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RESUMEN de la tesis de MIGUEL JOSÉ COSTA DE ALMEIDA TEN-
REIRO, presentada como requisito parcial para la obtención del grado de DOCTOR
EN CIENCIAS en OCEANOGRAFÍA FÍSICA. Ensenada, Baja California, mayo de
2011.

EFECTOS TOPOGRÁFICOS EN LA FORMACIÓN, EVOLUCIÓN Y
ORGANIZACIÓN DE ESTRUCTURAS COHERENTES EN FLUJOS

TURBULENTOS. EL CASO DEL GOLFO DE CALIFORNIA

Resumen aprobado por:

Dr. Luis Zavala Sansón

Director de Tesis

El Golfo de California ha sido estudiado ampliamente en las últimas décadas. En
particular, en estudios recientes se ha reportado la formación estacional de un tren
de remolinos de mesoescala en la parte sur del golfo. Sin embargo, se conoce poco
sobre el papel de la topograf́ıa del fondo en la formación, evolución y organización
de estas estructuras. En esta tesis, se investigan los efectos de topograf́ıas abruptas
en la circulación del Golfo de California por medio de experimentos de laboratorio y
simulaciones numéricas.

Como primera aproximación, se ha investigado el decaimiento de flujos turbulentos
cuasi-bidimensionales en un sistema en rotación sobre una topograf́ıa tipo escalón. El
escalón divide el dominio en dos regiones del mismo tamaño, siendo una profunda y
la otra somera. Se ha encontrado una clara concordancia entre los experimentos y
las simulaciones basadas en un modelo de aguas someras. Inicialmente, la interacción
entre los vórtices origina la auto-organización del flujo, tal como sucede durante la
cascada inversa de enerǵıa en la turbulencia bidimensional. Además, la interacción de
los vórtices con el escalón genera un flujo persistente a lo largo de la topograf́ıa con
la región somera a la derecha (cuando el parámetro de Coriolis es positivo). Como
resultado, el flujo evoluciona casi de manera independiente en las regiones somera y
profunda, afectando la eficiencia de la organización. La existencia de una distribución
preferencial de vorticidad debida al escalón para tiempos largos (varios periodos de
rotación) es ampliamente discutida para dominios cuadrados y rectangulares.

El modelo numérico ROMS (Regional Ocean Modeling System) se ha utilizado para
simular de manera más realista la circulación en la parte sur del Golfo de Califor-
nia. Para diferentes topograf́ıas se observó la formación de remolinos de mesoescala
ciclónicos y anticiclónicos distribuidos de manera alternada durante el peŕıodo de vera-
no. El proceso de formación de los remolinos depende de la intensa corriente costera, del
lado continental, que entra en el golfo en el inicio de esta temporada. Se encontró que
la evolución y la posición final de los remolinos durante un peŕıodo de relajamiento del
viento (al final del verano) depende de la forma de la topograf́ıa. Además de las simula-
ciones con el ROMS, se ha usado el modelo de aguas someras para simular la evolución
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del flujo en un dominio rectangular similar a la parte sur del golfo. Se han conside-
rado diferentes topograf́ıas idealizadas con la intención de representar algunos rasgos
batimétricos de la región. Se encontró una fuerte dependencia entre la distribución final
de los remolinos y la topograf́ıa, de manera análoga a las simulaciones con el ROMS.
Una conclusión general es que la evolución del flujo en un dominio rectangular favorece
la organización del tren de remolinos de manera similar a como sucede en la parte sur
del Golfo de California. Además, la topograf́ıa influye en el posicionamiento de los
vórtices.

Palabras Clave: Golfo de California, turbulencia, cascada inversa de enerǵıa, estruc-
turas coherentes, topograf́ıa del fondo.
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ABSTRACT of the thesis presented by MIGUEL JOSÉ COSTA DE ALMEIDA
TENREIRO, in partial fulfillment of the requirements for the degree of DOCTOR IN
SCIENCES in PHYSICAL OCEANOGRAPHY. Ensenada, Baja California, May 2011.

TOPOGRAPHIC EFFECTS ON THE FORMATION, EVOLUTION AND
ORGANIZATION OF COHERENT STRUCTURES IN TURBULENT

FLOWS. THE GULF OF CALIFORNIA CASE

The Gulf of California has been widely studied during the last decades. In particular,
the seasonal formation of a train of mesoscale eddies at the southern part of the gulf
has been reported in recent studies. However, the role of the bottom topography on
the formation, evolution and organization of these structures remains uncertain. In this
thesis, the effects of abrupt topography on the circulation of the Gulf of California are
investigated by means of idealized laboratory experiments and numerical simulations.

As a first approximation, decaying, quasi-two-dimensional turbulent flows in a rota-
ting system with a step-like topography are investigated. The step divides the domain
in two equal-size regions, one being deep and the other shallow. A clear agreement -
between experiments and simulations based on a shallow-water model is found. Initially,
vortex interactions lead to the self-organization of the flow, as in the classical inverse
energy cascade in two-dimensional turbulence. Afterwards, the interaction of vortices
with the step generates a persistent flow along the topography with the shallow region
at its right (when the Coriolis parameter is positive). As a result, the flow evolves
almost independently at the shallow and deep regions, affecting the efficiency of the
organization. The existence of a preferential distribution of vorticity due to the step for
long times (several rotation periods) is thoroughly discussed for square and rectangular
domains.

The Regional Ocean Modeling System (ROMS) is used to simulate the circulation
in the southern part of the Gulf of California in a more realistic way. By using different
topographies, the formation of counter-rotating mesoscale eddies during the summer
period is observed. The eddy formation process strongly depends on the intense eastern
boundary current that enters the gulf at the beginning of this season. The evolution and
final position of the vortices during a wind relaxation period (late summer) are found
to depend on the shape of the topography. In addition to the ROMS simulations, the
shallow-water model is used to simulate the flow evolution in a rectangular domain
similar to the southern part of the gulf. Different idealized topographies resembling the
topographic features that characterize the region were considered. A strong dependence
between the final distribution of the vortices and the topography is found, analogous to
the ROMS simulations. A general conclusion is that the flow evolution in a rectangular
domain favours the eddy-train organization in a similar fashion as in the southern part
of the Gulf of California. In addition, the topography plays a role on the positioning of
the vortices.
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ca de Eindhoven por su ayuda en la realización de los experimentos. Un agradecimiento

especial a Frank Jehoel;

a Paula por su belleza y cariño, reflejo de nuestros hijos Emiliano y Ernesto;

a mi madre, mi hermano y mis dos sobrinas, Pipa y Leonor, porque los amo pro-

fundamente. También a toda mi familia, que de una manera u otra, siempre me ha

apoyado;

a todos mis amigos que nunca olvidaré;
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al posgrado en Oceanograf́ıa F́ısica por el apoyo económico brindado en el final de
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Chapter I

Introduction

I.1 Turbulent geophysical systems

A geophysical flow system can be characterized by the existence of a great number of

scales of motion that may vary from planetary to micro scales. Such a wide range of

scales of motion defines the turbulent character of most of the oceanic and atmospheric

phenomena. For example, the kinetic energy transfer from smaller to bigger spatial

scales characterizes the two-dimensional (2D) turbulence decay, which results in the

self-organization of the flow (Kraichnan, 1967; Batchelor, 1967). This effect is known

as the inverse energy cascade, which is not observed in three-dimensional flows (3D).

In contrast, both cases (2D and 3D) present an enstrophy transfer to small scales,

being one of the main characteristics of decaying turbulent flows. Large scale systems

(small wave numbers) tend to be conservative, i.e. the kinetic energy dissipation is

weak, resulting in the persistence of structures like eddies and currents. This kind of

phenomena has been studied with increasing interest during the last decades by means

of laboratory experiments, numerical simulations and theoretical considerations.

The evolution of 2D turbulent flow in the presence of lateral walls has been a research

topic in a number of recent investigations. Clercx et al. (1999) described the inverse

energy cascade on decaying 2D turbulence in a bounded domain, and compared the

results using no-slip and stress-free boundary conditions. They found that the self-

organization of the flow in a square box shows a relaxation towards the so-called Stokes
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fundamental eigenmode, which consists of a single vortex with size comparable to the

domain. Maassen et al. (2003) studied the self-organization of decaying, quasi-two-

dimensional turbulence in a stratified fluid within rectangular containers by means of

laboratory experiments and numerical simulations. Their results were focused on the

final states of the flow as a function of the domain geometry, and found a clear difference

with the prediction of quasi-stationary final states from statistical-mechanical theories.

The authors found that the cell patterns are not merely determined by the shape

of the container, but also depend significantly on the formation and detachment of

viscous boundary layers. These studies showed the role of no-slip boundaries as sources

of vorticity and net angular momentum in two-dimensional turbulence in bounded

domains, and demonstrated that these effects play a crucial role in the establishment

of these quasi-stationary final states of the flow (see also Clercx et al., 1998; van Heijst

et al., 2006; Clercx and van Heijst, 2009).

In contrast with these works, the evolution of 2D turbulent flow over topography has

been less studied, specially by means of laboratory experiments. The study of decaying

turbulent flows with rotation and topography in terms of the formation of coherent

vortices leads to remarkable results with great applications, since the configuration of

such structures is an important factor responsible for the transport of physical, chemical

and biological properties in the oceans and in the atmosphere. In one of the pionee-

ring works using topography, Bretherton and Haidvogel (1976) describe numerically

the inverse energy cascade of a quasi-geostrophic decaying turbulent flow over random

topography. They found that the flow tends towards a stationary state aligned with

the topography, with cyclonic (anticyclonic) circulation around a depression (bump)

(see also Salmon et al., 1976; Herring, 1977). This behavior has been widely studied

for different types of flows (vortices, currents) over a number of different bottom to-
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pographies (slopes, seamounts, ridges). For a recent review, see van Heijst and Clercx

(2009).

A particular idealized topography is a step-like bottom, dividing the flow domain

in a shallow and a deep region. The flow evolution is then strongly influenced by

changes in height of fluid columns, as they move from one region to another. Studies

on barotropic currents interacting with step topographies are reported by Spitz and Nof

(1991) and Stern and Austin (1995). The reflection of cyclonic (anticyclonic) vortices

from step-down (up) topographies is described in Zavala Sansón et al. (1999). For the

same kind of topography, Zavala Sansón et al. (2005) found a flow along the topography

that always keeps the shallow region on the right when a costal current reaches a step-

up or down. Tenreiro et al. (2006) investigated the interaction of dipolar structures

with a step-like topography and found an equivalent result: a persistent flow along the

topography with the shallow region on its right. van de Konijnenberg and van Heijst

(1996) describes a spin-up problem using this same configuration and finds always a

cyclone (anticyclone) in the deep (shallow) region.

The occurrence of some geophysical processes such as mesoscale currents and vor-

tices is persistent in time and space due to different factors associated with bottom

topography and basin geometry. A good example is the Gulf of California, which is an

extraordinary natural laboratory where a seasonal circulation of mesoscale geostrophic

eddies along the main axis are observed. Hydrographic historical data prove the exis-

tence of these eddies that can reach up to 1000 m depth, with horizontal dimensions

(<200 km) comparable with that of the basins that characterize the topography of the

region (Figueroa et al., 2003). Another case is the sequence of altimetry data showing

the presence of cyclonic and anticyclonic eddies inside and outside the Gulf of Aden,

aligned along the main Gulf axis (Al Saafani et al., 2007). The authors report that
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the presence of cyclones and anticyclones in the vicinity of the Gulf of Aden are due

to westward propagating Rossby waves generated in the interior of the Arabian Sea.

These two examples show how the circulation pattern seems to depend on the topogra-

phy and geometry of the basin. In the present work, where laboratory experiments and

numerical simulations are done using idealised geometries and topographies, we seek to

contribute for a better understanding on how these flow patterns are generated.

Another important effect in geophysical systems is the stratification, which inhibits

vertical motions and therefore contributes to the quasi-2D motion of the fluid. Rotation,

stratification and topography effects all play a fundamental role in the evolution of

the turbulence and therefore in the study of geophysical flows. Numerous works have

contributed for a better understanding of the physics involved in the interaction of

homogeneous or stratified fluid structures with topography in a rotating system. In

this sense, experimental fluid dynamics increasingly arises as one of the fundamental

areas of physical oceanography. This thesis is focused on the direct application of fluid

dynamics results oriented to study the mesoscale circulation of the Gulf of California,

which is considered by many a great natural laboratory of oceanographic phenomena.

I.2 Gulf of California

The Gulf of California (GC) is an interior sea located between the Peninsula of Baja

California and the Sonora and Sinaloa coasts, Mexico (Figure 1). Also known as Mar

de Cortés, it is an elongated basin (∼1200 km) that does not exceed 250 km width. Its

wide gap to the southeast, which connects it with the Pacific Ocean (PO) (imaginary

line between Cape San Lucas and Cape Corrientes), leads some to consider the Gulf as

an extension of the Pacific Ocean rather than a semi-enclosed sea. Traditionally the GC
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Figure 1. SeaWiFS image of the Gulf of California from October 6, 2001 (SeaWiFS
Project, NASA/Goddard Space Flight Center and ORBIMAGE).

splits into two geographical regions, one to the south and the other to the north of the

central islands. From this natural border there stands out, for their size, the Ángel de

la Guardia and Tiburón islands. The north end of the Gulf is the most shallow region

(∼50 m depth) and it is delimited by the delta of the Colorado River. The topography

in the GC can be described as a set of basins arranged along the main axis with depths

greater than 3,000 m in the southern part.

The GC has been investigated extensively during the last two decades. Oceano-
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Figure 2. Schematic monthly mean circulation in the Southern part of the Gulf of
California (SGC) from hydrographic historical data (taken from Figueroa et al., 2003).

graphic campaigns have been designed to study different scales phenomena, and have

provided information for the validation of numerical models, which are often used as a

fundamental tool in modern oceanography. In the same way, satellite images have im-
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proved the way to identify and describe the structures that characterize the GC. Lav́ın

and Marinone (2003) present a summary of the oceanographic knowledge of the GC.

They conclude that the mesoscale circulation far from the coast consists of geostrophic

eddies that can reach up to 1000 m depth with horizontal dimensions similar to the

basins that characterize the topography of the GC. However, the effect of these struc-

tures on the average and seasonal circulation, as well as on the thermodynamics of the

GC, is still unknown. The seasonal exchange between the GC and the Pacific Ocean

is described by Castro et al. (2000), who used CTD data to conclude that the water

exchange takes place in a cyclonic way: oceanic currents flow inwards the Gulf along

the continental coast and run outwards of it along the peninsula. Figueroa et al. (2003)

present a description of the circulation in the Southern part of the Gulf of California

(SGC): they used hydrographic historical data and looked for evidence of the presence

of eddies. These authors found a great variability, both in the horizontal and verti-

cal directions, and in the sense of rotation and position of the eddies. From the data

they found evidence of the existence of geostrophic eddies with horizontal scales similar

to the Gulf width (∼200 km), vertical scales that can vary from 500 m to 1000 m,

variability in the relative position of the eddies with respect to the topography and

seasonal variability in their circulation sign (see Fig. 2). In conclusion, the authors

support the view that the presence of eddies is not associated with the topography, but

they recommend the use of more information to be able to determine what controls the

circulation in the region.

Lav́ın et al. (1997) studied the Northern Gulf of California (NGC) circulation using

information from Lagrangian drifters and found a seasonal variability on the structures:

the cyclonic summer gyre presents a baroclinic character, whereas the winter circulation

results from a combination of baroclinic and barotropic motions. Three mechanisms
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- tides, wind stress and forcing in the mouth by exchanges with the PO - could be

responsible for the summer gyre, although their relative importance is still unknown.

For the winter time, the forcing mechanism presented to explain the observed circulation

is the wind, which tends to come from the northwest, and it is more intense than the one

observed in the summer. In another study of the same region (NGC), Beier and Ripa

(1999) explain the circulation by means of a two-layer model forced with the annual

frequency of the PO, wind stress and heat flux across the surface. The model indicates

that the seasonal variability on the NGC is more influenced by the PO, with the wind

stress and the surface warming both being secondary forcing agents. In the September

- October period, Beier and Ripa (1999) observed a cyclonic eddy that occupies the

whole central and southern regions of the NGC, and for the February - April period,

an anticyclone slightly displaced towards the northwest was found. Argote et al. (1998)

used a non-linear, vertically integrated model to study the tidal currents forcing and

wind stress effect on the barotropic average circulation of the GC and compare the

results with current measurements. The authors conclude that in the northern part of

the Gulf, during the winter period, the wind stress dominates and the circulation is

mainly anticyclonic. In the southern part, a jet along the continental shelf with the

same direction of the wind is observed. The differences found in the southern region

between the model and the observations are attributed to the baroclinic character of

the phenomena. Trying to describe the Lagrangian circulation on the GC using a

three-dimensional model, Gutiérrez et al. (2004) found that during the cyclonic period

a set of particles travels from the south and central regions towards the north, where

they remain trapped. In contrast, during the anticyclonic period, these particles flow

towards the south, where some of them leave the Gulf and some others remain inside of

it, later returning to the NGC. In the central and southern regions, the authors found
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some trapping areas at the peninsula side that reach up to 50 km radius and which can

retain particles for more than 30 days, whereas on the continental side a fast transition

region is described.

