

Tesis defendida por

Anuar Lezama Barquet

y aprobada por el siguiente comité

 Dr. Andrey Chernykh

Director del Comité

Dr. Carlos Alberto Brizuela Rodríguez Dr. Raúl Ramírez Velarde

Miembro del Comité Miembro del Comité

Dr. David Hilario Covarrubias Rosales

Miembro del Comité

Dr. José Antonio García Macías Dr. David Hilario Covarrubias Rosales

Coordinador del programa de posgrado
en Ciencias de la Computación

 Director de la Dirección de Estudios de
Posgrado

07 de septiembre de 2012

CENTRO DE INVESTIGACIÓN CIENTÍFICA Y DE EDUCACIÓN SUPERIOR

DE ENSENADA

Programa de Posgrado en Ciencias

en Maestría en Ciencias de la Computación

Experimental Analysis of a HPC model for Infrastructure as a Service Cloud

Tesis

para cubrir parcialmente los requisitos necesarios para obtener el grado de
Maestro Ciencias

Presenta:

Anuar Lezama Barquet

Ensenada, Baja California, México
 2012

1

Resumen de la tesis de Anuar Lezama Barquet, presentada como requisito parcial
para la obtención del grado de Maestro en Ciencias en Ciencias de la
Computación. Ensenada, Baja California. 2012.

Experimental Analysis of a HPC model for Infrastructure as a Service Cloud

Resumen aprobado por:

 Dr. Andrey Chernykh

 Director de Tesis

En esta tesis abordamos el problema de calendarización en un modelo conocido
como “infraestructura como servicio” (IaaS) en nube computacional. El modelo
utilizado permite la calendarización de trabajos secuenciales con diferentes
niveles de servicio para el usuario. Estos niveles de servicio se distinguen en el
tiempo de respuesta máximo que el trabajo admitido recibe. En este modelo, cada
nivel de servicio consta de un factor de laxitud y un precio por unidad de tiempo de
ejecución. En caso de que un trabajo sea aceptado, el sistema se compromete a
completarlo antes de su fecha límite. La fecha límite de un trabajo es calculada
mediante el tiempo de procesamiento del trabajo por el factor de laxitud del nivel
de servicio. Una vez que el trabajo es recibido, el proveedor debe de manera
inmediata e irrevocable aceptar o rechazar la ejecución del trabajo. Evaluamos
experimentalmente mediante simulaciones el desempeño de cuatro algoritmos
que combinan distintos modelos de sistemas (único y paralelo) y número de
niveles de servicio ofrecidos (único y múltiple), con una carga de trabajo realística.
Tomando un conjunto de métricas determinamos los mejores parámetros para los
algoritmos evaluados. Nuestros experimentos y análisis mostraron que los
algoritmos para sistemas paralelos poseen un mejor desempeño y que existe una
discrepancia entre los mejores parámetros para el grupo de métricas centrado en
el sistema y centrado en el algoritmo con respecto al grupo centrado en el usuario.

Palabras Clave: Infraestructura como Servicio, Computación en Nube,
Calendarización, Niveles de Servicio

Resumen

2

Abstract of the thesis presented by Anuar Lezama Barquet as a partial
requirement to obtain the Master of Science degree in Computer Sciences.
Ensenada, Baja California, México 2012.

Experimental Analysis of a HPC model for Infrastructure as a Service Cloud

Abstract approved by:

 Dr. Andrey Chernykh

 Thesis Director

In this thesis, we address a scheduling problem for an infrastructure as a service
(IaaS) type of cloud. In this problem, a user executes sequential jobs with different
service levels. These levels are distinguished by the maximum response time that
is guaranteed for accepted jobs, and a price per unit of job execution. If the system
accepts a job, it provides quality of service (QoS) in the form of a commitment to
complete its execution before a certain deadline. This deadline is calculated using
the processing time of the job and the slack factor of the service level. Once the
job is submitted, the system must decide immediately and irrevocably if it accepts
or rejects the job for execution. We perform an experimental evaluation through
simulations of four algorithms that combine different system models (single and
parallel), and number of service levels (single and multiple), with a realistic
workload. Using a series of metrics we obtain the best parameters for the
evaluated algorithms. Our results show that the algorithms for parallel systems
have a better performance, and that there exist differences between the best
parameters for the system-centric and the algorithm-centric group of metrics
compared with the user-centric group.

Keywords: Infrastructure as a Service, Cloud Computing, Scheduling, Service
Levels

Abstract

3

Dedication

This thesis is dedicated to all the people that make

research in Mexico possible.

4

Acknowledgements

This thesis would not have been possible without the guidance of my advisor

Professor Andrey Chernykh. His advice, support and encouragement in the last

two years have allowed me to discover the area of parallel computing and to learn

the methodology to perform this research work.

My gratitude to the members of my thesis committee: Professor Carlos Brizuela

Rodriguez, Professor David H. Covarrubias Rosales and Professor Raúl Ramírez

Velarde for their time, comments and interest in assisting me in this research work.

I am also thankful to all the people that have helped me with corrections for this

thesis.

I would like to thank to CICESE, the hosting institution of my studies and

CONACYT for the scholarship with record number 242921 provided.

I am grateful to all my professors and peers at CICESE, especially to the research

team of parallel computing and vision for sharing the laboratory and meal time with

me. I thank to all the friends I have made here in Ensenada and the friends I have

back in Mexico City, who have helped me in many ways in the last years.

Lastly, I would like to thank my family and my girlfriend Ana Angelica Hernandez

for their support in my decision to pursue my master studies here at Ensenada.

5

Table of contents

Page

Resumen ... 1

Abstract .. 2

Dedication .. 3

Acknowledgements .. 4

Table of contents ... 5

List of figures ... 7

List of tables ... 10

1. Introduction .. 11

1.1 Cloud computing ... 11
1.1.1 Cloud architecture ... 11
1.1.2 Cloud computing characteristics ... 12
1.1.3 Service models .. 13
1.1.4 Deployment models .. 14
1.1.5 Service level agreements .. 14

1.2 Problem statement .. 15
1.3 Justification ... 16
1.4 Objectives ... 18

1.4.1 General objective .. 18
1.4.2 Specific objectives ... 18
1.4.3 Research questions .. 19
1.4.4 Thesis organization ... 19

2. Background .. 21

2.1 Related work ... 21
2.2 Theoretical framework .. 24

3. Model Description .. 29

3.1 IaaS model .. 29
3.2 Formal definition ... 33
3.3 Scheduling algorithms ... 38
3.4 Experimental setup ... 41

3.4.1 Single Service Level Single Machine (SSL-SM) algorithm 41
3.4.2 Single Service Level – Parallel Machines (SSL-PM) algorithm 43
3.4.3 Multiple Service Level - Single Machine (MSL-SM) algorithm 43
3.4.4 Multiple Service Level - Parallel Machines (MSL-PM) algorithm 45

3.5 Criteria analysis .. 45
3.6 Workload ... 46

6

4. Experimental Competitive Factor Analysis ... 49

4.1 Price function .. 49
4.2 Optimal income bounds .. 52
4.3 Competitive factor ... 56

5. Service provider benefits ... 62

6. Experiments Results .. 65

6.1 Single Service Level – Single Machine (SSL-SM) algorithm 65
6.2 Single Service Level -Parallel Machines (SSL-PM) algorithm 71
6.3 Multiple Service Levels-Single Machines (MSL- SM) algorithm 79
6.4 Multiple Service Levels - Parallel Machines (MSL-PM) algorithm 85

7. Criteria Analysis ... 92

7.1 Group of metrics analysis ... 92
7.2 Criteria analysis results ... 93

Conclusions ... 99

Bibliographic references .. 103

Appendix .. 106

A.1 Degradations metrics plots ... 106

7

 List of figures

Figure

Page

1 Competitive factor bound for the SSL-SM scheduling

problem.

25

2 Minimum competitive factor bound for the SSL-SM and

SSL-PM algorithms.

26

3 Minimum competitive factor bound for the MSL-SM and

MSL-PM algorithms.

28

4 Cloud middleware diagram. 31

5 Competitive factor for the SSL-SM algorithm with a sf from 1

to 1000.

42

6 Number of jobs in the experiment interval. 47

7 Processing time of the jobs in the workload. 48

8 Cost and prices for the SSL-SM algorithm. 52

9 Upper bound of the unlimited resources optimal income for

the SSL and MSL algorithms.

53

10 Upper bound of the limited resources optimal income for the

SSL algorithms.

54

11 Upper bound of the limited resources optimal income for the

MSL algorithms.

55

12 Saturation matrix for the competitive factor limits. 56

13 Competitive factor for the SSL algorithms. 58

14 Competitive factor for the MSL algorithms. 60

15 Service provider benefits for the SSL-PM algorithm. 62

16 Service provider benefits for the MSL-PM algorithm. 63

17 Relative service provider benefits for the MSL-PM algorithm. 64

18 Total processing time for SSL-SM algorithm. 66

19 Machines efficiency for SSL-PM algorithm. 67

8

List of figures (continued)

Figure

Page

20 Mean waiting time for SSL-SM algorithm. 68

21 Mean bounded slowdown for SSL-SM algorithm. 69

22 Machine efficiency for SSL-SM algorithm. 69

23 Mean number of interruptions per job for SSL-SM algorithm. 70

24 Total processing time for SSL-PM algorithm. 72

25 Relative processing time for SSL-PM algorithm. 72

26 Percentage of rejected jobs for SSL-PM algorithm. 74

27 Mean waiting time for SSL-PM algorithm. 75

28 Mean bounded slowdown for SSL-PM algorithm. 76

29 Machines efficiency for SSL-PM algorithm. 77

30 Mean number of interruptions per job for SSL-PM algorithm. 78

31 Total processing time for MSL-SM algorithm. 80

32 Incoming SLA contribution to TPT for MSL-SM algorithm. 81

33 Percentage of rejected jobs for MSL-SM algorithm. 82

34 Mean waiting time for MSL-SM algorithm. 82

35 Mean bounded slowdown for MSL-SM algorithm. 83

36 Machine efficiency for MSL-SM algorithm. 84

37 Mean number of interruptions per job for MSL-SM algorithm. 85

38 Total processing time for MSL-PM algorithm. 87

39 Percentage of rejected jobs for MSL-PM algorithm. 87

40 Mean waiting time for MSL-PM algorithm. 88

41 Mean bounded slowdown for MSL-PM algorithm. 89

42 Machines efficiency for MSL-PM algorithm. 89

43 Mean number of interruption per job for MSL-PM algorithm. 90

9

List of figures (continued)

Figure Page

44 System-centric metric group for the SSL-PM algorithm. 94

45 User-centric metric group for the SSL-PM algorithm. 95

46 Algorithm-centric metric group for the SSL-PM algorithm. 95

47 System-centric metric group for the MSL-PM algorithm. 96

48 User-centric metric group for the MSL-PM algorithm. 97

49 Algorithm-centric metric group for the MSL-PM algorithm. 98

50 Mean bounded slowdown degradations for SSL-PM

algorithm.

106

51 Percentage of rejected jobs degradations for SSL-PM

algorithm.

107

52 Service provider benefits degradations for SSL-PM

algorithm.

107

53 Competitive factor degradations for SSL-PM algorithm. 108

54 Mean waiting time degradation for SSL-PM algorithm. 108

55 Mean bounded slowdown degradations for MSL-PM

algorithm.

109

56 Percentage of rejected jobs degradations for MSL-PM

algorithm.

109

57 Competitive factor degradations for MSL-PM algorithm. 110

58 Service provider benefits degradations for MSL-PM

algorithm.

110

59 Mean waiting time degradation for MSL-PM algorithm. 111

10

List of tables

Table Page

1 Implemented metrics. 36

2 Slack factor distribution over the number of SLAs

available.

44

3 Group metrics for the criteria analysis. 93

11

Chapter 1

Introduction

In this chapter, we present important concepts of cloud computing related to our

research. Additionally, we introduce the definition of Service Levels as a tool for

establishing characteristics of the provided service and quality of service received

by end users.

1.1 Cloud computing

Cloud computing is a new paradigm related to how computing services are offered.

It is defined by the US National Institute of Standards and Technology (Mell et al.,

2011) as a model for enabling convenient, on demand network access to a shared

pool of configurable computing resources (e.g. networks, servers, storage,

applications and services) that can be rapidly provisioned and released with

minimal effort of service provider interaction. The location of physical resources

and devices being accessed are typically unknown to the end user. It also provides

facilities for users to develop, deploy and manage their applications “on the cloud”,

which involves virtualization of resources that maintains and manages themselves.

1.1.1 Cloud architecture

Cloud computing architecture is categorized into two main sections: front end and

back end. Front end can be end user or client or any other application (i.e. web

browser, etc.) which uses cloud services. Back end is the network of servers with

any computer program and data storage system. It is usually assumed that cloud

contains infinite storage capacity for any software available in market. Cloud has

different applications that are hosted on their own dedicated server farms.

12

Cloud has a centralized server administration system. A centralized server

administers the system, balances client supply, adjusts demands, monitors traffic

and avoids congestion. This server follows protocols, commonly known as

middleware.

Cloud architecture is based on a very important assumption, which is mostly true.

This assumption is that the demand for resources is not always consistent from

client to cloud. For this reason the servers of cloud are unable to run at their full

capacity. To avoid this scenario, server virtualization techniques are applied. In

server virtualization, all physical servers are virtualized and they run multiple

servers with either same or different application. As one physical server acts as

multiple physical servers it curtails the need for more physical machines.

