Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California

Maestría en Ciencias en Ciencias de la vida con orientación en Biomedicina y Bionanotecnología

Distribución y abundancia de microorganismos marinos en el Golfo de México, identificados mediante citometría de flujo

Tesis para cubrir parcialmente los requisitos necesarios para obtener el grado de Maestro en Ciencias

Presenta:

Rafael Betanzos San Juan

Ensenada, Baja California, México 2019

Tesis defendida por Rafael Betanzos San Juan

y aprobada por el siguiente Comité

Dr. Marco Antonio De León Nava Director de tesis

Dr. Rodrigo Méndez Alonzo

M. en C. Daniela Zazueta Favela

Dr. Luis Donis Maturano

Dra. Edna Lorena Hernández López

Dra. María del Carmen Maya Sánchez

Dra. Patricia Juárez Camacho Coordinadora del Posgrado en Ciencias de la Vida

> **Dra. Rufina Hernández Martínez** Directora de Estudios de Posgrado

Resumen de la tesis que presenta **Rafael Betanzos San Juan** como requisito parcial para la obtención del grado de Maestro en Ciencias en Ciencias de la vida con orientación en Biomedicina y Bionanotecnología.

Distribución y abundancia de microorganismos marinos en el Golfo de México, identificados mediante citometría de flujo

Resumen aprobado por:

Dr. Marco Antonio De León Nava Director de tesis

En las aguas del Golfo de México (GoM), además de los organismos conocidos, es esperable que exista una gran diversidad de microorganismos con potencial aplicación tecnológica. Sin embargo, un paso previo antes de la descripción de dichas aplicaciones y funciones bioquímicas, es necesario realizar estudios que describan la estructura de las comunidades microbianas, en un ambiente de enormes dimensiones como el GoM. En este trabajo, se realizó el análisis de la abundancia y distribución de la evidencia de la presencia de microorganismos marinos a través de diferentes zonas y profundidades del GoM mediante citometría de flujo, una técnica ampliamente utilizada en el estudio de ambientes marinos. Con el fin de alcanzar este objetivo, se analizaron 235 muestras de agua marina mediante citometría flujo obtenidas a partir de tres campañas oceanográficas llevadas a cabo en los años 2016, 2017 y 2018, donde se obtuvieron alícuotas de agua a distintas profundidades: superficie, máximo de fluorescencia, mínimo de oxígeno, mil metros y fondo, en 47 estaciones del GoM. Para identificar moléculas orgánicas y microorganismos se utilizó un colorante afín a ácidos nucleicos (SYBR Green I) y se catalogaron los eventos positivos al colorante de acuerdo con el tamaño relativo de cada partícula. A partir de la información del citómetro, se construyeron mapas de distribución y abundancia, por gradiente y se realizó un análisis de diversidad beta, mediante el índice de Bray-Curtis, para identificar similitudes entre las poblaciones de eventos positivos al colorante y posibles patrones asociados a la ubicación geográfica del muestreo. Lo anterior, permitió identificar dos zonas, una al norte y otra al sur del Golfo de México, Cinturón Plegado de Perdido del Golfo y la Bahía de Campeche, respectivamente, que se caracterizan cada una por compartir al menos el 50% de similitud entre las poblaciones de partículas positivas a ADN. Además, la presencia de estas partículas, inferimos, se debe a la existencia de microorganismos que se distribuyen por distintos cambios en las corrientes marinas. Con este trabajo se genera un primer paso para estudios sobre la diversidad filogenética y funcional del GoM.

Palabras clave: SYBR Green I, Beta-diversidad, gradientes de profundidad..

Abstract of the thesis presented **by Rafael Betanzos San Juan** as a partial requirement to obtain the Master of Science degree in life's science with orientation in biomedicine and bionanotechnology

Distribution and abundance of marine microorganisms in the Gulf of México, identified by Flow cytometry

Abstract approved by:

Dr. Marco Antonio De León Nava Thesis Director

Within the waters of the Gulf of Mexico (GoM), besides already known organisms, there is a large potential diversity of microorganisms that remain unknown, some of which may possess possible technological applications as hydrocarbon degraders among other molecules of biological interest. However, before performing descriptions of the biochemical functions and metabolic pathways that can affect degraded hydrocarbons, it is necessary to describe the structure of the microbial communities within and across the GoM. In this thesis, I analyzed the abundance and distribution of marine microorganisms using flow cytometry in ca. 235 samples obtained across the GoM at different depths. These samples were obtained during three oceanographic campaigns (2016, 2017 and 2018), in which aliquots of water at five different depths surface, maximum fluorescence, minimum oxygen, thousand meters and absolute depth, were obtained in different stations of the GoM. To identifying organic molecules and microorganisms, via the detection of events that were assumed to be DNA-positives, I used a nucleic acid-related dye, SYBR Green I. Once the cytometer detected positive events, these were cataloged according to their relative size. I posteriorly generated a database to construct maps of distribution and abundance by gradient. To determine the change in the composition and distribution across depths and sites, I performed beta diversity analysis using the Bray-Curtis index, to quantify the similarity between dye-positive populations and to search for possible distribution patterns associated with the geographical location of the sampling. My results allowed to identify two areas of similar composition of events, one to the North and one to the South of the Gulf of Mexico, namely the Lost Belt of the Gulf and Campeche Bay, sharing at least 50% similarity between populations of DNA positive particles within those two zones. The large abundance of DNA-positive particles may be due to the presence of microorganisms that are differentially distributed across the GoM by marine currents. This work demonstrates the importance of flow cytometry in the study of various biological processes in different environments, and highlights the importance of studying the phylogenetic and functional diversity of microbial communities within the GoM.

Keywords: Beta-diversity, depth gradients, DNA, microbial diversity.

Dedicatoria

A los demás...

Agradecimientos

Al CICESE y al posgrado en Ciencias de la Vida por darme el apoyo para crecer personal y académicamente. A mi país, porque a través del CONACyT (2017), me apoyó para culminar mis estudios de maestría (No. de becario 831635).

Al CPP Ciencias de la vida por el apoyo, los consejos y el voto de confianza.

Al Consorcio de Investigación del Golfo de México y su equipo, a Anabel por el invaluable para el desarrollo de este trabajo.

Al CELFI Argentina.

A Tony, gracias por tu labor en CICESE-Movil.

A mis sinodales, Rodrigo, Carmen, Lorena, Luis. Gracias por su disponibilidad, apoyo, críticas y sugerencias que ayudaron a enriquecer este trabajo.

A Dani, por la charla y los consejos, gracias por la buena onda.

A Julián y a Kee, por la ayuda y el compañerismo.

A Doña María Rivera, por tu amistad y cariño, por los ratos de charla y buenos anímos.

A mis compañeros de generación.

A mis maestros Horacio, María, Asunción, Aldo, Alexei, Rosa, Edgar, Carolina, Aldo, Oyuki, Pierrick y Brizuela.

A mis amigos...

A tziri, Beto, Cipa, Franchejco, Clarita, Alma Celeste, Ricci, Victor, Alcira, Mode, Elea, Will, Eduardo, ITESos, Adriana, Linda, Dani y Lucas esto no habría sido lo mismo sin ustedes.

A Don Jesús y Cia.

A mis amigos, compañeros y alumnos de la UTT, gracias Julio por la confianza y el apoyo.

Al equipo 3.

A Diego, Mario, Daryl y Juan.

A Marco, muchas gracias por creer en mí.

A mi familia, porque aun en la distancia están conmigo.

A mi esposa Sofia, sin ti nada sería posible...

Tabla de contenido

Resumen en español	ii
Resumen en inglés	iii
Dedicatorias	iv
Agradecimientos	v
Lista de figuras	viii
Lista de tablas	xi

Capítulo 1. Introducción		1
1.1 Antecedentes		2
1.1.1 El Golfo de M	éxico (GoM)	2
1.1.2 Contaminació	n por hidrocarburos: El petróleo y sus derivados	3
1.1.3 Distribución y abu	ndancia de microorganismos marinos	4
1.1.4 Citometría de flujo	٥	6
1.1.5 Citometría de flujo	o en muestras marinas	7
1.2 Justificación		
1.3 Hipótesis		9
1.4 Objetivos		9
1.4.1 Objetivo general		9
1.4.2 Objetivos específic	cos	9
Capítulo 2. Metodología		10
2.1 Toma de muestras de	la columna de agua	10
2.2 Citometría y procesam	iento de las muestras	12
2.3 Curado de datos		13
2.3.1 FlowJo		14
2.3.2 Construcción de b	ases de datos	14
2.4 Abundancia de las par	tículas	15
2.5 Distribución de las par	tículas ADN positivas	16
2.5.1 Índice de Bray-Cu	tis	16
2.5.1.1 Análisis de Bray-	Curtis	
2.6 Construcción de mapa	s de distribución y abundancia	

Capítulo 3. Resultados	21
3.1 Curado de datos	
3.2 Abundancia de las partículas	
3.3 Distribución y abundancia por gradiente de profundidad	
3.3.1 Superficie	
3.3.2 Máximo de fluorescencia	
3.3.3 Mínimo de oxígeno	
3.3.4 1000 metros	
3.3.5 Fondo	
Capítulo 4. Discusión	47
Capítulo 5. Conclusión	52
Literatura citada	53
Anexos	56

Lista de figuras

Figura :	1. Profundidades marinas
Figura	2. Diagrama del funcionamiento interno de un citómetro de flujo6
Figura	3. Diagrama de flujo de la metodología del trabajo de tesis10
Figura	 Mapas de estaciones y derroteros. A) Estaciones muestreadas durante los cruceros MMF-01, MET-02 y MET-03. B) Derrotero del crucero MMF-01. C) Derrotero del crucero MET-02. D) Derrotero del crucero MET-03
Figura	5. Ejemplo de dendrograma de la matriz de distancias de Bray-Curtis18
Figura	 Mapa de colores correspondientes a la abundancia de las partículas ADN positivas en todos los gradientes, de todas las profundidades
Figura	7. Gráfica de barras del número de eventos positivos (y), por estación (x)
Figura	8. Abundancia de las partículas ADN positivas en todos los sitios muestreados23
Figura	 Agrupamiento de las estaciones muestreadas según el índice de diversidad de Bray-Curtis, considerando las similitudes entre estaciones, de acuerdo con el tamaño y el número de partículas
Figura	10.Comparación de los valores promedio de los eventos totales por cada gradiente de profundidad
Figura	11. Comparación de los valores promedio de eventos positivos por gradiente26
Figura	12. Comparación del promedio de eventos positivos en cada gradiente, menores a un micrómetro26
Figura	 Comparación del promedio de eventos positivos, en cada gradiente, con un tamaño de 1 a 2 micrómetros
Figura	 14. Comparación de la media de eventos positivos, por gradiente, mayores a los 2 micrómetros
Figura	 Mapa de la distribución de las partículas positivas a ADN, en las estaciones muestreadas, de acuerdo a la abundancia de partículas en la superficie27
Figura	16. Gráfica de barras del número de eventos positivos (y), por estación (x) en la superficie
Figura :	 Mapa de distribución de las partículas ADN positivas, con un tamaño menor a un micrómetro, entre uno y dos micrómetros y mayor a 3 micrómetros29
Figura	 Agrupamiento de las estaciones muestreadas según el índice de diversidad de Bray-Curtis, considerando las similitudes entre estaciones, de acuerdo con el número de partículas obtenidas y sus tamaños

Figura	a 25. Distribución de partículas ADN positivas en el gradiente de mínimo de oxígeno, s	egún su
	tamaño. El gráfico de cajas a la derecha muestra en código de colores la abundancia rel	lativa de
	las partículas organizadas por tamaño	37

Figura 29. Distribución de partículas ADN positivas en el gradiente de 1000 metros, según su tamaño...41

Figura 31.	Mapa de abundancia	de partículas ADN	positivas en el	l fondo, o	de todas las	estaciones	de todos
I	los cruceros						43

Figura 32. Gráfica de barras para número de eventos positivos(y) por estación(x) en el fondo......44

Figura 35. Ci	irculación en el Golfo	le México (Monreal,	Salas y Gracia, 2004)	50
---------------	------------------------	---------------------	-----------------------	----

Lista de tablas

Tabla 1. Ubicación geográfica de las estaciones muestreadas.	10
Tabla 2. Plantilla para organización de datos curados	13
Tabla 3. Muestras tomadas en las estaciones.	14
Tabla 4. Abundancia de partículas ADN positivas	15
Tabla 5. Ejemplo de matriz de distancias del índice de Bray-Curtis.	17
Tabla 6. Ejemplo de plantilla para el análisis de distribución según el tamaño.	18
Tabla 7. Ejemplo de plantilla para el análisis de distribución según la profundidad	19
Tabla 8. Ejemplo de plantilla para el análisis de distribución según el tamaño y la profundidad	19
Tabla 9 .Promedio de la cantidad de eventos por gradiente	25

Capítulo 1. Introducción

Una de las actividades económicas más importantes para México es la extracción y comercialización de petróleo crudo y sus derivados. Durante los últimos cien años, se han encontrado yacimientos muy importantes de este producto en nuestro país, lo cual ha detonado una intensa actividad de explotación que ha sido de gran relevancia para el país para el mantenimiento del aparato gubernamental. Sin embargo, debido a los peligros que conlleva la extracción de petróleo, esta industria se ha visto involucrada en accidentes que han provocado catástrofes humanas y ambientales.

El Golfo de México es una zona altamente expuesta a la contaminación por hidrocarburos, a consecuencia de la enorme cantidad de actividades petroleras y marítimas que allí se realizan. En 1979, por ejemplo, se derramaron 560 millones de litros de crudo de la plataforma IXTOC-1 ubicada en Campeche y, debido a las corrientes marinas, fueron afectadas las costas de varios estados (Aguirre y García, 2005). Por otra parte, en el año 2010, la plataforma petrolera Deepwater Horizon de la empresa British Petroleum (BP), sufrió un accidente en el que se derramaron cerca de 636 millones de litros de crudo al mar (Aguirre y García, 2005). Estos accidentes afectaron enormemente las actividades de la industria pesquera, además de causar grandes daños ambientales. Estos últimos, aun cuando indiscutiblemente fueron graves, no pudieron ser cuantificados debido al desconocimiento del estado de la diversidad biológica del Golfo de México, previo al derrame. En respuesta a este siniestro y con la finalidad de proporcionar información de respaldo que pudiera determinar los daños ocasionados por futuros derrames y contingencias, en 2014 se instituyó el Consorcio de Investigación del Golfo de México (CIGoM), con el objetivo de explorar las aguas del Golfo.

En la estructura operativa del CIGoM convergen cinco líneas de investigación en un solo proyecto: la línea 1, se encarga de la implementación de plataformas de observación oceanográficas; la línea 2, de generar información base y del monitoreo ambiental; la línea 3, de los procesos biogeoquímicos mediante la construcción de modelos de circulación oceanológica; la línea 4, se encarga de investigar la capacidad de respuesta natural del ecosistema ante derrames a gran escala, haciendo uso de métodos de análisis diversos, y la línea 5, cuyo propósito es predecir las consecuencias potenciales de derrames y proponer posibles soluciones.

Dentro de la batería de análisis para determinar la respuesta ecosistémica del GoM de la línea 4 se encuentra el análisis por citometría de flujo (FCM por sus siglas en inglés). La FCM es una tecnología que

permite, a través de la utilización de un láser, detectar y analizar más de 5,000 células por segundo, así como detectar la presencia y registrar características de algunos de sus componentes, como ácidos nucleicos, mitocondrias, núcleos, cromosomas y moléculas fluorescentes (Manti, Papa y Boi, 2012). Lo anterior es posible debido a que la FCM utiliza las propiedades ópticas de células o moléculas de interés para diferenciarlas. La FCM es ampliamente utilizada en inmunología, ya que mediante esta herramienta es posible identificar la expresión de antígenos unidos a anticuerpos, sustratos enzimáticos fluorogénicos mediante la hibridación fluorescente in situ, que marcan la expresión de actividades enzimáticas específicas (Veal et al. 2000) y la tinción de virus en muestras acuosas. En las ciencias marinas, FCM se usa comúnmente para estudiar la abundancia de microorganismos acuáticos de forma precisa, siendo una alternativa a la microscopía. Por esta razón, en el presente escrito se aborda el análisis de muestras de columnas de agua de mar en su superficie (0 - 2m), máximo de fluorescencia (2-300m), mínimo de oxígeno (700-800m), mil metros y fondo, que fueron obtenidas en diferentes coordenadas del Golfo de México, principalmente en zonas aledañas a plataformas petroleras y chapopoteras.

1.1 Antecedentes

1.1.1 El Golfo de México (GoM)

El Golfo de México además de ser una frontera internacional entre México y estados unidos, se localiza en una zona de transición del clima tropical y subtropical, entre los 18° y 30° N, y 82° y 98°W. Éste es una cuenca semicerrada con una batimetría variable con profundidades de hasta 4000m. Su superficie es de 1 942 500 km² aproximadamente, tiene una profundidad promedio de 1 615m y un volumen de agua de aproximadamente 2 434 000 km³ (Halffter, Llorente Bousquets, Sarukhan, y Soberon, 2016).

En el GoM se llevan a cabo una amplia variedad de actividades económicas, tales como el turismo, la pesca, y la acuicultura; además, en sus profundidades, se encuentran gigantescos depósitos de hidrocarburos y gas natural, lo cual, lo hacen vulnerable y sensible a las perturbaciones ocasionadas por las actividades humanas, principalmente a aquellas relacionadas a la explotación petrolera.

1.1.2 Contaminación por hidrocarburos: El petróleo y sus derivados

La contaminación generada por los hidrocarburos vertidos en el agua que flotan por diferencia de densidades, impide la entrada de luz y el intercambio gaseoso, teniendo como consecuencia la solubilización de compuestos hidrosolubles y la afección a poblaciones de plancton, macroinvertebrados y bentos o población de macroinvertebrados que viven en el fondo de los cuerpos de agua (Benavides-López et al., 2006).

Para 1981, la API (Instituto Americano del Petróleo, por sus siglas en inglés), identificó las fuentes principales de contaminación por hidrocarburos: derrames por tubos corroídos, lodos de perforación inversa y recortes, tiraderos de desechos aceitosos semisólidos, descargas petroquímicas y de refinerías y accidentes en el transporte. La identificación de dichas fuentes permitió realizar estudios de caracterización de microorganismos presentes en las zonas contaminadas, de lo cual se obtuvo el aislamiento de cepas bacterianas capaces de degradar hidrocarburos en compuestos más simples.

El estudio y análisis de las poblaciones microbianas presentes en zonas con contaminación recurrente de hidrocarburos, ha permitido identificar microorganismos que, gracias a su capacidad metabólica, transforman en moléculas más simples una gran cantidad de hidrocarburos (Aguirre y García, 2005). Para lo anterior, se ha utilizado una amplia variedad de técnicas, entre las que destacan: la identificación de moléculas 16S-RNA por secuenciación, microscopía de fluorescencia y epifluorescencia, selección por medio de cultivo enriquecido con petróleo, potenciales de desnitrificación, reacción en cadena de la polimerasa (PCR), secuenciación masiva y citometría de flujo (Benavides et al., 2006; Pan et al. 2017; Rich et al., 2003; Rivera et al., 2002; Van Hamme, Singh, y Ward, 2003; Zheng y Zhang, 2012).

A partir del estudio de los organismos autóctonos de zonas contaminadas, se concluyó que el 90% de los microorganismos presentes en dichas zonas son bacterias hidrocarbonoclastas (degradadoras de hidrocarburos), *Alcanivorax, Marinobacter, Thallassolituus, Cycloclasticus, Oleispira* y otros difícilmente detectables (Yakimov, Timmis, y Golyshin, 2007). Actualmente, en el GoM se han observado 24 especies de bacterias en 14 géneros (Kostka et al., 2011).

1.1.3 Distribución y abundancia de microorganismos marinos

Es de gran interés estudiar la participación ambiental y ecológica que juegan los microorganismos en el mar, pues la habilidad de las poblaciones nativas de bacterias para degradar hidrocarburos es el principal mecanismo con el que cuentan determinados ambientes para mitigar el impacto causado por la presencia del petróleo y sus derivados, ya que el crudo puede ingresar al ambiente de manera natural o a través de chapopoteras, derrames o accidentes ocasionados por el hombre (Fernández et al., 2002).

En la actualidad se ha descubierto que los microorganismos con capacidad degradadora, principalmente cianobacterias y algas eucariotas, se ubican en las capas superiores o superficiales (fototróficas) también conocidas como máximo de fluorescencia. Dicha capa se localiza entre los 0 y 200 metros de profundidad, seguida por las capas oxigénicas donde la disponibilidad de oxígeno disuelto es muy baja (500 a 700 metros); posteriormente, se encuentra la zona de mínimo oxígeno entre 700 y 800 metros y, por último, la capa anaeróbica que va de los 1000 m hasta el fondo (**Figura 1.** Profundidades marinas).

Un estudio realizado en el Golfo de México arrojó datos sobre los cambios de las comunidades microbianas que se localizan en las zonas contaminadas y sus alrededores, variaciones asociadas principalmente a la diferencia de la concentración de oxígeno y al petróleo presente en la zona (Kostka et al., 2011). Asimismo, se observaron efectos similares en chapopoteras de Campeche, donde la estratificación bacteriana en los sedimentos variaba de acuerdo con las concentraciones de oxígeno disponible (Sahling et al., 2016).

Figura 1. Profundidades marinas.

Para analizar y medir la biodiversidad en ecología, es necesario comprender qué es una comunidad. Puede definirse de dos formas: la primera según Krebs (1985), hace referencia a un grupo poblacional o de especies en un solo lugar y, la segunda según Begon (1986), al ensamble de poblaciones que concurren al mismo tiempo en el mismo lugar. En resumen, una comunidad es un grupo de especies que se encuentran en un espacio determinado y pueden interactuar entre sí. Como todas las definiciones de los niveles de organización biológica, la comunidad es una definición heurística. Esto quiere decir que es una unidad seleccionada de acuerdo al criterio y diseño de la investigación, de qué se desea saber, qué se quiere y qué se puede medir.

Existen tres conceptos importantes que dan información sobre la composición de una comunidad: riqueza, abundancia y diversidad, siendo la última resultado de la combinación de las dos primeras. Hay tres tipos de diversidad definidas por Whittaker (1972): la diversidad alfa, que hace referencia al número de especies para un cierto número de individuos, y que a su vez está compuesta por la riqueza (número de especies en una muestra) y la igualdad entre las especies; la diversidad beta, es el grado de cambio entre distintos hábitats o a lo largo de un gradiente; y por último, la diversidad gamma es la suma de la diversidad alfa y beta (Escalante y Morrone, 2002).

Tres de los conceptos más importantes que dan información sobre la composición de una comunidad son la riqueza, abundancia y diversidad, siendo la última resultado de la combinación de las dos primeras. Hay tres tipos de diversidad definidas por Whittaker (1972): la diversidad alfa, que hace referencia al número de especies para un cierto número de individuos, y que a su vez está compuesta por la riqueza (número de especies en una muestra) y la igualdad entre las especies; la diversidad beta, es el grado de cambio entre distintos hábitats o a lo largo de un gradiente; y por último, la diversidad gamma es la suma de la diversidad alfa y beta (Escalante y Morrone, 2002).

Con el fin de estudiar y conocer los cambios en las comunidades, se han utilizado diferentes herramientas y metodologías, como los índices de diversidad. Uno de ellos, el índice de disimilitud de Bray-Curtis, ha resultado muy útil durante el estudio de poblaciones marinas (Pontasch y Brusven, 1988; Chao et al., 2008; Réjou-Méchain y Hardy, 2011; Bougon et al., 2012; Zinger, Gobet, y Pommier, 2012; Comte et al., 2014; García et al., 2015;), pues permite analizar las diferencias entre poblaciones de un área específica a través del número de individuos de la misma especie entre los lugares analizados.

1.1.4 Citometría de flujo

La citometría de flujo puede definirse como la medida de las propiedades ópticas de células transportadas por un fluido a través de una fuente luminosa de excitación (un láser). Comúnmente, un citómetro es capaz de analizar hasta 100,000 eventos con una tasa de 10,000 por segundo; dichos eventos pueden ser células o partícula¹s de 0 a 150 micrómetros de longitud. De la combinación de la información obtenida mediante los sensores del citómetro (Figura **2**.), es posible obtener hasta 20 parámetros distintos, que permiten conocer la granularidad, tamaño y presencia de moléculas o partículas interés, mediante el uso de colorantes afines a dicha molécula. Su correcta determinación dependerá, en gran medida, de que los eventos sean separados individualmente mediante el sistema, realizando tratamientos de separación de células previos a la citometría de flujo para llevar a cabo la identificación de poblaciones compuestas por microorganismos que crecen en cadenas, pares, grupos, tétradas y aquellos que producen micelio o pseudomicelio (Hutter y Eipel, 1979).

Figura 2. Diagrama del funcionamiento interno de un citómetro de flujo.

La FCM comenzó a utilizarse a finales de los años setenta, principalmente para la determinación de sustancias intracelulares en microorganismos (Hutter y Eipel, 1979). Con el tiempo, la calidad y precisión de los instrumentos ópticos aumentó, de tal manera que fue posible estudiar partículas muy pequeñas, como ácidos nucleicos, proteínas y cromosomas. En un principio, los análisis se enfocaban en el área médica, pero a finales de los años ochenta esta herramienta comenzó a popularizarse para llevar a cabo estudios ambientales debido a sus características más notorias: rapidez, sencillez y capacidad de

¹ A lo largo del texto se mencionan las palabras partícula y microorganismos como sinónimo, debido a que se espera que las partículas positivas al colorante sean microorganismos teniendo en consideración el tamaño y la afinidad del colorante al ADN

analizar poblaciones grandes en un sólo análisis sin necesidad de cultivos o complicados tratamientos previos (Veal, Deere, Ferrari, Piper, y Attfield, 2000).

En la actualidad, la citometría es ampliamente usada para estudiar muestras marinas ya que su sensibilidad y la rapidez con la que se llevan a cabo los análisis, hacen posible identificar poblaciones de microorganismos muy pequeños (<2 μ m). Con base en lo anterior y el frecuente uso de la FCM en investigaciones microbiológicas marinas en las últimas décadas, hoy en día la citometría de flujo es considerada una técnica de referencia en las ciencias del mar (Manti et al., 2012).

