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Resumen de la tesis que presenta Verónica Pérez Chávez como requisito parcial para la
obtención del grado de Doctor en Ciencias en Óptica.

Transformaciones conformes en fotónica de silicio

Resumen aprobado por:

Dr. Eugenio Rafael Méndez Méndez

Co-director de Tesis

Dr. Sylvain Blaize

Co-director de Tesis

En este trabajo, se presenta una revisión de la literatura sobre las aplicaciones de la
óptica de transformaciones en fotónica de silicio, basadas en el control del ı́ndice de re-
fracción efectivo a través de la densidad de nano-pilares de silicio. Después de ilustrar el
potencial del método con el diseño de un elemento acoplador, presentamos un estudio
teórico y experimental de la respuesta óptica de nano-pilares de silicio a longitudes de
onda de telecomunicaciones. El objetivo principal de este estudio es probar las teorı́as
de medio efectivo en el contexto de la fotónica de silicio. Muestras con densidades fi-
jas y variables de pilares de silicio fueron fabricadas para este proyecto y se realizaron
mediciones de su reflectividad a una longitud de onda de 1550 nm.

Se presentan también cálculos de la reflectividad de muestras con nano-pilares uti-
lizando dos método numéricos rigurosos: un método basado en la ecuación reducida de
Rayleigh y el método modal de Fourier llamado de análisis riguroso de modos acoplados
(RCWA, por sus siglas en inglés). El método de Rayleigh tiene limitaciones en lo que
respecta a las alturas superficiales que es posible considerar con él, pero tiene la ventaja
de ser rápido y poco demandante computacionalmente. Por otro lado, el RCWA requiere
un poder de cómputo mucho mayor, pero es más apropiado para cálculos que involucran
estructuras con pendientes pronunciadas y no sufre de las limitaciones del método de
Rayleigh.

Utilizando diferentes teorı́as de medio efectivo, se estimó el ı́ndice de refracción efec-
tivo de la región nanoestructurada de silicio de nuestras muestras y, con base en un mod-
elo de capa homogénea, se estimaron las reflectividades correspondientes y se compara-
ron con las estimaciones experimentales y teóricas. Estos resultados sirvieron de base
para probar la validez de las teorı́as de medio efectivo en el caso particular de las mues-
tras fabricadas. Los resultados muestran que las teorı́as de medio efectivo consideradas,
junto con el modelo de capa homogénea, no resultan adecuadas para calcular la reflec-
tividad de las muestras estudiadas. Por otro lado, los dos métodos numéricos rigurosos
producen resultados que concuerdan entre sı́ y también tienen un buen acuerdo con los
resultados experimentales.
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ciones, dieléctricos de alto ı́ndice, esparcimiento de luz.



v
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obtain the PhD in Optics.

Conformal transformations in silicon photonics

Abstract approved by:

Dr. Eugenio Rafael Méndez Méndez

Thesis Co-director

Dr. Sylvain Blaize

Thesis Co-director

In this work, we present a literature review of the applications of transformation optics
in silicon photonics, on the basis of the control of the effective refractive index through the
density of silicon nano-pillars. After illustrating the potential of the method with the design
of a coupling element, we present an experimental and theoretical study of the optical
response of silicon nano-pillars at telecommunication wavelengths. The main objective of
the study is to test effective medium theories in the context of silicon photonics. Samples
with fixed and variable pillar densities were fabricated for this project and their reflectivities
were measured for a 1550 nm-wavelength.

We also present calculations of the reflectivity of samples with nano-pillars employing
two rigorous numerical methods: a method based on the reduced Rayleigh equation and a
Fourier modal method, called the rigorous coupled wave analysis (RCWA). The Rayleigh
method has limitations with respect to the surface heights that can be considered, but
has the advantage of being fast and not very demanding computationally. On the other
hand, the RCWA is much more demanding in computer power, but is more appropriate for
calculations involving structures with large slopes and does not suffer from the limitations
of the Rayleigh method.

Employing different effective medium theories, we have estimated the effective refrac-
tive index of the nanostructured silicon region of our samples and, based on a homo-
geneous layer model, we have estimated the corresponding reflectivities and compared
them with the experimental and theoretical estimations. These results were used to test
the validity of the effective medium theories in the particular case of the fabricated sam-
ples. The results show that the effective medium theories considered, together with the
homogeneous layer model, are not adequate to calculate the reflectivity of the studied
samples. On the other hand, the two numerical methods produce results that are in good
agreement with each other and with the experimental results.

Keywords: silicon photonics, effective medium theory, transformation optics, high
index dielectrics, light scattering.
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Chapter 1 Introduction

Transformation optics is an emerging area of optics in which electromagnetically equiv-

alent structures can be found by means of a change in their geometry. Some of the recent

proposals in this field have attracted wide attention. Among them, we can mention: design

of invisibility or cloaking devices (Pendry et al., 2006; Li and Pendry, 2008; Leonhardt and

Philbin, 2010), the fabrication of structures for light focusing (Aubry et al., 2010; Rahm

et al., 2008), and the search for structures for field enhancements (Glass et al., 1983).

A particularly interesting approach, due to the simplicity of its consequences in electro-

magnetic calculations, is based on conformal mappings. Conformal mappings are tech-

niques developed for transformations in the complex plane and they are, essentially, of a

two-dimensional nature. The name is due to the fact that, locally, they preserve angles.

The use of conformal mappings in problems of scattering has been a subject of study

for several years. Such techniques have been used for some time in calculations for

diffraction gratings (Nevière et al., 1973; Depine and Simón, 1982). This kind of transfor-

mation can be regarded as a transformation to a space of curvilinear coordinates that is

equivalent to modifying the refractive index of the medium in which the electromagnetic

wave propagates. The change in the geometry results in an anisotropic medium with

refractive index variations.

Let us assume that the problem we are dealing with depends on two Cartesian coor-

dinates (x , y ), but is independent of a third one that we call ζ. For harmonic fields the

complex amplitude ϕ (x , y ) obeys the Helmholtz equation

∇2ϕ (x , y )± k2ϕ (x , y ) = 0, (1)

where the wavenumber k=
√
εµωc . Here, ε and µ represent the electric permittivity and the

magnetic permeability of the medium, ω is the angular frequency, c is the speed of light in

vacuum, and nz =
√
εµ is the refractive index. Depending on the sign that we choose, and

on the value of k2, this equation can also represent the Laplace equation or the diffusion

equation (Born and Wolf, 1970).
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Consider the conformal transformation w = f (z) that takes points z = x + iy from the

complex plane Z to points w = u + iv in the complex plane W . As we show in Chapt. 2,

the Helmholtz Equation (1) can be written in the transformed space as

∇2ϕ (u, v ) + K 2ϕ (u, v ) = 0, (2)

where

K 2 = h2k2 = h2εµ
(ω

c

)2
. (3)

In this equation, h represents the local change of scale of the transformation which, in

general, is a function of position in the (u, v ) plane. It can be expressed in terms of the

transformation as h = |dz/dw |. We see that, apart from the changes in the boundaries

associated with the transformation, the transformation has modified the refractive index

from
√
εµ to a position dependent refractive index nw = hnz .