1.1.2 Cloud computing characteristics

Cloud computing typically entails the following characteristics: (i) Agility, the cloud

works in the distributed mode environment. It shares resources among users and

tasks, while improving efficiency and agility (responsiveness). (ii) High availability

and reliability, availability of servers is high and more reliable as the chances of

infrastructure failure are minimal. (iii) Multi-sharing, with the cloud working in a

distributed and shared mode, multiple users and applications can work more

efficiently with cost reductions by sharing common infrastructure. (iv) Services in

pay-per-use mode, service level agreements (SLAs) between the provider and the

users must be defined when online offering services in pay per use mode. This

may be based on the complexity of services offered. (v) Application Programming

Interfaces (APIs) may be offered to the users so they can access services on the

cloud by using these APIs. (vi) Rapid elasticity, capabilities can be elastically

provisioned and released, in some cases automatically, to scale rapidly outward

and inward commensurate with demand. To the user, these capabilities for

13

provisioning appear to be unlimited and can be appropriated in any quantity at any

time.

1.1.3 Service models

Cloud computing is divided in three main service models that are also referred as

layers.

Software as a Service (SaaS). The service offered to the user is the use of

provider’s applications running on a demand infrastructure. The applications are

accessible from various client devices through different interfaces such a web

browser or a program interface. The user does not manage or control the

underlying cloud infrastructure and he is limited to only modify the user application

configuration settings.

Platform as a Service (PaaS). In this model the user has the capability to deploy

onto the cloud infrastructure consumer-created or acquired applications created

using programming language, libraries, services, and tools supported by the

provider. The user does not manage or control the underlying cloud infrastructure

but has control over the deployed applications and possibly configuration settings

for the application –hosting environment.

Infrastructure as a Service (IaaS). This model gives the capability to provision

processing, storage, networks, and other fundamental computing resources, where

the customer is able to deploy and run arbitrary software, which can include

operating systems and applications. The user does not manage or control the

underlying cloud infrastructure but has control over the software stack, storage and

processing capacity and limited control over selected networking components.

14

1.1.4 Deployment models

Cloud computing has three deployment models which differ on the access that is

available to the cloud. The first type is the public cloud. In this deployment model

the provider owns and manages the cloud, users grant access to the resources

through subscription. Once the subscription is established, a user initializes

consumption of computing and storage resources through service catalog self-

service portal. These resources are highly scalable and automatically provisioned.

The resources are metered and billed on a pay per use basis.

Private cloud is the second type of development model. Here the resources of the

cloud are client-dedicated and its access is defined by the client. Data governance

rules and regulations are established to the user making this type of cloud more

secure. A private cloud is designed to offer the same features and benefits of cloud

systems, but removes a number of objections to the cloud computing model

including control over data, security and regulatory compliance.

Finally, the third deployment model is a hybrid cloud. In this model enterprise

computing and private clouds are extended outward to consume public compute

resource for peek needs.

1.1.5 Service level agreements

SLAs are binding contracts between a service provider and the user of that

service. The SLA should contain the list of services that the provider will deliver

and a complete definition of each service, metrics to determine whether the

provider is delivering the service as promised, an auditing mechanism to monitor

the service, responsibilities of the provider and the user and remedies available to

15

both if the terms of the SLA are not met, and the description of how the SLA will

change over time.

The responsibilities of the provider are in the form of the level of quality of service

(QoS) that the service should keep. On the other hand the responsibilities of the

user are in the form of payments for the service received. Economic penalties or

other form of compensation are commonly used in case of non-fulfillment on the

terms of the SLA, such as QoS levels.

There are two types of SLAs (IBM, 2010). The first type is off-the-shelf agreements

which are offered by public clouds and often are non-negotiable which may not be

acceptable for those with mission-critical apps or data. The second type are

customized SLAs which terms are negotiated between the provider and the user

until both agree.

Negotiable SLAs require a mechanism of negotiation and common markets. There

has been research on negotiation mechanism, market places, protocols and

definition of SLAs parameters that allows this negotiation to take place in an

automatic and transparent way for the user.

1.2 Problem statement

Infrastructure as a service is becoming attractive in many commercial and

research areas with the emergence of providers and tools surrounding on-demand

deployment of virtual machines. However, for the commercial success of this

computing model, the cloud providers need to provide better and strict QoS

guarantees. These QoS guarantees are established with the service definition as

maximum and minimum metric values in the form of SLAs.

16

Currently, IaaS provides mechanisms to deploy and manage virtual machines.

Although there are several cost-metrics involved in calculating the running costs

for a virtual machine, the cost is dominated by instance uptime and not by the CPU

usage. The more resources an instance has, the higher the cost associated with

keeping it up and running. A cost effective utilization of this IaaS model by the user

requires ensuring that the instance is only running where is needed. Even more,

the user needs to consider the costs and effort of booting the virtual machine and

installing the necessary software before being able to start executing jobs. Another

factor to consider is that in the cloud, the costs are charged on timing units that

make it economically unacceptable to run jobs of short length and high

parallelization.

Such restrictions serve as a preamble to design and propose IaaS models that

help to extend the adoption of clouds for the execution of HPC jobs through the

incorporation of a QoS guarantee scheme and a flexible economic model.

1.3 Justification

The use of SLAs is a fundamentally new approach for job scheduling. With this

approach, schedulers are based on satisfying QoS constraints. The main idea is to

provide different levels of service, each addressing different set of customers for

the same services, in the same SLA, and establish bilateral agreements between a

service provider and a service consumer to guarantee job delivery time depending

on the service level (SL) selected.

The shifting emphasis of the grid and clouds towards a service-oriented paradigm

led to the adoption of SLAs as a very important concept, but at the same time led

to the problem of finding the most stringent SLAs.

17

There has been significant amount of research on various topics related to SLAs:

admission control techniques (Wu et al., 2011); incorporation of the SLA into the

Grid/Cloud architecture (Patel et al., 2009); specifications of the SLAs (Andrieux et

al., 2004)(IBM, 2010); usage of SLAs for resource management; SLA-based

scheduling (Wu et al., 2011), SLA profits; automatic negotiation protocols (Cosmin

Silaghi et al., 2010); economic aspects associated with the usage of SLAs for

service provision (Macías et al., 2010), etc. Little is known about the worst case

efficiency of SLA scheduling solutions. There are only very few theoretical results

on SLA scheduling, and most of them address real time scheduling with given

deadlines.

A more complete study is presented in (Schwiegelshohn et al., 2012). Authors

theoretically analyze the single (SM) and the parallel machine (PM) models subject

to jobs with single (SSL) and multiple service levels (MSL). Their analysis is based

on the competitive factor, which is measured as the ratio between the income of

the infrastructure provider obtained by the scheduling algorithm and the optimal

income. They provide worst case performance bounds of four greedy acceptance

algorithms named SSL-SM, SSL-PM, MSL-SM, MSL-PM, and two restricted

acceptance algorithms MSL-SM-R, and MSL-PM-R. All of them are based on the

adaptation of the preemptive EDD (Earliest Due Date) algorithm for scheduling the

jobs with deadlines.

In this thesis, we adopt the models of IaaS cloud model proposed by

Schwiegelshohn et al. (2012). To show the practicability and competitiveness of

the algorithms, we conduct a comprehensive study of their performance and

derivatives using simulation. We take into account an important issue that is critical

for practical adoption of the scheduling algorithms, the use of workloads based on

real production traces of heterogeneous HPC systems.

18

We also propose a price function that helps us to calculate the performance of the

algorithms. The price function considers costs that a system has with a full-

acceptance algorithm, and where its income is only related with total processed

time. The price function is related with the process of assigning SLAs to jobs.

Therefore, a more complex price function requires a more complex assignment of

jobs to SLAs. We define the competitive factor lower bound. This definition can be

used to obtain the optimal income of SLA based algorithms according to the

workload’s characteristics

1.4 Objectives

1.4.1 General objective

Implementation and experimental analysis of the SSL-SM, SSL-PM, MSL-SM, and

MSL-PM scheduling algorithms for IaaS type of clouds with QoS determined by

SLAs.

1.4.2 Specific objectives

1. Formal definition of the cloud scheduling problem

2. Design and implementation of a simulation platform for the IaaS model

3. Design and implementation of the proposed algorithms

4. Evaluation of cloud performance using different algorithms and system

parameters

5. Propose and use a price function for the model

19

 1.4.3 Research questions

In order to achieve the proposed objectives, we intent to answer the following

research questions:

1. How can scheduling algorithms guarantee performance when SLA

constraints are considered?

2. How does the SLA model change the system performance?

3. Which performance measure is the most appropriate for analyzing

scheduling algorithms with SLA constraints?

4. Which SLA model performs better in the studied systems?

5. How job rejection changes the system’s competitiveness?

6. What kind of performance guarantees can be assured when the scheduler

is based on SLA models?

1.4.4 Thesis organization

This thesis is organized in the following way. Chapter 1 shows an introduction to

cloud computing, the problem statement and the objectives of this thesis. In

Chapter 2, we mention a series of relevant works related with the topic of clouds

and parallel systems scheduling with SLAs. In this chapter, we also present the

theoretical work that supports the IaaS model used in this thesis. In Chapter 3, we

make a formal description of the IaaS cloud model together with the scheduling

algorithms used in our experimental study. Additionally, we also present a

description of the metrics implemented, the experimental setup, and a brief

description of the workload. In Chapter 4, we present the analysis of the

competitive factor, the price function employed, and a comparison of the

experimental results of this particular metric with the theorems available. In

Chapter 5, we present the analysis of the service provider benefits. In Chapter 6,

we make a description and analysis of the rest of the metrics experimentally

20

obtained. In Chapter 7, we present a criteria based analysis that gathers different

metrics into groups to provide guidance in the selection of the best parameters for

the studied algorithms. Finally, we present the conclusions of this work.

21

Chapter 2

Background

In this chapter, we review related works in the area of cloud, grid and parallel

machines scheduling with SLAs. Here, we also present the theoretical foundation

of the IaaS model used in this thesis.

2.1 Related work

Traditional IaaS models do not require job scheduling. They provide resources to a

user who has to manage these resources by himself to execute jobs. The user is

then responsible for the resource management to achieve his own processing

necessities and QoS requirements.

There exist research models of IaaS clouds such the one proposed by Garg et al.

(2011) that schedule HPC jobs co-allocating them with transactional applications

such as Web services. This method allows the system to take advantage of the

different requirements of processing from different typical applications executed on

the cloud. The algorithm co-allocates transactional jobs with HPC jobs so the HPC

jobs can use the underutilized resources from the execution of transactional jobs.

Additionally, for peak utilization intervals from the transactional jobs, the HPC jobs

can be delayed to provide more resources. The algorithm requires for the

acceptance of HPC jobs the availability of underutilized machines. The users of

HPC jobs receive a guarantee in the form of maximum response time, which could

not be complied by the provider.

The idea of offering QoS in the form of maximum response time was previously

presented for parallel machines by Islam et al., (2003). This model is the first one

22

that implements admission control and commitment in deadlines for admitted

parallel jobs. This study shows the feasibility of the model and compares its trade-

offs with respect to existing non-deadline based schemes. The proposed algorithm

schedules uniprocessor tasks with hard real time deadlines on multiprocessor

systems. They use Earliest Deadline First and Least Laxity First as heuristics to

select jobs that extend the current feasible partial schedule.

In order to associate deadlines with jobs, they first use EASY back-fill algorithm to

generate a valid schedule. Based on the completion time of the schedule

generated by EASY back-fill and a stringency factor, they assign a deadline to

every job. The stringency factor determines how tight the deadline has to be set

compared with the EASY back-fill schedule. With a stringency factor of zero, the

deadlines are set to completion times of the jobs according to the EASY back-fill

schedule. They use the stringency factor to test their scheme under a variety of

scenarios with loose and stringent deadlines.

The use of SLAs has been proposed as a tool for scheduling jobs in multi-user

systems such as Grids. In the work of Sakellariou et al., (2008), the authors define

a model of SLA that includes the following terms: (i) Earliest job start time, (ii)

Latest job finish time, (iii) Reserved time for job execution, (iv) Number of CPU

nodes required, and (v) Final price agreed. These terms are used to calculate the

SLA priority which is then used to schedule the jobs. The work consists on an

experimental comparison between different heuristics to prioritize the SLAs.

While the idea of using QoS guarantees in the form of deadlines and SLAs as a

tool for scheduling jobs is not new, the models previously presented do not

consider SLs for determining the deadlines guarantees within the SLAs.

Additionally, they may accept delays in the deadlines with penalties. The

scheduling models available for clouds do not consider that the infrastructure can

be used for just executing HPC jobs without requiring a model with independent

VMs.

23

Regarding theoretical results of SLA scheduling little is known about the worst

case efficiency of these solutions. There are only very few theoretical results on

SLA scheduling, and most of them address real time scheduling with given

deadlines.

Baruah and Haritsa (1997) discuss the online scheduling of sequential

independent jobs on real time systems. They presented the ROBUST (Resistance

to Overload By Using Slack Time) algorithm that guarantees a minimum slack

factor for every task. The slack factor ݂ of a task is defined as a ratio of its relative

deadline over its execution time requirement. It is a quantitative indicator of the

tightness of the task deadline. The algorithm provides an Effective Processor

Utilization (EPU) of ሺ݂	 െ 	1ሻ/݂ during the overload interval.