1.1.5 Citometría de flujo en muestras marinas

Para el año de 1988, las mejoras en los instrumentos ópticos hicieron posible que, mediante la FCM de muestras marinas, se encontrara un nuevo grupo de fitoplancton extremadamente abundante y difícilmente observable por técnicas microscópicas. De este estudio se desprende el conocimiento de los principales fotótrofos en el océano, el género *Prochlorococcus* (Chisholm et al., 1988). Posteriormente, se investigó la estructura genética del mismo y de algunas especies de *Picoplancton* (Urbach y Chisholm, 1998). Para el año 2000, la FCM permitía detectar microorganismos en una amplia variedad de matrices (agua, lodo, alimentos y bebidas) (Veal et al., 2000) y en ese mismo año, se logró identificar estructuras comunitarias de *Picoplancton* y bacterias (Reckermann, 2000).

En 2005, se identificaron taxones de bacterias transformadoras de dimetilsulfuropropinato (DMSP) tales como *Loktarela, Oceanícola, Sulfitobacter, Caulabacter, Brachymonas, Xenophilus, Ketogulocigenium y Y-Proteobacteria* en el sudeste norteamericano (Mou et al., 2005). En 2010, se publicó un trabajo de distribución y abundancia de microorganismos en la Antártida, en el que se identificaron moléculas autofluorescentes y se detectó la presencia de nanoplancton, nanoflagelados heterotróficos, virus y bacterias. (Thomson et al., 2010).

Para 2012, Manti et al., describen que habían sido capaces de identificar virus, bacterias, fitoplancton, moléculas autofluorescentes, contenido de ácidos nucleicos y actividad enzimática en muestras marinas mediante FCM. Unos años más tarde en la zona eufótica del Océano Atlántico, se descubrió, también mediante citometría de flujo, la presencia de *Prochlorococcus* y *Synechococcus* (Ribeiro et al., 2016).

Parte de las mejoras con las que la FCM cuenta en la actualidad, es el uso de colorantes que permiten diferenciar a las células debido a sus componentes intracelulares, los cuales dispersan la luz de forma particular. Asimismo, la tinción permite determinar el contenido de ácidos nucleicos de células individuales, sin prácticamente ningún daño a los microorganismos presentes en la muestra. Esto se logra con tres colorantes principalmente (SYBR I, SYBR II y SYTO 13). El uso de estas moléculas permite observar patrones similares y así discriminar entre bacterias con alto y bajo contenido aparente de ácidos nucleicos (Lebaron et al., 2001). De los tres colorantes mencionados, el SYBR Green I, es una molécula que se une a la hendidura menor del ADN, acoplándose energéticamente a ésta última. Durante el acoplamiento, el SYBR Green I incrementa su emisión fluorescente como resultado de la formación del complejo ADN-SYBR Green I, que, al ser excitado energéticamente, emite energía lumínica a una longitud de onda de 522 nm.

1.2 Justificación

Para estudiar el estado actual de la diversidad microbiana del Golfo de México y, en caso de ser necesario, detener o revertir el daño ambiental que pudiera suscitarse por el aumento de la explotación petrolera, es necesaria la identificación y cuantificación de la diversidad microbiana presente en esta enorme cuenca oceánica. Debido a su pequeño tamaño, dificultad de detección y costos humanos y materiales asociados a la detección de microorganismos, es necesario implementar técnicas rápidas, precisas y que permitan analizar un vasto número de muestras en poco tiempo. En este sentido, las características de la citometría de flujo la vuelven una herramienta extremadamente útil al momento de analizar muestras marinas, para detectar aquellas zonas donde sea posible aislar microorganismos capaces de degradar petróleo o sus derivados. Este estudio permitirá realizar una primera estimación de las abundancias relativas de diferentes eventos indicativos de la presencia de microorganismos en el medio acuático en diferentes zonas y profundidades del Golfo de México, lo que permitirá además determinar las zonas con mayor y menor riqueza dentro de lo poco que ha sido muestreado a la fecha. El análisis multiparamétrico por

citometría de flujo de muestras provenientes de aguas del Golfo de México permitirá por tanto determinar la distribución, abundancia y tamaño relativo de los eventos ADN positivos en el Golfo de México.

1.3 Hipótesis

El análisis multiparamétrico por citometría de flujo de muestras provenientes de aguas del Golfo de México permite determinar la distribución, abundancia y tamaño relativo de los eventos ADN positivos en el Golfo de México.

1.4 Objetivos

1.4.1 Objetivo general

• Establecer una línea base de la abundancia y distribución de partículas ADN positivas, presentes en aguas del Golfo de México.

1.4.2 Objetivos específicos

- Definir la distribución y abundancia de partículas ADN positivas en las estaciones muestreadas.
- Establecer las zonas con mayor presencia de partículas ADN positivas.
- Construir un mapa de distribución y abundancia de las moléculas identificadas.

En este capítulo se presenta la metodología (Figura 3) que se siguió para cumplir cada uno de los objetivos planteados en el punto 1.4.2.

Figura 3. Diagrama de flujo de la metodología del trabajo de tesis.

2.1 Toma de muestras de la columna de agua

Según lo establecido en el subproyecto "Análisis multiparamétrico mediante citometría de flujo de agua profunda del Golfo de México" perteneciente a la línea cuatro del proyecto de CIGoM, se obtuvieron muestras de la columna de agua durante los cruceros metagenómica (MET) y malla fina (MMF) del 2016, 2017 y 2018. Las alícuotas se tomaron en tubos de 15 ml en 47 estaciones diferentes, la cuales son puntos de muestreo que se ubican geográficamente según se muestra en la **Tabla 1**.

Less Reeden		• * -	Localización								
Localizador	Crucero	Ano	Estación	Latitud	Longitud	Distancia (mn)					
1	MMF-01	2016	MET-N1 MMF-N1	24.44	-96.76	67.064					
2	MMF-01	2016	MET-N2 MMF-N2	25.3991	-96.127	32.764					
3	MMF-01	2016	XIX-A1M MET-A1 MMF-A1	25.88	-95.84	15.654					
4	MMF-01	2016	XIX-A2M MET-A2 MMF-A2	25.88	-95.55	23.212					
5	MMF-01	2016	XIX-A3M MET-A3 MMF-A3	25.88	-95.12	24.291					
6	MMF-01	2016	XIX-A4M MET-A4 MMF-A4	25.88	-94.67	22.92					
7	MMF-01	2016	XIX-B9M MET-B9 MMF-B9	25.64	-95	13.522					
8	MMF-01	2016	XIX-B8M MET-B8 MMF-B8	25.64	-95.25	17.85					
9	MMF-01	2016	XIX-B7M MET-B7 MMF-B7	25.64	-95.58	15.686					
10	MMF-01	2016	XIX-B6M MET-B6 MMF-B6	25.64	-95.87	20.554					
11	MMF-01	2016	XIX-B5M MET-B5 MMF-B5	25.64	-96.25	305.974					

 Tabla 1. Ubicación geográfica de las estaciones muestreadas.

Lesslingder	Crussing	A 2 -	Localización							
Localizador	Crucero	Ano	Estación	Latitud	Longitud	Distancia (mn)				
12	MMF-01	2016	XIX-C14M MET-C14 MMF-C14	20.73	-94.75	26.975				
13	MMF-01	2016	XIX-C13M MET-C13 MMF-C13	20.6	-94.29	45.465				
14	MMF-01	2016	XIX-C12M MET-C12 MMF-C12	20.02	-93.77	28.937				
15	MMF-01	2016	XIX-C11M MET-C11 MMF-C11	19.61	-93.5	28.723				
16	MMF-01	2016	XIX-C10M MET-C10 MMF-C10	19.17	-93.3	17.012				
17	MMF-01	2016	XIX-D15M MET-D15 MMF-D15	19.16	-93.6	23.793				
18	MMF-01	2016	XIX-D16M MET-D16 MMF-D16	19.04	-94	34.497				
19	MMF-01	2016	XIX-D17M MET-D17 MMF-D17	19.61	-94.08	24.168				
20	MMF-01	2016	XIX-D18M MET-D18 MMF-D18	19.93	-94.34	182.589				
21	MET-02	2017	MET-N1 MMF-N1	24.44	-96.76	67.064				
22	MET-02	2017	MET-N2 MMF-N2	25.3991	-96.127	32.764				
23	MET-02	2017	XIX-A1M MET-A1 MMF-A1	25.88	-95.84	15.654				
24	MET-02	2017	XIX-A2M MET-A2 MMF-A2	25.88	-95.55	23.212				
25	MET-02	2017	XIX-A3M MET-A3 MMF-A3	25.88	-95.12	24.291				
26	MET-02	2017	XIX-A4M MET-A4 MMF-A4	25.88	-94.67	22.92				
27	MET-02	2017	XIX-B9M MET-B9 MMF-B9	25.64	-95	13.522				
28	MET-02	2017	XIX-B8M MET-B8 MMF-B8	25.64	-95.25	17.85				
29	MET-02	2017	XIX-B7M MET-B7 MMF-B7	25.64	-95.58	15.686				
30	MET-02	2017	XIX-B6M MET-B6 MMF-B6	25.64	-95.87	20.554				
31	MET-02	2017	XIX-B5M MET-B5 MMF-B5	25.64	-96.25	67.325				
32	MET-02	2017	MET-N3	24.5833	-95.833	59.998				
33	MET-02	2017	MET-N4	23.5833	-95.833	77.898				
34	MET-02	2017	MET-N5	22.75	-94.75	59.998				
35	MET-02	2017	MET-N6	21.75	-94.75	61.198				
36	MET-02	2017	XIX-C14M MET-C14 MMF-C14	20.73	-94.75	26.975				
37	MET-02	2017	XIX-C13M MET-C13 MMF-C13	20.6	-94.29	45.465				
38	MET-02	2017	XIX-C12M MET-C12 MMF-C12	20.02	-93.77	28.937				
39	MET-02	2017	XIX-C11M MET-C11 MMF-C11	19.61	-93.5	28.723				
40	MET-02	2017	XIX-C10M MET-C10 MMF-C10	19.17	-93.3	17.012				
41	MET-02	2017	XIX-D15M MET-D15 MMF-D15	19.16	-93.6	23.793				
42	MET-02	2017	XIX-D16M MET-D16 MMF-D16	19.04	-94	34.497				
43	MET-02	2017	XIX-D17M MET-D17 MMF-D17	19.61	-94.08	24.168				
44	MET-02	2017	XIX-D18M MET-D18 MMF-D18	19.93	-94.34	182.589				
45	MET-03	2018	MET-CH01	18.8692	-93.664	108.342				
46	MET-03	2018	MET-CH02	19.3967	-91.836	52.851				
47	MET-03	2018	MET-CH03	19.3003	-90.908	137.985				

* Número de localización para el posterior análisis de datos.

** Nombre oficial de la estación de acuerdo con su crucero.

*** Distancia entre estaciones en millas náuticas.

B)

Para la toma de muestras se siguieron los derroteros presentados a continuación (Figura 1).

Figura 4. Mapas de estaciones y derroteros. A) Estaciones muestreadas durante los cruceros MMF-01, MET-02 y MET-03. B) Derrotero del crucero MMF-01. C) Derrotero del crucero MET-02. D) Derrotero del crucero MET-03.

Durante el muestreo se tomaron alícuotas de 5 gradientes diferentes: superficie, máximo de fluorescencia, mínimo de oxígeno, 1000 metros y fondo (Figura 1). Dichas muestras fueron fijadas con paraformaldehído (PFA) al 1% y glutaraldehído al 0.05%, y se almacenaron en tubos de 15 ml a una temperatura de -20 °C.

2.2 Citometría y procesamiento de las muestras

Para el análisis mediante FCM, las muestras fueron descongeladas en baño María (37 °C); una vez descongeladas, se colocaron 500 µl de cada una en tubos FACS estériles. Como siguiente paso, se les agregó el colorante SYBR Green I, específico para ADN. Las muestras fueron incubadas durante 30 minutos, a una temperatura de 37 °C en ausencia de luz. Una vez pasado el tiempo de incubación, se

procedió al análisis en el citómetro de flujo (equipo FACS-LSRFortessa, Becton Dickinson)² y se adquirieron los eventos durante un minuto, a una velocidad de 3000-5000 eventos/minuto, en un volumen de 510 μ l en todas las muestras.

Se analizaron las 235 muestras de agua obtenidas en las cinco profundidades de las 47 estaciones. Los datos obtenidos por el citómetro fueron posteriormente procesados con el software FlowJo v10. 10.0.7 con el objetivo de visualizar la información para el subsecuente análisis. Se obtuvieron los eventos positivos al colorante SYBR Green I de todas las muestras y se dividieron de acuerdo con el tamaño de los eventos afines a ADN, cuyas medidas fueron clasificadas en tres rangos: <1, 1-2, y >2 μ m mediante su comparación con perlas de referencia de dimensiones conocidas.

Para proceder con el curado de los datos, las muestras procesadas fueron ordenadas de acuerdo con la siguiente plantilla (Tabla 2):

			h an Brand fa				Dest		SYBR GREEN I (ADN)																												
Localizador	Crucero	Año		LOCA	llizacion		Proti	Indidad	# Eventos totales	# Eventos +	Tamaño (μm)																										
			Estación	Latitud	Longitud	Distancia (mn)	Muestra	Gradiente			<0.5	1-2	>2																								
				1																																	
																				1						1											
															1																						

Tabla 2. Plantilla para la organización de datos curados.

2.3 Curado de datos

Debido a la heterogeneidad del muestreo se decidió realizar la homogenización, corrección y validación de los datos de acuerdo con la siguiente metodología.

² La adquisición y análisis por citometría de flujo se desarrollaron en el Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) en la unidad Zacatenco, CDMX, por el Dr. Luis Donis Maturano.

2.3.1 FlowJo

El procesamiento de los datos obtenidos por el citómetro fue realizado mediante el software FlowJo v10.0.7. Los datos fueron divididos en función a su reactividad (positivos y negativos al SYBR Green I) y posteriormente, se clasificaron de acuerdo con su tamaño (<1, 1-2, y >2 μ m). Los datos fueron exportados a hojas de cálculo de Excel para posteriormente construir la base de datos a analizar.

2.3.2 Construcción de bases de datos

Para llevar a cabo el análisis de las muestras que presentaron resultados positivos para el colorante SYBR Green I, cuya afinidad es al ADN³, se procedió a eliminar del estudio las estaciones con número de localizador 1, 2, 17, 18, 19, 20, 27 y 46 debido a que no se tomaron muestras en dichas estaciones (tabla 3). Por otro lado, hubo estaciones que sí se consideraron para el estudio, sin embargo, no se obtuvieron muestras de algunas de sus profundidades y fueron marcadas con "0", tal y como se observa en la tabla 3. Por lo tanto, estas últimas no fueron tomadas en cuenta para el análisis por gradiente de profundidad.

³ Tabla completa en anexo

Lo calizado r	M uestra	Gradiente	Localizador	Muestra	Gradiente	Localizador	Muestra	Gradiente	Localizador	M ue stra	Gradiente	Lo calizado r	M uestra	Gradiente
	0	superficie		0	supe rficie		1	superficie		1	superficie		1	superficie
	1	m áx_fl		1	máx_fl		1	máx_fl		1	m áx_fl		1	m áx_fl
3	1	min_02	12	1	min_02	21	1	min_02	30	1	min_02	39	1	min_02
	0	1000 m	12 13 14 15 16 17 18	0	1000 m		0	1000 m		0	1000 m		0	1000 m
	1	fondo		1	fondo		1	fondo		1	fondo		1	fondo
	0	superficie		0	supe rficie		1	superficie		1	superficie		1	superficie
	1	máx_fl		1	máx_fl		1	máx_fl		1	máx_fl		1	m áx_fl
4	1	min_02	13	1	min_02	22	1	min_02	31	1	min_02	40	0	min_02
	1	1000 m		1	1000 m		0	1000 m		0	1000 m		1	1000 m
	1	tondo		1	fondo		1	fondo		1	fondo		1	tondo
	0	superficie		0	superficie		1	superficie		1	superficie		1	superficie
_	1	máx_fl		1	máx_fl		1	máx_fl		1	máx_fl		1	máx_fl
5	1	min_02	14	1	min_02	23	1	m in_02	32	1	m in_02	41	1	min_02
	1	1000 m		1	1000 m		1	1000 m		1	1000 m		1	1000 m
		rondo			rondo		1	rondo		1	rondo		1	rondo
	1	máy fl		1	máy fl	fl	1	máy fl		1	máy fl		1	máy fl
6	1	min_02	15	1	min 02	24	1	min 0.2	33	1	min 02	42	1	min 02
U U	1	1000 m	13	0	1000 m	24	1	1000 m		1	1000 m	1 12	0	1000 m
	1	fondo		1	fondo		1	fondo	1	1	fondo		1	fondo
	0	superficie		0	superficie		1	superficie		1	superficie		1	superficie
	1	máx fl	1	1 máx fl	1	máx fl	1 -	1	máx fl	1	1	máx fl		
7	1	min 02	16	1	min 02	25	1 m in_0:	min 02	34 <u>1</u> 1	min 02	43	1	min 02	
	1	1000 m	1	0	1000 m		1	1000 m		1	1000 m		0	1000 m
	1	fondo	1	1	fondo		1	fondo	1	1	fondo		1	fondo
	0	superficie		0	supe rficie		1	superficie		1	superficie		1	superficie
	1	m áx_fl		1	m áx_fl		1	m áx_fl		1	m áx_fl	2 42 ie 2 43 i 2 43 i 2 43 43 43 44	1	m áx_fl
3	1	min_02	17	1	min_02	26	1	min_02	35	1	min_02	44	1	min_02
	1	1000 m		1	1000 m		1	1000 m		1	1000 m		1	1000 m
	1	fondo		1	fondo		1	fondo		1	fondo		1	fondo
	0	superficie		0	superficie		0	superficie		1	superficie		1	superficie
	1	máx_fl		1	máx_fl		1	máx_fl		1	m áx_fl		1	m áx_fl
9	1	min_02	18	1	min_02	27	0	min_02	36	1	min_02	45	0	min_02
	1	1000 m	-	0	1000 m		0	1000 m		1	1000 m		0	1000 m
	1	fondo		1	fondo		0	fondo		1	fondo		1	fondo
	0	superficie	4	0	superficie		1	superficie		1	superficie		0	superficie
	1	máx_fl		1	máx_fl		1	máx_fl		1	máx_fl		0	máx_fl
10	1	min_02	19	1	min_02	28	1	min_02	37	1	m in_02	47	0	min_02
	0	1000 m		0	1000 m		1	1000 m		1	1000 m		0	1000 m
	1	tondo		1	fondo		1	fondo		1	tondo		U	fondo
	1	superricie	1	1	superricie		1	superficie		1	superficie			
11	1	max_fl	20	1	max_fl	20	1	max_fl	20	1	max_fl			
	1	1000 m	20	1	1000 m	29	1	1000 m	50	1	1000 m			
	1	fondo		1	fonde		1	fonde		1	fonde			
	1	Tonuo		1	TONUO		1	Tonuo		1	101100			

Tabla 3. Muestras tomadas en las estaciones de los cruceros de MMF-01, MET-02 y MET-03, en cinco gradientes de profundidad: superficie, máximo de fluorescencia, mínimo de oxígeno, 1000 metros y fondo.

2.4 Abundancia de las partículas

La determinación de la abundancia de las partículas se llevó a cabo tomando en cuenta la cantidad de eventos reportados por el citómetro, cuyos valores se encuentran como número de eventos positivos al colorante, en la columna "# Eventos +" de la *Tabla 4*:

Tabla 4. Abundanc	ia de partíc	ulas ADN positivas.
-------------------	--------------	---------------------

Localizador	Crucero	Año	Localización				2.2	11212	SYBR GREEN I (DNA)					
							Profundidad		# Eventos		Tamaño (μm)			
			Estación	Latitud	Longitud	Distancia (mn)	muestra	gradiente	totales	# Eventos +	<0.5	1 a2	2<	
	MMF-01	2016	XIX-A1M 5 MET-A1 MMF- 25.88 A1		-95.84	15.654	0	superficie	0	0	0	0	0	
				IX-A1M F-A1 MMF- 25.88 A1			1	máx_fl	292431	2936	1847	499	587	
3							1	min_O2	317409	133	112	4	17	
							0	1000 m	0	0	0	0	0	
							1	fondo	316177	136	117	7	12	

2.5 Distribución de las partículas ADN positivas

Con la finalidad de determinar la distribución de las partículas, además del número de partículas positivas por estación, se utilizó el Índice de diversidad biológica beta de Bray-Curtis para conocer la similitud entre las poblaciones de partículas ADN positivas encontradas en las diferentes estaciones muestreadas. Se consideró a los tamaños como especies, al colorante como familia y a los eventos positivos como individuos de la misma población. Para calcular los índices antes mencionados, se utilizó el paquete de VEGAN en el software RStudio cuyo algoritmo hace uso de las operaciones matemáticas indicadas a continuación:

2.5.1 Índice de Bray-Curtis

Se utilizó el índice de disimilitud de Bray-Curtis (BC), el cual es un análisis estadístico que permite cuantificar la disimilitud en la composición de las comunidades presentes en dos sitios diferentes, BC suma los valores más bajos para aquellas especies en común y el número total de especies en común entre ambos sitios, mediante la siguiente ecuación:

$$d_{jk} = \frac{\sum_{i=1}^{l} |X_{ij} - X_{ik}|}{\sum_{i=1}^{i} |X_{ij} + X_{ik}|}$$
(1)

Binario:
$$\frac{A+B-2J}{A+B}$$
 (2)

Donde Xij y Xik se refiere a la cantidad de especies i(columna), sitios j y k(filas). Mientras para la versión binaria A y B son el número de especies en sitios comparados y J el número de especies que ocurren en ambos sitios comparados (Oksanen et al., 2019).

121

2.5.1.1 Análisis de Bray-Curtis

Los datos emitidos por el índice de Bray-Curtis permiten identificar sitios con diferencias significativas entre la composición de sus poblaciones, arrojando como datos de salida números entre el 0 y el 1. Un valor cercano o igual a cero, significa que los sitios son parecidos o iguales estadísticamente, mientras que un valor cercano o igual a uno, indica que ambos sitios analizados son diferentes. Igualmente, para representar los datos numéricos de forma gráfica, se construyeron cuadros matrices en los que los datos se catalogaron por colores tal y como se muestra en la Tabla 5.

Matriz de distancias del índice de

Para proceder a la interpretación de los datos una vez realizados los cálculos del índice de diversidad, se construyeron dendrogramas para identificar las relaciones entre los sitios muestreados (Figura 6).

Figura 5. Ejemplo de dendrograma de la matriz de distancias de Bray-Curtis.

2.5.3 Distribución y abundancia según el tamaño

Como se mencionó anteriormente, los resultados de la FCM se clasificaron en tres rangos de tamaño, los cuales fueron considerados de acuerdo con la localización de las diferentes estaciones independientemente de la profundidad, con la intención de identificar qué tamaño de partícula positiva a ADN se presentaba en mayor cantidad en el Golfo, de forma general y en cada estación. Para lograr lo anterior, se realizó la sumatoria del número de eventos totales, de eventos positivos a ADN y de los tres tamaños, tal como se ejemplifica en la Tabla 6:

					colizoción		ndidad	SYBR GREEN I (DNA)					
Localizador Cruce	Crucero	Año					PION	illuludu		# Eventer I	Tam	lamaño (μm	
			Estación	Latitud	Longitud	Distancia (mn)	muestra	gradiente	# Eventos totales	# Evenitos +	<0.5	1 a2	2<
3	MMF-01	2016	A1	25.88	-95.84	15.65	No	superficie	0	0	0	0	0
3	MMF-01	2016	A1	25.88	-95.84	15.65	Si	máx_fl	292431	2936	1847	499	587

⁴ Tabla completa en anexos: pág.

2.5.5 Distribución y abundancia según la profundidad

El análisis de distribución y abundancia según la profundidad se realizó dividiendo el Golfo de México en cinco gradientes: superficie, máximo de fluorescencia, mínimo de oxígeno, 1000 metros y fondo. Se analizaron los resultados de la citometría según la distribución de los eventos positivos totales, sin considerar los tamaños, para definir a qué profundidad y en qué estación se encontraba el mayor número de eventos positivos. Los datos se organizaron de acuerdo con la Tabla 7:

	Crucero							cara car	SYBR GREEN I (DNA)		
Localizador		Año		LO	calización		Protu	naldad	# Eventos		
			Estación	Latitud	Longitud	Distancia (mn)	muestra	gradiente	totales	# Eventos +	
					-95.84	15.654	0	superficie	0	0	
3	MMF-01	2016	XIX-A1M	25.88			1	máx_fl	292431	2936	
			MET-A1 MMF A1				1	min_02	317409	133	
							0	1000 m	0	0	
							1	fondo	316177	136	
						•					

5

2.5.6 Distribución y abundancia según el tamaño y la profundidad

Con el objetivo de conocer la distribución de las partículas positivas según la zona del Golfo, así como la profundidad y el tamaño de las mismas, se dividió al Golfo en los cinco gradientes considerados al inicio: superficie, máximo de fluorescencia, mínimo de oxígeno, 1000 metro y fondo; se tomó en cuenta el número de partículas positivas, su tamaño y la profundidad a la que fueron identificadas, siguiendo como plantilla la

Tabla 8. Ejemplo de plantilla para el análisis de distribución de acuerdo al tamaño y la profundidad.

Localizador	Crucero	Año	Level beneficie				Des Co		SYBR GREEN I (DNA)					
				LO	bcalización		Profundidad		# Eventos	os " F	Tamaño (μm)			
			Estación	Latitud	Longitud	Distancia (mn)	muestra	gradiente	totales	# Eventos +	<0.5	1 a2	2<	
					-95.84	15.654	0	superficie	0	0	0	0	0	
	MMF-01	2016	XIX-A1M	IF [.] 25.88			1	máx_fl	292431	2936	1847	499	587	
3			MET-A1 MMF				1	min_O2	317409	133	112	4	17	
			A1				0	1000 m	0	0	0	0	0	
							1	fondo	316177	136	117	7	12	
6														

⁵ Tabla completa en anexos: pág.

⁶ Tabla completa en anexos.