I.3 Motivation

As we can see, the mesoescale phenomena of the GC have motivated intensive investi-

gations recently. The dynamics of this kind of structures, like eddies, gyres, fronts and

currents, is of vital importance for the biological abundance in the region, for the trans-

port of larvae and pollutants, as well as for the exchange of heat and momentum along

the Gulf and with the atmosphere. However, the topographic effects on these struc-

tures is unknown. The objective of this thesis is to study these effects by simulating

experimentally and numerically turbulent flows with topography in confined domains,

including elongated regions resembling the geometrical characteristics of the GC. The

aim is to contribute in this way to improve the knowledge of the physical oceanography

of the GC.

I.4 Thesis outline

The goal of this thesis is to study the evolution of turbulent flows into well-organized

patterns due to the geometry of the domain and the bottom topography. The main

objective is to understand the formation, evolution and organization of turbulent flows

in the oceans and interior seas when the bottom topography presents abrupt changes

of depth. The existence of preferential flow states due to different geometrical and

topographical configurations under decaying conditions will be widely discussed. For



10

this purpose, laboratory experiments and numerical simulations are carried out. A

description of the laboratory experiments and the numerical models used to simulate

the experimental results are given in chapter II. The equations of motion and the

essential dynamical effects associated with bottom topography are also described in

chapter II.

In chapters III and IV, a barotropic quasi-two-dimensional approximation is used

to understand the physical mechanisms behind the organization of the flow due to the

presence of a discontinuous topography (step-like). The results are oriented to un-

derstand the flow evolution in rectangular and square geometries, respectively. The

barotropic approximation helps to isolate the influence of the domain geometry and

the bottom topography in the flow organization. This is an appropriate approximation

since, due to the rotation of the system, the flow is almost two-dimensional and char-

acterized by the inverse energy cascade, or self-organization of the flow. This process

is systematically observed in the laboratory experiments and well represented by the

barotropic, shallow-water model. A step-like topography is used to divide the domain

in a deep and a shallow region, both with the same horizontal dimensions. Different

step heights are used in order to quantify the step-signal on the flow organization.

In chapter V, the same barotropic, shallow-water model is used on a rectangular

domain with dimensions comparable with the southern part of the Gulf of California.

Different bottom configurations are considered in order to represent some of the dif-

ferent topographic features of the Gulf. The aim is to compare the results with those

obtained from a more realistic model: the Regional Ocean Modeling System (ROMS).

The circulation of the Gulf of California is simulated by means of ROMS using different

topographies and realistic conditions: wind forcing, stratification effects, solar radia-

tion, etc. The goal is to identify some of the topographic effects responsible for the
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generation and organization of the vortices that characterize the mesoscale circulation

in the region during the summer period.

The main conclusions and final remarks of this thesis will be summarized in chapter

VI.
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Chapter II

Theory and methods

II.1 Equations of motion

The equations that govern the motion of fluids are derived from Newton’s Second Law

of Motion, F = dp
dt
, which expresses that the net force (F) on an element is equal to

the time derivative of the momentum of the element, p = mv, where m is mass and v

is the velocity. If the mass is conserved, then F = mdv
dt

= ma, with a the acceleration.

From this simple equation, the so-called Navier-Stokes equations are deduced and used

to describe most of fluid motions, including geophysical systems. In the present study, a

homogeneous, incompressible fluid moving in a steadily rotating system is described by

the spatial coordinates r and the velocity field u(r, t) satisfying the momentum balance

equations

∂u

∂t
+ (u · ∇)u+ 2Ω× u = −1

ρ
∇P + g+ ν∇2u−Ω× (Ω× r), (1)

where Ω is the system’s angular velocity, ρ is te fluid density which will be considered

constant, and P is the pressure. Conservative forces (per unit mass) are given by the

acceleration caused by gravity g = ∇φ, with φ the gravitational potential, and non-

conservative forces are associated with dissipative viscous effects given by ν∇2u, where

ν is the kinematic viscosity, assumed constant. The rotation effects are represented by

the Coriolis (2Ω×u) and the centrifugal [−Ω×(Ω×r)] accelerations. The Coriolis term,

which describes an acceleration perpendicular to the velocity vector u, has a significant

role in the flow evolution, while centrifugal effects can be included as a conservative



13

effect −Ω× (Ω× r) = 1
2
∇(|Ω× r|2) in an ”effective” gravitational potential.

Since ρ is constant, the reduced pressure can be defined as

p = P − ρ(φ+
1

2
|Ω× r|2), (2)

and the momentum equation becomes

∂u

∂t
+ (u · ∇)u+ 2Ω× u = −1

ρ
∇p+ ν∇2u, (3)

that together with the conservation of mass (continuity)

∇ · u = 0, (4)

describes the fluid motion.

Hereafter we shall consider a Cartesian coordinate system (x, y, z) in which the

fluid velocity has components u = (u, v, w), the angular velocity is oriented along the

z-direction, Ω = (0, 0,Ω), and gravity in the opposite direction, g = (0, 0,−g).

II.1.1 Two-dimensional motion

In a system dominated by rotation effects, the motion is almost completely restricted to

the horizontal plane (x, y) perpendicular to the rotation axis z. Such a phenomenon is

commonly observed in laboratory experiments, when rotating tanks are used to simulate

the Earth’s rotation. The two-dimensionality of the flow, which has been observed and

used since the work of Taylor (1923), is a good approximation under experimental

conditions.

In order to justify mathematically the two-dimensional (2D) behavior of the flow

dominated by rotation effects, equation (3) can be nondimensionalized using a length

scale L, a velocity scale V , and a time L/V ; considering pressure as ΩV Lρ the equation
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for the flow field u becomes

Ro

(
∂ũ

∂t̃
+ (ũ · ∇̃)ũ

)
+ 2k̂ × ũ = −∇̃p̃+ E∇̃2

ũ, (5)

where k̂ is the unit vector in the local z direction, Ro = V
ΩL

is the Rossby number

and E = ν
ΩL2 is the Ekman number. (Tildes denoting nondimensional quantities and

operators will be omitted from this point onwards for clarity). The Rossby number Ro

is a typical measure of the rotation effects. If Ro ≪ 1, the accelerations of the flow are

much smaller than those associated with the rotation of the system, and therefore the

rotation effects dominate the flow evolution. The Ekman number E is a measure of the

viscous terms compared with rotation effects. If E ≪ 1 then viscous effects are weak.

When Ro ≪ 1 and E ≪ 1, equation (5) for a steady flow becomes

2k̂ × u = −∇p (6)

which represents the geostrophic balance, i.e. the Coriolis and pressure-gradient forces

are in balance. Taking the curl and using continuity yields

∂u

∂z
= 0, (7)

which is the Taylor-Proudman theorem. It means that the flow is independent of the

vertical coordinate z. This independence is clearly observed in the vertical structure of

vortices in rotating homogeneous fluids, which are manifested as columns aligned with

the rotation axis, known as Taylor columns.

In laboratory experiments using rotating tables this columnar behavior of the flow is

commonly observed, even when Ro = O(1). Therefore, it is often accepted to consider

the flow as quasi-two-dimensional, in the sense that the vertical velocities are much

smaller than the horizontal ones.
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II.1.2 Shallow-water model

In order to include topographic effects, equations (3) and (4) can be written as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −1

ρ

∂p

∂x
+ ν∇2u, (8)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −1

ρ

∂p

∂y
+ ν∇2v, (9)

0 = −1

ρ

∂p

∂z
− g, (10)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (11)

where (u, v) are the horizontal velocity components in (x, y) directions and which are

considered independent of the z direction, w is the vertical velocity component, and f

is the Coriolis parameter defined as f = 2Ω. Under the shallow-water approximation,

vertical accelerations are ignored and therefore the hydrostatic balance dominates in

the vertical equation of motion (10).

Since u and v are z-independent, it is possible to integrate the continuity equation

(11) between an arbitrary bottom topography, hB(x, y), and the free surface located at

a height H(x, y, t):

(∇ · u)(H − hb) = ω|z=hb − ω|z=H. (12)

Note that H(x, y, t) = H0 + η(x, y, t) is the sum of a reference height H0 and the free

surface deformation η(x, y, t). The fluid depth is given by h(x, y, t) = H(x, y, t) −

hb(x, y).

For solid boundaries, the normal component of the mass flux must be zero, which

implies for a variable bottom topography that

w |z=hb= u
∂hb
∂x

+ v
∂hb
∂y

. (13)
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For the flat bottom case where hb is constant, i. e. ∇hb = 0, the vertical velocity

w |z=hb is zero. The kinematic condition for the free-surface is

w |z=H=
DH

Dt
, (14)

where D
Dt

= ∂
∂t

+ u ∂
∂x

+ v ∂
∂y

is the material derivative. Substituting (13) and (14) in

equation (12) gives

(∇ · ū)(H − hb) = − D

Dt
(H − hB). (15)

On the other hand, vertical integration of equation (10) yields

p(x, y, z, t) = −ρgz + c(x, y, t), (16)

where c represents an integration function. Using the boundary condition at the free

surface p(x, y,H) = p0, where p0 is constant, the equation above becomes

p(x, y, z, t) = −ρg(H − z) + p0. (17)

Applying this result in the momentum equations, and rewriting the vertically inte-

grated continuity equation (15), the original system can be reduced to three equations

in terms of u,v,η (or h)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g ∂η

∂x
+ ν∇2u, (18)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g∂η

∂y
+ ν∇2v, (19)

∂h

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= 0. (20)

These are the shallow water equations for a homogeneous fluid layer over variable

topography (see e.g. Pedlosky, 1987).
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Since the flow is considered nearly two-dimensional, the only relevant vorticity com-

ponent is the vertical component

ω = k̂ · ∇ × u =
∂v

∂x
− ∂u

∂y
. (21)

The z-component of the relative vorticity equation is obtained by taking the y-derivative

of (18) and subtracting it from the x-derivative of (19), which yields

Dω

Dt
+

(
∂u

∂x
+
∂v

∂y

)
(ω + f) = ν∇2ω. (22)

Equation (20) can be rewritten as

∂u

∂x
+
∂v

∂y
= −1

h

Dh

Dt
, (23)

which combined with (22) gives

Dq

Dt
=
ν

h
∇2ω, (24)

where the potential vorticity q is defined by

q =
ω + f

h
. (25)

II.1.3 Quasi-2D models

In order to derive a two-dimensional system, the rigid-lid approximation is considered:

the changes in the fluid depth due to free-surface oscillations are assumed to be small

compared with those caused by the topography. In this way ∂h
∂t

∼ 0. From this assump-

tion, gravity waves at the surface are neglected in our problem. Thus, the continuity

equation is reduced to

∂(hu)

∂x
+
∂(hv)

∂y
= 0, (26)
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where now h = h(x, y) is time independent. From this expression it is possible to define

a stream function ψ as

u =
1

h

∂ψ

∂y
(27)

v = −1

h

∂ψ

∂x
. (28)

Using these expressions, the evolution equation for the relative vorticity is

∂ω

∂t
+ J(q, ψ) = ν∇2ω, (29)

where J(q, ψ) = ∂q
∂x

∂ψ
∂y

− ∂q
∂y

∂ψ
∂x

is the Jacobian operator. The relation between ψ and ω

is given by

ω = −1

h
∇2ψ +

1

h2
∇h · ∇ψ. (30)

Equations (29) and (30) are sometimes referred to as the barotropic nondivergent model

(Grimshaw et al., 1994).

Considering a particular case where h = H0 (flat bottom case), it can be observed

from the continuity equation that the flow is non-divergent

∂u

∂x
+
∂v

∂y
= 0, (31)

which means that a stream function can be defined as

u =
∂ψ∗

∂y
, (32)

v = −∂ψ
∗

∂x
. (33)

In this case the relation between stream function ψ∗ and relative vorticity ω is given

by the well-known Poisson equation

ω = −∇2ψ∗. (34)
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The vorticity equation is reduced to

∂ω

∂t
+ J(ω, ψ∗) = ν∇2ω. (35)

This equation can be written as

Dω

Dt
= ν∇2ω, (36)

being the relative vorticity evolution equation for a fluid over a flat bottom. Note that

it has exactly the same form as for a purely 2D flow.

II.1.4 Ekman damping effects

An additional effect on a rotating fluid is the adjustment of the flow to the boundary

conditions that occurs both in the top and bottom boundary layers, usually called

Ekman layers. Damping effects driven by viscous boundary layers are determined by

the Ekman number. In the upper boundary, a viscous Ekman layer can be generated

for example by wind-stress effects, which will not be considered in this work. On the

other hand, the bottom boundary layer is produced by the imposed no-slip boundary

condition at the solid bottom, which provides the mechanism for bottom friction effects.

The 2D flow motion is only slightly affected from bringing the velocity gradually to zero

within this thin layer above the bottom, which allows its incorporation in a 2D physical

model.

Writing the Ekman number as

E =
2ν

fH2
(37)

where H is the vertical length scale, the Ekman layer thickness is defined as

δE =

(
2ν

f

)1/2

≡ E1/2H (38)
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(inside Ekman layers the viscous term should balance the Coriolis term). Notice that

the Ekman layer thickness δE becomes smaller when rotation increases.

The Ekman layer at the bottom generally induces a non-zero vertical velocity which

is proportional to the relative vorticity of the flow outside the Ekman layer. This is

known as the Ekman pumping condition:

w|z=0 =
1

2
δEω. (39)

Linear and nonlinear Ekman effects can be incorporated in a quasi-2D model with

variable topography as described by Zavala Sansón and van Heijst (2002). For variable

bottom topography the condition for the vertical velocity can be expressed as

w |z=hb= u
∂hb
∂x

+ v
∂hb
∂y

+
1

2
δEω. (40)

By using this expression in the vertically integrated continuity equation yields

∂u

∂x
+
∂v

∂y
= −1

h

Dh

Dt
+

1

2

δE
h
ω, (41)

which states that the horizontal divergence is given by fluid depth changes due to free-

surface variations and topography and by the vertical velocity induced by the Ekman

layer at the bottom. Applying the rigid-lid approximation, equation (41) becomes

∂u

∂x
+
∂v

∂y
= −1

h

(
u
∂h

∂x
+ v

∂h

∂y

)
+
δE
2h
ω. (42)

Substitution of the horizontal divergence in the vorticity equation (22) yields

∂ω

∂t
+ hu

∂q

∂x
+ hv

∂q

∂y
= ν∇2ω − δE

2h
ω(ω + f), (43)

where q is the potential vorticity defined above.

Expressions for u and v are obtained by rewriting equation (42) in terms of partial

derivatives as

∂

∂x

(
hu− 1

2
δEv

)
+

∂

∂y

(
hv − 1

2
δEu

)
= 0, (44)
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and by defining a stream function ψ such that

hu− 1

2
δEv =

∂ψ

∂y
, (45)

hv +
1

2
δEu = −∂ψ

∂x
. (46)

Since that the Ekman layer thickness is always much smaller than the fluid depth,

the horizontal velocities are approximated as

u =
1

h

(
∂ψ

∂y
− δE

2h

∂ψ

∂x

)
(47)

v =
1

h

(
∂ψ

∂x
− δE

2h

∂ψ

∂y

)
. (48)

Using these results in equation (43), the evolution equation for the relative vorticity

is now

∂ω

∂t
+ J(q, ψ)− δE

2h
∇ψ · ∇q = ν∇2ω − δE

2h
ω(ω + f). (49)

The relative vorticity obeys the relation

ω = −1

h
∇2ψ +

1

h2
∇h · ∇ψ +

δE
2h

2

h2
J(h, ψ). (50)

The terms in (49) and (50) that involve the Ekman layer thickness are due to Ekman

friction. The left-hand side in (49) represents a non-linear correction to the advection

effects driven by the Ekman layer, and the one on the right-hand side represents stretch-

ing effects associated with the Ekman pumping.

II.2 Experimental methods

The laboratory experiments were performed in rectangular (chapter III) and square

(chapter IV) rotating tanks with horizontal dimensions 150 × 75 cm2 and 100 × 100

cm2, respectively, both filled with fresh water. The horizontal aspect ratio of the tanks,



22

defined as the ratio between length and width, are δ = 2 and δ = 1, respectively. A

step-like topography (discontinuity) was used to divide the horizontal area of the tanks

in two regions with different depths, one deep and the other shallow. The rectangular

container was divided in two square regions and the square container in two rectangular

regions. Such a difference implies a very different organization of the flow after several

rotation periods of the system. The height of the water column at the deepest part was

fixed at H0 = 20 cm. Two step heights were used for each tank ranging between 1 and

5 cm. For further details see chapters III and IV.

The rotation rate of the tank around the vertical axis was fixed at Ω = 0.5 rad s−1,

which corresponds to a Coriolis parameter f = 2Ω = 1 s−1. The decay induced by

bottom friction is associated with the Ekman period, TE = H0/(νΩ)
1/2 ≈ 280 s, for

ν = 0.01 cm2s−1 (kinematic viscosity of water at 20 oC), which is roughly the duration

of a typical experiment. The time scale associated to the Ekman decay is much longer

than the rotation period, T = 2π/Ω ≈ 12 s.

