Centro de Investigación Cientrica y do Educación Superior de Ensenada

EL SISTEMA BENTONICO SUBLITORAL EN LA COSTA NORTE DEL PACIFICO MEXICO-EUA : CAMPAÑA ECOBAC II 0690 31'30 -32'45 LN

> TESIS MAESTRIA EN CIENCIAS

MARTIN PEREZ PEÑA

RESUMEN de la Tesis de Martin Pérez Peña presentado como requisito parcial para la obtención del grado de MAESTRO EN CIENCIAS en OCEANOGRAFIA con opción en ECOLOGIA MARINA. Ensenada, Baia California, México, Octubre de 1994.

EL SISTEMA BENTONICO SUBLITORAL EN LA COSTA NORTE DEL PACIFICO MEXICO-EUA; CAMPAÑA ECOBAC III 0690 (31º30'- 32º 45 LN.).

Resumen aprobado por:	

M. C. Anamaria Escofet G. Director de Tesis

Se identificó el elenco de especies de macrofauna bentónica presente en las 21 estaciones cubiertas por la campaña ECOBAC, que abarcó desde Punta Loma (EUA, 32° 37.2' LN 117° 20.1' W) hasta Punta San Miguel (Baja California, México, 32º 05.2' LN 117º 26.5' W).La macrofauna bentónica comprendió 338 especies y 4538 individuos, de 12 phyla: Cnidaria; Nemertea; Mollusca; Anelida; Sipuncula; Artropoda; Phoronida; Echiura; Brachiopoda; Equinodermata; Hemicordata y Chordata. El 90.9% de los individuos fueron reunidos por 136 especies, de un total de 338, indicando que la dominancia no fue muy marcada. Se identificaron 4 asociaciones principales: 1) Asociación Caecum: en tres estaciones al sur de la zona de estudio (8, 14 y 15) en arena y una al sur del límite México- USA (estación 35), en lodo: 2) asociación Leittoscoloplos- Chaetozone, estaciones 25 v 26, sedimentos costeros de tipo arena entre Punta Bandera y Punta Los Buenos; 3) Asociación Protodorvillea, aislada en la estación 5, de gran profundidad (1400 mts); 4) asociación Mediomastus sp., que reunió a la mayor parte de las estaciones y se extendió desde la más al norte (D) hasta la más sureña (11). A su interior se distinguieron siete facies: a) Paradiopatra-Tharyx sp. (estaciones 28 y B, en arena lodo); b) Mediomastus sp. (estaciones 23, 21 y 13 en lodo; C., en arena lodo); c) Spiophanes missionensis. (estaciones 11 y 12, en arena lodo); d) Parvilucina-Leptochelia. (estacione, 27 en arena lodo, y 36 en arena); e) Ampelisca cristata y Ampelisca agassizi. (38 y 24, en arena), f) Spiophanes bombyx (estación 37, en arena); g) Acmira catherinae (estación D, en arena lodo). El rigor ambiental definido por curvas de rarefacción presentó 4 estaciones en la zona de alto rigor, 13 en la de rigor intermedio y 5 en rigor bajo. No hubo correspondencia con las predicciones teóricas del método (alto rigor en baja profundidad y bajo rigor en mayor profundidad). Hubo buena segregación de los valores de H' en las distintas zonas de rigor. El reparto del número de individuos entre las especies tampoco guardó relación con el rigor, ya que existió traslape de los valores de J'. El análisis conjunto de las estaciones de ECOBAC III 0690 y TOES (Tijuana Oceanographic Enginnering Study) permite caracterizar una amplia zona del Pacífico mexicano de aproximadamente 68km de largo y 32 km de ancho entre Punta Loma y Punta Salsipuedes: 1) una gran zona cubierta por la asociación Mediomastus sp.; con varias facies asu interior, que se extiende desde Punta Loma hasta Punta Los Buenos a mayor distancia de la costa, acercándose a la misma desde Rosarito hasta Bahía Salsipuedes y presentando una lengüeta que se acerca a la costa a la altura de Tijuana. 2) las

asociaciones *Tellina, Prionospio sp. A, y Amphiodia,* entre Punta Loma y Punta Los Buenos; 3) una serie de núcleos aislados que por incluir solo 1 ó 2 estaciones se consideran insuficientes para definir asociaciones, recomendándose mayor esfuerzo en muestreos a futuro.

SUBLITTORAL BENTHIC ASSOCIATIONS ALONG THE NORTH PACIFIC COAST OF MEXICO-USA: ECOBAC III 0690 SURVEY (JUNE 1990).

ABSTRACT. 338 benthic macrofauna species (4538 organisms from 12 phyla) were identified from Point Loma (U. S. A: 32'37.2" Lat. and 117' 20.1" Long.) to Point San Miguel (lower California: 32'05.2 Lat. and 117'26.5" Long.), all of them were present in 21 stations sampled during ECOBAC campaign. All of the species represent Cnidaria. Nemertea. Mollusca. Anelida. Sipunculida. Artropoda. Phoronida, Echiura, Branchiopoda, Equinodermata, Hemicordata and Chordata as main groups. The dominance index was not very marked because 90.9% of the organisms represented 136 of the species. 4 principals associations were identified: 1) Caecum Association, located in three sandy stations (8, 14 and 15) corresponding with the south limits of the zone sampled; 2) Leittoscoloplos-Chaetozone Association, it was found in sandy coastals sediments between Point Bandera and Point Los Buenos (stations 25 and 26); 3) Protodorvillae Association, it was a very depth (1400 m) isolated association corresponding to sampled station number 5 and, 4) Mediomastus Association, it was the most spread from north (D) to south (11) and, there also were identified seven facies in its interior: a) Paradiopatra-Tharyx (stations 28 and B. in sandy-mud sediments): Mediomastus (stations 23, 21 13 in muddy sediments; C, in sandy-mud sediments); c) Spiophanes missionensis (stations 11 12. in sandy-mud sediments); d) Parvilucina-Leptochelia (stations, 27 in sandy-mud sediments, and 36 in sandy sediments); e) Ampelisca cristata and Ampelisca agassizi (38 24, in sandy sediments); f) Spiophanes bombyx (station 37, in sandy sediments); g) Acmira catherinae (station D, in sandy-mud sediments). The zone of high environmental stress was defined by rarefaction plots of the four stations in which it was present, the intermediate stress zone was located in 13 stations and the low stress zone in 5. The theoretical predictions of the method (high stress in low depth and low stress in high depth) showed no correspondence. There was a good segregation of the H' diversity index in the different stress zones. Distributively the number of the organisms were not related to the environmental stress since the J' equitability index was overlapped. The combined analysis for stations of ECOBAC III 0690 and TOES (Tijuana Oceanographic Engineering Study) campaigns allow to us characterize a wide zone (approximately 68 km long and 32 km wide between Point Loma and Point Salsipuedes) of the Mexican Pacific in: 1) a big area covered by Mediomastus Association, it included several facies; this area was spread from offshore of Point Loma and Point Los Buenos to shore of Rosarito and Salsipuedes Bay and a extension of this association approached to Tijuana shore. 2), the Tellina, Prionospio sp A, and Amphiodia Associations, they were located between Point Loma and Point Los Buenos and: 3) series of isolated nuclei including by only 1 or 2 stations that were considered insufficient in order to define associations, thus we recommend to make a bigger effort in taking more samples in future studies.

CENTRO DE INVESTIGACION CIENTIFICA Y DE EDUCACION SUPERIOR DE ENSENADA

DIVISION DE OCEANOLOGIA

DEPARTAMENTO DE ECOLOGIA

EL SISTEMA BENTONICO SUBLITORAL EN LA COSTA NORTE DEL PACIFICO MEXICO-EUA: CAMPAÑA ECOBAC III 0690 (31°30'- 32° 45 LN.)

TESIS

que para cubrir parcialmente los requisitos necesarios para obtener el grado de MAESTRO EN CIENCIAS presenta:

MARTIN PEREZ PEÑA

Ensenada, Baja California, México. Noviembre de 1994

DEDICATORIA

A mi esposa Elva Guadalupe a mis hijos, Martín Alejandro y el que viene.

AGRADECIMIENTOS

Principalmente a mi Directora de Tesis, Anamaria Escofet G. por su paciencia y apoyo durante toda mi estancia en CICESE.

A los miembros de mi comite de Tesis por sus opiniones y acertados comentarios para la realización de este trabajo.

A los profesores que compartieron su conocimiento para ayudar a completar una etapa en el proceso de mi formación.

A los compañeros que trabajan en el Labortorio de Ecología del Bentos, particularmente a Carmen Montiel por su gran ayuda en la identificación de lo organismos.

Al Oc. Cesar O. Almeda por su ayuda en la resolución de problemas con la computadora y la impresión de este trabajo.

A Alf Meling y Eduardo Juárez por su amistad y hospitalidad.

A la Universidad de Guadalajara.

Al Centro de Investigación Científica y Educación Superior de Ensenada.

Al CONACyT por razones obvias.

CONTENIDO

INTRODUCC	CION	1
II ANTECEDE	NTES	5
III OBJETIVOS	S	14
IV AREA DE E	STUDIO	16
V MATERIALE	S Y METODOS	19
	amiento de las muestrasamiento de la información.	
VI RESULTAD	OOS	23
VI .2 Caract VI .3 La ma	patimétrico de los transectosterísticas generales de la macrofaunacrofauna por estacionesterísticas del sustrato.	23 32
VI .5 ANÁLISIS	S DE AGRUPAMIENTO	37
faunísticos. VI .7 El rigo VI. 8 Las o entre los 3	pales características de las especies que definen los or ambiental definido por las curvas de rarefacción	42 47 México 5'LgO,
VII DISCUSIO	N	64
VIII CONCLUS	SIONES.	72
LITERATURA	CITADA	75
Apéndice A.	Lista general de especies ordenada sistematicamente y su abundancuia para cada estación.	<u>Página</u> 84
B.	Estaciones , Profundidad y porcetaje de arena limo y	90

LISTA DE FIGURAS

<u>Figura</u>		Página		
1	Area de estudio y profundidad para cada estación.	18		
2	Curva de dominancia para el total de las especies registradas.	33		
3	Curvas de dominancia para las estaciones con valores de J' mayores a 0.8	35		
4	Curvas de dominancia de las 3 estaciones con valores bajos de J'.			
5	Distribución espacial de los tipos de sustrato.			
6	Dendrograma resultante del análisis de agrupamiento entre las estaciones de ECOBAC.			
7	Distribución espacial de las asociaciones determinadas en el área de estudio.	43		
8	Agrupación de las estaciones de acuerdo al rigor definido por las curvas de rarefaccón. Se incluyen el intervalo de profundidad y de los valores de H' y J'.	48		
9	Distribución espacial de las zonas de rigor ambiental definidas por las curvas de rarefacción.	49		
10	Curvas de rarefacción para el transecto II.	51		
11	Curvas de rarefacción para el transecto III.	52		
12	Curvas de rarefacción para el transecto IV.	53		
13	Curvas de rarefacción para el transecto V.	54		
14	Curvas de rarefacción para el transecto VI.	55		
15	Curvas de rarefacción para el transecto VII.	56		
16	Distribución espacial de las estaciones de las campañas TOES y ECOBAC III 0690. Estaciones de TOES precedidas por la letra T. Estaciones de ECOBAC III 0690 precedidas por la letra E.	57		
17	Dendrograma resultante del análisis conjunto de las estaciones de TOES y ECOBAC III 0690.	58		
18	Distribución espacial de las asociaciones determinadas del análisis conjunto de TOES y ECOBAC III 0690.	60		

LISTA DE TABLAS

Tabla		<u>Página</u>
I	Lista sistemática de las especies identificadas en el área de estudio, ordenadas en forma decreciente de acuerdo a su abundancia y porcentaje relativo.	25
П	Abundancia, riqueza de especies, profundidad y valores de diversidad máxima (H' max. Shannon), diversidad (H' de Shannon) y de reparto (J' de Pielou) para cada estación por transecto.	34

EL SISTEMA BENTONICO SUBLITORAL EN LA COSTA NORTE DEL PACIFICO MEXICO-EUA: CAMPAÑA ECOBAC III-O690 (31° 30'-32° 45'LN.)

LINTRODUCCION

Las comunidades bentónicas son consideradas un buen reflejo de las condiciones oceanográficas generales (Rowe y Margalef, 1985) y también han sido tomadas como punto de referencia para cambios atribuibles a la actividad humana (Herrera y Alcolado, 1982).

La composición de las comunidades bentónicas puede variar sensiblemente en forma natural asociada a gradientes tales como batimetría, eventos climáticos, productividad, latitud, etcétera (Persson, 1982; Buchanan *et al.*,1978).

Los organismos bentónicos marinos y sus comunidades han sido utilizados en programas de seguimiento e investigación de los efectos de las actividades humanas en el medio marino. (Gray, 1982; Villarreal Chávez, 1991; Jiménez Pérez, et al.,1992; Herrera y Alcolado, op cit.; Frigilos y Zenetos, 1988). Tales actividades incluyen descargas de aguas de desecho, drenaje, industria y materiales de dragado; derrames de petróleo y gas natural, y actividades de construcción dentro de la zona costera. Los organismos bentónicos están por tanto afectados por estas actividades, ya que su hábitat sirve como el mayor depósito para dichos materiales de desecho.

Las comunidades y organismos bentónicos se usan en programas de seguimiento debido a su relativa falta de movilidad y a su posición trófica. Primero,

estos organismos sedentarios son menos capaces de evitar conductualmente condiciones potencialmente perjudiciales, como pueden hacerlo organismos con mayor movilidad (Herrera y Alcolado op cit.). Segundo, los organismos bentónicos de la zona litoral están fuertemente acoplados con la cadena alimenticia pelágica constituyendo un eslabón para el transporte de contaminantes a más altos niveles tróficos, incluyendo peces y humanos (Smith *et al.*,1988).

Los mayores cambios se advierten en las proximidades de la fuente de alteración (ejem., descargas domésticas) observándose cambios menos drásticos a medida que nos alejamos de la fuente, ya sea en espacio o en tiempo (Read et al.,1978; Van Den Heilingenberg, 1982; Bouwman et al.,1984).

La identificación precisa de las variaciones naturales es importante para separar adecuadamente ambas fuentes de variación. En este sentido, los datos de las comunidades bentónicas, generados lo más anticipadamente posible de que ocurran acciones externas, son un punto de referencia de gran utilidad (Reise y Schubert, 1987).

El área fronteriza entre México y EUA está siendo sometida a grandes cambios y alteraciones provenientes tanto del medio terrestre como acuático por el desarrollo urbano, industrial y turístico a ambos lados de la frontera (Proyecto ECOBAC, 1991). El establecimiento del área de influencia mutua reviste interés práctico, toda vez que se generan conflictos regionales que transcienden límites políticos formales.

La franja costera situada entre la ciudad de Tijuana y el puerto de Ensenada constituye en la actualidad un corredor turístico en rápida expansión. El aporte de drenajes domésticos e industriales se ha incrementado, creando cada vez mayor presión por factores contaminantes en el ecosistema marino adyacente. Dicho ecosistema, puede ser afectado por fuentes de contaminación nacionales, pero también por fuentes extranjeras, situadas principalmente en la bahía de San Diego (EUA), tanto en la zona portuaria, como en el emisor de aguas negras del condado de San Diego, situado en Point Loma (Proyecto ECOBAC, op cit.).

La conveniencia de estudios como el que aquí se presenta, encuadrados en una campaña oceanográfica de orden mayor, resultan adecuados, ya que el área está siendo fuertemente impactada y el destino de los afluentes depende en gran medida de la dinámica de las aguas (Gray, op cit.). Esto explica la importancia de estudios enfocados a la dinámica hidrológica de la zona (Alvarez et al.,1990).

El bentos sublitoral de la zona fronteriza entre México y EUA, sobre el Pacífico, ha recibido poca atención hasta el momento, aunque existe material de al menos dos campañas.

En marzo de 1987 se muestrearon estaciones en ambos lados de la frontera como parte del proyecto TOES (Tijuana Oceanographic and Enginnering Studies), destinado a evaluar el efecto de expansión de la red de desagües del condado de San Diego. Dicho material fue analizado y estudiado en una tesis de maestría de CICESE (Muñoz Palacios, 1993).

En Junio de 1990 se muestrearon 42 estaciones entre los 31°30', latitud Norte a 32°45' latitud Norte dentro de una zona de 8 a 10 Km de ancho a partir de la línea de costa, como parte de la campaña ECOBAC III-0690 (Estudios de Contaminación en Baja California). Los organismos bentónicos obtenidos de 21 estaciones de 6 transectos son el material analizado dentro del presente trabajo.

En el presente estudio se determinó la composición y distribución de la fauna bentónica sublitoral de la franja costera situada entre Punta Salsipuedes, Tijuana (México) y Point Loma (EUA), cubierta por la campaña ECOBAC III-0690. Se estableció su relación con el tipo de sedimento, gradientes naturales y antropogénicos, y se resumió el estado actual del conocimiento de las comunidades bentónicas en el área mediante el análisis conjunto de las comunidades y asociaciones faunísticas determinadas en las campañas TOES y ECOBAC.

II ANTECEDENTES

Las comunidades bentónicas varían en composición y abundancia dependiendo de factores naturales como tipos de sustrato, profundidad y productividad de la columna de agua. (Kiorboe, 1979; Lie y Kisker, 1970; Ambrogi et al., 1990; Frigilos y Zenetos, op cit., Beukema, 1986)

Rowe y Margalef (op cit.) estimaron la composición de las comunidades bentónicas, y la influencia que tienen sobre su estructura las tasas de sedimentación en tres zonas de surgencia. Para las costas de África, reportan que en la zona sublitoral la sedimentación de materia orgánica es alta y la producción de biomasa por el macrobentos también, no así en la zona litoral donde la actividad microbial es más alta. Para Baja California, fue clara la dominancia de un crustáceo con altas tasas de crecimiento y utilización metabólica de materia orgánica en la zona litoral y sublitoral. Para Perú la composición del bentos fue muy diferente en la zona costera debido a que presenta baja cantidad de oxígeno en el agua de fondo.

Sibuet (1987) comparó las variaciones espacio temporales de las condiciones tróficas (abastecimiento de materia orgánica) en seis áreas geográficas y la distribución cuantitativa de los organismos que se alimentan de la interfase agua/sedimento. Las diferencias en abundancia y composición dependieron en gran medida de la disponibilidad de carbono orgánico en la columna de agua.

De Wilde et al.(1986) en un estudio realizado en el mar del Norte, después de medir las tasas metabólicas y de respiración de los organismos bentónicos, así como la biomasa producida en dicha zona por metro cuadrado, mostraron que

aproximadamente un tercio de la producción primaria orgánica es canalizada dentro del sistema bentónico.

Otros autores hacen mención a la relación de existente entre la composición de la fauna bentónica con los diferentes tipos de sustrato. (Kiorboe, op cit.; Gray, 1985; Federle et al., 1983; Boesch, 1973; Beukema, 1976; Persson, 1983; Parisi et al., 1990; Sanders, 1960).

Buchanan et al. (op cit.), mencionan que la variabilidad en las comunidades bentónicas sublitorales en la costa de Northumberland es debida en gran medida a dos factores físicos naturales: tipo de substrato, y variación en la temperatura a lo largo del año, aduciendo que las comunidades responden en forma progresiva a los efectos naturales del medio.

Eagle (1975) señala que los patrones de diversidad y abundancia varían drásticamente en relación al tipo de substrato. Los fondos lodosos y arenosos presentan diferentes especies dominantes, y también diferentes asociaciones tróficas.

Persson (op cit.) en un estudio realizado en el del Mar Báltico reporta que la composición de la fauna bentónica presentó una variación en su abundancia y diversidad conforme la profundidad aumentaba, concluyendo que la batimetría es un factor importante en la conformación de los patrones de distribución de los organismos bentónicos. Este autor corroboró, mediante el uso de curvas de rarefacción un gradiente natural de estrés que es mayor en aguas someras.

Sin embargo las comunidades bentónicas también responden a factores antropogénicos como la alteración física de el fondo y el vertimiento de desechos (Frigilos y Zenetos, op. cit.; Ambrogi *et al.*,op cit.; Moran y Grant 1989; Lizarraga, 1974; Herrera y Valle García, 1980).

Gray (op cit.), en un estudio sobre los efectos de contaminantes en ecosistemas marinos observó que en algunas ocasiones la permanencia o tiempo de residencia de un contaminante en el medio acuático puede ser bastante largo, hasta su deposición en el fondo o su degradación como tal; de ahí que una fuente de disturbio como es un afluente de desechos pueda tener impacto en un área de dimensiones considerables si la dinámica hidrológica del océano y la costa contribuyen a su difusión.

Herrera y Alcolado, (op cit.), mencionan la utilidad general de las comunidades bentónicas como monitores naturales de la calidad del ambiente, debido a su alta conectividad con el medio ambiente y su sedentarismo.

Es importante distinguir los cambios por factores naturales de los cambios por factores antropogénicos.

Algunos antecedentes han comparado un mismo sitio en diferentes períodos de tiempo, mientras que otros han comparado la composición de las comunidades bentónicas a distancias crecientes de la fuente de contaminación.

Van Den Heilingenbeg (op cit.) reportaron la capacidad de recuperación de las comunidades bentónicas, en el mar de Dutch Wadden, documentando la

recuperación en el tiempo de ecosistemas bentónicos perturbados por dragado y raspado, realizados durante la construcción de una marina. En las zonas donde las poblaciones fueron arrasadas, se presentó un mayor reclutamiento que en las zonas no perturbadas; esta recolonización fue llevada a cabo por especies que ahí se encontraban anteriormente.

Reise y Schubert, (op cit.) compararon datos generados en la parte norte del mar de Wadden durante los años veinte, contra datos que se generaron en la década de los ochenta, observando cambios que se manifiestan en la pérdida de especies y en una disminución tanto de la diversidad como de la abundancia, concluyendo que existe un proceso de eutroficación en la zona costera, debida al impacto de actividades humanas (dragado y descarga de desechos).

Reise et al.(1989) reportaron los cambios observados en las comunidades bentónicas del mar de Wadden en las cercanías de la isla de Sylt en el Mar del Norte, al comparar datos generados del período 1923 - 1940 con datos de reciente obtención (1980). Señalan el aumento de materia orgánica que proviene del crecimiento masivo de algas verdes en planos lodosos, y la relacionan con la declinación de la población de algas rojas en aguas de menos de 20 m de profundidad, junto con un aumento en la extensión de parches de mejillones y un aumento en las abundancias de las poblaciones de poliquetos en la zona intermareal y submareal de fondos arenosos, pero no identifican ningún factor antropogénico al que pueda atribuirse el cambio.

Herrera y Alcolado (op cit.) reportaron mediante el método de rarefacción Sanders (op cit.). que las curvas generadas en las estaciones cercanas al desagüe de tres industrias, se identificaban claramente como de alto rigor, (tendencia asintótica hacia el eje de las abscisas) mientras que en las estaciones más alejadas de la fuente contaminante las curvas reflejaron una tendencia hacia el eje de las ordenadas indicando un menor rigor ambiental.