2.6 Construcción de mapas de distribución y abundancia

La representación de la ubicación geoespacial de las muestras se llevó a cabo mediante el software ArcGIS versión 10.6.1. Para lograr lo anterior, se utilizaron las coordenadas geográficas de las estaciones donde fueron colectadas las muestras y, para la construcción de los datos de las "grillas⁷", se consideraron los datos obtenidos por la FCM, así como los análisis estadísticos posteriores (BC), que se utilizaron para construir los siguientes mapas:

- 1. Mapa de datos generales
- 2. Mapa de distribución de acuerdo con la abundancia por tamaño
- 3. Mapa de distribución de acuerdo con la abundancia por profundidad
- 4. Mapa de distribución de acuerdo con la abundancia por tamaño y profundidad

⁷ Cuadrícula de interpolación.

3.1 Curado de datos

Después de la revisión y verificación de los datos obtenidos mediante citometría de flujo, se realizó el llenado de la base de datos que se muestra en el anexo 1.

3.2 Abundancia de las partículas

De acuerdo con la escala de colores a la derecha del mapa, en la Figura 7 se muestran en rojo los lugares con mayor presencia de eventos ADN positivos. Las estaciones con los localizadores 35, 37, 40 y 45, son que se encuentran en los puntos con los valores más altos relación con la abundancia de partículas ADN positivas (Figura.8).

Figura 6. Mapa de colores correspondientes a la abundancia de las partículas ADN positivas en todos los gradientes, de todas las profundidades.

En contraste con el párrafo anterior, las estaciones en las localizaciones 7, 8, 17, 27 y 33 (Información no mostrada debido a la resolución del mapa de la figura 7) y las zonas representadas en amarillo, son aquellas donde la abundancia de partículas ADN positivas es menor. A su vez, tal como se aprecia en la Figura 9, las partículas cuyo tamaño es mayor a dos micrómetros, son las que más abundan considerando todas las profundidades y las estaciones muestreadas.

Figura 7. Gráfica de barras del número de eventos positivos (y), por estación (x).

Figura 8. Abundancia de las partículas ADN positivas en todos los sitios muestreados.

En el siguiente dendrograma (Figura 10), se encuentran agrupadas aquellas estaciones que de acuerdo el índice de Bray-Curtis, son más parecidas entre sí. En la misma figura, se puede apreciar que si se toma como referencia una similitud del 0.5, se forman 11 grupos, cuyas características compartidas son: la abundancia, así como la localización geográfica pues, tal y como se muestra en la Figura 7, existe una marcada diferencia entre los grupos en la zona norte y aquellos en la zona sur del Golfo de México.

Figura 9. Agrupamiento de las estaciones muestreadas según el índice de diversidad de Bray-Curtis, considerando las similitudes entre estaciones, de acuerdo con el tamaño y el número de partículas, los cuadros azules representan a las estaciones de la zona norte y los rojos a las estaciones de la zona sur.

A continuación, se presenta en forma de gráficas la explicación detallada de una tabla de abundancia, donde se considera la media de los valores totales obtenidos mediante citometría de flujo.

De acuerdo con la escala de colores que se presenta en la parte inferior de la tabla 9 y el gráfico de barras de la figura 11, la columna resaltada en rojo permite observar que el gradiente de máximo de fluorescencia es en el que se encuentra la mayor cantidad de eventos totales obtenidos en cada muestra, la suma de positivos y negativos al colorante; mientras que la superficie, es el gradiente donde la cantidad es menor. Lo anterior, podría deberse a que esta última fue uno de los gradientes del que se obtuvieron menos muestras.
Tabla 9. Promedio de la cantidad de eventos por gradiente de profundidad.

Gradiente	X DE EVENTOS POR GRADIENTE	X DE EVENTOS + POR GRADIENTE	X DE EVENTOS + ⊲1 POR GRADIENTE	X DE EVENTOS + 1-2 POR GRADIENTE	X DE EVENTOS + 2< POR GRADIENTE	
superficie	41860	2208	330	488	1396	
máx_fl	163437	1628	294	315	1022	
min_02	162155	690	214	121	355	
1000 m	126839	763	173	112	479	
fondo	148936	752	254	138	362	
		Máximo				
				TE		

Figura 10. Comparación de los valores promedio de los eventos totales por cada gradiente de profundidad.

En la figura 12 se observa que el gradiente superficial presenta el mayor número de eventos ADN positivos, independientemente del tamaño en toda la columna de agua muestreada. De igual forma, en la comparación de medias de los eventos ADN positivos con un tamaño menor a 1 micrómetro, que se puede observar en la gráfica de barras de la figura 13, la superficie, comparada con los 5 gradientes, es aquella donde se presenta el mayor número de eventos ADN positivos menores a 1 micrómetro. En la figura 14 se resume lo correspondiente a los eventos ADN positivos con tamaño entre uno y dos micrómetros donde también es la superficie el gradiente con mayor presencia de dichas partículas y de acuerdo con la figura 15, es posible observar que los eventos con un tamaño mayor a dos micrómetros se encuentran en su mayoría en la superficie.

Figura 11. Comparación de los valores promedio de eventos positivos por gradiente. **Figura 12.** Comparación del promedio de eventos positivos en cada gradiente, menores a un micrómetro. **Figura 13.** Comparación del promedio de eventos positivos, en cada gradiente, con un tamaño de 1 a 2 micrómetros. **Figura 14.** Comparación de la media de eventos positivos, por gradiente, mayores a los 2 micrómetros.

3.3 Distribución y abundancia por gradiente de profundidad

3.3.1 Superficie

De acuerdo a la ubicación geográfica de las estaciones muestreadas en la superficie, se construyó una representación gráfica de la abundancia de las partículas positivas a ADN (Figura 16). En dicha figura se utilizó una escala de colores para identificar las zonas con mayor y menor abundancia de partículas, en la cual se muestran en rojo, los lugares con mayor presencia de eventos ADN positivos, donde las estaciones con los localizadores 39, 45 y 49 (no mostrado; ver Figura 17), son aquellas que se encuentran en los puntos con los valores más altos (Figura 17) en relación con la abundancia de las partículas ADN positivas. En contraste, las estaciones con los localizadores 33, 42 y 43 (Figura 17) o las zonas representadas en amarillo (Figura 16), son aquellas donde la abundancia de partículas positivas a ADN es menor.

Figura 15. Mapa de la distribución de las partículas positivas a ADN, en las estaciones muestreadas, de acuerdo a la abundancia de partículas en la superficie.

Además de lo descrito y como se menciona en el párrafo anterior, la Figura 17 permite observar que la estación número 45 presenta el mayor número de partículas positivas a ADN, así como la visualización de tres agrupaciones de estaciones.

Figura 16. Gráfica de barras del número de eventos positivos (y), por estación (x) en la superficie.

Como se menciona en la metodología, se determinó el tamaño de las partículas positivas a ADN en tres rangos de tamaños, en la Figura 18 se visualiza que predominaron aquellos eventos con un tamaño mayor a 2 μ m, en todas las estaciones muestreadas, seguidas de las partículas cuyo tamaño se encuentra entre 1 y 2 μ m y todavía en menor cantidad aquellas con un tamaño menor a 1 μ m.

Figura 17. Mapa de distribución de las partículas ADN positivas, con un tamaño menor a un micrómetro, entre uno y dos micrómetros y mayor a 3 micrómetros.

Después de obtenida la información referente a la distribución de las partículas ADN positivas y su agrupación por tamaños, se construyó el dendrograma de la Figura 19, el cual permite observar la agrupación de aquellas estaciones que, de acuerdo con el índice de Bray-Curtis, son más parecidas entre sí. Los números de la parte inferior de la figura representan los localizadores utilizados para identificar las estaciones muestreadas. En este gráfico, se observa con mayor detalle la distribución de las partículas y se definen tres grupos, cuyos componentes tienen una relación considerando la localización geográfica de los sitios muestreados. Como se percibe, existe una evidente conglomeración en la superficie de aquellas estaciones que se encuentran al norte o al sur del Golfo de México.

Figura 18. Agrupamiento de las estaciones muestreadas según el índice de diversidad de Bray-Curtis, considerando las similitudes entre estaciones, de acuerdo con el número de partículas obtenidas y sus tamaños.

3.3.2 Máximo de fluorescencia

Se construyó un mapa con la información obtenida mediante la FCM de las muestras del máximo de fluorescencia, dicho gráfico presenta una escala de colores (Figura 20), donde se muestran en rojo los lugares con mayor presencia de eventos ADN positivos, y las estaciones con los localizadores 9 (no mostrado; ver Figura 21), 26, 40 y 42 (no mostrado; ver Figura 21), que son aquellas que se encuentran en los puntos con los valores más altos (Figura 21) en relación con la abundancia de las partículas ADN positivas. En contraste, las estaciones con los localizadores 7, 8 (no mostrado; ver Figura 21), 12 (no mostrado), 14 y 29 (Figura 21) o las zonas representadas en amarillo (Figura 20), son aquellas donde la abundancia de partículas positivas a ADN es menor.

Figura 19. Mapa de abundancia de partículas ADN positivas en el gradiente de máximo de fluorescencia, la escala de colores a la derecha representa al número de partículas identificadas.

Además de lo descrito en el párrafo anterior, la Figura 21 permite observar a la estación 9, la cual presenta el mayor número de partículas positivas a ADN, así como la distribución de estas y la visualización

de cuatro agrupaciones de estaciones, que concuerdan con las áreas o las zonas de distribución de las partículas.

Figura 20. Gráfica de barras para el número de eventos positivos (y) por estación (x) en el máximo de fluorescencia.

Una vez conocida la distribución, se dividieron las muestras de acuerdo al tamaño de las partículas y se dividieron en tres rangos, como se mencionó en la metodología. En la Figura 22 se visualiza que las partículas predominantes, tienen un tamaño mayor a 2 μ m en todas las estaciones muestreadas, seguidas por aquellas cuyo tamaño se encuentra entre 1 y 2 μ m y, todavía en menor cantidad aquellas con un tamaño menor a 1 μ m.

Figura 21. Distribución de partículas ADN positivas en el máximo de fluorescencia, de acuerdo con su tamaño. Las partículas con un tamaño mayor a 2m (mostradas en rojo), son las más abundantes.

Después de obtener la información referente a la distribución de las partículas ADN positivas en el máximo de fluorescencia y su agrupación por tamaños, se construyó el dendrograma de la Figura 23, el cual permite observar la agrupación de aquellas estaciones que de acuerdo con el índice de Bray-Curtis, son más parecidas entre sí. Los números de la parte inferior de la figura representan los localizadores utilizados para identificar las estaciones muestreadas⁸. En este gráfico, es posible observar con mayor detalle la distribución de las partículas y se definen seis grupos, cuyos componentes tienen una relación o similitud del 60 % considerando la localización geográfica de los sitios muestreados. Como se percibe, existe una evidente conglomeración en la superficie de aquellas estaciones que se encuentran al norte o al sur del Golfo de México.

⁸ Anexo

Figura 22. Agrupamiento de las estaciones muestreadas según el índice de diversidad de Bray-Curtis, considerando las similitudes entre estaciones, de acuerdo con el número de partículas obtenidos y sus tamaños, se muestran en rojo los agrupamientos donde las estaciones predominantes son del sur, en azul donde las predominantes son del norte y en verde las que comparten ambas regiones.

3.3.3 Mínimo de oxígeno

Para analizar la información obtenida de las muestras de mínimo de oxígeno, se construyó un mapa con la escala de colores a la derecha (Figura 24), en el gráfico se muestran en rojo los lugares con mayor presencia de eventos ADN positivos, y donde las estaciones con los localizadores 16 (no mostrado; ver Figura 25), 22, 31 y 37 (no mostrado; ver Figura 25), son aquellas que se encuentran en los puntos con los valores más altos (Figura 25) en relación con la abundancia de las partículas ADN positivas. En contraste, las estaciones con los localizadores 7 8, 14 (no mostrado; ver Figura 25) y 33 (Figura 25) o las zonas representadas en amarillo (Figura 24), son aquellas donde la abundancia de partículas positivas a ADN es menor.

Figura 23. Mapa de abundancia de partículas ADN positivas en el gradiente de mínimo de oxígeno. A la derecha, una escala de colores para identificar las zonas con mayor presencia de partículas positivas.

Aunado a lo descrito en el párrafo anterior, la Figura 25 permite observar a la estación número 37 es la que cuenta con el mayor número de partículas positivas a ADN, así mismo, es posible visualizar la

distribución de éstas y la identificación de tres grupos principales de estaciones, que se pueden apreciar en la figura 25.

Figura 24. Gráfica de barras para número de eventos positivos (y) por estación (x) en el gradiente de mínimo de oxígeno.

Tomando como base la metodología presentada páginas atrás, se organizaron los datos obtenidos durante la FCM, en grupos de partículas positivas a ADN y con un tamaño menor dos, de uno a dos y mayor a 2 μ m, de dicha información se desprende la Figura 26, donde es posible visualizar que las partículas con un tamaño mayor a 2 μ m son las más abundantes en todas las estaciones muestreadas en este gradiente de profundidad, seguidas por aquellas cuyo tamaño es menor a 1 μ m y en menor cantidad aquellas con un tamaño entre 1 y 2 μ m.

Figura 25. Distribución de partículas ADN positivas en el gradiente de mínimo de oxígeno, según su tamaño. El gráfico de cajas a la derecha muestra en código de colores la abundancia relativa de las partículas organizadas por tamaño

Después de obtener la información referente a la distribución de las partículas ADN positivas y su agrupación por tamaños, se construyó el dendrograma de la Figura 27, la cual permite observar la agrupación de aquellas estaciones que de acuerdo con el índice de Bray-Curtis, son más parecidas entre sí. Los números de la parte inferior de la figura representan los localizadores utilizados para identificar las estaciones muestreadas⁹. En este gráfico, es posible observar con mayor detalle la distribución de las partículas y se definen cuatro grupos, cuyos componentes tienen una relación o similitud del 60% considerando la localización geográfica de los sitios muestreados. Como se puede apreciar, existe una evidente conglomeración en la superficie de aquellas estaciones que se encuentran al norte o al sur del Golfo de México.

⁹ Anexo

Figura 26. Agrupamiento de las estaciones muestreadas según el índice de diversidad de Bray-Curtis, considerando las similitudes entre estaciones, de acuerdo con el número de partículas obtenidas y sus tamaños, se muestran en rojo las agrupaciones con las estaciones al sur del GoM y en azul, las agrupaciones al norte del Golfo.

3.3.4 1000 metros

Para estudiar los resultados del análisis por citometría de flujo, se hizo uso de software de sistemas de información geográfica para construir un mapa de escalas de color (Figura 28), en el que se muestran en rojo los lugares con mayor presencia de eventos ADN positivos, donde las estaciones con los localizadores 5, 13, 14, 20 (no mostrados; ver Figura 29) y 35, son aquellas que se encuentran en los puntos con los valores más altos (Figura 29) en relación con la abundancia de las partículas ADN positivas de los demás sitios. En contraste, las estaciones con los localizadores 7, 8, 25 y 44 (Figura 29) o las zonas representadas en amarillo (Figura 28), son aquellas donde la abundancia de partículas positivas a ADN es menor.

Figura 27. Mapa de abundancia de partículas ADN positivas en el gradiente de 1000 metros.

Para complementar la información obtenida en el gráfico anterior, se construyó la Figura 29, que permite observar que la estación número 5 es la que cuenta con el mayor número de partículas positivas a ADN a los mil metros de profundidad. Así mismo, en dicha gráfica es posible detectar la presencia de cuatro grupos de estaciones.

Figura 28. Gráfica de barras para número de eventos positivos (y) por estación (x) en el gradiente de 1000 metros.

Además de la distribución de las partículas positivas, como se mencionó anteriormente, se agruparon las partículas en función a su tamaño, en la Figura 30 es posible visualizar que las partículas con un tamaño mayor a 2 μ m son las más abundantes en todas las estaciones muestreadas, seguidas por aquellas cuyo tamaño no supera 1 μ m y, todavía en menor cantidad aquellas con un tamaño entre 1 y 2 μ m.

Figura 29. Distribución de partículas ADN positivas en el gradiente de 1000 metros, según su tamaño.

Después de obtener la información referente a la distribución de las partículas ADN positivas y su agrupación por tamaños se construyó el dendrograma de la Figura 31, el cual permite observar la agrupación de aquellas estaciones que, de acuerdo con el índice de Bray-Curtis, son más parecidas entre sí. Los números de la parte inferior de la figura representan los localizadores utilizados para identificar las estaciones muestreadas¹⁰. En este gráfico, es posible observar con mayor detalle la distribución de las partículas y, se definen cinco grupos cuyos componentes tienen una relación o similitud del 60% considerando la localización geográfica de los sitios muestreados. Como se percibe, a diferencia de los gradientes anteriores, en los 1000 metros, no se aprecia tan marcada la diferencia entre las estaciones muestreadas al sur y al norte del Golfo de México, aunque si existen sub-agrupaciones de estaciones en el norte o el sur que presentan un valor más alto de similitud.

¹⁰ Anexo

Figura 30. Agrupamiento de las estaciones muestreadas según índice de diversidad de Bray-Curtis, considerando las similitudes entre estaciones, de acuerdo con el número de partículas obtenidos y sus tamaños. Se muestran en rojo las agrupaciones con las estaciones al sur del GoM y en azul, las agrupaciones al norte del Golfo.

3.3.5 Fondo

Para finalizar el presente trabajo, se analizaron los resultados de la citometría de flujo de las muestras obtenidas en el fondo de las estaciones muestreadas, con éstas se elaboró un mapa de distribución de partículas ADN positivas (Figura 32). En dicho mapa se observa una escala de colores a la derecha de la Figura 32 y se muestran en rojo los lugares con mayor presencia de eventos ADN positivos, donde las estaciones con los localizadores 10, 11 ,13 y 20 (no mostrado; ver Figura 33), son aquellas que se encuentran en los puntos con los valores más altos (Figura 33) en relación con la abundancia de las partículas ADN positivas. En contraste, las estaciones con los localizadores 3, 4 5, 6, 7, 14, 15, 16 y 27 (no mostrado; ver Figura 33) o las zonas representadas en amarillo (Figura 32), son aquellas donde la abundancia de partículas positivas a ADN es menor.

Figura 31. Mapa de abundancia de partículas ADN positivas en el fondo, de todas las estaciones de todos los cruceros.

Posterior a lo descrito en el párrafo anterior, se graficaron las estaciones con sus respectivos eventos positivos a ADN, para observar a la estación con el mayor número de partículas positivas a ADN (estación 20), así como la distribución de las partículas y la visualización de tres grupos de estaciones.

Figura 32. Gráfica de barras para número de eventos positivos(y) por estación(x) en el fondo.

Además de la distribución de las partículas positivas, fue necesario elaborar un mapa de distribución de las partículas de acuerdo con su tamaño (Figura 34), para visualizar de qué tamaño eran las partículas que más abundaban en las regiones muestreadas, de lo anterior se obtuvo que aquellas cuyo tamaño es mayor a 2 μ m son las más abundantes en todas las estaciones de las que se obtuvo muestras del fondo, así también, aquellas partículas cuyo tamaño es menor a 1 μ m se observan en baja proporción y aun con menor cantidad aquellas de tamaño entre 1 y 2 μ m.

Figura 33. Distribución de partículas ADN positivas en el fondo, según su tamaño.

Con el objetivo de identificar si existían similitudes entre las poblaciones de partículas identificadas mediante la citometría de flujo, se construyó el dendrograma de la Figura 35, en éste se puede observar la agrupación de aquellas estaciones que, de acuerdo con el índice de Bray-Curtis, son más parecidas entre sí. Los números de la parte inferior de la figura representan los localizadores utilizados para identificar las estaciones muestreadas¹¹. En este gráfico, es posible observar con mayor detalle la distribución de las partículas y, se definen siete grupos cuyos componentes tienen una relación o similitud del 50% considerando la localización geográfica de los sitios muestreados. Como se percibe, existe una evidente conglomeración en la superficie de aquellas estaciones que se encuentran al norte o al sur del Golfo de México.

Figura 34. Agrupamiento de las estaciones muestreadas según índice de diversidad de Bray-Curtis, considerando las similitudes entre estaciones, de acuerdo con el número de partículas obtenidos y sus tamaños. Se muestran en rojo las agrupaciones con las estaciones al sur del GoM y en azul, las agrupaciones al norte del Golfo.

El ambiente acuático es objeto de procesos altamente variables a escalas espaciotemporales, lo cual dificulta su estudio. Incluso para un proyecto tan grande como el CIGoM, donde es necesaria la participación de muchas personas para que la toma de muestras, análisis e interpretación de datos se lleven a cabo.

En el presente trabajo se analizan los datos obtenidos por citometría de flujo en el subproyecto "Análisis multiparamétrico mediante citometría de flujo de agua profunda del Golfo de México", que forma parte de la línea cuatro del CIGoM. A través de la información arrojada por la FCM, fue posible determinar la distribución y abundancia de partículas ADN positivas que, de acuerdo con la presente discusión, se considera serán indicios de la presencia de microorganismos en el Golfo de México. Sin embargo, es necesario mencionar las limitaciones que se tuvieron al momento de realizar esta tesis, mismas que representan un reto y posibles caminos para nuevas investigaciones, donde se obtenga un mayor número de muestras con el diseño experimental adecuado; pues sería pertinente adquirir muestras de todos los gradientes, principalmente de la superficie; ensayos en los que se pudieran conocer las condiciones y las características del equipo utilizado para el muestreo en dicho gradiente. Para poder así, disminuir el error. El análisis realizado se llevó a cabo por gradiente de profundidad comparando las muestras obtenidas en la misma profundidad, pero en diferentes estaciones.

Aun cuando no se cuenta con mucha información respecto a estudios en el Golfo de México, trabajos anteriores han demostrado la utilidad de la citometría de flujo como técnica de referencia para analizar muestras marinas, ejemplo de ello son los artículos publicados por Dubelaar et al., (2007), en los que los resultados aumentaron la cantidad de información con respecto a las poblaciones de microorganismos en el mar y sus composiciones. En la actualidad parte de la información con la que se cuenta, información obtenida mediante FCM referente al Golfo de México, es el conocimiento de que, a través de la citometría de flujo, se puede deducir la presencia de células en las muestras analizadas.

En el presente escrito se define la abundancia de las partículas de acuerdo al número de eventos positivos detectados por el citómetro en las muestras de los diferentes gradientes de profundidad. En el análisis se encontró que en todas las estaciones muestreadas, sin importar el gradiente de profundidad, se pudieron identificar partículas ADN positivas en los tres tamaños considerados para el estudio, de lo cual, si se considera que los cuerpos de agua (océanos, golfos, ríos, etc.) son los mayores reservorios de microorganismos en el mundo (Whitman, Coleman, and Wiebe, 1998), es posible inferir la presencia de

microorganismos; sin embargo, los datos con los que se contó para la realización del presente trabajo, no fueron suficientes para determinar la filia de los microorganismos, pero fue posible identificar la presencia de estos a través de tamaño y la presencia de ADN en los eventos identificados. A pesar de lo anterior, si se toma en cuenta que las partículas se encuentran presentes principalmente en la zona fótica del Golfo, que tienen un tamaño que correspondería a organismos unicelulares, podría inferirse la presencia de microorganismos del género Prochlorococcus, mismos que han sido identificados como los más abundantes en aguas tróficas (Chisholm et al., 1988; Whitman et al., 1998; Urbach y Chisholm, 1998; Mou, et al., 2005; Gasol y Morán, 2015; Ribeiro et al., 2016 y Linacre et al., 2015, 2019), es decir, aquellas con mayor disponibilidad de nutrientes y donde aún hay presencia de luz (superficie y máximo de fluorescencia). De igual forma, se considera que también se encuentran presentes bacterias del género Synechococcus que, en menor medida, también se han identificado en los gradientes de profundidad antes mencionados. Sin embargo, para poder corroborar lo anterior, es necesario realizar estudios de metagenómica y genómica de comunidades en los sitios de estudio. De realizarse este tipo de estudios, mis datos sugieren que los lugares ideales para realizar las colectas son el sitio NN en el sur y el sitio MM en el norte del GoM. Este tipo de información permitiría completar la información de abundancia y podría permitir realizar mejores hipótesis sobre la estructura y función de las comunidades de microbios del GoM a diferentes latitudes, longitudes y profundidades.

Derivado de mis datos, se pudo encontrar que existen dos zonas en las que el índice de similitud de Bray-Curtis agrupa a las estaciones muestreadas, estas zonas son conocidas como el Cinturón de Plegado de Perdido del Golfo de México (CPP) y la bahía de Campeche (BdC), ambas zonas con desembocaduras de ríos o complejos hídricos que arrastran grandes cantidades de materia orgánica al mar. Lo anterior se deduce de la información recibida a partir del tamaño y la distribución de las partículas ADN positivas, además de que las bacterias de los géneros mencionados son fotosintéticas (Linacre et al., 2015, 2019). Por otra parte, posiblemente un fenómeno conocido como nieve marina explique la presencia de partículas ADN positivas en gradientes inferiores (de mayor profundidad); ésta se compone principalmente por heces, piel, restos de animales muertos y redes mucosas de larvas que a medida que descienden hacia las profundidades, cambian la composición de las partículas que caen desde la superficie, y aquellas que no se aprovechan como alimento para organismos que viven en capas inferiores, simplemente se descomponen por la acción de otros compuestos químicos con los que entran en contacto (Lampitt, 2001). Asimismo, la nieve marina está formada por fitoplancton y bacterias principalmente (Lampitt, 2001) como *Oceanospirillales o Pseudomona*, que han sido identificadas en muestras de agua marina, tomadas entre los 900 y 1300 metros de profundidad (Muriel-Millán et al., 2019; Sun et al., 2018).

Pseudomona sp. podría considerarse un indicador de presencia de hidrocarburos en el mar, debido a que se ha observado su presencia y expansión en zonas contaminadas con hidrocarburos.

En los resultados obtenidos durante el presente análisis, se observó que existe una gran diferencia en cuanto al número de partículas detectadas por el FCM, entre los cinco gradientes analizados. Sin embargo, en todos los gradientes se presenta las mismas dos agrupaciones de microorganismos (CPP y BdC). En la superficie se detectaron un promedio de 2208 partículas, en el máximo de fluorescencia un promedio de 1628, a los mil metros 753, fondo 752 y 690 en el mínimo de oxígeno; no obstante, es importante mencionar que los datos obtenidos en la superficie no son comparables con los cuatro gradientes restantes, pues el número de muestras analizadas es muy inferior, mas es importante considerar dicho gradiente para el análisis individual de gradientes. A la vez es necesario precisar que aun cuando las partículas con un tamaño mayor a dos micrómetros son las que predominan en los cinco gradientes, en el máximo de fluorescencia se encuentran en segundo lugar las partículas con un tamaño de entre 1 y 2 μ m, lo cual difiere del mínimo de oxígeno, 1000 metros y fondo, donde en segundo lugar se encuentran las partículas con un tamaño menor a un micrómetro, seguidas por aquellas con tamaño de uno a 2 μ m micrómetros.

