron. 
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 𝑤 ]
 
 
 
 
 
 
 

                                                         (21) 

 

The Jacobian is calculated depending on its location in the network architecture as follows 

 At the output layer. When a neuron is located in the output layer of the network, it 

is supplied with a desired response of its own. Then, the Jacobian can be 

determined in a straightforward manner as 

  =                                                                                 (22) 

  = 𝜑 
 
                                                                              (23) 

where δk represents the local gradient at neuron k and is defined as the derivative of 

the activation function with respect to the induced local field 𝜑  =
   (  )

   
. 

 At the hidden layer. When a neuron is located in the hidden layer of the network, 

there is no specified desired response for that neuron. Accordingly, the error signal 

for a hidden neuron would have to be determined recursively in terms of the error 

signals of all the neurons to which that hidden neuron is directly connected. For this 
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case, the Jacobian calculation is not straightforward. Therefore, at the hidden layer 

is Jacobian is expressed as 

  =                                                                              (2 ) 

  = 𝜑 
 
∑  𝑤  

 

                                                       (2 ) 

where δj represents the local gradient at neuron j and is defined as the derivative of the 

activation function with respect to the induced local field 𝜑  =
   (  )

   
. 

The procedure presented above to calculate δ is called the delta rule. The delta rule applies 

to the output layer and the generalized delta rule applies to hidden layers, layer by layer 

from the output end.  

For a neural network consisting of S layers the back-propagation algorithm can be easily 

extended following the same procedure. The Jacobian expression is the same for every 

layer and δ at each hidden layer is computed as 

  
 = 𝜑 

  ∑  
   𝑤  

   

 

                                                       (2 ) 

Where j is the current neuron at layer s and k represents the neurons at layer s+1 (Haykin, 

1999), (Principe et al, 2000), (Wang, 2011). 

 

4.3 Training Algorithms 

Consider a cost function E(w) that is a continuously differentiable function of some 

unknown weight vector w. The function E(w) maps the elements of w into real numbers. It 

is a measure of how to choose the weight parameter w so that it behaves in an optimum 

manner. We want to find an optimal solution w that satisfies the condition. 

 

 (𝑤  )   (𝑤)                                                                   (2 ) 

 

That is, we need to solve an unconstrained optimization problem, stated as follows: 

“Minimizing the cost function E(w) with respect to the weight vector w”. The necessary 

condition for optimality is 
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  (𝑤  ) =                                                                          (28) 

 

where   (𝑤) is the gradient vector of the cost function: 

  ( ) = [
  

 𝑤 
 
  

 𝑤 
   

  

 𝑤 
 ]

 

                                           (2 ) 

A class of unconstrained optimization algorithms that is particularly well suited for the 

design of adaptive filters is based on the idea of local iterative descent. In this section we 

describe first and second order optimization methods (Haykin, 1999). 

 

4.3.1 Steepest Descent Method 

Since the performance surface is a paraboloid, which has a single minimum, a 

procedure to find the best value of the weight parameter w is to search the performance 

surface instead of computing the best coefficient analytically. The search for the minimum 

of a function can be done efficiently using a broad class of methods based on gradient 

information. The gradient has two main advantages for the search:  

• The gradient can be computed locally.  

• The gradient always points in the direction of maximum change.  

If the goal is to reach the minimum, the search must be in the direction opposite to the 

gradient. Thus, the overall method of searching can be stated in the following way.  

Start the search with an arbitrary initial weight w(0), where the iteration number is 

denoted by the index in parentheses. Then compute the gradient of the performance surface 

at w(0), and modify the initial weight proportionally to the negative of the gradient at w(0). 

This changes the operating point to w(1). Then compute the gradient at the new position 

w(1), and apply the same procedure again, that is, 

𝑤( + 1) = 𝑤( )     ( )                                       (3 ) 

 

where η is positive constant called the step size or learning rate parameter. In going from 

iteration n to n+1 the algorithm applies the correction    

 𝑤( ) = 𝑤( + 1)  𝑤( ) 

 𝑤( ) =     ( )                                                                (31)   
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The constant is used to maintain stability in the search by ensuring that the operating point 

does not move too far along the performance surface. This search procedure is called the 

steepest descent method. Fig. 27 illustrates the search procedure (Principe et al, 2000). 

 

 

Figure 27. Search using gradient information (Principe et al, 2000). 

 

For a given training set, back-propagation learning based on the steepest descent algorithm 

may proceed in one of two basic ways. 

1. Sequential Mode. The sequential mode of steepest descent learning is also referred 

to as online, pattern, or stochastic mode. In this mode of operation weight updating 

is performed after the presentation of each training example. 

2. Batch Mode. In the batch mode, weight updating is performed after the presentation 

of all the training examples that constitute an epoch. 

From an “online” operational point of view, the sequential mode of training is preferred 

over the batch model because it requires less local storage for each synaptic connection. 

Moreover, given that the patterns are presented to the network in a random manner, the use 

of pattern-by-pattern updating of weights makes the search in weight space stochastic in 
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nature. This in turn makes it less likely for the back-propagation algorithm to be trapped in 

a local minimum. 

In the same way, the stochastic nature of the sequential mode makes it difficult to 

establish theoretical conditions for convergence of the algorithm. In contrast, the use of 

batch mode of training provides an accurate estimate of the gradient vector; convergence to 

a local minimum is thereby guaranteed under simple conditions. Also, the composition of 

the batch mode makes it easier to parallelize than the sequential mode. 

When the training data is redundant (i.e., the data set contains several copies of exactly 

the same pattern), we find that unlike the batch mode, the sequential mode is able to take 

advantage of this redundancy because the examples are presented one at a time. This is 

particularly so when the data set is large and highly redundant. 

 

4.3.2 Steepest Descent Method with Momentum Learning 

Momentum learning is an improvement to the straight gradient-descent search in 

the sense that a memory term (the past increment to the weight) is used to speed up and 

stabilize convergence. In momentum learning the equation to update the weights becomes 

  ( ) =     ( ) +   𝑤(  1)                                           (32) 

 

where α is the momentum constant. Normally α should be set between 0.5 and 0.9. This is 

called momentum learning due to the form of the last term in equation (32), which 

resembles the momentum in mechanics. Note that the weights are changed proportionally 

to how much they were updated in the last iteration. Thus if the search is going down the 

hill and finds a flat region, the weights are still changed, not because of the gradient (which 

is practically zero in a flat spot), but because of the rate of change in the weights. Likewise, 

in a narrow valley, where the gradient tends to bounce back and forth between hillsides, the 

momentum stabilizes the search because it tends to make the weights follow a smoother 

path. Fig. 28 summarizes the advantage of momentum learning. Imagine a ball (weight 

vector position) rolling down a hill (performance surface). If the ball reaches a small flat 

part of the hill, it will continue past this local minimum because of its momentum. A ball 

without momentum, however, will get stuck in this valley (Principe et al, 2000).  
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Figure 28. Momentum learning (figure extracted from Principe et al, 2000) 

 

 

4.3.3 Improved Resilient Back-propagation (iRprop) Algorithm 

Let wij denote the weight in a neural network from neuron j to neuron i and E(n) be 

an arbitrary error measure that is differentiable with respect to the weights. Bias parameters 

are regarded as being weights from an extra input; n indicates the learning epoch 

(iteration). In the Rprop learning algorithm the direction of each weight update is based on 

the sign of the partial derivative ∂E/∂wij. A step-size, i.e. the update amount of a weight, is 

adapted for each weight individually. The main difference to other techniques is that the 

step-sizes are independent of the absolute value of the partial derivative. 

One iteration of the original Rprop algorithm can be divided into two parts. The first 

part is related to the adjustment of the step-sizes. For each weight wij an individual step-

size Δij is adjusted using the following rule: 

 

   ( ) =

{
  
 

  
      (  1)    

  (  1)
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where 0 < η− < 1 < η +. If the partial derivative ∂E/∂wij possesses the same sign for 

consecutive steps, the step-size is increased, whereas if it changes sign, the step-size is 

decreased. The step-sizes are bounded by the parameters Δmin and Δmax.  

After adjusting the step-sizes, the weight updates Δwij are determined by applying the 

following algorithm: 

 

If    (  1)    ( )     

   ( ) =     (     (  1)     ) 

 𝑤  ( ) =     (  ( ))   ( ) 

𝑤  ( + 1) = 𝑤  ( ) +  𝑤  ( ) 

elseif    (  1)    ( )     

   ( ) =   𝑥 (     (  1)     ) 

                       if    ( )   (  1) 

        𝑤  ( + 1) = 𝑤  ( )   𝑤  ( ) 

                     end 

                       ( ) =   

elseif    (  1)    ( ) =   

    ( ) =    (  1)  

 𝑤  ( ) =     (  ( ))   ( ) 

𝑤  ( + 1) = 𝑤  ( ) +  𝑤  ( ) 

end 

 

In the previous algorithm it can be noticed that if the sign of the partial derivative of 

the error function has not changed, a regular weigh update is executed. Meanwhile, in the 

case of a change of sign of the partial derivative, the previous weight update is reverted, 

(Igel and Husken, 2000). 
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4.3.4 Levenberg-Marquardt Algorithm 

While backpropagation is a steepest descent algorithm, the Levenberg-Marquardt 

algorithm is an approximation to Newton’s method. Assuming a function E(w) which is 

minimized with respect to the parameter vector w, then Newton’s method would be 

 𝑤 =  [   (𝑤)]    (𝑤)                                                        (34) 

 

where    ( ) is the Hessian matrix.  