The experimental procedure consisted of setting the tank in rotation at a constant

angular speed for about 30-45 min before starting an experiment, in order to ensure

that the fluid has reached a state of solid body rotation. The parabolic free-surface (1

to 3 mm) effects are ignored, assuming that the change in depth due to the bottom

step (1− 5 cm) are more important.

A disordered small-scale initial flow field was generated by passing a grid of vertical

bars through the fluid. The grid was moved with constant speed by an electric motor

mounted on the table. Once the flow has been forced, the grid is removed by vertically

lifting it out of the fluid. The flow field evolution was recorded with a co-rotating

camera mounted at some distance above the tank. For qualitative experiments, the

vortices are visualized by adding fluorescent dye to the fluid. Quantitative experiments
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were performed using passive tracers floating on the surface. Particle image velocimetry

(PIV) was used for measuring the velocity field in the quantitative experiments.

II.3 Numerical methods

Two numerical models were used. One of them is suitable to simulate the evolution of

a homogeneous fluid in a closed domain with rotation and topography. It will be shown

that the organization and decay of the turbulent flows observed in the experiments

is reasonably captured by this quasi-two-dimensional approximation. In addition, a

regional model was used to simulate the dynamics of the Gulf of California under

realistic conditions. The objective in both cases was to show the organization of the

flow due to bottom topography effects.

II.3.1 Shallow Water Evolution (SWEVOL)

Decaying quasi-2D turbulent flows with discontinuous topography were numerically sim-

ulated with a barotropic, rigid-lid, shallow water model (SWEVOL). The model solves

the quasi-2D dynamics expressed in Equations (49) and (50). This finite-differences

code has a wide range of initial vorticity distributions, variable topography and bound-

ary conditions available. The code was originally developed by Verzicco and Orlandi

(University of Rome) in the 90’s for purely 2D flows. It was modified and extended by

van Geffen (Eindhoven University of Technology). Afterwards, the model was adapted

to includ topography effects by Zavala Sansón (see Zavala Sansón and van Heijst, 2002).

The numerical domains are analogous to the laboratory experiments, as well as the flow

parameters. The aim of these numerical simulations was to reproduce the main physical

mechanisms observed in the laboratory experiments.
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II.3.2 Regional Ocean Modeling System (ROMS)

The Regional Ocean Modeling System (ROMS) was used to simulate the Gulf of Ca-

lifornia circulation. The ROMS is a free-surface, terrain-following, primitive equations

ocean model that can be used for a diverse range of applications (see Haidvogel et al.,

2000). A generalized nonlinear, terrain-following (or sigma) coordinate, which can be

configured to provide enhanced resolution at either the sea surface or sea floor, was

used earlier in SCRUM model (S-Coordenate Rutgers University Model). ROMS is

an expanded version of SCRUM (see Song and Haidvogel, 1994) with a variety of new

features. In this subsection the equations solved in ROMS are presented. Additional

information on forcings, numerical domains, bottom topographies and flow parameters

will be given in chapter V, where the circulation of the GC is studied.

The momentum balance equations in the horizontal plane (x, y) are given by the

primitive equations in Cartesian coordinates:

∂u

∂t
+ u · ∇u− fv = −∂φ

∂x
− ∂

∂z

(
u′w′ − ν

∂u

∂z

)
+ Fu +Du, (51)

∂v

∂t
+ u · ∇v + fu = −∂φ

∂y
− ∂

∂z

(
v′w′ − ν

∂v

∂z

)
+ Fv +Dv, (52)

where, (u, v, w) are the (x, y, z) components of the velocity u; f is the Coriolis parame-

ter; φ(x, y, z, t) is the dynamic pressure given by φ = (P/ρo) with ρ0 a reference density;

the effects of forcing and horizontal dissipation are represented by the schematic terms F

and D, respectively. These equations are closed by parameterizing the Reynolds stresses

with the vertical shear of the horizontal flow: u′w′ = −KM
∂u
∂z

and v′w′ = −KM
∂v
∂z
.

The advective-diffusive equation gives the time evolution of any scalar concentration

C(x, y, z, t)

∂C

∂t
+ u · ∇C = − ∂

∂z

(
C ′w′ − νθ

∂C

∂z

)
+ FC +DC , (53)
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with C ′w′ = −KC
∂C
∂z

being the turbulent tracer flux representation.

The equation of state is given by

ρ = ρ(T, S, P ) (54)

with T the temperature and S the salinity, and the total ”in situ” density given by

ρ = ρo + ρ(x, y, z, t).

The vertical pressure gradient is given by

∂φ

∂z
= −ρg

ρo
(55)

where the Boussinesq approximation is used; g is the acceleration of gravity.

The continuity equation for an incompressible fluid is used:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (56)

Equations (51)-(56) are subjected to boundary conditions on the sea surface z = η,

and at the sea bed z = −h. At the surface the conditions are

KM
∂u

∂z
= τxs (x, y, t) (57)

KM
∂v

∂z
= τ ys(x, y, t) (58)

KH
∂C

∂z
= 1/ρ0C

∗, (59)

where τxs and τxs are the components of wind stress acting on the free surface in the x

and y directions, respectively; for temperature T , C∗ = QT /Cp where QT is the heat

fluxes and Cp is the heat capacity of the sea water; for salinity S, C∗ = e− p where e

and p are the evaporation and precipitation rates, respectively.

At the sea bed the conditions are

KM
∂u

∂z
= τxb (x, y, t) (60)
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KM
∂v

∂z
= τ yb(x, y, t) (61)

KH
∂C

∂z
= 0, (62)

where τxb = (γ1 + γ2
√
u2 + v2)u and τ yb = (γ1 + γ2

√
u2 + v2)v, and γ1 and γ2 are

coefficients of linear and quadratic bottom friction, respectively.
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Chapter III

Self-organization and decaying process in a
rectangular domain with a step topography

This chapter is an adapted version of an article published in Physics Of Fluids

(Tenreiro et al., 2010)

III.1 Introduction

This chapter addresses the organization of decaying quasi-2D turbulence in rectangular

containers with discontinuous topography. The objective is to describe the process

in this system and to determine the preferential final state of the flow field due to

the presence of the step within a rectangular domain. The relevance and antecedents

of this problem are thoroughly discussed in chapter I. The study is carried out by

means of laboratory experiments in a rotating tank with aspect ratio δ = 2 and by

numerical simulations. In subsequent chapters we analyse different geometries. The

laboratory experiments provide physical evidence of the main features expected on 2D

decaying turbulence with topography. The numerical simulations, based on a barotropic

quasi-two-dimensional model with topography, will help to gain a better understanding

of the processes involved. Most of these are related with the dynamics of dipolar

structures generated during the flow evolution. The numerical results show that the

flow organization depends crucially on the step height. An important result is that a

flow along the step forces the existence of a preferential solution for long times (several

rotation periods).
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The chapter is organized in four main sections. In section III.2 the experimental

setup and two particular experiments are discussed in terms of self-organization and

topography signal. Numerical simulations with a similar arrangement are presented in

section III.3 where the main features on the flow organization are described. Section

III.4 is reserved for the discussion of the results and to present the conclusions.

III.2 Laboratory experiments

III.2.1 Experimental set-up

The laboratory experiments were performed in a rectangular, rotating tank with hori-

zontal dimensions 150× 75 cm2 filled with fresh water. The aspect ratio of the tank is

δ = 2, defined as the ratio between length and width. The bottom of the container was

divided in two square regions, deep and shallow, by means of a 3 cm step. The height

of the water column at the deepest part was H0 = 20 cm (Figure 3 shows a schematic

picture of the experimental set-up).

The rotation rate of the tank around the vertical axis was fixed at Ω = 0.5 rad s−1,

which corresponds to a Coriolis parameter f = 2Ω = 1 s−1. The decay induced by

bottom friction is associated with the Ekman period, TE = H0/(νΩ)
1/2 ≈ 280 s, for

ν = 0.01 cm2s−1 (kinematic viscosity of water at 20 oC) which is roughly the duration

of a typical experiment. The time scale associated to the Ekman decay is much longer

than the rotation period, T = 2π/Ω ≈ 12 s. The experimental procedure consisted

of setting the tank in rotation at a constant angular speed for about 30 min before

starting an experiment, in order to ensure that the fluid has reached a state of solid

body rotation. The parabolic free-surface (1 to 3 mm) effects are ignored, assuming
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Figure 3. Schematic picture of the experimental set-up. The initial flow is generated by
moving the set of vertical bars from right to left.

that the change in depth due to the step (3 cm) in the bottom topography is more

important.

A disordered small-scale initial flow field is generated by passing a grid of vertical

bars (15 bars with diameter d = 6 mm and 4 cm spacing between each one) through

the fluid, parallel to the longer sides of the container. The grid is moved with constant

speed by an electric motor mounted on the table (a similar configuration is used in

Maassen et al., 2003). When the bars arrive at the other side of the container, the grid

is removed by vertically lifting it out of the fluid (Figure 3). The initial characteristic

vorticity ω0 is about 0.5 s−1, which corresponds to a Rossby number Ro = ω0/f always

smaller than 1, ensuring the two-dimensionality of the flow.

In the presence of variable topography there are always three-dimensional effects.

Nevertheless, for a rotating fluid system with small to moderate Rossby number and

small Ekman number, the flow presents a strong columnar motion, which is modulated
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by depth changes.

For qualitative experiments, the vortices are visualized by adding fluorescent dye

to the fluid. Quantitative experiments are performed using passive tracers (∼ 250µm)

floating on the surface. The flow field evolution was recorded with a co-rotating cam-

era mounted at some distance above the tank. Particle image velocimetry (PIV) was

used for quantitative experiments. The main results were clearly reproducible in all

experiments.

III.2.2 Results

Several experiments were performed in order to observe the different processes involved

in the self-organization of the flow field. Two typical experiments are discussed, one

being qualitative and the other leading to quantitative information about the flow

evolution.

Figure 4 shows a sequence of photographs from a typical qualitative experiment

(a dye visualization of the flow is used). Hereafter, in all figures the lower (upper)

side of the domain corresponds with the deep (shallow) region, the horizontal black

line represents the step position and time is made dimensionless as t = t∗

T
, where t∗ is

time and T the rotation period of the tank. Initially (t = 3), the small-scale motions,

characteristic of the flow field originated by the passage of the rake through the fluid,

are observed. At t = 6 it is already possible to identify small coherent structures like

dipoles in both regions of the domain. For t = 10 new structures grow and the effect of

the step results in a weak flow along the topography, which is sketched with an arrow.

For longer times, the flow organizes into larger structures in both regions. Note, for

instance, the large dipole at the shallow side (t = 15− 25) and the smaller dipole near
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Figure 4. Sequence of top view photographs showing the evolution of an experimental
2D decaying turbulent flow with rotation and discontinuous topography.The black line
divides the domain into a deep (lower) and shallow (upper) regions. This experiment is
visualized with dye distributed randomly inside the domain before passing the grid.

the left wall at the deep region (t = 15 − 20). The important point to remark here is

that the flow generated along the step effectively separates the shallow and deep regions

as larger vortices are formed.

Figure 5 presents the velocity and vorticity fields from a quantitative experiment

after several rotation periods. It shows the advection towards the left wall of a cyclonic

(anticyclonic) structure at the deep (shallow) region, near the step. The presence of the

step generates a flow towards the negative x-direction maintaining the shallow region
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Figure 5. Top view data from PIV showing the step region of an experimental flow
field at two different times. The small arrows represent the velocity field u = (u, v).
Dark regions represent strong positive (negative) vorticity center at the deep (shallow)
side of the step. The black line indicates the position of the step. The big black arrows
schematize the flow behavior. The area is a rectangle with dimensions ∼[75 cm, 80 cm].

on its right, which results in the absence of structures above the step. For these times

(t = 20 − 35) the flow in both regions behaves almost independently. Note that the

dipole moves along the step with each one of its parts at a different region: the cyclone

(anticyclone) is always at the deep (shallow) part of the domain.

The two experiments shown above are representative of the observed interactions,

among which the most remarkable are the flow along the step and the formation of

fewer and larger vortices at both sides of the discontinuity. However, after repeating

several experiments it was not possible to determine a clear trend towards a preferred

configuration of the flow for long times. Thus, the final states were configured by one

or two vortices at each side of the step, either cyclonic, anticyclonic or both. This

is shown in Table I, which contains a list of the number of vortices, sign of vorticity

and domain region where they were found for t = 25 in 10 experiments. The vortices

are counted by identifying the strongest vortical structures for each experiment. The

percentage of vortices in both regions indicates a slightly higher probability to find
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cyclones (anticyclones) in the deep (shallow) part of the domain. This result, however,

is not conclusive at all. One important factor in the experiments is the presence of

Ekman friction. Indeed, bottom friction effects for long times strongly reduce the energy

of the flow, halting the organization process, and therefore inhibiting the formation of

even larger vortices (recall that t = 25 ≃ 0.9TE). In order to avoid this problem,

numerical simulations without Ekman effects are carried out. The results are shown in

the following section.

Table I. Summary of the laboratory results in terms of number, sign of vorticity and
region of the vortices for t = 25. +D (+S) denotes cyclones in the deep (shallow)
region, while D− (S−) indicates anticyclones in the deep (shallow) region.

Exp. + D − + S −
1 1 - 1 1 - 1
2 1 - 0 1 - 1
3 1 - 2 2 - 1
4 0 - 1 0 - 1
5 1 - 1 1 - 1
6 1 - 0 1 - 1
7 1 - 0 0 - 1
8 1 - 0 2 - 2
9 0 - 1 1 - 1
10 1 - 1 0 - 1

# vortices 15 20
% 53 - 47 45 - 55

III.3 Numerical simulations

In this section, numerical simulations of decaying quasi-2D turbulence with discontinu-

ous topography are presented. The flow is represented by means of a barotropic, shallow

water model. The equations in the ω − ψ formulation solved with a finite differences
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code (see e.g., Zavala Sansón and van Heijst, 2002) are:

∂ω

∂t
+ J(q, ψ) = ν∇2ω, (63)

ω = −1

h
∇2ψ +

1

h2
∇h · ∇ψ, (64)

where ω = ∂v
∂x

− ∂u
∂y

is the relative vorticity with (u, v) the horizontal, depth-independent

velocity, q = ω+f
h

the potencial vorticity, h(x, y) is the fluid depth, ψ is a transport func-

tion and J the Jacobian operator. Note that the local depth h is time independent,

according with the rigid lid approximation, and therefore only depends on the local

depth of the fluid. This formulation can be reduced to the quasi-geostrophic approxi-

mation when the step height hB is much smaller than the maximum fluid depth, hb
H

≪ 1.

The shallow-water model is adopted here, however, since it is a more appropriate ap-

proximation for high steps. A comparison of the two models in the presence of abrupt

topography is reported in Zavala Sansón et al. (2010).

The simulations represent a rectangular domain with horizontal dimensions L× δL

with L = 0.5, and δ = 2 being the aspect ratio of the tank. A step-like topography

divides the flow domain in two geometric squares with aspect ratio 1. In all simulations

the height of the water column in the deep region is H0 = 0.2. The rotation rate around

the vertical axis is fixed at Ω = 0.5, corresponding to a Coriolis parameter f = 2Ω = 1.

The rotation period is T = 4π/f . The flow decay is induced by lateral friction effects

where viscosity is ν = 10−6. No-slip conditions are imposed at the side walls. Ekman

friction effects are not considered. The discretization consists of 257 × 257 gridpoints

and the dimensionless time step is always ∆t = 10−3 for all simulations. Due to the

discretization, the step-like topography in the numerical simulations is actually a very

narrow slope, whose width is much smaller than the size of the vortices.

The initial condition (IC) used in all simulations is an 8× 16 array of cyclonic and
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anticyclonic Gaussian vortices with maximum vorticity |ω| = 1 and diameter a = 0.05.

Similar initial distributions are used in several laboratory experiments where vortices are

forced electromagnetically (Tabeling et al., 1991; Hansen et al., 1998) or by dragging

a rake of vertical bars through the surface (as in this study; Maassen et al., 2003).

Twelve different initial conditions are used, with the relative positions between adjacent

vortices slightly and randomly changed. The random perturbations of the positions are

about 15% of the vortex diameter. The Reynolds number Re = 2500 is defined as

Re = LUrms/ν, with Urms = 0.005 being the characteristic velocity of the initial flow

field.

Two step heights are used, ∆h = 1
20
H0 and ∆h = 1

4
H0. Since these values determine

substantial differences in the flow evolution, they will be referred to as low and high

step, respectively. Table II shows a summary of the numerical parameters used for the

simulations.

Table II. Characteristic parameters of the numerical simulations.

Domain L× δL 0.5× 1
Maximum depth H0 0.2
Kinematic viscosity ν 10−6

Rotation period T = 2π/Ω 12.5
Vortex diameter a 0.05
Initial rms velocity Urms 0.005
Step height ∆h low (high) 0.01 (0.05)

III.3.1 General features

Figure 6 shows the evolution of the relative vorticity field for a low step using lateral

no-slip boundary conditions in a particular simulation. The black line at y = 0.5
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Figure 6. Vorticity contours from a simulation with a low step and no-slip boundary
conditions. Dashed contours represent negative values of vorticity, and solid contours
represent positive values. The contour level increment is: (a)-(b) 0.02, (c) 0.01 and (d)
0.002.

represents the position of the step that divides the domain in deep and shallow regions.