Es de esperarse que en los gradientes más superficiales el porcentaje de partículas ADN positivas sea mayor que en los más profundos, debido a que las zonas muestreadas son regiones altamente productivas, pues ahí se concentran gran cantidad de organismos, que pertenecen a la misma cadena trófica. No obstante, existe un movimiento de mareas conocido como giro oceánico que ha sido observado en cuerpos de agua como el Golfo de México. Dicho fenómeno presenta variaciones de acuerdo con factores ambientales, y de éste depende en gran medida la ubicación espacial de los organismos, pues estos últimos responden a factores físicos (como disponibilidad de luz y temperatura) y principalmente a la acción que las corrientes marinas tienen sobre la distribución de nutrientes. Según Monreal et al., (2004), la circulación en el Golfo de México es generada por la energía resultante de la acción de los vientos, el flujo de agua a través del canal de Yucatán, la descarga de agua proveniente de los ríos y el intercambio de calor entre el océano y la atmósfera. Dichas interacciones resultan en la formación de giros ciclónicos y anticiclónicos responsables del movimiento y distribución de nutrientes y especies presentes en los diferentes gradientes de profundidad (Figura 36).

Los giros ciclónicos y anticiclónicos han sido observados en la zona de la BdC y en el CPP. La diferencia que presenta la bahía de Campeche y Perdido, tanto en distribución como en la abundancia de las partículas, podría deberse a que en la BdC (cuadro rojo, Figura 36), el movimiento marino es ciclónico,

lo que produce un ascenso de agua (del fondo a la superficie) y favorece la productividad biológica de la zona. Por el contrario, CPP se encuentra en una zona donde la circulación es anticiclónica y, debido a que las zonas donde suelen presentarse este tipo de giros presentan hundimientos de agua de alta temperatura y bajo contenido de nutrientes (Monreal et al., 2004), se esperaría que la actividad y presencia de moléculas positivas a ADN fuera mucho menor en comparación con BdC. Sin embargo, parte del CPP se encuentra comprendido dentro de un frente geostrófico (Cuadro verde, figura 37); estos frentes pueden generarse debido al choque de dos corrientes (ciclónica-anticiclónica) y, en el caso de CPP, debido al desprendimiento de una corriente ciclónica procedente de la corriente lazo que choca con el talud continental frente a Tamaulipas (Cuadro y flecha amarilla, figura 37) (Monreal et al., 2004). Considerando lo anterior, es de esperar que dichas zonas presenten mayor cantidad de partículas positivas a ADN a diferencia de las estaciones que se encuentra en las zonas más profundas y con menor actividad de corrientes marinas.

Figura 35. Circulación en el Golfo de México. Modificado de "Golfo de México, circulación y productividad (Monreal, Salas y Gracia, 2004).

Los giros ciclónicos establecen una configuración radial del centro hacia afuera y el movimiento resulta en diferencias de composición y reacomodo de diversas comunidades que se encontrarían distribuidas homogéneamente dentro del giro (Monreal et al., 2004). En consecuencia, se explica el hecho de que las estaciones que se encuentran en el centro de las zonas con giros ciclónicos no hayan resultado similares según los cuadros de Bray-Curtis realizados en este trabajo.

El movimiento y transporte de material del fondo hacia la superficie genera turbulencia, lo que provoca la resuspensión de nutrimentos, por lo que resulta lógico que haya mayor número de partículas en gradientes más superficiales, como se observó en la Tabla 9, donde a medida que aumentaba el

gradiente de profundidad, disminuía la cantidad de partículas detectadas por el citómetro, información que además, es acorde a lo reportado por Linacre et al., (2019).

Parte importante de las observaciones realizadas en este estudio, es la identificación de las diferencias entre las zonas de CPP y BdC. Se ha hecho referencia al movimiento de las mareas y las condiciones de las zonas estudiadas, para establecer la importancia y comprender la distribución y la abundancia de las partículas ADN positivas. De igual forma, la presencia o ausencia de nutrientes en un lugar es un factor determinante para dicha composición. Si se considera la zona de CPP y BdC como se sugiere en párrafos anteriores de esta misma sección, es necesario tomar en cuenta que los nutrientes de los que se habla, llegan al Golfo de México principalmente a través de los ríos. En México, casi dos terceras partes del caudal de los ríos desemboca en el mar del Golfo, lo que conlleva a una gran diversidad ambiental, abundancia de nutrientes y dinámicas poblacionales. Por ejemplo, en la región costera noreste se han reportado 144 especies de aves, 318 de peces y gran riqueza de crustáceos y poliquetos, por lo tanto y debido a su extensión, es considerada una zona de reciclaje de materia orgánica. Por otro lado, la zona sur del Golfo en la Bahía de Campeche se considera un centro de actividad biológica y de allí se desprenden las diferencias en la cantidad de partículas positivas a ADN detectadas en este estudio.

Por último, se considera que los datos obtenidos podrían aportar mayor información si es comparada con la información generada por otros subproyectos del CIGoM, o si se llegasen a realizar nuevos viajes (cruceros) de exploración al Golfo de México, se considerara enfocar los estudios en las zonas marcadas en este proyecto como las más abundantes, pues se podrían reducir costos y tiempo si se realizara una labor de investigación dirigida a sitios de interés como los encontrados mediante el uso de la citometría de flujo.

- El presente trabajo permitió identificar dos zonas (CPP y BdC) con importantes cantidades de partículas positivas a ADN, de las que aquellas con un tamaño mayor a 2 μm fueron las más abundantes, independientemente de la profundidad. También fue posible observar que a medida que el gradiente de profundidad aumenta, disminuye la abundancia de las partículas ADN positivas. Esto implica que e GoM no es homogéneo en abundancia microbiana a lo largo y ancho de su extensión territorial
- Los cambios en la distribución y la abundancia de partículas en los diferentes gradientes de una misma zona se deben a la actividad biológica que se ve influenciada por las corrientes marinas de las zonas muestreadas y concuerdan con la información conocida. Esto implica que tampoco es homogénea la distribución de la abundancia de microorganismos a través de gradientes de profundidad en el GoM.
- El gradiente superficial presenta la mayor proporción de partículas ADN positivas y las estaciones con el número de localizador 9, 26, 40 y 45, son las que cuentan con mayor abundancia de partículas ADN positivas.
- Finalmente, esta investigación permitió asentar una línea base en cuanto a la distribución y la abundancia de partículas ADN positivas en el Golfo de México. Un futuro e importante paso siguiente es la descripción de la diversidad de grupos monofiléticos a través de estudios de genómica comparativa de comunidades biológicas, lo que permitirá establecer con mejor precisión los patrones de distribución de la diversidad microbiana en el gigantesco espacio tridimensional ocupado por el GoM.

Literatura citada

- Aguirre, M. L., García, N. U. 2005. Biodegradación de petróleo por bacterias: algunos casos de estudio en el Golfo de México. Golfo de México. Contaminación e Impacto Ambiental: Diagnóstico y Tendencias, (March 2015), 641–652.
- Benavides López, J., Quintero, G., Guevara Vizcaíno, A. L., Jaimes Cáceres, D. C., Gutiérrez Riaño, S. M., Johanna, M. G. 2006. Bioremediación de suelos contaminados con hidrocarburos derivados del petróleo (Vol. 4, pp. 253–263). Singapore: Springer Singapore. doi:10.1007/978-981-10-5320-7_11
- Bougon, N., Aquilina, L., Molénat, J., Marie, D., Delettre, Y., Chancerel, E., Vandenkoornhuyse, P. 2012. Influence of depth and time on diversity of free-living microbial community in the variably saturated zone of a granitic aquifer. FEMS Microbiology Ecology, 80(1), 98–113. doi:10.1111/j.1574-6941.2011.01273.x
- Chao, A., Jost, L., Chiang, S. C., Jiang, Y.-H., Chazdon, R. L. 2008. A Two-Stage Probabilistic Approach to Multiple-Community Similarity Indices. Biometrics, 64(4), 1178–1186. doi:10.1111/j.1541-0420.2008.01010.x
- Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J. B., Welschmeyer, N. A. 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature, 334(6180), 340–343. doi:10.1038/334340a0
- Comte, J., Lindström, E. S., Eiler, A., Langenheder, S. 2014. Can marine bacteria be recruited from freshwater sources and the air? The ISME Journal, 8(12), 2423–2430. doi:10.1038/ismej.2014.89
- Dubelaar, G. B. J., Casotti, R., Tarran, G. A., Biegala, I. C. 2007. Phytoplankton and their Analysis by Flow Cytometry. *Flow Cytometry with Plant Cells: Analysis of Genes, Chromosomes and Genomes*. doi:10.1002/9783527610921.ch13
- Escalante, T., Morrone, J. 2002. Métodos para medir la biodiversidad. Acta Zoológica Mexicana, (85), 195–196.
- García, F. C., Alonso-Sáez, L., Morán, X. A. G., López-Urrutia, Á. 2015. Seasonality in molecular and cytometric diversity of marine bacterioplankton: the re-shuffling of bacterial taxa by vertical mixing. Environmental Microbiology, 17(10), 4133–4142. doi:10.1111/1462-2920.12984
- Gasol, J. M., Morán, X. A. G. 2015. Flow Cytometric Determination of Microbial Abundances and Its Use to Obtain Indices of Community Structure and Relative Activity. In *Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks* (pp. 159–187). Berlin: Springer. doi:10.1007/8623_2015_139
- Halffter, G., Llorente Bousquets, J., Sarukhan, J., Soberon, J. 2016. Conocimiento actual de la biodiversidad. *Conocimiento actual de la biodiversidad* (Vol. I). https://doi.org/10.5962/bhl.title.113645
- Hutter, K.-J., Eipel, H. E. 1979. Microbial Determinations by Flow Cytometry. Journal of General Microbiology, 113(2), 369–375. doi:10.1099/00221287-113-2-369
- Kostka, J. E., Prakash, O., Overholt, W. A., Green, S. J., Freyer, G., Canion, A., ... Huettel, M. 2011. Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill + ‡. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 77(22), 7962–7974. doi:10.1128/AEM.05402-11

- Lampitt, R. S. 2001. Marine Snow. In *Encyclopedia of Ocean Sciences* (pp. 686–694). Elsevier. doi:10.1016/B978-012374473-9.00218-6
- Lebaron, P., Servais, P., Agogué, H., Courties, C. 2001. Does the High Nucleic Acid Content of Individual Bacterial Cells Allow Us To Discriminate between Active Cells and Inactive Cells in Aquatic Systems? APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 67(4), 1775–1782. doi:10.1128/AEM.67.4.1775-1782.2001
- Linacre, L., Durazo, R., Lara-Lara, J. R., Fernández-Martín, E. M., Lago-Leston, A., Bazán-Guzmán, C., ... Selph, K. E. 2019. Picoplankton carbon biomass assessments and distribution of Prochlorococcus 2 ecotypes linked to Loop Current Eddies during summer in the southern Gulf of 3 Mexico. Journal of Geophysical Research Oceans.
- Linacre, L., Lara-Lara, R., Camacho-Ibar, V., Herguera, J. C., Bazán-Guzmán, C., Ferreira-Bartrina, V. 2015. Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions. Deep-Sea Research Part I: Oceanographic Research Papers, 106, 55–67. doi:10.1016/j.dsr.2015.09.009
- Manti, A., Papa, S., Boi, P. 2012. What Flow Cytometry can Tell Us About Marine Micro-Organisms Current Status and Future Applications. In *Flow Cytometry - Recent Perspectives* (pp. 1–29). InTech. doi:10.5772/38616
- Monreal, M. A., Salas, D. A., Gracia, A. 2004. Golfo de Mexico circulación y productividad. Revista Ciencias,76,24–32.Retrievedfromhttps://www.revistaciencias.unam.mx/images/stories/Articles/76/CNS07604.pdf
- Mou, X., Moran, M. A., Stepanauskas, R., Gonzalez, J. M., Hodson, R. E. 2005. Flow-cytometric cell sorting and subsequent molecular analyses for culture-independent identification of bacterioplankton involved in dimethylsulfoniopropionate transformations. Applied and Environmental Microbiology, 71(3), 1405–1416. doi:10.1128/AEM.71.3.1405-1416.2005
- Muriel-Millán, L. F., Rodríguez-Mejía, J. L., Godoy-Lozano, E. E., Rivera-Gómez, N., Gutierrez-Rios, R.-M., Morales-Guzmán, D., ... Pardo-López, L. 2019. Functional and Genomic Characterization of a Pseudomonas aeruginosa Strain Isolated From the Southwestern Gulf of Mexico Reveals an Enhanced Adaptation for Long-Chain Alkane Degradation. Frontiers in Marine Science, 6(September), 1–15. doi:10.3389/fmars.2019.00572
- Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., ... Maintainer, H. W. 2019. Package "vegan" Title Community Ecology Package Version 2.5-6.
- Pan, D., Nolan, J., Williams, K. H., Robbins, M. J., Weber, K. A. 2017. Abundance and distribution of microbial cells and viruses in an alluvial aquifer. Frontiers in Microbiology, 8(JUL), 1–11. doi:10.3389/fmicb.2017.01199
- Pontasch, K. W., Brusven, M. A. 1988. Diversity and community comparison indices: Assessing macroinvertebrate recovery following a gasoline spill. Water Research, 22(5), 619–626. doi:10.1016/0043-1354(88)90063-2
- Reckermann, M. 2000. Flow sorting in aquatic ecology. Scientia Marina, 64(2), 235–246. doi:10.3989/scimar.2000.64n2235
- Réjou-Méchain, M., Hardy, O. J. 2011. Properties of Similarity Indices under Niche-Based and Dispersal-Based Processes in Communities. The American Naturalist, 177(5), 589–604. doi:10.1086/659627

- Ribeiro, C. G., Marie, D., dos Santos, A. L., Brandini, F. P., Vaulot, D. 2016. Estimating microbial populations by flow cytometry: Comparison between instruments. Limnology and Oceanography: Methods, 14(11), 750–758. doi:10.1002/lom3.10135
- Rich, J. J., Heichen, R. S., Bottomley, P. J., Cromack, K., Myrold, D. D. 2003. Community Composition and Functioning of Denitrifying Bacteria from Adjacent Meadow and Forest Soils. Applied and environmental microbiology, 69(10), 5974–5982. doi:10.1128/AEM.69.10.5974-5982.2003
- Rivera, María del Carmen; Ferrera, Ronald; Volke, Víctor; Rodríguez, Refugio; Fernández, L. 2002. Adaptación y selección de microorganismos autóctonos en medios de cultivos enriquecidos con petróleo crudo. Terra Latinoamericana, 20(4). Retrieved from http://www.redalyc.org/pdf/573/57320407.pdf
- Sun, J., Wang, W., Ying, Y., Zhu, X., Liu, J., Hao, J. 2018. Pseudomonas profundi sp. nov., isolated from deepsea water. Int J Syst Evol Microbiol, 68, 1776–1780. doi:10.1099/ijsem.0.002748
- Thomson, P. G., Davidson, A. T., van den Enden, R., Pearce, I., Seuront, L., Paterson, J. S., Williams, G. D.
 2010. Distribution and abundance of marine microbes in the Southern Ocean between 30 and 80°E.
 Deep-Sea Research Part II: Topical Studies in Oceanography, 57(9–10), 815–827.
 doi:10.1016/j.dsr2.2008.10.040
- Urbach, E., Chisholm, S. W. 1998. Genetic diversity in Prochlorococcus populations flow cytometrically sorted from the Sargasso Sea and Gulf Stream. Limnology and Oceanography, 43(7), 1615–1630. doi:10.4319/lo.1998.43.7.1615
- Van Hamme, J. D., Singh, A., Ward, O. P. 2003. Recent Advances in Petroleum Microbiology. Microbiology and molecular biology reviews, 67(4), 503–549. doi:10.1128/MMBR.67.4.503-549.2003
- Veal, D. ., Deere, D., Ferrari, B., Piper, J., Attfield, P. . 2000. Fluorescence staining and flow cytometry for monitoring microbial cells. Journal of Immunological Methods, 243(1–2), 191–210. doi:10.1016/S0022-1759(00)00234-9
- Whitman, W. B., Coleman, D. C., Wiebe, W. J. 1998. Perspective Prokaryotes: The unseen majority (Vol. 95). Retrieved from www.pnas.org.
- Yakimov, M. M., Timmis, K. N., Golyshin, P. N. 2007. Obligate oil-degrading marine bacteria. Current Opinion in Biotechnology, 18(3), 257–266. doi:10.1016/j.copbio.2007.04.006
- Zheng, Z. ., Zhang, T. . 2012. Identification and Characterisation of Microbial Populations Using Flow Cytometry in the Adriatic Sea. School of Environmental Sciences.
- Zinger, L., Gobet, A., Pommier, T. 2012. Two decades of describing the unseen majority of aquatic microbial diversity. Molecular Ecology, 21(8), 1878–1896. doi:10.1111/j.1365-294X.2011.05362.x

Anexos

A) Base de datos curada

			Localización							SYBR GREEN I (DNA)				
Localizador	Crucero	Año		Loca	alizacion		Protu	indidad	#	#	Tamaño (μm)			
			Estació n	Latitud	Longitud	Distancia (mn)	Muestr a	Gradient e	Eventos totales	Event os +	<0.5	1 a2	2<	
			VIV				0	superficie	0	0	0	0	0	
			A1M			15.654	1	máx_fl	292431	2936	1847	499	587	
3	MMF- 01	201 6	MET- A1	25.88	-95.84		1	min_02	317409	133	112	4	17	
		Ŭ	MMF-				0	1000 m	0	0	0	0	0	
			AI				1	fondo	316177	136	117	7	12	
			VIV				0	superficie	0	0	0	0	0	
			A2M				1	máx_fl	326004	1248	473	214	561	
4	MMF- 01	201	MET-	25.88	-95.55	23.212	1	min_02	331453	444	136	5	303	
		Ŭ	MMF-				1	1000 m	310227	312	295	15	1	
			A2				1	fondo	317819	125	103	6	16	
							0	superficie	0	0	0	0	0	
			A3M			24.291	1	máx_fl	334547	274	115	11	148	
5	MMF-	201 6	MET- A3 MMF-	25.88	-95.12		1	min_02	332666	327	111	10	206	
	01						1	1000 m	315652	2002	256	42	170 2	
	A3	A3				1	fondo	316162	111	101	3	7		
							0	superficie	0	0	0	0	0	
		201 6	XIX- A4M L MET- A4 MMF-	25.88			1	máx_fl	315741	1351	513	354	484	
6	MMF- 01				-94.67	22.92	1	min_02	320369	306	221	11	74	
	01	Ű					1	1000 m	314065	1109	422	52	635	
			A4				1	fondo	310333	207	187	5	15	
			VIV	25.64	-95	13.522	0	superficie	0	0	0	0	0	
		201 6	XIX- B9M MET- B9 MMF-				1	máx_fl	383093	82	75	7	0	
7	MMF- 01						1	min_02	378712	19	7	2	10	
		Ŭ					1	1000 m	362519	30	8	3	19	
			89				1	fondo	378917	110	20	17	73	
			VIV				0	superficie	0	0	0	0	0	
			B8M				1	máx_fl	370377	97	37	29	31	
8	MMF- 01	201 6	MET- B8	25.64	-95.25	17.85	1	min_O2	379527	85	22	14	49	
			MMF-				1	1000 m	376957	83	12	1	70	
			B8				1	fondo	381370	827	138	197	488	
			VIV				0	superficie	0	0	0	0	0	
			B7M				1	máx_fl	294424	4475	685	1383	239 9	
9	MMF- 01	201 6	MET- B7	25.64	-95.58	15.686	1	min_02	312010	1045	187	95	761	
			MMF-				1	1000 m	288104	861	206	65	589	
			B7				1	fondo	296760	545	91	127	327	

									SYBR GREEN I (DNA)							
Localizador	Crucero	Año		LOC	alización		Profu	indidad	#	#	Та	maño (µn	n)			
			Estació n	Latitud	Longitud	Distancia (mn)	Muestr a	Gradient e	totales	os +	<0.5	1 a2	2<			
			VIV-			20.554	0	superficie	0	0	0	0	0			
			B6M				1	máx_fl	327888	1575	348	149	107 8			
10	MMF- 01	201 6	MET- B6	25.64	-95.87		1	min_02	311240	257	254	3	0			
			MMF-				0	1000 m	0	0	0	0	0			
			ВО				1	fondo	303737	2201	1565	377	259			
			VIV				0	superficie	0	0	0	0	0			
			B5M				1	máx_fl	321290	1336	428	140	765			
11	MMF- 01	201 6	MET- B5	25.64	-96.25	305.974	1	min_02	313825	1074	523	118	432			
			MMF-				1	1000 m	0	0	0	0	0			
			60				1	fondo	309249	2542	1211	520	810			
			VIV			26.975	0	superficie	0	0	0	0	0			
			C14M				1	máx_fl	393660	179	28	19	132			
12	MMF- 01	201 6	MET- C14 MMF-	20.73	-94.75		1	min_O2	350251	1020	82	150	788			
							0	1000 m	0	0	0	0	0			
			C14				1	fondo	368201	481	148	128	205			
			VIV		-94.29		0	superficie	0	0	0	0	0			
			C13M	20.6		45.465	1	máx_fl	287584	1103	371	412	320			
13	MMF- 01	201 6	I MET- C13 MMF- C12				1	min_02	278421	1078	1051	26	1			
				MMF-				1	1000 m	259504	1783	335	290	115 6		
			C13				1	fondo	251716	2077	714	148	121 5			
			VIV			28.937	0	superficie	0	0	0	0	0			
		- 201 6	C12M	20.02	-93.77		1	máx_fl	377968	44	21	9	14			
14	MMF- 01		MET- C12 MMF-				1	min_O2	362941	165	16	11	138			
							1	1000 m	375120	1676	106	109	146 0			
			012				1	fondo	380135	242	59	57	126			
			VIV				0	superficie	0	0	0	0	0			
			C11M			28.723	1	máx_fl	369976	227	49	72	105			
15	MMF- 01	201 6	MET- C11	19.61	-93.5		1	min_O2	352171	219	113	60	45			
			MMF-				0	1000 m	0	0	0	0	0			
							1	fondo	336903	141	100	39	2			
			XIX-				0	superficie	0	0	0	0	0			
			C10M				1	máx_fl	369308	542	135	175	231			
16	MMF- 01	201 6	MET- C10	19.17	-93.3	17.012	1	min_O2	367695	1269	612	640	17			
			MMF-				0	1000 m	0	0	0	0	0			
			010				1	fondo	362866	192	125	36	31			
			XIX-				0	superficie	0	0	0	0	0			
17	MMF- 01	201 6	D15M MET-	19.16	-93.6	23.793	1	máx_fl	266534	489	72	77	340			
		-	-	-	-	D15				1	min_02	280744	800	198	193	407

			Localización				Duch	Profundidad		SYBR GREEN I (DNA)									
Localizador	Crucero	Año		LUL	alizacion		PIUL	indidad	#	#	Та	maño (μn	n)						
			Estació n	Latitud	Longitud	Distancia (mn)	Muestr a	Gradient e	totales	os +	<0.5	1 a2	2<						
			MMF- D15				1	1000 m	0	0	0	0	0						
			515				1	fondo	249011	747	299	137	311						
			XIX-				0	superficie	0	0	0	0	0						
			D16M				1	máx_fl	273132	1953	569	558	824						
18	MMF- 01	MMF- 201 01 6	MET- D16	19.04	-94	34.497	1	min_02	279027	994	264	213	517						
			MMF-				0	1000 m	0	0	0	0	0						
			010				1	fondo	276906	1032	187	130	715						
			XIX-				0	superficie	0	0	0	0	0						
			D17M			24.168	1	máx_fl	282126	733	269	167	293						
19	MMF- 01	201 6	D17	19.61	-94.08		1	min_02	293697	1070	404	172	494						
			MMF- D17				0	1000 m	0	0	0	0	0						
			517				1	fondo	290183	1691	808	241	642						
			XIX-				0	superficie	0	0	0	0	0						
	лалаг		D18M	19.93		182.589	1	máx_fl	308029	675	130	98	447						
20	01	6	D18		-94.34		1	min_O2	299009	842	178	129	534						
			MMF- D18				1	1000 m	280507	1706	538	741	425						
							1	fondo	290511	3261	1791	724	745						
			MET-				1	superficie	43607	1132	324	232	586						
	NACT	201 7					1	máx_fl	56148	2384	521	510	135 9						
21	02		7	7	7	7	7	7	7	MMF-	24.44	-96.76	67.064	1	min_O2	45497	711	235	168
			N1				0	1000 m	0	0	0	0	0						
							1	fondo	52685	644	117	65	468						
							1	superficie	42479	1051	117	140	797						
	MET	201	MET-	25.200		32.764	1	máx_fl	69192	1889	238	262	139						
22	02	7	MMF-	1	-96.127		1	min_O2	49255	876	165	159	552						
			N2				0	1000 m	0	0	0	0	0						
							1	fondo	54728	777	110	104	564						
			XIX-				1	superficie	39035	1499	246	255	2						
	MFT-	201	A1M MET-				1	máx_fl	89864	2015	138	190	2						
23	02	7	A1	25.88	-95.84	15.654	1	min_02	34331	250	146	56	58						
			MMF- A1				0	1000 m	0	0	0	0	0						
							1	fondo	34479	443	113	89	245						
			XIX-				1	superficie	66304	2424	275	301	6						
	MFT-	201	A2M				1	máx_fl	74271	1103	109	120	876						
24	02	7	A2	25.88	-95.55	23.212	1	min_O2	62530	618	163	66	392						
			MMF- A2				1	1000 m	28373	1048	224	161	666						
							1	fondo	38924	455	177	66	217						
25				25.88	-95.12	24.291	1	superficie	40358	1681	375	290	4						