These results illustrate the fact that one can change the geometry or boundaries of a

system (perhaps simplifying them) by a suitable conformal mapping, and end up with an

electromagnetically equivalent system in which one has introduced additional refractive

index variations. It is not surprising, then, that conformal mappings find applications in the

design of integrated photonic devices (see, e.g. Garcı́a-Meca et al., 2011).

Geometry has always played a distinguished role in optics. Electromagnetic devices

inspired by conformal mapping, require the implementation of custom geometries through

specially designed inhomogeneous materials, which must be precisely controlled on the

scale of the wavelength. To date, one of the most commonly used approaches for this is

the one based on metamaterials. Metamaterials obtain their properties not only from their

composition but also from their structure, and achieve important changes in the optical

variables by means of resonances. Several authors have reported the fabrication of meta-

materials in the microwave region (Schurig et al., 2006) and in the infrared (Xiaofei et al.,

2009). Nonetheless, despite their interesting characteristics, metamaterials cannot yet be

well-controlled in the optical range. In this range, due to the difference in the optical prop-

erties of materials, the structures are conceptually very different from their counterparts

in the microwave region. The intricate designs that are used in microwaves are simply
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inappropriate for optical frequencies. Thus, metamaterials are potentially very versatile,

but the possibilities are limited by the available natural materials.

In a simple and basic approach to this issue, one can obtain the desired variations

in the transformed structures by means of the effective medium theory (EMT), in which

the most important feature for the average properties of the medium is the composition of

the material. In this theory, the description of an equivalent (composite) medium is based

on the properties and the relative fractions of its components. There are many different

effective medium approximations, each of them being more or less accurate under distinct

conditions. Nevertheless, they all assume that the macroscopic system is homogeneous.

Two EMTs that are especially popular are those developed by Maxwell Garnett (1904)

and Bruggeman (1935). The Maxwell Garnett theory applies to mixtures that contain

distinguishable inclusions, or grains with dielectric function ε embedded in an otherwise

homogeneous matrix with a dielectric function εm, whereas the Bruggeman theory applies

to mixtures in which such a distinction is not possible (Choy, 1999).

In accordance with both the Maxwell Garnett (1904) and the Bruggeman (1935) the-

ories, the effective dielectric function of a mixture of two components will depend only on

the dielectric functions of both components and their volume fractions. By means of an

effective material theory approach, a continuous refractive index map can be translated

into a volume fraction and, through a dithering algorithm, into a discretized binary version

with features of size smaller than the wavelength (Gabrielli and Lipson, 2011) that can

be fabricated in silicon using nano-lithography. Silicon has a high refractive index con-

trast relative to both air and SiO2, which allows for a reasonably wide range of achievable

effective material parameters.

Integrated optical circuits are devices that contain miniaturized optical elements that

perform different photonic functions on a common substrate. Channel waveguides are the

fundamental building blocks of optical integrated circuits. These optical waveguides can

be made by depositing material on top of a substrate and etching unwanted portions away.

Passive optical elements in photonic circuits include branches, expanders, directional

couplers, and filters. Branches are used to divide a beam into two or more channels.
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Losses in branches are always significant and, for this reason, directional couplers are

often used for this purpose. Expanders are used to change the width of the waveguide,

an operation that usually changes the modal characteristics of the guide.

Circuits of integrated optics on a silicon platform constitute an excellent candidate to

prove concepts of transformation optics and to orchestrate new devices. This is due to

the possibility of having a refractive index that can be directly controlled by the density of

nano-metric silicon pillar structures on a slab (Gabrielli and Lipson, 2011). On the other

hand, it is also possible to modify the propagation constant in waveguides by changing

the dimensions of the guide. Several authors have reported the utilization of transforma-

tion optics and nano-structured silicon to fabricate cloaking devices in the optical domain

(Gabrielli et al., 2009) and for focusing light in the near infrared (Spadoti et al., 2010).

1.1 Motivation

The purpose of the present project is to explore the possibility of using conformal map-

ping techniques in silicon photonics. The main idea is to design optical elements and

devices with controlled geometries and variations of the refractive index, introduced by

means of the use of nano-structured silicon. We are particularly interested in the design

of low loss expanders/compressors to couple two optical waveguides of different refrac-

tive indices and widths, while maintaining the modal characteristics; this is one of the most

important problems in integrated optics.

Beside the possible applications that we have mentioned, there are other aspects that

make transformation optics an attractive area of research. We can mention, for example,

the analogies with problems in quantum mechanics (Marte and Stenholm, 1997) and the

observation of optical Bloch oscillations (Lenz et al., 1999).

In the following subsections we discuss some of these motivations.
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1.1.1 Analogies with problems in quantum mechanics

To illustrate the existence of analogies with problems in quantum mechanics, we will

now consider the paraxial approximation of the Helmholtz equation. The paraxial approx-

imation is precisely defined by the slow variation envelope condition, which means that

the longitudinal variation in the derivative of the modulation function is very small over a

distance comparable to the nominal wavelength of the beam. In this approximation we

neglect the second term of Eq.(1) to obtain the equation

∇2
Tϕ(x , y , z) + i2k

∂

∂z
ϕ(x , y , z) ≈ 0, (4)

which is called the paraxial approximation of the wave equation and where

∇2
T = ∇2 − ∂2

∂z2 =
∂2

∂x2 +
∂2

∂y2 (5)

is the transverse Laplace operator, shown here in Cartesian coordinates. This is also

the form of the time dependent Schrodinger equation used in quantum mechanics. In the

Figure 1: Top: Schematic of (a) a curved waveguide array and (b) its conformal transformation. The
dashed arrows illustrate the light confinement mechanisms—Bragg reflection on one side of the
structure and total internal reflection on another side. Bottom: (a) Refractive index in the curved
array, and (b) the transformed refractive index. The refractive indices of the guides and the sur-
rounding material are n2 and n1, respectively. The Figure was taken from Lentz et al. (1999).
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Schrodinger equation the first order derivative is a time derivative.

An interesting application of transformation optics is given by the observation of Bloch

oscillations in an array of curved guide waves, an optical approach to a classical problem

of solid state physics (Lenz et al., 1999). In the beginning of the last century, Bloch pre-

dicted that a charge carrier in an ideal crystal placed in a uniform electric field exhibits

periodic oscillations (“Bloch oscillations”). The carrier is accelerated by the electric field

until its momentum satisfies the Bragg condition associated with the periodic potential and

is reflected. The carrier is then decelerated by the field until it stops, completing one Bloch

cycle (Lenz et al., 1999). This periodic motion is related to a periodic potential in a linear

ramp.