Bouwman et al. (op cit.), reportaron que la estructura de la comunidad de la fauna bentónica en las cercanías de una fuente de contaminación orgánica estaba afectada tan fuertemente que tendió a desaparecer, disminuyendo la diversidad y aumentando la abundancia de especies más tolerantes; sin embargo, conforme la distancia a la fuente de disturbio fue mayor, se observó un patrón de diversidad y abundancia considerado normal.

Zenetos y Bogdanos (op cit.), reportaron sobre datos obtenidos estacionalmente durante 1985 en la bahía de Elefsis, que la abundancia y la biomasa se incrementó conforme aumentó la distancia de las descargas de desechos.

En general, hay coincidencia en señalar la conveniencia de documentar la estructura y composición en condiciones naturales, antes de que ocurran asentamientos costeros y actividades industriales de orden mayor (Reise y Shubert op cit., Reise et al., op cit.).

Rachor (1990), comparó los datos de biomasa de las primeras investigaciones con estudios recientes, en German Bight, reportando cambios observados en la

estructura de la dominancia de especies, mismos que se relacionan con un proceso de eutroficación.

Johnson et al. (1985) reportaron cambios en la estructura de las comunidades bentónicas haciendo un seguimiento de estas durante la construcción de una rada en Fort Pierce, Florida. En las áreas cercanas a la construcción la abundancia disminuyó durante el proceso de excavación, aunque sin modificar el número de especies; sólo las zonas afectadas directamente sufrieron cambios en ambos componentes (número de especies y abundancia). Al comparar estas estaciones con grupos control se observó una recuperación de condiciones normales en la estructura de la comunidad luego de 9 a 12 meses. En las estaciones más afectadas esta recuperación no se logró, sino que la composición original de especies varío considerablemente.

Caddy et al.(1984), generaron datos descriptivos preliminares de parámetros físicos y biológicos como base de futuros estudios en relación a la pesca de crustáceos, dada la importancia de las comunidades bentónicas en la biología de este recurso.

Usualmente los datos de número de especies y número de individuos en diversos arreglos metodológicos se utilizan para documentar los cambios en espacio o tiempo (Ambrogi *et al.*,op cit.; Hurby, 1987; Gravina *et al.*,1989; Warwick *et al.*,1987; Lie y Kisker, op cit.).

Las curvas de rarefacción (Sanders, 1968), han sido utilizadas por Herrera y Alcolado (op cit.) en estaciones progresivamente más alejadas del foco de contaminación, mostrando en las estaciones cercanas a este un proclinamiento de la curva sobre el eje de las X, aún cuando presentan altas profundidades. Las estaciones más lejanas del punto contaminante generan curvas que corresponden con lo esperado en teoría (a mayor profundidad, bajo rigor y a menor profundidad alto rigor) en condiciones naturales en sustratos similares.

Persson (op cit.) utilizó las curvas de rarefacción, el índice H' de Shannon, el índice de equitatividad de Pielou (J'), reportando que la composición de la fauna bentónica de una zona del Mar Báltico presenta una variación en su abundancia y diversidad conforme la profundidad aumentaba.

Read et al.(op cit.), señalan cuatro diferentes medidas de diversidad para describir y cuantificar los cambios en la estructura de las comunidades bentónicas a lo largo de un gradiente de contaminación: el índice H, de Shannon y Weaver, el índice de Equitatividad "E", el índice alfa de Fisher y el índice (PIE) probabilidad de encuentro interespecífico.

En el área de estudio no abundan los antecedentes específicos, sin embargo se encontraron publicaciones de estudios realizados en áreas aledañas que pueden servir como marco de referencia.

Jones (1969), encontró tres asociaciones, en "The southem Californian Mainland shelf", desde Punta Concepción, EUA hasta Punta Descanso, México: 1) la

asociación Amphioda, justo frente a Point Loma a 4 ó 5 km de la costa con una extensión de norte a sur que va de Punta la Joya hasta los límites de frontera con México; 2) asociación Nothria-Tellina, muy cercano a la línea de costa y dividido en dos núcleos, uno justo frente a Mission Bay y otro de más extensión desde la parte sur de la Bahía de San Diego a la frontera con México; 3) asociación Spiophanes bombyx y Nothria stigmatis a 2 ó 3 km de la costa sobre la frontera con México, relacionándolas con el tipo de substrato y profundidad.

Muñoz Palacios (op cit.), identificó en las costas del pacífico norte en un área que comprende desde San Diego, EUA hasta Playas de Tijuana, México; 6 asociaciones faunísticas: 1) asociación *Tellina modesta*, cercana a la línea de costa y ubicada a profundidades entre 10 y 20m; 2) asociación *Dendraster exentricus* al sur de la zona estudiada, entre los 20 y 40m de profundidad; 3) asociación *Prionospio sp* A en la parte norte y central del área de estudio; 4) asociación *Amphiodia urtica* y *Spiophanes bombyx*, al norte del área de estudio y entre 20 y 60m de profundidad; 5) asociación *Caecum crebrucinctum*, al centro del área de estudio entre 20 y 50m de profundidad; 6) asociación *Parvilucina tenuisculpta*, al sur del área de estudio entre los 40 y 60m de profundidad. Señala además que la asociación *Amphiodia*, coincide espacialmente con las asociaciones descritas por Jones (1969), presentando una codominancia con *Spiophanes missionensis*.

Una referencia que abarca la mayorla de los estudios realizados en el noroeste de Baja California es el documento "The Ecology of the southern California

Bight: Implications for the water quality management", reporte de tres años del Southern California Coastal Water Research Projet (1973), promovido por el gobierno estatal de California para investigaciones en ecología marina.

Este reporte presenta las características geómorfolicas de toda la cuenca e identifica tres grandes grupos de acuerdo a su posición dentro la división batimétrica: un grupo de plataforma, donde predominan poliquetos, crustáceos, moluscos y equinodermos; otro grupo de áreas más profundas con menos diversidad en donde predominan los poliquetos; el tercer grupo establecido dentro de los cañones submarinos con una marcada predominancia de poliquetos en parches aislados.

III OBJETIVOS.

- 1. Determinar la composición y distribución de la fauna bentónica sublitoral en la franja costera situada entre Ensenada, Tijuana (México) y Point Loma (EUA), cubierta por el crucero ECOBAC III-0690.
- 2. Relacionar la composición y distribución de la fauna bentónica sublitoral con gradientes naturales y antropogénicos.
- 3. Resumir el estado del conocimiento de las comunidades bentónicas del área de estudio.

Las preguntas que orientaron este trabajo fueron las siguientes:

- 1. Cuál es la composición de la fauna en el área?
- 2. Cuál es su distribución?
- 3. La composición y distribución de la fauna, ¿es diferente en las distintas estaciones?
- 4. Si así fuera en que atributos se manifiesta, y que relación guarda con las características del medio y con factores antropogénicos.

Resultados esperados.

En general: agrupamiento de estaciones por condiciones batímetricas y tipo de substrato.

En cada transecto: variación de las curvas de rarefacción según un gradiente de rigor asociado con batimetría (curvas más aplanadas en estaciones someras y curvas más erguidas en estaciones profundas).

En estaciones expuestas a la llegada de agentes antropogénicos: curvas de rarefacción mas aplanadas, independientemente de la localización batímetrica, y de la exposición

En una secuencia de estaciones progresivamente más alejadas de un sitio con influencia antropogénica: variaciones en las curvas de rarefacción similares a las de un gradiente natural de batimétria.

IV AREA DE ESTUDIO.

El área de estudio es una franja costera de 8 a 10 Km. de ancho entre los 31°30' N y 32°45' N, presentando una batimetría que va desde los 40 m hasta 1400 m de profundidad (Alvarez et al., op cit.).

Forma parte del Sistema de la Corriente de California identificada esta zona como la Region III dentro de este sistema, la cual se caracteriza por escasa tormentas en invierno, poca presión eólica, afloramientos e insignificante aportación de agua dulce. Igualmente se reconoce como una costa cóncava con islas y cuencas subsuperficiales (siendo esta la única mención del fondo), esta clasificación también señala el área como una cuenca protegida, importante zona de crianza de diferentes organismos pelágicos y bentonicos, y fuerte recirculación local, con los tiempos de residencia de las aguas mas largos que en las otras tres regiones de este sistema (US GLOBEC, 1994).

También se enmarca dentro de la llamada Cuenca del Sur de California (Southern California Bight), la cual está definida al Este por la línea de costa que se extiende desde Punta Concepción California (EUA) hasta punta Colonet, B. C., México y al Oeste por la Corriente de California. Presenta dos grandes afluentes de aguas de desecho uno en Punta Loma en el condado de San Diego EUA y otro en Punta Bandera en el estado de Baja California al sur de la ciudad de Tijuana además del desagüe de la planta termoeléctrica de Rosarito. Dicha cuenca presenta una interacción entre las diferentes zonas que la componen, (por ejemplo la Bahía de San Diego y la zona de Tijuana-Isla Coronado) debido al patrón de circulación, que está

influido fuertemente por la contracorriente de California que corre a través de los canales presentes entre las islas, y por variaciones estacionales en este patrón debido a la influencia de los vientos y surgencias (SCCWRP, op cit.) (figura 1).

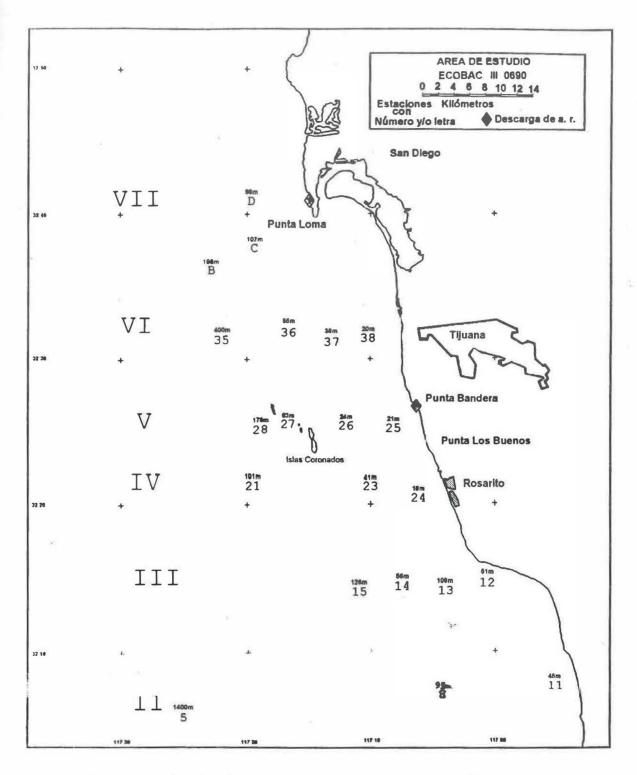


Figura 1. Area de estudio y profundidad para cada estación.

V MATERIALES Y METODOS.

Las campañas ECOBAC (Estudios de Contaminación en Baja California) han sido realizadas por las siguientes instituciones: Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE); Instituto de Investigaciones Oceanológicas (IIO) de la UABC; Instituto de Oceanografía Marina, University of California Santa Cruz; SCRIPPS Institution of Oceanography (UCSD). Dichas campañas se efectuaron como ECOBAC I del 22 de junio al 15 de julio de 1988, en el barco Alejandro V. Humboldt y ECOBAC III-0690 del 19 al 26 de junio de 1990.

Se cubrió un área de 70 por 52km entre Punta Loma, California, E.U.A. y Punta Salsipuedes a bordo del buque oceanográfico "El Puma", de la siguiente manera; se ubicaron 6 transectos perpendiculares a la línea de costa y uno paralelo a la misma, en el lado estadounidense del área de estudio. Los 6 transectos perpendiculares a la costa comprendieron 38 estaciones, y 4 estaciones más que se localizan en el transecto paralelo a la costa. En el primer transecto que corresponde a las estaciones 1, 2, 3 y 4 no se colectaron muestras de organismos bentónicos. Lo mismo sucedió en las estaciones 6, 7, 9 y 10 (transecto II), en las estaciones 16 y 17 (transecto III), en las estaciones 18, 19 y 20 (transecto IV), en las estaciones 29, 30 y 31 (transecto V), en las estaciones 32, 33 y 34 (transecto VI). Para este estudio, sin embargo, se retomó la numeración de las estaciones según figuran en el orden original quedando de las siguiente manera:

Transecto II: perpendicular a la línea de costa, México. Comprende las estaciones 5, 8 y 11.

Transecto III: perpendicular a la línea de costa, México. Comprende las estaciones 12, 13, 14 y 15.

Transecto IV: perpendicular a la línea de costa, México. Comprende las estaciones 21, 23 y 24.

Transecto V: perpendicular a la línea de costa, México. Comprende las estaciones 25, 26, 27 y 28.

Transecto VI: perpendicular a la línea de costa, México. Comprende las estaciones 35, 36, 37 y 38.

Transecto VII: Paralelo a la línea de costa, EUA. Comprende las estaciones B, C y D. (figura 1).

Las muestras de sedimentos se obtuvieron con una con draga Van Been. Por primera vez dentro de las campañas ECOBAC III-0690, se colectaron muestras para organismos bentónicos, tomando alicuotas de 250ml, 2 para cada estación. Se tamizó a bordo con una luz de malla de 0.5 mm.

La actividad que específicamente realizó el personal del laboratorio de ecología del bentos fue la toma de muestras con draga Van Been, ya que los estudios y evaluaciones que incumben a las otras actividades las llevarán a cabo otros equipos de personas especializadas en su ramo. Sin embargo, algunos de los resultados que se han obtenido son de utilidad para integrar la información.

V .1 Procesamiento de las muestras.

Todas las muestras de bentos provenientes de 21 estaciones fueron separadas en el laboratorio de Ecología del Bentos del CICESE, hasta nivel de grandes grupos (Moluscos, Crustáceos, Poliquetos, Equinodermos, etc.). Un grupo de 3 muestras fueron enviados a Kinnetic Laboratories, E.U.A, para su identificación a nivel de especie. Con base en esa información, se clasificó el resto del material, el cual se envió a Kinnetic Laboratories sólo para certificar la identificación o corregirla en caso de ser necesario.

Una vez en posesión del material de todas las estaciones, clasificado al menor nivel taxonómico posible, se procedió a generar los datos de abundancia uniendo las repeticiones de cada estación, considerando que las muestras fueron tomadas de un mismo lance en cada estación, mediante revisión bibliográfica (Light *et al.*, 1961; Hartman, 1968-69; Kaestner, 1970; Keen, 1971; Smith y Carlton, 1975; Staude *et al.*, 1977; Barnes, 1977; Light, 1978; Brusca, 1980; Barnard, 1981; Barnard y Barnard, 1982a, 1982b; Thomas y Barnard, 1983; Salazar Vallejo *et al.*, 1988) y consultas con especialistas, tratar de asignar los tipos de alimentación y relación con el tipo de substrato de las especies más representativas.

V .2 Procesamiento de la información.

- Se generó un listado completo de especies encontradas y el número de individuos en el total de estaciones.
- 2. Se hizo una lista para cada estación con el número de especies y el número de individuos por especie.

- 3. Se estimó el índice de diversidad H' de Shannon y Weaver junto con el correspondiente de equitatividad de Pielou, (Odum, 1972), para cada una de las estaciones.
- Se analizó la similitud entre estaciones (correlación de Pearson), comparando las listas individuales.
- 6. Se formaron grupos de estaciones de acuerdo con los resultados de la similitud entre ellas.
- 7. Se relacionó la composición faunística con gradientes certificables tanto naturales como antropogénicos.
- 8. Se generaron curvas de rarefacción (Sanders, op cit.) para cada una de las estaciones y se relacionaron con un posible gradiente de rigor ambiental (natural y/o antropogénico).
- 9. Se efectúo la caracterización ecológica de las especies más importantes de acuerdo a su abundancia dentro de la asociación faunística correspondiente, para certificar gradientes identificados con los métodos anteriores.
- 10. Con el fin de ofrecer una panorámica de las comunidades sublitorales del área, con base en el conocimiento de que se dispone hasta el momento, se realizó un análisis de agrupamiento de los datos de las 21 estaciones de la campaña ECOBAC III 0690, que conforman esta tesis, y los datos de las 26 estaciones de la campaña TOES presentados por Muñoz Palacios (1993) en tesis de maestría.

VI RESULTADOS.

Se identificó el elenco de especies de macrofauna bentónica presentes en 21 estaciones (campaña ECOBAC) realizada en la zona que comprende desde Punta Loma (condado de San Diego, EUA) hasta Punta San Miguel (Baja California, México 32º 37.2' LtN-117º 20.1'LgO, 32º 05.2'LtN- 117º 26.5'LgO).

VI.1 Perfil batimétrico de los transectos.

En cuatro de los transectos perpendiculares a la costa (Transectos II, IV, V, y VI) la batimetría siguió el modelo general de aumento de la profundidad en el sentido costa-mar adentro. En el transecto III la batimetría no se ajustó a dicho modelo, mostrando oscilaciones de mayor y menor profundidad a distancias crecientes desde la línea de costa. En el transecto VII, paralelo la línea de costa, la batimetría mostró un aumento de profundidad en la dirección norte-sur.

VI .2 Características generales de la macrofauna.

La macrofauna bentónica estuvo representada por 338 especies y 4538 individuos, pertenecientes a 12 phyla: Cnidarla (una especie); Nemertea (dos especies); Mollusca (cuatro clases y 28 especies); Anelida (dos clases, 39 familias y 166 especies); Sipuncula (una especie); Artropoda (11 clases y 110 especies); Phoronida (una especie); Echiura (una especie); Brachiopoda (*Glottidia albida*); Equinodermata (cuatro clases y 24 especies); Hemlcordata (una especie) y Chordata (una especie) (Apéndice I).

Las especies ordenadas en forma decreciente acorde con su abundancia relativa, presentaron a *Mediomastus sp.* (Polychaeta, Capitellidae) como el más abundante

(433 individuos, 9.54% del total); fue seguido por Spiophanes misionensis (Polychaeta, Spionidae) con 296 individuos (4.12% del total) y Ampelisca cristata (Amphipoda, Ampeliscidae) (139 individuos: 3.06% del total). A continuación se presentaron 5 especies que reunieron entre el 2 y 3% del total de individuos: Nemertea (Nemertea), Tharix sp. (Polychaeta, Cirratulidae), Caecum crebricinctum (Gasterópoda); Euphilomedes producta (Ostracoda); Parvilucina tenuisculpta (Bivalvia). Seguidamente se ubicaron 19 especies cuya abundancia relativa osciló en 1 y 2%: Tellina carpenteri (Bivalvia); Prionospio (P.) sp. A (Polychaeta, Spionidae); Chaetozone cf. setosa (Polychaeta, Cirratulidae); Leptochelia dubia (Tanaidacea); Spiophanes bombyx (Polychaeta, Spionidae); Euphilomedes carcharodonta (Ostracoda); Paradiopatra parva (Polychaeta, Onuphidae); Oligochaeta, Rutiderma lomae (Ostracoda); Ophiuroidea juv. tipo a (Ophiuroidea); Lumbrineris sp. (Polychaeta, Lumbrineridae); Leittoscoloplos pugeltensis (Polychaeta, Orbiinidae); Sabellidae); Acmira catherinae (Polychaeta, Euchone incolor (Polychaeta, Paraonidae); Acuminodeutopus heteruropus (Amphipoda); Ampelisca agassizi (Amphipoda); Pholoe glabra (Polychaeta, Sigalionidae); Glycera capitata (Polychaeta, Glyceridae); Photis sp. A (Amphipoda). Cada una de las 311 especies restantes presentó menos del 1%.

El 90.9% de los individuos fueron reunidos por 136 especies, de un total de 338, indicando que la dominancia no fue muy marcada (tabla I). La curva de dominancia-diversidad del total de especies, combinando todas las estaciones,

Tabla I.

Lista sistematica de las especies identificadas en el area de eatudio, ordenadas en forma decreciente de acuerdo a su abundancia y porcentaje relativo.

	CLASE O	2,0 1014(110)		%	%
	CLASE O FAMILIA	ESPECIE	# DE IND		ACUM
1	CAPITELLIDAE	Mediomastus sp.	433	9.5416	9.542
	SPIONIDAE	Spiophanes missionensis	187	4.1208	13.662
	AMPHIPODA	Ampelisca cristata	139	3.0630	16.725
4	NEMERTEA	Nemertea	134	2.9528	19.678
5	CIRRATULIDAE	Tharyx sp.	124	2.7325	22.411
6	GASTROPODA	Caecum crebricinctum	110	2.4240	24.835
7	OSTRACODA	Euphilomedes producta	95	2.0934	26.928
8	BIVALVIA	Parvilucina tenuisculpta	92	2.0273	28.955
9	BIVALVIA	Tellina carperteri	90	1.9833	30.939
10	SPIONIDAE	Prionospio (P.) sp. A	89	1.9612	32.900
11	CIRRATULIDAE	Chaetozone cf. setosa	80	1.7629	34.663
12	TANAIDACEA	Leptochelia dubia	78	1.7188	36.382
13	SPIONIDAE	Spiophanes bombyx	76	1.6747	38.056
14	OSTRACODA	Euphilomedes carcharodonta	76	1.6747	39.731
15	ONUPHIDAE	Paradiopatra parva	74	1.6307	41.362
16	OLIGOCHAETA	Oligochaeta, UI	63	1.3883	42.750
17	OSTRACODA	Rutiderma Iomae	60	1.3222	44.072
	OPHIUROIDEA	Ophiuroidea juv.tipo a	60	1.3222	45.394
19	LUMBRINERIDAE	Lumbrineris sp.	60	1.3222	46.717
20	ORBINIIDAE	Leitoscoloplos pugettensis	54	1.1900	47.907
	SABELLIDAE	Euchone incolor	51	1.1238	49.030
22	PARAONIDAE	Acmira catherinae	50	1.1018	50.132
23	AMPHIPODA	Acuminodeutopus heteruropus	50	1.1018	51.234
24	AMPHIPODA	Ampelisca agassizi	49	1.0798	52.314
	SIGALIONIDAE	Pholoe glabra	48	1.0577	53.372
	GLYCERIDAE	Glycera capitata	48	1.0577	54,429
	AMPHIPODA	Photis sp. A	47	1.0357	55.465
	AMPHIPODA	Rhepoxynius variatus	41	0.9035	56.368
	DORVILLEIDAE	Protodorvillea gracilis	40	0.8814	57.250
	OPHIUROIDEA	Amphiodia periercta	39	0.8594	58.109
	SPIONIDAE	Spiophanes berkeleyorum	39	0.8594	58,969
	PARAONIDAE	Allia ramosa	39	0.8594	59.828
	SIGALIONIDAE	Sthenelanella uniformis	38	0.8374	60.665
	PHORONIDA	Phoronida, UI	38	0.8374	61.503
	AMPHIPODA	Rhepoxynius abronius	37	0.8153	62.318
	SPIONIDAE	Paraprionospio sp. A	36	0.7933	63.112
	PARAONIDAE	Levinsenia gracilis	35	0.7713	63.883
	AMPHIPODA	Photis lacia	34	0.7492	64.632
	SPIONIDAE	Prionospio (Minuspio) lighti	33	0.7272	65.359
	MALDANIDE	Praxillella pacifica	32	0.7052	.66.064
	SPIONIDAE	Spiophanes sp.	31	0.6831	66.747
	OPHIUROIDEA	Amphiodia urtica	30	0.6611	67.409
	OSTRACODA	Rutiderma rostratum	29	0.6390	68.048
	DORVILLEIDAE	Pettiboneia sanmatiensis	28	0.6170	68.665
	AMPHIPODA	Rhepoxynius bicuspidatus	24	0.5289	69.193
	CUMMACEA	Diastylis tenuis	24	0.5289	69.722
	PARAONIDAE	Aricidea wassi	22	0.4848	70.207
	AMPHIPODA	Heterophoxus oculatus	21	0.4628	70.670
	SYLLIDAAE	Pionosyllis sp. A	21	0.4628	71.133
	AMPHIPODA	Photis sp.	21	0.4628	71.595
	MAGELONIDAAE	Magelona sacculata	20	0.4407	72.036
	NEPHTYIDAE	Nephtys sp.	19	0.4187	72.455
	SPIONIDAE	Prionospio (P.) sp. B	19	0.4187	72.874
55	C. TOTAL		.5	0.7107	

Tabla I. (Continuación).