			Localización						SYBR GREEN I (DNA)										
Localizador	Crucero	Año					Profi	FIOIUIIuluau		#	Та	maño (μn	n)						
			Estació n	Latitud	Longitud	Distancia (mn)	Muestr a	Gradient e	totales	event os +	<0.5	1 a2	2<						
			XIX-				1	máx_fl	65116	2311	363	496	145 9						
	MET-	201	A3M MET-				1	min_02	45728	585	240	118	234						
	02	7	A3				1	1000 m	19123	266	161	52	54						
			A3				1	fondo	32947	253	166	49	46						
			VIV				1	superficie	45047	2082	360	301	143 7						
			XIX- A4M				1	máx_fl	90105	3304	357	517	243 7						
26	MET- 02	201	MET- A4	25.88	-94.67	22.92	1	min_02	51091	1252	359	201	699						
			MMF-				1	1000 m	41244	642	178	60	408						
			A4				1	fondo	32418	584	209	69	314						
			VIV				0	superficie	0	0	0	0	0						
			B9M				1	máx_fl	56517	1712	251	307	116 5						
27	MET- 02	201 7	MET- B9	25.64	-95	13.522	0	min_O2	0	0	0	0	0						
			MMF-				0	1000 m	0	0	0	0	0						
			69				0	fondo	0	0	0	0	0						
			XIX- B8M MET- B8	XIX				1	superficie	61666	2651	474	449	174 6					
		201 7		25.64	-95.25	17.85	1	máx_fl	61829	1869	249	237	138 5						
28	MET- 02						1	min_02	19988	454	244	62	152						
			MMF-				1	1000 m	31543	558	245	74	246						
			DO				1	fondo	13503	372	173	77	125						
									VIX-				1	superficie	61666	2651	474	449	174 6
			XIX- B7M MET- B7 MMF- B7	25.64	-95.58	15.686	1	máx_fl	32149	391	118	72	201						
29	MET- 02	T- 201					1	min_02	19988	454	244	62	152						
							1	1000 m	31543	558	245	74	246						
							1	fondo	13503	372	173	77	125						
			XIX-				1	superficie	67747	2022	323	391	131 1						
		201 7	B6M				1	máx_fl	42059	1699	295	371	103 9						
30	02		MET- B6	25.64	-95.87	20.554	1	min_02	53182	554	211	154	180						
			MMF- B6				0	1000 m	0	0	0	0	0						
			50				1	fondo	37728	334	169	109	47						
			XIX-				1	superficie	35292	1763	431	369	969						
		201	B5M				1	máx_fl	39417	1291	313	321	670						
31	02	201	B5	25.64	-96.25	67.325	1	min_O2	42156	1395	301	170	930						
			MMF- B5				0	1000 m	0	0	0	0	0						
							1	fondo	44415	1153	303	183	676						
							1	superficie	42081	1325	247	319	768						
32	MET-	201	MET-	24.583	-95.833	59.998	1	máx_fl	50442	1744	240	320	118 5						
	02	7	N3	3			1	min_02	45899	971	150	174	648						
							1	1000 m	56532	564	109	68	388						

			Localización				Durf		SYBR GREEN I (DNA)							
Localizador	Crucero	Año		LOC	alización		Protu	Indidad	#	#	Tai	maño (µn	n)			
			Estació n	Latitud	Longitud	Distancia (mn)	Muestr a	Gradient e	totales	event os +	<0.5	1 a2	2<			
							1	fondo	50648	624	137	129	360			
						1	superficie	23536	327	143	101	83				
							1	máx_fl	31655	1027	247	254	529			
33	MET-	201	MET- N4	23.583 3	-95.833	77.898	1	min_02	36748	633	99	92	444			
	02	,	11-7	5			1	1000 m	44549	786	104	88	596			
							1	fondo	36627	474	85	79	310			
							1	superficie	35659	1334	281	270	791			
							1	máx_fl	55460	2432	351	431	165 2			
34	MET-	201	MET-	22.75	-94.75	59.998	1	min_O2	15430	301	118	86	97			
	02						1	1000 m	29625	468	72	42	354			
							1	fondo	19646	653	172	145	338			
							1	superficie	52527	3183	160	230	279 9			
						61.198	1	máx_fl	28129	1795	380	533	894			
35	MET-	201 7	MET- N6	21.75	-94.75		1	min_02	34465	1067	171	262	636			
	02						1	1000 m	34098	1709	161	265	128 6			
							1	fondo	41486	733	40	72	621			
			VIV				1	superficie	39553	2354	202	335	182 4			
		201 7	C14M	20.73	-94.75		1	máx_fl	36016	1947	93	139	171 7			
36	MET-		MET-			26.975	1	min_O2	5496	160	74	44	42			
	02		MMF-	MMF-	MMF-	MMF-				1	1000 m	9644	1017	173	262	586
			C14				1	fondo	16870	1088	73	132	889			
					-94.29	45.465	1	superficie	47192	3512	292	634	259 0			
			C13M	20.6			1	máx_fl	47148	2407	153	266	198 9			
37	MET-	201	MET-				1	min_02	38380	1875	93	146	163 9			
	02		MMF-				1	1000 m	27595	1046	74	148	827			
			C13				1	fondo	35604	762	51	72	639			
			VIV				1	superficie	57972	2878	489	570	179 6			
			C12M				1	máx_fl	45327	2026	395	457	117 8			
38	MET- 02	201 7	MET- C12	20.02	-93.77	28.937	1	min_O2	21486	733	296	226	205			
			MMF-				1	1000 m	19495	511	176	110	224			
			C12				1	fondo	19766	422	200	100	115			
			VIV				1	superficie	75382	4430	846	1047	251 9			
			C11M				1	máx_fl	44782	1428	535	420	484			
39	MET- 02	201 7	MET- C11	19.61	-93.5	28.723	1	min_O2	31335	1205	458	398	340			
			MMF-				0	1000 m	0	0	0	0	0			
			C11				1	fondo	26901	521	264	149	102			
	MET-	201	XIX-	10.47	02.2	17.042	1	superficie	26909	5292	1244	1622	244 8			
40	02	7	MET-	19.17	-93.3	17.012	1	máx_fl	88085	3776	516	647	262 6			
										SYBR GR	EEN I (DN	IA)				
-------------	------------	----------	--------------	-------------	-----------	-------------------	--------	---------------	--------------------	---------------	-----------	----------	----------			
Localizador	Crucero	Año		Loca	alización		Profu	indidad	#	#	Та	maño (μr	n)			
			Estació n	Latitud	Longitud	Distancia (mn)	Muestr	Gradient e	Eventos totales	Event os +	<0.5	1 a2	2<			
			C10			()	0	min_O2	0	0	0	0	0			
			C10				1	1000 m	24877	836	357	170	313			
							1	fondo	13160	508	194	96	221			
							1	superficie	26758	1490	305	272	924			
			D15M				1	máx_fl	40768	2678	233	330	212 6			
41	MET- 02	201 7	MET- D15	19.16	-93.6	23.793	1	min_02	47924	693	170	135	394			
	02		MMF-				0	1000 m	0	0	0	0	0			
			D15				1	fondo	54417	805	94	85	629			
			VIV				1	superficie	39496	733	342	251	153			
			D16M				1	máx_fl	46185	3311	285	251	278 6			
42	MET- 02	201	MET- D16	19.04	-94	34.497	1	min_O2	31407	681	100	84	504			
			MMF-				0	1000 m	0	0	0	0	0			
			DIP				1	fondo	40592	932	116	92	729			
			VIV				1	superficie	5476	767	209	292	270			
			D17M				1	máx_fl	11607	1273	157	247	870			
43	MET- 02	201 7	MET- D17	19.61	-94.08	24.168	1	min_02	31676	978	154	165	662			
			MMF-				0	1000 m	0	0	0	0	0			
			DI7				1	fondo	19075	738	102	135	503			
			XIX-				1	superficie	36131	2245	204	228	181 4			
			D18M				1	máx_fl	21669	1241	218	184	847			
44	MET- 02	201 7	MET- D18	19.93	-94.34	182.589	1	min_O2	23208	681	94	90	502			
			MMF-				1	1000 m	16921	269	46	28	197			
			010				1	fondo	20398	307	91	54	164			
							1	superficie	66922	6236	107	2148	398 1			
							1	máx_fl	78825	2655	47	802	180 8			
45	MET- 03	201 8	CH01	18.869 2	-93.664	108.342	0	min_02	0	0	0	0	0			
							0	1000 m	0	0	0	0	0			
							1	fondo	62122	1226	22	378	825			
							0	superficie	9555	3639	65	1327	224 5			
							0	máx_fl	7788	2839	40	809	199 2			
47	MET- 03	201 8	MET- CH03	19.300 3	-90.908	137.985	0	min_O2	0	0	0	0	0			
							0	1000 m	0	0	0	0	0			
							0	fondo	3597	1247	41	555	651			

Bases de datos por gradiente de profundidad.

B) Superficie

-													
Localizador	Crucero	Año	Estación	Latitud	Longitud	Distancia	Muestra	Profundidad	# Eventos	# Eventos positivos	<1	1-2	3<
21	MET-02	2017	N1	24.4400	-96.7600	67.0640	Si	superficie	43607	1132	324	232	586
22	MET-02	2017	N2	25.3991	-96.1270	32.7640	Si	superficie	42479	1051	117	140	797
23	MET-02	2017	A1	25.8800	-95.8400	15.6540	Si	superficie	39035	1499	246	255	1002
24	MET-02	2017	A2	25.8800	-95.5500	23.2120	Si	superficie	66304	2424	275	301	1856
25	MET-02	2017	A3	25.8800	-95.1200	24.2910	Si	superficie	40358	1681	375	290	1024
26	MET-02	2017	A4	25.8800	-94.6700	22.9200	Si	superficie	45047	2082	360	301	1437
28	MET-02	2017	B8	25.6400	-95.2500	17.8500	Si	superficie	61666	2651	474	449	1746
29	MET-02	2017	B7	25.6400	-95.5800	15.6860	Si	superficie	61666	2651	474	449	1746
30	MET-02	2017	B6	25.6400	-95.8700	20.5540	Si	superficie	67747	2022	323	391	1311
31	MET-02	2017	B5	25.6400	-96.2500	67.3250	Si	superficie	35292	1763	431	369	969
32	MET-02	2017	N3	24.5833	-95.8330	59.9980	Si	superficie	42081	1325	247	319	768
33	MET-02	2017	N4	23.5833	-95.8330	77.8980	Si	superficie	23536	327	143	101	83
34	MET-02	2017	N5	22.7500	-94.7500	59.9980	Si	superficie	35659	1334	281	270	791
35	MET-02	2017	N6	21.7500	-94.7500	61.1980	Si	superficie	52527	3183	160	230	2799
36	MET-02	2017	C14	20.7300	-94.7500	26.9750	Si	superficie	39553	2354	202	335	1824
37	MET-02	2017	C13	20.6000	-94.2900	45.4650	Si	superficie	47192	3512	292	634	2590
38	MET-02	2017	C12	20.0200	-93.7700	28.9370	Si	superficie	57972	2878	489	570	1796
39	MET-02	2017	C11	19.6100	-93.5000	28.7230	Si	superficie	75382	4430	846	1047	2519
40	MET-02	2017	C10	19.1700	-93.3000	17.0120	Si	superficie	26909	5292	1244	1622	2448
41	MET-02	2017	D15	19.1600	-93.6000	23.7930	Si	superficie	26758	1490	305	272	924
42	MET-02	2017	D16	19.0400	-94.0000	34.4970	Si	superficie	39496	733	342	251	153
43	MET-02	2017	D17	19.6100	-94.0800	24.1680	Si	superficie	5476	767	209	292	270
44	MET-02	2017	D18	19.9300	-94.3400	182.5890	Si	superficie	36131	2245	204	228	1814
45	MET-03	2018	CH01	18.8692	-93.6640	108.3420	Si	superficie	66922	6236	107	2148	3981
47	MET-03	2018	CH03	19.3003	-90.9080	137.9850	Si	superficie	9555	3639	65	1327	2245

C) Máximo de Fluorescencia

Localizador	Crucero	Año	Estación	Latitud	Longitud	Distancia	Muestra	Profundidad	# Eventos	# Eventos positivos	<1	1a2	3<
3	MMF-01	2016	A1	25.8800	-95.8400	15.6540	Si	máx_fl	292431	2936	1847	499	587
4	MMF-01	2016	A2	25.8800	-95.5500	23.2120	Si	máx_fl	326004	1248	473	214	561
5	MMF-01	2016	A3	25.8800	-95.1200	24.2910	Si	máx_fl	334547	274	115	11	148
6	MMF-01	2016	A4	26.8800	-94.6700	22.9200	Si	máx_fl	315741	1351	513	354	484
7	MMF-01	2016	B9	25.6400	-95.0000	13.5220	Si	máx_fl	383093	82	75	7	0
8	MMF-01	2016	B8	25.6400	-95.2500	17.8500	Si	máx_fl	370377	97	37	29	31
9	MMF-01	2016	B7	25.6400	-95.5800	15.6860	Si	máx_fl	294424	4475	685	1383	2399
10	MMF-01	2016	B6	25.6400	-95.8700	20.5540	Si	máx_fl	327888	1575	348	149	1078
11	MMF-01	2016	B5	25.6400	-96.2500	305.9740	Si	máx_fl	321290	1336	428	140	765
12	MMF-01	2016	C14	20.7300	-94.7500	26.9750	Si	máx_fl	393660	179	28	19	132
13	MMF-01	2016	C13	20.6000	-94.2900	45.4650	Si	máx_fl	287584	1103	371	412	320
14	MMF-01	2016	C12	20.0200	-93.7700	28.9370	Si	máx_fl	377968	44	21	9	14
15	MMF-01	2016	C11	19.6100	-93.5000	28.7230	Si	máx_fl	369976	227	49	72	105
16	MMF-01	2016	C10	19.1700	-93.3000	17.0120	Si	máx_fl	369308	542	135	175	231
17	MMF-01	2016	D15	19.1600	-93.6000	23.7930	Si	máx_fl	266534	489	72	77	340
18	MMF-01	2016	D16	19.0400	-94.0000	34.4970	Si	máx_fl	273132	1953	569	558	824
19	MMF-01	2016	D17	19.6100	-94.0800	24.1680	Si	máx_fl	282126	733	269	167	293
20	MMF-01	2016	D18	19.9300	-94.3400	182.5890	Si	máx_fl	308029	675	130	98	447
21	MET-02	2017	N1	24.4400	-96.7600	67.0640	Si	máx_fl	56148	2384	521	510	1359
22	MET-02	2017	N2	25.3991	-96.1270	32.7640	Si	máx_fl	69192	1889	238	262	1392
23	MET-02	2017	A1	25.8800	-95.8400	15.6540	Si	máx_fl	89864	2015	138	190	1692
24	MET-02	2017	A2	25.8800	-95.5500	23.2120	Si	máx_fl	74271	1103	109	120	876
25	MET-02	2017	A3	25.8800	-95.1200	24.2910	Si	máx_fl	65116	2311	363	496	1459
26	MET-02	2017	A4	25.8800	-94.6700	22.9200	Si	máx_fl	90105	3304	357	517	2437
27	MET-02	2017	B9	25.6400	-95.0000	13.5220	Si	máx_fl	56517	1712	251	307	1165
28	MET-02	2017	B8	25.6400	-95.2500	17.8500	Si	máx_fl	61829	1869	249	237	1385
29	MET-02	2017	B7	25.6400	-95.5800	15.6860	Si	máx_fl	32149	391	118	72	201
30	MET-02	2017	B6	25.6400	-95.8700	20.5540	Si	máx_fl	42059	1699	295	371	1039
31	MET-02	2017	B5	25.6400	-96.2500	67.3250	Si	máx_fl	39417	1291	313	321	670
32	MET-02	2017	N3	24.5833	-95.8330	59.9980	51	max_fl	50442	1744	240	320	1185
33	MET-02	2017	N4	23.5833	-95.8330	77.8980	SI	max_fl	31655	1027	247	254	529
34	MET-02	2017	N5	22.7500	-94.7500	59.9980	SI	max_fl	55460	2432	351	431	1652
35	MET-02	2017	N6	21.7500	-94.7500	61.1980	51	max_fi	28129	1/95	380	533	894
36	IVIE 1-02	2017	C14	20.7300	-94.7500	26.9750	SI	max_fi	36016	1947	93	139	1/1/
3/	NIET-02	2017	C13	20.6000	-94.2900	45.4650	51	max_fl	4/148	2407	153	266	1989
38		2017	C12	20.0200	-93.7700	28.9370	51	max_11	45327	2026	595	457	11/8
39	MET 02	2017	C10	19.6100	-93.5000	28.7230	51	max_fl	44782	1428	535	420	484
40	MET 02	2017	D15	10,1600	-95.5000	22 7020	51	máx fl	40769	3770	222	220	2020
41	NACT 02	2017	D15	19.1600	-93.6000	23.7930	51	max_1	40768	2078	233	330	2120
42	MET 02	2017	D10	19.0400	-94.0000	34.4970	51	max_n	40185	1272	157	251	2780
43	MET 02	2017	D17	19.0100	-94.0800	192 5900	51	máx fl	21660	12/3	219	194	0/0
44	MET 02	2017	CH01	19.9300	-94.3400	102.5890	51	máx fl	79925	2655	47	802	1909
45	MET 03	2018	CHOI	10,2002	-93.040	127.0950	SI	max_1	/8825	2000	47	802	1003
4/	IVIE I-03	2018	CHU3	19.3003	-90.9080	137.9850	NO	max_ri	//88	2839	40	809	1992

D) Mínimo de Oxígeno

Localizador	Crucero	Año	Estación	Latitud	Longitud	Distancia	Muestra	Profundidad	# Eventos	# Eventos positivos	<1	1-2	3<
3	MMF-01	2016	A1	25.8800	-95.8400	15.6540	Si	min_02	317409	133	112	4	17
4	MMF-01	2016	A2	25.8800	-95.5500	23.2120	Si	min_02	331453	444	136	5	303
5	MMF-01	2016	A3	25.8800	-95.1200	24.2910	Si	min_02	332666	327	111	10	206
6	MMF-01	2016	A4	27.8800	-94.6700	22.9200	Si	min_02	320369	306	221	11	74
7	MMF-01	2016	B9	25.6400	-95.0000	13.5220	Si	min_02	378712	19	7	2	10
8	MMF-01	2016	B8	25.6400	-95.2500	17.8500	Si	min_02	379527	85	22	14	49
9	MMF-01	2016	B7	25.6400	-95.5800	15.6860	Si	min_02	312010	1045	187	95	761
10	MMF-01	2016	B6	25.6400	-95.8700	20.5540	Si	min_02	311240	257	254	3	0
11	MMF-01	2016	B5	25.6400	-96.2500	305.9740	Si	min_02	313825	1074	523	118	432
12	MMF-01	2016	C14	20.7300	-94.7500	26.9750	Si	min_02	350251	1020	82	150	788
13	MMF-01	2016	C13	20.6000	-94.2900	45.4650	Si	min_02	278421	1078	1051	26	1
14	MMF-01	2016	C12	20.0200	-93.7700	28.9370	Si	min_02	362941	165	16	11	138
15	MMF-01	2016	C11	19.6100	-93.5000	28.7230	Si	min_02	352171	219	113	60	45
16	MMF-01	2016	C10	19.1700	-93.3000	17.0120	Si	min_02	367695	1269	612	640	17
17	MMF-01	2016	D15	19.1600	-93.6000	23.7930	Si	min_02	280744	800	198	193	407
18	MMF-01	2016	D16	19.0400	-94.0000	34.4970	Si	min_02	279027	994	264	213	517
19	MMF-01	2016	D17	19.6100	-94.0800	24.1680	Si	min_02	293697	1070	404	172	494
20	MMF-01	2016	D18	19.9300	-94.3400	182.5890	Si	min_02	299009	842	178	129	534
21	MET-02	2017	N1	24.4400	-96.7600	67.0640	Si	min_02	45497	711	235	168	313
22	MET-02	2017	N2	25.3991	-96.1270	32.7640	Si	min_02	49255	876	165	159	552
23	MET-02	2017	A1	25.8800	-95.8400	15.6540	Si	min_02	34331	250	146	56	58
24	MET-02	2017	A2	25.8800	-95.5500	23.2120	Si	min_02	62530	618	163	66	392
25	MET-02	2017	A3	25.8800	-95.1200	24.2910	Si	min_02	45728	585	240	118	234
26	MET-02	2017	A4	25.8800	-94.6700	22.9200	Si	min_02	51091	1252	359	201	699
28	MET-02	2017	B8	25.6400	-95.2500	17.8500	Si	min_02	19988	454	244	62	152
29	MET-02	2017	B7	25.6400	-95.5800	15.6860	Si	min_02	19988	454	244	62	152
30	MET-02	2017	B6	25.6400	-95.8700	20.5540	Si	min_02	53182	554	211	154	180
31	MET-02	2017	B5	25.6400	-96.2500	67.3250	Si	min_02	42156	1395	301	170	930
32	MET-02	2017	N3	24.5833	-95.8330	59.9980	Si	min_02	45899	971	150	174	648
33	MET-02	2017	N4	23.5833	-95.8330	77.8980	Si	min_02	36748	633	99	92	444
34	MET-02	2017	N5	22.7500	-94.7500	59.9980	Si	min_02	15430	301	118	86	97
35	MET-02	2017	N6	21.7500	-94.7500	61.1980	Si	min_02	34465	1067	171	262	636
36	MET-02	2017	C14	20.7300	-94.7500	26.9750	Si	min_02	5496	160	74	44	42
37	MET-02	2017	C13	20.6000	-94.2900	45.4650	Si	min_02	38380	1875	93	146	1639
38	MET-02	2017	C12	20.0200	-93.7700	28.9370	Si	min_02	21486	733	296	226	205
39	MET-02	2017	C11	19.6100	-93.5000	28.7230	Si	min_02	31335	1205	458	398	340
41	MET-02	2017	D15	19.1600	-93.6000	23.7930	Si	min_02	47924	693	170	135	394
42	MET-02	2017	D16	19.0400	-94.0000	34.4970	Si	min_02	31407	681	100	84	504
43	MET-02	2017	D17	19.6100	-94.0800	24.1680	Si	min_02	31676	978	154	165	662
44	MET-02	2017	D18	19.9300	-94.3400	182.5890	Si	min_02	23208	681	94	90	502

E) 1000 metros

Localizador	Crucero	Año	Estación	Latitud	Longitud	Distancia	Muestra	Profundidad	# Eventos	# Eventos positivos	<1	1-2	3<
4	MMF-01	2016	A2	25.8800	-95.5500	23.2120	Si	1000 m	310227	312	295	15	1
5	MMF-01	2016	A3	25.8800	-95.1200	24.2910	Si	1000 m	315652	2002	256	42	1702
6	MMF-01	2016	A4	28.8800	-94.6700	22.9200	Si	1000 m	314065	1109	422	52	635
7	MMF-01	2016	B9	25.6400	-95.0000	13.5220	Si	1000 m	362519	30	8	3	19
8	MMF-01	2016	B8	25.6400	-95.2500	17.8500	Si	1000 m	376957	83	12	1	70
9	MMF-01	2016	B7	25.6400	-95.5800	15.6860	Si	1000 m	288104	861	206	65	589
13	MMF-01	2016	C13	20.6000	-94.2900	45.4650	Si	1000 m	259504	1783	335	290	1156
14	MMF-01	2016	C12	20.0200	-93.7700	28.9370	Si	1000 m	375120	1676	106	109	1460
20	MMF-01	2016	D18	19.9300	-94.3400	182.5890	Si	1000 m	280507	1706	538	741	425
24	MET-02	2017	A2	25.8800	-95.5500	23.2120	Si	1000 m	28373	1048	224	161	666
25	MET-02	2017	A3	25.8800	-95.1200	24.2910	Si	1000 m	19123	266	161	52	54
26	MET-02	2017	A4	25.8800	-94.6700	22.9200	Si	1000 m	41244	642	178	60	408
28	MET-02	2017	B8	25.6400	-95.2500	17.8500	Si	1000 m	31543	558	245	74	246
29	MET-02	2017	B7	25.6400	-95.5800	15.6860	Si	1000 m	31543	558	245	74	246
32	MET-02	2017	N3	24.5833	-95.8330	59.9980	Si	1000 m	56532	564	109	68	388
33	MET-02	2017	N4	23.5833	-95.8330	77.8980	Si	1000 m	44549	786	104	88	596
34	MET-02	2017	N5	22.7500	-94.7500	59.9980	Si	1000 m	29625	468	72	42	354
35	MET-02	2017	N6	21.7500	-94.7500	61.1980	Si	1000 m	34098	1709	161	265	1286
36	MET-02	2017	C14	20.7300	-94.7500	26.9750	Si	1000 m	9644	1017	173	262	586
37	MET-02	2017	C13	20.6000	-94.2900	45.4650	Si	1000 m	27595	1046	74	148	827
38	MET-02	2017	C12	20.0200	-93.7700	28.9370	Si	1000 m	19495	511	176	110	224
40	MET-02	2017	C10	19.1700	-93.3000	17.0120	No	1000 m	24877	836	357	170	313
44	MET-02	2017	D18	19.9300	-94.3400	182.5890	Si	1000 m	16921	269	46	28	197