In the optical approach, imposing a linear variation in the refractive index is challenging.

With a structure that consists of an array of periodically spaced, curved optical waveguides

(Fig. 1), the curvature can effectively lead to a linear ramp in the refractive index distribu-

tion by means of a conformal transformation (Lenz et al., 1999).

1.1.2 Field enhancements in plasmonic systems by means of transformation op-

tics

The search for an electric field enhancement in complex plasmonic geometries, due to

the localization of surface plasmon polaritons (SPPs), is another application that has been

investigated with a transformation optics approach.

To illustrate the potential of this method, we now consider the example by Luo et al.

(2011) in which, by means of transformation optics, they study the interaction of an EM

wave with concave and convex surfaces that are shown to exhibit a dramatic increase of

the electric field that is also highly localized in the vicinity of their apexes.

In their proposal, they present a system of periodic metallic slabs excited by a line

dipole array, such as the ones shown in the panels (a1) and (a2) of Fig.2. Using the

transformation

w =
a

exp{2πz/d} − 1
+

a
2

, (6)
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with d corresponding to the period between slabs, this structure is mapped into the profile

illustrated in panels (b1) and (b2) of this figure. Thus, in the transformed space, we have a

concave structure with a diameter a, engraved onto a planar metal surface, where the line

dipole is mapped into a uniform electric field (panel b1). Depending on the parameters,

convex structures embedded in a metal surface can also be obtained (panel b2).

Figure 2: The schematic of transformation. (a1) and (a2) Periodic metallic slabs excited by a line
dipole array, transporting SPPs to x → ±∞. The thicknesses of each dielectric media and metallic
slab are d1 and d2, respectively. In (a1) d1 < d2, while in (a2) d1 > d2. Under a conformal transforma-
tion described by Eq.(6), the convex (b1) and concave (b2) rough surfaces are obtained, and the line
dipole array in (a1)/(a2) is mapped to a uniform electric field Einc in (b1)/(b2). The Figure was taken
from Luo et al. (2011).

Figure 3: Electrical field in the transformed space. The Figure was taken from Luo et al. (2011).
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By means of a conformal mapping approach, an analytic relationship has been estab-

lished between both structures. The EM problem of finding the frequencies that lead to

the resonances of the system is easier to deal with in the Z space. The critical surface

plasmon frequency for which we have a dramatic increase of the electric field is found in

this space, but geometrically at a value of x that tends to infinity.

The electrical near field behavior in the transformed space is illustrated in Fig. 3. From

this Figure, we can see that the increase of the electric field is highly localized in the

vicinities of the apexes for the same critical surface plasmon frequency calculated in the

original space.

1.2 Objectives

The main objective of this thesis is to explore the design and fabrication of optical el-

ements for integrated optics based on conformal transformations and nanostructured sili-

con. A central issue here is how a structure with the prescribed refractive index variations

can be fabricated using nanostructured silicon.

Our strategy, then, included activities on the following aspects of the problem:

• The design of optical elements for integrated optics using conformal mapping

techniques.

• The fabrication of nanostructured silicon samples by means of e-beam lithogra-

phy and reactive ion etching.

• The implementation of a dithering algorithm to discretize a continuously varying

function (volume density of silicon) into a binary map.

• The evaluation of the accuracy of effective medium theories through experiments

with the fabricated samples.

• The development of computer codes for electromagnetic calculations for testing

EMTs and comparisons with experimental results.
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These studies are described in the following Chapters.

1.3 Thesis structure

The thesis is structured as follows:

In Chapter 2, we briefly outline the general properties of conformal mappings and

their consequences in electromagnetic calculations. Particularly important are the con-

sequences of the transformation on the differential operators, which lead to important

changes in the optical properties. Some examples that illustrate the potential of conformal

transformations in optics are also presented.

Chapter 3 contains a review of silicon photonics (SP), as well as a literature review on

the design of photonic devices on the basis of effective medium and transformation optics.

As an example of the capabilities and limitations of conformal mapping transformations in

silicon photonics, we present the design of a compressor/expander to couple glass and

silicon waveguides. We are particularly interested in low loss compressor/expanders that

maintain the modal characteristics.

In Chapter 4 we present a brief review of the effective medium theories that were

used in our comparison with the experimental results. The tests carried out to find an

adequate procedure for the fabrication of the nanostructured silicon samples of interest

are presented in Chapter 5. We also describe the reflectivity measurements carried out

with the fabricated samples.

Chapter 6 is devoted to the theoretical approaches considered to test the EMT. These

are a method based on the reduce Rayleigh equation (RRE), and a Fourier modal method.

The developed computer codes are used to calculate the reflectivity of the samples and

these results are compared with both, the experimentally obtained values and the values

predicted by different EMTs. The results are presented in Chapter 7, together with a

discussion and, finally, in Chapter 8 we present the conclusions reached in this thesis.
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Chapter 2 Transformations in optics and conformal map-

pings

It is our aim in this Chapter to present the general properties of conformal mappings.

As we have mentioned, the change in the Helmholtz equation after a conformal transfor-

mation can be interpreted as a modification in the refractive index of the medium. This

allows us to link both, the structural properties of surfaces and waveguides with equiv-

alent problems in which the structure and the optical properties change. Examples of

some basic conformal transformations are presented, and the limitations of the method

discussed.

2.1 Historical context

The history of conformal mappings is usually traced back to the stereographic pro-

jection used in ancient times, and to the projection ideas of Mercator developed in the

sixteenth century; both are early examples of conformal or angle-preserving projections

(Heine, 2004).

The stereographic projection, or planisphere, may have been known in ancient Egypt

(Heine, 2004). Ptolemy’s Planisphaerum describes its use, but in astronomy, not geogra-

phy; in fact this projection seems to have been used exclusively for star charts until the

Renaissance. During the 16th century, the stereographic function began to be widely used

and popular for geographic maps or map projections (Porter, 2005). These were the first

attempts to portray the surface of the earth, or a portion of the earth, on a flat surface.

A map projection is conformal if the angles in the original features are preserved in the

image on the chart. Over small areas, the shapes of objects will be preserved. Consistent

with Ptolemy’s projection, Mercator developed his conformal projection in 1569 as an aid

to navigation (Heine, 2004).

Some time later, in 1772, Lambert published an original work that has been considered

as the foundation of modern mathematical cartography (Porter, 2005). Lagrange gives

Lambert credit as the first to characterize the problem of mapping from a sphere to a
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plane, in terms of nonlinear partial differential equations. The technique was very fruitful,

for he invented several whole families of conformal projections, some of which are still in

widespread use today. It was on the basis of this technique that Lagrange combined a pair

of differential equations of two real variables in a complex equation of a single variable.