	CLASE O		% %			
	FAMILIA	ESPECIE	# DE IND	REL	ACUM	
54	CAPITELLIDAE	Notomastus sp.	19	0.4187	73.292	
	NEPHTYIDAE	Nephtis cornuta franciscana	18	0.3967	73.689	
	ONUPHIDAE	Onuphidae, UI	18	0.3967	74.086	
57	PECTINARIDAE	Pectinaria sp.	18	0.3967	74,482	
58	AMPHIPODA	Foxiphalus sp.	18	0.3967	74.879	
59	SPIONIDAE	Prionospio (Minuspio) cirrifera	18	0.3967	75.275	
60	SABELLIDAE	Jasmineira sp. A	18	0.3967	75.672	
61	SCAPHOPODA	Cadulus fusiformis	18	0.3967	76.069	
62	OPHIUROIDEA	Amphiodia digitata	17	0.3746	76.443	
63	AMPHARETIDAE	Ampharete sp.	17	0.3746	76.818	
64	OSTRACODA	Bathyleberis californica	17	0.3746	77.193	
65	BIVALVIA	Axionoce sp.	16	0.3526	77.545	
66	SPIONIDAE	Prionospio (P.) sp.	16	0.3526	77.898	
67	AMPHIPODA	Ampelisca careyi	16	0.3526	78.250	
68	COPEPODA	Calanoida, UI	16	0.3526	78.603	
69	TANAIDACEA	Araphura sp. A	15	0.3305	78.933	
70	AMPHINOMIDAE	Chloeia pinnata	15	0.3305	79.264	
71	AMPHIPODA	Photis sp. B	14	0.3085	79.572	
72	GONIADIDAE	Glycinde armigera	14	0.3085	79.881	
73	CUMMACEA	Eudorella pacifica	14	0.3085	80.190	
74	OPHIUROIDEA	Amphiodia sp.	13	0.2865	80.476	
75	CNIDARIA	Cnidaria	13	0.2865	80.762	
76	AMPHIPODA	Urothoe varvarini	12	0.2644	81.027	
77	MALDANIDE	Maldanidae, UI	12	0.2644	81.291	
78	AMPHIPODA	Rhepoxynius menziesi	12	0.2644	81.556	
79	PARAONIDAE	Acmira simplex	12	0.2644	81.820	
80	AMPHIPODA	Ampelisca brevisimulata	12	0.2644	82.085	
81	HESIONIDAE	Heteropodarke heteromorpha	11	0.2424	82.327	
82	OSTRACODA	Harbansus c.f. sp. B	11	0.2424	82.569	
83	OWENIIDAE	Owenia collaris	11	0.2424	82.812	
84	PECTINARIDAE	Pectinaria californiensis	11	0.2424	83.054	
	BRACHIOPODA	Glottidia albida	11	0.2424	83.297	
	AMPHIPODA	Metaphoxus frequens	10	0.2204	83.517	
	ISOPODA	Gnathia crenulatifrons	10	0.2204	83.737	
	SABELLIDAE	Chone mollis	10	0.2204	83.958	
	SYLLIDAE	Exogone loueri	10	0.2204	84.178	
	CUMMACEA	Mesolamprops bispinosa	9	0.1983	84.376	
	MALDANIDE	Heteroclymene sp. juv.	9	0.1983	84.575	
	ISOPODA	Gnathia sp.	9	0.1983	84.773	
	GONIADIDAE	Goniada maculata	9	0.1983	84.971	
	SYLLIDAE	Haplosyllis sp.	9	0.1983	85.170	
	OPHIUROIDEA	Ophiuroidea juv.tipo b	9	0.1983	85.368	
	CAPITELLIDAE	Capitellidae, UI	8	0.1763	85.544	
	ONUPHIDAE	Mooreonuphis nebulosa	8	0.1763	85.721	
	SPIONIDAE	Paraprionospio sp. B	8	0.1763	85.897	
	PISIONIDAE	Pisione sp.	8	0.1763	86.073	
	ISOPODA	Munna sp.	8	0.1763	86.249	
	PARAONIDAE	Cirrophorus branchiatus	7	0.1543	86.404	
	SPIONIDAE	Laonice cirrata	7	0.1543	86.558	
	ONUPHIDAE	Nothria sp.	7	0.1543	86.712	
	OWENIIDAE	Myriochele gracilis	7	0.1543	86.866	
	OSTRACODA	Parasterope barnesi	7	0.1543	87.021	
106	SYLLIDAE	Typosyllis sp.	7	0.1543	87.175	

Tabla I. (Continuación).

014050			21	
CLASE O FAMILIA	ESPECIE	# DE IND	% REL	% ACUM
107 NEREIDAE	Nereis procera	7	0.1543	87.329
108 BIVALVIA	Mysella tumida	7	0.1543	87.483
109 AMPHIPODA	Synchelidium sp.	7	0.1543	87.638
110 DORVILLEIDAE	Schistomeringos sp.	6	0.1322	87.770
111 SABELLIDAE	Chone sp.	6		- 87.902
112 SPHAERODORIDAE	Sphaerodoropsis biserialis	6	0.1322	88.034
113 ONUPHIDAE	Rhampobranchium brevisetosum	6	0.1322	
114 ONUPHIDAE	Diopatra sp.	6	0.1322	88.299
115 OSTRACODA	Pseudoleuris sp.A	6	0.1322	88.431
116 BIVALVIA	Mysella grippi	6	0.1322	88.563
117 STERNASPIDAE	Sternaspis fossor	6	0.1322	88.695
118 OSTRACODA	Zeugophilomedes (Euphilomedes)	6	0.1322	88.828
119 OSTRACODA	Myodocopida	6	0.1322	88.960
120 HOLOTUROIDEA	Holoturoideo tipo 1	6	0.1322	89.092
121 BIVALVIA	Huxleyia munita	6	0.1322	89.224
122 GASTROPODA	Volvulella panamica	6	0.1322	89.357
123 AMPHARETIDAE	Ampharetidae, UI	5	0.1102	89.467
124 PILARGIDAE	Eteone sp. E	5	0.1102	89.577
125 OSTRACODA	Scleroconcha trituberculata	5	0.1102	89.687
126 CUMMACEA	Leucon subnasica	5	0.1102	89.797
127 ORBINIIDAE	Scoloplos armiger	5	0.1102	89.907
128 STERNASPIDAE	Sternaspis sp.	5	0.1102	90.018
129 AMPHIPODA	Parametopella ninis	5	0.1102	90.128
130 GASTROPODA	Balcis catalinensis	5	0.1102	90.238
131 MALDANIDAE	Euclymeniame sp. C	5	0.1102	90.348
132 ASTEROIDEA	Astropecten braziliensis armatus	5	0.1102	90.458
133 GASTROPODA	Cylichna diegensis	5	0.1102	90.569
134 BIVALVIA	Crenella decussata	5	0.1102	90.679
135 SCAPHOPODA	Falcidens sp.	5	0.1102	90,789
136 SABELLIDAE	Euchone sp.	5	0.1102	90.899
137 OPHIUROIDEA	Amphichondrius granulosis	5	0.1102	91.009
138 SYLLIDAE	Sphaerosyllis sp.	5	0.1102	91.119
139 SABELLIDAE	Euchone sp. A	5	0.1102	91.230
140 SYLLIDAE	Ehlersia heterochaeta	5	0.1102	91.340
141 SYLLIDAE	Exogone molesta	5	0.1102	91.450
142 AMPHIPODA	Photis californica	4	0.0881	91.538
143 SIPUNCULA	Sipuncula	4	0.0881	91.626
144 SIGALIONIDAE	Sigalion spinosa	4	0.0881	91.714
145 SABELLIDAE	Chone sp. C	4	0.0881	91.803
146 OPHELIDAE	Ophelia pulchella	4	0.0881	91.891
147 AMPHIPODA	Eohaustorius sp.	4	0.0881	91.979
148 SABELLIDAE	Chone veleronis	4	0.0881	92.067
149 NEPHTYIDAE	Nephtys sp. A	4	0.0881	92.155
150 ARABELLIDAE	Drilonereis sp.	4	0.0881	92.243
151 AMPHARETIDAE	Ampharete tipo 3	4	0.0881	92.331
152 AMPHIPODA	Foxiphalus similis	4	0.0881	92.420
153 AMPHIPODA	Ampelisca sp.	4	0.0881	92.508
154 NEPHTYIDAE	Nephtys californiensis	4	0.0881	92.596
155 TEREBELLIDAE	Laphania sp.	4	0.0881	92.684
156 SPIONIDAE	Paraprionospio pinnata	4	0.0881	92.772
157 BIVALVIA	Nuculana taphira	4	0.0881	92.860
158 HESIONIDAE	Podarkeopsis glabrus	4	0.0881	92.948
159 CUMMACEA	Lamprops sp.	4	0.0881	93.037

Tabla I. (Continuación).

CLASE O			%	%
FAMILIA	ESPECIE	# DE IND	REL	ACUM
160 SPIONIDAE	Spiochaetopterus costarum	4	0.0881	93.125
161 CAPITELLIDAE	Decamastus sp.	4	0.0881	93.213
162 CAPITELLIDAE	Decamastus gracilis	4	0.0881	93.301
163 CUMMACEA	Murinarjanium erratum	4	0.0881	93.389
164 PARAONIDAE	Aedicira pacifica	4	0.0881	93.477
165 AMPHIPODA	Rhepoxynius sp.	3	0.0661	93.543
166 AMPHIPODA	Ampelisca milleri	3	0.0661	93.610
167 SPHAERODORIDAE	Sphaerodoridae, UI	3	0.0661	93.676
168 AMPHIPODA	Acuminodeutopus sp.	3	0.0661	93.742
169 NEPHTYIDAE	Nephtys caecoides	3	0.0661	93.808
170 SIGALIONIDAE	Pholoe sp.	3	0.0661	93.874
171 AMPHARETIDAE	Anobothrus gracilis	3	0.0661	93.940
172 TEREBELLIDAE	Terebelidae, UI	3	0.0661	94.006
173 AMPHIPODA	Aoridae sp.	3	0.0661	94.072
174 OPHIUROIDEA	Amphiodia occidentalis	3	0.0661	94.138
175 TANAIDACEA	Leptognathia sp. E	3	0.0661	94.204
176 GASTROPODA	Solemnya reidi	3	0.0661	94.271
177 SABELLIDAE	Chone sp. B	3	0.0661	94.337
178 PHYLODOCIDAE	Phyllodocidae, UI	3	0.0661	94.403
179 OSTRACODA	Harbansus bralanciesi	3	0.0661	94.469
180 CUMMACEA	Cyclaspis sp.	3	0.0661	94.535
181 GASTROPODA	Bittium sp.	3	0.0661	94.601
182 AMPHIPODA	Monoculodes sp.	3	0.0661	94.667
183 EQUINOIDEA	Lytechynus pictus	3	0.0661	94.733
184 FLABELLIGERIDAE	Pherusa neopapillata	3	0.0661	94.799
185 ECHIURA	Echiura	3	0.0661	94.866
186 COSSURIDAE	Cossura sp.	3	0.0661	94.932
187 ORBINIDAE	Orbiniidae	3	0.0661	94.998
188 PARAONIDAE	Paraonidae, UI	3	0.0661	95.064
189 POLYNOIDAE	Polycyrrus sp.	3	0.0661	95.130
190 POLYNOIDAE	Harmothoe cf. lunulata	3	0.0661	95.196
191 ONUPHIDAE	Onuphis sp.	3	0.0661	95.262
192 MAGELONIDAE	Magelona hartmanae	3	0.0661	95.328
193 APISTOBRANCHIDAE	Apistobranchus ornatus	3	0.0661	95.394
194 TANAIDACEA	Leptochelia sp.	3	0.0661	95.461
195 CUMMACEA	Cumella sp.	3	0.0661	95.527
196 AMPHIPODA	Eyakia robustus	3	0.0661	95.593
197 ONUPHIDAE	Diopatra ornata	3	0.0661	95.659
198 HEMICHORDATA	Hemichordata	2	0.0441	95.703
199 CUMMACEA	Campylaspis sp.	2	0.0441	95.747
200 BIVALVIA	Macoma acolasta	2	0.0441	95.791
201 CUMMACEA	Cumella vulgaris	2		95.835
202 CUMMACEA	Leucon magnadentata	2	0.0441	95.879
203 CHORDATA	Branchiostoma californiense	2	0.0441	95.923
204 SYLLIDAE	Pionosyllis sp. B	2	0.0441	95.967
205 SYLLIDAE	Plakosyllis americana	2	0.0441	96.011
206 MALDANIDAE	Asychis disparidentata	2	0.0441	96.056
207 ISOPODA	Microcerberus abbotti	2	0.0441	96.100
208 GASTROPODA	Olivella baetica	2	0.0441	96.144
209 OPHIUROIDEA	Ophiura lutkeni	2	0.0441	
210 TANAIDACEA	Leptognathia sp. B	2		96.232
211 TANAIDACEA	Araphura sp. C	2	0.0441	96.276
212 GASTROPODA	Turbonilla sp.	2	0.0441	96.320
		_		

Tabla I. (Continuación).

CLASE O			%	%
FAMILIA	ESPECIE	# DE IND	REL	ACUM
213 OSTRACODA	Eusarsiella sp.	2	0.0441	96.364
214 TEREBELLIDAE	Terebellides sp.	2	0.0441	96.408
215 TEREBELLIDAE	Terebellides californica	2	0.0441	96.452
216 ECHINOIDEA	Dendraster excentricus	2	0.0441	96.496
217 HOLOTUROIDEA	Pentamera sp.	2	0.0441	96.540
218 CUMMACEA	Pleurirjanum californiense	2	0.0441	96.584
219 BIVALVIA	Axinopsida serricata	2	0.0441	96.628
220 HOLOTUROIDEA	Holoturoideo tipo 2	2	0.0441	96.673
221 AMPHIPODA	Corophium sp.	2	0.0441	96.717
222 AMPHIPODA	Eohaustorius c.f. sencillus	2	0.0441	96.761
223 OPHIUROIDEA	Amphiodia sp.tipo 1	2	0.0441	96.805
224 PHYLODOCIDAE	Phyllodoce sp.	2	0.0441	96.849
225 AMPHIPODA	Guernea reduncans	2	0.0441	96.893
226 SABELLIDAE	Sabellaria sp.	2	0.0441	96.937
227 AMPHIPODA	Eusylline sp.	2	0.0441	96.981
228 OPHIUROIDEA	Amphiodia carterodmeta	2	0.0441	97.025
229 OPHIUROIDEA	Amphiodia sp.tipo 2	2	0.0441	97.069
230 AMPHIPODA	Lembos sp.	2	0.0441	97.113
231 PHYLODOCIDAE	Phyllodoce hartmanae	2	0.0441	97.157
232 ORBINIIDAE	Scolopios sp.	2	0.0441	97.201
233 AMPHIPODA	Mayerella banksia	2	0.0441	97.245
234 AMPHIPODA	Tiron tropakis	2	0.0441	97.290
235 GONIADIDAE	Goniada littorea	2	0.0441	97.334
236 AMPHIPODA	Synchelidium shoenidkeri	2	0.0441	97.378
237 AMPHIPODA	Mandibulophoxus gilesi	2	0.0441	97.422
238 AMPHIPODA	Lysianassa oculata	2	0.0441	97.466
239 PARAONIDAE	Acmira wassi	2	0.0441	97.510
240 OWENIIDAE	Owenia sp.	2	0.0441	97.554
241 CIRRATULIDAE	Caulleriella hamata	2	0.0441	97.598
242 SCALIBREGMATIDAE	Scalibregma inflatum	2	0.0441	97.642
243 SPIONIDAE	Microspio pigmentata	2	0.0441	97.686
244 SPIONIDAE	Malacoceros punctata	2	0.0441	97.730
245 AMPHIPODA	Ampelisca hancocki	2	0.0441	97.774
246 AMPHARETIDAE	Lysippe sp. A	2	0.0441	97.818
247 AMPHARETIDAE	Amage sp.	2	0.0441	97.862
248 POLICHAETA	Harmothoinae, UI	2	0.0441	97.907
249 BIVALVIA	Tagelus	2	0.0441	97.951
250 AMPHARETIDAE	Lysippe sp. B	2	0.0441	97.995
251 AMPHARETIDAE	Lysippe sp.	2	0.0441	98.039
252 AMPHARETIDAE	Ampharete tipo 1	2	0.0441	98.083
253 SIGALIONIDAE	Sigalionidae, UI	2	0.0441	98.127
254 GASTROPODA	Adontorhina cyllia	1	0.0220	98.149
255 AMPHIPODA	Ampelisca sp. A.	1	0.0220	98.171
256 AMPHIPODA	Ampeliscipholis podophthalma	- 1	0.0220	98.193
257 AMPHARETIDAE	Ampharete tipo 2	1	0.0220	98.215
258 OPHIUROIDEA	Amphiodia pugetana	1	0.0220	98.237
259 OPHIUROIDEA	Amphiura acrystata	1	0.0220	98.259
260 OPHIUROIDEA	Amphiura sp.	1	0.0220	98.281
261 PYGNOGONIDA	Anapladactylus erectus	1	0.0220	98.303
262 PILARGIDAE	Ancistrosyllis of groenlandica	1	0.0220	98.325
263 MALDANIDAE	Axiothella rubrocincta	1	0.0220	98.347
264 GASTROPODA	Balcis sp.	1	0.0220	98.369
265 OSTRACODA	Bathyleberis hancocki	1	0.0220	98.391

Tabla I. (Continuación).

CLASE O			%	
FAMILIA	ESPECIE	# DE IND	REL	ACUM
66 ECHINOIDEA	Brissopsis pacifica	1	0.0220	98.41
67 AMPHIPODA	Byblis veloronis	1	0.0220	98.43
68 CUMMACEA	Campylaspis hartae	1	0.0220	98.45
69 NEMERTEA	Cerebratulus sp.	1	0.0220	98.48
70 SABELLIDAE	Chone sp. A	1	0.0220	98.50
71 CIRRIPEDIA	Cimipedia balanomorpha	1	0.0220	98.52
72 MALDANIDAE	Clymenella sp.A	1	0.0220	98.54
73 BIVALVIA	Comsomyax subdiaphana	1	0.0220	98.56
74 COSSURIDAE	Cossura candida	1	0.0220	98.59
75 CUMMACEA	Cumella sp. A	1	0.0220	98.61
76 EUCARIDA	Cyclodorippe c.f. plana	1	0.0220	98.63
77 CUMMACEA	Diosaecidae sp.	1	0.0220	98.65
78 ECHINOIDEA	Echinoideo irregular tipo 1	1	0.0220	98.67
79 MALDANIDAE	Euclymeniame sp. A	1	0.0220	98.70
80 PHYLODOCIDAE	Eulalia levicornuta	1	0.0220	98.72
81 PHYLODOCIDAE	Eumida sp.	1	0.0220	98.74
82 EUPHROSINIDAE	Euphrosine sp	1	0.0220	98.76
83 OSTRACODA	Eusarsiella thominx	1	0.0220	98.78
84 SYLLIDAE	Exogone sp. D	1	0.0220	98.81
85 FAUVELIOPSIDAE	Faveliopsis sp.	. 1	0.0220	98.83
86 AMPHIPODA	Foxiphalus c.f. golfensis	1	0.0220	98.85
87 GONIADIDAE	Goniada sp.	i	0.0220	98.87
	Havelockia sp.	1	0.0220	98.89
88 OPHIUROIDEA	The state of the s	1	0.0220	
89 AMPHIPODA	Jaeropsis dubia			98.92
90 AMPHIPODA	Kermisthyeus ociosa	1	0.0220	98.94
91 SPIONIDAE	Laonice appelloefi	1	0.0220	98.96
92 SPIONIDAE	Laonice conchilega	1	0.0220	98.98
93 AMPHIPODA	Lepidepecreum sp.A	1	0.0220	99.00
94 CUMMACEA	Leptastylis sp.	1	0.0220	99.03
95 POLYPLACOPHORA	Leptochiton rugatus	1	0.0220	99.0
96 LUMBRINERIDAE	Lumbrineridae	1	0.0220	99.0
97 AMPHIPODA	Maera bueni	1	0.0220	99.09
98 AMPHIPODA	Megalorchestia sp.	1	0.0220	99.11
99 AMPHIPODA	Metaphoxus fultoni	1	0.0220	99.14
00 SPIONIDAE	Micropodarke dubia	1	0.0220	99.16
01 AMPHIPODA	Monoculodes c.f. Hartmanae	1	0.0220	99.18
02 ISOPODA	Munnogonium tillerae	1	0.0220	99.20
03 LEPTOSTRACA	Nebalia pugetensis	1	0.0220	99.22
04 ARABELLIDAE	Notocirrus californicus	1	0.0220	99.25
05 BIVALVIA	Nuculana sp.	1	0.0220	99.27
06 AMPHIPODA	Oedicerotidae	1	0.0220	99.29
07 ONUPHIDAE	Onuphis iridiscens	1	0.0220	99.3
08 OPHIUROIDEA	Ophiuroidea juv.tipo c	î	0.0220	99.33
09 AMPHIPODA	Pachynus barnardi	1	0.0220	
10 DECAPODA	Pagurus sp.	í	0.0220	
11 PHYLODOCIDAE	Paranaitis polynoides	1	0.0220	
	Paraselloidea sp		· Q.0220	
12 ISOPODA	•			
13 OSTRACODA	Parasterope c.f. hulingsii	1	0.0220	
14 BIVALVIA	Periploma discus	1	0.0220	
15 MALDANIDAE	Petaloproctus neoborealis	1	0.0220	99.4
16 MALDANIDAE	Petaloproctus sp. A	1	0.0220	99.5
17 POLICHAETA	Pholoides aspera	1	0.0220	
18 PHYLODOCIDAE	Phyllodoce longipes	1	0.0220	99.5

Tabla I. (Continuación).