F) Fondo

Estación	Latitud	Longitud	Distancia	Muestra	Profundidad	# Eventos	# Eventos positivos	<1	1-2	3<
A1	25.8800	-95.8400	15.6540	Si	fondo	316177	136	117	7	12
A2	25.8800	-95.5500	23.2120	Si	fondo	317819	125	103	6	16
A3	25.8800	-95.1200	24.2910	Si	fondo	316162	111	101	3	7
A4	29.8800	-94.6700	22.9200	Si	fondo	310333	207	187	5	15
B9	25.6400	-95.0000	13.5220	Si	fondo	378917	110	20	17	73
B8	25.6400	-95.2500	17.8500	Si	fondo	381370	827	138	197	488
B7	25.6400	-95.5800	15.6860	Si	fondo	296760	545	91	127	327
B6	25.6400	-95.8700	20.5540	Si	fondo	303737	2201	1565	377	259
B5	25.6400	-96.2500	305.9740	Si	fondo	309249	2542	1211	520	810
C14	20.7300	-94.7500	26.9750	Si	fondo	368201	481	148	128	205
C13	20.6000	-94.2900	45.4650	Si	fondo	251716	2077	714	148	1215
C12	20.0200	-93.7700	28.9370	Si	fondo	380135	242	59	57	126
C11	19.6100	-93.5000	28.7230	Si	fondo	336903	141	100	39	2
C10	19.1700	-93.3000	17.0120	Si	fondo	362866	192	125	36	31
D15	19.1600	-93.6000	23.7930	Si	fondo	249011	747	299	137	311
D16	19.0400	-94.0000	34.4970	Si	fondo	276906	1032	187	130	715
D17	19.6100	-94.0800	24.1680	Si	fondo	290183	1691	808	241	642
D18	19.9300	-94.3400	182.5890	Si	fondo	290511	3261	1791	724	745
N1	24.4400	-96.7600	67.0640	Si	fondo	52685	644	117	65	468
N2	25.3991	-96.1270	32.7640	Si	fondo	54728	777	110	104	564
A1	25.8800	-95.8400	15.6540	Si	fondo	34479	443	113	89	245
A2	25.8800	-95.5500	23.2120	Si	fondo	38924	455	177	66	217
A3	25.8800	-95.1200	24.2910	Si	fondo	32947	253	166	49	46
A4	25.8800	-94.6700	22.9200	Si	fondo	32418	584	209	69	314
B9	25.6400	-95.0000	13.5220	Si	fondo	0	0	0	0	0
B8	25.6400	-95.2500	17.8500	Si	fondo	13503	372	173	77	125
B7	25.6400	-95.5800	15.6860	Si	fondo	13503	372	173	77	125
B6	25.6400	-95.8700	20.5540	Si	fondo	37728	334	169	109	47
B5	25.6400	-96.2500	67.3250	Si	fondo	44415	1153	303	183	676
N3	24.5833	-95.8330	59.9980	Si	fondo	50648	624	137	129	360
N4	23.5833	-95.8330	77.8980	Si	fondo	36627	474	85	79	310
N5	22.7500	-94.7500	59.9980	Si	fondo	19646	653	172	145	338
N6	21.7500	-94.7500	61.1980	Si	fondo	41486	733	40	72	621
C14	20.7300	-94.7500	26.9750	Si	fondo	16870	1088	73	132	889
C13	20.6000	-94.2900	45.4650	Si	fondo	35604	762	51	72	639
C12	20.0200	-93.7700	28.9370	Si	fondo	19766	422	200	100	115
C11	19.6100	-93.5000	28.7230	Si	fondo	26901	521	264	149	102
C10	19.1700	-93.3000	17.0120	Si	fondo	13160	508	194	96	221
D15	19.1600	-93.6000	23.7930	Si	fondo	54417	805	94	85	629
D16	19.0400	-94.0000	34.4970	Si	fondo	40592	932	116	92	729
D17	19.6100	-94.0800	24.1680	Si	fondo	19075	738	102	135	503
D18	19.9300	-94.3400	182.5890	Si	fondo	20398	307	91	54	164
CH01	18.8692	-93.6640	108.3420	Si	fondo	62122	1226	22	378	825
CH03	19.3003	-90.9080	137.9850	No	fondo	3597	1247	41	555	651

G)	Datos tomados	para la constru	icción de la	a gráfica de	cajas
----	---------------	-----------------	--------------	--------------	-------

Localizador	Eventos_totales	Eventos_positivos	Uno	Dos	Tres	3	317409	133	112	4	17
21	43607	1132	324	232	586	4	331453	444	136	5	303
22	42479	1051	117	140	797	5	332666	327	111	10	206
23	39035	1499	246	255	1002	6	320369	306	221	11	74
24	66304	2424	275	301	1856	7	378712	10	7	2	10
25	40358	1681	375	290	1024	,	270527	00	22	14	40
26	45047	2082	360	301	1/137	°	379527	00	107	14	49
20	43047	2082	474	440	1746	9	312010	1045	187	95	761
20	61666	2031	474	449	1740	10	311240	257	254	3	0
29	61000	2031	4/4	449	1740	11	313825	1074	523	118	432
30	6//4/	2022	323	391	1311	12	350251	1020	82	150	788
31	35292	1/63	431	369	969	13	278421	1078	1051	26	1
32	42081	1325	247	319	768	14	362941	165	16	11	138
33	23536	327	143	101	83	15	352171	219	113	60	45
34	35659	1334	281	270	791	16	367695	1269	612	640	17
35	52527	3183	160	230	2799	17	280744	800	198	193	407
36	39553	2354	202	335	1824	19	270027	00/	264	212	517
37	47192	3512	292	634	2590	10	279027	554	204	215	517
38	57972	2878	489	570	1796	19	293697	1070	404	1/2	494
39	75382	4430	846	1047	2519	20	299009	842	1/8	129	534
40	26909	5292	1244	1622	2448	21	45497	711	235	168	313
41	26758	1/190	305	272	924	22	49255	876	165	159	552
41	20750	722	242	272	152	23	34331	250	146	56	58
42	59490	755	342	251	155	24	62530	618	163	66	392
43	5476	/6/	209	292	270	25	45728	585	240	118	234
44	36131	2245	204	228	1814	26	51091	1252	359	201	699
45	66922	6236	107	2148	3981	28	19988	454	244	62	152
47	9555	3639	65	1327	2245	20	10088	454	244	62	152
3	292431	2936	1847	499	587	25	52102	434	244	154	100
4	326004	1248	473	214	561	30	53182	554	211	154	180
5	334547	274	115	11	148	31	42156	1395	301	170	930
6	315741	1351	513	354	484	32	45899	971	150	174	648
7	383093	82	75	7	0	33	36748	633	99	92	444
8	370377	97	37	29	31	34	15430	301	118	86	97
9	294424	4475	685	1383	2399	35	34465	1067	171	262	636
10	327888	1575	348	149	1078	36	5496	160	74	44	42
11	321290	1336	428	140	765	37	38380	1875	93	146	1639
12	393660	179	28	19	132	38	21486	733	296	226	205
13	287584	1103	371	412	320	39	31335	1205	458	398	340
14	377968	44	21	9	14	41	47924	693	170	135	394
15	369976	227	49	72	105	42	31407	681	100	84	504
16	369308	542	135	175	231	42	31676	078	154	165	662
17	266534	/89	72	77	340	43	22208	691	04	00	502
18	273132	1953	569	558	824	44	25208	212	205	30	302
10	273132	1955	209	107	202	4	310227	312	295	15	1
19	282120	/33	1209	107	293	5	315652	2002	256	42	1/02
20	308029	0/5	130	98	447	6	314065	1109	422	52	635
21	56148	2384	521	510	1359	7	362519	30	8	3	19
22	69192	1889	238	262	1392	8	376957	83	12	1	70
23	89864	2015	138	190	1692	9	288104	861	206	65	589
24	74271	1103	109	120	876	13	259504	1783	335	290	1156
25	65116	2311	363	496	1459	14	375120	1676	106	109	1460
26	90105	3304	357	517	2437	20	280507	1706	538	741	425
27	56517	1712	251	307	1165	24	28373	1048	224	161	666
28	61829	1869	249	237	1385	25	19123	266	161	52	54
29	32149	391	118	72	201	26	41244	642	178	60	/08
30	42059	1699	295	371	1039	20	21542	EE0	245	74	246
31	39417	1291	313	321	670	20	31545	550	245	74	240
32	50442	1744	240	320	1185	29	31543	558	245	74	246
33	31655	1027	247	254	529	31	0	0	0	0	0
34	55460	2432	351	431	1652	32	56532	564	109	68	388
35	28129	1795	380	533	894	33	44549	786	104	88	596
36	36016	1947	93	139	1717	34	29625	468	72	42	354
37	47148	2407	153	266	1989	35	34098	1709	161	265	1286
38	45327	2026	395	457	1178	36	9644	1017	173	262	586
39	44782	1428	535	420	484	37	27595	1046	74	148	827
40	88085	3776	516	647	2626	38	19495	511	176	110	224
40	40769	2679	222	220	2126	40	24877	836	357	170	313
41	40/08	20/8	233	251	2120	44	16921	269	46	28	197
42	40185	1272	200	201	2700	2	316177	126	117	7	12
43	1100/	12/3	157	247	8/0	3	217010	125	102	6	10
44	21669	1241	218	184	84/	4	216162	111	103	2	7
45	/8825	2655	4/	802	1808	5	310102	207	101	5	15
47	//88	2839	40	809	1992	6	310333	207	187	5	15

7	378917	110	20	17	73
8	381370	827	138	197	488
9	296760	545	91	127	327
10	303737	2201	1565	377	259
11	309249	2542	1211	520	810
12	368201	481	148	128	205
13	251716	2077	714	148	1215
14	380135	242	59	57	126
15	336903	141	100	39	2
16	362866	192	125	36	31
17	249011	747	299	137	311
18	276906	1032	187	130	715
19	290183	1691	808	241	642
20	290511	3261	1791	724	745
21	52685	644	117	65	468
22	54728	777	110	104	564
23	34479	443	113	89	245
24	38924	455	177	66	217
25	32947	253	166	49	46
26	32418	584	209	69	314
28	13503	372	173	77	125
29	13503	372	173	77	125
30	37728	334	169	109	47
31	44415	1153	303	183	676
32	50648	624	137	129	360
33	36627	474	85	79	310
34	19646	653	172	145	338
35	41486	733	40	72	621
36	16870	1088	73	132	889
37	35604	762	51	72	639
38	19766	422	200	100	115
39	26901	521	264	149	102
40	13160	508	194	96	221
41	54417	805	94	85	629
42	40592	932	116	92	729
43	19075	738	102	135	503
44	20398	307	91	54	164
45	62122	1226	22	378	825
47	3597	1247	41	555	651

Localizador		21	22	23	24	25	26	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	47
	Rstudio	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
21	1	0.00	0.23	0.19	0.38	0.19	0.29	0.40	0.40	0.28	0.21	0.14	0.54	0.12	0.55	0.42	0.52	0.43	0.59	0.64	0.15	0.25	0.26	0.40	0.75	0.63
22	2	0.23	0.00	0.17	0.39	0.23	0.33	0.43	0.43	0.31	0.25	0.14	0.55	0.13	0.50	0.38	0.54	0.46	0.61	0.67	0.18	0.54	0.42	0.36	0.71	0.57
23	3	0.19	0.17	0.00	0.23	0.06	0.16	0.28	0.28	0.15	0.10	0.11	0.63	0.09	0.40	0.24	0.40	0.31	0.49	0.56	0.06	0.42	0.35	0.24	0.64	0.48
24	4	0.38	0.39	0.23	0.00	0.23	0.11	0.09	0.09	0.15	0.26	0.30	0.75	0.29	0.20	0.03	0.18	0.10	0.29	0.37	0.25	0.57	0.51	0.04	0.48	0.27
25	5	0.19	0.23	0.06	0.23	0.00	0.11	0.22	0.22	0.12	0.06	0.14	0.66	0.12	0.42	0.25	0.38	0.26	0.44	0.51	0.06	0.38	0.37	0.26	0.64	0.48
26	6	0.29	0.33	0.16	0.11	0.11	0.00	0.12	0.12	0.06	0.16	0.23	0.72	0.22	0.31	0.13	0.28	0.15	0.35	0.43	0.17	0.47	0.46	0.14	0.55	0.37
28	7	0.40	0.43	0.28	0.09	0.22	0.12	0.00	0.00	0.14	0.20	0.33	0.77	0.33	0.27	0.09	0.20	0.04	0.25	0.33	0.28	0.56	0.54	0.12	0.48	0.28
29	8	0.40	0.43	0.28	0.09	0.22	0.12	0.00	0.00	0.14	0.20	0.33	0.77	0.33	0.27	0.09	0.20	0.03	0.25	0.33	0.28	0.56	0.54	0.12	0.48	0.28
30	9	0.28	0.31	0.15	0.15	0.12	0.06	0.14	0.14	0.00	0.12	0.20	0.70	0.20	0.34	0.16	0.28	0.17	0.37	0.45	0.15	0.47	0.44	0.18	0.56	0.37
31	10	0.21	0.25	0.10	0.26	0.06	0.16	0.20	0.20	0.12	0.00	0.14	0.67	0.14	0.45	0.27	0.38	0.23	0.42	0.50	0.08	0.40	0.39	0.30	0.63	0.48
32	11	0.14	0.14	0.11	0.30	0.14	0.23	0.33	0.33	0.20	0.14	0.00	0.58	0.04	0.48	0.30	0.44	0.36	0.53	0.59	0.09	0.37	0.26	0.33	0.68	0.53
33	12	0.54	0.55	0.63	0.75	0.66	0.72	0.77	0.77	0.70	0.67	0.58	0.00	0.59	0.80	0.74	0.82	0.78	0.85	0.87	0.62	0.37	0.39	0.73	0.90	0.86
34	13	0.12	0.13	0.09	0.29	0.12	0.22	0.33	0.33	0.20	0.14	0.04	0.59	0.00	0.47	0.31	0.44	0.36	0.53	0.59	0.06	0.34	0.28	0.31	0.69	0.54
35	14	0.55	0.50	0.40	0.20	0.42	0.31	0.27	0.27	0.34	0.45	0.48	0.80	0.47	0.00	0.20	0.11	0.27	0.23	0.33	0.43	0.71	0.66	0.19	0.33	0.25
36	15	0.42	0.38	0.24	0.03	0.25	0.13	0.09	0.09	0.16	0.27	0.30	0.74	0.31	0.20	0.00	0.19	0.10	0.30	0.38	0.27	0.60	0.50	0.03	0.47	0.26
37	16	0.52	0.54	0.40	0.18	0.38	0.28	0.20	0.20	0.28	0.38	0.44	0.82	0.44	0.11	0.19	0.00	0.16	0.13	0.23	0.40	0.66	0.63	0.22	0.32	0.18
38	17	0.43	0.46	0.31	0.10	0.26	0.15	0.04	0.03	0.17	0.23	0.36	0.78	0.36	0.27	0.10	0.16	0.00	0.21	0.30	0.31	0.57	0.56	0.13	0.45	0.25
39	18	0.59	0.61	0.49	0.29	0.44	0.35	0.25	0.25	0.37	0.42	0.53	0.85	0.53	0.23	0.30	0.13	0.21	0.00	0.11	0.49	0.70	0.69	0.32	0.31	0.17
40	19	0.64	0.67	0.56	0.37	0.51	0.43	0.33	0.33	0.45	0.50	0.59	0.87	0.59	0.33	0.38	0.23	0.30	0.11	0.00	0.55	0.74	0.74	0.40	0.28	0.19
41	20	0.15	0.18	0.06	0.25	0.06	0.17	0.28	0.28	0.15	0.08	0.09	0.62	0.06	0.43	0.27	0.40	0.31	0.49	0.55	0.00	0.36	0.33	0.27	0.66	0.50
42	21	0.25	0.54	0.42	0.57	0.38	0.47	0.56	0.56	0.47	0.40	0.37	0.37	0.34	0.71	0.60	0.66	0.57	0.70	0.74	0.36	0.00	0.18	0.59	0.84	0.77
43	22	0.26	0.42	0.35	0.51	0.37	0.46	0.54	0.54	0.44	0.39	0.26	0.39	0.28	0.66	0.50	0.63	0.56	0.69	0.74	0.33	0.18	0.00	0.52	0.80	0.70
44	23	0.40	0.36	0.24	0.04	0.26	0.14	0.12	0.12	0.18	0.30	0.33	0.73	0.31	0.19	0.03	0.22	0.13	0.32	0.40	0.27	0.59	0.52	0.00	0.49	0.28
45	24	0.75	0.71	0.64	0.48	0.64	0.55	0.48	0.48	0.56	0.63	0.68	0.90	0.69	0.33	0.47	0.32	0.45	0.31	0.28	0.66	0.84	0.80	0.49	0.00	0.26
47	25	0.63	0.57	0.48	0.27	0.48	0.37	0.28	0.28	0.37	0.48	0.53	0.86	0.54	0.25	0.26	0.18	0.25	0.17	0.19	0.50	0.77	0.70	0.28	0.26	0.00

H) Matriz de distancias del índice de Bray-Curtis para el gradiente superficie

I) Matriz de distancias del índice de Bray-Curtis para el gradiente máximo de fluorescencia

Localizador			3	4	5 6	5	7	8	9	10	11	12	13	14	l 1	5 1	16	17	18	19	20	21	22	23	24	25	26	28	29	30	31	32	33	34	35	36	37	38	39	41	42	43	44
	Rstudio		1 2	2	3 4	Ļ	5	6	7	8	9	10	11	12	1	3 1	4 1	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
3		1 0.0	0.53	3 0.	42 0.39	0.7	3 0.6	0 0).77	0.41	0.78	0.82	0.80	0.75	0.2	5 0.8	1 0.7	71 0).76	0.78	0.73	0.69	0.74	0.35	0.65	0.64	0.81	0.56	0.56	0.62	0.83	0.76	0.69	0.42	0.78	0.41	0.89	0.70	0.80	0.69	0.71	0.77	0.73
4	. :	2 0.!	53 0.00	0.	16 0.42	0.9	0 0.7	0	0.40	0.60	0.42	0.47	0.81	0.48	0.5	1 0.8	1 0.2	29 0).39	0.42	0.32	0.24	0.33	0.44	0.18	0.29	0.48	0.36	0.36	0.36	0.52	0.38	0.26	0.43	0.42	0.61	0.66	0.42	0.47	0.25	0.30	0.39	0.31
5		3 0.4	42 0.16	5 0.	00 0.38	0.8	7 0.6	0 0	0.52	0.60	0.53	0.56	0.82	0.34	0.3	0.8	2 0.4	42 0).51	0.53	0.44	0.38	0.46	0.40	0.32	0.30	0.59	0.32	0.32	0.33	0.62	0.50	0.36	0.33	0.54	0.50	0.72	0.40	0.58	0.38	0.40	0.51	0.41
6		4 0.3	39 0.42	2 0.	38 0.00	0.8	5 0.5	7 ().59	0.21	0.55	0.74	0.66	0.56	0.3	5 0.6	8 0.4	49 0).53	0.55	0.54	0.41	0.58	0.26	0.47	0.33	0.61	0.22	0.22	0.32	0.64	0.63	0.61	0.35	0.63	0.48	0.83	0.42	0.60	0.50	0.63	0.63	0.64
7	' !	5 0.7	73 0.90	0.	87 0.85	0.0	0 0.5	6 ().95	0.89	0.95	0.95	0.97	0.75	0.8	0.9	6 0.9	94 0).95	0.95	0.94	0.93	0.94	0.83	0.92	0.92	0.96	0.90	0.90	0.91	0.96	0.95	0.93	0.86	0.95	0.77	0.97	0.93	0.96	0.93	0.93	0.95	0.93
5	: 1	6 0.6	50 0.70	0.	60 0.57	0.5	6 0.0	0 0).84	0.82	0.84	0.83	0.92	0.38	0.4	0.9	1 0.8	30 0).83	0.84	0.81	0.78	0.81	0.51	0.75	0.74	0.87	0.68	0.68	0.72	0.88	0.83	0.76	0.57	0.84	0.40	0.91	0.78	0.86	0.78	0.77	0.83	0.77
9		7 0.3	77 0.40	0.	52 0.59	0.9	5 0.8	4 (0.00	0.70	0.32	0.09	0.79	0.72	0.6	5 0.7	4 0.2	25 0).22	0.27	0.15	0.32	0.16	0.60	0.26	0.37	0.15	0.47	0.47	0.42	0.15	0.12	0.25	0.55	0.15	0.73	0.35	0.45	0.45	0.25	0.22	0.11	0.22
10		8 0.4	41 0.60	0.	60 0.21	0.8	9 0.8	2 (0.70	0.00	0.60	0.85	0.61	0.87	0.5	0.6	6 0.6	51 0).58	0.61	0.66	0.51	0.69	0.42	0.61	0.43	0.66	0.32	0.32	0.47	0.69	0.74	0.76	0.56	0.73	0.62	0.90	0.48	0.64	0.64	0.77	0.74	0.79
11		9 0.	78 0.42	2 0.	53 0.55	0.9	5 0.8	4 (0.32	0.60	0.00	0.39	0.48	0.72	0.6	5 0.4	4 0.2	23 0).21	0.11	0.24	0.26	0.27	0.60	0.27	0.29	0.22	0.40	0.40	0.37	0.31	0.32	0.28	0.56	0.33	0.73	0.56	0.32	0.20	0.24	0.31	0.32	0.31
12	1	0 0.8	32 0.47	7 0.	56 0.74	0.9	5 0.8	3 (0.09	0.85	0.39	0.00	0.89	0.71	0.6	9 0.7	7 0.3	30 0).26	0.30	0.20	0.37	0.18	0.68	0.34	0.46	0.19	0.59	0.59	0.47	0.16	0.12	0.26	0.59	0.18	0.72	0.30	0.50	0.48	0.30	0.23	0.12	0.22
13	1	1 0.8	30 0.8 ⁻	1 0.	82 0.66	0.9	7 0.9	2 ().79	0.61	0.48	0.89	0.00	0.94	0.7	7 0.4	5 0.7	75 0).71	0.59	0.78	0.70	0.79	0.73	0.77	0.67	0.66	0.64	0.64	0.70	0.73	0.82	0.84	0.78	0.81	0.82	0.91	0.64	0.57	0.77	0.85	0.82	0.85
14	1	2 0.7	75 0.48	3 0.	34 0.56	0.7	5 0.3	8 ().72	0.87	0.72	0.71	0.94	0.00	0.5	3 0.9	2 0.6	54 0).70	0.72	0.66	0.61	0.67	0.57	0.57	0.55	0.76	0.46	0.46	0.53	0.78	0.70	0.58	0.46	0.72	0.56	0.83	0.62	0.75	0.61	0.61	0.70	0.61
15	1	3 0.2	26 0.5	1 0.	39 0.36	0.8	0 0.4	5 (0.65	0.50	0.65	0.69	0.77	0.58	0.0	0.7	3 0.5	56 0).63	0.65	0.57	0.52	0.59	0.11	0.47	0.45	0.69	0.35	0.35	0.42	0.72	0.62	0.51	0.18	0.65	0.18	0.80	0.53	0.68	0.52	0.54	0.63	0.56
16	1	4 0.8	31 0.8 ⁻	1 0.	82 0.68	0.9	6 0.9	1 ().74	0.66	0.44	0.77	0.45	0.92	0.7	3 0.0	0 0.6	50 0).56	0.49	0.68	0.57	0.67	0.70	0.73	0.59	0.54	0.62	0.62	0.57	0.63	0.69	0.77	0.71	0.61	0.80	0.83	0.46	0.29	0.67	0.78	0.70	0.78
17	1	5 0.3	71 0.29	9 0.	42 0.49	0.9	4 0.8	0 0).25	0.61	0.23	0.30	0.75	0.64	0.5	5 0.6	0.0	0 00).11	0.17	0.13	0.10	0.13	0.50	0.13	0.21	0.22	0.34	0.34	0.21	0.30	0.18	0.17	0.45	0.18	0.65	0.51	0.22	0.27	0.08	0.21	0.19	0.21
18	1	6 0.7	76 0.39	9 0.	51 0.53	0.9	5 0.8	3 (0.22	0.58	0.21	0.26	0.71	0.70	0.6	3 0.5	6 0.1	11 0	0.00	0.10	0.10	0.16	0.10	0.57	0.23	0.25	0.13	0.36	0.36	0.29	0.21	0.15	0.22	0.53	0.13	0.71	0.47	0.21	0.26	0.18	0.19	0.16	0.19
19	1	7 0.3	78 0.42	2 0.	53 0.55	0.9	5 0.8	4 ().27	0.61	0.11	0.30	0.59	0.72	0.6	5 0.4	9 0.1	17 0	0.10	0.00	0.16	0.19	0.16	0.59	0.26	0.28	0.12	0.39	0.39	0.32	0.22	0.20	0.26	0.55	0.22	0.72	0.50	0.25	0.20	0.21	0.23	0.21	0.23
20	1	B 0.7	73 0.32	2 0.	44 0.54	0.9	4 0.8	1 (0.15	0.66	0.24	0.20	0.78	0.66	0.5	7 0.6	8 0.1	13 0	0.10	0.16	0.00	0.20	0.04	0.51	0.15	0.26	0.20	0.39	0.39	0.29	0.25	0.11	0.14	0.46	0.13	0.66	0.44	0.35	0.36	0.11	0.11	0.11	0.11
21	. 19	9 0.6	59 0.24	4 0.	38 0.41	0.9	3 0.7	8 (0.32	0.51	0.26	0.37	0.70	0.61	0.5	2 0.5	7 0.1	10 0	0.16	0.19	0.20	0.00	0.20	0.45	0.19	0.10	0.27	0.23	0.23	0.14	0.32	0.25	0.25	0.40	0.27	0.61	0.57	0.16	0.25	0.13	0.29	0.26	0.29
22	2	0.7	74 0.33	3 0.	46 0.58	0.9	4 0.8	1 (0.16	0.69	0.27	0.18	0.79	0.67	0.5	0.6	7 0.1	13 0	0.10	0.16	0.04	0.20	0.00	0.52	0.17	0.29	0.18	0.42	0.42	0.29	0.23	0.07	0.16	0.48	0.10	0.67	0.42	0.34	0.36	0.13	0.13	0.08	0.13
23	2	1 0.3	35 0.44	4 0.	40 0.26	0.8	3 0.5	1 (0.60	0.42	0.60	0.68	0.73	0.57	0.1	1 0.7	0 0.5	50 0).57	0.59	0.51	0.45	0.52	0.00	0.39	0.37	0.64	0.26	0.26	0.34	0.67	0.56	0.50	0.17	0.59	0.24	0.79	0.46	0.63	0.45	0.53	0.57	0.54
24	2	2 0.6	65 0.18	3 0.	32 0.47	0.9	2 0.7	5 (0.26	0.61	0.27	0.34	0.77	0.57	0.4	0.7	3 0.1	13 0).23	0.26	0.15	0.19	0.17	0.39	0.00	0.23	0.33	0.29	0.29	0.29	0.38	0.23	0.12	0.38	0.26	0.56	0.55	0.35	0.37	0.07	0.15	0.24	0.16
25	2	3 0.6	54 0.29	9 0.	30 0.33	0.9	2 0.7	4 (0.37	0.43	0.29	0.46	0.67	0.55	0.4	0.5	9 0.2	21 0).25	0.28	0.26	0.10	0.29	0.37	0.23	0.00	0.35	0.13	0.13	0.10	0.40	0.35	0.30	0.32	0.36	0.54	0.63	0.15	0.33	0.19	0.34	0.35	0.34
26	2	4 0.8	31 0.48	B 0.	59 0.61	0.9	6 0.8	7 (0.15	0.66	0.22	0.19	0.66	0.76	0.6	0.5	4 0.2	22 0	0.13	0.12	0.20	0.27	0.18	0.64	0.33	0.35	0.00	0.45	0.45	0.39	0.12	0.13	0.32	0.60	0.13	0.75	0.40	0.29	0.27	0.28	0.29	0.13	0.29
28	2	5 0.!	56 0.36	5 0.	32 0.22	0.9	0.6	8 ().47	0.32	0.40	0.59	0.64	0.46	0.3	0.6	2 0.3	34 0	0.36	0.39	0.39	0.23	0.42	0.26	0.29	0.13	0.45	0.00	0.00	0.15	0.49	0.47	0.41	0.26	0.48	0.45	0.72	0.22	0.44	0.33	0.44	0.48	0.45
29	2	6 0.	56 0.36	5 0.	32 0.22	0.9	0.6	8 ().47	0.32	0.40	0.59	0.64	0.46	0.3	0.6	2 0.3	34 0	0.36	0.39	0.39	0.23	0.42	0.26	0.29	0.13	0.45	0.00	0.00	0.15	0.49	0.47	0.41	0.26	0.48	0.45	0.72	0.22	0.43	0.33	0.44	0.47	0.45
30	2	7 0.6	52 0.36	5 0.	33 0.32	0.9	1 0.7	2 ().42	0.47	0.37	0.47	0.70	0.53	0.4	2 0.5	7 0.2	21 0).29	0.32	0.29	0.14	0.29	0.34	0.29	0.10	0.39	0.15	0.15	0.00	0.43	0.35	0.35	0.27	0.36	0.51	0.64	0.14	0.36	0.22	0.40	0.35	0.40
31	2	B 0.8	33 0.52	2 0.	62 0.64	0.9	6 0.8	8 (0.15	0.69	0.31	0.16	0.73	0.78	0.7	2 0.6	3 0.3	30 0).21	0.22	0.25	0.32	0.23	0.67	0.38	0.40	0.12	0.49	0.49	0.43	0.00	0.18	0.37	0.62	0.21	0.77	0.28	0.36	0.37	0.33	0.33	0.18	0.34
32	2	9 0.3	76 0.38	3 0.	50 0.63	0.9	5 0.8	3 (0.12	0.74	0.32	0.12	0.82	0.70	0.6	2 0.6	9 0.1	18 0	0.15	0.20	0.11	0.25	0.07	0.56	0.23	0.35	0.13	0.47	0.47	0.35	0.18	0.00	0.20	0.50	0.06	0.68	0.37	0.37	0.38	0.18	0.17	0.02	0.17
33	3	0.0	59 0.26	5 0.	36 0.61	0.9	3 0.7	6).25	0.76	0.28	0.26	0.84	0.58	0.5	1 0.7	7 0.1	17 0).22	0.26	0.14	0.25	0.16	0.50	0.12	0.30	0.32	0.41	0.41	0.35	0.37	0.20	0.00	0.37	0.25	0.55	0.49	0.40	0.41	0.12	0.06	0.21	0.05
34	. 3	1 0.4	42 0.43	3 0.	33 0.35	0.8	6 0.5	7 ().55	0.56	0.56	0.59	0.78	0.46	0.1	3 0.7	1 0.4	45 0).53	0.55	0.46	0.40	0.48	0.17	0.38	0.32	0.60	0.26	0.26	0.27	0.62	0.50	0.37	0.00	0.53	0.27	0.72	0.39	0.57	0.38	0.41	0.51	0.42
35	3	2 0.3	78 0.42	2 0.	54 0.63	0.9	5 0.8	4 (0.15	0.73	0.33	0.18	0.81	0.72	0.6	5 0.6	1 0.1	18 0	0.13	0.22	0.13	0.27	0.10	0.59	0.26	0.36	0.13	0.48	0.48	0.36	0.21	0.06	0.25	0.53	0.00	0.70	0.40	0.32	0.31	0.20	0.21	0.07	0.21
36	3	3 0.4	41 0.67	1 0.	50 0.48	0.7	7 0.4	0 0	0.73	0.62	0.73	0.72	0.82	0.56	0.1	8 0.8	0 0.6	65 0).71	0.72	0.66	0.61	0.67	0.24	0.56	0.54	0.75	0.45	0.45	0.51	0.77	0.68	0.55	0.27	0.70	0.00	0.81	0.59	0.73	0.58	0.58	0.68	0.58
37	3	4 0.8	39 0.66	5 0.	72 0.83	0.9	7 0.9	1 (0.35	0.90	0.56	0.30	0.91	0.83	0.8	0.8	3 0.5	51 0).47	0.50	0.44	0.57	0.42	0.79	0.55	0.63	0.40	0.72	0.72	0.64	0.28	0.37	0.49	0.72	0.40	0.81	0.00	0.64	0.61	0.50	0.46	0.36	0.45
38	3	5 0.3	70 0.42	2 0.	40 0.42	0.9	3 0.7	8 ().45	0.48	0.32	0.50	0.64	0.62	0.5	3 0.4	6 0.2	22 0).21	0.25	0.35	0.16	0.34	0.46	0.35	0.15	0.29	0.22	0.22	0.14	0.36	0.37	0.40	0.39	0.32	0.59	0.64	0.00	0.24	0.27	0.43	0.37	0.43
39	3	6 0.8	30 0.47	7 0.	58 0.60	0.9	6 0.8	6 ().45	0.64	0.20	0.48	0.57	0.75	0.6	3 0.2	9 0.2	27 0	0.26	0.20	0.36	0.25	0.36	0.63	0.37	0.33	0.27	0.44	0.43	0.36	0.37	0.38	0.41	0.57	0.31	0.73	0.61	0.24	0.00	0.31	0.43	0.38	0.43
41	3	7 0.6	59 0.25	5 0.	38 0.50	0.9	3 0.7	8 ().25	0.64	0.24	0.30	0.77	0.61	0.5	2 0.6	7 0.0	0 80	0.18	0.21	0.11	0.13	0.13	0.45	0.07	0.19	0.28	0.33	0.33	0.22	0.33	0.18	0.12	0.38	0.20	0.58	0.50	0.27	0.31	0.00	0.16	0.18	0.16
42	3	B 0.7	71 0.30	0.	40 0.63	0.9	3 0.7	7 (0.22	0.77	0.31	0.23	0.85	0.61	0.5	4 0.7	8 0.2	21 0	0.19	0.23	0.11	0.29	0.13	0.53	0.15	0.34	0.29	0.44	0.44	0.40	0.33	0.17	0.06	0.41	0.21	0.58	0.46	0.43	0.43	0.16	0.00	0.17	0.01
43	3	9 0.3	77 0.39	9 0.	51 0.63	0.9	5 0.8	3 (0.11	0.74	0.32	0.12	0.82	0.70	0.6	3 0.7	0 0.1	19 0	0.16	0.21	0.11	0.26	0.08	0.57	0.24	0.35	0.13	0.48	0.47	0.35	0.18	0.02	0.21	0.51	0.07	0.68	0.36	0.37	0.38	0.18	0.17	0.00	0.17
44	4	0.	73 0.3	1 0.	41 0.64	0.9	3 0.7	7	0.22	0.79	0.31	0.22	0.85	0.61	0.5	0.7	8 0.2	21 0).19	0.23	0.11	0.29	0.13	0.54	0.16	0.34	0.29	0.45	0.45	0.40	0.34	0.17	0.05	0.42	0.21	0.58	0.45	0.43	0.43	0.16	0.01	0.17	0.00