Baruah et al. proposed a new solution to the problem using multiple processors

and a new on-line scheduling algorithm. He shows that given enough processors,

on-line scheduling algorithms can be designed with performance guarantees

arbitrarily close to that of optimal clairvoyant uniprocessor scheduling algorithms.

A more complete study is presented in (Schwiegelshohn et al., 2012). Authors

theoretically analyze the single (SM) and the parallel machine (PM) models subject

to jobs with single (SSL) and multiple service levels (MSL). Their analysis is based

on the competitive factor, which is measured as the ratio between the income of

the infrastructure provider obtained by the scheduling algorithm and the optimal

income. They provide worst case performance bounds of four greedy acceptance

algorithms named SSL-SM, SSL-PM, MSL-SM, MSL-PM, and two restricted

acceptance algorithms MSL-SM-R, and MSL-PM-R. All of them are based on the

adaptation of the preemptive-EDD (Earliest Due Date) algorithm for scheduling the

jobs with deadlines.

24

They prove a series of theorems and corollaries that show the complexity of the

problem and also the response in terms of the competitive factor of the greedy

acceptance algorithm. This model is the one employed in this thesis.

2.2 Theoretical framework

In this section, we present theorems and corollaries related with the algorithms

experimentally studied in this thesis. A complete demonstration of the theorems

and corollaries can be found in (Schwiegelshohn et al. 2012).

Theorem 1: ܿ௏ ൑ 1 െ ቀ1 െ ௣೘೔೙

௣೘ೌೣ
ቁ ∙ ଵ

௙಺
	 holds for SSL-SM with service level ூܵ.

Conditions the minimal ݌௠௜௡ ൐ 0 and ݌௠௔௫ is the maximal possible processing time

of any submitted job. Rational slack factors are allowed but with restrictions in its

granularity such that either ூ݂ ൌ ہ ூ݂ۂ or ூ݂ െ ہ ூ݂ۂ ≫
௣೘೔೙

௣೘ೌೣ
 holds.

Theorem 1 provides a maximum competitive factor value (ܿ௏) for the problem of

scheduling jobs with a single slack factor on a single machine system (SSL-SM).

The plot in Figure 1 shows the ܿ௏ bound. To build this graph, we considered that

the processing times of the jobs are normalized with respect to ݌௠௜௡, thus ݌௠௜௡

has a value of 1. Then, we consider ݌௠௔௫ in the interval of 1 to 10 and ூ݂ from 1 to

20. In the plot we see how as the values of ூ݂ → 	∞ or the value of ݌௠௔௫ → 0, the

ܿ௏ → 1.

25

Figure 1. Competitive factor bound for the SSL-SM scheduling problem.

Theorem 2: Greedy acceptance has the competitive factor greater or equal to

1 െ ଵ

௙಺
 for SSL-SM with service level ூܵ.

Theorem 2 provides the minimum value of ܿ௏ that we can expect that the greedy

SSL-SM scheduling algorithm to obtain. In Figure 2, the plot of this bound is

shown. We see that the ܿ௏ bound increases as the ூ݂ increases.

26

Figure 2. Minimum competitive factor bound for the SSL-SM and SSL-PM algorithms.

In the case of the SSL-PM algorithm, Theorem 3 claims that the bound obtained

for the SSL-SM algorithm also holds when the infrastructure is extended with any

number of identical machines as long there is still only a single service level.

 .

Theorem 3: ܿ௏ ൑ 1 െ ଵ

௙಺
 holds for SSL-PM with service level ூܵ if the ratio between

the largest and the smallest processing time of a job can be arbitrary large.

If the processing times of the jobs are restricted, Corollary 4 states that a slightly

upper bound for the SSL- PM algorithm can be obtained.

Corollary 4: ܿ௏ ൑
௙಺

ଵା௙಺∙ቀଵି
೛೘೔೙
೛೘ೌೣ

ቁ
 holds for SSL-PM with service level ூܵ and its

integer slack factor ூ݂ ൏
௣೘ೌೣ

௣೘೔೙
.

27

Theorem 5: Greedy acceptance has a competitive factor 1 െ ଵ

௙಺
 for SSL-PM with

service level ூܵ.

Theorem 5 shows that the minimum value of ܿ௏ obtained for the SM holds for the

case with PM.

The MSL-SM algorithm analysis only refers to two different service levels ூܵ and

ூܵூ. Requiring that 1 ൏ ூ݂ ൏ ூ݂ூ ൏ ∞ and ݑூ ൐ ூூ for the slack factors and the priceݑ

values, respectively. In general, Theorem 1 can be used to determine an upper

bound for the competitive factor. Where the smallest of these upper bounds is an

upper bound for the competitive factor for MSL-SM. A stronger upper bound can

be determined by Corollary 6 if ூ݂ െ ہ ூ݂ۂ ≫
௣೘೔೙

௣೘ೌೣ
 holds for the slack factor ூ݂ of

service level ூܵ and ூ݂ூ ൏ 2 for two services levels ூܵ and ூܵூ.

Corollary 6: ܿ௏ ൑ max ቊ
೛೘೔೙
೛೘ೌೣ

ሺ௙಺ିଵሻ
,
௙಺ିଵା

೛೘೔೙
೛೘ೌೣ

௙಺ିଵା
ೠ಺
ೠ಺಺

ቋ holds for MSL-SM.

The plot of this bound is difficult to build because it is a four dimension function

and, additionally, we can always refer to the plot of Figure 4 for a bound of general

values of this algorithm’s slack factor.

The performance of the greedy acceptance for multiple service levels has a bund

defined by Corollary 7.

Corollary 7: Greedy acceptance has the competitive factor
௨಺಺
௨಺
∙ ሺ1 െ ଵ

௙಺
ሻ for MSL-

SM with service level ூܵ and ூܵூ.

Figure 3 shows the bound defined by Corollary 7. We plot the relation ݑூ ൐ ூூ andݑ

give it a value in the interval ሺ0,1ሿ, We see that the competitive factor reaches a

28

value of one when the ratio
௨಺಺
௨಺
ൌ 1 and ூ݂ ൌ 1. If we keep

௨಺಺
௨಺
ൌ 1, when the value of

ூ݂ grows the competitive factor linearly decrease towards zero. If instead, we keep

ூ݂ ൌ 1, we see that as the ratio
௨಺಺
௨಺

 tends to zero, the competitive factor also tends

to zero.

Figure 3. Minimum competitive factor bound for the MSL-SM and MSL-PM algorithms.

Corollary 11: Greedy acceptance has a competitive factor
௨಺಺
௨಺
ሺ1 െ ଵ

௙಺
ሻ for MSL-PM

with service levels ூܵ 	and ூܵூ.

Corollary 11 claims that the bound for the MSL-SM is also valid for the MSL-PM

algorithm. This bound is shown in Figure 6.

In the next chapter we present the formal description of the model employed, the

metrics implemented and the workload used.

29

Chapter 3

Model Description

In this chapter, we describe the general Infrastructure as a Service model, some of

its characteristics, and the difference between this general model and the one we

use in our research. Once that point is covered, we define mathematical notations

and metrics implemented for algorithm’s evaluation, followed by the experimental

setup, and workload analysis.

3.1 IaaS model

Infrastructure as a Service (IaaS) is the delivery of virtual hardware (server,

storage and network), and associated software (operating systems, file system,

etc.) as a service. It is considered an evolution of traditional hosting data that does

not require any long term commitment and allow users provision of resources on

demand. It has an advantage to allow minimizing or even eliminate associated

capacity cost and letting customers to add or remove capacity from their IT

infrastructure to meet peak or oscillating service demands while paying only for the

capacity used. IaaS benefits its customers by transferring the responsibility for

housing, running and maintaining the infrastructure to the provider.

The IaaS provider supply administrative services and the platform for storing and

executing applications. The provider allows scaling resources such as processing

power, bandwidth, memory and storage. These resources can be purchased with a

contract or on a pay-as-you-go basis.

30

Some characteristics and components of IaaS include: an utility computing service

and billing model, the automation of administrative tasks, dynamic scaling, multi-

tenancy, policy-based services, and internet connectivity.

The IaaS provides an environment for running user built virtualized systems in the

form of virtual machines (VMs) in the cloud provider’s data center. A user starts

with building a VM in an IaaS environment, and then he uploads, configures, and

finally deploys it within this environment. One mechanism for deploying VMs into

the IaaS infrastructure is through the use of SLAs.

SLAs describe the service parameters in terms of requirements and QoS levels

that the provider is committed to keep. These parameters can then be used by the

cloud middleware to allocate the user requests into the physical infrastructure.

According with Garg et al. (2011) current cloud datacenters host a variety of

applications each with different SLA requirements. The transactional applications

require response time and throughput guarantees, while non-interactive batch jobs

concerns performance for example in the form of completion times.

A picture of the cloud middleware is shown in Figure 4. Cloud consumers (a) need

flexible infrastructure on demand. The cloud consumers can be diverse such

individual users, other clouds or PaaS applications. Every set of customers

requires different resources and needs that can be established through different

SLAs. The cloud management provides remote and secure interfaces for creating,

controlling, and monitoring virtualized resources on an IaaS cloud. This layer

should take the different requirement in the form of SLAs and manage the

resources to full fit the QoS levels containing in them. This layer is also responsible

to monitor the resources and reallocate them in case it is necessary. Virtual

infrastructure (VI) management provides primitives to schedule and manage VMs

across multiple hosts. Some toolkits currently do not use VI managers and, instead

manage directly VMs themselves. Finally, the VM managers (d) allow multiple

operating systems termed guests to run concurrently on a server infrastructure.

31

This allows the VM to share the hardware resources. They provide with simple

primitives (start, stop and suspend) to manage VMs on a single host.

 .

Figure 4. Cloud middleware diagram.

Using this technique VMs are loaded with all the software that will eventually run in

the cloud. These include custom build software as well as licensed software. After

the VM is built, it is uploaded to the IaaS vendor’s hosting environment where it

can be configured to use the IaaS vendor raw storage. Once configured, the VM

can be deployed and started via VM manager or cloud manager which

automatically finds available hardware to run the VM. Once the VM is started the

IaaS vendor can ensure that the running VM continues to look healthy as a whole.

The computers needed to run the application and the raw storage that is needed

by the application are owned and supported by the IaaS vendor. It is responsibility

of the user to monitor all the custom built software and licensed software to ensure

that they are operating properly.

32

The cloud service customer and service provider (Bhardwaj et al., 2010) play key

roles in a cloud environment. The cloud service customer needs a secure anytime

anywhere access to low cost services that are flexible and easy to use. The

biggest hurdle to adoption of cloud has to do with customer’s discomfort in the

following areas: security of services and the underlying data, service availability

and reliability, service management to ensure SLAs, ensuring control over access

policies, and the appropriate administration to facilitate flexible pricing structures.

The service provider actually runs the service that the service customer wants and

was designed and developed by the service creator. The cloud service creator

needs tools and capabilities to offer differentiated services, offer incentives to

ensure that customers keep coming back to use the services, and the ability to

change services on-demand to stay competitive and address threats.

By using VMs in the cloud infrastructure jobs preemption can be supported,

suspending the jobs of lower-priority and resuming it time after or potentially

migrating it to other available nodes or even another cloud. We can do this without

having to make the job inside the VM aware that it will go to be suspended,

resumed or even migrated.

Virtualization is just a multi-tenancy strategy. Multi-tenant architecture allows a

single instance of the hosted application be capable of servicing all customers

(tenants). Not all clouds use virtualization. Examples are Google Apps Engine and

Salesforce.com which have multi-tenancy models without virtualization.

Our IaaS model is intended to execute high performance computing (HPC) jobs.

We propose a model that does not provide the service of VMs, but a mechanism

that allows the computational job submitted by the customer to be executed on the

cloud infrastructure with an application defined SLA capability. This kind of SLA

should guarantee that the job will receive enough resources to achieve a certain

QoS level in the form of maximum completion times.

33

This model differs from services such as Amazon EC2, a popular IaaS provider,

which architecture allows its users to monitor and control their application as an

instance but not as a service.

3.2 Formal definition

We consider a sequence of rn jobs 1 2{ , ,..., ,..., }
rr i nJ J J J . Each job is

submitted to a system with ݉ machines with a SLA iS from a set of SLAs 

offered by the provider. Each SLA represents a QoS SL guarantee.

Each service level (SL) iS is characterized by a slack factor 1isf  and a price per

unit of execution iu . The SLAs are ordered in  by non-decreasing slack factor,

i.e. 1i isf sf  . We also assumed that ݏ ௜݂~
ଵ

௨೔
 therefore 1i iu u  is also met. A job j

can be represented as a tuple (, ,)j j j jJ r p S , where jr and jp are the released

time and the processing time of the job j , respectively, and jS is the SL chosen

by the user for the execution of this job. Additional parameters of the job can be

calculated by the system using these initial parameters. The deadline ()jd is the

latest time that the system has to complete the job jJ if it is accepted. This value

is calculated by the equation (1).

 j j j jd r sf p   (1)

This means that the slack factor (1isf ) is the parameter that determines the

deadline of a job. The profit that the system will obtain executing job jJ

is

calculated by the equation (2).

 j j jg u p  (2)

34

The form of QoS that the system assures is that, once a job is accepted, it will

complete its execution before its deadline is reached. The set of n jobs accepted

by the system is  1 2, ,..., ,...,i nJ J J J a subset of r .