 For the Gauss-Newton method Eq(33) can be written as 

   𝑤 = [  (𝑤) (𝑤)]    (𝑤) (𝑤)                                             (3 ) 

 

The Levenberg-Marquardt modification to the Gauss-Newton method is 

 𝑤 = [ ( ) +   ]    (𝑤) (𝑤)                                             (3 ) 

where H = J
T
(w)J(w). 

 

The parameter μ is multiplied by some factor β whenever a step would result in an 

increased E(w). When a step reduces E(w), μ is divided by β. Usually  μ is set to 0.01 with 

β = 10. Notice that when μ is large the algorithm becomes steepest descent (with step 1/ μ), 

while for small μ the algorithm becomes Gauss-Newton. The Levenberg-Marquardt 

algorithm can be considered a trust region modification to Gauss-Newton (Hagan and 

Menhaj, 1994). 

 

4.3.5 Optimized Levenberg-Marquardt with Adaptive Momentum (OLMAM) 

Algorithm 

In the OLMAM method introduces two Lagrange multipliers λ1 and λ2, yielding a 

weight update rule equivalent to the Levenberg-Marquardt algorithm  with an additional 

term of adaptive momentum. 

 𝑤( ) =  
  

2  

[  (𝑤)]    (𝑤) +
1

2  
 𝑤(  1)                              (3 ) 

where 
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It should be noted that this approximation ensures the positive definiteness of the Hessian. 

The update of μ is performed in the same manner as in the Levenberg-Marquardt algorithm 

with the only consideration that a step is successful only when   

 (𝑤( ) +  𝑤( ) )   (𝑤( )) +     (𝑤( ))
 
 𝑤( )                   (  )  

with σ1 = 0.1. The above inequality is known as the Wolfe Condition which states that the 

cost function should be sufficiently decreased (Ampazis and Perantonis, 2002). 
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4.4 Approximation of Functions 

The universal approximation theorem (Barron, 1993) is important from a theoretical 

point of view, because it provides the necessary mathematical tool for the viability of 

feedforward networks with a single hidden layer as a class of approximate solutions. 

Without such a theorem we could conceivably be searching for a solution that cannot exist. 

However, the theorem is not constructive, that is, it does not actually specify how to 

determine a multilayer perceptron with the stated approximation properties. The universal 

approximation theorem assumes that the continuous function to be approximated is given 

and that a hidden layer of unlimited size is available for the approximation. Both of these 

assumptions are violated in most practical applications of multilayer perceptrons. 

The problem with multilayer perceptrons using a single hidden layer is that the 

neurons therein tend to interact with each other globally. In complex situations this 

interaction makes it difficult to improve the approximation at one point without worsening 

it at some other point. On the other hand, with two hidden layers the approximation (curve-

fitting) process becomes more manageable. In particular, the procedure may be described 

as follows: 

1. Local features are extracted in the first hidden layer. Specifically, some neurons in 

the first hidden layer are used to partition the input space into regions, and other 

neurons in that layer learn the local features characterizing those regions. 

2. Global features are extracted in the second hidden layer. Specifically, a neuron in 

the second hidden layer combines outputs of neurons in the first hidden layer 

operating on a particular region of the input space, and thereby learns the global 

features for that region and outputs zero elsewhere. 

 

4.5 Modified Backpropagation Algorithm 

In this section, we present a simple training algorithm for ANN which uses not only 

the desired function, but also, data of its first order derivatives with respect to the inputs for 

training the network (Zárate-de Landa et. al 2012). The ANN model is capable of 

accurately predict the behavior of the device up to the third derivative.  
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Figure 29. Three layer artificial neural network architecture with derivatives information. (Zárate-de 
Landa et al, 2012) 

 

 

A three layer neural network is shown in Fig. 29. The network notation is the same 

as previously presented, where the network is trained to approximate a function D which is 

the desired output of the network. However, now our objective is to also fit the first 

derivatives of D with respect to the network inputs. We will use the notation Gi to denote 

  

   
. As a result, information related to the derivatives 

   

   
, and 

   

   
 will be used during the 

training process, expanding then, the already well known learning rule algorithm. The 

proposed mean square error to be minimized is defined as: 

 

  =     +                                                               (  ) 

where 

  =
1

2 
∑[       ]

 

 

   

                                                  ( 8) 
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  =
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In (47) ρ0 and ρ1 are weight parameters, which values are heuristically selected 

between 0 and 1, these parameters determine the importance given to E0 and Ed for the 

function approximation. Hence, we use the information contained in the original function 

and its derivatives during the training process in order to improve the generalization of the 

network.    

In order to minimize (47) the calculation of  E/ wji and  E/ wkj must be 

performed. Since  E0/ w can be computed using the standard backpropagation algorithm 

we are going to focus on the determination of  Ed/ w. 

 

1) At the Output Layer 

The derivative of Ed with respect to wkj is 
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1
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                            (  ) 

   

Then, the gradient of the error function at the output layer is, 

   

 𝑤  
=  

1

  
∑(    
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                                                        ( 1) 

where 

    
 =   

   

   
+                                                                      ( 2) 

   = 𝜑   𝑤  

   

   
                                                                       ( 3) 

ed is the error vector at each epoch, and ϕ’’k is the second derivative of the processing 

function at the output neurons. 
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2) At the Hidden Layer 

For the hidden layer the derivative of Ed with respect to wji is 
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1
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Finally, the new weights are calculated following the update rule, 

𝑤( + 1) = 𝑤( ) +  ( )                                                  ( 8) 

 

where  ( ) is the search direction, at iteration n, containing information of the error 

gradient. The search direction can be computed by first or second order training methods. 

 

In order to demonstrate the feasibility of the proposed method, a function              

f(x) = sin(2x) was created and approximated by using both the original backpropagation 

algorithm and the backpropagation with derivatives proposed in this thesis. For this 

example a 1-10-1 ANN architecture was implemented and trained using 100 samples and 

the Levenberg-Marquardt method for minimum search. As can be observed in Fig. 30, the 

proposed backpropagation can accurately predict the behavior of the original function up to 

the third derivative contrary to the classical backpropagation which can only match the first 

order derivative. 
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Figure 30. Comparison between classical backpropagation and proposed backpropagation training. 
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Chapter 5 - Small Signal Modeling 
 

 

 

5.1 Introduction 

Acurate parasitic elements extraction is the foundation of every linear and nonlinear 

transistor model used in the design of microwave amplifiers, oscillators and mixers. Since 

Diamond and Laviron introduced the Cold-FET in the early 80’s, the technique has been 

extensively used in the extraction procedure of parasitic elements for microwave transistors 

(Curtice and Caamisa, 1984), (Dambrine et al, 1998), (Reynoso-Hernández et al, 1996), 

due to the simplification of the transistor equivalent circuit model under such bias 

conditions. 

The new trend in the design of high power amplifiers is the use of transistors based 

on AlGaN/GaN as a consequence of its extraordinary qualities of high voltage, current and 

frequency operation as explained in chapter II. However, since AlGaN/GaN is a relatively 

new technology, more accurate models are still under development.  One of the main 

difficulties in the model extraction for this kind of transistor is calculating reliable values of 

the gate parasitic resistance and inductance (Jarndal and Kompa, 2005), (Crupi et al, 2006), 

(Zárate-de Landa et al, 2007, 2010), (Reynoso-Hernández et al, 2008).  

Reynoso-Hernández et al (2008) presented a reliable method for calculating Rg, Lg, 

the dynamic Schottky resistance and capacitance R0 and C0, based on the extrema points of 

Z11 of the cold-FET model was presented. The difficulty of this method is that even with a 

very good calibration of the network analyzer a significant amount of noise is observed on 

the derivatives of the measured Z-parameters, which precludes the algorithm from 

accurately calculating the extrema points of the real and imaginary parts of Z11, 

respectively, which are needed for the extraction of Rg and Lg. Generally, the extrema 

points are tuned with human assistance by observing the plots and selecting the best 

minimum and maximum points that better fit the measured data, making the procedure time 

consuming and tedious, especially, when several transistors are being characterized. 

Although, noise can be lessen by using polynomial fitting, even with a very high 
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polynomial degree the noise is still present and the problem is not completely solved.  

This chapter extends the theory already published by CICESE’s RF/Microwave 

group, but also, makes use of the artificial neural networks (ANN) to mitigate the noise 

observed in the derivatives of the measured Z11 parameter of the Cold-FET. The extraction 

of Rg and Lg is improved significantly by precisely determining the angular frequency at 

which the extrema points occur, simplifying then, the accuracy and automation of the 

parasitic extraction procedure. 

 

5.2 Package Parasitics in Power FETs 

In the design and modeling of a microwave packaged power transistor, linear 

models of the package and matching networks are combined with a nonlinear model of the 

transistor. The resulting performance is dictated by the impedances presented by the 

matching networks to the transistor at the fundamental, harmonic and low-frequency 

terminations. These matching networks are often composed of arrays of small-diameter 

bondwires, metal-oxide semiconductor (MOS) capacitors, and packages. The passive 

components provide the necessary low-loss impedance transformation essential for the 

successful operation of the RF power amplifier. 

Typically, the packages that are used for wireless infrastructure RF power amplifier 

applications are constructed from high-conductivity metals and low-loss dielectrics. The 

package is one component of the low-loss matching network located between the transistor 

die and the microstrip matching circuitry on the printed circuit board of the amplifier. 

Stringent thermal-mechanical design practices are required to ensure that the package can 

dissipate the substantial heat-flux generated by the transistor. Low thermal resistance 

packages are required (typically, around 0.5 W/◦C), since all of the energy not converted 

into RF power is dissipated as heat. For example, a 200 W amplifier operating at 50% 

efficiency dissipates 100 W of power as heat through the package. The packages, as 

illustrated in Fig. 31, are designed for the leads to rest on top of the microstrip transmission 

lines on the printed circuit board (PCB). The back side of the flange contacts the heatsink 

of the power amplifier forming a conductive electrical connection to the bottom conductor 
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of the microstrip and a conductive thermal connection to the heatsink, which permits heat 

to flow away from the packaged transistor (Aaen et al. 2007). 