CLASE O			%	%
FAMILIA	ESPECIE	# DE IND	REL	ACUM
319 DECAPODA	Pinnixa c.f. franciscana	1	0.0220	99.581
320 DECAPODA	Pinnixa sp.	1	0.0220	99.603
321 TEREBELLIDAE	Pista disjuncta	1	0.0220	99.625
322 TEREBELLIDAE	Pista sp.	1	0.0220	99.647
323 NEREIDAE	Platynereis bicaniculata	1	0.0220	99.669
324 POECILOCHAETIDAE	Poecilochaetus johnsoni	1	0.0220	99.691
325 POLYNOIDAE	Polydora socialis	1	0.0220	99.714
326 POLYNOIDAE	Polynoidae sp.	1	0.0220	99.736
327 CUMMACEA	Procampylaspis sp. A	- 1	0.0220	99.758
328 TEREBELLIDAE	Proclea sp. A	1	0.0220	99.780
329 COPEPODA	Pseudobradya sp.	1	0.0220	99.802
330 GASTROPODA	Puncturella cooperi	1	0.0220	99.824
31 DECAPODA	Pyromaia tiberculata	1	0.0220	99.846
32 AMPHIPODA	Rhepoxynius heterocuspidatus	1	0.0220	99.868
333 MALDANIDAE	Rhodine bitorquata	1	0.0220	. 99.890
34 SABELLIDAE	Sabella sp.	1	0.0220	99.912
35 DORVILLEIDAE	Schistocomus sp.	1	0.0220	99.934
36 PILARGIDAE	Sigambra sp.	1	0.0220	99.956
37 ISOPODA	Silophasma geminata	1	0.0220	99.978
38 SIGALIONIDAE	Thalenessa spinosa	1	0.0220	100
TOTAL DE INDIVIDUOS	, % RELATIVO Y ACUMULATIVO	4538	100	ie ac

mostró un descenso muy brusco de la primera a la segunda especie mas abundante y luego un descenso paulatino entre la segunda y el resto (figura 2).

VI .3 La macrofauna por estaciones.

El número de especies y de individuos fue variable en las estaciones, no encontrándose una relación definida con la profundidad.

El número mínimo de especies (12) se registró en la estación 5 y el máximo (104) en la estación 12 (tabla II).

El número de individuos también varió entre estaciones. El número mínimo de individuos (31) se registro en la estación 5 y el máximo (602) en la estación 12 (tabla II).

La abundancia relativa en cada estación observó en general poca dominancia, con valores del índice de reparto ('J' de Pielou) superiores a 0.8, excepto en tres de las estaciones: C (0.702), 35 (0.746) y 38 (.749) (tabla II).

Las curvas de dominancia correspondientes a las estaciones con altos valores del índice de reparto "J" mostraron un decremento progresivo, mientras que las correspondientes a las tres estaciones con valores bajos observan un abrupto decremento en la curva de dominancia (figuras 3 y 4).

Los valores del índice de Shannon (H') fueron superiores a 3, excepto en las estaciones C (2.78), 5 (2.26), 28 (2.90), 35 (2.37) y 38 (2.93). En las estaciones C, 35 y 38 el valor bajo de H' correspondió con un valor también bajo de "J"; en la estación

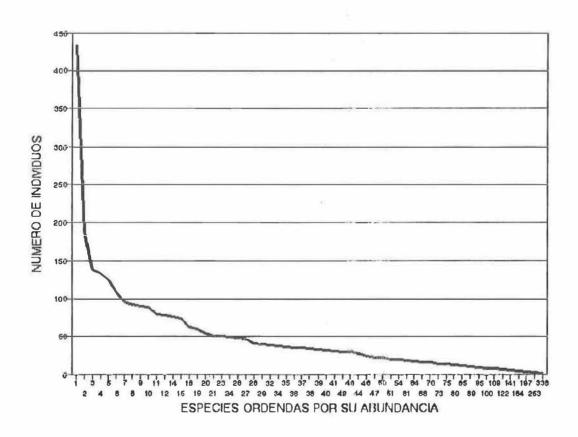


Figura 2. Curva de dominancia para el total de las especies registradas.

Tabla II. Riqueza y Abundancia de especies, profundidad y valores de Diversidad maxima(H'max, Shannon), Diversidad (H', Shannon) y de reparto (J', Pielou) para cada estacion por transecto.

T	Est.	Esp.	Ind.	Prof.	Himax	H	J'
	5	12	31	1400	2.485	2.266	0.912
	8	51	193	98	3.932	3.380	0.860
	11	68	145	48	4.220	3.761	0.891
III	112	104	602	51 1	4.644	3.837	0.826
-	13	44	233	108	3.784	3.150	0.832
	14	48	171	50	3.871	3.204	0.828
	15	65	194	1283	4.174	3.662	0.877
ĪV	21	64	276	1011	4.159	3.593	0.864
	23	54	170	41	3.989	3.517	0.882
	24	50	238	16	3.912	3.266	0.835
V	25	36	85	21 [3.584	3.394	0.947
	26	60	327	24	4.094	3.398	0.830
	27	71	315	63	4.263	3.686	0.865
	28	27	96	179	3.296	2.901	0.880
VI	35	24	73	400	3.178	2.370	0.740
	36	57	261	55	4.043	3.516	0.870
	37	39	153	38	3.664	3.274	0.894
	38	50	486	20	3.912	2.930	0.749
VII	B	56	158	196	4.025	3.541	0.880
	С	53	272	107	3.970	2.786	0.702
	D	34	59	99	3.526	3.374	0.957

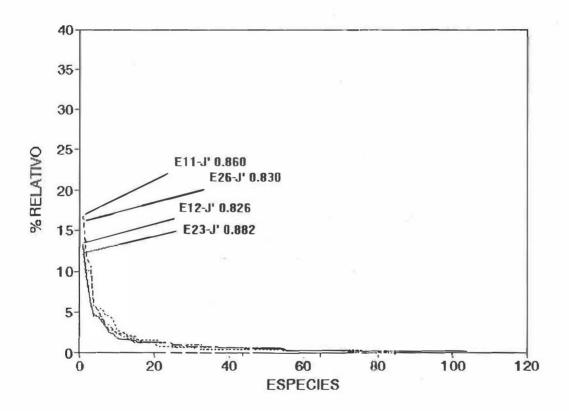


Figura 3. Curvas de dominancia para las estaclones con valores de J' mayores a 0.8.

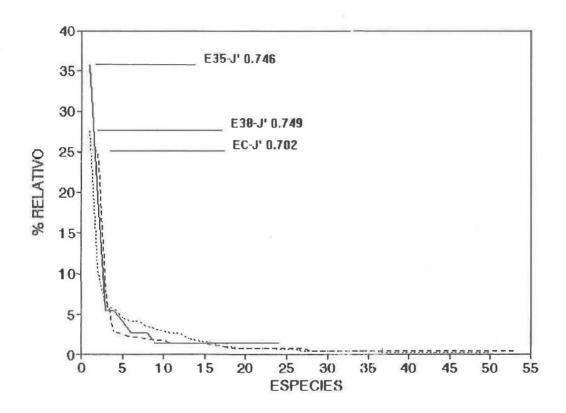


Figura 4. Curvas de dominancia de las 3 estaciones con valores bajos de J'.

5, que presentó un valor de "J" muy alto (.912) el bajo valor de H' se explica por el bajo número de especies (12) (tabla II).

VI .4 Características del sustrato.

Con los porcentajes de Arena, Limo y Arcilla encontrados inicialmente, se clasificaron los sedimentos de acuerdo al esquema presentado por Shepard, (1954) resultando 7 tipos de combinaciones. Sin embargo con el fin obtener una separación más clara y sencilla, se reclasificaron de la siguiente manera: las que presentaron más del 75 % de arena se denominaron Arena; con menos de 75 % y más de 40 % se denominaron Arena Lodo; con menos de 40 % Lodo. (Apéndice II). Espacialmente se distribuyeron de la siguiente manera : Arena en dos núcleos (uno en la parte central del área de estudio, entre la frontera y Rosarito, ensanchándose en la parte norte; otro al sur del área de estudio comprendiendo las estaciones 14, 15 y 8); Arena-lodo en dos núcleos (uno en la parte sur del área de estudio, en la porción más cercana a la línea de costa; el segundo se extiende desde el extremo norte hasta la parte central en el extremo oceánico del área); Lodo en un solo núcleo ubicado entre Rosarito y Punta Descanso comprendiendo las estaciones 21, 23 y 13 (figura 5).

VI .5 Análisis de agrupamiento.

El dendrograma que reunió a las estaciones en cuatro conjuntos principales (figura 6).

- Grupo 1: (Asociación *Caecum*). Comprende las estaciones 8, 14, 15 y 35 ó estación A. Se definió por la presencia del gasterópodo *Caecum crebricinctum*, que

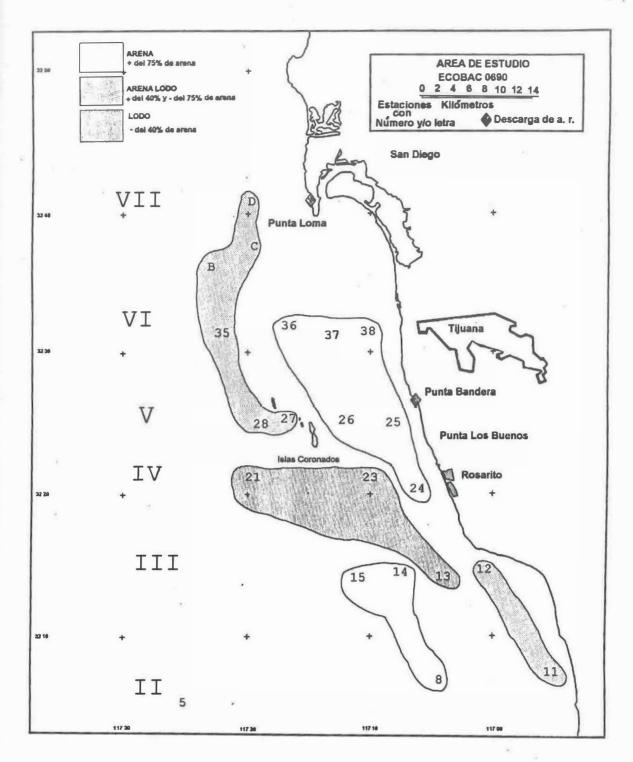


Figura 5. Distribución espacial de los tipos de sustrato.

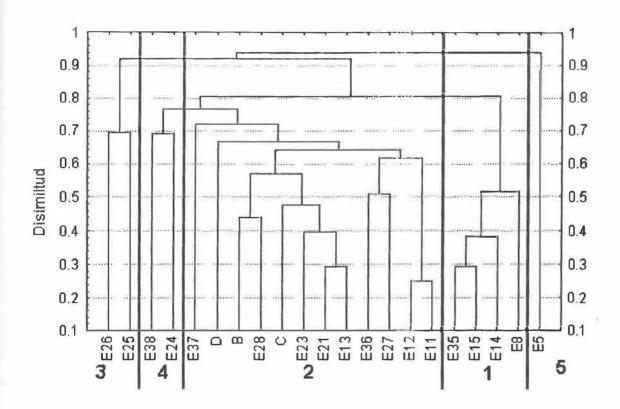


Figura 6. Dendrograma resultante de análisis de agupamiento entre las estaciones de ECOBAC.

se presentó en forma consistente dentro de los primeros 3 lugares por orden de abundancia. Se segregó espacialmente en tres estaciones al sur de la zona de estudio (estaciones 8, 14 y 15) y una estación justo al sur del límite México- USA (estación 35 ó A). Al interior de este grupo, el segundo nivel agrupó a las estaciones 15 y 35, con Paradiopatra parva en común, después la estación 14 y finalmente a la estación 8. Las estaciones 8, 14 y 15 presentaron un sedimento donde predominó la arena, la estación 35 presentó sedimentos de tipo arena lodo.

- Grupo 2: (Asociación *Mediomastus sp*). Comprendió las estaciones B, C, D, 11, 12, 13, 21, 23, 24, 27, 28, 36, 37 y 38. Este grupo reunió a la mayor parte de las estaciones y se extendió desde la estación más al norte (estación D) hasta la más sureña (estación 11). Se definió por la presencia de *Mediomastus sp.* (Polychaeta, Capitellidae), que se presentó consistentemente en todas las estaciones dentro de las especies más abundantes. Al interior de esta gran asociación se distinguen siete subdivisiones ó facies:
- Facie 2.1 Paradiopatra-Tharyx sp. comprendió las estaciones 28 y B donde codominaron Paradiopatra parva (Polychaeta, Onuphidae) y Tharyx sp. (Polychaeta, Cirratulidae) ocupando entre el primer y tercer lugar en orden de abundancia. Ambas estaciones presentaron sedimentos clasificados como arena lodo.
- Facie 2.2 *Mediomastus sp.*, lo formaron las estaciones 23, 21, 13 y C. Se caracterizó por la presencia de *Mediomastus sp.* (Polychaeta, Capitellidae) como la especie más representativa en orden de abundancia. Las estaciones 23, 21, 13,

presentaron sedimentos clasificados como lodos. La estación C presentó un sedimento clasificado como arena lodo.

- Facie 2.3 *Spiophanes missionensis*, compuesto por las estaciones 11 y 12, se definió por la dominancia de *Spiophanes missionensis* (Polychaeta, Spionidae) ocupando el primer lugar en orden de abundancia, ambas presentaron sedimento de tipo arena lodo.
- Facie 2.4 Parvilucina- Leptochelia, compuesto por las estaciones 27 y 36 se caracterizó por Parvilucina tenuisculpta (Bivalvia) y Leptochelia dubia (Artropoda, Tanaidacea), ocupando del primer al quinto lugar en orden de abundancia, la estación 27 se presentó sedimentos de tipo arena lodo y la 36 de tipo arena.
- Facie 2.5 Ampelisca cristata y Ampelisca agassizi, formado por las estaciones 38 y 24, donde las especies más abundantes fueron dos anfípodos de la familia Ampeliscidae (Ampelisca cristata y Ampelisca agassizi), en primer lugar en orden de abundancia, ambas estaciones presentaron un sedimento tipo arena.
- Facie 2.6 Spiophanes bombyx, lo conformó la estación 37 dominado por Spiophanes bombyx (Polychaeta, Spionidae), en primer lugar en orden de abundancia, correspondió al sedimento tipo arena.
- Facie 2.7 *Acmira catherinae* lo conformó la estación D, se definió por la dominancia de *Acmira catherinae* (Polychaeta, Paraonidae), en primer lugar en orden de abundancia, correspondió al sedimento tipo arena lodo.
- Grupo 3: (Asociación *Leittoscoloplos- Chaetozone*). Comprende las estaciones 25 y 26, se caracterizó por la abundancia de *Leittoscoloplos pugettensis* (Polychaeta,

Orbiniidae) y Chaetozone cf. setosa (Polychaeta, Cirratulidae) presentándose en forma consistente entre los 3 primeros en orden de abundancia, correspondió al sedimento de tipo arena.

- Grupo 4: (Asociación *Protodorvillea*). Comprendió una sola estación 5, separada totalmente del resto posiblemente por su gran profundidad (1400 mts). La especie dominante fue *Protodorvillea gracilis* (Polychaeta, Dorvilleidae), no se registró muestra de sedimento para esta estación.

La distribución espacial de los grupos definidos por el dendrograma, ubica al grupo 1: (Asociación *Caecum*) desde la parte fronteriza hasta el extremo sur del área de estudio en la porción más oceánica. EL grupo 2: (Asociación *Mediomastus sp*). abarca la porción central del área desde el extremo norte hasta el extremo sur. El grupo 3: (Asociación *Leittoscoloplos- Chaetozone*) se encuentra cercano a la línea de costa entre Punta Bandera y Punta Los Buenos. El grupo 4: (Asociación *Protodorvillea*) esta segregado en el extremo sur, en la parte más alejada de la línea de costa (figura 7).

VI .6 Principales características de las especies que definen los grupos faunísticos.

De las 14 principales especies más importantes según su abundancia en las principales asociaciones, la mayoría (10) fuerón sedimentívoros. Sólo 2 carnívoros, un filtrador y uno cuyo tipo de alimentación no esta registrada.

En general tadas las especies enlistadas se reportan como tolerantes a ambientes con alto contenido de materia orgánica. (Hartman, 1968-69; Kaestner,

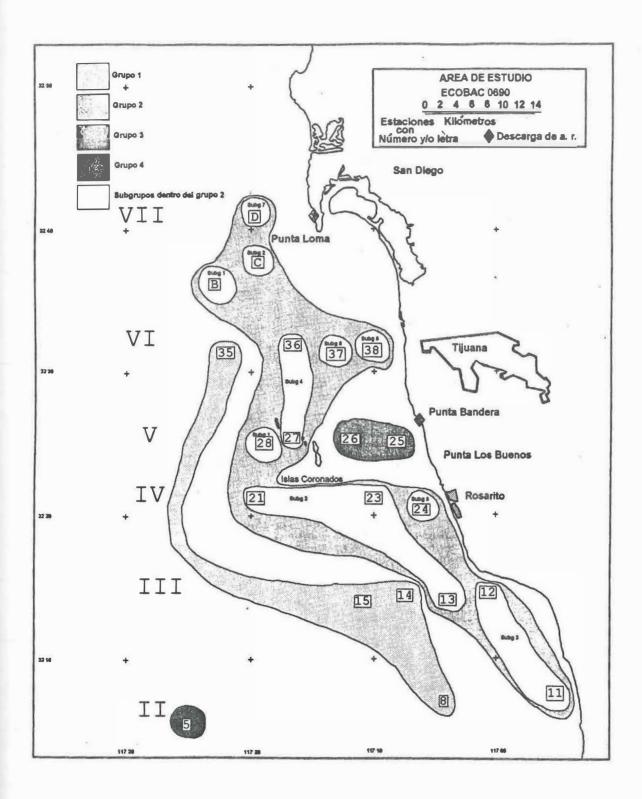


Figura 7. Distribución espacial de las asociaciones determinadas en el area de estudio.

1970; Keen, 1971; Smith y Carlton, 1975; Barnes, 1977; Light, 1978; Brusca, 1980; Barnard y Barnard, 1982a, 1982b; Salazar Vallejo *et al.*, 1988)

Caecum crebricinctum (Mollusca, Gasterópoda).

Es un caracol sublitoral, se encuentra en arenas gruesas, localizándose también bajo algas y sedimentos dragados de aguas profundas hasta los 100 m, su rango de distribución comprende desde la Isla Vancouver a Isla Asunción (Muñoz Palacios op cit.).

Mediomastus sp. (Polychaeta, Capitellidae).

Los capitelidos son de cuerpo simple con múltiples setas. Todos se alimentan por medio de una papila en forma de saco que se encuentra en la faringe. La mayoría construyen tubos, aglutinando arena con un polisacárido que segregan por el epitelio faringeo, y posiblemente para seleccionar partículas orgánicas pequeñas, estos tubos pueden ser construidos cerca de la superficie o cavar túneles horizontales o verticales a más de 15 cm debajo de la superficie. Observan en general características que los ubican como sedimentívoros oportunistas, lo cual indica que no son muy selectivos al medio en el cual se desarrollan (Fauchald y Jumars, 1979).

Paradiopatra parva (Polychaeta, Onuphidae).

Estos organismos se encuentran principalmente en substratos blandos y ocasionalmente en zonas rocosas. Su distribución abarca los diferentes niveles marinos. Es sedentaria; vive en tubos pero son capaces de dejar el tubo y construir uno nuevo si es necesario. En cuanto a su allmentación no se considera como

selectiva se alimentan de todo tipo de materia orgánica sedimentada. (Fauchald y Jumars, op cit.).

Tharyx sp. (Polychaeta, Cirratulidae).

Puede ser extremadamente abundante en áreas contaminadas; se considera principalmente sedimentívoro tomamdo su alimento ya sea de la capa superficial de los sedimentos ó cavando en las capas inferiores del sustrato. (Jumars, 1975).

Spiophanes missionensis, Spiophanes bombyx (Polychaeta, Spionidae).

Especies cosmopolitas, en la zona intermareal y planos arenosos de hasta 119m de profundidad se encuentran en arenas finas y muy común en arenas lodosas y lodo. Son sedimentívoros no selectivos, toman todo tipo de materia orgánica ya sea del sedimento o de la columna de agua (Light, op cit.).

Parvilucina tenuisculpta (Mollusca, Bivalvia).

La distribución de este bivalvo en la costa sur de California va desde el intermareal hasta profundidades de 1,000m. Es filtrador de materia orgánica fragmentada (Muñoz, op cit.).

Leptochelia dubia (Artropoda, Tanaidacea).

Especie cosmopolita, abundante entre algas y suelos lodosos. El género es bien conocido a nivel taxonómico; sin embargo, su biología aun no ha sido lo suficientemente estudiada, no obstante, se tiene información que lo clasifica como carnívoros que predan sobre pequeños nematodos, los machos no se alimentan (Smith y Carlton, op cit.; Kaestner, op cit.).

Ampelisca cristata, Ampelisca agassizi (Artropoda , Amphipoda, Gammaridae).

Estas especies se encuentran comúnmente en zonas cercanas a la costa, son sedimentivoros que se alimentan pequeñas algas e invertebrados y primordialmente detritus, se les considera parte integral de la cadena alimenticia en los litorales porque son consumidos por animales pelágicos (Brusca, op cit.).

Leittoscoloplos puggetensis (Polychaeta, Orblinidae).

Se encuentra en arenas lodosas; se le considera de sedimentívoro no selectivo, toman todo tipo de materia orgánica fragmentada. Viven libremente cavando túneles en los sedimentos (Fauchald y Jumars, op cit.).

Chaetozone setosa (Polychaeta, Cirratulidae).

Se considera que esta especie sedimentívora, puede ser selectiva en su alimentación (microalgas bentonicas), se establece en túneles construidos en substratos lodosos, o bajo rocas (Fauchald y Jumars, op cit.).

Protodorvillea gracilis (Polychaeta, Dorvilleidae).

Este organismo vive libremente y se considera carnívoro dada la estructura de su aparato bucal, se encuentra principalmente en el nivel sublitoral, incluso en zonas altamente contaminadas (Fauchald y Jumars, op cit.).

Oligochaeta (Anélida, Oligochaeta).

Este grupo se encuentra en la zona litoral particularmente en el intermareal y regiones de estrechos y estuarios. La mayoría son cavadores; algunos construyen

tubos como los poliquetos; gran parte de ellos son sedimentívoros principalmente detritius. (Barnes, op cit.).

VI .7 El rigor ambiental definido por las curvas de rarefacción.

Las Curvas de Rarefacción presentaron 4 estaciones en la zona de alto rigor, 13 en la de rigor intermedio y 5 en rigor bajo (figura 8). No hubo ninguna correspondencia con las predicciones teóricas del método, es decir, alto rigor en baja profundidad y bajo rigor en mayor profundidad. En este caso, hubo una notable sobreposición de los rangos de profundidad en cada zona de rigor: 20 a 1400 m en la zona de alto rigor; 16 a 196 m en la de rigor intermedio; 51a 126 m en la zona de bajo rigor.