In order to evaluate the system performance we came with a series of metrics

useful for systems scheduled through SLs, where traditional measures such as the

maximum completion time (maxC) become irrelevant.

For these systems the metrics must allow the provider to measure the

performance of the system in terms of parameters that helps him to establish utility

margins as well as user satisfaction for the service.

Due to the definition of the system model, the QoS guarantee in the form of

response time of the accepted jobs will always been granted. However, other

parameters for assessing user satisfaction can be considered, for example, the

user reliability on the system. We can define this reliability as the capacity of the

system to accept jobs for execution. Considering both the performance and the

user satisfaction we employ the following series of metrics.

The first metric we use is the competitive factor ()Vc that measures the ratio in

which the income generated by our algorithm gets closer to the value obtained by

an optimal income *V . The competitive factor  Vc is defined by equation (3).

 1

*
1

n

i jj
V

u p
c

V



 


 (3)

Vc requires the optimal income, which in most cases is not possible to calculate.

We consider two definitions of optimality in order to obtain a bound for *V . The first

one is when the system has an unlimited number of resources, therefore, it is

always possible to execute all jobs released without restrictions of their deadline.

35

That means that the system is always able to provide a new machine for each

incoming job, so it is capable to completely execute the workload. Multiplying this

processing time with the maximum value in S  maxu we obtain the maximum

income that the system can obtain. We define this bound as unlimited and its value

is given by equation (4).

  *
*

max
1

rn

u j
j

V V u p


   (4)

The second definition of the optimal solution is when the system has limited

resources so there is a restriction given by the deadline on the number of jobs it

can accept. We define this bound as limited and its value is given by equation (5).

  *
*

max max
1

min ,
rn

l j
j

V V u p d m


 
    

 
 (5)

The limited resource bound is obtained by computing the minimum value between

the sum of the maximum deadline per the number of machines in the system and

the processing jobs in the released jobs. Considering limited resources, no

processing can be done above the minimum of these values; by multiplying this

value by maxu we obtain the maximum income value that the system is capable to

obtain under these conditions.

With 
*

uV and 
*

lV we obtain upper bounds of the actual optimal income *V and

lower bound values of the competitive factors u
V Vc c and l

V Vc c . Finally, we

define two experimental bounds of the Vc one for the unlimited bound equation (6)

and the other one for the limited bound equation (7).

 1

max
1

r

n

i j
ju

V V n

j
j

u p

c c
u p






 






 (6)

36

 1

max max
1

min ,
r

n

i j
jl

V V n

j
j

u p

c c

u p d m






 

 
  

 




 (7)

Therefore the value of competitive factor obtained through our analysis is a

minimum bound where the actual competitive factor could be any value over the

bound presented.

If we consider that there is only one SL, we have that 1 2 max... iu u u u    then

the equations (6) and (7) can be simplified.

Besides the competitive factor, we consider as well other metrics. These metrics

are presented in Table 1.

Table 1. Implemented metrics.

 Metric Description

1 Percentage of rejected jobs 100% 100%r

r

n n
PRJ

n

-
= ⋅ £

2 Mean bounded slowdown
1

1
max()

max(10,)

n
j j

i
j j

c r
MBSD f

n p=

-
= £å

3 Mean waiting time
1

1
()

n

j j j
j

MWT c p r
n =

= - -å

4 Total processing time
1

n

j
j

TPT p
=

= å

5 Mean number of interruption per job
1

int()
n

j
j

MNI J
=

= å

6 Machine efficiency 1

1

1
()

n

j
j

n

p

ME
m c r

== £
⋅ -

å

7 Service provider benefits
1 1

()
rnn

i i j
i j

G u p pa
= =

= ⋅ -å å

37

The percentage of rejected jobs (PRJ) defined by us measures our definition of

reliability which is the ratio between jobs admitted by the system and jobs

released. The interpretation of this metric is simple, when the PRJ is closer to

zero the user has higher certainty that when he sends a job for execution it will be

accepted. However, this definition of reliability cannot represent situations where

the system is not able to accept the jobs because a disproportionate demand over

limited resources. Therefore, considering the same workload over two systems

with different capacities, the system with more resources always will have more

reliability than one with fewer resources.

The mean bounded slowdown (MBSD) (D. Feitelson et al., 1997) represents the

mean of the actual slack factor that jobs executed on the system had at the

moment of being completed. As our admission test guarantees that j jc d , the

value of MBSD will always be smaller or at most equal to the maximum slack

factor of the set  .

While the MBSD measures the time that a job spends in the system as a ratio of

the processing time, the mean waiting time (MWT) (D. Feitelson et al., 1997)

measures just the time that the job spends in the system waiting for execution. The

total processing time ()TPT is defined as the sum of the processing time of all

accepted jobs by the system.

The mean number of interruptions (MNI) allows us to determine the overhead

that our scheduling algorithm will produce on the system. Here int()jJ stands for

the number of interruptions that job jJ had until its completion. Our scheduling

algorithms assure that this value is always less than one, although we will always

prefer values closer to zero.

38

The machine efficiency (ME) is defined by us as the ratio between the interval

from the release time of the first job ሺݎଵሻ to the completion of the last ሺܿ௡ሻ where

useful processing time was performed. A value of 1ME  tell us that in the whole

interval from the release of the first job to the completion of the last, jobs were

executed without idle intervals between them.

We also use the service provider benefits ()G as an economic metric to measure

the return that the provider will have to supply the service of executing

computational jobs on his infrastructure. This metric depends on the sum of

processing time of the set of accepted jobs  , and the SLA of each job, as these

parameters determine the price of the unit of execution iu . Service levels with

tighter slack factor are more expensive. The service provider benefits metric also

considers that the income has to be used to operate the infrastructure. These

expenditures can be diverse such as wages, electric bills, etc. and can be

represented as a cost per unit of operation () multiplied by a fixed interval of time

where the provider needs to keep the system running. Since this interval must be

large enough to execute all jobs, we consider that its length is equal to the sum of

processing times of the set of jobs released to the system (r).

3.3 Scheduling algorithms

In this thesis, we analyze the performance of the following algorithms:

1. Single Service Level - Single Machine (SSL-SM)

2. Single Service Level – Parallel Machine (SSL- PM)

3. Multiple Service Level - Single Machine (MSL-SM)

4. Multiple Service Level – Parallel Machine (MSL- PM)

39

They contemplate different characteristics of the system, different SLs available to

the user, and let us compare the efficiency of different IaaS cloud models.

These algorithms are based on the online scheduler algorithm proposed by Gupta

et al., (2001). This algorithm is in turn based on the preemptive-EDF (Earliest

Deadline First) scheduling algorithm. We first reproduce the details about the

scheduling algorithm of Gupta and then explain the modifications for algorithms

SSL-SM, SSL-PM, MSL-SM and MSL-PM.

Consider a scheduling algorithm ܣ௠ over	݉ machines. When a job ܬ arrives, ܣ௠

first runs an admission test on the machines	ܯଵ,ܯଶ,… ௠, in any predefinedܯ,

order, to check if all previously admitted jobs that have not yet completed plus job

 ௠ܣ ௝ If soܯ can be completed by their respective deadlines on some machine ,ܬ

admits ܬ on machine ܯ௝, otherwise it rejects ܬ. Admitted jobs in each machine are

executing by ܣ௠ in non-decreasing order of their deadline. Thus, preemptions

may occur: a currently executing job will be preempted in favor of a newly admitted

job with earliest deadlines.

The scheduler ܣ௠ maintains a queue ܳ௝ that contains three pieces of information:

(1) its job number, (2) its deadline, and (3) its remaining execution time (i.e. its

execution time minus the processor time that it has consumed so far). The jobs in

the queue are ordered by non-decreasing order of deadlines. Thus, if a machine

 ௝ is busy, then it is executing the job at the head of ܳ௝ (which has the earliestܯ

deadline) and then the remaining execution time of this job decreases as it

continues to execute. The job is deleted from ܳ௝ when its remaining execution time

becomes zero, and the job (if any) that becomes the new head of the queue ܳ௝	is

executed next on ܯ௝.

40

Consider the case of the scheduling algorithm ܣ௠ for the machine ܯ௝. When a

new job ܬ arrives, if the job has not already been scheduled in one of the machines

…,ଶܯ,ଵܯ ݆	௝ିଵ (forܯ, ൐ 1) then ܣ௠ inserts	ܬ in its proper position in ܳ௝	(such that

the deadlines of jobs in ܳ௝ are ordered in non-decreasing deadlines) with the same

deadline as ܬ then	 ௠ performs the followingܣ is inserted after these jobs. Then ܬ

admission test to determine whether to admit or reject ܬ on machine ܯ௝.

reject = FALSE;

J’ = J;

repeat

 s = sum of the remaining execution times of all jobs in the queue

 up to and including job J’;

 if s > d(J’) then reject = TRUE

 else J’ = next job in the queue after J’;

until (J’ = NULL or reject = TRUE);

That is, ݐ݆ܿ݁݁ݎ	is set to ܴܷܶܧ if admission of ܬ will cause ܬ or some job with a

deadline later than ܬ to miss its deadline (note that jobs with deadline earlier than ܬ

will not be delayed by ܬ and hence need not to be checked in the admission test).

If ݐ݆ܿ݁݁ݎ ൌ is ܬ ,is deleted from ܳ௝ and is rejected. Otherwise ܬ then ,ܧܷܴܶ

admitted and retains its position in the queue ܳ௝. If the position of the queue is not

the head of the queue, then ܣ௠ continues execution of the current job at the head

of the queue ܳ௝ on machine	 is positioned at the head of the ܬ ௝. However, ifܯ

queue ܳ௝, then the current job is preempted and	ܬ begings execution on ܯ௝.

For defining our algorithms, we extend Gupta algorithm and consider a set  of the

SLs offered. Thus, before the job ܬ arrives it is assigned with a SL from the set  .

41

The SL represents a slack factor that is used to calculate the deadline of the job ܬ.

Once the assignment and calculus of the deadline is done, the algorithm proceeds

like the Gupta algorithm. The differences between each algorithm comes from the

number of machines ݉ and the cardinality of the set  . If ݉ ൌ 1 then the

algorithm is denoted as Single Machine (SM) otherwise if ݉ ൐ 1 is denoted as

Parallel Machine (PM). In case the cardinality of the set =1 then the algorithm is

denoted as Single Service Level (SSL) otherwise if 1 then the algorithm is

denoted as Multiple Service Level (MSL).

3.4 Experimental setup

We propose a series of experiments to evaluate the response of the four

algorithms. The experiments were performed using the grid scheduling simulator

tGSF (teikoku Grid Scheduling Framework). tGSF is a standard trace based

simulator that is used to study grid resources management problems. We modified

and extended tGSF to include the capabilities necessary to simulate the IaaS

cloud model, these include the greed admission control, the scheduling algorithm

preemptive-EDD and the implementation of metrics. Design details of the simulator

are described in (Hirales Carbajal et al., 2010). In the following sections we

describe these experiments and the parameters we changed to evaluate the

algorithms.

3.4.1 Single Service Level Single Machine (SSL-SM) algorithm

In this set of experiments we suppose that the system have only one processing

unit or machine (݉ ൌ 1) that receives all the jobs in the workload. These jobs are

42

assigned with the same SLA because =1 which means a single value of slack

factor.

For evaluating the SSL-SM algorithm we consider the slack factor of the SLA as

the parameter of adjustment to evaluate its performance. We first define an

extended interval and then by evaluating the ܿ௏ we obtain a tighter region of study.

For the extended interval we took discrete values of slack factor of 1, 2, 5, 10, 20,

50, 100, 200, 500, and 1000. Figure 5 shows the plot of the ܿ௏
௟ varying the ݂ݏ. The

plot shows that there are two regions where the competitive factor has a greater

value; the first one is where slack factor is relatively low and the second one where

is very large tending to infinity.

Figure 5. Competitive factor for the SSL-SM algorithm with a sf from 1 to 1000.

Taking into account that a ܿ௏ ൌ 1000 means that in the worst case the user would

need to wait one thousand times the processing time of his job, we consider that

these larger slack factors offer an unacceptable QoS. Therefore, we decided to

43

limit our study to lower slack factors. Thus, for our set of experiments we define an

interval of slack factor from 1 to 20 with steps of one.

3.4.2 Single Service Level – Parallel Machines (SSL-PM)
algorithm

For the design of the SSL-PM algorithm experiments, we need to consider that

now system model instead of having just one processing unit can have any

number ݉ ൐ 1. The number of machines is another parameter that can have any

integer value greater than one. Here we considered that the systems are designed

with a number of machines power of two, thus, we proposed systems with 2, 4, 8,

16, 32 and 64 machines to design our experiments. The slack factors of the single

SLA are taken from the same interval considering for the single machine.

3.4.3 Multiple Service Level - Single Machine (MSL-SM) algorithm

For the MSL-SM algorithm, we consider a system model with a single

machine	݉ ൌ 1 and that jobs submitted can have more than one SLA therefore,

the value of slack factor of the jobs within a workload can be different. In order to

design the experiments for this algorithm we need to consider that there are two

independent parameters, the number of SLAs and the values of slack factor of

each SLA. Considering both parameters we can have a large number of

combinations. In order to avoid this and to have a manageable number of

experiments, we established the number of SLAs as our main variable and

restricted its value to the interval from one to twenty. Then, for assigning a value of

slack factor to each SLA we consider the interval used in the SSL experiments

from one to twenty. The idea is that, if the provider has only one SLA to offer, he

44

would seek to prioritize the QoS and then the slack factor that he will assign to that

unique SLA would be a value of one (the best SL). In case the provider manages

two SLAs, he will maintain offering one SLA with a ݂ݏ ൌ 1 and the other with a

݂ݏ ൌ 2. And this logic will be kept as many SLAs the provider has to offer. Table 2

shows this distribution of slack factors over the number of SLAs available.