These results were later on completed by Gauss (1822), who generalized the theorem of

Lagrange to a conformal mapping of an arbitrary surface on the plane.

Many classical applications of conformal mapping deal with the solution of Laplace’s

equation, which remains invariant if the original plane is subject to a conformal transfor-

mation. As a result, this kind of transformation can be effectively used for constructing

solutions to the Laplace equation on complicated planar domains that appear in a wide

range of physical problems, including fluid mechanics,thermomechanics, and electrostat-

ics.

Conformal mapping has many successful applications in modern technology. These

involve not only new transformation algorithms, but the use of classical methods in new

technologies. In particular, we will direct our efforts towards the use of this kind of transfor-

mations in silicon photonics, which is the study and application of photonic systems that

use silicon as an optical medium. These operate in the infrared, commonly at the 1.55

micrometer wavelength used by most fiber optic telecommunication systems.

Other new applications of conformal maps include a wide range of problems in waveg-

uide analysis. We can mention, for example, the seminal contribution of Meinke (Meinke

et al., 1963), which involves trading boundary shapes for uniformity of the medium, fol-

lowed by the original work on anisotropic media by several authors (Leonhardt, 2006;

Gabrielli and Lipson, 2011).

2.2 Theory

Usually, a conformal mapping acts in the domain of the complex plane and is a pow-

erful analysis tool that uses complex valued functions depending on a single variable to

transform complicated borders into simpler ones, so that the basic equation of the problem

can be resolved in the new space.
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We will consider a complex function f (z) that can be uniquely written as the complex

combination of two real functions f (z) = f (x + iy ) = u (x , y ) + iv (x , y ), each depending on

the two real variables x , y : its real part u (x , y ) = Re f (z), and its imaginary part v (x , y ) =

Im f (z).

A series of points in the complex plane Z will be mapped by f (z) to a series of points in

the transformed plane W . The function f (z) may be then said to map the point z = x + iy

to the point w = u + iv . The particular form of the function f (z) depends on the specific

boundaries and the application with which we are working. If the function is well behaved,

adjacent points in the plane Z are mapped to adjacent points in the plane W (i.e., a line in

the plane Z is mapped to a line in the plane W ).

If the mapping is conformal, then the relative proportions of neighboring line segments

and angles of line segment intersections will be preserved during the transformation.

Therefore, any orthogonal set of lines in the original field Z plane appears as another

set of orthogonal lines in the trasformed plane. The settings in both planes are images

of each other. In the Euclidean norm, the angle between two vectors is defined by their

dot product. However, most analytic maps are nonlinear, and so will not map vectors to

vectors since they will typically map straight lines to curves. Nevertheless, if we interpret

’angle’ to mean the angle between two curves, as illustrated in Fig. 4, then we can make

sense of the conformality requirement. The mapping will be one to one if f (z) is linear or

bilinear.

Figure 4: Angle between two curves.

The properties that are needed for a conformal map, are the properties of analytic

functions. That is, the function is single-valued (on a Riemann surface) to have a one to

one mapping, and differentiable angles do not change under the transformation (isogonal-
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ity). These features also serve to ensure continuity. It is such well-behaved functions or

mappings that we will consider.

A function f (z) is said to be analytic at a point z if its derivative, defined by

df
dz

= lim
∆z→0

f (z + ∆z)− f (z)
∆z

, (7)

exists and is single-valued in some neighborhood of z.

Taking ∆z along the real axis results in

df
dz

= lim
∆x→0

u (x + ∆x , y )− u (x , y ) + i (v (x + ∆x , y )− v (x , y ))
∆x

(8)

=
∂u
∂x

+ i
∂v
∂x

, (9)

whereas taking the derivative in the imaginary direction results in

df
dz

= lim
∆y→0

u (x , y + ∆y )− u (x , y ) + i (v (x , y + ∆y )− v (x , y ))
i∆y

(10)

= −i
∂u
∂x

+
∂v
∂y

. (11)

On comparing these two expressions, we find that the real and imaginary parts of an

analytic function are not arbitrary but must be related by

∂u
∂x

=
∂v
∂y

, (12a)

and

∂u
∂y

= −∂v
∂x

. (12b)

These two equalities are known as the Cauchy-Riemann equations. The satisfaction of

the Cauchy-Riemann equations is both a necessary and sufficient condition for f (z) to be

analytic. These can also be expressed as

∂x
∂u

=
∂y
∂v

, (13a)
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and

∂x
∂v

= −∂y
∂u

. (13b)

In a similar fashion, in polar coordinates we can write

∂u
∂r

=
1
r
∂v
∂θ

, (14a)

and

∂v
∂r

= −1
r
∂u
∂θ

. (14b)

Summarizing, if the four partial derivatives ∂u/∂x , ∂u/∂y , ∂v/∂x and ∂v/∂y of f (z) =

u (x , y )+ iv (x , y ) exist, are continuous over a region, and satisfy Eq.((12)), then the deriva-

tive f ′ (z) exists in the entire region.

An analytic function is a differentiable function. The points at which f (z) is not analytic

are called singularities. These usually occur at isolated spots where they can be avoided.

The transformation f (z) cannot be conformal at points where the derivative is zero or

infinite. These points are called critical points.

If f (z) and g (z) are analytic functions, then so are the functions

f (z)± g (z) (15)

f (z) g (z) (16)

f (z) /g (z) (17)

f {g (z)} . (18)

Polynomials and power series within their circles of convergence are also analytic func-

tions.

The inverse of an analytic function, w = f (z), which can also be expressed as z =

f−1 (w), is also analytic if f (z) is analytic, and its derivative is the reciprocal of the derivative
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of f (z). That is
dz
dw

=
1

dw/dz
. (19)

The differentials of x and y are given by

dx =
∂x
∂u

du +
∂x
∂v

dv , (20a)

dy =
∂y
∂u

du +
∂y
∂v

dv . (20b)

Using the Pythagorean theorem to obtain the square of the distance between two neigh-

boring points, we have

ds2 = dx2 + dy2. (21)

Substituting (20a) and (20b) into (21) we obtain the expression for the square of the

distance in the transformed space

ds2 =
(
∂x
∂u

du +
∂x
∂v

dv
)2

+
(
∂y
∂u

du +
∂y
∂v

dv
)2

. (22)

By developing the above expression and using the Cauchy-Riemman conditions (13),

we obtain

ds2 =
(
∂x
∂u

)2

du2 +
(
∂x
∂v

)2

dv2 +
(
∂y
∂u

)2

du2 +
(
∂y
∂v

)2

dv2

. (23)

Then we find that

ds2 =

[(
∂x
∂u

)2

+
(
∂y
∂u

)2
]

du2 +

[(
∂x
∂v

)2

+
(
∂y
∂v

)2
]

dv2. (24)

We can then write a compact expression that helps us define the scale factor h of the

transformation:

ds2 = (hdu)2 + (hdv )2 . (25)
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By means of the Cauchy-Riemann equations, we can see that

[(
∂x
∂u

)2

+
(
∂y
∂u

)2
]1/2

=

[(
∂x
∂v

)2

+
(
∂y
∂v

)2
]1/2

= h. (26)

Then, the elements of length in the transformed space are

dsu = hdu, (27)

dsv = hdv . (28)

We then see that locally, a conformal map can be viewed as a transformation to a

space of curvilinear coordinates. It is important to emphasize that the scale factor is a

function of the coordinates in the transformed space.