En cambio, se registró una buena segregación en los valores de H' en las distintas zonas de rigor: 2.26- 2.930 en la zona de rigor alto; 2.786- 3.693 en rigor intermedio; 3.662- 3.837 en rigor bajo.

Los valores de J' indicaron que el reparto del número de individuos entre las especies tampoco guardó relación con el rigor, ya que existió traslape de los valores: 0.75-0.95 rigor alto; 0.70-0.96 rigor intermedio; 0.83-0.90 rigor bajo.

La distribución espacial de las zonas de rigor (figura 9) definió una área extensa de rigor intermedio, que reúne la mayor parte de las estaciones y comprende desde el límite norte hasta el límite sur del área de estudio. Las zona con bajo rigor ambiental presentó un área cercana a la costa en la parte sur del área de estudio, y dos núcleos aislados: uno en la parte sur mas retirado de la línea de costa que el

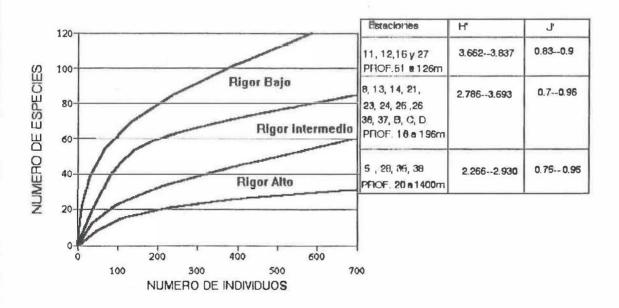


Figura 8. Agrupación de las estaciones de acuerdo al rigor definido por las curvas de rarefaccón. Se incluyen el Intervalo de profundidad y de los valores de H' y J'.

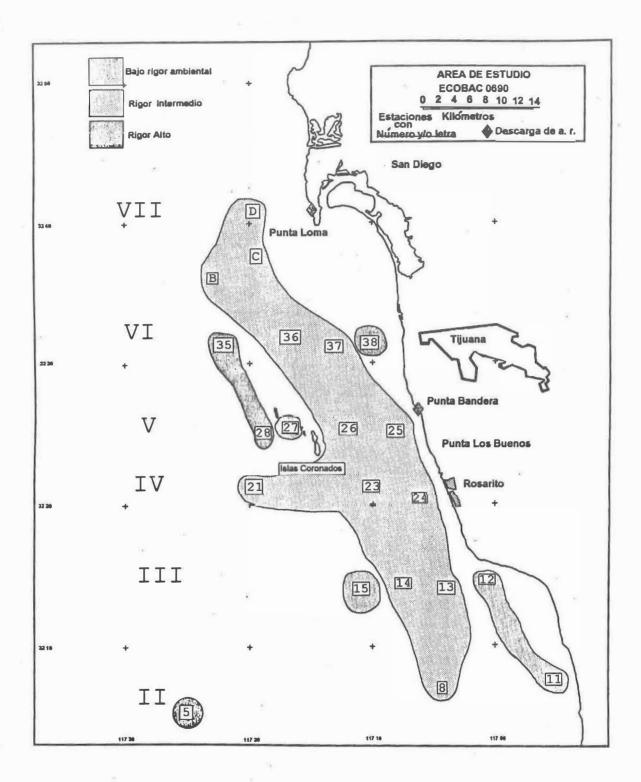


Figura 9. Distribución espacial de las zonas de rigor ambiental definidos por las curvas de rarefacción.

anterior, adyacente al gran zona de rigor, y otro igualmente retirado de la línea de costa, a la altura de Punta Bandera. Las zonas de rigor alto estuvieron confinadas a un núcleo costero entre Punta Bandera y Bahía de San Diego, un núcleo alejado de la costa a la misma altura, y un núcleo en el extremo sur del área de estudio (estación 5).

Las curvas de rarefacción por transecto mostraron una correspondencia aceptable con las predicciones teóricas sólo en el transecto VI. En todos los demás transectos, no hubo correspondencia (figura 10 a 15).

VI. 8 Las comunidades bentónicas del sublitoral del Pacífico, México entre los 32o 37.2' LtN-117° 20.1'LgO, 32° 05.2'LtN- 117° 26.5'LgO, Resultado del análisis conjunto de las campañas TOES y ECOBAC III 0690.

El análisis conjunto de las estaciones de ECOBAC III 0690 y TOES (precedidas en lo siguiente, respectivamente por las letras E y T), permite caracterizar una amplia zona del Pacífico mexicano de aproximadamente de 68 km de largo y 32 km de ancho entre Punta Loma y Punta Salsipuedes (figura 16).

El dendrograma resultante reunió a la mayor parte de las estaciones de TOES en la mitad derecha del mismo; la mayoría de las estaciones de ECOBAC fueron reunidas en la parte central, mientras en el tercio izquierdo se entremezclaron estaciones de ambos cruceros (figura 17).

Esto muestra que ambas campañas se complementan, ya que el área entre Punta Loma y Tijuana fue cubierta exclusivamente por TOES, el área al sur de Islas Coronados, así como puntos más retiradas de la costa entre Punta Loma y Punta

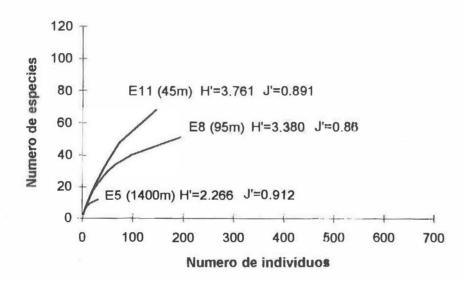


Figura 10. Curvas de rarefacción para el transecto II.

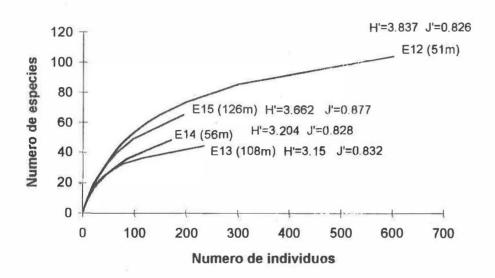


Figura 11. Curvas de rarefacción para el transecto III.

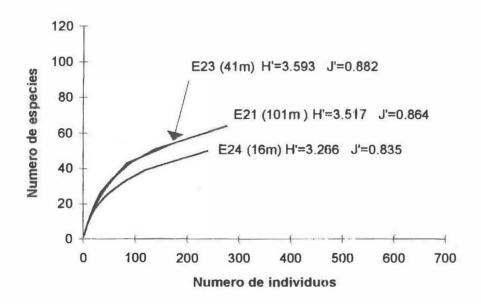


Figura 12. Curvas de rarefacción del transecto IV

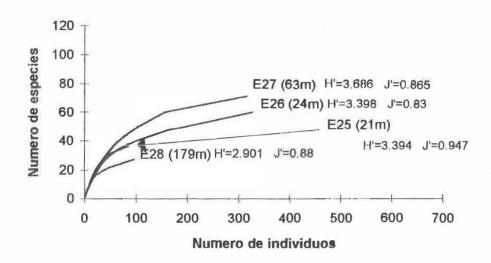


Figura 13. Curvas de rarefacción del transecto V

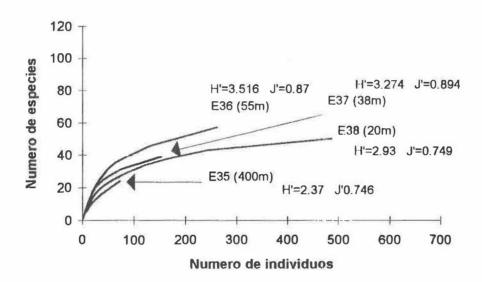


Figura 14. Curvas de rarefacción del transecto VI

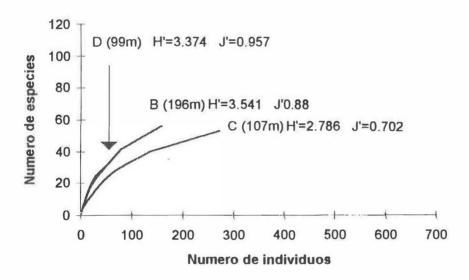


Figura 15. Cruvas de rarefacción del transecto VII

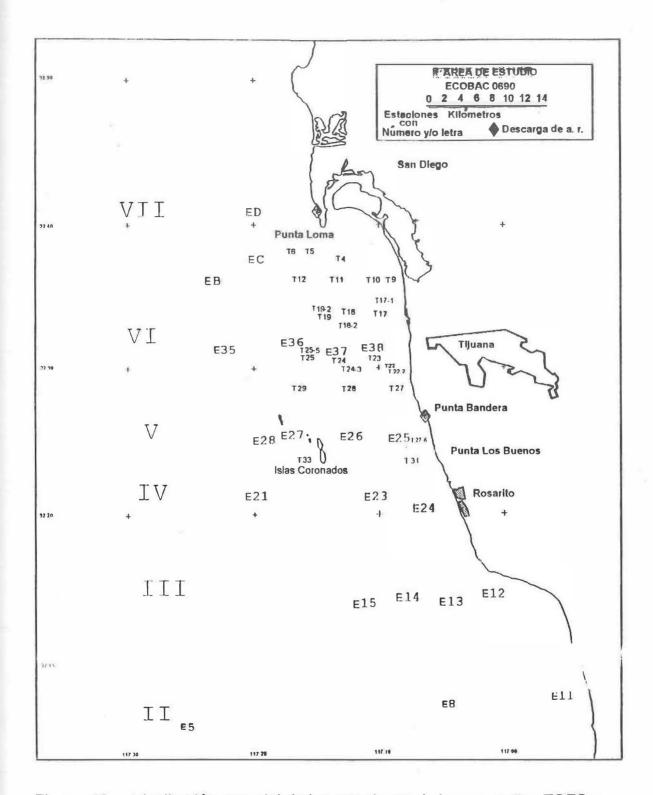


Figura 16. Distribución espacial de las estaciones de las campañas TOES y ECOBAC III 0690. Estaciones de TOES precedidas por la letra T. Estaciones de ECOBAC III 0690 precedidas por la letra E.

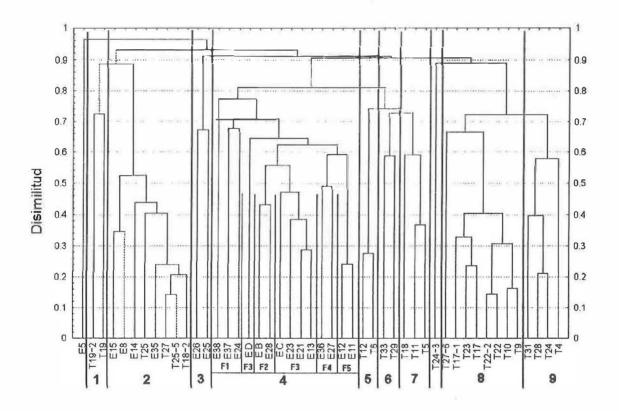


Figura 17. Dendrograma resultante del análisls conjunto de las estaciones de TOES y ECOBAC III 0690

Bandera fue cubierto exclusivamente por ECOBAC. En el resto del área de estudio ambas campañas tuvieron estaciones.

Como resultado de este análisis conjunto, con base a la interpretación tanto al dendrograma como a las listas individuales de las estaciones, en ambas campañas, en una inspección general el área de estudio presenta: primero, una gran zona cubierta por la asociación *Mediomastus sp.* (figura 18), que se extiende desde Punta Loma hasta Punta Los Buenos a mayor distancia de la costa, acercándose a la misma desde Rosarito hasta Bahía Salsipuedes y presentando una lengüeta que se acerca a la costa a la altura de Tijuana. En esta asociación se diferencian varias facies algunas de las cuales habían sido definidas como en TOES (Muñoz Palacios, op cit.).

En segundo lugar se distinguen claramente las asociaciones *Tellina, Prionospio sp. A, y Amphiodia,* tal como fueron distinguidas en TOES, entre Punta Loma y Punta Los Buenos.

En tercer lugar, quedan definidos una serie de núcleos, los cuales pueden ser asociaciones (como por ejemplo la asociación *Leitoscoloplos-Chaetozone*) o segmentos de una asociación con distribución espacial parchada. Este es el caso de:

1) la asociación *Dendraster*, que se distribuye desde Punta Loma hasta Punta Los Buenos a una distancia moderada de la línea de costa de los 20mts.; 2) la asociación *Echone-Caecum*, ubicada en parte central entre Tijuana y Punta Loma; 3) la asociación *Caecum*, que presenta 2 núcleos aislados uno a la altura de Tijuana y otro

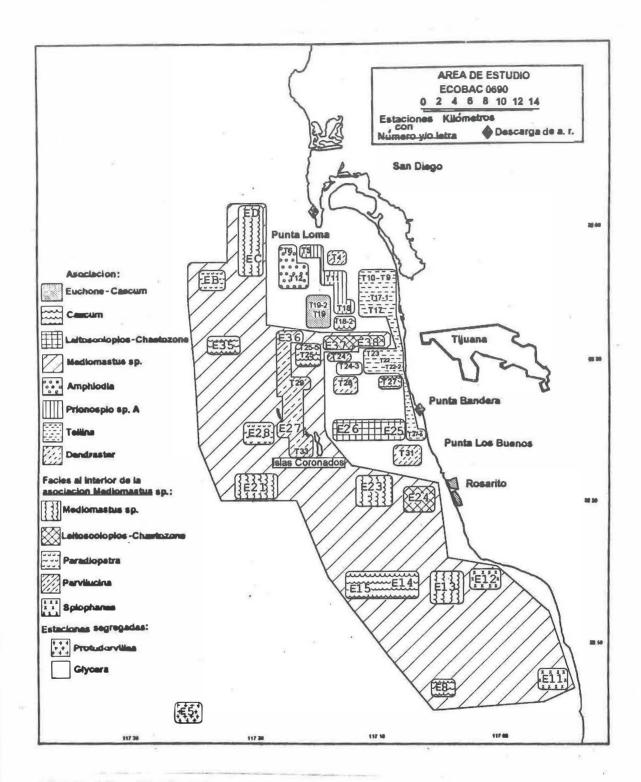


Figura 18. Distribución espacial de las asociaciones determinadas del analisis conjunto de TOES y ECOBAC III 0690.

cercano a Punta Bandera (además de núcleos que como "facie Caecum " se distinguen dentro de la asociación *Mediomastus*).

Por ultimo, se distinguen la estación E5 en la que predomina *Protodorvillea* gracilis, que se localiza en el extremo sur en la porción más alejada de la costa; la estación T24-3 cuya especie con mayor representación es *Glycera tenuis*, ubicada frente a Tijuana en la porción central del área de estudio.

La definición de las asociaciones y facies está dada por la presencia continua de determinada especie dentro de los 10 primero lugares de abundancia en cada estación. Asociación, *Mediomastus sp.* Comprendió las estaciones E38, E37, E24, EB, EC, ED, E28, E27, E23, E21, E13, E12, E11 y E36, caracterizado por el Poliqueto *Mediomastus sp.* dentro de este macro grupo se pueden distinguir 5 subgrupos o facies.

Facie, *Leitoscoloplos puggetensis* y *Chaetozone*. Conjunto las estaciones E38, E37 y E24, caracterizado por la presencia de *Mediomastus sp.* y *Leitoscoloplos puggetensis* y *Chaetozone setosa*, (correspondiendo a un sustrato tipo arena).

Facie, *Paradiopatra*. Conjunto las estaciones EB y E28, caracterizado por la presencia de *Mediomastus sp.* y *Paradiopatra parva*, (correspondiendo a un sustrato tipo arena lodo).

Facie, *Mediomastus sp.* Conjunto las estaciones estaciones EC, ED, E23, E21, E13, caracterizado por la presencia de *Mediomastus sp.* únicamente,

(correspondiendo las estaciones EC y ED, a un sustrato tipo arena lodo y las estaciones E23, E21 y E13 a un sustrato tipo lodo).

Facie, Spiophanes missionensis. Conjunto las estaciones E12 y E11, caracterizado por la presencia de Mediomastus sp. y Spiophanes missionensis, (correspondiendo a un sustrato tipo arena lodo).

Facie, *Parvilucina*. Conjunto las estaciones estaciones E36, E27, T29 y T33, caracterizado por la presencia de *Mediomastus sp.* y *Parvilucina tenuisculpta* (correspondiendo las estaciones E36 y T29 un sustrato tipo arena y la E27 y T33 al tipo arena lodo).

Asociación *Tellina*. Comprendió las estaciones T27-6, T17-1, T23, T17, T22, T22-2,T10 y T9, asociación definida por la especie *Tellina modesta* (correspondiendo a un sustrato tipo arena lodo).

Asociación *Prionospio sp.A.* Comprendió las estaciones T18, T11 y T5, asociación definida por la especie *Prionospio sp.A* (correspondiendo a un sustrato tipo arena).

Asociación *Amphiodia*. Comprendió las estaciones T12 y T6, asociación definida por la especie *Amphiodia urtica* (correspondiendo a un sustrato tipo lodo).

Asociación, *Leitoscoloplos - Chaetozone*. Comprendió las estaciones E25 y E26, asociación definida por las especies *Leitoscoloplos puggetensis* y *Chaetozone* setosa (correspondiendo a un sustrato tipo arena).

Asociación *Dendraster*. Comprendió las estaciones T31, T28, T24 y T4, asociación definida por la especie *Dendraster exentricus*, las estaciones T31, T28 y T24 (corresponden a un sustrato tipo arena lodo y la estación T4 a un sustrato tipo arena).

Asociación Euchone-Caecum. Comprendió las estaciones T19-2 y T19, esta asociación está definida por las especies Euchone arenae y Caecum crebricinctum (correspondiendo a un sustrato tipo arena).

Asociación *Caecum*. Comprendió las estaciones T18-2, T27, E15, E8, T25, E14, E35, T25-5, asociación definida por la especie *Caecum crebricinctum*, (correspondiendo a un sustrato tipo arena, excepto la E35 que corresponde al tipo arena lodo; las estaciones de la E15 a la T25-5 se clasifican como facie dentro de la asociación *Mediomastus*).

Las estaciones segregadas fueron: la E5, que tiene con mayor representación la especie *Protodorvillea gracilis*, no cuenta con registro de sedimentos; la estación T24-3 cuya especie con mayor representación es *Glycera tenuis* correspondiendo a un sustrato tipo arena.

VII DISCUSION.

Este trabajo representa uno de los primeros esfuerzos para delimitar las comunidades bentónicas sublitorales, en un área de considerable amplitud al sur de la frontera México-EUA.

Anteriormente Muñoz Palacios (op cit) presentó una panorámica de una región más restringida al sur de la frontera, entre Punta Loma y Punta los Buenos, con estaciones muy cercanas al área de estudio de ECOBAC y algunas intercaladas al interior. Todos los demás estudios afines al área de estudio incluidas en este trabajo, estuvieron concentrados al norte de la línea de frontera. (Bakus, 1989; SCCWRP op cit.; Jones op cit.).

El procedimiento utilizado en este estudio para definir las asociaciones corresponde con lo recomendado por Lie y Kelley (1970). Dichos autores, en un detallado estudio en que se aplicaron varias técnicas en el Pugget Sound y costa del estado de Washington, concluyen que las técnicas de asociación mediante índices de similitud, junto con el análisis de grupos recurrentes (Fager, 1957) son suficientes para ajustar una buena delimitación de las comunidades en áreas de gran amplitud cubiertas por estaciones más bien dispersas, mientras que la utilización de análisis factorial es preferible para datos de áreas más pequeñas con muestreos espacialmente más intensos.

Las asociaciones identificadas para las comunidades bentónicas sublitorales del área de estudio presentaron una correspondencia general con el tipo de sustrato. La asociación *Mediomastus*, con amplia distribución en la zona,

correspondió en la mayoría de las estaciones a sustratos lodosos o arenolodosos; la mayoría de las especies que caracterizaron las asociaciones correspondieron con un tipo de sustrato en el cual han sido reportadas con anterioridad.

Un resultado poco esperado de este estudio fue la correspondencia casi nula de las curvas de rarefacción con las predicciones teóricas del método. La explicación a esto podría encontrarse en atributos oceanográficos del área de estudio y/o consecuencias de la técnica de muestreo. Por el lado oceanográfico, la batimetría de la zona parece ser bastante compleja, tal como lo indican los perfiles batimétricos de los transectos. Estas irregularidades (valles, escarpes y cañones) pueden crear condiciones locales de circulación más intensa, lo cual explicaría la presencia de zonas de alto rigor en profundidades mayores, donde se espera que la interacción fondo-columna de agua sea menor que en profundidades someras. La complejidad batimétrica de la zona de estudio ha sido citada (Álvarez et al., op cit.; SCCWRP, 1973, 1989-90, 1992-93; Bakus, 1989) sin embargo, son escasas las descripciones especificas del relieve de fondo. Aún en contribuciones muy recientes (US GLOBEC, 1994), las características del fondo no figuran entre los 10 atributos principales para caracterizar las cuatro diferentes áreas dentro del sistema de la Corriente de California, sólo se menciona, en el atributo "relieve costero", la existencia de cuencas subsuperficiales. En este trabajo se presentan varios perfiles que ilustran la complejidad batimétrica. Sin

embargo, como las estaciones estuvieron muy espaciadas entre sí, los perfiles de ninguna manera son definitivos, sugiriendo investigación más detallada en el futuro.

Con respecto al muestreo, debe notarse que varias estaciones (por ejemplo la E5 a 1400 mts; E28 con 79 mts; E35 con 400 mts) definieron curvas incompletas, muy pegadas al eje de las ordenadas. Esto en general sucede cuando ha habido un número bajo de individuos en la muestra lo cual resta precisión al método.

Otro problema metodológico es el deterioro de los organismos durante el tamizado, lo cual parece ser el caso de *Mediomastus sp.* que no pudo ser identificado a nivel específico por la fragmentación excesiva de los especímenes. El tamizado a bordo, que fue utilizado durante la campaña ECOBAC III 0690, es recomendable, ya que evita el traslado de las muestras con todo el peso del sedimento. Sin embargo, para organismos muy frágiles, el lavado y tamizado a bordo deben cuidarse más en el futuro; es muy probable que se haya vertido un chorro de agua muy fuerte al tamizar. De cualquier manera, para la caracterización de las asociaciones el nivel de identificación taxonómica utilizado parece haber sido suficiente, tal como lo sugieren Salazar Vallejo et al, (op cit) para casos semejantes.

En la composición de las comunidades bentónicas del área de estudio destaca la asociación *Mediomastus sp.* (Capitellidae), siendo este organismo la

especie más abundante en el total de la fauna identificada y la especie representativa de la asociación más extensa en el área de estudio, que contempla siete facies al interior.

Es importante señalar que *Mediomastus* también está presente en la asociación Caecum, aún cuando por su abundancia no se le consideró como especie representativa de esta asociación.