 

 
Figure 31. Illustrations of a power transistor using ceramic and plastic packages. (Aaen Peter H., Plá Jaime 
A. and Wood John, 2007, p. 124) 

 

5.2.1 Analysis of an Empty Package 

In this thesis 15 Watts AlGaN/GaN CGH35015 HEMTs provided by CREE® were 

studied, in Figure 32 (a) can be observed the package type (440166) where the transistors 

are mounted. By using a hot plate, a damaged transistor was opened (Fig. 32b), the 

bondwires connecting the package to the active device were cut off and its S-parameters 

measured in order to characterize the transistor package (Monjardín, 2014). Then, the 

package capacitance can be extracted directly from the measured Y-parameters of the 

package. Assuming a Π-network of capacitors as illustrated in Figure 23, the package 

capacitances can be expressed as,  

   =
  (   ) +   (   )

 
                                                 (  ) 

   =  
  (   )

 
                                                                 (  ) 

   =
  (   ) +   (   )

 
                                                ( 1) 
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Figure 32. CREE® AlGaN/GaN HEMT CGH35015 on 440166 package. (Monjardín, 2014) 

 

 

 

Figure 33. Transistor package equivalent circuit model. 

 

After the package capacitances were extracted the Y-parameters of the structure 

depicted in Fig. 33 where calculated. It can be observed in Fig. 34 that the model 

accurately predicts the behavior of the package. The calculated values of the package 

parasitic capacitances is reported in Table  

(a) (b) 
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Figure 34. Comparison between measured (circles) and modeled (lines) of CREE 440166 package. 

 

 

Table 2. Package parasitic capacitances calculated for CREE CGH35015F AlGaN/GaN HEMT 

C11 (fF) C12 (fF) C22 (fF) 

820.43 10.92 798.08 

 

 

5.3 The Forward Cold-FET Model 

The accustomed small signal equivalent circuit model (ECM) of a FET transistor is 

depicted in Figure 35. In this circuit, the elements are divided in two categories: the 

extrinsic or parasitic elements (Lg, Rg, Ls, Rs, Ld, Rd, Cpg and Cpd) which are bias 

independent and represent the effects of the pads, probe tips and metal contacts of the 

device; and the intrinsic elements (Cgs, Ri, Cgd, Rgd, Rds, Cds, gm and τ) which represent the 

actual device and depend of the control voltages Vgs and Vds. Depending on the technology, 

if the transistor is asymmetric the resistance Rgd can be disregarded from the intrinsic 
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model.  When the FET is biased under zero drain to source bias, the kinetic energy of the 

electrons in the channel is cold with respect to the typical operating condition (Crupi et al 

2006). Therefore, for the Cold-FET configuration under low DC forward gate bias current 

(0 < Vgs < Vbi; Igs > 0) the small signal model is simplified as shown in Figure 36 (Zárate-de 

Landa et al, 2007).The Z-parameters of the forward Cold-FET are expressed as: 
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Rch is the channel resistance which is disregarded in the extraction procedure due to its 

small value compared to the parasitic resistances. Also, in this configuration, parasitic 

capacitances have no influence in the Z-parameters of the forward Cold-FET, thus, are not 

taken into account in the model.  
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Figure 35. FET Small-signal equivalent circuit model. 
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Figure 36. Cold-FET Small-signal equivalent circuit under low DC gate forward current with floating drain. 
(Zárate de Landa et al, 2007, 2009) 

 

 

5.3.1 Open Drain Condition 

In the forward Cold-FET configuration there is a debate between the differences 

between applying a zero drain-source voltage (Vds = 0) and leaving the drain open. Unlike 

most authors, an open drain configuration is used in this work as suggested Reynoso-

Hernández (1996). This is due to the fact that when the drain is shorted (Vds = 0) the gate 

current is divided into two trajectories, one flowing in the gate-source direction and the 

other in the drain-source path. In Fig. 37 it can be observed how the Cold-FET ECM 

changes when Vds = 0 is applied. 
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Figure 37. Cold-FET Small-signal equivalent circuit under low DC gate forward current with zero drain-
source condition. 
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Consequently, the Z-parameters of the forward Cold-FET with Vds = 0 would be defined as 
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Hence, in order to make use of equation (62)-(64) a forward Cold-FET configuration with 

open drain must be used. 

 

5.3.2 Drain and Source Parasitic Resistances and Inductances Calculation 

Drain and source parasitic resistances can be determined by DC measurements of 

the Schottky diode model of the transistor (Cheung, 1986), (White and Healey, 1993), 

(Reynoso-Hernández, 1996). This is a very accurate and easy approach for the calculation 

of the drain and source parasitic resistances, however, it is necessary to perform extra 

measurements to the FET which could be time consuming. Therefore, these parasitic 

resistances can be directly extracted from the real part of Z12 and Z22 parameters of the 

Cold-FET measurement. Equations for the calculation of Rs and Rd can be expressed as 

  
 =   (   )                                                                          (  )   

  
 =   (       )                                                              ( 8) 

Ls and Ld elements are directly calculated from the slope of the imaginary parts of Z12 and 

Z22 expressed by equation (63) and (64). 

  =
  (   )

 
                                                                       (  ) 

  =
  (       )

 
                                                          (  ) 

Once the source and drain parasitic resistances and inductances are calculated a comparison 

between measured and simulated data is performed as depicted in Figs. 38 and 39.  
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Figure 38. Comparison between measured and simulated real part of Z12 and Z22. 

 

 

Figure 39. Comparison between measured and simulated imaginary part of Z12 and Z22. 

 

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

frequency (GHz)

R
e
s
is

ta
n
c
e
 (


)

 

 

Re(Z
12

) Measured

Re(Z12) Modeled

Re(Z22) Measured

Re(Z22) Modeled

0 1 2 3 4 5
0

5

10

15

20

25

frequency (GHz)

 

 

Im(Z
12

) Measured

Im(Z
12

) Modeled

Im(Z
12

) Measured

Im(Z
22

) Modeled



80 
 

It is worth mentioning that for transistors with small gate width, the calculated 

source inductance Ls might be a negative value. This is a consequence of ignoring the 

parasitic capacitances in the forward Cold-FET model, which is not a precise assumption 

for small sized FETs. When negative values of Ls are computed, the equations published in 

section IV-B of the article of Reynoso-Hernández et al, (1996) should be applied, in order 

to take into account the parasitic capacitances in the forward Cold-FET model.   

 

5.3.3 Gate Parasitic Resistance and Inductance Calculation 

Due to the dynamic resistance and capacitance elements R0 and C0 used to model 

the gate Schottky diode, expressed by equation (62), the direct calculation of Rg and Lg is 

not straight forward. Rg and Lg could be calculated from the real and imaginary part of Z11, 

respectively, provided Rs, Ls, R0, and C0 are known. Reynoso-Hernández et al, in 2008, 

proposed a procedure for the calculation of R0, C0, Rg and Lg from expression (62). In this 

section an extension of such method will be deeply explained. 

 

5.3.3.1 Frequency Points of Interest 

An important condition to apply the proposed method is to measure the Cold-FET 

under a low gate-source current, contrary to the classical method proposed by Dambrine et 

al (1988) where, in order to calculate the parasitic gate resistance Rg, a linear regression of 

several measurements must be acquired. These measurements are performed under a high 

current gate-source current in order to suppress the capacitive effect of the Schottky diode. 

It has been found that for high power transistors such as GaN HEMTs, the gate is 

irreversible damaged long before the capacitive effect of the Schottky diode is suppressed. 

The proposed method not only protects the device under test by not stressing it under large 

gate currents, but also, saves time by only measuring the Z-parameters of the Cold-FET 

once.  Nevertheless, due to the dynamic resistance and capacitance of the Schottky diode, 

the real and imaginary parts of Z11 are nonlinear functions which make the extraction 

procedure complex. By analyzing the Z11 parameter and its derivative, some particular 

frequency points can be used as aid to ease our way through the calculation of the gate 
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elements. Figures 40 and 41 depict the real and imaginary part of Z11 with respect to the 

frequency and the points of interest that will be used in the extraction procedure. 

 

Figure 40. Real part of Z11, of the Cold-FET and its derivative with respect to the frequency. 

 

Figure 41. Imaginary part of Z11.of the Cold-FET and its derivative with respect to the frequency. 
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There are important premises that can be concluded from Figures 40 and 41 shown above: 

 The imaginary part of Z11 has also a minimum point at ω = ωm. Besides, it can be 

observed that a resonance frequency, which we will call ωR, occurs when       

Im(Z11) = 0. (Fig. 41). 

 The first derivative of the real part of Z11 has a minimum at ω = ωmin. (Fig. 40) 

 The first derivative of the imaginary part of Z11 has a maximum point at ω = ωmax. 

(Fig. 41) 

 Evaluating equation (62) at the resonance frequency ωR where Im(Z11) = 0 it can be 

defined that 

  
 =   

    
                                                                     ( 1) 

where, 

  =
1

√   

                                                                         ( 2) 

   =
1

  
=

1

    
                                                               ( 3) 

 =   +                                                                         (  ) 

So far, ωmax, ωmin, ωm and ωR can be computed from measured data. However, ωx and ω0 

which are indispensable in the parasitic extraction procedure are still unknown. Next, a 

procedure for the calculation of ω0 is explained. 

 

5.3.3.2 ω0 Calculation 

ω0 is a significant parameter in the parasitic elements calculation. It can be obtained 

by three deferent ways: 

- From the first derivative of  Im(Z11) 

The imaginary part of Z11 has a minimum point at ωm which occurs when 
   (   )

  
=  . 