Table 2. Slack factor distribution over the number of SLAs available.

Number
of SLAs

SLAs’ slack factor

1 SLA௦௙
ଵ ൌ 1

2 SLA௦௙
ଵ ൌ 1, SLA௦௙

ଶ ൌ 2
3 SLA௦௙

ଵ ൌ 1, SLA௦௙
ଶ ൌ 2, SLA௦௙

ଷ ൌ 3
4 SLA௦௙

ଵ ൌ 1, SLA௦௙
ଶ ൌ 2, SLA௦௙

ଷ ൌ 3, SLA௦௙
ସ ൌ 4

5 SLA௦௙
ଵ ൌ 1, SLA௦௙

ଶ ൌ 2, SLA௦௙
ଷ ൌ 3, SLA௦௙

ସ ൌ 4, SLA௦௙
ହ ൌ 5

6 SLA௦௙
ଵ ൌ 1, SLA௦௙

ଶ ൌ 2, SLA௦௙
ଷ ൌ 3, SLA௦௙

ସ ൌ 4, SLA௦௙
ହ ൌ 5, SLA௦௙

଺ ൌ 6
7 SLA௦௙

ଵ ൌ 1, SLA௦௙
ଶ ൌ 2, SLA௦௙

ଷ ൌ 3, SLA௦௙
ସ ൌ 4, …., SLA௦௙

଻ ൌ 7
… …
20 SLA௦௙

ଵ ൌ 1, SLA௦௙
ଶ ൌ 2, SLA௦௙

ଷ ൌ 3, , …., SLA௦௙
ଵଽ ൌ 19, SLA௦௙

ଶ଴ ൌ 20

Once we established how the SLAs are composed, we propose that the

mechanism that assigns the SLAs to the jobs in the charge would be random with

a uniform distribution. The uniform distribution represents that the user is equally

likeable to select any of the SLAs offered by the provider to submit his jobs. We

think that this is possible if the price scheme offered to the user gives an equal

cost-benefit to all the SLAs offered. Thus, the price function used by the provider

must be such that for a unit of increment in the QoS offered it would demand in the

same proportion of economic return from the user. In case that the price function

does not comply with this relation then the user might be inclined to select a SLA

that offers a better cost-benefit. In this case, we could not consider that there is a

uniform distribution for selecting SLAs to submitted jobs.

45

In conclusion, we think that there is a relation between the price of each SLA and

the distribution that the different SLAs will have among the jobs received, therefore

we need to reflect that relation when we consider the function that assigns SLAs to

the different jobs and the price function.

3.4.4 Multiple Service Level - Parallel Machines (MSL-PM)
algorithm

These experiments uses a combination of the multiple machine parameters

discussed for the Single SL - Parallel Machines and the Multiple SL parameters

from the Multiple SL - Single Machine algorithms experiments. Therefore we have

seven times the number of experiments that in the case for the MSL-SM which

corresponds to evaluate the system’s performance in the different multiple

machine models. These systems are the closest models to real systems where

there exits different machines and the provider offers different SLAs in order to

satisfy the diversity of processing needs and budgets from a variety of users.

3.5 Criteria analysis

In order to provide an effective guide in the selection of the best algorithm and its

parameters, we perform a joint analysis of several metrics according with the

methodology proposed in (Tsafrir et al., 2007), and applied to Grid scheduling

problems by Ramírez Alcaraz et al., (2011). They introduce a method assuming

equal importance for each metric. The objective is to find a robust strategy and

with good performance under all the testing cases expecting that it would keep its

performance under other conditions, i.e. other number of SLAs, values of slack

factor or a different workload.

46

The analysis is performed as follows. First, we evaluate the degradation (relative

error) of each metric under each parameter using the following formula

ቀ 	୫ୣ୲୰୧ୡ	୴ୟ୪୳ୣ

୫ୣ୲୰୧ୡ	ୠୣୱ୲	୴ୟ୪୳ୣ
െ 1ቁ ൈ 100. In this way, for each metric, each algorithm parameter

is characterized by a tuple of values, reflecting its relative degradation under all the

metrics. Afterwards, we average these values (assuming equal importance for

each metric), and sort them. The best algorithm which has the lowest average

degradation has a rank of one.

3.6 Workload

In order to provide a realistic case of study we employ for our simulations a Grid

workload based on real production traces. These traces are logs from real parallel

computer systems and give us a good insight of how our proposed schemes will

perform with real users. The predominance of low parallel jobs in real logs is well

known. However, some jobs require multiple processors. In a later case, we

consider that machines in our model have enough capacity to process them, so we

can abstract their parallelism.

IaaS clouds are a promising alternative to computational centers; therefore, we

assume that workload submitted to the cloud will have similar characteristics to the

workloads submitted to actual parallel and grid systems.

In our log, we considered nine traces from: DAS2—University of Amsterdam,

DAS2—Delft University of Technology, DAS2—Utrecht University, DAS2—Leiden

University, KTH, DAS2—Vrije University Amsterdam, HPC2N, CTC, and LANL.

Details of the log characteristics can be found in the PWA (Feitelson D., 2008) and

GWA (Iosup et al., 2008).

47

To obtain valid statistical values, 30 experiments of one week interval were

simulated for each experimental scenario. We calculate job deadlines based on

the real processing time of the jobs. Therefore we do not use user-run time

estimates.

Figure 6 shows a histogram of the number of jobs in the simulation period of 30

weeks.

Figure 7 shows a histogram of the processing time of the jobs in the workload. For

clarity, the view of this histogram has been limited in the vertical axis to 10,000

jobs. The first bin for jobs with processing time in the range of 1 to 1000 seconds is

the only one limited; this interval has around 470,000 jobs.

Figure 6. Number of jobs in the experiment interval.

48

Figure 7. Processing time of the jobs in the workload.

49

Chapter 4

Experimental Competitive Factor Analysis

In this chapter we analyze the experimental results that we obtained. We focus our

analysis in the competitive factor and in the following chapters we present the

system benefit and the other secondary metrics.

4.1 Price function

IaaS just like any other service is an interchange of some work performed for a

user and a return in some form of economic benefit to the provider. In order to

establish an economical return rate the provider uses some price strategy, which

involves considering key factors, including the market offer of the service, the costs

associated with providing the service, and an understanding of the relationship

between QoS and price.

There exist many works that deal with the problem of pricing the execution of the

jobs in different processing models such grids and clouds considering different

market models (Buyya et al., 2008). In a real world market, there exist various

economic models for setting the price for services based on supply-and-demand

and their value to the user. Implementing those models would require

implementing an adaptive pricing model.

Since the implementation of these models is beyond the objectives of this thesis,

we stuck our analysis considering a monopolistic/oligopolistic market (Buyya et al.,

2002), where the providers dominates the market and sets the prices of its service

50

without considering market conditions or the possibility of negotiating the prices

with the users.

With the previous assumption, we propose a price function that maps the slack

factor of a SLA to a price per unit of execution, taking into consideration that:

1. The price function should be monotonically decreasing with regard to the

slack factor

2. The price function should be designed so that it covers the execution costs

of the system

The first condition guarantees that the user will receive a proportional QoS

guaranteed to the price he pays. The second condition guarantees that the

provider will never have losses for providing the service. The costs that a provider

could have are diverse and include wages, maintenance, electric bills, etc.

We consider that if the system does not implement a SLA admission control, it will

be able to execute all the jobs available in the workloads. Thus, the provider will

receive a payment for the execution of all these jobs and the cost associated with

the operation of the system will be charged to each user in proportion to the time

that his jobs were executed.

When rejection through SLAs is implemented the amount of jobs accepted limits

the processing time that the system performs, however, the system would maintain

the same operational costs. Thus, the provider needs to transfer the same costs to

a lower number of jobs raising the price per execution unit of each one. Equation

(8) captures the previous idea.

51

 1

1

rn

i
i
n

j
j

p
cost

p
  







 (7)

In this equation, ߙ is a constant that represents the cost that the provider needs to

cover to keep the system in operation. The numerator represents the total

processing time of the jobs releasing to the system, which is the time that the

system could execute if no admission control were implemented. And finally, the

denominator represents the sum of processing times that the system executes

under a ߣ configuration. Thus, the proportion of processing time of the total

processing time available in the workload and the value reached by the system

determines the cost per execution unit of each job. Please note that this equation

keeps valid without regarding the number of machines in the system, because the

processing time in the workloads remains unchangeable.

The design of the price function was based on the experimental results of the total

processing time ሺܶܲܶሻ metric for the SSL-SM algorithm with ߙ ൌ 1. The graph in

Figure 8 shows the cost that each slack factor has and the proposed linear price

function. With this price function we meet the two conditions that this function must

have. The price decrements as the QoS decrements and the prices are always

greater than the costs. For each ݂ݏ, the provider will obtain the difference between

the costs and the prices as profit. The form of the function maximizes the profit for

low and middle values of slack factor. The values of ݂ݏ ൌ 1 and ݂ݏ ൌ 20 have a

profit of zero.

Finally, this price function has another characteristic. Since there is a linear relation

between price and ݂ݏ, we can justify the use of a uniform distribution to assign

jobs to SLAs. The reason is that a potential user would need to spend equal

52

amount of money for an equal increase on the QoS received making all the SLAs

equally probable of being selected.

Figure 8. Cost and prices for the SSL-SM algorithm.

In the following sections we present the upper bound of the optimal income with

unlimited 
*

uV and limited resources 
*

lV for the studied algorithms.

4.2 Optimal income bounds

With the price function defined in previous chapter, we obtain the optimal income

bounds used to calculate the competitive factor for the different algorithms. These

are bounds of the maximum income achievable by the algorithms given the

workloads used and considering both definitions of optimal algorithm with a system

with limited resources and unlimited resources. Values in the plot are normalized

53

by the maximum benefit obtainable i.e. the maximum price ሺݑ௠௔௫ሻ per the mean

sum of processing time (ܶܲܵܯ) of the workloads.

According with our definition, 
*

uV only depends on the number of machines in the

system. The plots in Figure 9 show the bounds for the SSL and MSL algorithms

with unlimited resources. In the case of the SSL its value depends on the values of

 ௜ for the different SL therefore depends on the price function. The MSL considersݑ

that all the jobs released can be executed by the maximum price ݑ୫ୟ୶ i.e. the price

of the SL with tightest ݂ݏ. Thus, this bound is equal to the ܶܲܵܯ per ݑ୫ୟ୶ for all

number of SLAs.

Figure 9. Upper bound of the unlimited resources optimal income for the SSL and MSL

algorithms.

In case of the limited resources bound, it has two components, the sum of

processing times of the workload (
1

rn

j
j

p

) and the maximum deadline per the

number of machines in the system (maxd m), where the minimum of these values

54

define the optimum’s bound of processing area. The sum of processing times is a

constant, therefore  * *

l uV V .

Figure 10 shows the income bound for the SSL algorithms. We see that the 64

machines system obtains the maximum gain bound for each	݂ݏ expect	݂ݏ ൌ 1. The

same happens for some values of ݂ݏ for the 32, 16 and 8 machines systems.

Figure 10. Upper bound of the limited resources optimal income for the SSL algorithms.

This equality is reached when the maximum deadline per number of machines

becomes larger than the sum of processing times in the workload. When this

happens max
1

min ,
rn

j
j

p d m


 
 

 
 is equal to

1

rn

j
j

p

 , thus both bounds have the same

value and it no longer depends on the ݂ݏ. Whether this equality occurs or does not

depends on three parameters: the specific workload, the value of ݂ݏ (which

defines	݀୫ୟ୶) and the number of machines in the system.

55

Figure 11 shows the benefit bound for the MSL algorithms. We can appreciate that

the difference on the bounds for both types of algorithms is substantial. For this

algorithm in case that the max 1

rn

jj
d m p


  , the value of  *

lV reaches the

maximum value of benefit ሺܶܲܵܯ ൈ ሻ this happens for some number of SLAs	maxݑ

in the 64, 32, and 16 machines systems

Figure 11. Upper bound of the limited resources optimal income for the MSL algorithms.

Finally, in Figure 12 we present a matrix that summarizes for the different weeks in

the workload, and number of machines, the value of ݂ݏ where

max 1

rn

jj
d m p


  .

The vertical axis represents the weeks in the workload, the horizontal axis the

number of machines in the system, and the thermometer colors the value of ݂ݏ

where the maximum deadline per number of machines reaches the value of the

sum of processing time in the specific week. In case that there is not color

presented it means that for that particular workload the equality was never met.

We see that only the one and two machine systems do not present this effect. In

the four machine system the effect only happens in one workload and for ݂ݏ ൌ 20

56

so it cannot be appreciated in the graphs of Figure 10 and Figure 11. Instead, for

the next systems the value of ݂ݏ where the equality occurs is even lower. The

extreme case is the system with 64 machines where max 1

rn

jj
d m p


  is reached

for ݂ݏ ൌ 1 on 29 of the 30 weeks. For these systems we consider that the

workload is not suitable for the system configuration.