Three main processes can be observed: 1) fast flow auto-organization (panels a and b);

2) strong interaction of the vortices with the lateral boundaries and the topography,

with the formation of coherent structures with sizes comparable with the square regions

(panel c); and 3) final configuration of two coherent structures more or less placed at

the geometrical centre of the square deep and shallow regions (panel d).

When the simulation starts, vortices with the same sign of vorticity merge and gene-
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rate larger vortices. Vortices with different sign form self-propagating dipolar structures,

which in turn will interact with other vortices. Initially, the flow is dominated by these

dipolar structures. When reaching the step topography, some of them are able to cross

it, while others are reflected, depending on the step height and the strength and size

of the structures (Tenreiro et al., 2006). The effect of the boundaries when a vortex

approaches a wall is the generation of thin filaments with opposite sign vorticity. These

intense filaments are injected into the flow interior, sometimes forming new dipolar

structures (Clercx et al., 1998). At the step region, a flow along the topography is ge-

nerated. This flow, which maintains the shallow region at the right, forces the formation

of two structures, a cyclone at the deep and an anticyclone at the shallow part of the

domain (panel c). Due to the interaction with the left wall the anticyclone generates

at the shallow region a cyclonic structure which eventually prevails in this area. The

flow field reaches a final pattern consisting of two large positive structures surrounded

by negative relative vorticity.

In order to see the effect of the step height on the flow evolution, a numerical run

with the same initial condition but now using a high step topography is performed (see

Figure 7). Initially, the flow behavior is very similar to the low step case (compare panel

a in Figures 6 and 7). However, after 15 rotation periods it can be noticed that there

are no structures above the step (panel b), which indicates a clear separation between

both regions. The flow along the step is generated and intense interactions with the

left wall are observed (panel c). In this case, the final pattern consists of two large scale

structures: an anticyclone at the deep and a cyclone at the shallow region (panel d).

It is important to remark that the main effect of the high step is the earlier separation

of the shallow and deep regions. A more precise time scale of this process in terms of

the step height is given in next section. Note also that the final distribution has a very
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Figure 7. As Figure 6, but now for a high step.

different pattern compared with the low step simulation.

III.3.2 Flow at the step region

In order to get more information about the step influence on the flow evolution and

organization, the velocity field along six parallel and consecutive grid lines adjacent

to the step in the deep region is analysed. In Figure 8 the u and v components are

examined independently for the same simulations shown in Figures 6 and 7. The plots

present these components (horizontal axis) along the step during the whole simulation
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Figure 8. Normalized mean velocity components along six grid-lines adjacent and par-
allel to the step in the deep region for the simulations shown in Figures 6 and 7. The
velocity is normalized with the maximum value for each transect. The time step is
∆t = 1. Dashed contours represent negative values and solid contours represent pos-
itive values. Dashed-point contours represents the zero. The contour level interval is
0.2.

(vertical axis). The flow along the low step is clearly shown by the negative values

of the u-component from t ∼ 40 (panel a). Before t ∼ 40, the existence of small

scale structures associated with the vortices crossing above the step is observed. Note

also that near the right wall there are some periodic inversions of the u-component,

which are also correlated with the v-component. This behaviour is associated with the

existence of topographic waves along the step. Panel (c) shows the u-component of the

velocity field, in this case along a high step. It can be seen that negatives values of this

component appear from t ∼ 5 due to the step influence. Before t ∼ 5, the existence of
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small structures is related with the initial condition. For t ∼ 25 a positive flow near the

central point of the step is formed and grows in time. This positive flow at the step is

directly associated with the presence of an anticyclone at the deep region (see Figure

7).
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Figure 9. Zoom of Figure 8 panels (a) and (c). The line indicates the separation time
between regions and the circle the initial position of the jet for a low (a) and high (b)
steps.

The main point to emphasize here is the time at which the negative flow along the

step is established: t ∼ 35 for the low and t ∼ 5 for the high step case (see Figure 9).

This time is a good estimation of the moment at which the flows in the shallow and

deep regions begin to evolve almost independently, which mainly depends on the step

height.
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III.3.3 Final configurations
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Figure 10. Scatter plots at two different times of simulations shown in Figures 6 and
7. Panels (a)-(b): low step; panels (c)-(d): high step. The values are normalized with
maximum absolute values. Dark (grey) points are located in the deep (shallow) region.

The final flow configuration is well-represented by means of scatter plots. The

relation between relative vorticity (ω) and transport function (ψ) is shown in Figure 10

for a low (panels a-b) and a high (panels c-d) step. Note that points in the deep and

shallow regions are marked with different colours. For t = 15 the disordered character

of the flow field can be noticed by the absence of a clear relationship between both

quantities. However, this dispersion is smaller for the high step case, which indicates a

faster organization of the flow field. For later times, t = 200, a nearly linear relationship

is found separately for the two resulting coherent structures. The important point to

remark is the different distribution of large vortices at the end of the simulation: two

cyclones for the low step, and for the high step one cyclone in the deep region and an
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anticyclone in the shallow region.
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Figure 11. Vorticity contours and scatter plots of three different simulations with a low
step-like topography. Dashed contours represent negative values of vorticity, and solid
contours represent positive values. The contour level increment is 0.001. Black (grey)
dots in scatter plots are located in the deep (shallow) region.

However, the final configurations shown above are not always obtained when slightly

varying the initial conditions. To illustrate this assertion, figure 11 shows the relative

vorticity contour lines and the corresponding scatter plots for three different numerical

simulations at very long times using a low step. Recall that the simulations differ in

the position of the vortices of the initial condition, which are weakly and randomly

perturbed. It can be seen that all the simulations present a different final cell pattern

distribution. Panel (a) shows the formation of cyclonic vortices at each side of the
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step. For panels (b) and (c), intermediate configurations of different structures are

found. The dominant vortices are easily identified with the corresponding scatter plots.

Similar results for different numerical simulations using a high step were obtained:

simulations with small variations in the initial conditions also presented different final

cell pattern distributions.

Given the sensitivity of the final flow pattern for slightly different initial conditions,

an ensemble of 12 simulations was carried out for each topography. In Table III a

summary of the numerical results in terms of the final cell pattern distribution is pre-

sented. This table shows that the flow evolves towards a preferential final distribution

of vorticity given by one coherent structure in each region; the correlation between the

sign of these structures and the topography (deep vs. shallow) appears to be weak

Table III. Summary of the numerical results for low and high steps in terms of number,
sign of vorticity and region of the vortices at time t = 400. +D (+S) cyclone at the
deep (shallow) region; D− (S−) anticyclone at the deep (shallow) region. The symbol
0 denotes cases in which no structures were found.

Low step High step
IC +D− +S− +D− +S−
1 1 - 0 0 - 1 1 - 1 0 - 1
2 1 - 0 2 - 2 0 - 1 0 - 1
3 1 - 1 0 - 1 0 - 1 0 - 1
4 1 - 0 1 - 0 0 - 1 1 - 0
5 0 - 1 1 - 1 1 - 0 1 - 0
6 1 - 0 0 - 1 0 - 1 0 - 1
7 1 - 0 1 - 0 0 - 1 1 - 0
8 0 - 1 1 - 0 0 - 1 0 - 1
9 1 - 0 0 - 1 0 - 1 0 - 0
10 1 - 1 1 - 0 1 - 0 1 - 0
11 0 - 1 1 - 0 1 - 0 1 - 0
12 1 - 0 1 - 0 0 - 1 1 - 0

# vortices 14 16 13 11
% 64 - 36 56 - 44 31 - 69 55 - 45
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III.3.4 Generalization based on ensemble averages

In order to get more general information about the processes involved in the turbulent

decay in the presence of a step, the time evolution of two global quantities, the kinetic

energy (E) and the enstrophy (Z), is investigated. These functionals are defined as

E =
1

2

∫ (
u2 + v2

)
dxdy, (65)

Z =
1

2

∫
ω2dxdy. (66)

The ratio Z/E can be interpreted as 1/l2, where l is the mean scale of the structures

of the turbulent flow field. The quantity l must grow in time due to the inverse energy

cascade and it is indicative of the efficiency of the self-organization process.

The ensemble average is based on twelve runs using twelve slightly different initial

conditions, as mentioned above. Figure 12 shows the decay of global quantities for a

low and high step. In panel (a) the normalized kinetic energy and enstrophy decay is

presented. As can be seen, the decays are very similar in both quantities. From the

ratio Z(t)/E(t) (panel b) different features can be noticed. The total algebraic decay

rate of Z/E between 4 ≤ t ≤ 400 for a low step is ∼ t−0.58, while for a high step is

∼ t−0.63. These values are quite similar. Nevertheless, they are somewhat larger than

the one reported by Maassen (2000) for a rectangular container with the same aspect

ratio (δ = 2) but without topography (t−0.48). In other words, the presence of the step

increases the decay of this quantity or, equivalently, the efficiency of the organization

of larger structures with respect to the strictly 2D case. Besides, the value measured

by Clercx et al. (1999) for a square container (δ = 1) without bottom topography is

t−0.63. Therefore, the exponents found here suggest that the flow in each region tends

to behave independently, as in two separated square boxes. Panel (c) shows the mean

scale of the structures. For t > 40 slightly larger structures are found for the high step
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Figure 12. Time evolution of global quantities with low (solid) and high (dashed) steps:
(a) Normalized kinetic energy (E/E(t=0)) and normalized enstrophy (Z/Z(t=0)); (b) Ra-
tio of Z/E; (c) Mean scale structures; (d) Number of vortices. The data are computed
from ensemble averages of twelve runs with slightly different initial conditions.

case.

Another analysed quantity is the number of vortices as a function of time (panel d).

The vortex count is done by making use of the Okubo-Weiss function, Q = s21+s
2
2−ω2,

where the strain components are defined as s1 = ux − vy and s2 = uy + vx. Q(x, y, t)

allows to distinguish between rotation (Q < 0) and strain (Q > 0) dominated regions

(e.g., Zavala Sansón and Sheinbaum, 2008). A vortex is counted in closed regions where

Qmin ≤ Q ≤ Qmin/10. As the flow organizes, it is expected that the number of vortices
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decreases. It can be seen that the number of vortices in both regions is reduced at

almost the same rate. Nevertheless, the high step case presents always fewer vortices

indicating a more effective self-organization of the flow.

III.3.5 Step-limit and step-signal

The separation of the flow in two different regions due to the step presence was found

to occur at t ∼ 5 (t ∼ 35) for a high (low) step. The physical mechanism associated

with this behavior consists of the cease of vorticity exchanges between regions as flow

structures are less able to cross the step from one side to the other. This process depends

on the flow properties such as circulation and vorticity and on the step height. In order

to relate the separation time T ∗, the step height ∆h and the characteristic strength of

the flow ω∗ at this time, we define the latter as the integrated relative vorticity in the

deep region:

ω∗ = ωdeep =

∫ 0.5

0

∫ 0.5

0

ωdxdy. (67)

For this analysis we could also use ωshallow, which is equal to −ωdeep because the total

circulation is zero
∫ 0.5

0

∫ 1.0

0
ωdxdy = 0. Note that ω∗(0) ∼ 0 due to the initial conditions.

For latter times we expect an increase of ω∗ as fluid columns crossing towards the deep

region are stretched, gaining positive relative vorticity.

Figure 13 shows the ensemble average of ω∗ from twelve runs for each step height.

An additional set of simulations with a very low step (∆h = 0.005) is also included. The

time evolution of ω∗ for the different steps is shown in panel (b). It can be noticed that,

as expected, ω∗ increases in time and reaches a maximum. Afterwards it decays without

strong oscillations for each step height. The existence of this maximum suggests the

time after which there are no more structures crossing the step. Indeed, this time is
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Figure 13. Time evolution of integrated relative vorticity in different regions due to
different step heights. (a) Schematic representation of the integration regions. Vorticity
adjustment in (b) deep, (c) R1, (d) R4, (e) R2 and (f) R3 regions.

t ∼ 10 for the high step and t ∼ 40 for the low step; these values correspond well with

those previously found with independent measures. The magnitude of the maximum

ω∗ depends on the size of the step: larger steps induce stronger exchanges of vorticity

across the topography. Panels (c)-(f) show the integrated vorticity on four sub-regions

(see panel (a) for a schematic representation of the different integration areas). It is

clear that the increment of ω∗ is mainly associated with the R1 and R4 regions, where

a stronger signal is measured compared with the other two placed away from the step.
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Another interesting feature is that R2 and R3 regions present a strong correlation at

early times. This means that the step signal takes several rotation periods to be noticed

at the southern wall.

III.3.6 Statistical analysis of the final configuration
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Figure 14. Mean spatial vorticity distribution at t=400 for (a) very-low step, (b) low
step and (c) high step. Dashed contours represent negative values of vorticity, dashed-
dotted contours represent zero values, and solid contours represent positive values. The
contour level increment is: (a) 0.001 and (b)-(c) 0.0008.

In the preceding sections it was found that small differences in the initial conditions

lead to significant differences in the final vorticity distribution. Figure 14 shows the

final mean vorticity distribution (t = 400) calculated from ensembles of 12 simulations

for the three steps discussed above. As expected, few large scale structures remain at

each side of the topography. However, this average does not show the strong variability

of the final configurations observed from individual simulations. In order to quantify

these differences and to find spatial structures that explain them an Empirical Ortho-

gonal Functions technique is used (Berkooz et al., 1993; Emery and Thomson, 2001;

Hartmann, 2008).
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The EOF analysis seeks structures that explain the maximum amount of variance

in a two-dimensional data matrix. A space-realization array at a single time (t = 400)

is used where columns are the space vorticity vectors (m = 1, 2, ..., 2572) and rows the

results of each initial condition used (n = 1, 2, ..., 12):

Realization →

X =




ω1,1 ω1,2 · · · ω1,N

ω2,1 ω2,2
...

. . .

ωM,1 · · · ωM,N


 ↓ Space

where ωm,n is the vorticity at the grid positionm for the simulation n. TheM dimension

represents the data structure and N the realization.

By using the Singular Value Decomposition for M > N , matrix X can be written

as

X = UΣVT (68)

where the columns of U(M×M) and V(N×N) are the eigenvectors (singular vectors) of

the covariance matrices XXT and XTX, respectively. The diagonal elements of Σ(M×N)

are the corresponding eigenvalues (singular values). U and V are orthogonal and Σ is

diagonal. The singular values σm,m contain the amplitude information of the data set

in descending order of magnitude in the first N positions of the matrix.

Figure 15 shows the first three modes for the smaller step case. The first mode

(Um,1 panel a) explains 60% of the variance to a preferential pattern (σ2
1,1/

∑
σ2×100)

and is spatially composed by two structures with the same sign covering the deep and

shallow regions. In panel (b) the principal components times the single value of this

mode (σ1,1V
T
n,1) shows that half of the simulations are composed by two cyclones and
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Figure 15. Mean spatial vorticity distribution and respective principal components at
t=400 for the very-low step EOF analysis: (a-b) first, (c-d) second and (e-f) third
modes.

the other half by two anticyclones (this product gives the sign and the amplitude of

the spatial distribution). The second mode (panels c-d) explains 27% of the variance

and represents a preferential distribution composed by a cyclone at the deep and an

anticyclone at the shallow region. Only in three cases the inverse solution was found.

The third mode (panels e-f) explains 6% of the variance and it is composed by two

different signed structures at each region, with a cyclone and an anticyclone near the

step at the deep and shallow regions, respectively.

Figure 16 shows the three modes of the intermediate step height case. The first mode

(panels a-b) explains half of the variance (50%) and its spatial structure is composed by

two different signed structures. The principal components show a cyclone (anticyclone)
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Figure 16. As Figure 15, but now for the low step case.

at the deep (shallow) region for seven simulations and the inverse distribution for the

other five. The second mode (33%) shows a distribution where there is a tendency to

have two positive structures at each region. The third mode, which explains 9% of the

variance, shows a strong step signal with the structures slightly rotated when compared

with the previous case.

For the higher step case, Figure 17 shows two structures for the first mode, with

half of them being cyclones and the other half anticyclones (panels a-b). Nevertheless,

a clear asymmetry between the structures is noticed. The second mode explains 38%

of the variance and the solution is composed by an anticyclone at the deep region

and a very weak distribution of positive vorticity at the shallow one. The third mode

presents more structures near the step and only 5% of the variance is explained. In
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Figure 17. As Figure 15, but now for the high step case.

particular, the third mode distribution indicates a strong step signal on the separation

of the domain in two independent regions.

From this analysis several features appear in order to quantify the step signal on

the flow organization. The smaller step is the only case in which more than 50% of

the variance (60%) is explained by the first mode, where a symmetric distribution of

vorticity between regions is obtained. For the intermediate and high steps the variance

explained by the first mode is 50% and the spatial structure in the shallow region is

stronger and more coherent than the one in the deep side. For both intermediate and

high steps, the spatial distribution of the second mode coincides with the statistical re-

sult shown in Table III. This means that this mode represents the vorticity distribution

in terms of the number of vortices. Third modes explain less than 10% of the variance
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in all cases but shows a possible mechanism for a step induced solution: In all cases a

flow along the step with the shallow region on its right is maintained by the presence

of structures near the step.
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Figure 18. Summary of the EOF analysis results for different step heights.