Therefore, by evaluating the first derivative of Im(Z11) at ω = ωm one finds 

  =   √
  

 +   
 

  
  3  

 
                                                                (  ) 

- From the second derivative of  Im(Z11) 
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The first derivative of the imaginary part of Z11 with respect to ω has a maximum at the 

frequency point ωmax we use the criterion of the second derivative, which states that the 

second derivative of Im(Z11)  with respect to ω, evaluated at ωmax is zero 
    (   )

   =  . 

Then, from the imaginary part of Z11, ω0 is given by 

  =
    

√ 
                                                                          (  )  

 

- From the second derivative of Re(Z11) 

The first derivative of the real part of Z11 with respect to ω has a minimum. At ωmin, where 

the minimum occurs, the second derivative of Re(Z11) with respect to ω is zero. Then, 

another expression for the computation of ω0 is derived from 
    (   )

   =  , and given by 

  = √3                                                                         (  )  

 

- From the intersection of the second derivative of Re(Z11) with the  second derivative 

of Im(Z11) 

The second derivative of Z11 with respect to ω is defined as 

     

   = 2    
  [

     
   

(      
 )

 ] +  2     
  [

      
 

(      
 )

 ]                          ( 8)  

 

At one point  
    (   )

   = 
    (   )

   , then it is found that 

    
 + 3    

  3    1 =                                                      (  ) 

 

It is obvious that the only frequency point where equation (79) is fulfilled is when ω = ω0. 

Then, ω0 can also be found at the frequency point where 
    (   )

   
 

    (   )

   
=  . It can be 

observed in Fig. 42 that at high frequency, the curves are asymptotic to each other, 

meanwhile, at low frequency where ω0 occurs, an intersection between the second 

derivative of the real and imaginary part of Z11 is found.  
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Figure 42. Intersection between the second derivative of the real and imaginary part of Z11. 

 

It is important to notice that the exactitude to calculate the gate parasitic elements 

depends on the computation of the different values of ω. Since ω is in the range of 10
8

 to 

10
11

, a small variation will have a huge impact on R0, C0, Rg and Lg.  Consequently, 

accuracy in the numerical differentiation of Z11, as well as, in the interpolation performed 

to find the frequency points of interest is crucial for a successful extraction. This issue is 

deeply addressed latter in this chapter.  

 

5.3.3.3 R0 and C0 Calculation 

So far, the procedure to find essential frequency points has been explained. Next, by 

taking advantage of such frequencies and with the information provided by the real and 

imaginary parts of Z11 and its derivatives with respect to the ω, equations for the 

calculation of the gate parasitic elements are given.  

The dynamic resistance and capacitance R0 and C0 are used to model the gate 

Schottky diode for the Cold-FET configuration. Since these elements are bias dependent 

their calculation can be intricate. With the information acquired from Z11 of the Cold-FET, 
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R0 can be computed from any of the following equations:  

  =  
8  

3√3

   (   )

  
|
      

                                                        (8 ) 

  =  2  

   (   )

  
|
    

                                                            (81) 

  = 2  
 
    (   )

   
|
    

                                                             (82) 

  = 2  
 
    (   )

   
|
    

                                                            (83) 

  = 8  [
   (   )

  
|
      

  ]                                              (8 ) 

It can be noted that equations (82) and (83) are found from (79). Also, eq (84) requires 

previous knowledge of L = Lg + Ls which is a constraint.  

C0 can be now calculated from (72)  

  =
1

    
                                                                                 (8 ) 

 

 

5.3.3.4 Rg Calculation 

With the previous knowledge of R0, different expressions to calculate the gate 

parasitic resistance can be defined, such as 

  
 =   (   )|    

    
  

2
                                                 (8 ) 

  
 =   (   )|      

    
3  

 
                                           (8 ) 

  
 =   (   )|    

    
  

1 +   
   

                                     (88) 
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5.3.3.5 Lg Calculation 

In the same way as Rg, expressions for the calculation of the gate inductance can be 

found. 

 =   

  

1 +   
   

                                                                      (8 ) 

 =   

  

  
 
                                                                                 (  ) 

 =   [  (   )|    
+

  

2
]                                               ( 1) 

 =   [
1

√3
  (   )|      

+
  

 
]                                    ( 2) 

 =
   (   )

  
|
    

                                                              ( 3) 

 =
   (   )

  
|
      

 
  

8  
                                            (  ) 

 =
1

    
 
                                                                                (  ) 

Once L is known Lg can be calculated from (74) as Lg = L - Ls. 

The following algorithm will clarify the steps to select the best values for each gate 

element: 

1. By using interpolation tools, from the forward Cold-FET measurement, find the 

frequency points of interest ωR, ωm, ωmin and ωmax. 

2. Determine ω0 from (75)-(79). 

3. For each value of ω0, compute ωx, C0, R0, Rg and Lg. 

4. Create an error function between the modeled and measured Z11 parameter of the 

forward Cold-FET, where the best values for the gate elements are selected. 
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5.3.4 Disadvantages of the Method 

Although, the methodology to calculate the parasitic elements presented in the 

previous section is very reliable it has some limitations. Next, a deep explanation of these 

disadvantages as well as approaches to overcome them is presented. 

 

5.3.4.1 Smoothing Derivative Data Using Artificial Neural Networks 

The method presented in this chapter for calculating the parasitic elements of the 

equivalent circuit model of FETs is quite simple to understand and implement due to the 

simplistic mathematics involved in it. Also, it can be implemented in different 

technologies, and due to the inherent low bias requirements of the method, the device is 

never at risk of irreversible damage. However, one of the drawbacks of the method is the 

sensitivity in the calculation of particular frequency points of ω. Therefore, measurement 

accuracy of the Z-parameters of the Cold-FET is required. Besides, first and second order 

numerical differentiation are needed, hence, the slightest variation can greatly affect the 

performance of the Cold-FET model.  In order to overcome this constraint, a neural 

network approach is used (Zárate-de Landa et al, 2012). The advantage of such algorithm, 

as explained in chapter III, is that it takes into account for training the neural network not 

only measured data, but also, its first derivatives making it an excellent tool for this 

application. 

It has been observed that measured data that is corrupted by noise or errors can be 

smoothed by using a neural network (Zárate de Landa et al., 2012). Figures 43 and 44 show 

how measured data is smoothed by using a neural network, this is more noticeable in the 

first derivative of both the real and imaginary part of Z11. It is interesting to notice that it 

would be very difficult to accurately determine the exact frequency point in which the 

extrema points of Z11 occur from the measured data. Consequently, using the data provided 

by the neural network significantly improves the exactitude in which the gate parasitic 

elements are calculated.  
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Figure 43. Real part of Z11 of the Cold-FET and its first derivative with respect to the frequency. Measured 
data (dotted line) and Neural Network model (solid line). 

  

 

 

Figure 44. Imaginary part of Z11 of the Cold-FET and its first derivative with respect to the frequency. 
Measured data (dotted line) and Neural Network model (solid line). 
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5.3.4.2 Low Frequency Dependence 

It has been observed that the location of the extrema points is dependent on the gate 

length of the device, the larger the gate, the smallest is the frequency where the extrema 

points are located. Hence for high power devices, the extrema points can be positioned in 

the range of 10-100 MHz, making the measurement dependable on the capabilities of the 

network analyzer used. Next, a method introduced by Reynoso-Hernández et al. (2009). 

Thus, if the real part of Z12 is subtracted from the real part of Z11, one obtains an expression 

that can be used to find Rg. 

  (       ) =   +   

  
 

  
 +   

                                         (  ) 

This procedure for calculating Rg assumes that at measurement frequencies ω >> ω0 

equation (96), can be written as 

   (       ) =   +   
  

 

                                                (  ) 

Thus, using (97), Rg and ω0
2
R0 can be determined by applying a linear regression. This 

method for calculating Rg is very simple since it only requires the knowledge of an 

approximate value of ω0 and then the frequency range were ω >> ω0 is fulfilled is very easy 

to find. The main advantage of this method is that the Rg calculation does not depend on 

R0, ωR or ω0.  In a similar way, by subtracting the imaginary part of Z12 from the imaginary 

part of Z11 an expression to determine Lg directly is obtained 

  (       ) =     
1

  

 

  
 +   

                                       ( 8) 

Assuming that at measurement frequencies ω >> ω0 equation (98), can be written as 

   (       ) =      
1

  
                                              (  ) 

Then, by using simple linear regression, Lg can be calculated from the slope of         

ωIm(Z11 – Z12) vs ω
2
.  

 Table 3 reports the parasitic resistances and inductances of the transistor studied in 

this investigation (CREE CGH35015F) measured in Cold-FET with open drain 

configuration from 1 to 5 GHZ with Ig = 4 mA. For this frequency range the minimum 

point of Im(Z11) cannot be observed. Therefore, the method described in this section for the 
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calculation of the gate resistance and inductance is used. In Figures 45 and 46 the measured 

real and imaginary part of Z11 is compared to the model obtained from the extraction of Rg 

and Lg. 

 

Figure 45. Comparison between the measured and simulated real part of Z11. 

 

 

Figure 46. Comparison between the measured and simulated imaginary part of Z11. 
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Table 3. Parasitic elements of the forward Cold-FET calculated of the CREE CGH35015F AlGaN/GaN HEMT 

R0 (Ω) Co (pF) Rg (Ω) Rs (Ω) Rd (Ω) Lg (pH) Ls (pH) Ld (pH) 

85.45 9.24 0.48 0.38 0.90 536.06 29.61 630.92 

 

 

5.4 The Pinched-off Cold-FET Model 

Parasitic capacitances extraction is based on the Y-parameters of the blocked 

transistor at DC gate bias beyond pinch-off voltage VP, and with zero drain –source voltage 

(Vgs < VP < 0; Vds = 0V). Indeed, for this condition Vds = 0, contrary to the forward Cold-

FET, this is due to the fact that drain and source electrodes must be at the same potential, in 

such a way that the depletion region under the gate is uniform and symmetrical. 