Since conformal mappings preserve angles, they are particularly useful in electromag-

netic problems specified in terms of boundary conditions involving normal derivatives. As

we have already mentioned, an interesting property of conformal mappings is that the

Laplace equation is invariant under such transformations. The Helmholtz equation, on the

other hand, is only slightly modified and in some cases the advantage obtained by simpli-

fying the border is greater than the problems that such modification can bring (Schinzinger

and Laura, 2003). In the complex plane Z (x , y ) we can write the Helmholtz equation as

∇2ψ(x , y ) + n2k2ψ(x , y ) = 0, (29)

where k = ω/c, and n =
√
εµ represents the refractive index.

By considering the effect of the transformation in the differential operations, the Lap-

placian can be written as

∇2ϕ =
1
h2

[
∂2ϕ

∂u2 +
∂2ϕ

∂v2

]
(30)

thus, the Helmholtz equation in the transformed space is given by (?)

∇2ψ(u, v ) + h2(u, v )n2k2ψ(u, v ) = 0, (31)
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where

h =
∣∣∣∣ dz
dw

∣∣∣∣ , (32)

and it is assumed that the derivative of the function f (z) is nonzero. We observe that in

the transformed space the factor h(u, v ) multiples the original refractive index and thus, in

the transformed space, the refractive index nw (u, v ) is given by

nw (u, v ) = h(u, v )nz . (33)

In this equation, h represents the local change of scale of the transformation and is a func-

tion of position in the (u, v ) plane. We see that apart from the changes in the boundaries

associated with the transformation, the transformation has modified the refractive index

from
√
εµ to an equivalent refractive index h

√
εµ.

2.3 Examples of conformal transformations

We now present a couple of examples of conformal transformations that illustrate some

of the possibilities offered by the approach for applications in surface optics and silicon

photonics.

2.3.1 The logarithmic transformation

By means of this transformation it is possible to map a close region that is fan-shaped

and limited by two circular arcs into a rectangle whose cross section is geometrically

constant. The transformation may be written in the form

bw = ln(az) (34)

where a and b are constants with appropriate units. Writing

z = x + iy = r exp (iθ) , (35)
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where r =
√

x2 + y2. We find that

u =
1
b

ln(ar ) (36)

v =
θ

b
(37)

The situation is illustrated in Fig. 5. The shaded factor shown on the Z plane is mapped

into the shaded rectangle shown on the W plane. Circles on the Z plane centered at 0

are mapped to vertical segments on the W plane connecting u − iπ to u + iπ, where u is

the horizontal coordinate in the transformed space given by Eq.(36). Thus, if a circle has

an initial radius of 1/a in the Z plane as in the Fig. 5, it will map to a vertical segment at

u = 0 in the W plane by means of Eq. (36). Rays emanating from 0 on the Z plane are

mapped to horizontal lines on the W plane. In the example, we considered rays that go

from an angle of π/4 to an angle of π/2.

Each circle and ray on the Z plane coincide at a right angle. Their images under the

transformation are a vertical segment and a horizontal line (respectively) on the W plane

that coincide too at a right angle.

          x  

y

u

v

Z W
w = log(z)

z =ew

0

π

π/2

π/4

b

1/a

Figure 5: Logarithmic transformation.

From equation (34), we see that

dw
dz

=
1
b

a
az

=
1

bz
, (38)

and assuming b to be real and positive, we can write the scale factor

h =
∣∣∣∣dw

dz

∣∣∣∣ =
1
br

. (39)
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As we will discuss in Chapter 3, this transformation can lead us to the design of a taper

with a gradually varying refractive index to couple a glass waveguide and a high index sil-

icon waveguide while maintaining the modal characteristics of the guides, which is one of

the most challenging tasks in the field of silicon photonics. Such a taper waveguide should

find applications for sensing (infiltration in the porosity of the silicon), end-fire coupling with

fibers and/or 2D sampling interferometry and spectroscopy (M. Renault et al., 2010).

2.3.2 The cycloid

In this section, we present the transformation for a cycloid. The conformal mapping

family that we use can be expressed as (Schinzinger and Laura, 2003)

z = Aw + i
∑

n

bn exp (inqW ) , (40)

where w = u + iv and z = x + iy . The constants A and q have units of 1/length. The

latter represents a fundamental angular frequency which is related to the period d of the

function by q = 2π/d . To illustrate this family of mappings, we consider the case of the

60 40 20 0 20 40 60
x/

0.6

0.4

0.2

0.0

0.2

0.4

0.6

y/

Figure 6: Cycloidal surface with a period of 7λ in the xy space.

cycloid, which is the simplest example of it. From Eq. (6), by putting bn = 0 for all n 6= 1,
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we obtain

z = Aw + ib1 exp (iqw) , (41)

or

x + iy = Au + iAv + ib1 exp (iqu) exp (−qv ) . (42)

From this expression, we obtain the equations

x = Au − b1 exp (−qv ) sin qu (43)

and

y = Av + b1 exp (−qv ) cos qu. (44)

These equations represent the relationship between the planes (x , y ) and (u, v ). When

v = 0, the same equations reduce to the parametric equations

x = Au − b1 sin qu (45)

y = b1 cos qu (46)

These parametric equations describe a surface such as the one depicted in Fig. 6. The

constants A and b1 allow one to change the characteristics of the profile, while q rep-

resents an angular frequency that determines the period. A cycloid is obtained when
2b1
A < 0.31831. Higher values of this parameter in the profile should be avoided, as the

curve would exhibit loops. Examining Eqs.(43) and (44) we observe that the oscillations

tend to dissapear as v increases. Considering the horizontal plane defined by v = δ with

qδ � 1, one finds that Eqs.(43) and (44) reduce to the expressions

x = Au, (47)

y = Av , (48)

which describe a uniform expansion (or compression) transformation. Thus, setting A = 1

would not modify the space in the far field of the surface.
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From Eq.(6), we have
dw
dz

=
1

A− b1q exp (iqw)
, (49)

which leads to the h(u, v ) factor in the transformed space

h(u, v )2 =
∣∣∣∣dw

dz

∣∣∣∣2 =
1

A2 + b2
1q2 exp (−2qv )− 2Ab1q exp (−qv ) cos qu

. (50)

From Eq. (33), we find that the equivalent refractive index for a cycloid cloak (Fig. 7)

will be given by

nw (u, v ) =
[

εµ

A2 + b2
1q2 exp (−2qv )− 2Ab1q exp (−qv ) cos qu

]1/2

nz . (51)

Using this expression, we have calculated numerically the geometry, the scaling factor,

and the refractive index distribution for the cycloid that is shown in Fig. 7 Thus, with this

transformation, we start with a flat surface in the W space and end up in the Z space with

a cycloid surface that has refractive index variations.