Figure 18 summarizes the EOF analysis results in terms of percentage explained by

each one of the first three modes and step height. It can be seen that the first two modes

explain a high percentage of the variance (panels a and b). Nevertheless, the existence

of a preferential solution in terms of the vorticity distribution due to step effects remains

unknown. From the percentage of variance explained by the third modes, a weaker role

on the existence of a preferential solution by the presence of a high step is shown (panel

c). This supports the idea that there are critical, intermediate steps inducing stronger

signals on the organization of the flow into a preferential solution.

III.4 Discussion and conclusions

The self-organization of confined 2D flows in rectangular containers with a step topogra-

phy dividing the domain in two square regions with different depths, strongly depends

on the height of the discontinuity. The conclusions are supported by laboratory expe-
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riments and numerical simulations on decaying quasi-2D turbulence.

The laboratory experiments were performed in a rectangular container with aspect

ratio δ = 2 where a discontinuous topography divides the domain in deep and shallow

regions, each with aspect ratio δ = 1. The experiments showed the self-organization

of an initial turbulent flow field into a well-organized flow pattern that almost fills up

the entire domain. The final number of vortices tends to be η = 2, one in each region.

The final distribution depends on the formation of one or two strong vortices that

dominate the flow organization where the step-like topography plays a fundamental

role. These strong structures are forced by the flow along the step that, when reaching

the lateral boundary, interact continuously with it and injects vorticity into the flow

interior. This intense step-wall-flow interaction seems to dominate the cell formation

where a cyclone (anticyclone) is formed at the deep (shallow) region. Nevertheless,

different distributions were also found.

Laboratory experiments are affected by the presence of Ekman damping, which even-

tually drains most of the energy of the system and halts the self-organization process.

Thus, numerical simulations with no Ekman friction allow to study the flow behaviour

for much longer times. Numerical simulations using no-slip boundary conditions show

the same principal features observed in the laboratory experiments. The organization of

the flow field into two structures placed near the geometrical center of each region, and

a jet along the step which maintains always the shallow region on its right (for f > 0),

are systematically obtained. The mass transfer from one side to the other across the

step makes fluid columns to gain or lose relative vorticity due to potential vorticity



55

conservation: columns traveling from shallow to deep regions acquire positive vorticity,

and traveling from deep to shallow get negative vorticity. This explains the positive

(negative) vorticity patches along the deep (shallow) part for intermediate times (see

panel (c) of Figure 6). As the flow decays, rotation effects and pressure gradients arising

when the step is present are balanced and originate the flow along the step that always

maintains the shallow region on the right. One remarkable feature of the presence of a

discontinuous topography on a bounded domain is that, for intermediate times, there

are always a cyclone and an anticyclone on the deep and shallow regions, respectively,

near the left wall. This is due to the flow along the step

It was found that a higher step induces a faster flow organization. This is related

with the existence of a critical time T ∗ determined by the strength of the flow and the

step height, after which structures are not able to cross the topography. Afterwards,

the flow evolves almost independently in each region. Such a time scale is longer for

lower steps.

Nevertheless, this effect is not related with the existence of a preferential solution

for long times. A slight tendency towards the existence of a preferential vorticity

distribution due to the step was observed for lower steps with a cyclone (anticyclone)

at the deep (shallow) region. From the EOF analysis, the existence of a preferential

distribution of vorticity associated with the geometry induced by the discontinuity

seems to depend on longer flow-step interactions. This supports the idea that such

distribution are favored for intermediate steps, over which this interaction has a longer

duration than over a high step.



56

Finally, it must be pointed out that despite the simplicity of the system, the difficulty

to predict the long-term configuration of the flow is remarkable. Further research is in

progress in order to analyze the relevance of different aspect ratios of the container, as

well as different geometries.
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Chapter IV

Self-organization and decaying process in a
square domain with a step topography

This chapter is an early version of a manuscript to be submitted as an article to Euro-

pean Journal of Mechanics - B/Fluid (EJMB).

IV.1 Introduction

This chapter describes the decay process and organization of a quasi-2D turbulent flow

in a square container with discontinuous topography in a rotating system. The main

objective is to describe the existence of a preferential final state of the flow field in

a square container due to the presence of a step-like topography. A similar study

was conducted by Tenreiro et al. (2010) in a recent work using a step-like topography

dividing a rectangular domain in two square regions (chapter III). The authors found

that the presence of the step leads to a flow along the topography that always maintains

the shallow region at its right for anticlockwise background rotation (see also Spitz

and Nof, 1991; Stern and Austin, 1995; Zavala Sansón et al., 2005; Tenreiro et al.,

2006). As a consequence, it was reported the existence of a critical value determined

by the strength of the flow and the step height, after which both regions evolve almost

independently. This separation strongly affects the flow organization. Nevertheless,

it was found to be insufficient on the prediction of a long-term configuration of the

flow. It was shown that the long-term evolution of the flow consisted of large-scale

vortices occupying almost the entire shallow and deep regions. However, a particular
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flow configuration was not found, since the sign and even the number of the vortices

depend on the initial condition. In contrast, the square geometry used in this study

implies the emmergence of a well-defined arrangement of vortices after several rotation

periods, even for very different initial conditions.

The results are obtained by means of experimental work and numerical simulations.

The laboratory experiments, performed in a rotating tank, provide physical evidence of

the decaying turbulence. However, the unavoidable presence of bottom friction some-

what hinders the long-term configuration of the flow, obscuring the unique arrangement

of vortices at late times. By ignoring Ekman damping effects, the numerical simulations

will help to gain a better understanding of the processes that lead to the existence of

a final vorticity distribution induced by the step and the square geometry after long

times (several rotation periods of the system).

The chapter is organized in four sections. In section II the experimental setup and

results are discussed in terms of the decay process and the topographic effects on the

flow organization. In section III, numerical simulations using a similar configuration

are presented. The discussion of the results and conclusions appear in section IV.

IV.2 Laboratory experiments

IV.2.1 Experimental setup and procedures

The laboratory experiments were performed in an L × L square, rotating tank filled

with fresh water. The horizontal aspect ratio of the tank is δ = 1 with horizontal

dimensions L = 1 m. A step-like topography was placed at the bottom of the tank

dividing the domain in two rectangular regions with horizontal aspect ratio δ = 2 and
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horizontal dimensions 0.5 × 1 m2. The height of the water column at the deep part

was H0 = 0.2 m and two different step heights were used, ∆h/H0 = 0.15 and 0.25 (a

schematic picture of the experimental setup is shown in Fig. 19). Hereafter the former

will be referred to as low step, and the latter as high step.

Figure 19. Schematic top and side views of the experimental setup.

The system rotates around the vertical axis in anticlockwise direction with a fixed

rotation rate Ω = 0.5 rad s−1. The flow decay is induced by both lateral and bottom

friction effects, the latter implying an Ekman timescale TE = H0/(νΩ)
1/2 ≈ 280 s, for

ν = 10−6 m2s−1 (kinematic viscosity of water at 20◦C). The characteristic time scale

associated with the Ekman decay is much longer than the rotation period, T = 4π/f ≈

12 s, where f = 2Ω is the Coriolis parameter. In addition, the Ekman number E = ν
fH2

0

is much smaller than unity (about 2.5× 10−5).

Before starting an experiment, the tank is rotating at a constant angular speed for

about 45 min in order to ensure a state of solid-body rotation of the fluid. Due to
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this rotation, a parabolic shape of the free-surface is established (which produces a

depth difference of about 0.3 cm between the center of the tank and the lateral walls).

Nevertheless, the effects of the free-surface deformation on the flow evolution are ignored

assuming that changes due to the step (3 and 5 cm) are more important.

An initial flow field is generated by passing a grid of vertical bars through the

fluid. The grid consists of 8 PVC bars with a rectangular cross-section with a width

of b = 4 cm and a thickness of 0.5 cm. The bars are equally distributed along a line

perpendicular to the bottom topography. The separation between bars is 8 cm and all

of them are adjusted to have a space of about 0.5 cm between the lowest end of the

bars and the bottom of the tank. Turbulent flow is generated by moving the grid back

and forth through the tank (it starts and finishes at the same position) with a constant

speed Ugrid = 7.5 cm/s. Once the flow has been forced, the grid is removed from the

tank (a similar procedure is used in Maassen et al., 2003). As a result, vortex structures

with ∼ 5 cm diameter are formed. The Reynolds number Re = Ugridb/ν based on the

bar width b has a typical value Re ≈ 3000. The initial characteristic vorticity ω0 is

around 2 s−1, which corresponds to a Rossby number Ro = ω0/f ∼ 2.

In laboratory experiments, 3D effects are always present due to the no-slip bottom

topography. Nevertheless, a rotating system with moderate Rossby number and small

Ekman number presents a strong columnar motion modulated by the depth field. This

is easily verified in qualitative experiments where the vortices are visualized by adding

fluorescent dye to the fluid. Quantitative experiments are performed using passive

tracers (∼ 250 µm) floating on the surface. The flow field in both cases is recorded with a

camera mounted at some distance above the tank co-rotating with the system. Particle

image velocimetry (PIV) is used to retrieve the horizontal fields from the quantitative

experiments. By repeating experiments it was found that the main results are clearly
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reproducible.

IV.2.2 General features

Figure 20. Vorticity surfaces, streamlines contours, and velocity arrows from an expe-
riment with a low step (∆h/H0 = 0.15). The black line at x = 0.5 indicates the step
position which divides the domain in a deep (left) and a shallow (right) region. Grey
surfaces represent negative values of vorticity, and dark surfaces represent positive va-
lues. The streamlines contour level increment is 0.1. The velocity arrows are scaled for
a qualitative view.

Using cartesian coordinates (x, y) in the horizontal plane, the velocity components

are defined as (u, v) and the vertical component of the relative vorticity is ω = ∂v
∂x

− ∂u
∂y
.

Figure 20 shows the evolution of the vorticity field, together with velocity arrows and

streamlines for an experiment with a low step topography (∆h/H0 = 0.15). The black

line at x = 0.5 indicates the step position, which divides the domain in a deep (left) and

shallow (right) region. In the first two panels (t/T=5 and 15, where T is the rotation

period of the system) a very disorganized flow field can be observed. In this stage
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the flow is dominated by vortex interactions, where vortices of equal sign merge and

generate larger structures (inverse energy cascade), whilst different-sign vortices form

self-propagating dipoles that interact with the topography and the lateral boundaries.

Some of these dipolar structures are able to cross the topography from one side to the

other, while others are reflected depending on their strength and size (Tenreiro et al.,

2006). For t/T = 25, a clear step signal can be identified as a flow along the topography

with shallow water at its right, which is characterized by the patch of positive (negative)

vorticity in the deep (shallow) region along the topography and by the orientation of the

streamlines parallel to step. From this time on, the flow in the two regions evolves nearly

independently: the transport across the step is reduced significantly. At t/T = 35 there

is a distribution of four vortices with alternate signs disposed along the main axis in

the deep part. In the shallow region, a strong anticyclonic circulation together with

two smaller cyclones is found. This distribution is forced by the mean flow along

the topography, which maintains always the shallow region at its right. When the flow

approaches the vertical wall, a cyclone is formed in the deep region and an anticyclone at

the shallow side. These two structures are always present in all laboratory experiments

performed.

In Figure 21 a similar experiment is shown, but now for a high step topography

(∆h/H0 = 0.25). At early times (t/T = 5), the merging of equally-signed vortices and

propagation of dipolar structures is similar to those observed in the low step experiment.

Already at t/T = 15 a strong flow along the step is formed. This indicates an earlier

separation between the deep and shallow regions with respect to the previous case. The

presence of a strong flow along the topography forces the existence of two large vortices

in the upper part of the domain, due to the interaction with the vertical wall. A cyclone

(anticyclone) in the deep (shallow) upper region is clearly seen at t/T = 25. These two
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Figure 21. As Fig. 20, but now for a high step (∆h/H0 = 0.25).

structures fill-up the entire subregion of the domain. For later times (t/T = 35), the

high step case presents an alternated distribution of vortices at the deep region similar

to the low step experiment. The shallow part is also dominated by the presence of

anticyclonic motion, specially in the upper shallow region.

IV.2.3 Flow at the step

In this section the mean current along the topography is analyzed in order to quantify

its influence on the flow organization due to the step presence. As stated above, after

several rotation periods the step divides the domain in two nearly independent regions.

The time separation strongly depends on the step height: the higher the step the faster

the separation. Figure 22 shows the velocity component v(x = 0.5) along the step

as a function of time for the experiments shown in Figs. 20 and 21. The normalized
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Figure 22. Normalized velocity component along the step for the experiments shown in
Figs. 20 and 21. The velocity is normalized with the corresponding maximum value
along the transect. The time step is ∆t = 1. Grey (black) surfaces represent negative
(positive) values.

velocity v(t)
vmax(t)

values along the step (vertical axis) are plotted for the full duration of

the experiment (horizontal axis). The flow along the step is clearly shown in both panels

by the measured positive values. Panel (a) shows the low step case. At early times

there are regions with positive and negative values, which are associated with small

scale structures crossing the topography from one side to the other. The formation of

the flow along the step can be noticed at t/T ∼ 5 by the upward slope of the positive

surfaces. The flow along the low step is completely formed at t/T ∼ 20. After this

time all values are positive, indicating a flow along the step with the shallow region

at its right. Panel (b) shows the high step case, where the flow along the step is
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already present at t/T ∼ 5. Negative values at the lower part of the step (y ∼ 0.2) for

longer times (for instance, at t/T ∼ 15 or t/T ∼ 33) are directly associated with an

anticyclonic structure present at this particular region.

IV.2.4 Results based on ensemble averages
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Figure 23. Mean spatial distribution of vorticity, streamlines contours, and velocity
arrows at t/T = 35 from an ensemble of (a) 14 experiments for the low step and (b) 18
experiments for the high step. Grey (black) surfaces represent negative (positive) values
of vorticity. The contour level increment for the streamlines is 0.1. The velocity arrows
are scaled for a qualitative view.

In order to quantify the step-signal on the flow organization, an ensemble average

based on 32 experiments is performed (14 for the low step and 18 for the high step

case). The differences between experiments are associated with small perturbations on

the initial conditions as the grid passes along the domain: even though the same grid

is used, moving with the same velocity in all cases, there are always unavoidable differ-

ences between initial conditions. Although the detailed flow evolution differs between

individual experiments, some robust features, such as the flow along the step, were

observed in all cases.

In Figure 23 the mean spatial flow field is shown at t/T = 35 for the low (panel

a) and high (panel b) step. The step signal is easily noticed by the positive (negative)
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vorticity values aligned along the step in the deep (shallow) region. These are directly

associated with the structure of the mean flow along the topography with shallow

water at its right. When this flow interacts with the upper wall, it gives rise to a

positive (negative) relative vorticity patch at the deep (shallow) region, as described

for individual cases in Figs. 20 and 21. In general, the final configuration is an irregular

pattern of four vortex-like structures in the deep region, alternately disposed, and a large

patch of negative vorticity at the shallow side. In fact, the anticyclonic vortex formed

next to the upper wall in the shallow part is a rather robust and persistent feature. The

streamlines and velocity vectors are also shown, and corroborate these arrangements.

The distribution of four vortices in the deep region is geometrically associated with

its rectangular area with aspect ratio δ = 2. Indeed, it has been shown in previous

studies (e.g. Maassen et al., 2003) the formation of a certain number of vortices ac-

cording with the aspect ratio of the domain. Since the regions tend to evolve almost

independently after some time, it is expected to observe such a distribution. At these

times, however, the flow has decayed due to Ekman damping effects, always present in

laboratory experiments. This decay seems to prevent the formation of the same pat-

tern at the shallow side, where bottom friction has a relatively large effect. A different

final distribution of vortices induced by the step topography will be discussed later, in

numerical simulations with the Ekman damping effects being set to zero.

In Figure 24 the time evolution of the mean normalized velocity component along

the step, defined as

Vs =
1

vmaxL

∫ L

0

vdy, (69)

is plotted for each experiment. For the low step case [panel (a)] strong variations of

Vs values can be noticed for t/T ∼ 0 − 15. After t/T ∼ 15 all experiments reveal a
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Figure 24. Time evolution of the normalized velocity component along the step (Vs,
equation 69) for (a) low and (b) high steps, calculated in 14 experiments for the low
step and 18 experiments for the high step. The thick, black line indicates the ensemble
average.

positive value of Vs, and lower amplitudes of oscillation, which is directly associated

with the flow along the step. In panel (b) for the high step, there is a strong tendency

towards positive mean values of Vs just after t/T ∼ 5. The high step forces an earlier

separation of the domain in two subregions and the oscillation is smaller. Therefore,

the mean flow along the step is clearly identified in the ensemble of experiments.