La presencia de este organismo de la familia Capitellidae, cuyas especies son consideradas como indicadoras de contaminación por materia orgánica (Salazar Vallejo, et al, op cit.; SCCWRP, 1973), aunada a la presencia de otros organismos tolerantes a grandes concentraciones de materia orgánica y altamente oportunistas (Reish, 1957; Reish, 1970; SCCWRP, 1973; Dauer y Conner, 1980), como serían los poliquetos de las familias Spionidae (*Spiophanes missionensis y bombyx*); Orbiinidae (*Leitoscoloplos*); Cirratulidae (*Tharyx y Chaetozone*), y Onuphidae (*Paradiopatra*), y el bivalvo *Parvilucina tenuisculpta*, nos hace pensar en un ambiente expuesto a descargas de aguas de desecho y que carece de capacidad suficiente para asimilar estos aportes. Sin embargo, las razones puramente oceanográficas no deben desecharse, ya que la presencia de sedimento con alto contenido de materia orgánica es esperable en zonas de surgencia y alta productividad (Rowe y Margalef op cit).

En líneas generales, la asociación *Mediomastus* sugiere una gran área con altas concentraciones de materia orgánica, que estaría dominando la mayor parte

del área de estudio; la indicación biológica es la predominancia de sedimentívoros tolerantes concentraciones altas de materia orgánica y oportunistas. Por otro lado, el conjunto de asociaciones entre Punta Loma y Punta Los Buenos, que no tiene predominancia de sedimentívoros, estaría indicando que la condición del fondo es diferente a las anteriores.

Las condiciones oceanográficas que permitirían explicar este gran diseño serían: que dentro de la gran área definida por la contracorriente de California, que retorna hacia el norte a partir de cabo Colonet, existieran condiciones locales de circulación costera que expliquen una mayor tasa de sedimentación en el área dominada por sedimentívoros, y una menor tasa de sedimentación en el núcleo entre Punta Loma y Punta Los Buenos.

Los fondos ricos en materia orgánica depositada pueden ocurrir en áreas de surgencias, en correspondencia con la alta productividad de la columna de agua, y pueden verse además favorecidos por aportaciones de materia orgánica de origen antropogénico. Ambas condiciones están presentes en el área de estudio.

Las surgencias o afloramientos son marcadamente estacionales en el sistema de la corriente de California, en la cual se enmarca el área de estudio, ocurriendo las surgencias más intensas durante los meses de abril, mayo y junio. Las surgencias costeras tienen la mayor influencia sobre la productividad biológica. Estas pueden ser inducidas, además del viento y los mecanismos de

advección y convección, por las corrientes de marea en zonas con un fondo irregular como el que presenta el área de estudio (SCCWPR, op cit.).

Por otro lado, la dirección norte-sur de la Corriente de California favorece el transporte de desechos generados al norte de la zona de estudio, y el reflujo de la "contracorriente de California" de sur a norte podría explicar su permanencia en el área de estudio.

Desafortunadamente, los patrones de circulación costera están aun incompletos en el área de estudio (Alvarez et al, op cit.). En un intento para relacionar las dos grandes áreas definidas en este estudio (es decir, la gran zona dominada por sedimentívoros y el núcleo dominado por no sedimentívoros) se realizó un análisis del perfil térmico de las estaciones disponibles, encontrándose que en general existe estratificación en estaciones de más de 40 mts y poca estratificación en las estaciones con menos de 40 mts de profundidad.

Aunque no se dispuso de datos de temperatura en las estaciones de la campaña TOES, que corresponden justamente con el núcleo de no sedimentívoros, en una extrapolación con los datos de ECOBAC de estaciones más someras, se supone que no existe estratificación térmica y por tanto existe una buena mezcla, dado que la mayoría de estas estaciones se ubican en la isobata de los 20 y 30 metros.

Sin embargo la composición de la fauna bentónica es muy diferente en el núcleo ubicado entre Punta Loma y Punta Los Buenos y en las estaciones más someras de ECOBAC (asociación *Leitoscoloplos-Chaetozone*).

La pregunta sería: ?por qué en una predominan los no sedimentívoros y en otra los sedimentívoros ?. Esto sugiere que aun en condiciones de buena mezcla de agua puede existir acumulación de materia orgánica en el fondo cuando la aportación de la misma supera la capacidad de dispersión. En este sentido, no puede dejarse de notar que las estaciones E26 y E27 (asociación *Leitoscoloplos-Chaetozone*) están localizadas frente a la descarga de aguas negras de Punta Bandera.

Por último, la información existente sugiere que las condiciones en la zona comprendida entre Punta Loma y Punta Los Buenos se han mantenido durante los últimos 25 años, ya que la asociaciones descritas por Muñoz Palacios (op cit) corresponden con las descritas por Jones (1969). Para el resto del área desafortunadamente no existen registros anteriores. Las condiciones al momento de este estudio sugieren que existe una acumulación de materia orgánica en el fondo aun en condiciones de buena mezcla. El grado en que este proceso pueda deberse a condiciones naturales de afloramientos o de aportes antropogénicos queda aun por resolver.

Sin embargo la contribución de estos últimos no puede minimizarse, ya que las corrientes circulan de norte a sur desde un área con un mayor desarrollo

urbano e industrial. El hecho de que el aporte de material particulado haya disminuido desde el año de 1980 (SCCWPR, 1990; 1993) no resta vigencia a esta afirmación, ya que las asociaciones de sedimentívoros pueden haberse establecido con anterioridad a este mejoramiento en la calidad de las aguas que se descargan en la zona costera.

En ese sentido, resulta importante recordar que los resultados de Muñoz Palacios (op cit), si bien indican una permanencia en el tiempo de las asociaciones de no sedimentívoros que predominan entre Punta Concepción y Punta Los Buenos, reporta un cambio en la calidad del ambiente de la asociación Amphiodia que estuvo definida exclusivamente por esta especie en el trabajo de Jones (op cit), pero actualmente presenta codominancia con el sedimentívoro Spiophanes missionensis. Son precisamente estos cambios los que alertan sobre un posible origen antropogénico de la cantidad relativa de material particulado depositado en el fondo o presente en al columna de agua. A esto, debería agregarse que aun en las asociaciones del núcleo dominado por no sedimentívoros entre Punta Loma y Punta Los Buenos, la presencia de Mediomastus sp. es relativamente importante en cuanto a su abundancia.

También es importante señalar que la gran asociación del sedimentívoro Mediomastus sp. presenta numerosas facies en su interior, en algunas de las cuales el tipo de sedimento no favorecería el desarrollo de una comunidad de sedimentívoros (ejemplo facie Caecum y facie Parvilucina). Sin embargo estas facies están enclavadas en la asociación Mediomastus, en un marco de fondos areno-lodosos. Al respecto, Wildish y Kristmanson (1979), señalan que aunque la velocidad de las corrientes de marea, o la dinámica hidrológica de un lugar sean fuertes y la capa de sedimentos sea menor, la presencia de sedimentívoros se dará si la columna de agua contiene gran cantidad de materia orgánica.

VIII CONCLUSIONES.

- 1. En las 21 estaciones cubiertas por la campaña ECOBAC se registraron 338 especies y 4538 individuos, pertenecientes a 12 phyla. Las especies más abundantes fueron *Mediomastus sp.* (433 individuos, 9.54% del total); *Spiophanes misionensis* (296 individuos, 4.12% del total) y *Ampelisca cristata* (139 individuos, 3.06% del total). Las 5 siguientes especies reunieron el 2 y 3% del total de individuos, las siguientes 19 entre 1 y 2%; las 311 restantes presentaron menos del 1% de la abundancia relativa. Las primeras 136 reunieron el 90.9% del total de los individuos indicando poca dominancia.
- 2. Se identificaron 4 asociaciones faunísticas: 1) Asociación *Caecum*; en tres estaciones de fondo arenoso al sur de la zona de estudio (8, 14 y 15) y una estación de arena lodo al sur del límite México- USA (35); 2) Asociación *Leitoscoloplos-Chaetozone*, (estaciones 25 y 26, costeras arenosas) entre Punta Bandera y Punta Los Buenos; 3) Asociación *Protodorvillea*, aislada en la estación 5, de gran profundidad; 4) Asociación *Mediomastus sp.*, que reunió a la mayor parte de las estaciones y se extendió desde la más al norte (D) hasta la más sureña (11).
- 3. Las Curvas de Rarefacción presentaron 4 estaciones en la zona de alto rigor, 13 en la de rigor intermedio y 5 en rigor bajo. Debido a la gran complejidad batimétrica del área de estudio, no hubo ninguna correspondencia con las predicciones teóricas del método, es decir, alto rigor en baja profundidad y bajo rigor en mayor profundidad.

- 4. El análisis conjunto de las estaciones de ECOBAC III 0690 y TOES, permite caracterizar una amplia zona del Pacífico mexicano de aproximadamente de 68 km de largo y 32 km de ancho entre Punta Loma y Punta Salsipuedes:
- 4.1) Una gran zona cubierta por la asociación *Mediomastus sp.*, con varias facies a su interior, que se extiende desde Punta Loma hasta Punta Los Buenos a mayor distancia de la costa, acercándose a la misma desde Rosarito hasta Bahía Salsipuedes y presentando una lengüeta que se acerca a la costa a la altura de Tijuana.
- 4.2) Las asociaciones *Tellina, Prionospio sp. A, y Amphiodia*, en el núcleo espacial entre Punta Loma y Punta Los Buenos.
- 4.3) Una serie de núcleos aislados que por incluir solo 1 ó 2 estaciones se consideran insuficientes para definir asociaciones, recomendándose mayor esfuerzo en muestreos a futuro.
- 5. La asociación *Mediomastus* sugiere una gran área con altas concentraciones de materia orgánica, que estaría dominando la mayor parte del área de estudio; la indicación biológica es la predominancia de organismos tolerantes a altas concentraciones de materia orgánica.
- 6. el conjunto de asociaciones entre Punta Loma y Punta Los Buenos, que no tiene predominancia de especies tolerantes a altas concentraciones de materia orgánica, estaría indicando que la condición del fondo es diferente a las anteriores.

- 7. Este diseño de las comunidades puede deberse al efecto conjunto de afloramientos o surgencias y a la aportación de materia orgánica de origen antropogénico, favorecido por procesos de circulación local.
- 8. Los resultados de este estudio ofrecen un punto de referencia amplio, y sugieren la necesidad de un seguimiento interdisciplinario. Básicamente aquellas que permitan relacionar los patrones de circulación, y el efecto de la fisiográfia del fondo sobre los mismos, con la distribución espacial de las comunidades bentónicas aquí identificadas.

...

LITERATURA CITADA.

- Ambrogi, R., D., Bedulli y G., Zurlini, 1990. Spatial and temporal patterns in structure of macrobenthic assemblages. A three-year study in the Northern Adriatic sea in front of the Po river delta. Marine Ecology 11(1): 24-41
- Alvarez, L. G., V.M., Godínez y M.F., Lavín , 1990. Dispersión en la franja costera de Tijuana, Baja California. Ciencias Marinas 16 (4): 87-109
- Bakus , G. J., 1989. The marine biology of southern California. Allan Hancock, Ocacional Pappers 7 (New Series)
- Barnard, J.L., 1981. The Families and Genera of marine Gammaridean-Amphipoda Smithsonian Institution Press. pp 40
- Barnard, J.L., Ch.M. Barnard, A1982. Revision of Foxiphalus and Eobrolgus (Crustacea: Amphipoda: Phoxocephalidae) in American seas. Smithsonian Contributions to Zoology, 357: pp 49
- Barnard, J.L., Ch.M. Barnard, B1982. The genus Rhepoxynius (Crustacea: Amphipoda: Phoxocephalidae). Smithsonian Contributions to Zoology. 372: pp 35
- Barnes, R.D., 1977. Zoologia de los Invertebrados. Nueva Editorial Interamericana, Tercera Edición. pp 850
- Beukema, J.J., 1988. An evaluation of the ABC-method (Abundance/Biomass Comparison) as applied to macrozoobenthic communities living on tidal flats in the Dutch Wadden Sea. Marine Biology. 99: 425-433
- Beukema, J.J., 1976. Biomass and species richness of the macro-benthic living on the tidal flats of the Dutch Wadden Sea. Netherlands Journal of sea Research. 10 (2): 236-261
- Beukema, J.J. y G.C. Cadeé, 1986. Zoobenthos responses to Eutrophication of the Dutch Wadden Sea. Ophelia 26: 55-64
- Boesch, D.F., 1973. Classification and community structure of macobenthos in the Hampton Roads Area, Virginia. Marine Biology 21:226-244

- Bouwman, L.A., K., Romeijn y W. Admiraal, 1984. On the ecology of meiofauna in an organically polluted estuarine mudflat. Estuar. Coast. Shelf Sci. 19(6): 633-653
- Brusca, R.C, 1980. Common Intertidal Invertebrates of the Gulf of California. Second Edition, University of Arizona Press pp 513
- Buchanan, J.B., M., Sheader y P.F., Kingston, 1978. Sources of variability in the benthic macrofauna off the south Northumberland coast, 1971-1976. Journal of Marine Biol. Ass. U.K. 58: 191-209
- Caddy, J.F., F.A., Amaratunga, M.J., Dadswell, T., Edelstein, L.E., Linkleter, B.R., Mcmullin, A.B., Stasko, H.W., van de Poll, 1984. Northumberland Strait Proyect Part I. Benthic, Fauna, Flora, Demersal Fish and Sedimentary Data. Can. Manuscrip of Rep. Fish. Acuat. Sci. 1431
- Dauer, D.M. and W.G., Lonner, 1980. Effects of moderate sewage input on benthic polychaete populations. Est. Coast. Mar. Sci. 10: 335-346
- De Wilde, P.A.W.J., E.M., Berghuis, E.M., A. Kok, 1986. Biomass and activity of benthic fauna on the Fladen Group (northern North Sea). J. SEA RES. 20 (2-3): 313-323
- Fager, E.W., 1957. Dtermination and analysis of rcurrents groups. Ecology 38: 586-589
- Eagle, R.A., 1975. Natural fluctuations in a soft bottom benthic community. J. Mar. Biol. Ass. U.K. 55: 865-878
- Federle, T.W., R.J., Livingston, D.A., Meeter and D.C., White, 1983. Modifications of estuarine sedimentary microbiota by exclution of epibenthic predator. J. Exp. Mar. Biol. Ecol. 73: 81-94
- Frigiolos, N., A., Zenetos, 1988. Elefsis Bay Anoxia: Nutrient Conditions and Bentic Community Structure. Marine Ecology 9 (4):273-290
- Gravina, M.F., G.D., Ardizzone, F., Scaletta, C. Chimenz, 1989. Descriptive analysis and classification of benthic communities in some meditarrenaen coast lagoons (central Italy). Marine Ecology. 10 (2): 141-166
- Gray, S. John, 1982. Effects of pollutants on Marine Ecosystems. Netherlands Journal of Sea Research 16: 424-443

- Hartman, O., 1968. Atlas of errantiate polychaetus annelids from California. Allan Hancock Foundation. University of Southern California. pp 838
- Hartman, O., 1969. Atlas of sedentariate polychaetus annelids from California.

 Allan Hancock Foundation. Allan Hancock Foundation. University of Southern California pp 840
- Herrera Moreno, A. y P., Alcolado, 1982. Efecto de la contaminación sobre las comunidades de gorgonaceas en el litoral Habanero. III Simposium Contaminación Marina La Habana pp. 1-22
- Herrera Moreno, A. y J. Sánchez García, 1982. Caracteristicas de la meiofauna bentonica en la Bahía de Cien Fuegos y algunos asectos de su ecología. Ciencias Biológicas Cuba 7 (182): 15-32
- Herrera Moreno, A. y R. del Valle García, 1982. Caracteristicas de la meiofauna bentonica en la Laguna y zona costera de Guayabal, en relación con el grado de contaminación. Ciencias Biológicas Cuba 5 (180): 29-45
- Hubyy Thomas, 1987. Using de similarity measures in benthic impact assessment. Environmental Monitoring and Assessment 8:163-180
- Instituto de Investigaciones Oceanologicas. Crucero ECOBAC- ly II. Datos Fisico-Quimicos y Biologicos 19 al 26 de Junio de 1990, Ensenada, México. Enero de 1991.
- Jiménez Pérez, L.C, F., Molina Peralta, E., Nuñes Fernandez, 1992. Efectos de las aguas residuales sobre la macrofauna bentónica de arenosas en la Bahía Todos Santos. Cinencias Marinas. 18(1): 35-54
- Jhonson, R.O., W.G., Nelson, 1985. Biological effects of dredgingg in an offshore Borrow area. Fla. Sci. 8 (3): 166-187
- Jones, G. 1969. The benthic macrofauna off the mainland shelf of southern california. Allan Hancock Foundation Monograph. Mar. Biol. 4:1-219
- Kaestner, A., 1970. Invertebrate zoology (Crustacea Vol. III): Interscience Publishers pp 523
- Keen, A.M., 1971. Sea Shells of Tropical West America (Second Edition). Stanford Univeersity Press . pp 1064

- KiØrboe Thomas, 1979. The distribution of Benthic invertebrates in Holbaek Fjord (Denmark) in relation to environmental factors. Ophelia 18 (1): 61-81
- Shepard, F,P. 1954. Nomenclature based on sand-silt-clay ratios. J.Sed. Petrol. 24,151-158.
- Lie, Ulf and Dale S. Kiesker, 1970. Secies composition and structure of benthic infauna communities off the coast of Washington. Journal Fisheries Research Board of Canada. 27 (4): 2273-2285
- Lie, Ulf and James C. Kelley, 1970. Benthic infauna communities off the coast of Washington and Puget Sound: Identification and Distribution of the Communities. Journal Fisheries Research Board of Canada 27 (4): 621-651
- Light, J.W., 1978. Spionidaes Polychaeta Annelida . California Academy of Sciences, The Boxwood Press pp 211
- Light, S.F., P., Smith, F.A., Pitelka, D.P., Abbott and F.M., Weesner, 1961. Invertebrates of the central California Coast. University of California Press pp 480
- Lizarraga Partida, L.M., 1974. Organic Pollution in Ensenada Bay, Mexico. Marine Pollution Bulletin 5 (7): 109-112
- Moran, P.J. and T.R., Grant, 1989. The effects of industrial pollution on the development and sicession of marine fouling communities. I. Analysis of species richnes and frequency data. Marine Ecology 10 (3): 231-246
- Moran, P.J. and T.R., Grant, 1989. The effects of industrial pollution on the development and succession of marine fouling communities. II. Multivariate analisis of succession. Marine Ecology 10 (3): 247-261
- Muñoz Palacios, Laura E., 1993. El sistema bentónico sublitoral en las costas del Pacífico Norte: Campañas TOES (Febrero, 1987) Tesis Maestría CICESE
- Odum, E.P., 1972. Ecología, Tercera Edición, Editorial Interamericana 501 pp
- Parisi, V., R., Ambrogi, D., Bedulli, M.G., Mezzardii, 1990. The soft bottom macrobenthos: Synthesis of many year experience (1972-1989) in the Po Delta. ENEL_SIBM. Symposium on the "Ecology of the Po river Delta, Albarella 16-18 September. pp 32

- Persson Lars-Eric, 1982. Temporal and espatial variation in coastal macobenthic community structure, Hanö Bay (Southern Baltic). Department of animal ecology. University of Lund. Ecology Building. S-223 62Lund, Sweden, pp.22-40
- Rachor, E., 1990. Changes in sublittoral zoobenthos in the German Bight with regard to eutrophication. Neth. J. Sea Res. 25 (12): 209-214
- Read, P.A., T., Renshaw y K.J., Anderson, 1978. Pollution effects on intertidal macrobenthic communities. Journal Applied Ecology: 15: 15-31
- Reisch, D.J., 1957. The relationship of the polychaetous annelid *Capitella capitata* (Fabricius) to waste discharge of biological origin. Biological Problems in Water Pollution. U.S. Public Healt Services. pp 195-200
- Reisch, D.J., 1970. A critical review of the use of marine invertebrates as indicator of varying degrees of marine pollution. F.A.O. Technical Conference on Marine Pollution and its effects on Living Resourses and Fishing. 9-18 Dec. 1970, Rome Italy. FIR.:MP/70/R-9
- Reise, K. y A., Schubert, 1987, Macrobenthic turnover in the subtidal Wadden Sea: The Norderaue revisited after 60 years. Helgol. Meeresunters.: vol. 41 #1 pp69-82
- Reise, K., E., Herre, M., Stum, 1989. Historical changes in the benthos of the Wadden Sea around the island of Sylt in the North Sea. Helgol. Meeresunters, vol. 43, # 3-4 pp.417-433
- Rowe, G.T. y R., Margalef, 1985, Benthic production and processes of Baja California, Northwest africa and Peru: A Classification of benthic subsystem in upwelling ecosystems. International Symposium on the Most Importanat Upwelling Areas off Western Africa (Cape Blanco and Benguela). vol 2: 589-612
- Salazar Vallejo, S.I., J.A. de León González, H., Salaices Polanco, 1988. Poliquetos (Annelida: Polychaeta) de México. Universidad Autonoma de Baja California Sur, Libros Universitarios pp 212
- Sanders, H.L., 1960. Benthic studies in Buzzards Bay III The structure of the soft bottom community. Limnol. Oceanogr. 5: 138-153
- Sanders, H.L., 1968, Marine benthic diversity: a comparative study. The American Naturalist., 102(925): 243-282

- Sibuet, M., 1987. Structure of benthic populations in relation to trophic conditions in the abissal environment of the Atlantic Ocean. Univ. de Paris 6: Paris (France): pp 693
- Smith, R.I. and James T. Carlton, 1975. Ligth's Manual: Intertidal Invertebrates of the central California coast. Tercera Edición. University of California Press pp 850
- Smith, R.W., B.B., Bernstein and R.L., Cimberg, 1988. Community environmental relationships in the Benthos: Aplications of Multivariate Analitical Techniques. Mar. Poll. Bull. 23 (2): 14-19
- Southern California Coastal Water Research Projet (SCCWRP).1973. The Ecology of the Southern California bigth: Implication for Water Quality Management. Three year Report of the Southern California Coastal Water Research Projet (SCCWRP) El Segundo, CA. 531pp.
- Southern California Coastal Water Research Projet (SCCWRP).1989-90. Annual Report of the Southern California Coastal Water Research Projet (SCCWRP) El Segundo, CA. 102pp.
- Southern California Coastal Water Research Projet (SCCWRP).1992-93. Annual Report of the Southern California Coastal Water Research Projet (SCCWRP), El Segundo, CA. 166pp.
- Staude, C.P., J.W., Armstrong, R.M., Thom, K.K., Chew, 1977. An Ilustrated Key to the intertidal Gammaridean Amhipoda of central Puget Sound. Contribution # 466, College of Fisheries, University of Washington. pp 27
- Thomas, D.J., J.L. Barnard, 1983. The Platyischnopidae of America (Crustacea: Amphipoda). Smithsonian Contributions to Zoology # 375 33 pp
- U.S. Global Ocean Ecosystems Dynamics (GLOBEC), 1994, Report Number 11 134 pp
- Van Den Heilingenberg, T., 1982. The effects of mechanical and manual digging for lugworms (Arenicola marina L.) on the benthic fauna of the tidal flats in the Ditch Wadden Sea. Hydrobiol. Bull. 16 (2-3): 291-292

- Villarreal Chavéz G., 1991. Impacto de la construccón de un dique arenosos en al ecología bentonica de un estuario en el pacifico norte de México. Ciencias Marinas 17 (4): 105-119
- Warwick, R.M., T.H., Pearson y Ruswahyuni, 1987. Detection of pollution effects on marine macrobenthos: Further evaluation of the species abundance/biomas method. Marine Biology: 95 pp. 193-200
- Wildish, D.J. and D.D., Kristmanson. 1979. Tidal energy and sublittoral macrobenthic animals in estuaries. J. Fish. Res.Board. Can. 36: 1197-1206
- Zenetos, A., C., Bogdanos, 1987. Benthic community structure as a tool in evaluating effects of pollution in Elefsis Bay. Thalassographica 10 (1): 7-21

Apéndice A. Lista general de especies ordenadas sistemáticamente, estaciones y su abundancia.