On the basis of this result, a cycloid cloak in the optical range could be designed.

Such a device will conceal an object under the curved reflecting surface by manipulating

Figure 7: Map of the factor h(u; v ) that multiplies the refractive index in transformed space. The
calculation was done for a cycloid with a period of 7λ.
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the trajectory of light after interacting with it, using refractive index variations obtained

by means of the conformal map, and imitating the reflection from a flat surface. Thus,

the trajectory will be the same as that in a flat surface, without the cloak or the object

underneath. One could then hide objects under those deformations without revealing their

existence.

2.3.3 The Joukowski transformation

For a specific mapping, we consider the Joukowski transformation (Schinzinger and

Laura, 2003), which is a conformal map historically used to understand some principles of

airfoil design. We write

w = z +
g2

z
. (52)

With this transformation, the circular cross section of our cylinder (Fig.8) is transformed
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Figure 8: Cross section of the cylinder in the original space.

into an ellipse (Fig.9), provided that the radius a2 > g2. So, the circle x2 + y2 = a2

transforms into an ellipse with major and minor semi-axes A = a(1 + g2/a2) and B =

a(1− g2/a2). For our particular example, we choose a = 10 nm and g = 2 nm.

z =
w
2

+

√(w
2

)2
− g2. (53)
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This results in the following expressions for the (u, v ) pair of coordinates

u =
(

1 +
g2

r 2

)
x , (54)

v =
(

1 +
g2

r 2

)
y , (55)

with r 2 = x2 + y2.

The function can then be used to transform a circle into an ellipse.

The transformation results in the following expression for the factor that multiplies the
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Figure 10: Map of the factor h(u; v ) that multiplies the refractive index in transformed space.
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original refractive index (Fig. 10)

h(u, v ) =
∣∣∣∣ dz
dw

∣∣∣∣ =
1
2

∣∣∣∣∣∣1 +
1√

1− (2g/w)2

∣∣∣∣∣∣ (56)

Conformal mapping has been used to study 2D optical problems in transformed space

that are equivalent situations in real space in which localized surface plasmons are ex-

cited. A localized surface plasmon is a non-propagation excitation of the conduction elec-

trons of metallic nano-particles coupled to the electromagnetic field. Starting with a well

know problem, like the one that has been discussed in this section from the Joukowski

transformation, people have looked at the consequences in transformed space to study

problems that are much more difficult to treat analytically and even numerically (Schinzinger

and Laura, 2003).
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Chapter 3 Nanostructures in silicon photonics

In this Chapter, we first present a brief review of silicon photonics and discuss the

schemes reported in the literature for implementing transformation optics concepts in such

a platform. Using effective medium ideas, we discuss a procedure to create a binary

map of silicon pillars that can mimic a prescribed refractive index variation. The ideas

are similar to those employed in the printing industry to create gray scale images with

binary pixels. Finally, as an example of the possibilities, we present the design of an

optical element based on a conformal transformation that can connect a monomode glass

waveguide to a monomode silicon waveguide.

3.1 Silicon photonics

Silicon photonics is the technology for producing optical devices and circuits using sili-

con as the core material. It permits the integration of optical and electronic components on

a single chip using standard CMOS (complementary metal oxide semiconductor) fabrica-

tion process. The transparency of silicon at wavelengths (1270 nm to 1625 nm) suggests

applications in optical communications, and the adoption of standard silicon-on-insulator

(SOI) wafers provides a route for designing waveguide circuits and manipulating light on

integrated optical devices. Integrated optical circuits are devices that contain miniaturized

optical elements that perform different photonic functions on a common substrate.

It is not surprisingly then, that silicon and in particular SOI wafer have found many

applications in photonics. Circuits of integrated optics in a silicon platform constitute an

excellent candidate to orchestrate new devices.

Passive optical elements in photonic circuits include branches, expanders, directional

couplers and filters. Branches are used to divide a beam into two or more channels.

Losses in branches are always significant and, for this reason, directional couplers are

often used for these purposes. Expanders are used to change the width of the waveguide,

operation that tends to be lossy and usually changes the modal characteristics of the

guide.
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The fundamental passive device in photonics is the waveguide, through which optical

signals can be transferred from one point to another. In the evaluation of the performance

of a specific kind of waveguide, both size and propagation loss should be considered.

There are two sources of loss that contribute to the propagation loss: intrinsic loss (for ex-

Figure 11: Schematic of a low loss waveguide in a SOI technology.

ample, due to carrier absorption) and extrinsic loss (for example, due to sidewall scattering

and radiation into the substrate) The former one is the main source of loss in doping-based

waveguides, while the later one becomes significant when the sizes of waveguides are rel-

atively small. The latter is the case of SOI waveguides (Fig. 11), due to the field density at

the silicon surface and the roughness at the interface.

SOI is a wafer technology for electronic circuits with two silicon layers. An isolating

material (SiO2) layer is placed between a silicon layer of typically 340 nm or 200 nm, and

a substrate of about 500 µm thickness (Fig. 13).

Among the many kinds of Si-related materials that can be used to make waveguides,

the most popular is silica. By doping III/V ions into the silica, the refractive index of the core

will change with respect of that of the surrouinding glass (cladding) providing the means

for waveguiding light In a silica waveguide, the refractive index contrast is low but can be

adjusted flexibly by changing the doping density (Fang and Zhao, 2012). However, the low

refractive index contrast means that the confinement is weak, which results in both, thick

cladding layers (typically of 50 µm) and wide spacing between waveguides. The resulting

dimensions make this kind of technology not very compatible with electronic IC technology.

The adoption of silicon-on-insulator (SOI) technology, with the large refractive index
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contrast between Si (n = 3.45) and SiO2 (n = 1.45) has some evident advantages in this

respect. The strong confinement of the light within the waveguides makes it possible to

scale down the size of the waveguides mode to approximately 0.1 µm2 (Fang and Zhao,

2012). Such lateral and vertical dimensions agree with the requirement for economic

compatibility with CMOS technology today (Fig. 12).