Fig. 47 shows the equivalent circuit model pinched-off Cold-FET. 
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Figure 47. Equivalent Circuit Model of the transistor under pinch-off bias (Vgs << Vp; Vds = 0). 
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Figure 48. Transformation from T to π network for the pinch-off equivalent circuit model. 
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Prior to parasitic capacitance calculation, a de-embedding of the parasitic gate and 

drain inductances Lg and Ld must be performed in order to eliminate their effect on the 

imaginary part of the inverse Cold FET Y-parameters. 

Models presented by Dambrine et al (1988) and White and Healy (1993) where developed 

for estimating Cpg and Cpd capacitances. It was demonstrated by Caddemi et al (2006) that 

the depletion region under the gate of the pinched-off Cold-FET can be modeled using a T- 

network. Transforming from a Π to a T circuit, the ECM of the pinched-off Cold-FET 

becomes as depicted in Fig. 48, where parasitic resistances and inductances are neglected 

since they have no influence on the Y-parameters of the pinched-off Cold-FET. Parasitic 

capacitances Cpg, Cpd, and Cb are then calculated from the Y-parameters of the network 

shown in Fig. 48. The expressions for the parasitic capacitances are: 

 

   =
  (   ) + 2  (   )

 
                                                      (1  ) 

   =
  (   ) +   (   )

 
+

  

  

  (   )

 
                               (1 1) 

where, 

  =
     (   )

   + 2  (   )
                                                               (1 2) 

 

It should be noted that, for calculating Cpg and Cpd with equations (100) and (102), it is 

required the knowledge of Cb and C0 which was previously determined according to the 

procedure explained in the previous section.  Besides, it is very important to comment that 

the expression to calculate Cpg is exactly the same as published by Dambrine (1988). 

Nevertheless, the novelty of this method is the Cb/C0 term in the Cpd expression because if 

Cb << C0 the calculation of Cpd would be the same as the one introduced by Dambrine. 

Nevertheless, if Cb = C0, then Cpd would be the same as the equation presented by White 

(1993). However, we have found that for GaN transistors Cb ≠ C0, so that neither Dambrine 

nor White methods can precisely extract the value of Cpd for this kind of transistor. The 

modeled Y-parameters computed from the extracted parasitic capacitances are displayed in 

Fig. 49. Table 3 
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Figure 49. Comparison between measured (circles) and modeled (lines) Y-parameters of the pinched-off 
Cold-FET (CREE CGH35015F AlGaN/GaN HEMT). 

 

 

Table 4. Parasitic capacitances calculated of the CREE CGH35015F AlGaN/GaN HEMT 

Cb (pF) Cpg (fF) Cpd (fF) 

2.88 34.21 347.28 

 

 

5.5 De-embedding Process 

Once the extrinsic elements are calculated, a de-embedding process is performed on 

the measured S-parameters of the device under different bias conditions (Dambrine et al, 

1989). With the knowledge of the intrinsic Y-parameters, the intrinsic elements (Cgs, Cgd, Cds, 

Ri, Rds, gm0 y τ) can be determined as explained in the next section. In order to obtain the 

intrinsic Y-parameters the de-embedding process depicted in Fig. 50 must be performed. 
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Figure 50. De-embedding process used for the computation of the intrinsic Y-parameters. 

 

5.6 Intrinsic Elements Extraction 

In 1990 Berroth and Bosh proposed an equivalent circuit model of the intrinsic 

expressed in the form shown in Fig. 51. In this network the intrinsic transistor is 

represented by electrical elements such as resistors and capacitors that are related to the 

physical properties of the device, as illustrated in Fig 52. Furthermore, a controlled current 

source is added to represent the active device as a transadmittance. 
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Figure 51. Small-signal equivalent circuit model of the intrinsic transistor. 

 

 

Figure 52. Physical origins of the intrinsic elements of a FET. 

 

 

The Y-parameters corresponding to the equivalent circuit model of Fig. 51 are defined as 
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Following the extraction method proposed by Berroth and Bosh (1990) the values of the 

intrinsic elements can be obtained as 
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where                    

)Re()Re( 1221 YYX                     (114) 

)Im()Im( 1221 YYY                          (115) 

As mentioned previously, for this thesis a 15W AlGaN/GaN (CGH35015) HEMT 

developed by CREE® with Vth = -3 V was used.  Pulsed IV/RF measurements were 

performed using an Auriga AU4750 Pulsed IV/RF System along with pulse I/V head, 

AU4750-0004 and AU4750-0007A, at the gate and drain of the transistor respectively. The 
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pulse width was configured to 10 µs with 1% duty cicle and quiescent point Vgsq = -3 V 

and Vdsq = 40 V. At each bias point, the S-parameters of the device were measured using 

Agilent’s PNA-N5242. Fig. 53 depicts the intrinsic elements calculated for Vgs measured in 

the range of -3.8 V to 0 V with 0.25 V step and Vds from 0 V to 45 V with steps of 0.5 V.  

 

  

   

  

Figure 53. Intrinsic elements calculated at different bias points. 
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Chapter 6 - Large Signal Modeling 
 

 

 

6.1 Introduction 

So far, the physics and principles of operation of AlGaN/GaN HEMTs have been 

described, and how such principles need to be considered in the context of developing a 

compact model of the device for use in a circuit simulator to aid power amplifier design. 

Also, Chapter V thoroughly described how to characterize and model the transistor 

package and its parasitic elements, how to de-embed these extrinsic elements in order to 

reach the intrinsic transistor. Furthermore, based on the Y-parameters obtained from 

measurements at different bias conditions, the computation of the intrinsic elements of the 

small-signal model was explained. Now the attention will be placed on the intrinsic 

transistor itself: the active semiconductor channel. 

The “transistor action” in the FET occurs in the active channel that lies under the 

gate: this is the place where the current amplification happens. This part of the transistor is 

called the intrinsic device. The intrinsic large-signal model that is developed in this work is 

quasi-static. In other words, the model can describe the transistor’s RF frequency 

dependence through the various reactive components in the model, such as the intrinsic 

capacitances at the gate and drain of the device, and the extrinsic inductance and 

capacitance associated with the manifold and extrinsic parts of the transistor. 

This chapter presents the theoretical foundations of large-signal device modeling 

for nonlinear circuit simulation. Application of artificial neural networks in the modeling of 

the drain current, and terminal charges is going to be explained, as well as, a 

comprehensive discussion on terminal charge conservation.  

 

6.2 The Intrinsic Nonlinear Model 

The separation of a circuit-level transistor model into intrinsic and extrinsic parts is 

an idealization that simplifies the treatment of an otherwise very complicated device. 
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Conceptually, the intrinsic model describes the dominant nonlinearities of the transistor 

that occur in the active region, inside the feed networks, manifolds, and other parasitic 

particularities of the layout. For FETs, the intrinsic model includes that part of the active 

drain-source channel controlled by the gate and modulated by gate–source and drain–

source voltages. The channel current from drain to source and charge storage between the 

gate and channel are the dominant phenomena, represented in the intrinsic model by 

nonlinear circuit elements, Ids, Qgs, and Qds, respectively, within the dashed box of Fig. 54. 

Other elements can be added to account for gate leakage and breakdown in reverse bias and 

forward gate conduction at large forward bias conditions. In FET models, parasitic 

elements are usually modeled with simple circuit elements whose parameter values do not 

change with bias. The parasitic elements that make up the extrinsic model are usually 

associated with capacitive coupling between the electrodes, and inductance and resistance 

of feed structures and manifold metallization, dependent on the device layout (Wood and 

Root, 2006). Even the FET access resistances, those parts of the semiconducting channel 

outside the control of the gate, are usually modeled by simple resistors with fixed values, 

Rs and Rd, independent of the current or the voltage applied. 

Procedurally, the intrinsic model can also be defined as that part of the model that 

remains after the parasitic elements have been identified and removed. Failure to account 

properly for parasitics can therefore negatively impact the modeling of the intrinsic device. 

Both perspectives on the intrinsic model should be consistent for a reliable and useful 

overall model (Rudolph, Fager, and Root, 2012).  
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Figure 54. FET model schematic diagram showing the package capacitances, parasitic elements and the 
intrinsic quasi-static transistor model. 

 

 

6.2.1 Measurement Approach to Nonlinear Modeling 

In this section it is explained how measured small-signal data is used directly to 

obtain the nonlinear model. This procedure was first explained by Närhi in 1996 where it is 

assumed that the currents at the two terminals of the intrinsic transistor as illustrated in Fig. 

54, driven with large-signal voltages v1(t), v2(t) can be written as. 

  ( ) =   
( )(𝑣  𝑣 ) +

 

  
  

( )(𝑣  𝑣 ) +
  

   
  

( )(𝑣  𝑣 ) +
  

   
  

( )(𝑣  𝑣 )        (11 ) 

 

 These is the conventional quasi-static formulation where only the first two terms of 

the series expansion are included, namely the static current through a nonlinear 

conductance gi
(0)

 and the first order dynamic current through a nonlinear capacitance, 

dqi
(1)

/dt.  
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For the quasi-static model it is considered that the model is time-invariant (i.e., gi
(0)

 

and qi
(1) 

are not explicit function of time), but their time dependence is solely through the 

dependence on the two controlling voltages. In addition, it is assumed that the partial 

derivatives of this functions 

   
( )(𝑣  𝑣 ) =

   
( )

 𝑣 
         

( )(𝑣  𝑣 ) =
   

( )

 𝑣 
            = 1 2             (11 ) 

depend only on the instantaneous voltages v1(t), v2(t), and not on their time derivatives. 