Figure 12. Saturation matrix for the competitive factor limits.

4.3 Competitive factor

In this section we present the values of the ܿ௏ for the SSL and MSL algorithms. We

show the results for each machine and for the three 
*

V bounds: the theoretic, the

one considering unlimited resources and the one considering limited resources.

The plots show the mean of the ܿ௏ obtained in the 30 experiments and an error bar

57

representing one standard deviation up and one standard deviation down of the

mean.

58

Figure 13. Competitive factor for the SSL algorithms.

We see in the plots of Figure 13 that the value of ܿ௏ of the SSL algorithms for the

limited and the unlimited bounds gets closer as the number of machines increases.

We also observe that for low ݂ݏ the limited bound of ܿ௏ is tighter than the theoretic

bound, which means that for the workload used experimentally the algorithm

performs better than what theory predicts. When the number of machines in the

system is very large, the ܿ௏ with experimental bounds is larger than the theoretic,

this is caused by the workload used.

59

60

Figure 14. Competitive factor for the MSL algorithms.

In the series of graphs of Figure 14 we see both bounds for the MSL algorithms.

For MSL algorithms with low number of SLAs, the experimental bound with limited

resources is a tighter bound than the theoretic. As in the case with the SSL

algorithms, we see that the unlimited and limited bounds tend to a same value

when the number of machine increases. From the figure, we also observe that

when the number of machines increases the standard deviation of ܿ௏ for the limited

61

bound increases, thus we obtain, for some experiments, competitive values very

close to the optimal and in others very far apart from it.

62

Chapter 5

Service provider benefits

The graph in Figure 15 shows the service provider benefits for the SSL-PM

algorithm. We see that benefit is lower in the extremes ݂ݏ values and greater in the

middle values. The reasons of this trend are both, the price function and the TPT

value that each ݂ݏ obtains. The system with 64 and 32 machines suffers from the

lack of jobs in the workload and instead of following the same trend that the other

systems they rapidly fall. This fall is so abrupt because the cost of keeping a

system with such resources requires a constant increasing in execution time. We

observe that for the system provider the benefit always has a positive value so

there is not region with operational loss.

Figure 15. Service provider benefits for the SSL-PM algorithm.

63

Figure 16 shows the service provider benefits for the MSL-PM algorithm. We

appreciate that the benefit is quite constant through all the SLAs and mainly

depends on the number of machines in the system. We can conclude that for this

algorithm the use of more machines will be always beneficial for the system

provider. The 64 machines system suffers from a fall in the benefit caused by the

unavailability of jobs in the workload, therefore in order to guarantee a good

performance is necessary that the system never runs out of jobs to be processed.

In general this can be accomplished by dynamically adjusting the number of

machines depending on the availability of jobs.

Figure 16. Service provider benefits for the MSL-PM algorithm.

In Figure 17 we see the plot of the service provider benefits for the MSL-PM

algorithm. The values are relative to the ones obtained by the MSL-SM so we can

appreciate the effect of the increment in the number of machines. The plot

contains horizontal lines marking the 2, 4, 8, 16, 32 and 64 values. These marks

make clearer the presence of values in the number of SLAs were the increment in

64

the service provider benefits is larger than the increment in the number of

machines from the perspective of a single machine. The number of SLAs where

the increment in the service provider benefits is superior to the number of

machines added decreases as more machines are added to the system. The

system that outperforms faster and does it in a greater rate is the 64 machines

system follow by the 32 machines system.

Figure 17. Relative service provider benefits for the MSL-PM algorithm.

In this graph we can conclude that the multiple machine system allows a better

service provider benefits. Thus, considering only this metric from the provider

perspective having greater number of machines is always beneficial.

65

Chapter 6

Experiments Results

In this chapter we present results obtained for the simulation of the SSL-SM, SSL-

PM, MSL-SM, and MSL-PM algorithms. Each algorithm has different objectives,

and was designed in an incremental manner to evaluate a new parameter in each

step considering the results previously obtained. The SSL-SM evaluate the change

in the ݂ݏ on the different set of metrics. In the next step, with the SSL-PM

algorithm, we evaluate the change in the number of machines in the system. With

the MSL-SM algorithm we compare the results of the MSL algorithm with the

previously obtained SSL in a system with a single machine. Finally, with a MSL-

PM algorithm we have a complete system where we can evaluate the change in

the number of machines when multiple SLs are used.

In this chapter, each point in the graphs represents the mean value of the 30

experiments, one experiment for each week in the workload. In case, an error bar

is shown, this has a length of two standard deviation of the mean.

6.1 Single Service Level – Single Machine (SSL-SM) algorithm

In this section we present the results of the metrics for the SSL-SM algorithm. In

this algorithm all the jobs submitted to a single machine system have the same

SLA and therefore the same slack factor.

Figure 18 shows the total processing time ሺܶܲܶሻ as a factor of the mean sum of

processing times (ܶܲܵܯ) of the jobs in the workloads. The ܶܲܵܯ is obtained as

the average of the sum of processing time in each of the 30 workload. Since the

66

results we present comes from the average value obtained in each of the 30

experiments, the only way that a given algorithm can reach this ܶܲܵܯ is by

executing all the jobs in each of the workloads. By presenting the total processing

time in this form, we can give a general perspective of the results, as well as an

easy way to later compare the different algorithms.

In the graph, we can observe that the system is able to execute a tiny fraction of

the processing time available in the interval of slack factor from 1 to 20. The

general trend shows that the system is able to increment the processing time as

the slack factor of the SLA increases. We could expect that if the system receives

a workload with a SLA with greater slack factors the processing time would

continue increasing at a lower rate. Thus, in order to be able to execute all the

processing time available we will require very large values of slack factor.

Figure 18. Total processing time for SSL-SM algorithm.

67

The graph in Figure 19 shows the percentage of jobs rejected by the system

ሺܴܲܬሻ. We see that for this algorithm the amount of jobs rejected in the interval is

very close to 100% and its variation is small as the slack factor is increased. This

metric has a mean value of approximately 98.7% with a peak value at 99% that

corresponds to a ݂ݏ ൌ 2. The general trend indicates that the ܴܲܬ will decrease as

the value of ݂ݏ increases, but similar to the ܶܲܶ metric, we would expect very

large values of ݂ݏ before this rejection percentage could significantly decrease.

Figure 19. Percentage of jobs rejected for SSL-SM algorithm.

The graph in Figure 20 shows the mean waiting time ሺܹܶܯሻ metric for the SSL-

SM algorithm. We see, as expected, that this metric increases when the ݂ݏ of the

SLA increases. It reflects the flexibility of the system to delay the execution of jobs,

so they spend more time waiting before get completed. It is difficult to drive

conclusions about the graph, because in each experiment the set of accepted jobs

is different, but we see that the increment is not constant in the interval.

68

Figure 20. Mean waiting time for SSL-SM algorithm.

Figure 21 shows the mean bounded slowdown ሺܦܵܤܯሻ metric. As expected, this

metric also increases as the slack factor increases. As mentioned in Chapter 3, the

 represents an approximation of the slack factor that the job had when it ܦܵܤܯ

was completed by the system, thus, these values indicate that the average

response of the jobs in terms of slack factor will be less than half of the slack factor

used to submit the jobs. This difference might be considered positive by the user,

who can obtain a faster response from the system compared with the one

expected.

Figure 22 shows the machine efficiency ሺܧܯሻ	metric. For this algorithm values of

 very close to one. This indicates that the machines ܧܯ other than one, have an ݂ݏ

are always executing a job at any time. When the ݂ݏ ൌ 1 the accepted jobs need

to be executed immediately after were accepted (no waiting to start execution) so

this efficiency value of 0.974 indicates the space between the completion time of

the job in execution and the arrival of other.

69

Figure 21. Mean bounded slowdown for SSL-SM algorithm.

Figure 22. Machine efficiency for SSL-SM algorithm.

70

Finally, the mean number of interruptions per job ሺܬܫܯሻ metric is displayed in the

plot of Figure 23. The trend shows that starting from a ݂ݏ ൌ 1 where no

interruptions can take place, this metric jumps to a peak value of 0.72 at ݂ݏ ൌ 2

and then it gradually decreases until it remains stable at a value around 0.41

interruptions per job at ݂ݏ ൌ 13. The zero interruptions happens at ݂ݏ ൌ 1 since

the job has to be completed before other job is accepted. Hence, this job never

gets interrupted. We can explain the follow downswing as a result of the gained

flexibility in delaying the execution of the jobs that allows keeping them waiting

instead of preempting the current job in execution.

Figure 23. Mean number of interruptions per job for SSL-SM algorithm.

In general, the results of this algorithm show that the increment in the slack factor

of the workload causes an increment in the ܶܲܶ. This increment is not one-to-one

in proportion to the increment in the ݂ݏ. The increment in the ݂ݏ also produces that

the ܹܶܯ and ܦܵܤܯ increase. Additionally, a SSL-SM algorithm can only execute

a fraction of the ܶܲܶ in the workload, and accept a small percentage of the jobs

71

released. On the other hand, given the amount of jobs available, the SSL-SM

algorithm allows that the scheduling efficiency is almost one regardless of the ݂ݏ.

6.2 Single Service Level -Parallel Machines (SSL-PM) algorithm

In this section we present the results of the metrics for the SSL-PM algorithm. For

this algorithm all the jobs arrive with the same SLA but the system has ݉ ൐ 1

machines to execute the jobs. For comparison purposes the results for the single

machine system are also plot in the next graphs.

The ܶܲܶ metric is shown in Figure 24. As in the case of the SSL-SM algorithm, for

this metric instead of reporting the absolute values in time units, we plot them as a

ratio of the ܶܲܵܯ. We see that, regardless of the number of machines that the

system has, the ܶܲܶ of the system increases as the ݂ݏ of the SLA increases. The

only regions that do not follow this trend are the systems with 32 and 64 machines

receiving jobs with large	݂ݏ. We see that in these regions, the ܶܲܶ value gets too

close to one, meaning that the ܶܲܶ has reached its maximum possible and

therefore without regarding of the increasing ݂ݏ the ܶܲܶ cannot further increase.

Although, the previous graph showed that there is not one-to-one proportion in the

slack factor of the SLA and the ܶܲܶ, plotting the ܶܲܶ in terms of the processing

time of the one machine system can help us to examine the effect that the

increment in the number of machines has. Figure 25 shows this relative processing

time where all the ܶܲܶ values for the different machine system configurations

were divided by the figures of the one machine system. This plot has line marks at

2, 4, 8, 16 and 32 so it is easier to appreciate if the increment in the number of

machines produces a proportional increment in the processing time of the system.

72

Figure 24. Total processing time for SSL-PM algorithm.

Figure 25. Relative processing time for SSL-PM algorithm.

73

Looking at this graph, we can easily appreciate that a desirable one-to-one

increment is only produced for the two, four and eight machines system with a

unitary slack factor. Once the ݂ݏ is further increased the growth factor in the

processing time is less than the increment in the number of machines added. This

decrease is more dramatically observed for the system with 64 and 32 machines

where the number of machines in the system cause that most of the jobs are

processed, thus, the increment in the ݂ݏ	does not have the desirable increment in

ܶܲܶ due to the characteristics of the workload.

For the SSL-PM algorithm, the ܴܲܬ metric is showed in Figure 26. In contrast to

the SSL-SM algorithm, we can more clearly observe that an increment in the

processing time is the result of the acceptance of more jobs. However, when we

compare the graphs of both metrics (Figure 24 and Figure 26, respectively) we can

observe that the trends for the 1, 2, 4 and 8 machines are more separated for the

ܶܲܶ metric than for the ܴܲܬ. We consider that this effect is caused by the

characteristics of the jobs in the workload and indicates that an increment in the

number of machines allows jobs with largest processing time to be executed. This

conclusion is based on the fact that small decrements in the rejection jobs cause

largest increases in the processing time, inferring that the duration of the jobs

being executed is larger than with restricted systems.

This metric also confirms the saturation effect seen in the ܶܲܶ for 32 and 64

machine systems. The graph shows that for these systems when the ܶܲܶ is

almost one, the percentage of rejected jobs is close to zero.

74

Figure 26. Percentage of rejected jobs for SSL-PM algorithm.

Figure 27 shows the ܹܶܯ metric for the SSL-PM algorithm. In this metric, when

we compare the figures of the different systems models we can observe that as

the system has more resources in terms of machines, the time that the jobs spend

in the system decreases. This effect is completely understandable since more

resources allow that accepted jobs can be more rapidly completed. Additionally, as

we see in Figure 25, the proportion of ܶܲܶ gained is less than the increment in the

number of machines.

The graph shows that for all systems the increment of the ݂ݏ produces an

increment in the ܹܶܯ values. This effect is explained as in the case of the SSL-

SM algorithm due to the gained flexibility in delaying the execution of the jobs.

75

Figure 27. Mean waiting time for SSL-PM algorithm.

The ܦܵܤܯ metric for the SSL-PM metric is show in Figure 28. We observe that

the main trend for all system models is that as the ݂ݏ value of the SLA increases

also the ܦܵܤܯ increases. Then, comparing the figures of the different machines

for a given ݂ݏ, we can observe that for all, as we increase the number of machines

in the system, the value of ܦܵܤܯ decreases. This results and recalling the

meaning of the ܦܵܤܯ tell us that the jobs will have faster response time in terms

of ݂ݏ as we increase the number of machines in the system.