Waveguides can be fabricated on SOI wafers using electron beam lithography. For

this, the wafer is coated with a thin layer of positive (or negative) electron-beam resist,

a material that becomes insoluble (soluble) in developing solutions after exposure to an

electron beam. The exposed (unexposed) areas can then be dissolved in a specific sol-

vent. Photonic structures and patterns are then defined by the electron-beam lithography

process. The resist is developed leaving the resist mask. The resist pattern is transferred

to the top silicon layer, by etching the silicon in the unprotected area down to the buried

oxide (BOX) layer, using reactive ion etching (RIE). In Chapter 5 we discuss in more detail

the procedures involved.

Figure 12: Comparison of the cross-sections of a CMOS chip, a typical SOI waveguide, a silica
waveguide, and a silica monomode optical fibre. The Figure was taken from Fang, 2011.

Substrate

SiO2

Silicon

Figure 13: Schematic of the structure of an SOI wafer.
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The problem of coupling light efficiently between a single-mode optical fiber (SMF)

and a silicon waveguide represents an important challenge, whose solution would allow

the intercommunication between the two most prominent technologies for optical commu-

nications and signal processing. Since the dimensions of silicon photonics waveguides

are much smaller than those of the SMFs, a considerable mode size mismatch appears

between the two devices. Thus, the coupling loss will be very large if directly coupling

the waveguides with SMFs. One common solution is using surface grating (Fig. 14) to

butt-couple light from a SMF, perpendicular to the surface, into planner waveguides.

Another promising alternative is coupling light between fibers and waveguides by com-

bining a Si inverse taper and a medium index contrast waveguide, made by polymer or

SiN for example, (Fig. 15). This technique is based on the gradual expansion from the

core-guided mode to a much larger cladding-guided mode.

Figure 14: Grating coupler for coupling between photonic wire waveguide and fibre. The Figure was
taken from Fang, 2011.

Figure 15: Schematic diagram of the nanotaper coupler. The Figure was taken from Fang, 2011.
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3.2 Nanostructured silicon as an effective medium

The 2D nature of integrated optics circuits suggests the use of conformal mapping

techniques (Leonhardt, 2006) in the design of novel photonic elements. Conformal map-

pings constitute a class of two-dimensional transformations that have proved useful in the

past for solving diffraction problems (Nevière et al., 1973; Depine and Simón, 1982). Im-

plementing transformation optics concepts in silicon photonics is interesting from both,

the conceptual and the applications points of view (Gabrielli and Lipson, 2011). Gabrielli

explored the possibility of designing structures by controlling the effective refractive index

through the density of nanometric silicon pillar structures. There are, for instance, reports

of the use of transformation optics and nano-structured silicon to fabricate a cloaking de-

vice in the optical domain (Gabrielli et. al, 2009), and a device for focusing light in the near

infrared (Spadoti et. al, 2010, Gabrielli and Lipson, 2010).

Their central idea is to vary the filling fraction f of pillars (volumetric fraction of Si in

relation to air) at each point of a slab. Regions essentially formed by a low filling fraction

of Si pillars surrounded by air will then result in a low refractive index value, while the

maximum effective refractive index available will be obtained by a slab completely filled

with Si. Gabrielli et al., (2011), used a simple effective medium theory, the 1D Maxwell

Garnett (slabs) in s polarization, to relate the layer of air and silicon pillars to an equivalent

layer with effective medium properties using the following relation

εeff = 1 + f (εs − 1), (57)

where εs is the permittivity of silicon, we are assuming that the pillars are in air, and εeff is

the effective permittivity that one wishes to achieve. In Chapter 4, we shall see that this

expression corresponds to the 1D Maxwell Garnett formula for the case of s polarization.

According to them, the effective material theory will hold if the pillar size is smaller than the

wavelength. Using this method they fabricated several devices for the optical regime such

as an invisibility cloak, a light concentrator and a perfect imaging planar lens. Figure 16

shows a SEM image of their fabricated cloaking device. Once this device was introduced in

front of a deformed mirror, its reflection was similar to the one coming from a flat mirror. A



30

Figure 16: Cloaking device. (a) Initial refractive index map of the cloaking device. (b) SEM image of
the fabricated device. The map (a) corresponds to the main cloaking device (dashed area). The inset
is a zoomed-in view of the Si nano-structures that compose the device. The Figure was taken from
Gabrielli and Lipson, 2012.

Figure 17: Light concentrator. (a) Refractive index map of the device. Light from the bottom is
concentrated towards a tighter spot on the centre of the top edge where the refractive index is higher.
(b) SEM image of the fabricated device corresponding to the dithered version of the designed index
gradient. The arrows indicate how light travels in the device and concentrates towards the top edge.
Light concentrator. (a) Refractive index map of the device. Light from the bottom is concentrated
towards a tighter spot on the centre of the top edge where the refractive index is higher. (b) SEM
image of the fabricated device corresponding to the dithered version of the designed index gradient.
The arrows indicate how light travels in the device and concentrates towards the top edge. The
Figure was taken from Gabrielli and Lipson, 2012.
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SEM image of their light concentrator is shown in Fig. 17. This device is able to compress

light incident on the input boundary to a small area on the opposite side. Finally, with a

design based on the conformal mapping of a spherical surface into a plane, they fabricated

a lens in which any source point on the surface produces a perfect image of itself on the

opposite side of the lens.

To our knowledge, however, the accuracy of the EMT used in these works has not

been tested for the kinds of structures and refractive index contrasts encountered in silicon

photonics.

3.2.1 Dithering algorithms

The conversion of a given refractive index map into a density of pillars is based on

concepts of effective medium theory. By means of an EMT one can obtain a continuous

density function of position that needs to be converted into a specific recipe of where to put

the pillars. This is accomplished through a dithering algorithm. The idea is similar to the

conversion of grey-scale images into binary maps that is used in printing and display tech-

nologies. With such algorithms, one can express the exposure map as a matrix of ones

(silicon) and zeroes (air). An example of the use of a dithering algorithm to display a gray

Figure 18: Original image in shades of grey (left) and dithered image (right).

scale image in terms of black and white pixels is shown in Fig. 18. The photography on the
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left is the original and the one in the right is the processed one (actually, the photography

on the left is also displayed in terms of black and white dots, but on a much finer scale).

One of the most popular dithering algorithms is the Floyd-Steinberg algorithm, which is

based on error dispersion (Floyd and Steinberg, 1976). With this technique one needs to

find if the shade of gray of each point in an image is closer to black or to white, set it to the

closest value and distribute the error over the neighboring pixels. Thus if, for example, the

first pixel in an image is dark gray, and has a value of 96 on a scale from 0 to 255 (zero

being black and 255 being white), it is set to zero and the difference between o and 96 is

distributed over the neighboring pixels that have not been visited yet, accordingly to the

following distribution  ∗ 7
16 ...

... 3
16

5
16

1
16 ...