Taking advantage of the relatively large number of experiments, some global quanti-

ties of the ensemble are calculated, which are the total kinetic energy and the enstrophy:

E =
1

2

∫ (
u2 + v2

)
dxdy, (70)

Z =
1

2

∫
ω2dxdy. (71)

A third integral property is simply the ratio Z/E, which can be identified as a squared

wavenumber or, equivalently, as the inverse of the squared characteristic length l of the

flow:

1

l2
=
Z

E
. (72)

In Figure 25, panel (a) shows the time evolution of the averaged kinetic energy
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Figure 25. Time evolution of (a) normalized kinetic energy (E) and enstrophy (Z) and
(b) ratio Z/E, from an ensemble of 14 experiments for the low step (solid lines) and 18
experiments for the high step (dashed lines).

and the averaged enstrophy for the two step heights. A very similar decay in both

quantities is observed until t/T ∼ 35. After this time the inverse energy cascade is

halted by viscous effects that start to dominate the decay process. In addition, velocity

measurements are less accurate for very low motions. As a result, the energy and

enstrophy reach a stable value, perhaps also due to a weak influence of wind-induced

motions at the free-surface, and to small errors of the experimental measurements.

Thus, the experimental results are useful up to 35 to 40 rotation periods. Panel (b)

shows Z/E in a log-log plot, where it is observed that both present a power-law decay.

The exponent of t−α indicates the efficiency of the inverse energy cascade, i.e. the

efficiency of the organization of the flow in larger structures. A slightly larger value

is found for the low step case with α = 0.27, whilst for the high step α = 0.24 for a

decay period between t/T = 2− 20 (the error associated with the exponent calculation

is ∼ 10−2).

In order to quantify the efficiency of the flow organization in the shallow and deep

parts and its relation with the step height, the ratios Z/E are plotted for each region
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Figure 26. Time evolution of the ratio Z/E in the shallow (dashed) and deep (solid)
regions for the (a) low step and (b) high step. The ensemble is based on 14 experiments
using the low step and on 18 experiments using the high step.

separately in Figure 26. Panel (a) shows the ratios for a low step where a more effective

organization is obtained for the shallow part, α = 0.29, whilst for the deep part α =

0.25. For the high step case [panel (b)] in the shallow part α = 0.26 and in the deep

α = 0.23. Comparing both step cases and respective regions, it is found that globally

the inverse energy cascade is slightly more effective when a low step is present due

to a stronger organization in both regions. Recall that in both cases an anticyclonic

circulation dominates over the shallow part of the domain, whilst more structures are

observed in the deep region. When the step heigh increases, both regions tend to have

the same exponents since the step acts like a wall, effectively dividing the flow domain

into two separate regions.

IV.3 Numerical simulations

In this section, numerical simulations of decaying quasi-2D turbulence with discon-

tinuous topography are presented. A barotropic, shallow-water model in the ω - ψ

formulation with Ekman friction is solved with a finite differences scheme (see Zavala
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Sansón and van Heijst, 2002). The equations for the relative vorticity ω are

∂ω

∂t
+ J(q, ψ)− δE

2h
∇ψ · ∇q = ν∇2ω − δE

2h
ω(ω + f), (73)

ω = −1

h
∇2ψ +

1

h2
∇h · ∇ψ +

δE
2h

2

h2
J(h, ψ). (74)

where q = (ω+f)/h is the potential vorticity, with h(x, y) the fluid depth (which is time

independent, according with the rigid-lid approximation), ψ is a transport function,

δE = (2ν/f)1/2 is the thickness of the bottom Ekman layer and J the Jacobian operator.

The model includes linear and nonlinear Ekman friction terms (proportional to δE),

which provide a good representation of bottom friction effects (Zavala Sansón and van

Heijst, 2002).

The numerical domain is analogous to the experimental tank, as well as the flow

parameters. The domain represents an L×L square tank, with L = 1. The topography

consists of a discontinuity (step-like topography) dividing the domain in two equal

rectangular regions (the discontinuity is actually a very narrow, step slope due to the

spatial discretization). Corresponding with the experiments, in all simulations the

water column in the deep part of the domain is H0 = 0.2. Two step heights are used,

∆h
H0

= 0.15 (low step) and ∆h
H0

= 0.25 (high step). The rotation period around the

vertical axis is T = 4π/f , with f = 1 being the Coriolis parameter. The flow decay

is induced by frictional effects, where the kinematic viscosity is ν = 10−6. No-slip

boundary conditions are imposed at the boundaries in order to represent the lateral

tank walls. The spatial discretization consists of 257 × 257 grid points and the time

step used is fixed at ∆t = 10−3.
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IV.3.1 Comparison with the laboratory experiments

In order to compare the quasi-2D simulations with the laboratory results, it is con-

venient to use the experimental flow fields as the initial conditions. Therefore, the

vorticity field is taken from the first few seconds of some experiments t/T = 1, interpo-

lated onto a 257×257 numerical grid, and considered as the initial vorticity distribution

in the simulations.

Figure 27. Vorticity surfaces from a simulation with a high step and no-slip boundary
conditions. Grey (dark) surfaces represent negative (positive) values of vorticity. The
black line at x = 0.5 indicates the step position which divides the domain in a deep
(left) and a shallow (right) region.

Figure 27 shows the evolution of the relative vorticity surfaces for a high step in a

typical simulation using lateral no-slip boundary conditions and bottom friction. The

black line at x = 0.5 indicates the position of the step, which divides the domain

in a deep (left) and a shallow (right) region (as in the laboratory experiments). In

the first two panels (t/T = 5 − 15) several features can be noticed: strong vortex-
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vortex interactions with like-sign vortices merging and forming larger structures, and

opposite-sign vortices forming dipolar structures; vortex-lateral walls interactions that

lead to the formation of thin filaments that are injected into the flow interior; and

vortex-topography interactions. For t/T = 5 there are some structures above the step.

However, for t/T = 15 there are only a few of them crossing the step from one side to

the other. At this stage a step-signal is clearly seen by the aligned positive (negative)

vorticity along the step at the deep (shallow) region. For t/T = 25 the existence of

a cyclone (anticyclone) in the deep (shallow) upper region of the domain is observed.

The flow along the step and its consequent interaction with the vertical wall force these

distributions. In the lower part of the domain the process tends to be the inverse: an

anticyclone (cyclone) is formed in the deep (shallow) region.
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Figure 28. Mean spatial vorticity distribution at t/T = 20 for (a) low step and (b)
high step. Color surfaces as in Fig. 27. The ensemble is based on 27 simulations with
slightly different initial conditions for each step height.

The processes just described are qualitatively similar to those observed in the ex-

periments. In particular, the mean flow along the step and the generation of counter-

rotating vortices next to the upper wall are clearly reproduced. Moreover, the vorticity

distributions for late times are also similar. In order to reinforce this notion, Figure

28 shows the mean spatial distribution of vorticity from an ensemble of 27 simulations

with different initial conditions at t/T = 35. A qualitative agreement can be made
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with Figure 23, in which the main features are present and the final distribution of the

vortices is observed to be similar.
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Figure 29. Time evolution of (a) normalized kinetic energy (E) and enstrophy (Z) and
(b) ratio Z/E from an ensemble of 27 simulations for each step height.

In Figures 29 and 30, the decay of E, Z and the ratio Z/E are analyzed for these

two ensembles of simulations where a quantitative comparison with Figures 25 and 26

can be made. The efficiency of the inverse energy cascade depends on the step height:

a global decay with α = 0.26 is obtained for the low step case, whilst α = 0.24 for the

high step between t/T = 1−20. When calculated in each region separately, for the low

step case, α = 0.29 in the shallow part and α = 0.23 in the deep part. For the high step

case α = 0.24 in the deep and in the shallow region, revealing the effective separation

of the flow in two almost independent regions.

IV.3.2 Results without bottom friction

In this section we examine the existence of a preferred distribution of vorticity induced

by the step, i.e. a geometrical arrangement of the vortices at late times due to the

step topography. Such a final configuration consists of four vortices covering the whole

domain, two at each region: at the deep side a dipolar structure trying to climb the
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Figure 30. Time evolution of the normalized ratio (Z/E) for (a) low step and (b) high
step from an ensemble of 27 simulations for each step height.

step and the inverse distribution at the shallow side of the step. This arrangement

is suggested by the experimental and numerical results presented previously, specially

regarding the cyclone-anticyclone pair next to the upper wall. However, bottom friction

effects drain the kinetic energy of the flow before reaching this final state. As a conse-

quence, the four-vortices final distribution is inhibited in the laboratory experiments.

In order to avoid this, the Ekman terms in equations (73) and (74) are dropped and an

ensemble of new simulations is carried out.
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Figure 31. Mean spatial vorticity distribution at t/T = 200 for (a) low step and (b)
high step simulations without bottom friction. Grey (dark) surfaces represent negative
(positive) values of vorticity. The black line at x = 0.5 indicates the step position. The
data are computed from an ensemble of 10 simulations for each step height.
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A set of ten initial conditions similar to the ones used in section IV.3.1 were used for

the two step height cases, now for the case of zero bottom friction. Now, the duration of

the simulations can be longer due to the absence of Ekman damping. The mean spatial

vorticity distribution of the ensemble at t/T = 200 is shown in Figure 31. Clearly, a

well defined final distribution of four vortices is observed in both cases. This unique

distribution of the vortices is forced by the interaction of the flow along the step with

the upper wall, which results in a big dipolar structure at the upper side of the step. By

geometry and due to the no-slip boundary conditions, this persistent dipolar structure

forces the inverse distribution at the lower side of the step. The final distribution of

the vortices are two large dipolar structures, one trying to climb the step and the other

one trying to go down the step. All vortices are surrounded by a shield of opposite

vorticity, indicating the boundary layer at the lateral walls of the flow domain.

In order to quantify the robustness of this step-induced vorticity distribution, a

proper orthogonal decomposition (POD) technique is used (Berkooz et al., 1993). The

POD analysis searches for structures that explain the maximum amount of changes in

a 2D matrix. First, a space-realization array at a single time (t/T = 200) is used and

the analysis seeks the maximum amount of changes or variations relative to the mean

spatial distribution of vorticity of the ensemble (see Tenreiro et al., 2010). Second, the

evolution in time of the amount of changes relative to the mean spatial distribution is

investigated.

In Figure 32 the first three modes for the low step are shown for t/T = 200. Panel

(a) presents the first mode, which explains 72% of the variations relative to the mean

spatial distribution of vorticity. In panel (b), the principal components relative to this

mode show that all simulations have the vortices at the same regions, since all principal

components have the same sign. A simulation with a negative value would indicate a
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Figure 32. Mean spatial vorticity distribution and respective principal components at
t/T = 200 for the low step case POD analysis: (a)-(b) first, (c)-(d) second, and (e)-(f)
third modes.

similar vorticity distribution as the mean, but now with opposite sign. Mode two repre-

sents much less variations (8%), which are associated with small oscillations of the final

structures. In the third mode [panels (e) and (f)], as expected, the explained variations

are even lower (6%); nevertheless, the step signal is noticed by the spatial distribution

of vorticity along the topography. For the high step case the spatial distribution for

each mode are very similar (not shown here), however the variations explained for each

mode are different: 61% by the first, 15% by the second and 7% by the third.

In order to investigate the evolution in time of the amount of explained variations,

the first three modes are calculated for each complete rotation of the system. The results

are shown together for the low and high steps in Figure 33. In panel (a) the amount of

explained variations by the first mode is shown. For the interval t/T = 0−40 both step
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heights present similar amount of explained changes. However, after this period the

low step case presents always a larger percentage of explained changes relative to the

high step. The amount of explained changes in the second and third modes decay as

expected. These two modes represent small scale oscillations due to vortex interactions

with the lateral boundaries and the topography.
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Figure 33. Time evolution of explained changes relative to the mean spatial distribution
of vorticity by the (a) first, (b) second, and (c) third modes. Continuous line for the
low step and dashed lines for the high step.

IV.3.3 Different initial conditions

In order to show that the step-induced final distribution of the vortices is independent of

the initial flow, five simulations using different initial conditions (IC1 to IC5) for a high

step (∆H/H0 = 0.25) were performed. Again bottom friction is not considered. In Fig-

ure 34 the vorticity surfaces are plotted for t/T = 0 and t/T = 200 for each simulation.

IC1 is a 16 × 16 array of cyclonic and anticyclonic Gaussian vortices with maximum

vorticity |ω| = 1 and diameter a = 0.05. This type of initial condition is similar to

those obtained in laboratory experiments with electromagnetically forced vortices (see

Tabeling et al., 1991). The IC2 (IC3) represents a dipolar structure oriented towards

the shallow (deep) side of the step topography. The diameter of the vortices is a = 0.1
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Figure 34. Vorticity surfaces at t/T = 0 and t/T = 200 from five simulations without
bottom friction using different initial conditions.

and they are initially separated a distance L/2. Their peak vorticity is |ω| = 1. IC4

consists of four vortices disposed as the expected final distribution described previously:
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the vortices are located at (x, y) = (0.25, 0.25), (0.25, 0.75),(0.75, 0.25), and (0.75, 0.75).

Their size and strength are the same as in IC2 and IC3. IC5 is the inverse distribution.

As can be seen from the right panels, all five different initial conditions result in a

similar final distribution of vortices. There are some differences, specially when using

IC5, but in general there is a clear trend towards the expected configuration. Several

other initial conditions have been used (not shown), generally resulting in the same

final four-vortex configuration.

IV.4 Discussion and conclusions

The self-organization of confined 2D turbulent flows in a square tank/geometry with a

step-like topography in a rotating system has been investigated by means of laboratory

experiments and numerical simulations. The goal was to describe the flow evolution in

the shallow and deep regions and to discuss the existence of a preferential final state of

the flow induced by the topography.

The laboratory experiments were performed in a rotating square tank with hori-

zontal aspect ratio δ = 1. A step topography was used to divide the domain in two

rectangular regions with aspect ratio δ = 2 and with different depths, one shallow and

the other deep. In the laboratory experiments, the evolution from an initial turbulent

flow field into a well-organized flow pattern was found. A persistent flow along the to-

pography with the shallow region at its right is observed in all cases. This flow divides

the domain in two independent regions. The time required for the separation to be

effective strongly depends on the step height. The flow along the topography plays a

fundamental role on the flow organization by its continuous interaction with the cor-

responding vertical wall perpendicular to the step. From this interaction two strong
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structures at the end of the step are formed: cyclonic in the deep and anticyclonic in

the shallow region. The presence of these two structures implies a continuous injection

of vorticity into the flow interior. For longer times, the experimental ensemble shows

four alternate-sign structures in the deep region, while the shallow part is dominated

by an anticyclonic circulation.

Numerical simulations using no-slip boundary conditions show the same principal

features observed in the laboratory experiments: a jet along the step with the shallow

region at its right; different separation times due to different step heights; two persistent

structures at the end of the step near the vertical wall continuously forcing the existence

of a preferential distribution of the vortices; and a similar final distribution of the

vortices for longer times.

Due to Ekman damping effects, the inverse energy cascade in the laboratory exper-

iments and in the numerical simulations with bottom friction is halted at a finite time.

As a result, some middle-size structures are still observed at long times, specially in

the deep region. In order to study the full self-organization process, numerical simu-

lations with zero Ekman friction were performed as well. For shorter times, the zero

Ekman friction simulations show the same principal features as the ones with non-zero

bottom friction. For longer times, in addition, it was possible to reach a complete self-

organization of the flow and it was found to be a unique pattern. Such a configuration

consists of a well-defined, long-term distribution of four vortices alternately disposed: in

the deep part, a cyclone-anticyclone pair that fills-up the entire region, and the mirror

structures at the shallow side (see Fig. 31). All four structures are surrounded by a ring

of opposite-sign vorticity, indicating the presence of boundary layers along the lateral

walls. Looking along the step, the cyclones are disposed at the up-left and down-right

corners and the anticyclones at the opposite regions (up-right and down-left corners).
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This vortex distribution was found to be unique and independent of the initial condition.

This was shown by performing several simulations with different initial configurations

and verifying that the four-vortex configuration was obtained at long-times.

It is important to remark that despite the apparent symmetry of this distribution,

the cyclonic vortices cannot occupy the positions of the anticyclones. In other words,

the mirror configuration with cyclones instead of anticyclones and vice versa, is not

possible. The reason is that the step breaks such a symmetry and therefore it deter-

mines the position of the vortices. Indeed, where the flow along the step collides with

the upper wall it induces the formation of a cyclone in the deep part and an anticyclone

in the shallow region, as observed in the experiments. Since this interaction is contin-

uously occurring, it forces the formation of the other structures and, eventually, of the

four-vortex configuration. The POD analysis confirms the persistence of a preferential

distribution of the vortices due to the geometry induced by the discontinuity.

The jet along the topography plays a fundamental role on the organization of the

flow. Due to its continuous interaction with the vertical walls, the vorticity that is

injected into the flow interior forces the existence of a preferential distribution of the

vortices. This depends on the relation between the length of the discontinuity and the

length of the lateral walls. A similar mechanism is found in the southern region of the

Gulf of California. During the summer period, the surface circulation is characterized

by an eddy-train of counter-rotating mesoscale eddies placed along the main axis of the

Gulf (see Zamudio et al., 2008). The organization and positioning of these structures

are associated with the intense Pacific eastern boundary current, which interacts with

the topographic features (bottom and coastal) forcing a unique distribution of the

structures. This eastern boundary current could be numerically and experimentally

simulated by the flow along a step-like topography.
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For purely 2D flows in bounded domains, the evolution towards large structures

filling the container is well-known, as shown for square and rectangular boundaries

(Clercx et al., 1999; Maassen et al., 2003; van de Konijnenberg and van Heijst, 1996)

The preferential vorticity distribution in a square container divided by a step topog-

raphy, however, is a remarkable feature. Indeed, when the geometry of the container

is different, a well-defined long-term configuration might not be obtained. That is the

case of a rectangular domain with aspect ratio 2, as shown by Tenreiro et al. (2010).