76

Figure 28. Mean bounded slowdown for SSL-PM algorithm.

Figure 29 shows the ܧܯ for the SSL-PM algorithm. In this graph we observe that

contrary to the one machine system, ݂ݏ ൌ 1	performs better than ݂ݏ ൌ 2	for all the

remaining machine configurations. The trend shown in the figures is very irregular

and it is hard to explain its behavior. The only clear conclusion is that when we

leave the single machine model, we cannot longer expect a 100% efficiency and

there would be gaps in the interval of execution when the system would be idle in

one or more of the machines. Finally, we expect that this efficiency get worst as

more machines are added.

77

Figure 29. Machines efficiency for SSL-PM algorithm.

We conclude the presentation of the metrics for the SSL-PM algorithm with the

݂ݏ metric showed in Figure 30. The plot shows that as expected with a ܬܫܯ ൌ 1

the number of interruption for all the system configurations are zero. Once the ݂ݏ

is incremented the value of this metric abruptly jumps to a peak for the main

system configurations. After the slack factor of two, similar to the SSL-SM

algorithm, the systems with 2, 4, and 8 machines decrease the number of

interruptions as the slack factor of the SLA increases. Instead, the systems with

16, 32 and 64 machines change this decreasing tendency once the slack factor

reaches some value and keep this increment towards larger values of slack factor.

We explain the behavior of these systems due to the steeper increment in the

number of jobs accepted that can cause that more interruptions occur.

78

Figure 30. Mean number of interruptions per job for SSL-PM algorithm.

The results for the SSL-PM algorithm show that adding more machines to the

system causes an increment on the ܶܲܶ of the system. To match this increment, it

would require in a single machine system a workload with very large ݂ݏ. With the

workload we used, we reach with a certain combination on the number of

machines and ݂ݏ, values where we are able to execute almost all the jobs in the

workload, this causes values of ܶܲܶ closest to the ܶܲܵܯ and almost a 0% of job

rejections. However, the increment on the number of machines is not proportional

to the number of machines in the system; this is in part caused by the drop in the

 when the number of machines is increased. The increment in the number of ܧܯ

machines causes that both, the ܹܶܯ and the ܦܵܤܯ decrease.

79

6.3 Multiple Service Levels-Single Machines (MSL- SM) algorithm

In this section we present the metrics obtained by the simulation of the MSL-SM

algorithm. In order to easily see the difference between changing the ݂ݏ value in a

single SL and changing the number of SLAs each with a different ݂ݏ value, we plot

together the metrics of the MSL-SM and the SSL-SM.

Figure 31 shows the ܶܲܶ for the MSL-SM algorithm. Again presented the values

are relative to the ܶܲܶܯ. Plotted with a thinner line are the figures of the SSL-SM

algorithm. We observe from the graph, that the ܶܲܶ increases as the number of

SLAs increases. This behavior can be explained due to the greater ݂ݏ that are

incorporated in each SLA added.

Comparing the values obtained by the MSL-SM and the SSL-SM algorithms we

see that the ܶܲܶ of the MSL algorithm is less than the one obtained when all the

jobs arrive with the same SLA that has a ݂ݏ value equal to the maximum of the

multiple SLs. We came with the conclusion that when we incorporate more SLAs

we cannot expect to execute the same ܶܲܶ that the same workload with a single

SLA with the maximum	݂ݏ, but a lower value due to the effect of SLAs with

lower	݂ݏ.

80

Figure 31. Total processing time for MSL-SM algorithm.

In order to better sustain the previous idea, we present in the Figure 32 a graph of

how the processing time is distributed over the different SLAs for the MSL-PM

algorithm. This graph shows the proportion of processing time that the system

executes for the incoming SLA and the proportion of time that is executed by the

previous SLAs. Thus, for example for a number of SLAs of 10, in lighter grey is

shown the processing time executed by the SLA with ݂ݏ ൌ 10 and with darker grey

the sum of processing time of the jobs executed with the SLAs with ݂ݏ from 1 to 9.

This graph shows us that the system accepts in a greater proportion SLAs with

larger slack factors than with smaller ones. This phenomenon is especially clear

when the number of SLAs is low, and the incoming SLA obtains a greater

proportion of the ܶܲܶ than the one that corresponds to this SLA.

81

Figure 32. Incoming SLA contribution to TPT for MSL-SM algorithm.

The graph of percentage of rejected jobs for the MSL-SM algorithm is shown in

Figure 33. In this graph we observe that increasing the number of SLAs does not

cause a decrease in the number of jobs rejected by the system, in fact we see a

little increase compared with its SSL counterpart, though this difference is

negligible in absolute terms.

The graph in Figure 34 shows the ܹܶܯ measure for the SSL-PM algorithm. We

see that with the exception of some points, the main trend indicates that the ܹܶܯ

increases as more SLAs are included. By comparing these metrics with the ones

from the SSL algorithm, we observe that the ܹܶܯ is less than the suffered by the

jobs with a single SLA. We can explain this phenomenon as an additive effect of

the ݏ′݂ݏ in the SLAs. Thus, we expect that the accepted jobs with a lower slack

factors wait less, reducing the mean value of this metric compared with the result

obtained by the jobs executed with the maximum ݂ݏ in the set.

82

Figure 33. Percentage of rejected jobs for MSL-SM algorithm.

Figure 34. Mean waiting time for MSL-SM algorithm.

Figure 35 shows the ܦܵܤܯ metric. We see that this metric has a similar trend than

the ܹܶܯ metric where as the number of SLAs increases the ܦܵܤܯ value

83

increases. We see that for the MSL experiments the value of ܦܵܤܯ is also less

than for the SSL. This difference can also be inferred from the slack factors of the

SLAs.

The machine efficiency of the MSL-SM algorithm is shown in Figure 36. We

observe that the same trend as the SSL-SM algorithm is kept. Again the

scheduling performed by the algorithm is very efficient for all the number of SLAs

except for the SLA with ݂ݏ ൌ 1	were we have the same result as the SSL-SM

algorithm. Although, the graph contains the metrics obtained by the SSL-SM we

cannot appreciate any difference between both algorithms.

Figure 35. Mean bounded slowdown for MSL-SM algorithm.

84

Figure 36. Machine efficiency for MSL-SM algorithm.

Finally for the results of the MSL-SM algorithm, the plot in Figure 37 shows the

 metric. We see the same trend as the SSL algorithm; with only one SSL the ܫܰܯ

number of interruptions is zero then the metric has a peak with two SLAs at

approximately 0.74 and then decreases for the following number of SLAs. The

mean value in the interval is 0.42 which is about the same as the results for the

SSL algorithm. By comparing the values of the ܫܰܯ metric for both algorithms we

note that there is not a significant difference between them.

85

Figure 37. Mean number of interruptions per job for MSL-SM algorithm.

The main conclusion that we can make considering the MSL-SM metrics is that

this algorithm shows that adding SLAs to the system does not have a dramatic

effect over the metrics considered. The way we built the different sets for the

MSLA, causes that we obtain an additive effect of lower and higher values of ݂ݏ.

This means that we will expect a system response proportional to the number and

kind of the SLAs accepted by the system. We can conclude that when receiving

jobs with multiple SLAs the system would be inclined to accept jobs with largest

slack factors. This causes that the response of the MSL and SSL to be more

similar for low numbers of SLAs, when the number of SLAs increases the

proportion of SLAs accepted trend to be more homogeneous making that the

response of the MSL and SSL diverge.

6.4 Multiple Service Levels - Parallel Machines (MSL-PM)
algorithm

86

In this section we present the results of the metrics for the MSL-PM.

Figure 38 shows the ܶܲܶ for the MSL-PM algorithm. The value shown is relative to

the ܶܲܵܯ. We see that the number of machines in the system is the variable that

more significantly influences the processing time that the system obtains.

Additionally, systems with the larger number of machines are the ones which have

a greater increment in the ܶܲܶ when more SLAs are added. Finally, for the MSL-

PM algorithm only the system with 64 machines obtains ܶܲܶ equal to the

maximum processing time (ܶܲܵܯ value), this differs from the SSL-PM algorithm

were the 32 machines system also reach this value.

Figure 39 shows the ܴܲܬ for the MSL-PM algorithm. We see that a low number of

machines has large percentage of rejections. This value is kept constant

regardless of the number of available SLAs. In contrast, systems with more

machines present more variation when the number of SLAs changes. For those

systems we see three intervals. The first one shows the drop in the ܴܲܬ from one

to two SLAs. The second one, right after the two SLAs, shows the ܴܲܬ has and

upswing trend, and finally, in the third one it declines after the 5-6 SLAs. The

decline and the values obtained are less than the ones presented in this region for

the SSL-PM algorithm

Figure 40 shows the ܹܶܯ metric for the MSL-PM. We see that the main trend is a

decrease of this metric as the number of machines growths and also as the

number of SLs decreases. The values are also stabler when we have fewer

machines.

87

Figure 38. Total processing time for MSL-PM algorithm.

Figure 39. Percentage of rejected jobs for MSL-PM algorithm.

88

Figure 40. Mean waiting time for MSL-PM algorithm.

Figure 41 shows the ܦܵܤܯ for the MSL-PM algorithm. Similar to the ܹܶܯ metric,

we see that this metric descents as the number of machines increases and also as

the number of SLAs decreases. For these experiments, it is more difficult to

determine what slack factors are better for users to submit their jobs. However, we

see that the mean value of ܹܶܯ is less than the 50 percent of the maximum slack

factor for all machine systems, and the different number of SLAs with the

exception when one SLA is used.

In Figure 42 we present the ܧܯ for the SSL-PM algorithm. We observe that for all

points the value of the metric depends more on the number of machines in the

system and less on the number of SLAs. With the exception of the single machine

system, the value of one SL has the maximum efficiency. Then the value

decreases but very slowly until it gets stable. Only the 64 machines system

maintains a decline in the machine efficiency for larger number of SLAs.

89

Figure 41. Mean bounded slowdown for MSL-PM algorithm.

Figure 42. Machines efficiency for MSL-PM algorithm.

90

Finally, in Figure 43 we present the ܫܰܯ for the SSL-PM algorithm. We see in the

graph that all the systems have a similar tendency with the exception of the

systems with 32 and 64 machines. The general trend is that starting from zero

interruptions when there is only one SLA with ݂ݏ ൌ 1, the ܫܰܯ has its maximum

value with two SLs. Then, the metric monotonically decreases, this decrease being

proportional to the number of machines. Thus, the higher the number of machines

in the system, the lower would be its ܫܰܯ decrease.

In the case of the system with 32 machines we see that for the last number of

SLAs, instead of a decrease in the ܫܰܯ its value increases. Finally, the 64

machines system has a completely different trend, from zero interruptions with one

SLA the ܫܰܯ value jumps with two SLAs and then it asymptotically increases to a

constant value of 0.7 for the remaining number of SLAs. We conclude that the

behavior of this system is caused by the reach of the maximum processing time

available in the workloads.

Figure 43. Mean number of interruption per job for MSL-PM algorithm.

91

In this chapter we have seen the trend of the metrics we took for the different

algorithms. The general conclusion is that the slack factor variation has the main

effect of allowing more jobs to be accepted by the system. If the system receives

jobs with different SLAs, the jobs accepted will be mainly those with the relaxed

slack factor. The acceptance of jobs with relaxed slack factor cause that they wait

inside the system for a longer time, and allowing the system to accept more jobs.

This cause that the system is able to increase the total processing time, while the

mean waiting time and bounded slowdown increases.

The parallelization of the system causes an increment of the processing resources

resulting in the increment of total processing time and the decrement in the

number of rejected jobs. An increment in the resources causes that the scheduling

efficiency drops. This means that machines are not all the time being used and

there are idle gaps. Finally the increment in the number of interruption as more

machines are used tell us that the accepted jobs are more urgent that the one

currently being executed.

92

Chapter 7

Criteria Analysis

7.1 Group of metrics analysis

So far we have presented plots of the metrics for the evaluated algorithms. These

plots are very helpful if we want to determine the best algorithm for a single

criterion. For example, a system provider who wants to maximize the profit can

select the best algorithm as well as its best parameters. However, if the provider

wants not only to maximize its economic return but also his customer's satisfaction,

the plots presented so far do not give a perspective that can help finding the best

algorithm for both metrics. Therefore a multi-criteria analysis of the algorithms is

necessary.

For this analysis, we select three groups of metrics classifying them according with

their importance to satisfy scheduling goals of a specific actor. Three groups are

distinguished: system-centric, user-centric and algorithm-centric. The system-

centric metrics group includes those metrics, which provide a competitive

advantage to the system against other providers. We consider that the service

provider benefit metric and the percentage of rejected jobs are included in this

group. On the other hand, the user-centric metric group includes metrics that

satisfy user objectives: waiting time and faster response in terms of the mean

bounded slowdown. Finally, the algorithm-centric group includes metrics that

measure the scheduling algorithm performance in the form of a competitive factor.

Table 3 summarizes the metrics considered for these three groups.

93

Table 3. Group metrics for the criteria analysis.

Groups of metrics Metrics

System-centric ܩ and ܴܲܬ

User-centric ܹܶܯ and ܦܵܤܯ

Algorithm-centric ܿ௏

This criteria analysis is performed based on the degradation technique as

explained in Chapter 3. In the Appendix A, we present the degradations plots for

all metrics. Bellow, we focus only on the results of the groups, and present the

results for the 1, 2, and 4 machines systems.