TRANSECTO	7	II			III		-	1	IV			v				VI		_	1		_	F .	1.
ESTACIONES	15	i8	111	112		14	15	21		24	25	26	1 22	20	75	36	37	38	В	VII	T 0	Total	Total
ESPECIES	1	10	111	112	113	114	113	121	123	24	- 23					30_	31	- 18	B	1 C	I_D	por	de
	_				_			1											T	T	1	sp	SD
CNIDARIA	-	-	+	-	-	-	-	-		-			_	-	-	_			-	-	-	-	_
HIDROZOA	-		-				-	-	-	-	-		_	_				_	-				_
Cnidaria	0	0	0	0	0	0	0	1 0	0	2	2	4	2	1	0		0	0	0	0	0	13	1
NEMERTEA		1						-															
Nemertea	0	4	3	8	4	20	4	12	12	5	4	8	9	2	1	8	6	16	2	5	1	134	1
Cerebratulus sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
MOLUSCA		1																					
GASTROPODA		i.	1																				
Adontorhina cyllia	0	0	1 0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
Balcis sp.	0	0						0	0	0	0	0	0	0	0	0	0	0	0		0	1	1
		0							0		1 0	2		_	0	0			1			5	_
Balcis catalinensis	0											_	0	0	1		0	2	_		0	-	1
Bittium sp.	0	2						0	0		0	0	0	0	\rightarrow	0	0	_ 0	0	_	0	3	1
Caecum crepricinctum	_ 0	18						0		_	1	0	0	1	26	0	0	0	9		0	110	1
Cylichna diegensis	0	0									0	0		0	2		0	0		0	0	5	1
Olivella_baetica	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2	1
Puncturella cooperi	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
Periploma discus	1 0	0	1 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Solemnya reidi	1 0	0							0		0	0		0	0		0	0	0		0	1 3	1
Turbonilla sp.	1 0	0				1 0		0			1 0	0	0	0	0		0	0	0		0	2	1
Volvulella panamica	1 0	0		2		_					0	0		0	0		0	1	0	0	0	6	1
	0		1 0	1 4	1 0	1 0	1 0	1	- 4	1 0	0	1 0	J .	0	-	-	-	-	-	1 0	1 3	- 6	+ -
BIVALVIA		1	1	-	-	-	-	1				-				-	_			-	-	-	+
Axionoce sp	0	0				0					0	0			0	8	7	1	0	0		16	1
Axinoosida serricata	0	0				0					0	0	0	0	0	0	0	0	0	0	0	2	1
Comsomyax subdiaphana	0	0	0	1	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Crenella decussata	0	1	0	1	0	0	0	1 0	0	0	0	3	0	0	0	0	0	0	0	0	0	5	1
Huxleyia munita	0	1	1 0	0	1 0	0	3	0	0	0	0	0	0	1	0	0	0	0	0	1	0	6	1
Mysella tumida	1 0	0	0	1 0	0	0	1	1 0	2	0	1	3	0	0	0	0	0	0	0	0	0	7	1
Macoma acolasta	0	0				0			0		0	0			0		0	0			0	2	1
Mysella grippi	1 0	0									0			0	0	0	0	0			-	6	1
Nuculana sp.	1 0	1 0				0			0		0	1 0	_		0		0	0				+:	1
						0									0			1				-	1
Nuculana taphira	0	0			0						0			0			0	_				4	_
Parvilucina tenuisculpta	0	4						<u> </u>			2	_	14	2	1	32	1	2	1	4		92	1
Tagelus	1 0	1 0				0	0				0	0		0	0		_ 0	0	1		0	2	1
Tellina carperteri	_ 1 2	1 3	2	27	3)	2	100	1	13	5	4))	3	:	1		28	0	0	2	90	1 1
SCAPHOPODA	-	1																					
Cadulus fusiformis	1 3	0	0	5	3	1 1	1 1	1 3	1 0	1 0	0	1	2	0	2	1	1	0	0	0	1 0	1.8	1 1
Falcidens sp.	J 5	. 0	0	4	0	1 3	1 3	1)	1 0	0	0	0	1 1	2)	2	0)	0	0	1 0	1 5	1
POLYPLACOPHORA	1		1			1	1		1				1	1									
Leptochiton rugatus	1 0	1 0	0	1 0	1 0	1 0	0	1 0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
ANNELIDA	1	1	1	1		1		1	1	1	Ť	i		1	-			-			1		
POLICHAETA	1	1	1	1	1				_	1			1	1									
Harmothoinae, UI	1 0	0	1 0	1 0	1 0	1 0	0	0	1 0	1 0	0	-	-	-		-	-			-	-		1
												0					.0	0	0	2	0	2	1
Pholoides aspera	0	0	0	0	0	0	1 0	0	1 0	0	1 0	0	0	0	0	0	0	0	1	0	0	1	+
[AMPHARETIDAE_	-	!	1	1	_	1	1	1	1	1	_	_	-						1	-	-		
Ampharetidae, UI	0	0									1 0	1 0		0	0	1	0	0	0	0	0	5	1
Lysippe sp.	0	1			0	0	0	0		1 0		0	0	0	0	0	0	0	0	0	1	2	1
Lysippe sp. B	1 0	0	0	0	1 0	0	2	0	1 0	1 0	0	1 0	0	0	0	0	0	0	0	0	0	1 2	1
Amage sp.	0	1 0	0	0	1 0	1 2	1 0	1 0	1 0	1 0	0	1 0	0	1 0	0	0	0	0	1 0	1 0			1
Ampharete sp.	0	0											3		4	5	0	0					1
Anobothrus gracilis	1 0	1 0				_					0	1 0	0		0	0		0					1
Lysippe sp. A	1 0	0				1 0				0	0	0	0		0	0	0	0	_			1 2	1
Ampharete tipo 3	1 0	1 0										1 0	1 4	1 0	0	0		0	_				1
Ampharete tipo 1						-						_									_	_	
	0	0							_		0	0	2	0	0			0			0	2	1
Ampharete tipo 2	0	0	0	0	0	1 0	1 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1
AMPHINOMIDAE.		1		-	1	1	1	1	1	1	1								-		1	1	1
Chloeia pinnata	0	4	0	1	0	0	1	0	0	0	0	1 0	1	0	0	4	0	0	1	3	0	15	1
APISTOBRANCHIDAE		_	1			1	1	1	1										1	1	1		0
Apistobranchus ornatus	0	1 0	. 0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1 2	0	0	3	1
ARABELLIDAE				1			1	1	1	T	1								_				_

TRANSECTO	T	II		T	III				ΙV			v				VT		_	Г		-	(· · ·	1-
ESTACIONES	5	18	111	12		14	115	21		24	25	26	27	28	35	36	37	38	В	VII	D	Total	Total
ESPECIES			1	,			120	-	-				- 21	20		36	31	30	1 5	<u> </u>	U	por	de
Notocirrus californicus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
Drilonereis sp.	0	1	0	1 0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	4	1 1
CAPITELLIDAE																-	-	-	-		0	7	1
Notomastus sp.	1	0	0	1 0	0	1 0	0	0	0	0	0	6	0	0	2	0	8	0	2	0	0	19	1
Mediomastus sp.	1	9	1 11	1 57	44	10	9	39	20	24	0	1	28	18	4	11	11	51	13	68	4	433	1
Decamastus gracilis	1 0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3	0	4	1
Capitellidae, UI	0	0	1	0	0	1	1 0	4	0	0	0	0	0	0	0	0	0	0	2	0	0	8	1
Decamastus sp.	0	1	0	1 0	0	0	1 0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	4	1
CIRRATULIDAE		1	1	3											_		_	_	1			<u> </u>	
Caulleriella hamata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	1
Chaetozone cf. setosa	0	4	0	0	1	1	1	0	0	11	8	12	0	4	1	5	5	23	0	4	0	80	1
Tharyx sp.	0	8	1 3	8	1	1 1	4	8	8	0	0	0	39	7	1	3	0	0	10	21	2	124	1
COSSURIDAE		1		1						-											_		
Cossura sp.	0	1 0	0	1 0	0	1 0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1
Cossura candida	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
EUPHROSINIDAE		1																					1
Euphrosine sp	1	1 0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
FLABELLIGERIDAE	II.		1							1 3			-										1
Pherusa neopapillata	0	1 0	0	3	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1
DORVILLEIDAE																					(- T)		
Pettibonela sanmatiensis	0	0		14	0	2	0	1	3	0	0	0	1	0	0	0	6	0	0	0	0	28	1
Protodorvillea gracilis	6	2	1 0	0	0	6	3	0	0	1	0	17	0	0	1	0	4	0	0	0	0	40	1
Schistocomus sp.	1 0	0	0	1	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Schistomeringos sp.	0	4	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	6	1
GLYCERIDAE																							
Glycera capitata	0	3	1 1	3	5	7	1	2	3	0	2	1	8	3	2	0	1	2	2	1	0	48	1
GONIADIDAE														_									
Glycinde armigera	0	0	1 0	0	0	0	0	1	0	6	0	0	1	0	_ 0	2	0	3	0	1	0	14	1
Goniada maculata	0	1 0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	1
Goniada littorea	0	0	1 0		0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	2	1
Goniada sp.	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1
HESIONIDAE																	Dig -						
Podarkeopsis glabrus	0	0	0		0	0	0	٥	2	0	0	0	0	. 0	0	0	0	2	0	0	0	4	1
Heteropodarke heteromorpha	0	1 3	1 0	1 3	0	2_	0	0))	3	0	_ 5	0	0	3	ú	4	0	0	0)	11	1 1
LUMBRINERIDAE																		-					
Lumprineridae	0		1 0	0	0	3)))	0	1	2	.)	3	0 !	• •	0	9	0	0	0	0	1	7 1
Lumbrineris so.)	1 0	1 :	1	3	150	1 0	5)	11 1	9	0	3 !	1	3 !	2	9 !	29)	7	3	50	1 17
MAGELONIDAAE		1	1																				
Magelona sacculata	0	0	1 1		0	1 0	0	0	0	1	0	1	0	0	0	0	4	13	0	0	0	20	1
Magelona hartmanae	0	0	1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	3	1
MALDANIDE	1	1	1 -	1			1												2 - 45	9 3	W 5		
Clymenella sp.A	1 0	-	1 0		0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Asychis disparidentata	1 0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
Rhodine bitorquata	0	0			1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Axiothella rubrocincta	0	_	0		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1
Maldanidae, UI	1 0	0	0	0	7	0	0	2	2	1	0	0	0	0	0	0	0	0	0	0	0	12	1
Petaloproctus sp. A	1 0	0	0		0	0		0	1	_	0	0	0	0	0	. 0	0	0	0	0	0	1	1
Petaloproctus neoborealis	1 0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
Euclymeniame sp. A Heteroclymene sp. juv.	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	0		0			0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	9	1
Euclymeniame sp. C	1 0	0	1 1	-	3	0	0	0	1	0	0	0	0	0	0	0	_ 0	0	0	0	0	5	1
Praxillella pacifica NEPHTYIDAE	0	0	0	8	5	0	0	5	3	1	0	0	0	0	0	0	0	0	5	5	0	32	1
	1 -	1 .	1 .	1 0		-	-		-									5 - 8					
Nephtys sp. A	0	0		-	0	1 0	0	0	0	0	0	0	0	0	0	_ 0	0	4	0	0	0	4	1
Nephtys sp. Nephtys californiensis	0	1	0	0	1	0	1	1	0	5	0	0	2	1	0	0	0	5	0	1	1	19	1
Nephtys caecoldes	2					0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	4	1
Nephtis cornuta franciscana	1 0	0	1 4	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1
										3		0 1	1	0	1	0	1	3	0	0	0	18	1

TRANSECT O	1	II			III	_	_	T	ΙV			v			_	VI		_		VII		l .	
ESTACIONES	5	TB.	111	12		14	115	21		24	_	_	27	28			77	20			1 0	Total	Total
ESPECIES	T	1-	1	122	123	14.1	120	12.1	123		23	20	21	1 20 1	33 1	30	31	36		_	- 11	T	de
Nereis procera	1 0	1 0	0	0	0	0	1 0	0	1 4	0	0	0	3	0	0	0.1	0	0	0	0	Α.	3P 7	3P
Platynereis bicaniculata	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	1	1
OLIGOCHAETA	1	1-0	+	+	- 0	0	-	- 0	0	- 0	0	U	-0	0	U	- 0	U	0	0	0	0	1	1
	5	31	+	1	0	-		-	-	-	-	-	12	-	-		- 2						
Oligochaeta, UI	3	31	1	1	0	3	10	3	0	0	0	0	0	0	0	0	0	0	- 8	_ 1	0	63	1
ONUPHIDAE	-	4-	-	-		-	-	-	-														
Rhampobranchium brevisetosum	1 0			6	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	0	0	6	1
Onuphis sp.	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	1
Nothria sp.	0	0	0	0	0	0	1	0	0	0	0	0	0	6	0	0	0	0	0	0	0	7	1
Onuphis iridiscens	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Diopatra ornata	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1
Diopatra sp.	0	0	1	0	0	0	0	0	0	0	0	0	0	4	0	0	0	1	0	0	0	6	1
Onuphidae, UI	0			7	1	1	0	0	0	0	0	- 0	0	0	0	0	1	0	8	0	0	18	
Paradiopatra parva	0				3	1	9	0	0	0	0	5	1	9		0					U		1
Mooreonuphis nebulosa	1 0				0		0				0				14		6	0	19	2	-	74	1
	-		1 0	1 0	U.	4	0	0	1	0	U	0	0	0	0	0	0	0	0	0	0	8	1
ORBINIIDAE	-	1	-	-	-	-	-	-	-														
Leitoscoloplos pugettensis	0			0_	3	0	0	5	0	13	- 6	12	2	0	0	0	13	0	0	0	0	54	1
Orbiniidae	0			0	0	0	0	- 1	0	2	0	0	0	0	0	0	0	0	0	0	0	3	1
Scoloplos sp.	0			0	0	0	0	0	0	-0	0	1	1	0	0	0	0	0	0	0	0	2	1
Scoloplos armiger	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	3	5	1
OWENIIDAE		1																	-		-	_	1
Myriochele gracilis	0	0	Ī o	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 1	0	7	1
Owenia collaris	0			3	0	0	0	0	0	0	0	1	2	0	0	0	0	4	0	0			1 1
Owenia sp.	0				0	0		0													0	11_	1
	0	1 0	1-0	1 0	0	0	0	0	0	0	0	0	_ 1	0	0	1	0	0	0	0	0	2	1
PARAONIDAE	-	-	+	-	_	_	-		-														
Cirrophorus branchiatus	0			5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	7	1
Acmira catherinae	0			1	0	4	0	2	2_	7	1	0	14	0	0	1	0	10	1	0	5	50	1
Paraonidae, UI	0	1			0	_ 0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	3	1
Aricidea wassi	0	To	5	4	0	0	0	3	1	0	0	0	0	4	0	0	0	0	2	0	3	22	1
Levinsenia gracilis	0	0	1	9	1	0	1	8	5	0	0	0	7	1	0	0	0	0	0	2	0	35	1
Allia ramosa	0		2	8	1	0	0	9	2	0	0	0	5	1	0	6	0	0	2	2	1	39	1
Aedicira pacifica	0				0		1	0	0	0	0	0	2	0	0	0	1	0	0	0	0	4	
Acmira simplex	0			1	0	2	1	2	0	0	0	0	5	0	0	0	0	0	0	1			1
Acmira wassi	0				0	0	0	2	0	2	0	0	0	0	0	0	0	0			0	12	1
PECT INARIDAE	- 0	1 3		0	- 0	0	0	3		- 4	- 0	-0	. 0	3	- 0	0	Q	0	0	0	0	2	1
	-	+	+	-	-	-	-	-	-	-							-						
Pectinaria sp.	0			0	6	1	2	5		0	0	0	0	0	- 1	2	0	0	0	0	0	18	1
Pectinaria californiensis	1 0	1 0	1 0	2	7	0	0	0	2	1 3	0	0	0	0	3	0	3	3	0	3	0	11	1
PHYLODOCIDAE	1		1 0																				
Eulalia levicornuta	0		0	1	0	0	0	0	1 0	0	0	0	0	0 1	0	0	0	0 1	0 1	0	0	1	1
Phyllodoce hartmanae	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
Phyllodocidae, UI	0	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	3	1
Phyllodoce longipes	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Phyllodoce sp.	0			0	0	0		0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	1
Eumida sp.	0			0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0			4	1
Paranaitis polynoides	0				0	0		0												0	0	1	1
PILARCIDAE	- 0	1 0	1 0	0	0	U	U	0	- 0	1	0	0	0	0	0	0	0	0	0	0	0	1	1
	1	-	-	-	-	-	-	-															
Ancistrosyllis of, groenlandic					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Eteone sp. E	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	2	1	0	0	0	5	1
POECILOCHAETIDAE																							
Poecilochaetus johnsoni	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
POLYNOTDAE																			-	-	-	-	-
Polynoidae sp.	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	1	0	0	0	0	0	-	1 .
Harmothoe cf. lunulata	0				1	0	0	0	0	0	0	0	0	2	0	0	0	0	0			- 1	1
Polycyrrus sp.	3				0	0	0	0		0									_	0	0	3	1
Polydora socialis	0					0					0	0	0	0	0	0	0	0	0	0	0	- 3	1
	- 0	0	1 0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
SABELLIDAE	-	-				_	-	_															
Euchone sp.	0				0	0	1	0	0	0	D	0	4	0	0	0	0	0	0	0	0	5	1
Euchone sp. A	0				0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	5	1
Chone mollis	0	0	0	0	0	1	1	0	0	0	0	1	0	0 1	0	7 1	0	0	0	0	0	10	1
Chone sp.																							

TRANSECTO		II	1	-	III		Tee-	-	IV	T		V			-	VI				IIV		Total	Total
	5	8	11	112	13	14	15	21	23	24	25	26	27	28	35	36	37	38	В	_ c	D	por	de
ESPECIES							v													30 - V		sp	sp
Chone sp. B	0	0				1		0	0	0	0	0	0	O O	0	0	0	1	0	0	0	3	1
Chone sp. C	0	0			0)		0			0	0	0	0	. 0	0	0	0	0	2	0	4	1
Chone sp. A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
Euchone incolor	0	2	0	1	2	0	2	2	0	4	4	11	5	0	0	4	0	8	0	4	2	51	
Chone veleronis	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	.0	0	4	
Sapella sp.	0	0	1 0	0	1 0	1 0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	
Jasmineira sp. A	0	0	0	0	1 0	18	1 0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	18	1
Sapellaria sp.	0	0	1 0	0	0	1	1 0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	
SCALIBREGMATIDAE				i	1		1				-			-				17 1					
Scalibregma inflatum	0	1	1 0	1 0	0	0	1 0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	
SIGALIONIDAE	-	-	-	-	-	-	-	-	-	+ -	-	-	-	-	- 0	- 0	-	-	1	-	-		1
Thalenessa spinosa	0	0	1 0	1	1 0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+ ,	
Sthenelanella uniformis	0	0			0	_		0			0		5	0	0	6	0	0	0	0	0	38	
								7				0		_						1			
Pholoe glabra	0	3	-		8	1			0		0	0	3	0	0	0	0	0	0	_	1	48	
Sigalionidae, UI	0	0			0	0		0	0		0	0	0	0	0	0	0	1	0	0	0	2	
Sigalion spinosa	0				0	0		1 0				0	2	0	0	1	0	0	0	0	0	4	
Pholoe sp.	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	
SPHAERODORIDE			-				1								i .	3 - 3	= Y						
Spnaerodoropsis biserialis	0	0	-		1 0	1 0		1 0	_		0	0	0	0	0	0	0	0	0	0	0	6	
Sphaerodoridae, UI	0	0	2	0	0	0	1 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	3	
SPIONIDAE	1				1		1		1	1		2					1 7						
Micropodarke dubia	1	0	1 0	0	0	0	0	1 0	0	1 0	0	0	0	0	0	0	0	1 0	0	0	0	1	
Microspio pigmentata	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	
Malacoceros ounctata	0	0	0	0	0	0	0	0	1 0	1 0	0	0	0	0	0	0	0	1 0	2	0	0	2	
Laonice conchilega	0	0		-	0	0	-	0			0	1 0	0		0	0	0			1	0	1	
Jaonice cirrata	0	3			0	0						0	2	0	0	0	0	0	0	0	0	7	-
Splophanes perkeleyorum	0	0			30	0					0	0	0	0	0	0	0	0		6	0	39	
Paraprionospio pinnata	0	0			0	0		1 0	_		1 1	0	0	0	0	0	0	1		0	0		
Laonice appelloefi	0	0			0			0			0	0	0	0	0	0	0	0			0	1	
	0	1			8							1 1	14	0	0	13	6	5		1 4	2		1
Spiophanes missionensis	1	0			0	1 0		0				16	0		0	8	18	17	1	0	0	76	_
Splophanes bombyx													_		1								
Paraprionospio sp. A	0	0			0	1 -		0	-		0	0	0		_		0			0	0	36	
Prionospio (P.) sp.	0	0))		1 0	0			4	0	6		0	0	0	0		_)		
Prionospio (P.; sp. A	0	5			3		10	1 7		1 14	1 3	1 3			3		3	4		9	3	89	
Spiochaetopterus costarum	0	0				_	0	-			1 0				0		0				0	4	
Spiophanes so.	9	ŋ					1 1	1 1			1		9		0	2	0		0		3	31	
Prionospio (Minuspio) cirrifera	3)	1 9	1 10	1 0	1 0	1 0	1 3	0	1 0	0	: 0	0	2	0	0	- 3	Q:			2	18	P 8
Paraprionospio sp. B	0	0	1 0	0	1 0	1 0	1 0	0	1 0	0	0	1 0	1	7	0	0	0	0	0	0	0	8	
Prionospio (P.) sp. B	0	0	0	2	1	1 0	1	9	1 0	1 0	1 1	0	1	0	0	0	0	1	3	1 0	0	19	
Prionospio (Minuspio) lighti	0	0	1 0	1 0	10	1 0	2	10	7	1 0	0	0	2	0	1	0 1	1	0	1 0	1 0	0	33	
SYLLIDAAE				1		1	1	1	Î	1	1												
Sphaerosyllis sp.	0	3	1 0	1 0	1 0	1 1	0	1 0	1 0	1 0	1 0	0	1	0	0	0 1	0	1 0	1 0	0	0	1 5	
Typosyllis sp.	0	0			0	_	1 0					_			0		0	_		_	0		1
Ehlersia neterochaeta	0	0			1 0	_	1 0	1 0				0	0		0	0	0				0		
Plakosyllis americana	0	0			0		1 0				1 0	1 1			0		0		-		_		1
Pionosyllis sp. A	0	0			1 1		1 1	1 0				10			0		2				0		1
	0	0			4		1 0					1 0			1	0	0				1 0		-
Exogone loueri					0		1																
Exogone sp. D	0	0						0			_	0			0		0				0		-
Exogone molesta	0	0			0	-	1 0	1 0				0			0		0			0	0		1
Haplosyllis sp.	0	0			0		1 0					4	0		0	0	2						-
Plonosyllis sp. B	0	0	0	0	0	0	0	0	0	0	1 0	1	0	0	0	0	1	0	1 0	1 0	0	2	
rerebellidaae				1								1			- 3								1/2
Laphania sp.	0	0			0	_	1 0					1 0	0		0	0	0				1 0		+
Perepellides californica	0	0	1 0	1 1	0	1 0	0	1 0	1 0	0	0	0	0	0	0	0	0	0	0	1	0	2	1
Terebellides sp.	0	1	0	0	1 0	1 0	1 0	1 0	1 0	0	1 0	1 0	1	0	0	0	. 0			1 0	1 0	1 2	
Terebelidae, UI	0	0	1 0	1	1 0	1 1	0	0			0	0	0	0	0	0	0	0	0	0	0	3	
Pista sp.	0	0					1 0							0	1		0	1 0	1 0	0			1
Pista disjuncta	0				1 0		0						0		0		0						
Proclea sp. A	0					-	1		_		-	_	_		0	_	0		_				-