Therefore, the small-signal response of the device at port i, at DC bias point V1, V2, to a 

small variation in the voltages dv1(t), dv2(t) in the following form 

   ( ) =    
( )

 𝑣 +    
( )

 𝑣 +    
( )

 𝑣 
̇ +    

( )
 𝑣  ̇                              (118) 

 

where  𝑣 
̇   is related to the port derivative with respect to time. Moving to the frequency 

domain, the response to a small sinusoidal excitation dv1(f), dv2(f), at frequency f. 

   ( ) = [   
( )

+      
( )

] 𝑣 ( ) + [   
( )

+      
( )

] 𝑣 ( )                  (11 ) 

 

By observing eq (119) one can realize that this expression can be compared to the 

measured Y-parameters of the device at a DC bias point. 

  

   ( ) =    (       ) 𝑣 ( ) +    (       ) 𝑣 ( )                   (12 ) 

 

Then, the large signal functions in eq. (116) can be calculated from the path-independent 

line integrals 

  
( )(𝑣  𝑣 ) =    (     ) + ∫    

( )
(𝑣    ) 𝑣 

  ( )

  

+ ∫    
( )(𝑣 ( ) 𝑣 ) 𝑣 

  ( )

  

         (121) 

  
( )(𝑣  𝑣 ) = ∫    

( )
(𝑣    ) 𝑣 

  ( )

  

+ ∫    
( )(𝑣 ( ) 𝑣 ) 𝑣 

  ( )

  

        (122) 

Since it is considered a quasi-static model, it is assumed that the DC characteristics 

do not change with frequency (which is just an initial approximation dispersion effects 

should also be considered), the nonlinear conductance can be described by the measured I-
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V characteristics of the transistor. Further, from the FET equivalent circuit model of Fig. 

54, the intrinsic model dynamic equations (121) and (122) can be simplified by: 

  ( ) =    (   ( )    ( )) +
   (   ( )    ( ))

  
                             (123) 

  ( ) =    (   ( )    ( )) +
   (   ( )    ( ))

  
                             (12 ) 

 

Due to the inherent reverse-bias junction in HEMTs, the gate current is several orders of 

magnitude smaller than the drain current making it negligible, simplifying then, the 

nonlinear model. Thus, the intrinsic nonlinear model that will be developed in this chapter 

will consist on three neural networks describing the drain current and gate and drain 

charges. 

 

6.3 Neural Network Model of the Drain Current 

The intrinsic model constitutive relations are defined on the set of intrinsic voltages, 

Vgs
int

 and Vds
int

 after accounting for the voltage drop across the parasitic resistances. 

Measured  I–V data, on the other hand, are defined on the applied (extrinsic) voltages. The 

relationship between extrinsic and intrinsic voltages is simple, given the resistive parasitic 

element values, previously extracted, and the simple equivalent circuit topology. The 

equations are given in eq (118) (Root, 1999). An important issue for table models is that 

the extrinsic voltages at which the measurements are taken are usually defined on a grid, 

but the resulting intrinsic voltages, explicitly computed by substitution using eq. (118), do 

not fall on a grid, as shown in Fig. 55, and therefore cannot be directly tabulated. Solving 

(118) in this sense enables the data to be re-gridded on the intrinsic space so that the 

terminal currents can be tabulated as functions of the intrinsic voltages. 

 

[
   

   

   
   

] = [
   

   

   
   ]  [

  +     

    +   
] [

   
  

   
  

]                         (12 ) 
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Figure 55. Extrinsic (gridded) and corresponding (non-gridded) voltage domain of a FET. 
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(a) 

 
(b) 

Figure 56. FET model IV constitutive relation expressed as functions of (a) extrinsic and (b) intrinsic 
voltages. 
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Modeling the measured I–V data as functions of the intrinsic voltages reveals 

characteristics quite different from the model expressed in terms of extrinsic data. This is 

shown in Fig. 56. In Figure 56a, the modeled I–V curves as functions of the applied 

(extrinsic) voltages Vgs
ext

 and Vds
ext

 are plotted. In Figure 56b, intrinsic I-V modeled 

constitutive relations, defined on Vgs
int

 and Vds
int

, are plotted. There is a big difference 

between Figure 5.6a and 5.6b, especially around the knee of the curves. This process also 

makes clear that errors in parasitic extraction can distort the characteristics that we would 

otherwise attribute to the intrinsic model. In addition to poor interpolation properties of 

table based models, this gridding constraint can be circumvented by using artificial neural 

networks as will be demonstrated next.  

 

With the intrinsic voltages computed, the next step is to determine the ANN 

architecture that will be used to approximate the drain current. For the CGH35015 

transistor studied in this thesis a [2-25-25-1] ANN was trained using the logistic function as 

nonlinearity in the hidden layers. Also, the modified backpropagation introduced in section 

IV.5 (Zárate-de Landa et al, 2012) was applied as training method in conjunction to the 

iRprop (Igel and Husken, 2000) as minimum search method. Fig. 57 illustrates the neural 

network architecture used to approximate the drain current. Since the higher order 

derivatives of Ids are important in the prediction of harmonic signals in the nonlinear 

simulation, it is important to accurately approximate not only Ids but also gds, gm and its 

higher order derivatives. Hence, both ρ0 and ρ1 were set to 1 in the modified 

backpropagation algorithm to take into account in training information of the function to be 

approximated (Ids) and its derivatives with respect to the inputs (gm and gds). The error 

function is propagated backwards in order to update the network weights. Results obtained 

from the trained ANN are shown in Figs 58-62. 
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Figure 57. Four-layer ANN used to model the drain current. 

 

 
Figure 58. Comparison between measured (circles) and ANN modeled (solid lines) drain current. 
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Figure 59. Comparison between measured (circles) and ANN modeled (solid lines) output conductance. 

 

 

Figure 60. Comparison between measured (circles) and ANN modeled (solid lines) transconductance. 
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Figure 61. Comparison between measured (circles) and ANN modeled (solid lines) of the first derivative of 
gm. 

 

 

Figure 62. Comparison between measured (circles) and ANN modeled (solid lines) of the second derivative 
of gm. 
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6.4 Charge Modeling 

Determination of charge state functions is a critical step in the nonlinear modeling 

process due to its decisive influence in the prediction of bias-dependent high frequency S-

parameters, intermodulation distortion and ACPR in FETs (Rudolph et al, 2012). 

The charge modeling problem can be simply stated as the specification of the 

nonlinear constitutive relations defining the independent terminal charges at the (intrinsic) 

nodes of the circuit model, as functions of the relevant independent controlling variables, 

usually voltages. The charge-based contribution to the current at the ith terminal is then the 

total time derivative of the charge function, Qi. This is expressed in equation (126). 

  ( ) =
   (   ( )    ( ))

  
                                                    (12 )  

 

where, i = 1,2 represent the intrinsic ports. According to eq. (126) the charge constitutive 

relations contribute to the current model through the time operator. Therefore, it can be said 

that the charge plays a crucial part in the nonlinear model as the frequency increases. 

 

6.4.1 Charge Conservation Law 

The conservation of charge states that charge can be neither created nor destroyed, 

and this concept is described by the continuity equation from electromagnetic theory 

   =  
  

  
                                                              (12 ) 

where J is the current density across a surface, and ρ is the charge density in the volume 

enclosed by the surface. In the derivation of the state variable for the terminal charges, Qi, 

above, it is used the notion of conservation in terms of a conservative field of capacitance. 

Using electromagnetic (or electrostatic) field theory to illustrate this concept, the most 

familiar example of a conservative field is the electric field. A two-dimensional electric 

field in x and y is shown in Fig. 63; there are two arbitrary locations A and B in this field. 

If we integrate along any path from A to B, we obtain the same potential difference: 

∫  ⃗    ⃗⃗  ⃗

 

 
        

= ∫  ⃗    ⃗⃗  ⃗

 

 
        

=                                               (128) 
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Or, if the integration was performed around the closed contour, from A to B along contour 

1 back to A along contour 2, then we end up at the same potential: 

∮  ⃗    ⃗⃗  ⃗

 

=                                                                        (12 ) 

and the electric field conserves potential energy. Also, a conservative field is an irrotational 

field: the curl of the field vector is zero. For the two-dimensional electric field the curl is 

written as: 

    ( ⃗ ) =
   

 𝑥
 

   

 𝑦
=                                                     (13 ) 

By replacing the electric field by a capacitance field, and the x-y coordinates become 

vectors in the directions of Vgs and Vds then 

     ⃗⃗ (  
⃗⃗  ⃗) =

    (       )

    
 

    (       )

    
=                                (131) 

where 

 ⃗ =     ⃗ 𝑣  +     ⃗ 𝑣                                                        (132) 

 

From equations (121)-(122) it can be concluded that the capacitive field in the 

transistor terminals is defined by the imaginary part of the Y-parameters of the device. 

Hence, eq. (131) can be written as 

     ⃗⃗ (  
⃗⃗  ⃗) =

   [   (       )]

    
 

   [   (       )]

    
=                         (133) 

 

Then, in order to consider that in a closed contour in this field would result in no change in 

the charge, the following expression must be fulfilled 

   [   (       )]

    
=

   [   (       )]

    
                                  (13 ) 

meaning that charge is not being created nor destroyed, it is conserved. 
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Figure 63. Two-dimensional electric field. (Aaen Peter H., Plá Jaime A. and Wood John, 2007, p. 226) 

 

 

6.4.2 Neural Network Model of the Gate and Drain Charge Functions 

For the gate and drain charges model a similar ANN approach as for the drain 

current is performed. By taking advantage of the modified backpropagation explained in 

section IV.5, a neural network model of the charge functions can be obtained 

straightforward from the bias dependent Y-parameters of the device computed from 

measurements.  