These results open new questions on the predictability of the flow evolution for differ-

ent domain geometries with larger aspect ratios and step orientations. They seem to

depend only on the length of the step when compared with the length of the walls.

Further research is in progress in order to support this possible dependence.

On the other hand, the influence of the step height was considered. It was found that

a higher step induces a faster flow organization at early times due to stronger topography

effects. Nevertheless, smaller steps are more efficient due to longer interactions. The

flow evolution in rectangular geometries favour the organization of counter-rotating

vortices (eddy-train) that is found to be unique when a flow along the boundary is

present.
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Chapter V

The Gulf of California

V.1 Introduction

The surface circulation in the Gulf of California (GC) has been widely studied during

the last decades. In the northern part, a seasonally-reversing gyre has been observed,

cyclonic in summer and anticyclonic in winter (Lav́ın et al., 1997). On the other hand,

the southern part presents a more complicated circulation. A characteristic feature of

the southern part of the Gulf of California is the formation of an eddy train along the

main axis during the summer period. This has been observed in satellite images and

corroborated by direct hydrographic observations (Castro et al., 2007). Lav́ın et al.

(2007) reported poleward surface currents flowing along the eastern coast during the

early summer; when this coastal flow gets weaker the eddies become more evident and

dominate the circulation in all the southern part. The eddies in this region are strongly

barotropic, reaching up to 1000 m depth. Makarov and Jiménez-Illescas (2003) calcu-

lated barotropic currents for the southern part of the Gulf of California and their results

suggest that large planetary and topographical effects support the main circulation in

this region.

In this chapter, two numerical models were used to simulate the seasonal circulation

of the Gulf of California, in particular the summer eddy train organization and its

relation with topographic effects. The main goal was to understand the organization of

the vortices along the main axis of the Gulf of California due to geometrical properties
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given by different topographic features. First, the SWEVOL model used in previous

chapters is adapted as a long rectangular box that resembles the Gulf of California

(section V.2). Secondly, the regional model ROMS is used for simulating the entire

Gulf under more realistic conditions (section V.3).

V.2 An idealized Gulf of California

It was seen in chapters III and IV that a step-like topography plays a fundamental

role on the self-organization process of a turbulent flow inside rectangular and square

domains. Both cases were numerically solved by using a finite differences code, which

will be used here again. In this section, the numerical domain represents an Lx × Ly

rectangular basin with dimensions comparable with the southern part of the Gulf of

California (200×1000 km2). The rotation period around the vertical axis is T = 4π/f ,

with f = 10−4 s−1 the Coriolis parameter. The flow decay is induced by frictional

effects, where the turbulent eddy viscosity coefficient is ν = 102 m2/s. No-slip boundary

conditions are imposed in order to represent the lateral walls and bottom-friction is set

to zero in order to observe the full organization process. The spatial discretization

consists of 129 × 129 grid points and the time step used is fixed at ∆t = 720 s. The

initial condition in all cases consists of a cyclonic circulation around the central point

of the domain, with ωmax = f/4. This initial state resembles the large-scale circulation

set by the summer currents along the eastern coast of the Gulf of California. The

simulations have a duration of 60 rotation periods, which is a timescale comparable to

the period in which the train of mesoscale vortices is formed along the Gulf.

When studying the decaying process of quasi-2D turbulent flows in rectangular and

square closed domains with a step-topography, a strong dependence was found between
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the final configurations of the self-organization process and the aspect ratios (δ) of

the domains. The self-organization process results in a well-defined final distribution

of the vortices, modulated by the step topography in both cases. For δ = 1 (square

case) a unique final distribution of the vortices was found. Nevertheless, for δ = 2

(rectangular case) a strong dependence on the initial condition was observed, which

implies the existence of several different final distributions. These important results

suggested a strong correlation between the aspect ratio of the domain and the existence

of a preferential distribution of the vortices.

Figure 35. Schematic representation of the five topographies used: (a) flat-bottom to-
pography; (b) and (c) step-array topographies; (d) and (e) platform topographies. The
depth values H0,1,2,3,4 are summarized in table IV.

Using a long rectangular box (δ = 5), now the effects of five different topographies

are analyzed. As a reference case, the flat bottom topography is first examined. The

rest of the topographies consist of different arrangements of steps along the rectangular

box. Analogously to the real bottom topography in the gulf, the depth of the steps

increases along the long side of the rectangular domain. A detailed description of each

case is schematically shown in Figure 35.
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The numerical parameters and topographies used in the experiments of this section

are summarized in table IV.

Table IV. Characteristic parameters and topographies of the numerical simulations.

Domain (aspect ratio) Lx × Ly (δ) 200× 1000 km2 (5)
Kinematic viscosity ν 102 m2s−1

Coriolis parameter f 10−4 s−1

Rotation period T = 4π/f
Initial peak vorticity ωmax f/4
Time step ∆t 720 s
Topographies Regions Depths (103 m)
(a) flat H0 1.0
(b) step-array H0H1H2H3H4 2.5 1.5 1.0 0.5 0.25
(c) step-array H0H1H2H3H4 2.5 1.5 2.0 1.0 0.5
(d) large-platform H0H1 1.0 0.5
(e) short-platform H0H1 1.0 0.5

V.2.1 Flat-bottom topography

In figure 36 the self-organization process is analyzed for topography (a), which has a

uniform depth H0 = 1.0×103 m (in fact, the flow behavior is independent of this value;

in other words, this case corresponds with the purely 2D dynamics). For t = 0 (t = t∗/T ,

where t∗ is time and T is the rotation period) a flow with cyclonic vorticity covering the

whole domain is prescribed. Between t = 2− 8 the vorticity produced at the walls due

to the no-slip boundary conditions grows and separates from the boundary, generating

two vortices at the upper-right and lower-left corners. For later times (t = 16 − 60)

the formation of a pattern with alternate circulation cells along the main axis of the

domain can be discerned due to the self-organization property of two-dimensional flows.

For the present aspect ratio, δ = 5, the final distribution consists of five vortices. This
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Figure 36. Vorticity contours from a simulation with a flat-bottom topography (a) with
H0 = 103 m. Solid (dashed) contours represent positive (negative) values of vorticity.
The contour level increment is 10−5 s−1. The horizontal dimensions of the rectangular
domain are nondimensionalized by using the width of the box Lx = 200 km.

result is nearly independent of the initial condition, since the same result is obtained

for different initial flows (not shown here).

The organization of a decaying flow in a set of vortices along a rectangular domain

has been studied by several authors, mainly in the context of decaying 2D turbulence
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(Maassen et al., 2003) and also in terms of spin-up (or spin-down) processes (van Heijst

et al., 1990; van de Konijnenberg and van Heijst, 1996). The flow evolution presented

in Figure 36 resembles the spin-up process where three main stages can be discerned:

(1) initially, a flow with uniform vorticity is established; (2) afterwards, opposite-sign

vorticity is produced at the lateral walls due to the no-slip boundary condition which

grows and separates from the walls; and (3) a pattern of nearly circular vortices is

formed along the main axis of the domain, with alternate circulations (cyclonic and

anticyclonic). The number of cells depends on the aspect ratio δ of the domain. Due

to viscosity, the vortices gradually decay until the fluid reaches again the state of solid-

body rotation. An important point to remark is that the train of vortices is formed

due to the geometry of the domain. In the following subsections we analyze the flow

organization for non-flat bottoms.

V.2.2 Step-array topography

In figure 37 a simulation with a step-array topography (b) is presented, using the same

initial condition as in the flat-bottom case. The topography consists of five regions

with different depth, being H0 > H1 > H2 > H3 > H4 (see Figure 35). As can be

seen comparing with the previous case, the final distribution of the vortices changes

dramatically due to the topographic steps. For t = 2−8 the effects of the topography are

already visible: a flow along all the discontinuities with the shallow region on the right

are noticed by the positive (negative) vorticity along the deep (shallow) side of each

step. These flows parallel to the topography are expected to appear, since an equivalent

result was found in the experiments and simulations presented in previous chapters. Due

to the strong flow upward (downward) the steps along the right (left) walls (induced
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Figure 37. Vorticity contours as in Fig. 36, but now using a step-array topography (b)
consisting of five square regions with horizontal dimensions 200 × 200 km2 and depths
H0 > H1 > H2 > H3 > H4 (see Table IV). The step heights at y = 1, 2, 3, 4 are 1, 0.5,
0.5, 0.25 ×103 m, respectively.

by the cyclonic initial condition), potential vorticity conservation arguments can be

used to explain the present configuration: a column of fluid going up (down) a step-

topography gains negative (positive) relative vorticity. As a result, at t = 30 the central

regions (with depths H1, H2 and H3) show a cyclonic vortex at their northern parts
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and an anticyclone at their southern sides. The deepest and the shallowest regions

of the domain (with depths H0 and H4) present a cyclonic structure that fills up the

entire region, surrounded by an annulus of negative vorticity. At later times (t = 60)

the cyclonic structures dominate in all regions, although anticyclones in H1 and H3

still persist. As can be seen, the topography strongly modulates the self-organization

process since the final configuration is dramatically changed compared with the flat-

bottom case (Figure 36).

In Figure 38 a simulation with a different step-array topography [case (c)] is pre-

sented. The topography consists of five different depth regions with H0 > H1 < H2 >

H3 > H4. In this case, a shallow region (H1) lies between two deeper regions (H0

and H2). As in the previous case, the effects of the topography are already visible for

t = 2− 8 and the flow along all discontinuities with the shallow region on the right are

observed. One particular aspect of this simulation is that the step at y = 2 (between

H1 and H2) implies that the flow is directed from left to right, in contrast with the flows

along the other steps, which move from right to left. As a consequence, an anticyclonic

circulation is induced inside the shallow region H1. For t = 16, it can be observed that

this anticyclonic structure prevails over the cyclonic and grows in the central part of

H1 for later times.

V.2.3 Short-platform topography

In this case a platform-topography is used, consisting of a rectangular shallow region

placed next to the right boundary at the central part of the domain. The objective

now, is to show that a small topographic feature like this is sufficient to induce changes

in the final distribution of the vortices (this kind of topography could represent a
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Figure 38. As in the Fig. 37 but now using topography (c) consisting of five square
regions with depths H0 > H1 < H2 > H3 > H4 (see Table IV). The step heights at
y = 1, 2, 3, 4 are 1, -0.5, 1.0, 0.5 ×103 m, respectively.

submarine cape). Figure 39 shows the vorticity contours from a simulation using the

rectangular platform-topography (d). The platform divides the central square region

H2 in two rectangular regions, one shallow and the other deep, both with dimensions

Lx/2×Ly/5. The rest of the domain has a uniform depth H0. As can be observed, the
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presence of the rectangular shallow region gives place to a different organization of the

flow. The platform acts like an obstacle to the initial flow directed northwards at the

eastern boundary, inducing a complicated pattern at the central part of the box. Note

that there are three steps with different orientations. As can be seen at early times

(t = 2) the flow is strong enough to bring water from the deep region to the shallow one,

which explains the negative vorticity observed above the platform. Nevertheless, a flow

around the platform is formed and detached near the corners. The long-term evolution

of the flow is characterized by two anticyclonic vortices at the ends of the rectangular

domain, followed by two cyclones and, at the central region, a set of smaller vortices

over the platform. The presence of two cyclonic structures just next to the platform

region and a four-vortex structure similar to the one discussed in chapter IV for the

square domain, seems to be a special distribution for the present bottom geometry.

In Figure 40 the results for a shorter platform are presented. In this case it is clearly

seen that the separation of cyclonic structures from the platform prevents the separa-

tion of the anticyclonic cells near the end of the domain. Due to this behavior, some

anticyclonic vorticity is formed in front of the obstacle by boundary layer detachment.

The presence of two cyclones just next to the platform region, force this structure to

stay at the deep region in front of the platform (y ∼ 2.5).

These examples demonstrate that the topography affects dramatically the self-

organization process of quasi-2D flows. Figure 41 shows a schematic picture sum-

marizing the results presented in this section.
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Figure 39. As Fig. 36, but now using the large-platform topography (d) consisting of
a rectangular shallow region with horizontal dimensions Lx/2 × Ly/5 and depth H1 =
0.5× 103 m. The depth outside the platform is H0 = 103 m (see Table IV).

V.3 Gulf of California: a regional approximation

It was shown in section V.2 that the presence of different topographic steps affects

dramatically the final configuration of quasi-2D flows in a rectangular domain. The

domain dimensions were chosen to be similar to the dimensions of the southern region
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Figure 40. As Fig. 39, but now using the short-platform topography (e).

of the Gulf of California (SGC). In this section, the Regional Ocean Modeling System

(ROMS) described in chapter II is used to simulate the circulation in the entire Gulf of

California (GC). Some of the simulations have been designed to analyze the formation

of vortices at the central and southern regions.
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Figure 41. Schematic representation of the final distribution of the vortices found for the
different topographies: (a) flat-bottom topography; (b) and (c) step-array topographies;
(d) and (e) platform topographies. Dark and white surfaces represent cyclonic and
anticyclonic structures, respectively [in panel (a) the sense of rotation of the structures
is indicated by the white arrows]. Gray arrows represent the flow direction above the
steps.

The aim of the simulations using the ROMS is to investigate the topographic ef-

fects on the generation and organization of the vortices in the SGC. The formation of

mesoscale gyres and a possible geometrical signal on the flow organization will be also

discussed. Several previous studies have described the existence of an eddy-train in the

SGC region in the summer (e.g., Figueroa et al., 2003). Nevertheless, the topography

signal on this particular process is still unknown. Three simulations are analyzed using

three different topographies, as will be described in the following subsections.

The geographical domain is 115o to 106o W and 23o to 32o N. The bathymetry data

was obtained from ETOPO2, which is a 2 min gridded dataset (National Geophysical

Data Center, 2006). The horizontal grid resolution of the model is 1/12o and uses the

50 meter isobath as a land-sea boundary. In the vertical, 12 coordinate layers are used.

The model is forced with monthly averaged functions drawn from the COADS, a
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Figure 42. Monthly average of the horizontal wind field: streamline contours and vor-
ticity surfaces.

global atlas of marine data at 1/2o resolution (Da Silva et al., 1994). The forcing fields

included are the surface wind stress, sea surface salinity, surface net heat flux and

heat flux sensitivity to sea surface temperature, surface freshwater flux (evaporation-

precipitation) and sea surface temperature. The monthly climatology of the sea surface

temperature was obtained from Pathfinder satellite observations (Casey and Cornillon,

P., 1999). No-slip boundary conditions are imposed on the lateral boundaries and the

open boundary at the entrance of the Gulf is initially forced with temperature, salinity

and velocity data from the World Ocean Atlas 2001 climatology (Conkright et al., 2001).

Tides are not included.

One of the main forcing agents of the GC circulation is the wind. Figure 42 shows
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Figure 43. Monthly average of the zonal and meridional components of the horizontal
wind velocity.

the monthly mean field of the wind used to force the model, as well as the curl, for the

year 2005. Figure 43 shows the monthly mean amplitude of the zonal and meridional

components of the wind for the same year. As can be seen, the wind is mainly south-

eastward between October and April, with two maxima (in absolute value) in the mean

meridional component during November and January. In the period between May and

August the wind presents an opposit behaviour since in the southern part the monthly

mean presents a northeastward direction. The average magnitude of the wind during

this period is clearly smaller than the wind during winter and spring. Notice the strong

decay of the mean averaged components of the wind during the period from May to

July (Figure 43). This short period could represent a relaxation of the wind transfer

of momentum to the ocean. Nevertheless, the spatial variability of the wind generates

strong atmospheric vorticity which is transferred to the sea by turbulent momentum

fluxes. This is clearly observed in the curl map where the maximum values are found
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in this particular period.

Figure 44. Monthly sea surface temperature [Co].

Other forcing agent used in the simulations is the sea surface temperature (SST)

shown in Figure 44. It can be seen that the period from November to April presents

the stronger gradient of temperature along the main axis of the Gulf, being colder in

the north and warmer in the south. The period from July to October is characterized

by a very uniform distribution of the sea surface temperature in the GC.

V.3.1 Real topography

Let us first analyze a numerical simulation with a realistic bathymetry. The GC to-

pography was obtained by bi-linear interpolation of the ETOPO2 data. The depth of
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the shallower region was fixed at 50 m. The resulting topography, referred to as ”real”,

is shown in Figure 45. The GC can be divided into three zones. The entrance zone

(EGC) that is in communication with the Pacific Ocean and is characterized by max-

imum depths of ∼3000 m and a wider shelf-platform at the main-land side compared

to the peninsula side. This wider shelf continues through the southern zone of the Gulf

(SGC) characterized by a set of five basins arranged along the main axis (δ ∼ 5). The

depths of the basins range from 2500 m to 250 m. Another important feature of this re-

gion is the irregular shape of the eastern coast-line where a cape in front of the Farallon

basin can be discerned. The northern zone (NGC) is almost flat and very shallow.