TRANSECTO		II			III				IV			V				VI			1	VII		Total	Total
ESTACIONES	5	8	11	12	13	14	15	21	23	24	25	26	27	28	35	36	37	38	В	C	D	por	de
ESPECIES				1,000															7.			Isp	SD
FAUVELIOPSIDAE	1	1	1	1	1	1	1					S	(i)						1 1			1	J.
Faveliopsis sp.	1 0	0	1 0	0	0	0	1	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3/
OPHELIDAE	1		1	1	1	-	1	1	1	-	-	-	-	-	-	-	-	-	-		1	1	-
Ophelia pulchella	2	1 0	0	0	0	1 0	1 0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	4	1
PISIONIDAE	1 4	1 0	1 0	1 0	1 0	1 0	1 0	1 0	0	0		- 0	- 0	- 0	- 0	- 0	- 0	-	0	- 0	0	4	-
	1 6	1	1 0	1 0	1	1 2	1 0		1												-	-	-
Pisione sp.	5	0	1 0	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	8	1
PILARGIDAE		-	-	-			1		1										_				1
Sigambra sp.	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1
STERNAPSIDAE		1	1			1				V						3							
Sternaspis sp.	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	1.	0	0	0	0	0	5	1
Sternaspis fossor	0	0	0	2	1))	0	0	2	0	0	0	0	0	0	0	0	0	0	1	0	6	1
SIPUNCULA		1	1		1		f.																
Sipuncula	1 0	0	1 0	4	1 0	1 0	1 0	0	0	0	0	0	0	0	0	0	0	0	1 0	0	0	1 4	1
ARTROPODA			1																				1
PYGNOGONIDA	1									_						_							
Anaplagactylus erectus	1 0	1 0	1 0	1	0	1 0	1 0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 1	1 1
OSTRACODA	1	1	Ī	1	1	1	1	1	1	0	0	0	U	-	0	U	-	0	1	J	1 0	1	1
Bathyleberis californica	0	0	1 3	8	1	1 0	0	1	0	0		0		0	0	4	0	-	-	0	-	1	1
					_						0							0		0	0	17	1
Bathyleberis hancocki	0	0	-		0				-	-	0	0	_		0	0	0	0		0	0	1	1
Euphilomedes carcharodonta	0	0			0	1	11	0	1		0	1		1	. 0		2	7	, ,	- 6		76	1
Euphilomedes producta	0	0		0	0	0	2		0		0	0		0	0		9	1		69	2	95	1
Zeugophilomedes (Euphilomedes)	1 0	0		-	0			-		0	0	6	0	0	0	0	0	0	0	0	0	5	1
Eusarsiella sp.	0	0			0		0				2	0	0	0	0	0	0	0	0	0	0	2	1
Eusarsiella thominx	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Harbansus c.f. sp. B	1 0	4	1 0	0	0	0	7	1 3	0	0	0	0	0	0	0	0	0	0	0	0	0	11	1
Harbansus bralanciesi	0	0	1 0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	3	1
Myodocopida	0	0	6	0	0	0	0	0	0		0	0		0	0	0	0	0		0		6	1
Parasterope barnesi	1 0	0	1	5	0	0	0		1	0	0	0	0	0	0	0	0	0	0	0	0	7	1
Parasterope c.f. hulingsii	1 0	0			0						0	0	0	0	0	0	0	0	0 1	0	0	1	1
Pseudoleuris sp.A	1 0	0	-	5	0		0	-			0	0	0		0	0	0	0		0		6	1
Rutiderma rostratum	1 0	1 0			0					1	0	8	0	0	0	2	0	0	0	0	0	29	1
Rutiderma Iomae	1 2	1		28	0	1 1	3		0	0	0	12	6	0	0	0	0	0	6	0	1		1 1
Scleroconcha trituberculata	1 0	1 0										2	0		0			0	1 1	0		60	
COPEPODA	1 0	0	1 0	0	0	1 3	2	1 0	0	3	0	2	0	0	0	0	0	0	1 1	0	0	5	1 1
	-		1	-	1	-		1	1 1		_			_				_	1 1				1
Calanoida, UI	3	9		0	0		5		4	0	0	0		0	0		0	0	0	0	0	16	1
Pseudobradya sp.	1 0	1 0	1	0	1 0	0	0)	0	0	0	0)	0	0	0	0	3	2	0	0	1	1 1
CIRRIPEDIA		1	-	-	-	1	-	1															
Cirripedia balanomorpha	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
LEPTOSTRACA			1						1				6										
Nebalia pugetensis	0	0	1	0	0	0	1 0	1 0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
EUCARIDA			1	C					1													,	
Cyclodorippe c.f. plana	1 0	1	1 0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0 1	0	1 0	1	1
DECAPODA	1	1	1		1	1	1	1								3-54							
Pinnixa sp.	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 1	0	0	0	0	0	1 0	0	0	0	0	0 1	0	0	1	1 1
Pinnixa c.f. franciscana	1 0	1 0			1 0	1 0			-	0	0	0	0	1 0	0	0	0	0	0 1	0	0	1	1
Pagurus sp.	1 0	1 0		0	0	1 0		-			0	1 0	1	0	0	0	0	0	0	0	0	1	1 1
Pyromaia tiberculata	1 0	1 0		1 0	0	0	0				0	0	0	0	0	0	0	0	0 1	0	0	1 1	1 1
CUMMACEA	1 0	1 0	1 0	1 0	-	1 0	1 0	1 0	1 0	-	- 0	0	0	0	0	0	U	0	1 0	0	0	1	1 1
Campylaspis sp.	0	0	2	1 0	0	1 0	1 0	1 .	1 .	1 0				1 0		0				_	-	-	
											0	0	0	0	0	0	0	0	0	0	0	2	1
Campvlaspis hartae	0	0		0	0	1 0					0	0	0	0	0	0	0	0	. 0	0		1 1	1
Cumella sp.	0	1 0			0	1 0				1	0	0	0	0	0	1	0	1	0 1	0		1 3	1
Cumella sp. A	1 0	0				1 0					1 0	0			0		0	0	0	0	0	1	1
Cumella vulgaris	1 0	0									2	0	0	0	0		0	0		0	0	2	1 1
Cyclasois sp.	1 0	1 0	1 0	0	0	0	1 0	0	1 0	1 0	1	2	. 0	1 0	0	0	0	0	1 0 1	0	0	1 3	1
Diastylis tenuis	1 0	0	1 0	0	0	0	1 0	1 0	0	24	0	0	0	0	0	0	0	0	0	0	0	24	1 1
Diosaecidae sp.	1 0	1 0	1 0		1 0	1 0	1 0		0	1 0	0	0	0		0	0	0	0		0		1	1 1
Eudorella pacifica	1 0	1 1			1 0				0	0	0	0	3	0	0	0	0	0		1	2	1 14	1
Lamprops sp.	1 0	1 0			1 0	1 0	1 0				0	0	0	0	0	4	0	0		0	0	1 4	1 1
Leptastylis sp.	1 0	0		1		1 0	1 0		-		0	0	0	0	0	0	0	0	-	0			1

TRANSECTO		II			III				IV			V				VI.				VII		Total	Total
ESTACIONES	5	8	111	12	13	14	15	21	23	24	25	26	27	28	35	36	37	38	9	C	D	por	de
ESPECIES																		1 30	-		1 0	SD	50
Leucon magnadentata	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	1 0	2	1 0	0		130
Leucon subnasica	0	0			0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Mesolamprops pispinosa	0	0			0	0		0	0	0	0	0	0	0	0	0	0						
Murinarianium erratum	0	0			-	0	_		0	0	0	0	0	0		0		0	0	0	0		+
Pleurinjanum californiense	1 2	0			0	0			0						0		0	0	0	0	0		
Procampylaspis sp. A	0	_							_	-	0	0	0	0	0	0	0	0	0	.2	0		
	1 0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
TANAIDACEA	1		1	1		1														1			
Araphura sp. A	0	1			-				3	-	0	0	0	0	0	0	0	0	0	0	4	15	
Araphura sp. C	1 0	1	0		0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1 2	
Leptochelia sp.	1 0	0		0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	3	
Jeptochelia dubia	1 0	8	0	1	0	0	11	0	0	2	2	1	19	4	0	20	1	9	0	0	0		
Leptoqnathia sp. B	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0		
Leptognathia sp. E	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0		
ISOPODA	1			1		1	-						-			-		-	1	-	1 0		-
Snathia sp.	0	0	1	1 3	0	1	0	0	0	1 0	0	0	1	0	0	1	0	0	2	-	-	-	
Snathia crenulatifrons	0	0				1 0		1 1	1	0	0	0	0	0		5	1	_	_	0	0		1 1
dicrocerberus abbotti	0	0			0	0	_	0	0		0	0	0	0	0		1	0	0	0	0		1
funna sp.	1 0														0	1	_	0	0	0)		
		0			0	0		0	0	1	4	1	0	0	0	0	1	0	0	1	0		
Munnogonium tillerae	0	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Paraselloidea sp	0	0			0			0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	
Silophasma geminata	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
MPHIPODA					le .		L	1						-					1		S		
cuminodeutopus sp.	0	0	0	0	0	0	1 0	0	0	1	0	0	0	0	0	0	0	2	0	0	0	1 3	1
cuminodeutopus heteruropus	0	0	1 0	1 0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0		1
mpelisca sp.	1 0	0	1 1	1 0	0	0	0	1 0	0	0	1	0	1	0	0	0	0	0	1	0	0	4	
mpelisca sp. A.	1 0	0	0	0	0	0		0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1
mpelisca agassizi	0	0			0	0	1	0	6	31	0	9	0	0	0	0	0	0	0	0	0	49	1 1
mpelisca brevisimulata	1 0	0	_		1	0		2	2		0	0	5	0	0	2	0	0	0	0	0		
Ampelisca carevi	0	2			0	0		0	0	0	0	0	0	0	0	2 1	2	4	_			12	1
Ampelisca cristata	0	0			1 0	0	0		1	2	0	0				\rightarrow			0	2	2	16	1
Ampelisca hancocki	1 0	0			0	0	1 2	0		0	0		0	0	_ 0	1	0		0	0	0	139	1
Ampelisca milleri	0	0					_		0	_		0	0	0	0	0	0	0	0	0	0	2	1
	-				0	1	0	0	0		0	0	_ 0	0	0	0	0	2	0	0	0	3	1
Ampeliscipnolis podophthalma	0	0			0)		0	0		0	0 1	0	0	0	0	0	0	0		0	1	1
oridae sp.	0	3		0))	. 3)	0		3	0	_ 0	0)	0	0	0	1 1	G.	0	3	1
Cusviline sp.	0	0						0	0	0	0	2	0	0	0	0	0	0	0	0	9	2	1
empos so.	0	1	1 2	0) 0	2		0	1 0			0 1	. 0	0 !	0	2	0	0	0	0	• • •	2	1 1
SVDils veloronis	3	0	3	3	1 0	3	2	0	3	3 1	2	3 !	0	0	2 (0 1	0	3	3 :	:	0	1 1	1
Conaustorius sp.	0	J	1 1	1 0	1 0	0	1 3	0	0	0	0	3	0	0 1	9 1	G I	0	0	0	0		4	1 1
Conaustorius c.f. sencillus	0	0	1	0	0	0		0	0		1	0	0	0	0	0	0	0	0	0	0	2	1
Corophium sp.	0	0	1 0	0	0	0		0	0		0	2	0	0	0	0	0	0	0	0	0	2	1
yakia robustus	0	0			0	0	0	3	0		0	0	0	0	0	0	0	0	0	0	0	3	
oxiphalus sp.	0	0			0	0		0	0	0	0	0	0	0	0	0 1	0	14	0	1	0		-
oxiphalus similis	0	0			0	0	-		0		0	0	0	0	0	0	0					18	1
oxiphalus c.f. golfensis	1 0	0			1 0	0	_	0	0	0	0	0				_	_	0	0	2	0	4	
uernea reduncans	0	0				1 0							0	0	0	0	0	0	0	0	0	1	-
eterophoxus oculatus					0			0	0		0	0	0	0	0	0	0	0	0	0	0	2	-
	0	0							0		0	0	_ 6	3	0	0	0	0	0	1	1	21	1
aeropsis dubia	0	0			0	0		0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
ermisthyeus ociosa	0	0	0		0	0		0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1
vsianassa oculata	0	0			0	0	_	0	0	0	0	1	0	0	0	0	0	0	0	0	1	2	
epidepecreum sp.A	0	0			0	0		0	0		0	0	0	0	0	0	0	0	1	0	0	1 1	T
andibulophoxus <u>q</u> ilesi	0	0	0	0	0	0	0	1 0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	1
aera bueni	0	0	1 0	0	1 0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	1	0	0	1 1	1
ayerella banksia	0	0	1 0		1 0	1 0		0	0	0	0	0	0	0	0	1	0	0	0		0	2	1
egalorchestia sp.	0	0			0	1		1 0	0	0	0	0	0	0 1	0	0	0	0	0	0	0	1 1	1
etaphoxus frequens	0	0			0	0	1	2	0	1 0	0	0	0	0 1	0	5	0	0	1		1 1	1 10	1
etaphoxus fultoni	0	0			1 0	1 0		1 0	0	0	0	0	0	0	0	0	0	0	_	_			1
onoculodes sp.	0 1	0	1 3		0	0		0	0	0	0	0	0		0 1				1	_	0		+
onoculodes c.f. Hartmanae	0	0			1 0	0	-							0		0	0	0	0	0	0	3	+
edicerotidae	0 1	0	_	_	1 0	0	0	0	0	0	0	0	0	0 1	0	0	0	0	0	0	0	1 1	1

TRANSECTO		**			III			_	71/							ICT.	-		1	AII		Total	Total
	5	II	11	12		14	15	21	23	24	25 I	26	27	28	25	36	37	3.8	B	C	D	Dor	de
ESPECIES	5	18	11	112	173	14	13	21	23	24	25 1	26	21	28	35	36	31	38	1 8			por	ae
							-	1	0		- 1			- 1	- 1	- 1	-			0	-	3 <u>p</u>	SD
Pachynus barnardi	0	0	1	0	0	_	0	0		0	0	0	0	0	0	0	0	0	0	_	0	-	-
Parametopella ninis	0	1	0	0	0	0	4	0	U	0	0	0	0	0	0	0	0	0	0	0	0	5	1
Photis californica	0	0	1	0	0		0	0	0	2	0	0	0	0	0	0	0	1	0	0	0	4	1
Photis lacia	0	13	0	0	0	0	1	0	0	0	0	2	0	0	3	8	0	2	0	5	0	34	1
Photis sp.	0	0	2	3	0	4	4	0	0	0	0	1	0	0	0	1	2	2	1	1	0	21	1
Photis sp. A	0	0	0	0	0	0	0	0	0	0	2	42	2	0	0	0	0	1	0	0	0	47	1
Photis sp. B	0	1 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	14	1
Rhepoxynius sp.	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3	1
Rhepoxynius neterocuspidatus	0	1 0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1
Rhepoxynius abronius	0	0	0	0	0	0	0	0	0	10	0	1	6	0	0	0	7	13	0	0	0	37	1
Rhepoxynius menziesi	0	1 0	1	_	0	0	0	0	0	4	0	5	0	0	0	0	0	0	0	0	0	12	1
			0		2	0	0	18	1		0	_	2	0	0	0	0	0	0	0	0		1
Rhepoxynius bicuspidatus	0	0										0	_									24	1
Rhepoxynius variatus	0	0	0		0	0	0	0	0	6	0	0	1	0	0	14	0	20	0	0	0	41	1
Synchelidium sp.	0) 0	1	0	0	0	0	1	0	1	2	0	1	0	0	0	1	0	0	0	0	7	1
Synchelidium shoenidkeri	0	0	0	1	0	0))		0	0	0	0	0	0	0	0	0	0	0	0	1	2	1
Tiron tropakis	0	2	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	2	1
Urothoe varvarini	0	0	0	0	0	.0	3	0	0	0	4	5	0	0	0	0	0	0	0	0	0	12	1
PHORONIDA									N. C.			- 27											1
Phoronida, UI	0	0	1	0	0	1	0	0	1	0	3	6	11	0	0	15	0	0	0	0	0	38	1
BRACHIOPODA		<u> </u>	1			_																	
Glottidia albida	0	1 0	4	2	0	0	0	0	0	1	0	1	0	0	0	0	0	3	0	0	0	111	1
ECHIURA TIBIDA	- 0	- 0	4	-	-	-	-	U	- 0	-	- 0	1	0	- 0	-	U	- 0	-	1	1	-	1 11	
		-		-	-		-			-	-	-			-	1		-	-		-		
Echiura	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	-	0	0	0	0	0	3	1
EQUINODERMATA				1					3										-			-	-
EQUINOIDEA						_												1	1				
Dendraster excentricus	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2	1
Brissopsis pacifica	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Echinoideo irregular tipo 1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1 0	0	0	1_1	1
Lytechynus pictus	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1 3	1
OPHIUROIDEA		1	_			_																	
Amphiodia sp.	0	0	0	1 4	1 4	0	0	3	0	0	0	0	0	1	0	0	0	0	1	0	0	13	1
	0	3	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	2	1
Amphiodia sp.tipo l	0	0	0	2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	1 0	0	7	1
Amphiodia sp.tipo 2																						_	+ +
Amphiodia carterodmeta	0	0	0		0	0	0	_	2			0	0		0	0	0				0	2	1
Amoniodia digitata	3	3	0		0	3	1	3	0))	0			0	0	3))		1	0	1 17	1
Amphiodia occidentalis	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	3	3	1
Amphiodia urtica	0	0		1 0	12	1 3		12	4		0	3	0	0	0	0	0))	2		1
Amoniodia periercta	-0	2	0	9	. 9	1 3	2	17	2	0	9	2	3	1 7	1	0	• 0	0	0	0	0		1 1
Amphiodia pugetana	0	1 0	0	0	0	1	0	0	0	0	0	0	i o	0	0	0	0	0	0	0	0	1 1	1
Amprilura sp.	0	0	0		0	0	0	1	0		0	0		0	0	0	0	0	0	0	0	1	1
Amoniura acrystata	0	0	0		0		0	1	0		0	0			0	0	0	1 0		0	0	1	1 1
Amphichondrius granulosis	0	1 0	0	1 0	3	0	1 0	0	0	0	0	0	0	0	1	0	0	0	1 0	1	0	1 5	1 1
Havelockia sp.	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0	1 0	0	0	1 1	1
	_	1 5			12	2	1	9	5	2	0	1	2	0	0	0	0	0		1	2	60	1
Ophiuroidea juv.tipo a	0	_	0									-								0	_		_
Ophiuroidea tuv.tipo b	0	0	0	1	1	0	0	1 1			0	0		0	0	0	6	0			0	9	1
Ophiuroidea juv.tipo c	0	0			0	0	0	0	0		0	0		0	0	1	0	0			0	1	1
Ophiura lutkeni	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
HOLCITUROIDEA		1	1		L		1											1	1			-	_
Holoturoideo tipo I	0	1 0	0	0	2	0	0	0	0	0	1	0	0	0	1	2	0	0	0	0	0	6	11
Holoturoideo tipo 2	0	1 0	1 0	0	0	0	0	0	0	1 0	0	1	1	0	0	0	0	0	1 0	0	0	2	1
Pentamera sp.	0	0	1 0		1 0			1 0				0	0		0	0	0	1 0		0		2	1 1
ASTEROI DEA	-	1	1	1	1	1	1		-	i	Ī	1	1	-		-		Ī	1	Ī			1
Astropecten braziliensis armatu	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	2	1 0	0	0	1 5	T
HEMICHORDATA	-	1 0	1	1	1	1	1	1	-	1	0	1	1	1		1	1	1 4	1	1	1	1	1
	-	1	1 0	-	1 6	-	1 0	1	-	-	-	-	1	-		-	-	1 .	1 0	1 0	1 6	1 2	1
Hemichordata	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	1 2	1
CHORDATA	_	1		-	1	I.	1			-			-		-	-	1	1	1	1	1	1	+
Branchiostoma californiense	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0		0	1 0		1
Total de ind. por estacion	31	193	145	602	233	171	194	276	170	238	85	327	315	96	73	261	153	486	158	1272	59	4538	338

Apéndice B. Porcentaje de arena, limo y arcilla.

Ī	Est.	% Arena	% Limo	% Arcilla
ll l	5	SIN MUEST.	SIN MUEST.	SIN MUEST.
	8	77.218	8.108	14.672
	11	59.852	28.437	11.709
III	12	53.906	28.973	17.120
	13	30.786	24.916	44.296
	14	97.100	2.899	(Tamizada)*
	15	79.761	7.589	12.649
IV	21	19.665	18.727	61.620
	23	38.892	48.994	12.000
	24	90.218	9.781	(Tamizada)*
V	25	99.378	0.621	(Tamizada)*
	26	99.826	0.173	(Tamizada)*
	27	58.517	28.346	13.136
	28	71.820	20.999	7.136
VI	35	73.694	15.404	10.901
	36	87.182	12.817	(Tamizada)*
	37	99.153	0.846	(Tamizada)*
	38	79.283	20.716	(Tamizada)*
VII	В	58.176	26.470	15.352
-72-37-11-3	C	68.422	19.808	11.796
	D	50.750	40.636	8.630