Let’s take a pause to point an important property of the modified backpropagation 

algorithm that will be of significant assistance in the determination of the ANN model for 

the charge functions. In summary, the backpropagation algorithm consist in taking the 

input/output relationship (X,D) of the ANN and computing the mean square error which 

will be sent back through the network as a feedback, which will be used to update the 

network weights at each iteration. For the modified backpropagation (Zárate-de Landa et 

al, 2012), the cost function (mean square error) that will be used in training was modified 

as explained in equations (47) - (49). For convenience these equations can be rewritten as 

 

 =
  

2 
∑[       ]

 

 

   

+
  

2  
∑ ∑ [     

     

     
]

  

   

 

   

                            (13 ) 
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It can be seen in equation (135) that output data (D), as well as, derivative information 

(G) is used for training the network. ρ0 and ρ1 are weight parameters that will balance the 

importance to either output or derivative data for training. Therefore, it can be observed 

three different cases: 

1. By setting ρ0 = 1 and  ρ1 = 0, the ANN will learn the input/output relationship from 

the (X,D) data. This is the same as using the classical backpropagation algorithm. 

2. By setting  ρ0 = 1 and  ρ1 = 1, the ANN will learn the input/output relationship 

from the (X,D) data and also using derivative information (X,G). This will 

improve accuracy and robustness of the network.  

3. Finally, by setting ρ0 = 0 and ρ1 = 1, the input/output (X,D) relationship is learned 

from the derivative data (X,G). This is a very interesting and important property of 

the method because it gives the integral solution to of the derivative data (X,G). 

 

Since there are not direct measurements of the device charges, exploiting the 

integration properties of the algorithm, neural networks can be trained to predict the charge 

functions from the Y-parameters of the device as illustrated in Figure 64 and 65. As a 

result, Figure 66 and 67 show the predicted gate and drain charges by the trained ANNs. 

The major advantage of this neural network approximation is that it avoids the difficulties 

and inconsistencies from numerical integration. From eq. (122) expressions for the gate and 

drain charges are found 

 

  (       ) = ∫   [   (        )]    

   

    

+ ∫   [   (       )]    

   

    

        (13 ) 

  

  (       ) = ∫   [   (        )]    

   

    

+ ∫   [   (       )]    

   

    

        (13 ) 
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Figure 64. ANN structure and cost function used to train the gate charge. 
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Figure 65. ANN structure and cost function used to train the drain charge. 
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Figure 66. Gate charge function obtained from ANN. 

 

 
Figure 67. Drain charge function obtained from ANN. 

 

 

Once the ANN functions for the gate and drain charges are obtained, equation (134) 

is applied in or to prove charge conservation. Figures 67 and 68 depicts how charge is 
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Figure 69. Conservation of charge at the drain. 
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Figure 68. Conservation of charge at the gate. 
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Chapter 7 - Model Validation 
 

 

 

7.1 Introduction 

Model validation is the process of determining if the model is an accurate 

description of the real device from the perspective of the intended use of the model. Model 

validation has different purposes depending on the user perspective. For example, for the 

modeling engineer the main purpose of model validation is to guide the development and 

refinement of a model, while for the circuit designer, its validation provides a confidence 

level for the accuracy and limitations of the model. A solid and comprehensive model 

validation exercise results in increased confidence in assumptions behind the construction 

of the model and a higher level of assurance of its predictive capabilities outside the 

validation domain. 

There is a subtle but important difference between the validation and verification of 

a model. The verification of the model is the process by which the implementation of the 

model in the CAD package is demonstrated to be consistent with the equations and 

topology of the model, and to ensure that the model produces the expected results. In other 

words, the verification ensures that the model was properly implemented in the circuit 

simulator. On the other hand, model validation is the process by which the model 

simulation results are compared with an independent set of data not used during the model 

extraction. In essence, the model validation provides confidence and guidance on the 

predictive qualities of the model. An example of model validation is the comparison of 

model versus measured load-pull contours for a model in which only DC–IV characteristics 

and small-signal S-parameters were used during the model extraction. 

 

7.2 Measurement Techniques for Model Extraction 

As mentioned in Chapter III, in this thesis we are focused in developing a neural 

network measurement based compact model of the transistor. In this section the techniques 
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used to collect the necessary data for the extraction of the transistor model will be 

explained. Basically the device must be characterized in three different forms for model 

extraction: First, the S-parameters of the device measured in Cold-FET configuration, in 

both, forward and pinch-off conditions must be measured, this data is used to extract the 

parasitic elements of the transistor; pulsed I-V measurements are used to train the drain 

current source neural network model; pulsed S-parameter measurements under different 

bias conditions will provide the data needed to train the gate and drain neural network 

charge models. The modeling flow followed in this thesis is illustrated in Figure 70. 

 

 

Figure 70. Transistor modeling flow. 

 

 

7.2.1 Pulsed I-V, Pulsed S-parameter Measurement System 

The Auriga AU4750 illustrated in Figure 71 is an example of a commercially 

available pulsed I–V test system. Pulsed I–V analysis has been applied by many to 

understand trapping effects in III-V devices, including the original GaN trapping origins 
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and its characterization (Trassaert et al, 1999), (Siriex et al, 2000), (Meneghesso et al, 

2004). For the case of GaN HEMT modeling, pulsed I–V measurements are effective for 

extracting an isodynamic equation for Ids. The term isodynamic is used when thermal and 

trap conditions are held at values corresponding to the specified quiescent bias condition 

(Dunleavy et al, 2010). This is in comparison to a static I–V measurement, representative 

of a traditional curve tracer or DC parameter analyzer, where acquisition of each data point 

is slow enough that traps, if present, and thermal conditions can be different at each of the 

acquired data points. Figure 72 shows a comparison of pulsed and static I–V measurements 

for a GaN transistor, where the thermal heating effects in the high Vds* Ids power 

dissipation region are quite clear in contrast to the isodynamic pulsed I–V data. Typical 

pulsed I–V conditions might consist of 0.1 to 0.5 ms pulse widths, separated by time 

intervals on the order of 1 ms. These data were acquired using an Accent Optoelectronics 

DiVA instrument. 

 

AU4750-0004

AU4750-0007A

AURIGA 

4750

Agilent

 PNA-N5242

 

Figure 71. Measurement setup for pulsed I-V, pulsed S-parameters. (Extracted from Auriga Microwave 
data sheet). 
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Figure 72. Comparison of static I-V (solid red line) and pulsed I-V for a GaN HEMT. Pulse conditions were 1 
µs pulse width and 1 ms separation with quiescent bias points Vdsq = 0 V, Vgsq = -3 V (blue pointed line) 
and Vdsq = 40 V, Vgsq = -3 V (dashed green line). 

 

 
 

For this thesis a 15W GaN HEMT (CGH35015F) developed by CREE® for 

WiMAX applications with Vth = -3 V was studied.  Measurements were performed using an 

Auriga AU4750 Pulsed IV/RF system along with pulse I/V head, AU4750-0004 and 

AU4750-0007A. The pulse width was configured to 10 µs with 1% duty cycle and 

quiescent point Vgsq = -3 V and Vdsq = 40 V since the model will be used in the future in the 

design of a Class E amplifier. Vgs was measured in the range of -3.8 V to 0 V with 0.2 V 

step and Vds from 0 V to 45 V with steps of 0.5 V. At each bias point, pulsed S-parameters 

of the device were measured using Agilent’s PNA-N5242. It is important to comment that 

pulsed I-V, pulsed S-parameter measurements were performed in order to mitigate the self-

heating and trapping effects of the device since the quasi-static model constitutive 

relationships are considered to be dependent only of the control voltages Vgs and Vds. Also, 
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by performing pulsed measurements, high bias points which could not be reached by static 

DC conditions are measured. In total 1820 bias points where measured which were used as 

data to train the neural network models described in Chapter VI. The sample points were 

divided 80% for training and 20% for validating the network. The logistic function was 

selected as the nonlinear processing function at the hidden layers. Also, the iRprop was the 

training method selected as the search direction applied in the modified backpropagation 

algorithm  

 

7.3 Implementation in Agilent ADS
®
 

The main objective of developing accurate transistor models is being able to 

implement it in CAD simulators, such as ADS, by circuit designers. Transistor models are 

of great aid in the design of RF/microwave circuits such as amplifiers, oscillators and 

mixers. Therefore, a model is successful if it is used in the design of successful products. 

 

Figure 73. Example of a two-port symbolically-defined device component. 

 

 

The symbolically-defined device (SDD) is an equation-based component that is 

well suited to the rapid prototyping of nonlinear device models. It is a component available 

in Agilent ADS. The SDD is a multi-port component that can be placed directly into the 

circuit schematic in the simulator. A schematic symbol for an SDD is shown in Figure 73. 

The current at a given port is defined using an equation, or constitutive relationship, that is 
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expressed in the time domain. These equations can be functions of the port voltages or 

currents, their time derivatives or delayed versions of the port voltages or currents, or of 

external signals that can be referenced. They can be explicit or implicit expressions. For 

example, in an n-port SDD, the explicit representation of the current at the k
th

 port is given 

by: 

  =  (          )                                                            (138) 

 

And the current defined by an implicit expression at the k
th

 port is  

       (                     ) =                                         (13 ) 

 

The explicit equation is a voltage-controlled expression, which is how model equations are 

often written. The explicit form is used in standard nodal analysis, and is very efficient to 

execute in the simulator, as the expression can be solved directly, and no new variables are 

created. In contrast, the implicit representation requires modified nodal analysis for its 

solution, adding an extra branch variable, ik, and current equation to the set of algebraic 

equations that needs to be solved. 