Figure 45. Plan view and topographic contours of the GC. The coast-line is defined by
the 50 meter isobath. The contour interval is 100 m. The Gulf is divided in northern,
central, southern and entrance regions and are referred to as NGC, SGC, and EGC,
respectively. The principal basins in the SGC are also indicated.
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Figure 46. Two-month averaged sea surface height in a simulation using a real topogra-
phy. The continuous (dashed) contours represent positive (negative) altimetry values.
The contour level increment is 10−3 m.

In Figure 46 the two monthly averaged maps of the sea surface height (SSH) are

shown for the entire GC. Several features can be observed, such as the constant presence

of vortex structures in all regions during the entire period. Nevertheless, a completely

different regime is clearly noticed during the summer period (May to June and July

to August). At the beginning of the summer period, the flow is characterized by the

entrance of an eastern boundary current. Later in the summer, this current gets weaker

and a number of mesoscale eddies become more evident and dominate the circulation in

the SGC region (the same phenomenon was described by Lav́ın et al. (1997)). In order

to better understand this behaviour, Zamudio et al. (2008) studied the effects of the

local wind and the effects of the oceanic remote forcing on the generation of the SGC

eddies during the summers of 1999 and 2004. They found that the local wind is not



101

essential for the generation of these eddies, in contrast with the oceanic remote forcing

from the Pacific. The authors concluded that the monthly variability of the currents and

sea surface height in the SGC is mainly due to the poleward eastern boundary currents

and that interactions with topographic irregularities (capes and ridges) generate the

SGC eddies.

Figure 47. Monthly averaged sea surface height for 2005 using a real topography for the
SGC region. The continuous contours represent positive altimetry values and dashed
contours negative values. The contour levels as in Figure 46.

In Figure 47 the SSH monthly means are shown in the SGC region. For the period

of January to March three anticyclonic structures are observed above the Pescadero,

Farallon and Guaymas basins. In April, the anticyclonic structure above Pescadero

basin travels north and merges with the one above Farallon basin. During May and
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June the flow along the continental coast is established and a cyclonic circulation at

the southern basis (Pescadero to Guaymas) is formed. During July and August there is

an intensification of the eastern boundary current, which starts meandering and results

in an alternate eddy distribution along the main axis of the Gulf with anticyclonic

structures in the Farallon and Guaymas basins, and cyclonic structures in the Pescadero,

Carmen and San Pedro Martir basins.

V.3.2 Flat-bottom topography

Figure 48. Monthly averaged sea surface height for 2005 using a flat-bottom topography
for the SGC region. The continuous contours represent positive altimetry values and
dashed contours negative values. The contour levels as in Figure 46.

In order to investigate the influence of the topography on the described eddy-train,
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a simulation was carried out using the same forcing conditions, but now with a flat-

bottom topography. The uniform depth is 500 m over the entire GC. In order to use

the same initial conditions as the case before, the real topography is used at the open

boundary. Figure 48 shows the SSH monthly means. As can be seen, from January to

May the results are very similar to the previous case. For instance, a very persistent

anticyclonic structure around 26o North is observed in both simulations (compare with

figure 47). This suggests a weak effect of the topography on the circulation of the

region during the first months of the year. However, there are several differences in

terms of the dimensions and positions of the structures generated during the rest of the

year. In the flat-bottom case, the eddy-train of alternating structures is more evident in

the beginning of the summer period (June). The detachment of the eastern boundary

current at ∼ 26o N is stronger and reaches the western boundary. This result suggests

that the eastern boundary current in previous simulations is confined to the coast by the

real topography, and it crosses to the western boundary through the passages between

the basins.

V.3.3 Step-like topography

In this section, a numerical simulation with an idealized step-topography is presented.

Two discontinuities are prescribed dividing the GC in three different depth regions (see

Figure 49). The southern discontinuity, with 250 m height is indicated by the black

line orientated perpendicular to the lateral boundaries on the Farallon region. The step

divides the domain in a southern deep part with 750 m depth and a northern, shallower

region with 500 m depth. A second discontinuity with 250 m height, separates the SGC

from the NGC region at 28o north.
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Figure 49. Monthly averaged sea surface height for 2005 using a step-like topography
for the SGC region. The continuous contours represent positive altimetry values and
dashed contours negative values. The contour levels as in Figure 46.

Figure 49 shows the SSH monthly means. Substantial differences can be found

when comparing with the two cases described before (real and flat topographies). The

eastern boundary current in June is forced to detach from the continental coast towards

the peninsula along the southern discontinuity, while maintaining the shallow water on

the right. This behaviour is similar to the results found in section V.2 and also to

the experimental observations presented in chapters III and IV. This is clearly noticed

during the rest of the summer period, where a persistent cyclonic structure remains

at the deep side of the step and an anticyclone on the shallow side. Again, larger

structures are formed, mainly anticyclonic.
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V.3.4 Comparison between simulations

Figure 50. Upper panels: mean relative vorticity along the main axis of the Gulf (shown
at the central panel) during July and August in the three regional simulations. Lower
panels: the three topographies used in the simulations. The transect is 800 km long and
the space between data is 32 km.

As shown in previous sections, the topography plays a role on the position of the

structures in the SGC region as well as on the dimensions and intensity, particularly

in the summer period. In order to compare these effects, Figure 50 shows the monthly

mean surface vorticity for July and August along the main axis of the Gulf, where the

main vortices are formed. During July all three cases are quite similar on the northern

part of the SGC region between 112.5o and 110.5o W, with an anticyclonic structure be-

tween to cyclones. To the south, the simulations are very different. The real-topography
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case presents a cyclonic circulation that extends from the Guaymas to the Pescadero

basin. The flat-bottom gulf presents weaker cyclonic and anticyclonic structures up

to the entrance zone. On the step-topography case, the eddy-train continues with a

cyclonic structure between two anticyclones. This distribution is strongly influenced

by the step-topography at 110o W where a cyclone (anticyclone) is formed at the deep

(shallow) part next to the discontinuity. During August, the idealized simulations (flat

and step topographies) maintain a similar distribution as in July along the whole SGC

region. In contrast, the real-topography case is dramatically changed. As can be seen,

the region between the Guaymas and the Farallon basins shows more eddies than in the

previous month. However, their positions do not coincide with the vortices generated in

the other simulations, except at the northern and southern ends of the transect. This

result is a strong evidence on the topographic effects on the organization of the flow at

the region.

Figure 51. Streamline contours representing the annual mean surface circulation of the
GC for the three topographies used in the numerical simulations. The arrows indicate
the sense of motion. The contour interval is 5× 10−3.

In order to have a global idea of the bottom-topography effects on the circulation of

the entire GC, in Figure 51 the annual mean surface circulation is shown for the three

different experiments (real, flat and step topographies). As can be seen, the annual
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averaged circulation presents well-organized, counter-rotating mesoscale eddies in all

cases. The gyres are smaller and elongated along the Gulf for the simulation with the

realistic topography.

Figure 52. Annual mean bottom circulation in part of the SGC region. Relative vorticity
distributions are represented by colors. The contours represent streamlines, with the
sense of motion indicated by the arrows. The longitudinal black line represents the
position of the vertical section shown in the insets.

Figure 52 shows the annual averaged bottom circulation for the SCG region. Rela-

tive vorticity and streamlines are presented. In addition, the meridional velocity com-

ponent is shown for a longitudinal vertical section indicated by the black line. There

are differences between the real-topography simulation and the idealized topographies.

The simulation with flat and step topographies are characterized by a strong barotropic

signal with the vortices almost filling the entire depth (see the vertical section). In both

simulations the horizontal bottom circulation is characterized by a set of well-defined

counter-rotating vortices. In contrast, in the real-topography case the circulation near

the bottom is dominated by the shape of the ocean floor, which makes the vortex

structure more elongated along the axis of the Gulf.
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V.4 Discussion and conclusions

In this chapter, two numerical models have been used to investigate the organization of

a train of counter-rotating mesoscale eddies that characterize the summer circulation

in the Gulf of California. The SWEVOL simulations were designed to investigate the

organization of quasi-2D flows in rectangular domains, and the ROMS to simulate the

Gulf of California under more realistic conditions.

The rigid-lid, shallow water model (SWEVOL) was used to simulate the organization

of quasi-2D flows in a rectangular domain with aspect ratio δ = 5, similar to the dimen-

sions of the southern part of the Gulf of California. Different idealized topographies

were chosen to resemble some abrupt bathymetric features along the region of study

(see Figure 35). The basins along the Gulf are represented by two step-topographies,

consisting of five square regions with different depths, where the formation of stable

vortices is persistently observed. Topographic irregularities, such as capes and ridges

extending offshore, are idealized by a platform placed next to the eastern long wall,

representing the continental side of the Gulf. A cyclonic circulation around the central

point of the domain was used as initial condition, resembling the GC poleward eastern

current observed in the beginning of the summer period. It was found that the orga-

nization strongly depends on the topographic configuration. A flat-bottom topography

was also used in order to compare with a typical flow organization only due to the

geometrical shape of the domain.

The flat-bottom simulation with the SWEVOL model was used as a reference case.

The purely 2D flow in rectangular domains was studied in detail by van Heijst et al.

(1990) and Maassen et al. (2003). For δ = 5, the final distribution consists of five

alternated vortices aligned along the main axis of the domain. When a step-array
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topography is used, the final configuration is dramatically changed. For topography

(b) in Figure 35, in which the regions have a decreasing depth, cyclonic structures

dominate in all regions, all of them having a flow parallel to the discontinuity, towards

the peninsula (left wall). When there is a shallow region between two deep regions,

as in topography (c), a final configuration with a unique anticyclonic structure in the

shallow region is obtained. These examples show that abrupt changes of depth have

a tendency to promote the formation of mesoscale vortices over the regions isolated

by the topographic steps. The simulations have shown that such a mechanism is very

effective in the barotropic limit.

The effect of a platform topography at the eastern wall provided some evidence

on the mechanism for the formation and positioning of vortices. It was found that a

small topographic irregularity is sufficient to induce a change in the final distributions

of the vortices. The irregularity acts like an obstacle inducing complicated patterns

of the flow depending on the dimensions of the obstacle. If the platform is small, an

anticyclonic structure is formed in front of it, but if it is larger, a more complicated

pattern is formed. These results show that the geometry of the eastern boundary seems

to be fundamental for the positioning of the eddies along the main axis. The formation

of anticyclonic structures in front of the strong eastern boundary irregularity in front

of the Farallon basin (i.e. the Topolobampo Cape) supports this idea. This result was

suggested by Zamudio et al. (2008), who reported that SGC eddies are generated by the

Pacific Equatorial boundary current interactions with topographic irregularities, such

as capes and ridges extending offshore. This mechanism has also been discussed by A.

Parés (personal communication).

The second model (ROMS) was used to simulate the Gulf of California. Three simu-

lations using different topographies were carried out under the same forcing conditions.
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It was found that the topography plays a role in the flow organization. However, the

geometry of the Gulf seems to be fundamental for the summer organization of the flow

into a well-defined set of counter-rotating mesoscale eddies. The train of mesoscale

vortices is more evident during a possible relaxation period of the predominant wind in

the late summer (Figure 43), when the formation and positioning of the structures are

associated with the intense Pacific eastern boundary current and topographic effects

(bottom and coastal). Indeed, this intense current separates from the continent and

gives rise to the formation of the vortices. This notion is reinforced by the results of

the simulation using a flat-bottom topography, in which this separation is stronger.

Under the same forcing conditions and using an abrupt step-like topography, a strong

anticyclonic structure is formed.

Summarizing, in both models similar results were obtained: an eddy-train configu-

ration under decaying conditions influenced by topographic effects. It was shown that

the relative simplicity of the 2D models can be used as a first approximation to explain

realistic phenomena in the ocean. As a final remark, it is emphasized that oceano-

graphic research can be supported by experimental results, where the idealization of

the system leads to valuable information for interpreting observational data.
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Chapter VI

Conclusions and final remarks

The self-organization of quasi-two-dimensional flows, confined within a closed domain

and over different idealized step-like topographies in a rotating system, has been inves-

tigated. It was found that the organization process strongly depends on the presence

of the topographic steps, which induce specific geometrical arrangements of the flow

after several rotation periods. Besides the solid bottom, the lateral walls also play an

important role. In a bounded domain, the no-slip walls act as a source of vorticity that

is injected into the flow interior (van Heijst et al., 2006). These vorticity filaments inter-

act with vortices in the interior of the domain and form larger structures in a process

strongly modulated by the topography. The result is a well-organized flow made by

nearly circular coherent structures that fill the entire geometrical regions delimited by

the lateral walls and the topography. This result is founded on laboratory experiments

and numerical simulations in different geometries and bottom step topographies. The

main results have been used to explain a topographical mechanism behind the orga-

nization of the eddy-train of counter-rotating structures that characterize the surface

circulation in the southern region of the Gulf of California.

Laboratory experiments of decaying turbulent flows were carried out on rectangular

(chapter III) and square (chapter IV) domains with aspect ratio δ = 2 and δ = 1,

respectively. A discontinuous topography (step-like) was used to divide the domains

in two regions, being one deep and the other shallow. In both cases, a flow along the

topography that always maintains the shallow region to the right was found. Two
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persistent structures at the end of the step due to the interaction of the flow with the

vertical wall were systematically observed. The flow along the topography inhibits the

exchange of fluid between the shallow and the deep regions. As a result, the flow inside

the subdomains evolves almost independently. Due to Ekman effects, always present

in laboratory experiments, the self-organization process is halted before reaching a

complete organization of the flow.

Numerical simulations based on a shallow-water model of decaying quasi-two-dimen-

sional turbulence were carried out under the same conditions used in the experiments

with rectangular and square domains. A strong agreement between the simulations

and the experiments was found. In order to study the full self-organization process,

numerical simulations were performed without Ekman friction. The same principal

features as in the experiments were observed, but now a complete organization of the

flow was obtained. For the rectangular domain, the long-term configuration of the flow

consisted of two coherent structures placed one at each region. In some cases, a cyclonic

vortex occupied the shallow region while an anticyclone dominated the deep side, or

vice versa. The sense of rotation of the final structures was found to be dependent on

the initial condition: slightly different initial conditions in several numerical simulations

lead to different arrangements, and therefore it was impossible to predict the long-term

configuration of the flow. In the square container, in contrast, a final state of the flow

composed by four vortices alternately disposed was found. In this case, the flow at the

deep subregion is a cyclone-anticyclone pair trying to climbe the step, and the mirror

structures at the shallow side. An important difference with the rectangular domain

is that this four-vortex flow organization is systematically observed, regardless of the

initial condition.

The existence of a preferential distribution of the vortices due to a geometrical
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signal induced by the discontinuity is a relevant result. In the present geometries

and topographic configurations, the preferential distribution depends on the relation

between the length of the discontinuity and the length of the lateral walls.

The results observed with simple step-topographies can be used to interpret the

evolution of geophysical flows in an oceanographical context. With this purpose, a

regional model (ROMS) was used to simulate the circulation in the Gulf of California

in a realistic way. The objective was to study the topographic effects on the formation

and organization of the counter-rotating mesoscale eddies that characterize the summer

circulation in the southern region. An additional set of simulations performed with the

shallow-water model was used to model the Gulf as a rectangular domain with aspect

ratio δ = 5. It is worth noting that the relatively simple 2D model provides useful

information to understand better and improve the description of the more realistic

ROMS simulation.

From the laboratory models to the Gulf of California simulations, the topographic

effects were studied using idealized geometries and topographies. A general conclusion is

that the combination of experiments and simulations proved to be a useful tool to gain a

better understanding of some particular physical processes involved in the organization

of turbulent oceanic flows. The use of two essentially different numerical models also led

to relevant information on the formation and positioning of vortices along the domain.

The simplicity of the shallow water model facilitates a physical interpretation of the

results, while the regional model allows to establish a relation between the quasi-2D

physical mechanism and the processes occuring under more realistic conditions.

It should be pointed out that additional work needs to be done concerning the

eddy-train formation and organization in the Southern part of the Gulf of California.

In particular, the possible baroclinic effects on the flow structures require further inves-
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tigations. In the simulations with the ROMS model, a few number of layers of fluid were

used (12). The main idea was to connect these results with the barotropic, shallow-

water model used in the simulations with closed domains. This procedure was based on

several studies that have revealed the strong barotropic character of the vortices that

are formed in the region (e.g. Zamudio et al., 2008); nevertheless, a possible baroclinic

effect stays uncertain. Another interesting feature that needs more attention in future

works is the characterization of the flow along the step-like topography. Such a step

current has been described in a number of previous experimental studies (Spitz and

Nof, 1991; Zavala Sansón et al., 2005; Tenreiro et al., 2006). This flow appears from

the interaction of the vortices with the bottom topography and an oscillatory behavior

is easily noticed in the vorticity field. Thus, there might be the presence of waves that

seem to be trapped to the step topography.

Another important aspect is the dependence of the flow organization on the ini-

tial condition in both the experiments and the simulations. Indeed, a more universal

validity of the long-term organization of vortices should be analysed in terms of the

characteristics of the initial condition: the number and arrangement of initial struc-

tures, as well as their strength and size. Finally, there is a strong dependence between

the length of the bottom discontinuity and the length of the lateral walls associated

with the existence of a preferential distribution of the vortices in confined, decaying

turbulent flows. In order to establish this relation, future work needs to be done for

different aspect ratios δ and step orientations.
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