J) Matriz de distancias del índice de Bray-Curtis para el gradiente mínimo de oxígeno

Localizador		3	4	1 5	6	5 7	7 8	8 9	9 10) 11	L 12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	47
	Rstudio	1	2	3	4	5	6	5 7	' 8	3 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
3	1	0.00	0.40	0.83	0.37	0.94	4 0.9	3 0.5	2 0.5	2 0.46	6 0.88	0.45	0.97	0.86	0.69	0.71	0.32	0.60	0.63	0.40	0.55	0.63	0.60	0.45	0.54	0.51	0.55	0.77	0.46	0.43	0.51	0.48	0.49	0.39	0.67	0.62	0.42	0.35	0.53	0.59	0.64	0.53	0.53	0.60	0.6
4	2	0.40	0.00	0.64	0.10	0.87	7 0.8	5 0.5	6 0.2	5 0.1	0.75	0.23	0.93	0.69	0.40	0.44	0.22	0.27	0.30	0.32	0.36	0.46	0.33	0.36	0.50	0.31	0.35	0.53	0.28	0.16	0.33	0.14	0.39	0.25	0.51	0.50	0.29	0.14	0.51	0.49	0.54	0.27	0.24	0.58	0.60
5	3	0.83	0.64	0.00	0.66	6 0.53	8 0.5	6 0.8	B 0.7	0.66	0.25	0.60	0.71	0.35	0.33	0.40	0.75	0.46	0.43	0.79	0.75	0.76	0.61	0.79	0.85	0.72	0.74	0.20	0.72	0.65	0.73	0.58	0.80	0.74	0.77	0.80	0.76	0.68	0.86	0.81	0.85	0.65	0.65	0.86	0.87
6	4	0.37	0.10	0.66	0.00	0.88	3 0.8	6 0.5	3 0.3	3 0.22	2 0.76	0.15	0.93	0.71	0.43	0.47	0.18	0.30	0.34	0.28	0.39	0.52	0.42	0.35	0.49	0.33	0.40	0.55	0.26	0.16	0.33	0.18	0.38	0.23	0.57	0.52	0.28	0.04	0.48	0.48	0.57	0.33	0.33	0.56	0.58
7	5	0.94	0.87	0.53	0.88	3 0.00	0.4	7 0.9	6 0.8	9 0.88	3 0.70	0.85	0.52	0.62	0.72	0.71	0.91	0.79	0.77	0.93	0.91	0.92	0.85	0.93	0.95	0.90	0.91	0.65	0.90	0.88	0.90	0.85	0.93	0.91	0.91	0.93	0.92	0.89	0.95	0.94	0.95	0.87	0.87	0.96	0.96
8	6	0.93	0.85	0.56	0.86	6 0.47	7 0.0	0 0.9	5 0.8	8 0.86	6 0.42	0.83	0.36	0.39	0.68	0.66	0.90	0.75	0.74	0.92	0.90	0.90	0.83	0.91	0.94	0.89	0.90	0.60	0.89	0.85	0.89	0.82	0.92	0.89	0.90	0.92	0.90	0.87	0.95	0.93	0.94	0.85	0.85	0.93	0.93
9	7	0.52	0.56	6 0.88	0.53	3 0.96	6 0.9	5 0.0	0.4	8 0.54	4 0.92	0.60	0.98	0.90	0.78	0.80	0.39	0.72	0.74	0.30	0.41	0.38	0.60	0.32	0.16	0.44	0.41	0.84	0.45	0.55	0.44	0.62	0.30	0.43	0.39	0.30	0.38	0.51	0.14	0.25	0.25	0.56	0.56	0.26	0.23
10	8	0.52	0.25	5 0.70	0.33	3 0.89	0.8	8 0.4	B 0.0	0 0.14	4 0.79	0.39	0.93	0.74	0.51	0.52	0.25	0.38	0.40	0.21	0.16	0.24	0.18	0.19	0.36	0.11	0.15	0.60	0.10	0.22	0.12	0.29	0.22	0.18	0.26	0.31	0.13	0.35	0.41	0.32	0.38	0.18	0.15	0.40	0.43
11	9	0.46	0.13	3 0.66	0.22	2 0.88	3 0.8	6 0.5	4 0.1	4 0.00	0.75	0.32	0.92	0.70	0.46	0.46	0.19	0.32	0.33	0.28	0.29	0.38	0.19	0.31	0.46	0.25	0.28	0.54	0.21	0.15	0.26	0.23	0.34	0.19	0.39	0.44	0.23	0.25	0.48	0.44	0.49	0.19	0.14	0.52	0.55
12	10	0.88	0.75	0.25	0.76	6 0.70	0.4	2 0.9	2 0.7	9 0.75	5 0.00	0.71	1 0.55	0.24	0.49	0.45	0.82	0.59	0.57	0.85	0.82	0.83	0.71	0.85	0.89	0.80	0.82	0.37	0.80	0.75	0.81	0.70	0.86	0.81	0.82	0.86	0.83	0.77	0.90	0.87	0.89	0.75	0.74	0.87	0.88
13	11	0.45	0.23	3 0.60	0.15	0.85	5 0.8	3 0.6	0.3	9 0.32	2 0.7	1 0.00	0.90	0.65	0.34	0.41	0.28	0.20	0.38	0.37	0.45	0.58	0.50	0.36	0.51	0.38	0.46	0.47	0.30	0.21	0.38	0.23	0.39	0.25	0.64	0.58	0.30	0.14	0.55	0.53	0.61	0.39	0.39	0.59	0.6
14	12	0.97	0.93	3 0.71	1 0.93	0.52	2 0.3	6 0.9	B 0.9	3 0.92	2 0.55	0.90	0.00	0.61	0.81	0.79	0.94	0.86	0.85	0.95	0.94	0.94	0.90	0.95	0.97	0.94	0.94	0.76	0.94	0.92	0.94	0.90	0.95	0.94	0.94	0.95	0.95	0.92	0.97	0.96	0.97	0.92	0.91	0.96	0.96
15	13	0.86	0.69	0.35	0.7	1 0.62	2 0.3	9 0.9	0.7	4 0.70	0.24	0.65	0.61	0.00	0.40	0.35	0.78	0.51	0.49	0.82	0.78	0.79	0.65	0.81	0.87	0.76	0.77	0.27	0.76	0.69	0.76	0.63	0.82	0.77	0.78	0.82	0.79	0.72	0.88	0.84	0.87	0.69	0.69	0.84	0.85
15	14	0.69	0.40	0.33	0.43	3 0.72	2 0.6	8 0.7	B 0.5	1 0.46	0.49	0.34	0.81	0.40	0.00	0.25	0.56	0.16	0.24	0.62	0.55	0.57	0.44	0.62	0.71	0.52	0.55	0.17	0.51	0.41	0.52	0.31	0.63	0.54	0.62	0.63	0.58	0.45	0.75	0.66	0.72	0.41	0.40	0.71	0.73
10	15	0.7	1 0 44	0.40	0.47	7 0.7	1 0 6	6 0.8	0.05	2 0.46	5 0 45	0.41	0.79	0.35	0.25	0.00	0.59	0.27	0.16	0.65	0.58	0.60	0.38	0.64	0.74	0.55	0.58	0.22	0.55	0.45	0.56	0.36	0.66	0.57	0.59	0.66	0.61	0.49	0.77	0.69	0.74	0.44	0.44	0.70	0.72
17	16	0.32	0.22	0.75	0.18	3 0.9	1 0 9	0 0 3	9 0 2	5 0 1	0.82	0.28	0.94	0.78	0.56	0.59	0.00	0.45	0.48	0.14	0.31	0.42	0.31	0.21	0.35	0.25	0.31	0.66	0.19	0.20	0.25	0.31	0.27	0.08	0.46	0.43	0.16	0.15	0.34	0.40	0.48	0.24	0.24	0.38	0.4
10	17	0.60	0.27	0.46	0.30	0.79	0.7	5 0.7	2 0 3	8 0.3	2 0.59	0.20	0.86	0.51	0.16	0.27	0.45	0.00	0.25	0.53	0.46	0.56	0.42	0.52	0.63	0.42	0.45	0.30	0.40	0.28	0.43	0.20	0.53	0.42	0.60	0.60	0.47	0.33	0.67	0.59	0.64	0.38	0.32	0.70	0.7
20	18	0.63	0.30	0.43	0.34	1 0 77	0.7	4 0 7	4 0.4	0.03	3 0.57	0.38	0.85	0.49	0.24	0.16	0.48	0.00	0.00	0.55	0.47	0.49	0.26	0.54	0.66	0.43	0.46	0.00	0.43	0.32	0.44	0.20	0.56	0.45	0.51	0.56	0.50	0.36	0.69	0.59	0.66	0.31	0.02	0.64	0.66
20	19	0.40	0.32	0.79	0.28	3 0.93	3 0.9	2 0.3	0.02	1 0.2	3 0.85	0.37	0.95	0.82	0.62	0.65	0.10	0.53	0.55	0.00	0.13	0.23	0.36	0.06	0.22	0.16	0.10	0.20	0.10	0.02	0.16	0.39	0.00	0.15	0.27	0.26	0.08	0.26	0.23	0.00	0.34	0.31	0.31	0.24	0.00
21	20	0.55	0.02	0.75	0.20		1 0.0	0 04	1 0 1	6 0.20	0.82	0.07	0.00	0.78	0.55	0.58	0.31	0.00	0.00	0.00	0.00	0.12	0.00	0.00	0.22	0.08	0.0	0.65	0.11	0.27	0.08	0.00	0.13	0.25	0.16	0.16	0.00	0.41	0.20	0.18	0.28	0.20	0.01	0.25	0.20
22	20	0.55	0.00	0.75	0.52	0.0		0 0.3	8 0.2	4 0.3	0.02	0.40	0.94	0.70	0.53	0.60	0.01	0.40	0.47	0.0	0.00	0.00	0.20	0.10	0.24	0.00	0.01	0.00	0.76	0.40	0.00	0.30	0.10	0.20	0.03	0.10	0.26	0.53	0.00	0.10	0.20	0.20	0.21	0.20	0.20
23	21	0.60	0.40	0.70	1 0.42	0.32	5 0.8	3 0.6	0.2	8 0.1		1 0.50	0.94	0.75	0.01	0.38	0.42	0.30	0.45	0.20	0.26	0.00	0.23	0.35	0.49	0.20	0.25	0.00	0.20	0.40	0.20	0.40	0.37	0.30	0.00	0.03	0.20	0.00	0.50	0.41	0.24	0.08	0.09	0.0	0.2
24	22	0.00	0.30	0.0	0.42	0.00	2 0.0	1 0.2	2 0.1	0 0.2	1 0.95	0.30	0.00	0.00	0.62	0.50	0.01	0.42	0.20	0.00	0.20	0.23	0.00	0.00	0.43	0.22	0.20	0.40	0.21	0.20	0.22	0.20	0.06	0.24	0.23	0.07	0.23	0.40	0.04	0.40	0.30	0.00	0.03	0.74	0.47
25	20	0.43	0.50	0.75	0.00	0.00		1 0.5	2 0.1	S 0.0	0.00	0.50	0.007	0.01	0.02	0.04	0.25	0.52	0.64	0.00	0.10	0.1	0.00	0.00	0.00	0.10	0.28	0.70	0.0	0.20	0.21	0.50	0.00	0.0	0.21	0.21	0.00	0.52	0.24	0.10	0.23	0.23	0.50	0.20	0.20
26	24	0.54	1 0.30	1 0.73	0.48		0.9		4 0.3	11 0.24	0.88	0.3	0.97	0.87	0.7	0.74	0.35	0.03	0.00	0.22	0.27	0.24	0.49	0.15	0.00	0.01	0.20	0.78	0.32	0.43	0.01	0.32	0.17	0.31	0.20	0.10	0.23	0.47	0.07	0.10	0.10	0.44	0.45	0.21	0.1
27	25	0.5	0.3	0.72	0.33		1 0.0	9 0.4	+ 0.	E 0.2		0.38	0.94	0.70	0.52	0.55	0.20	0.42	0.45	0.10	0.08	0.20	0.22	0.1	0.31	0.00	0.00	0.64	0.07	0.15	0.01	0.20	0.17	0.15	0.24	0.23	0.08	0.34	0.37	0.23	0.34	0.0	0.10	0.31	0.34
28	20	0.55	0.50	0.74	0.40	0.9	0.9	0 0.4	1 0.1	0.20	1 0.02	0.40	0.94	0.77	0.55	0.58	0.3	0.40	0.40	0.6	0.01	0.12	0.25	0.1	0.20	0.00	0.00	0.04	0.0	0.27	0.08	0.30	0.13	0.20	0.67	0.1/	0.0	0.41	0.34	0.19	0.20	0.20	0.20	0.20	0.28
29	27	0.77	0.53	0.20	0.55	0.00	0.0	0 0.0	4 0.0	0.54	+ 0.37	0.47	0.76	0.27	0.1/	0.22	0.00	0.30	0.20	0.71	0.65	0.00	0.46	0.70	0.78	0.01	0.64	0.00	0.01	0.52	0.62	0.43	0.71	0.03	0.07	0.71	0.00	0.50	0.00	0.73	0.78	0.52	0.51	0.78	0.78
30	20	0.40	0.20	0.72	0.20	0.90	0.0	5 0.4		0 0.2	0.80	0.30	0.94	0.70	0.5	0.55	0.19	0.40	0.43	0.1	0.14	0.20	0.21	0.0	0.32	0.07	0.0	0.01	0.00	0.0	0.07	0.24	0.17	0.11	0.30	0.29	0.09	0.27	0.30	0.27	0.37	0.13	0.10	0.33	0.50
31	29	0.43	0.10	0.05	0.10	0.00	0.0	5 0.5	5 0.2	2 0.8	0.75	0.2	0.92	0.69	0.4	0.45	0.20	0.20	0.32	0.29	0.27	0.40	0.25	0.20	0.43	0.19	0.27	0.52	0.14	0.00	0.19	0.12	0.30	0.10	0.44	0.41	0.22	0.16	0.46	0.30	0.47	0.17	0.10	0.47	0.50
32	30	0.5	0.33	0.73	0.33	0.90	0.8	9 0.4	4 0.1	2 0.20	0.0	0.38	0.94	0.76	0.52	0.56	0.25	0.43	0.44	0.10	0.08	0.20	0.22	0.14	0.51	0.01	0.08	0.62	0.07	0.19	0.00	0.20	0.10	0.10	0.23	0.23	0.08	0.34	0.57	0.2	0.54	0.10	0.1/	0.29	0.52
33	31	0.48	0.14	0.58	0.18	0.85	0.8	2 0.6	2 0.2	9 0.2	3 0.70	0.23	0.90	0.63	0.31	0.36	0.31	0.20	0.21	0.39	0.30	0.43	0.29	0.38	0.52	0.25	0.30	0.43	0.24	0.12	0.26	0.00	0.40	0.27	0.48	0.45	0.32	0.20	0.57	0.45	0.52	0.19	0.18	0.54	0.57
34	32	0.49	0.35	0.80	0.38	0.93	3 0.9	2 0.3	0 0.2	2 0.34	1 0.86	0.39	0.95	0.82	0.63	0.66	0.27	0.53	0.56	0.11	0.13	0.11	0.37	0.06	0.15	0.17	0.13	0.71	0.17	0.30	0.16	0.40	0.00	0.21	0.14	0.14	0.12	0.35	0.22	0.13	0.24	0.31	0.32	0.16	0.15
35	33	0.39	0.25	0.74	0.23	3 0.9	1 0.8	9 0.4	3 0.1	8 0.1	0.8	0.25	0.94	0.77	0.54	0.57	0.08	0.42	0.45	0.15	0.25	0.36	0.24	0.15	0.31	0.18	0.25	0.63	<u>0.</u> т	0.16	0.18	0.27	0.21	0.00	0.39	0.37	0.10	0.21	0.35	0.35	0.44	0.17	0.18	0.34	0.36
36	34	0.67	0.5	1 0.77	0.57	0.9	1 0.9	0 0.3	9 0.2	6 0.3	0.82	0.64	0.94	0.78	0.62	0.59	0.46	0.60	0.51	0.27	0.16	0.03	0.29	0.21	0.26	0.24	0.15	0.67	0.30	0.44	0.23	0.48	0.14	0.39	0.00	0.10	0.29	0.57	0.32	0.16	0.26	0.31	0.32	0.17	0.2
37	35	0.62	0.50	0.80	0.52	2 0.93	3 0.92	2 0.3	0 0.3	1 0.44	1 0.86	0.58	0.95	0.82	0.63	0.66	0.43	0.60	0.56	0.26	0.16	0.09	0.37	0.21	0.16	0.23	0.1/	0.71	0.29	0.41	0.23	0.45	0.14	0.37	0.10	0.00	0.28	0.52	0.22	0.06	0.16	0.31	0.35	0.16	0.1
38	36	0.42	0.29	0.76	0.28	3 0.92	2 0.9	0 0.3	8 0.1	3 0.2;	0.83	0.30	0.95	0.79	0.58	0.61	0.16	0.47	0.50	0.08	0.15	0.26	0.29	0.08	0.25	0.08	0.15	0.66	0.09	0.22	0.08	0.32	0.12	0.10	0.29	0.28	0.00	0.25	0.30	0.26	0.35	0.22	0.23	0.28	0.3
39	37	0.35	0.14	0.68	0.04	0.89	0.8	7 0.5	1 0.3	5 0.2	0.77	0.14	0.92	0.72	0.45	0.49	0.15	0.33	0.36	0.26	0.41	0.53	0.43	0.32	0.47	0.34	0.41	0.56	0.27	0.18	0.34	0.20	0.35	0.21	0.57	0.52	0.25	0.00	0.45	0.48	0.56	0.34	0.33	0.53	0.55
40	38	0.53	0.5	1 0.86	0.48	8 0.95	5 0.9	5 0.1	4 0.4	1 0.48	3 0.90	0.55	0.97	0.88	0.75	0.77	0.34	0.67	0.69	0.23	0.33	0.30	0.54	0.24	0.07	0.37	0.34	0.80	0.38	0.48	0.37	0.57	0.22	0.35	0.32	0.22	0.30	0.45	0.00	0.17	0.11	0.49	0.50	0.22	0.19
41	39	0.59	0.49	0.81	0.48	3 0.94	1 0.9	3 0.2	5 0.3	2 0.44	4 0.87	0.53	0.96	0.84	0.66	0.69	0.40	0.59	0.59	0.24	0.18	0.14	0.41	0.19	0.10	0.23	0.19	0.73	0.27	0.38	0.21	0.45	0.13	0.35	0.16	0.06	0.26	0.48	0.17	0.00	0.13	0.35	0.36	0.18	0.14
42	40	0.64	0.54	0.85	0.57	0.95	5 0.94	4 0.2	5 0.3	8 0.49	0.89	0.61	0.97	0.87	0.72	0.74	0.48	0.64	0.66	0.34	0.28	0.24	0.50	0.29	0.10	0.34	0.28	0.78	0.37	0.47	0.34	0.52	0.24	0.44	0.26	0.16	0.35	0.56	0.11	0.13	0.00	0.44	0.45	0.29	0.26
43	41	0.53	0.27	0.65	0.33	3 0.87	0.8	5 0.5	6 0.1	8 0.1	0.75	0.39	0.92	0.69	0.41	0.44	0.24	0.38	0.31	0.31	0.20	0.27	0.08	0.29	0.44	0.15	0.20	0.52	0.15	0.17	0.16	0.19	0.31	0.17	0.31	0.31	0.22	0.34	0.49	0.35	0.44	0.00	0.06	0.40	0.43
44	42	0.53	0.24	0.65	0.33	3 0.87	0.8	5 0.5	6 0.1	5 0.14	4 0.74	0.39	0.91	0.69	0.40	0.44	0.24	0.32	0.30	0.31	0.21	0.29	0.09	0.30	0.45	0.16	0.20	0.51	0.16	0.16	0.17	0.18	0.32	0.18	0.32	0.35	0.23	0.33	0.50	0.36	0.45	0.06	0.00	0.44	0.47
45	43	0.60	0.58	0.86	0.56	0.96	6 0.9	3 0.2	6 0.4	0 0.52	2 0.87	0.59	0.96	0.84	0.71	0.70	0.38	0.70	0.64	0.24	0.25	0.18	0.44	0.20	0.21	0.31	0.26	0.78	0.33	0.47	0.29	0.54	0.16	0.34	0.17	0.16	0.28	0.53	0.22	0.18	0.29	0.40	0.44	0.00	0.04
47	44	0.61	1 0.60	0.87	0.58	0.96	0.9	3 0.2	3 0.4	3 0.5	0.88	0.61	0.96	0.85	0.73	0.72	0.41	0.71	0.66	0.27	0.29	0.21	0.47	0.23	0.17	0.34	0.29	0.79	0.36	0.50	0.32	0.57	0.19	0.36	0.21	0.13	0.31	0.55	0.19	0.14	0.26	0.43	0.47	0.04	0.00