7.2 Criteria analysis results

The results are presented in the form of plots. Each one includes only three best

algorithms for each scenario to easily obtain conclusions.

Considering the system-centric metrics group presented in Figure 44, the best

 has no significant difference with changing the number of machines. The best	݂ݏ

values are obtained for the four machines system with a ݂ݏ ൌ 8, followed by a

݂ݏ ൌ 9, and a ݂ݏ ൌ 7. The system that follows is the system with two machines

that has its best values with a ݂ݏ ൌ 9 followed by a ݂ݏ ൌ 8 and, a ݂ݏ ൌ10. Finally

the worst values were obtained by the system with a single machine with ݂ݏ values

of 9, 10, and 8. Here we can see that from the system perspective having a greater

number of machines is beneficial. When choosing the ݂ݏ values, the system takes

more advantage of SLs with ݂ݏ within the interval of 7 to 10.

94

Figure 44. System-centric metric group for the SSL-PM algorithm.

Figure 45 shows the user-centric metrics group for the SSL-PM algorithm. We can

see that an increment in the number of machines is also beneficial to the user

because the systems with larger number of machines are the ones that obtain

lower degradation values. We can see that for the three machine configuration, ݂ݏ

equals to one, two and three provides less degradation values. It means that for

the user its always better to select the smallest ݂ݏ.

Figure 46 shows the algorithm-centric metric group for the SSL-PM algorithm.

Contrary to the other groups, we see that an increment in the number of machines

is not beneficial. Here, ݏ′݂ݏ that have the top places are the ones with values of

one, two and three.

95

Figure 45. User-centric metric group for the SSL-PM algorithm.

Figure 46. Algorithm-centric metric group for the SSL-PM algorithm.

We now present the plots for the multi-criteria analysis of the MSL algorithms.

Once more, we present the three groups of metrics and a description of the

results.

96

Figure 47 shows the multi-criteria results for the system-centric metrics group. We

see the system with one machine that corresponds to a MSL-SM system has its

best value with14 SLAs, and its second and third value on 11 and 10 respectively,

when the number of machines that the system has increases, which corresponds

to the MSL-MM algorithm, we see that the best values are in the middle region and

as the number of machines increases the values are kept in a middle number of

SLAs.

Figure 47. System-centric metric group for the MSL-PM algorithm.

Figure 48 shows the results for the user-centric metric group now for the MSL-PM

algorithm. We see that increasing the number of machines allows the system to

provide the user with a better response. Also, as in the case with the SSL

algorithm, the best number of SLAs is where there is a small number which have

low ݂ݏ.

Figure 49 shows the degradation analysis for the algorithm-centric metrics group.

Here we see that the values with less degradation are the ones with the lowest

97

number of SLAs. Additionally, here we can cleanlier see that increasing the

number of machines causes greater increments in the degradation value,

therefore, the algorithm does not benefit of the increment in the system resources

and obtains a worse performance comparing with the upper bound of the optimal

algorithm.

Figure 48. User-centric metric group for the MSL-PM algorithm.

98

Figure 49. Algorithm-centric metric group for the MSL-PM algorithm.

99

Conclusions

In this chapter, we present the conclusion of this thesis and the future work.

In recent years, the vision of computing as a utility is emerging. The elasticity of a

cloud and the utility model match the need of users providing services that tailor

necessities of each one. IaaS providers require mechanisms with QoS-driven

scheduling. New IaaS models and scheduling algorithms as the one we present in

this thesis contribute with ideas on how this utility computing could be taken to

HPC users. We consider that this model takes a step further because it transfers

the QoS of the service from the user to the provider. Thus the provider can perform

a better management of the resources improving the efficiency which in turn could

lower the prices, be ecological friendlier, among others advantages.

To the best of our knowledge, this work is the first in the literature that simulates

IaaS clouds with different SLs on single and parallel machines. This is also the first

work that analyzes the costs of execution, which is not covered by studies, made

for real time systems.

The theoretical foundation of this work is based on one metric, the competitive

factor, which may not be enough for a more complete evaluation of the algorithms.

This work provides an extensive experimental analysis considering a variety of

metrics.

We found for the competitive factor two experimental minimum bounds that

consider unlimited and limited resources systems models. The limited resources

bound have a greater approximation to the real competitive factor in low values of

slack factor, being it even tighter than the theoretical bound, however its

performance degrades as the ݂ݏ increases. In the case of the unlimited resources

its performance is bad in the whole interval. Nevertheless, both bounds converge

100

to the optimal value when the system has enough resources to execute the whole

workload. The existence of values were the theoretical bound of the competitive

factor is tighter than the experimental bounds obtained gives room to find tighter

bounds that can represent in a better way the performance of the system.

With the results of the SSL-SM algorithm we conclude that the slack factor is a

parameter that effectively allows the acceptance of more jobs, lending to the

increment of processing time but causing that jobs need to wait longer. Low values

of slack factor are the ones where our competitive factor minimum bound for

limited resources obtains a better approximation to the actual competitive factor,

even better than the theoretical bound.

From the experiments of the SSL-PM algorithm we conclude that this algorithm

does not scale well in terms of processing time when we add more machines, this

is mainly caused by the diminution in the scheduling efficiency. This disadvantage

can be overcome in a real cloud environment by dynamically assigning resources

to cover the demand of the workload and force the algorithm to work in optimal

conditions. We showed how with enough resources we can obtain a competitive

factor very close to one, by executing nearly all jobs in the workload. However, the

dynamic provision of resources is necessary to avoid misusing resources that may

cause a drop in the system's benefit.

The results for the MSL-SM show that the distribution of the different SLAs in the

set of SLAs accepted by the system is the major factor that defines the response

of the system. With the distribution and the sets of SLAs used, the response is

attenuated by the addition of SLAs with lower slack factors.

The MSL-PM results were the ones where we can conclude less, since its

response is a combination of the SSL-PM with the MSL-SM. That means a parallel

machine response attenuated due to the effect of the SLAs with lower slack factor.

101

Incorporating additional metrics has allowed enriching the analysis of the

algorithms defining different metric groups. We can conclude from this analysis

that only for the user, the best values in terms of ݂ݏ and number of SLAs

correspond to the maximum values of the experimental competitive factor. The

reason is that the algorithm provides a better quality of service when the ݂ݏ is

small and also is when the algorithm response is closest to the optimal. The

response of the algorithms to system goals depends on the price function.

Because of the chosen price function maximizes the gain for ݂ݏ with middle values

of ݂ݏ, these ݂ݏ perform better from the system perspective. The parallelism

introduced to the SSL and MSL algorithms is beneficial for the system and the

user. However, when algorithms are compared with an optimal income bound, we

see that this parallelism degrades their response. Theoretically, this degradation

should not exist but the experimental lower bounds we define, does not allow us to

have a tighter approximation that can reinforce this fact.

Another characteristic of our work that previously was not considered is the

confidence of the system in the form of percentage of rejected jobs. This analysis

let us consider an execution environment where the system is not only interested

to increment the benefit but also the confidence that is providing to the user. We

show that the number of machines in the system is the major factor for determining

the confidence that the user receives by the system.

Thanks to this analysis, we see the importance of the characteristics of the

workload for the evaluation of the algorithms. Even further, a real implementation

of these algorithms should consider an appropriate workload for the system. In a

real environment, considering beforehand these parameters is impossible, hence a

dynamic adjustment of the system characteristics (number of machines available,

SLAs offered, etc.) becomes necessary to keep the system operating efficiently.

102

This work can be expanded in several ways, variations of the characteristics of the

MSL models, the distribution of SLAs, price function. Additionally, the model can

be enriched providing elements such negotiation mechanism, dynamic price

models and dynamic resource adjustment. These elements would provide a model

closer to be implemented.

103

Bibliographic references

Andrieux, A., Czajkowski, K., Dan, A., et al.(2004). Web services agreement
specification (WS-Agreement). Global Grid Forum.

Baruah, S.K., Haritsa, J.R.(1997). Scheduling for overload in real-time systems.
IEEE Transactions on Computers, 46(9), 1034–1039.

Bhardwaj, S., Jain, L.(2010). Cloud computing: A study of infrastructure as a
service (IAAS). International Journal of engineering and Information Technology,
2(1), 60–63.

Buyya, R., Abramson, D., Giddy, J., & Stockinger, H.(2002). Economic models for
resource management and scheduling in Grid computing. Concurrency and
Computation: Practice and Experience, 14(13-15), 1507–1542.

Buyya, R., Yeo, C. S., & Venugopal, S.(2008). Market-Oriented Cloud Computing:
Vision, Hype, and Reality for Delivering IT Services as Computing Utilities. 10th
IEEE International Conference on High Performance Computing and
Communications, IEEE Comput. Soc, 5–13.

Cosmin Silaghi, G., Dan Şerban, L., & Marius Litan, C.(2010). A Framework for
Building Intelligent SLA Negotiation Strategies under Time Constraints, In: J.
Altmann & O. Rana (eds.). Economics of Grids, Clouds, Systems, and Services,
Berlin, Springer, 48–61.

Feitelson, D.(2008). Parallel Workloads Archive. Accessible on the project web-
site, http://www.cs.huji.ac.il/labs/parallel/workload/.

Feitelson, D., Rudolph, L., Schwiegelshohn, U., Sevcik, Kenneth C., & Wong,
P.(1997). Theory and practice in parallel job scheduling. Job Scheduling Strategies
for Parallel Processing, 1291, 1–34.

Garg, S., Gopalaiyengar, S.(2011). SLA-based Resource Provisioning for
Heterogeneous Workloads in a Virtualized Cloud Datacenter. Algorithms and
Architectures for Parallel Processing, 371–384.

Gupta, B. D., Palis, M. A.(2001). Online real-time preemptive scheduling of jobs
with deadlines on multiple machines. Journal of Scheduling, 4(6), 297–312.

Hirales Carbajal, A., Tchernykh, A., Roblitz, T., & Yahyapour, R.(2010). A Grid
simulation framework to study advance scheduling strategies for complex workflow

104

applications. Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, IEEE Comput. Soc, 1–8.

IBM.(2010). Review and summary of cloud service level agreements. Accessible
on IBM’s web-site, http://public.dhe.ibm.com/software/dw/cloud/library/ cl-rev2sla-
pdf.pdf, 1–10.

Iosup, A., Li, H., Jan, M., et al.(2008). The Grid Workloads Archive. Future
Generation Computer Systems, 24(7), 672–686.

Islam, M., Balaji, P., Sadayappan, P., & Panda, D. K.(2003). QoPS : A QoS based
scheme for Parallel Job Scheduling, Job Scheduling Strategies for Parallel
Processing, Berlin, Springer, 252–268.

Macías, M., Smith, G., Rana, O., Guitart, J., & Torres, J.(2010). Enforcing Service
Level Agreements Using an Economically Enhanced Resource Manager,
Economic Models and Algorithms for Distributed Systems, Birkhäuser Basel, 109–
127.

Mell, P., Grance, T.(2011). The NIST Definition of Cloud Computing
Recommendations of the National Institute of Standards and Technology. National
Institute of Standards and Technology, NIST SP(800-145), 7.

Patel, P., Ranabahu, A., & Sheth, A.(2009). Service Level Agreement in cloud
computing. Cloud Workshops at OOPSLA, ACM Press, 10.

Ramírez Alcaraz, J. M., Tchernykh, A., Yahyapour, R., et al.(2011). Job Allocation
Strategies with User Run Time Estimates for Online Scheduling in Hierarchical
Grids. Journal of Grid Computing, 9(1), 95–116.

Sakellariou, R., Yarmolenko, V.(2008). Job Scheduling on the Grid : Towards SLA-
Based Scheduling. Advances in Parallel Computing series, 16, 207–222.

Schwiegelshohn, U., Tchernykh, A.(2012). Online Scheduling for Cloud Computing
and Different Service Levels. 26th IEEE International Parallel & Distributed
Processing Symposium, 1061–1068.

Tsafrir, D., Etsion, Y., & Feitelson, D. G.(2007). Backfilling Using System-
Generated Predictions Rather than User Runtime Estimates. IEEE Transactions
on Parallel and Distributed Systems, 18(6), 789–803.

Wu, L., Kumar Garg, S., & Buyya, R.(2011). SLA-based admission control for a
Software-as-a-Service provider in Cloud computing environments. Cluster, Cloud

105

and Grid Computing (CCGrid), 11th IEEE/ACM International Symposium on, IEEE
Comput. Soc, 195–204.

106

Appendix

A.1 Degradations metrics plots

Multiple Machine - Single Service Level

Figure 50. Mean bounded slowdown degradations for SSL-PM algorithm.

107

Figure 51. Percentage of rejected jobs degradations for SSL-PM algorithm.

Figure 52. Service provider benefits degradations for SSL-PM algorithm.

108

Figure 53. Competitive factor degradations for SSL-PM algorithm.

Figure 54. Mean waiting time degradation for SSL-PM algorithm.

109

Multiple Machine – Multiple Service Level

Figure 55. Mean bounded slowdown degradations for MSL-PM algorithm.

Figure 56. Percentage of rejected jobs degradations for MSL-PM algorithm.

110

Figure 57. Competitive factor degradations for MSL-PM algorithm.

Figure 58. Service provider benefits degradations for MSL-PM algorithm.

111

Figure 59. Mean waiting time degradation for MSL-PM algorithm.