The weighting functions H[m] are used to define time derivatives or time delays. The 

weighting function H[1] is the first time derivative, and it is a built-in function. A time 

delay can be constructed by defining the following weighting function: 

 [2] =                                                                            (1  ) 

where ω is the frequency and τ is the delay. 

 

The equations used in the SDD can be the function approximations for the model 

functions described in earlier chapters, using the device gate and drain voltages as the 

controlling signals. The expressions should be constructed with the usual considerations for 

simulator convergence in mind: the functions must be continuous in the voltages and 

currents, and should be differentiable with respect to the voltage and current. Additionally, 

the derivatives should be continuous, to aid convergence. An advantage of using the SDD 

as a vehicle for nonlinear model implementation is that the Jacobian is calculated within 

the component itself, during simulation. This avoids the lengthy time involved and 
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potential for errors that arise when the modeling engineer has to create the Jacobian for the 

model by hand. The development and prototyping of the model is therefore significantly 

faster when using the SDD; often, this is also the final form of the model for distribution. 

The numerical efficiency of SDD devices is just slightly worse than similar models 

implemented in a high-level computer programming language. 

One of the advantages of neural networks is that once the ANN is trained it is 

represented by an equation which is easily implemented in a circuit simulator such as ADS. 

In this work three neural networks that describe the constitutive relations of an 

AlGaN/GaN HEMT (CGH35015F) where developed and trained as described in the last 

chapter. After training, the neural networks that model de drain current source Ids, and the 

gate and drain charge function Qg and Qd where implemented, in equation form, on a SDD 

nonlinear component as illustrated in Figure 74. The package and parasitic elements were 

determined following the procedures described in Chapter V. The intrinsic resistance Ri 

and time delay τ are defined as bias-dependent neural networks trained with information 

obtained from the calculated intrinsic elements.    

 
Figure 74. Model implementation in Agilent’s ADS. 
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7.4 Model Simulation and Results 

The developed quasi-static model was verified by small and large signal 

measurements. First, the model is checked whether it is consistent with the pulsed I-V and 

pulsed S-parameter measurements. Finally large signal single tone simulations are 

compared to measurements. 

 

7.4.1 I-V Characteristics 

The first step in model validation is to compare the simulated to measured I-V 

characteristics of the device as depicted in Figure 75. The good agreement between 

measured and simulated data is proof of the excellent function approximation properties of 

neural networks. It also demonstrates that the intrinsic voltages where accurately calculated 

in the de-embedding process. 

 

 

Figure 75. I-V Comparison between measurements and simulations for the CGH35015 AlGaN/GaN quasi-
static model. 

 

7.4.2 RF Characteristics 

The large-signal model was validated by comparing harmonic balance simulation 

performed on Agilent ADS
TM

 to measurements. The AM-AM measurement setup used in 

this work is illustrated in Figure. 76. A good agreement of the Pout vs Pin relationship for 
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the fundamental, 2
nd

 and 3
rd

 harmonics, as well as the S-parameters of the device is 

obtained and displayed in Figures 77, 78, 79 and 80. Results were obtained at 3.5 GHz and 

four different bias conditions which are low due to the absence of long term memory 

effects in the model.  
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Figure 76. AM-AM measurement setup. 
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Figure 77. Comparison between measured and simulated S-parameters and output power of the 
transistor at f0 = 3.5 GHz, Vgs = -2 V and Vds = 15 V. 

 

 

Figure 78. Comparison between measured and simulated S-parameters and output power of the 
transistor at f0 = 3.5 GHz, Vgs = -1.6 V and Vds = 15 V. 
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Figure 79. Comparison between measured and simulated S-parameters and output power of the 
transistor at f0 = 3.5 GHz, Vgs = -1.4 V and Vds = 15 V. 

 
Figure 80. Comparison between measured and simulated S-parameters and output power of the 
transistor at f0 = 3.5 GHz, Vgs = -1.6 V and Vds = 20 V. 
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Conclusions and Future Work 
 

 

 

In this thesis a neural network based quasi-static model of a commercial 

AlGaN/GaN HEMT, which accurately reproduces the current and charge storage 

characteristics of the device was developed. This measurement based compact model was 

derived from pulsed I-V, pulsed S-parameter measurements since no long term memory 

effects were taken into account. The model is constructed to account for the main physical 

and electrical characteristics of the power device. A detailed discussion of efficient and 

reliable techniques for parasitic elements extraction was presented. Package parasitics were 

extracted from the measured admittance parameters of a dummy structure where there was 

not active device. Then from the measurement of the transistor in forward cold-FET 

configuration the parasitic resistances and inductances were determined. The main two 

advantages of the method presented in this thesis is that only one measurement is needed, 

and also, since the proposed forward cold-FET measurement uses a small forward current 

applied to the gate Schottky barrier, the device is never at risk of suffering irreversible 

damage. Finally the parasitic capacitances, the last of the extrinsic elements, are calculated 

from the pinched-off cold-FET measurement. It is important to mention that a good 

parasitic extraction is the foundation of a good model, there is no way to stress this enough, 

since these elements are used in de-embedding processes to find the intrinsic voltages and 

intrinsic admittance parameters of the device as well.   

In Chapter IV it was introduced a modification to the classical backpropagation 

algorithm for artificial neural networks which uses derivative information in the training 

process, this is the main contribution of this research work. The modified backpropagation 

permits a straightforward methodology to develop a neural network based model directly 

after device characterization. By using derivative information in the training process it is 

possible to develop a robust neural network based drain current model since information of 

the output conductance and transconductance can be used in the training process. Also, this 

technique enables the direct computation of smooth ANN-based constitutive relations of 
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the transistor terminal charge functions from bias-dependent S-parameter data. After de-

embedding the parasitic elements, the bias-dependent intrinsic admittance parameters of 

the device are calculated and used as training data samples for the ANN-based terminal 

charge functions.  By taking advantage of the integration properties of the algorithm, the 

gate and drain charge ANN models can be directly developed from the imaginary part of 

the intrinsic admittance parameters of the device, improving the numerical path-integration 

technique used in analytical or table-based models. Another advantage of neural networks 

is that they can be trained from training scattered data contrary to table based models which 

need data that fall in a grid to tabulate the model parameters. In addition to these 

advantages, neural network models are represented as a set of simple equations that can be 

easily implemented in circuit simulators, which is the objective of compact models,  but 

obviating difficult parameter extraction procedures found in analytical, table-based and 

physics-based models. All the parameters needed in the model are obtained during the 

training process which just requires the input/output relationship extracted from measured 

data. Once the ANNs are trained, the model exhibits excellent accuracy and simulation 

speed properties when it is implemented in a commercial circuit simulator such as 

Agilent’s ADS®. 

Finally the quasi-static model was validated by comparing simulations to small and 

large signal measurements. The model is able to accurately predict the S-parameters of the 

device and the output power for the fundamental, second and third harmonics at different 

bias conditions, verifying then the small-large signal consistency of the model.  

Artificial neural networks are starting to play a crucial role for nonlinear device 

modeling and the modified backpropagation added a significant value to this field. ANN-

based nonlinear transistor models have demonstrated superior capabilities compared to 

table-based models in most aspects. From the same set of data from which the table-based 

model is constructed, the ANN model is more uniformly accurate and smoother. Besides, 

due to their nature, ANN-based models can be used in different technologies such as FETs, 

LDMOS and HBTs as long as measurements are available since this approach has proven 

versatility to be implemented in any equivalent circuit topology. In addition, the 

information used from training can be from any source: I-V and C-V curve tracer along 
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with vector network analyzers (VNA) measurements; pulsed I-V and pulsed S-parameters; 

passive or active load pull systems; nonlinear vector network analyzers (NVNA), large 

signal network analyzers (LSNA) or X-parameter measurements, etc.   There is a huge 

universe of possibilities to continue this research, it is recommended that future work 

focuses in the inclusion of long term memory effects such charge trapping and a thermal 

effects to improve the reliability and robustness of the model. The neural network 

methodology presented in this thesis can be extended or adapted to use data measured from 

nonlinear network analyzers. Therefore it would be interesting to compare the model 

presented in this work with an electrothermal and trap-dependent model constructed 

directly from nonlinear measurements and using neural networks as a fitting tool. Another 

research branch can be found in the use of the model to design a power amplifier. 

 Final thoughts regarding this topic fall in the idea that distinct measurement 

approaches can be combined with ANN models in order to create end-to-end 

methodologies that suit a variety of needs. A nonlinear model can be generated from linear 

measurements as demonstrated in this work, but also, the recent commercial availability of 

NVNA/LSNA instruments enables many new and powerful transistor modeling flows. 

NVNA/LSNA or X-parameter waveform data combined with advanced ANN modeling 

technology can produce a large-signal electrothermal and trap-dependent nonlinear time-

domain model for III-V FETs, HBTs or LDMOS devices with advanced memory effects, 

high accuracy and considerable generality. 
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Contributions 
 

• A thorough methodology to obtain the compact model of microwave transistors 

using artificial neural networks is explained in this thesis. 

• The model surpasses the accuracy of table and equation based models.  

• The model is fast and easy to extract.   

• The model of a 15W GaN HEMT was developed. It can be used in the future for the 

design of power amplifiers.  

• A neural network toolbox specifically developed to be used as a tool in the 

modeling of transistors was created. The toolbox will be available for the 

Microwave/RF Group at CICESE and the Nonlinear RF Laboratory at The Ohio 

State University. 
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