Localizador		4	5	6	7	8	9	13	14	20	24	25	26	28	29	32	33	34	35	36	37	38	40	44
	Rstudio	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
4	1	0.00	0.76	0.56	0.91	0.91	0.62	0.70	0.87	0.69	0.65	0.40	0.60	0.42	0.42	0.72	0.78	0.77	0.82	0.72	0.87	0.55	0.47	0.79
5	2	0.76	0.00	0.40	0.97	0.92	0.41	0.23	0.13	0.61	0.39	0.77	0.53	0.59	0.59	0.58	0.47	0.62	0.20	0.47	0.39	0.65	0.57	0.76
6	3	0.56	0.40	0.00	0.94	0.85	0.14	0.29	0.43	0.36	0.16	0.61	0.28	0.36	0.36	0.35	0.22	0.41	0.40	0.25	0.30	0.45	0.27	0.61
7	4	0.91	0.97	0.94	0.00	0.45	0.92	0.96	0.96	0.96	0.93	0.78	0.90	0.88	0.88	0.88	0.91	0.86	0.96	0.93	0.93	0.87	0.92	0.79
8	5	0.91	0.92	0.85	0.45	0.00	0.81	0.90	0.90	0.90	0.84	0.61	0.76	0.73	0.73	0.74	0.80	0.69	0.90	0.84	0.85	0.72	0.81	0.55
9	6	0.62	0.41	0.14	0.92	0.81	0.00	0.35	0.40	0.46	0.11	0.52	0.15	0.28	0.28	0.22	0.09	0.30	0.37	0.13	0.25	0.33	0.32	0.53
13	7	0.70	0.23	0.29	0.96	0.90	0.35	0.00	0.21	0.40	0.26	0.73	0.47	0.52	0.52	0.52	0.39	0.58	0.10	0.27	0.26	0.55	0.38	0.73
14	8	0.87	0.13	0.43	0.96	0.90	0.40	0.21	0.00	0.62	0.35	0.77	0.50	0.61	0.61	0.50	0.36	0.56	0.12	0.41	0.26	0.59	0.58	0.72
20	9	0.69	0.61	0.36	0.96	0.90	0.46	0.40	0.62	0.00	0.41	0.72	0.44	0.50	0.50	0.50	0.50	0.56	0.50	0.37	0.53	0.53	0.34	0.71
24	10	0.65	0.39	0.16	0.93	0.84	0.11	0.26	0.35	0.41	0.00	0.57	0.23	0.32	0.32	0.30	0.14	0.38	0.28	0.11	0.16	0.34	0.26	0.58
25	11	0.40	0.77	0.61	0.78	0.61	0.52	0.73	0.77	0.72	0.57	0.00	0.39	0.34	0.34	0.46	0.58	0.51	0.71	0.57	0.70	0.30	0.50	0.50
26	12	0.60	0.53	0.28	0.90	0.76	0.15	0.47	0.50	0.44	0.23	0.39	0.00	0.19	0.19	0.08	0.20	0.16	0.46	0.23	0.35	0.20	0.26	0.40
28	13	0.42	0.59	0.36	0.88	0.73	0.28	0.52	0.61	0.50	0.32	0.34	0.19	0.00	0.00	0.24	0.36	0.29	0.56	0.37	0.50	0.12	0.19	0.34
29	14	0.42	0.59	0.36	0.88	0.73	0.28	0.52	0.61	0.50	0.32	0.34	0.19	0.00	0.00	0.24	0.36	0.29	0.56	0.37	0.50	0.12	0.19	0.34
32	15	0.72	0.58	0.35	0.88	0.74	0.22	0.52	0.50	0.50	0.30	0.46	0.08	0.24	0.24	0.00	0.17	0.09	0.49	0.28	0.33	0.24	0.29	0.34
33	16	0.78	0.47	0.22	0.91	0.80	0.09	0.39	0.36	0.50	0.14	0.58	0.20	0.36	0.36	0.17	0.00	0.24	0.36	0.14	0.17	0.34	0.37	0.46
34	17	0.77	0.62	0.41	0.86	0.69	0.30	0.58	0.56	0.56	0.38	0.51	0.16	0.29	0.29	0.09	0.24	0.00	0.55	0.36	0.37	0.29	0.33	0.25
35	18	0.82	0.20	0.40	0.96	0.90	0.37	0.10	0.12	0.50	0.28	0.71	0.46	0.56	0.56	0.49	0.36	0.55	0.00	0.26	0.23	0.54	0.48	0.70
36	19	0.72	0.47	0.25	0.93	0.84	0.13	0.27	0.41	0.37	0.11	0.57	0.23	0.37	0.37	0.28	0.14	0.36	0.26	0.00	0.21	0.32	0.29	0.55
37	20	0.87	0.39	0.30	0.93	0.85	0.25	0.26	0.26	0.53	0.16	0.70	0.35	0.50	0.50	0.33	0.17	0.37	0.23	0.21	0.00	0.46	0.42	0.56
38	21	0.55	0.65	0.45	0.87	0.72	0.33	0.55	0.59	0.53	0.34	0.30	0.20	0.12	0.12	0.24	0.34	0.29	0.54	0.32	0.46	0.00	0.23	0.28
40	22	0.47	0.57	0.27	0.92	0.81	0.32	0.38	0.58	0.34	0.26	0.50	0.26	0.19	0.19	0.29	0.37	0.33	0.48	0.29	0.42	0.23	0.00	0.48
44	23	0.79	0.76	0.61	0.79	0.55	0.53	0.73	0.72	0.71	0.58	0.50	0.40	0.34	0.34	0.34	0.46	0.25	0.70	0.55	0.56	0.28	0.48	0.00

K) Matriz de distancias del índice de Bray-Curtis para el gradiente 1000 metros

L) Matriz de distancias del índice de Bray-Curtis para el gradiente fondo

Localizador		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45 47
	Rstudio	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42 43
3	1	0.00	0.07	0.11 0.	22 0).67	0.71	0.67	0.88	0.90	0.56	0.88	0.59	0.24	0.20	0.69	0.77	0.85	0.92	0.66	0.72	0.56	0.55	0.35	0.63	0.49	0.49	0.44	0.79	0.65	0.67	0.66	0.86	0.85	0.84	0.53	0.60	0.60	0.77	0.75	0.73	0.54	0.94 0.91
4	2	0.07	0.00	.06 0	26 0).63	0.73	0.66	0.89	0.90	0.59	0.88	0.56	0.21	0.23	0.71	0.78	0.86	0.92	0.68	0.72	0.57	0.58	0.38	0.65	0.52	0.52	0.47	0.80	0.67	0.65	0.68	0.85	0.84	0.83	0.56	0.62	0.62	0.75	0.77	0.72	0.51	0.93 0.91
5	3	0.11	0.06 0	.00 0.	29 0).70	0.76	0.68	0.90	0.91	0.62	0.89	0.60	0.19	0.28	0.74	0.80	0.87	0.93	0.71	0.75	0.60	0.61	0.42	0.68	0.55	0.55	0.51	0.82	0.70	0.68	0.71	0.88	0.86	0.86	0.59	0.65	0.65	0.77	0.79	0.74	0.55	0.95 0.92
6	4	0.22 0	0.26 0	.29 0	00 0).72	0.69	0.69	0.82	0.85	0.51	0.82	0.64	0.39	0.28	0.56	0.66	0.78	0.88	0.68	0.73	0.59	0.42	0.23	0.49	0.35	0.35	0.31	0.70	0.63	0.69	0.56	0.87	0.85	0.85	0.36	0.44	0.44	0.77	0.76	0.74	0.59	0.94 0.91
7	5	0.67	0.63 0	.70 0	72 0	0.00	0.75	0.65	0.90	0.91	0.62	0.89	0.37	0.66	0.54	0.73	0.80	0.87	0.93	0.70	0.74	0.60	0.61	0.55	0.68	0.55	0.55	0.61	0.82	0.70	0.63	0.71	0.74	0.81	0.74	0.59	0.65	0.65	0.76	0.79	0.74	0.50	0.83 0.83
8	6	0.71 (0.73 0	.76 0.	69 C).75	0.00	0.20	0.60	0.51	0.28	0.46	0.54	0.70	0.62	0.26	0.19	0.35	0.60	0.12	0.13	0.30	0.35	0.57	0.27	0.44	0.44	0.49	0.19	0.15	0.28	0.17	0.24	0.29	0.24	0.44	0.43	0.33	0.20	0.22	0.09	0.46	0.32 0.31
9	7	0.67	0.66 0	.68 0	69 C	0.65	0.20	0.00	0.65	0.64	0.17	0.58	0.38	0.60	0.56	0.18	0.31	0.51	0.71	0.20	0.22	0.15	0.26	0.54	0.18	0.37	0.37	0.44	0.37	0.09	0.09	0.11	0.32	0.36	0.32	0.37	0.41	0.25	0.27	0.32	0.17	0.30	0.47 0.45
10	8	0.88	0.89	.90 0.	82 0	0.90	0.60	0.65	0.00	0.22	0.64	0.47	0.80	0.87	0.83	0.53	0.64	0.33	0.19	0.69	0.68	0.66	0.65	0.78	0.61	0.71	0.71	0.74	0.56	0.63	0.68	0.60	0.74	0.72	0.74	0.68	0.62	0.62	0.71	0.70	0.66	0.75	0.62 0.61
11	9	0.90	0.90	0.91 0.	85 (0.91	0.51	0.64	0.22	0.00	0.68	0.27	0.82	0.89	0.85	0.54	0.42	0.20	0.15	0.59	0.53	0.70	0.69	0.81	0.62	0.74	0.74	0.77	0.37	0.60	0.68	0.59	0.55	0.44	0.54	0.72	0.66	0.66	0.52	0.46	0.55	0.78	0.36 0.36
12	10	0.56	0.59 0	.62 0	.51 0).62	0.28	0.17	0.64	0.68	0.00	0.62	0.32	0.53	0.42	0.22	0.36	0.55	0.74	0.31	0.33	0.13	0.12	0.35	0.22	0.19	0.19	0.25	0.42	0.16	0.24	0.17	0.48	0.48	0.47	0.21	0.26	0.12	0.41	0.42	0.30	0.24	0.58 0.57
13	11	0.88	0.88	.89 0.	82 0).89	0.46	0.58	0.47	0.27	0.62	0.00	0.78	0.86	0.82	0.47	0.33	0.20	0.40	0.52	0.45	0.64	0.63	0.77	0.55	0.69	0.69	0.72	0.31	0.53	0.62	0.52	0.48	0.31	0.46	0.66	0.60	0.60	0.44	0.38	0.48	0.74	0.40 0.50
14	12	0.59	0.56 0	.60 0	64 C).37	0.54 (0.38	0.80	0.82	0.32	0.78	0.00	0.45	0.40	0.50	0.61	0.74	0.86	0.45	0.52	0.29	0.31	0.38	0.41	0.23	0.23	0.42	0.65	0.44	0.33	0.46	0.54	0.63	0.53	0.31	0.43	0.37	0.54	0.59	0.51	0.17	0.71 0.69
15	13	0.24	0.21 (0.19 0.	39 0).66	0.70	0.60	0.87	0.89	0.53	0.86	0.45	0.00	0.16	0.66	0.74	0.83	0.91	0.62	0.67	0.50	0.51	0.29	0.60	0.44	0.44	0.39	0.77	0.62	0.57	0.63	0.79	0.80	0.78	0.49	0.56	0.56	0.70	0.73	0.67	0.42	0.89 0.87
16	14	0.20	0.23 0	.28 0	28 0).54	0.62	0.56	0.83	0.85	0.42	0.82	0.40	0.16	0.00	0.57	0.67	0.78	0.88	0.54	0.62	0.42	0.40	0.16	0.50	0.32	0.32	0.26	0.70	0.52	0.53	0.54	0.75	0.77	0.73	0.37	0.45	0.45	0.67	0.66	0.63	0.38	0.86 0.83
17	15	0.69	0.71 0	.74 0.	56 0).73	0.26	0.18	0.53	0.54	0.22	0.47	0.50	0.66	0.57	0.00	0.29	0.38	0.62	0.29	0.31	0.25	0.24	0.47	0.12	0.33	0.33	0.39	0.22	0.16	0.23	0.12	0.43	0.44	0.42	0.29	0.21	0.20	0.37	0.38	0.27	0.42	0.52 0.51
18	16	0.77 (0.78 0	.80 0.	66 C	0.80	0.19	0.31	0.64	0.42	0.36	0.33	0.61	0.74	0.67	0.29	0.00	0.29	0.52	0.22	0.14	0.39	0.38	0.58	0.29	0.46	0.46	0.51	0.10	0.25	0.37	0.24	0.17	0.14	0.16	0.44	0.46	0.35	0.13	0.07	0.18	0.53	0.24 0.28
19	17	0.85	0.86	.87 0.	78 0).87	0.35	0.51 (0.33	0.20	0.55	0.20	0.74	0.83	0.78	0.38	0.29	0.00	0.31	0.44	0.36	0.57	0.56	0.72	0.48	0.63	0.63	0.67	0.21	0.46	0.56	0.44	0.39	0.39	0.38	0.60	0.53	0.53	0.35	0.35	0.39	0.68	0.38 0.37
20	18	0.92	0.92 0	.93 0.	88 0).93	0.60	0.71	0.19	0.15	0.74	0.40	0.86	0.91	0.88	0.62	0.52	0.31	0.00	0.66	0.61	0.75	0.74	0.84	0.69	0.79	0.79	0.81	0.47	0.67	0.74	0.66	0.63	0.56	0.62	0.77	0.72	0.72	0.60	0.55	0.63	0.82	0.49 0.45
21	19	0.66	0.68	0.71 0.	68 C	0.70	0.12	0.20	0.69	0.59	0.31	0.52	0.45	0.62	0.54	0.29	0.22	0.44	0.66	0.00	0.10	0.22	0.27	0.51	0.20	0.39	0.39	0.51	0.28	0.15	0.18	0.20	0.17	0.30	0.18	0.43	0.50	0.31	0.15	0.19	0.10	0.36	0.41 0.39
22	20	0.72 (0.72 0	.75 0.	73 0).74	0.13).22 (0.68	0.53	0.33	0.45	0.52	0.67	0.62	0.31	0.14	0.36	0.61	0.10	0.00	0.27	0.35	0.58	0.27	0.44	0.45	0.51	0.20	0.18	0.24	0.23	0.11	0.21	0.11	0.45	0.50	0.34	0.07	0.11	0.08	0.43	0.31 0.30
23	21	0.56	0.57 0	.60 0	59 C	0.60	0.30	0.15	0.66	0.70	0.13	0.64	0.29	0.50	0.42	0.25	0.39	0.57	0.75	0.22	0.27	0.00	0.12	0.39	0.17	0.23	0.23	0.34	0.43	0.17	0.12	0.19	0.39	0.46	0.38	0.26	0.36	0.13	0.32	0.35	0.27	0.19	0.56 0.55
24	22	0.55 (0.58	0.61 0.	42 (0.61	0.35).26	0.65	0.69	0.12	0.63	0.31	0.51	0.40	0.24	0.38	0.56	0.74	0.27	0.35	0.12	0.00	0.26	0.12	0.13	0.13	0.27	0.42	0.22	0.21	0.18	0.45	0.53	0.44	0.18	0.29	0.06	0.40	0.42	0.35	0.20	0.62 0.61
25	23	0.35	0.38 0	.42 0.	23 0).55	0.57).54 (0.78	0.81	0.35	0.77	0.38	0.29	0.16	0.47	0.58	0.72	0.84	0.51	0.58	0.39	0.26	0.00	0.37	0.17	0.17	0.11	0.61	0.46	0.48	0.41	0.70	0.73	0.68	0.23	0.32	0.32	0.62	0.63	0.58	0.34	0.82 0.80
26	24	0.63 0	0.65 0	.68 0.	49 0).68	0.27	0.18	0.61	0.62	0.22	0.55	0.41	0.60	0.50	0.12	0.29	0.48	0.69	0.20	0.27	0.17	0.12	0.37	0.00	0.23	0.23	0.36	0.32	0.14	0.13	0.11	0.35	0.45	0.35	0.23	0.31	0.13	0.31	0.34	0.27	0.31	0.54 0.53
28	25	0.49	0.52 0	.55 0.	35 0).55	0.44 ().37	0.71	0.74	0.19	0.69	0.23	0.44	0.32	0.33	0.46	0.63	0.79	0.39	0.44	0.23	0.13	0.17	0.23	0.00	0.00	0.15	0.49	0.31	0.31	0.26	0.55	0.60	0.54	0.08	0.21	0.16	0.48	0.50	0.44	0.21	0.70 0.68
29	26	0.49 0	0.52 0	.55 0	35 0).55	0.44 ().37	0.71	0.74	0.19	0.69	0.23	0.44	0.32	0.33	0.46	0.63	0.79	0.39	0.45	0.23	0.13	0.17	0.23	0.00	0.00	0.15	0.49	0.31	0.31	0.26	0.55	0.60	0.54	0.08	0.20	0.15	0.48	0.50	0.44	0.21	0.70 0.68
30	27	0.44).47 (0.51 0	.31 (0.61	0.49).44 (0.74	0.77	0.25	0.72	0.42	0.39	0.26	0.39	0.51	0.67	0.81	0.51	0.51	0.34	0.27	0.11	0.36	0.15	0.15	0.00	0.54	0.36	0.44	0.32	0.66	0.65	0.65	0.14	0.22	0.25	0.57	0.57	0.49	0.37	0.74 0.72
31	28	0.79 0	0.80	.82 0.	70 C).82	0.19	0.37 (0.56	0.37	0.42	0.31	0.65	0.77	0.70	0.22	0.10	0.21	0.47	0.28	0.20	0.43	0.42	0.61	0.32	0.49	0.49	0.54	0.00	0.29	0.41	0.27	0.22	0.21	0.20	0.46	0.37	0.38	0.18	0.16	0.22	0.56	0.26 0.27
32	29	0.65	0.67 0	.70 0.	63 C).70	0.15	0.09	0.63	0.60	0.16	0.53	0.44	0.62	0.52	0.16	0.25	0.46	0.67	0.15	0.18	0.17	0.22	0.46	0.14	0.31	0.31	0.36	0.29	0.00	0.13	0.06	0.29	0.34	0.29	0.31	0.34	0.20	0.24	0.27	0.14	0.33	0.44 0.42
33	30	0.67	0.65 0	.68 0	69 C).63	0.28	0.09	0.68	0.68	0.24	0.62	0.33	0.57	0.53	0.23	0.37	0.56	0.74	0.18	0.24	0.12	0.21	0.48	0.13	0.31	0.31	0.44	0.41	0.13	0.00	0.15	0.29	0.40	0.29	0.35	0.44	0.21	0.25	0.32	0.21	0.22	0.50 0.49
34	31	0.66	0.68	0.71 0.	56 (0.71	0.17	0.11	0.60	0.59	0.17	0.52	0.46	0.63	0.54	0.12	0.24	0.44	0.66	0.20	0.23	0.19	0.18	0.41	0.11	0.26	0.26	0.32	0.27	0.06	0.15	0.00	0.34	0.37	0.33	0.26	0.27	0.16	0.28	0.30	0.17	0.34	0.45 0.44
35	32	0.86	0.85 0	.88 0	87 C).74	0.24).32 (0.74	0.55	0.48	0.48	0.54	0.79	0.75	0.43	0.17	0.39	0.63	0.17	0.11	0.39	0.45	0.70	0.35	0.55	0.55	0.66	0.22	0.29	0.29	0.34	0.00	0.19	0.02	0.57	0.62	0.44	0.05	0.12	0.16	0.48	0.26 0.26
36	33	0.85	0.84 0	.86 0	85 (0.81	0.29	0.36	0.72	0.44	0.48	0.31	0.63	0.80	0.77	0.44	0.14	0.39	0.56	0.30	0.21	0.46	0.53	0.73	0.45	0.60	0.60	0.65	0.21	0.34	0.40	0.37	0.19	0.00	0.17	0.59	0.59	0.49	0.17	0.12	0.22	0.56	0.15 0.29
37	34	0.84 0	0.83 0	.86 0	85 0).74	0.24).32 (0.74	0.54	0.47	0.46	0.53	0.78	0.73	0.42	0.16	0.38	0.62	0.18	0.11	0.38	0.44	0.68	0.35	0.54	0.54	0.65	0.20	0.29	0.29	0.33	0.02	0.17	0.00	0.56	0.61	0.44	0.04	0.10	0.16	0.47	0.26 0.25
38	35	0.53	0.56 0	.59 0.	36 0).59	0.44 ().37 (0.68	0.72	0.21	0.66	0.31	0.49	0.37	0.29	0.44	0.60	0.77	0.43	0.45	0.26	0.18	0.23	0.23	0.08	0.08	0.14	0.46	0.31	0.35	0.26	0.57	0.59	0.56	0.00	0.13	0.12	0.49	0.50	0.43	0.26	0.68 0.66
39	36	0.60	0.62 0	.65 0	44 C).65	0.43	0.41 (0.62	0.66	0.26	0.60	0.43	0.56	0.45	0.21	0.46	0.53	0.72	0.50	0.50	0.36	0.29	0.32	0.31	0.21	0.20	0.22	0.37	0.34	0.44	0.27	0.62	0.59	0.61	0.13	0.00	0.22	0.54	0.54	0.43	0.37	0.66 0.64
40	37	0.60	0.62 0	.65 0	44 C).65	0.33 ().25	0.62	0.66	0.12	0.60	0.37	0.56	0.45	0.20	0.35	0.53	0.72	0.31	0.34	0.13	0.06	0.32	0.13	0.16	0.15	0.25	0.38	0.20	0.21	0.16	0.44	0.49	0.44	0.12	0.22	0.00	0.37	0.39	0.31	0.23	0.58 0.57
41	38	0.77 0	0.75 0	.77 0.	77 C).76	0.20).27	0.71	0.52	0.41	0.44	0.54	0.70	0.67	0.37	0.13	0.35	0.60	0.15	0.07	0.32	0.40	0.62	0.31	0.48	0.48	0.57	0.18	0.24	0.25	0.28	0.05	0.17	0.04	0.49	0.54	0.37	0.00	0.07	0.11	0.42	0.27 0.26
42	39	0.75 (0.77 0	.79 0.	76 0).79	0.22).32	0.70	0.46	0.42	0.38	0.59	0.73	0.66	0.38	0.07	0.35	0.55	0.19	0.11	0.35	0.42	0.63	0.34	0.50	0.50	0.57	0.16	0.27	0.32	0.30	0.12	0.12	0.10	0.50	0.54	0.39	0.07	0.00	0.16	0.47	0.21 0.27
43	40	0.73 (0.72 0	.74 0.	74 C).74	0.09	0.17	0.66	0.55	0.30	0.48	0.51	0.67	0.63	0.27	0.18	0.39	0.63	0.10	0.08	0.27	0.35	0.58	0.27	0.44	0.44	0.49	0.22	0.14	0.21	0.17	0.16	0.22	0.16	0.43	0.43	0.31	0.11	0.16	0.00	0.38	0.32 0.30
44	41	0.54	0.51 0	.55 0	59 0	0.50	0.46	0.30	0.75	0.78	0.24	0.74	0.17	0.42	0.38	0.42	0.53	0.68	0.82	0.36	0.43	0.19	0.20	0.34	0.31	0.21	0.21	0.37	0.56	0.33	0.22	0.34	0.48	0.56	0.47	0.26	0.37	0.23	0.42	0.47	0.38	0.00	0.65 0.63
45	42	0.94 0	0.93 0	.95 0	94 0	0.83	0.32).47 (0.62	0.36	0.58	0.40	0.71	0.89	0.86	0.52	0.24	0.38	0.49	0.41	0.31	0.56	0.62	0.82	0.54	0.70	0.70	0.74	0.26	0.44	0.50	0.45	0.26	0.15	0.26	0.68	0.66	0.58	0.27	0.21	0.32	0.65	0.00 0.15
47	43	0.91	0.91 0	.92 0	.91 0	0.83	0.31).45	0.61	0.36	0.57	0.50	0.69	0.87	0.83	0.51	0.28	0.37	0.45	0.39	0.30	0.55	0.61	0.80	0.53	0.68	0.68	0.72	0.27	0.42	0.49	0.44	0.26	0.29	0.25	0.66	0.64	0.57	0.26	0.27	0.30	0.63	0.15 0.00