 , (58)

where the matrix represents a map of neighboring pixels. The cell with a star (*) indicates

the pixel currently being scanned, and the blank cells are the pixels that have been already

visited. The weights represent the proportion of the error distributed to the neighboring

pixels. Here, the pixel immediately to the right of the scanned one gets 7/16 of the error

(the divisor is 16 because the weights add to 16), the pixel directly below gets 5/16 of

the error, and the diagonally adjacent pixels get 3/16 and 1/16. With the use of error

dispersion algorithm, for an image that has only one shade of gray, represented by the

number 128, we would end up with an image of black and white pixels in a pattern similar

to that of a chess board.

The variant of the algorithm that we used in this thesis is the simplest, since we were

not interested in any artistic detail of the dithered image. On this variant, the image is

scanned from left to right, but there are also other options: scanning right-to-left, an alter-

nating left-to-right, where the scan is alternated between lines, etc.

3.2.2 Design of an expander/compressor for integrated optics

Once we have discussed the posibility of converting refractive index regions into pillar

density maps and specific recipes of where to put or not to put pillars, we focus our at-
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tention on the design of an optical element that would be useful in integrated optics with

silicon waveguides. Specifically, we present the design of a taper to couple light from a

monomode glass waveguide into a silicon waveguide. The ability to compress and expand

light has many applications in optics, ranging from beam collimation to nanolithography,

optical data storage, imaging quality enhancement and efficient coupling to nanoscale

structures (Renault et al., 2010; Delacour et al., 2010). Transformation optics offers a new

way to achieve these effects, since it provides the necessary medium to force electromag-

netic fields to undergo the spatial distortion introduced by a certain coordinate transfor-

mation (Leonhardt and Philbin, 2009). Conformal mapping transformations enable us to

compensate for geometrical alterations, such as bends or shifts, using materials with a

spatially dependent refractive index. So, CM techniques represent an attractive possibility

for the design of expander/compressor structures. In contrast with previously proposed ta-

pers based on transformation optics, where more complex materials are needed, or where

the electromagnetic consequences of the selected transformation are not clear (Garcı́a-

Meca et al., 2011), our proposal presents the important advantage of having a refractive

index map constrained to the range of values that can be achieved using nano-lithography

on a silicon platform.

Figure 19: Waveguide with a constant cross-section in the Z space transformed in a fan-shape
waveguide in the W space by means of a logarithmic conformal map.

To demonstrate the feasibility of conformal mapping techniques in integrated optics, we

used the inverse of the logarithmic transformation of Section 2.3.1, to convert a rectangular

region into an angular section with a gradually varying refractive index that can connect a
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silicon waveguide with a glass waveguide. This transformation is given by

z = exp(w), (59)

where w = u + iv , and z = x + iy . Writing z = r exp(iθ), we find

x = r cos θ = exp(u) cos v , (60a)

and

y = r sin θ = exp(u) sin v . (60b)

We observe that a line that corresponds to constant θ is mapped into a line with con-

stant v . Thus, the pie-shaped sector delimited by the shaded region in Z-space is mapped

into the rectangular region in W-space.

Figure 20: Map of the refractive index variations in the transformed space for the designed ex-
pander/compressor.

In our design, we started with a 2D silicon waveguide with a constant cross-section in

air in the space W (see Fig. 19), and ended up with a waveguide that is fan-shaped in the Z

space. The waveguide in the transformed space starts from the plane x = 0, has an initial

aperture D with a vertical dimension ymin, and a growth angle θ considered as positive. The

initial aperture will couple with the silicon waveguide, while the the opposite end in ymax

will couple with the glass waveguide. The vertical dimension of ymax is approximately 800

nm. This value was chosen in order to experimentally allow a single mode operation at the

desired operation wavelength of λ = 1.55. The refractive index map must be constrained
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to the range of values from nsi = 3.5 to ng = 1.5, to connect both waveguides. This relation

change can be expressed in the form

nsi

ng
=

3.5
1.5

= 2.33. (61)

From Eq. (33), the refractive index in the transformed space varies as

n(x , y ) = h(u, v )nsi , (62)

where from Eq. (32) and Eq. (59), we have

h(u, v ) =
dz
dw

= exp(w). (63)

By physical considerations, the refractive index decreases as a function of x , that is,

as the waveguide cross section increases. We then rewrite the expression (62) for the

refractive index along our device as

n(x , y ) = nsi exp(−w). (64)

By keeping the factor (61) for the relation change of y , we have

ymax

ymin
= 2.33, (65)

from where the geometrical parameter ymin is determined. A schematic of the refractive

index distribution in the design can be seen in Fig. 20.
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Chapter 4 Effective medium theories

In optics, effective medium theories (EMTs) can be used to calculate the optical con-

stants of a mixture of materials in terms of the optical constants of the components and

their volume fractions. In these approaches, it is presumed that an inhomogeneous mate-

rial possesses macroscopic uniformity on a scale comparable with the wavelength. In this

Chapter we present a brief review of the classical theories of Maxwell Garnett (1904) and

Bruggeman (1935). These approaches will be used in later chapters where we discuss

their application in the context of silicon pillars in air.

4.1 Introduction

For some years now, a field of research has been developed that focuses on composite

materials, different from those occurring naturally. The properties of these artificial materi-

als are primarily due to the inclusion of small structures made specifically to achieve these

properties. Theories to treat such materials are known as EMTs, and apply when their

inclusions are large enough so that every point can be described by a single dielectric

function, but small enough compared to the wavelength of the field that illuminates them.

These theories are based on the observation that when heterogeneities in an inho-

mogeneous medium are much smaller than the wavelength, the medium behaves as a

homogeneous medium with optical properties that differ from those of its constituents. In

cases in which the artificial material presents both electrical and magnetic properties, due

to its structure rather than its composition, we can say that we are talking about a meta-

material. As more and more composite microstructures are being developed on smaller

and smaller length scales, it is clear that this type of approach will become even more

valuable in the future than it has been in the recent past.

There have been several attempts to develop EMTs. The classical approaches are the

Maxwell Garnett (1904) and Bruggeman (1935) theories that describe the optical prop-

erties of a heterogeneous dielectric mixture as a function of the dielectric function of its

components and their volume fractions. Both theories assume spherical inclusions and
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consider only dipole interactions. However, they differ in the treatment of the two compo-

nents of the composite system. The microstructure described by Maxwell Garnett consists

of grains of one component embedded in a matrix of the other component, whereas in

Bruggeman’s case, the two components are treated in an equivalent manner.

4.2 Maxwell Garnett theory

4.2.1 A dielectric sphere in a uniform electric field

The Maxwell Garnett approximation starts from the macroscopic Maxwell’s equations,

which are assumed to be valid on a fine scale inside a composite. The initial system

considered in this derivation (see Fig.21) is a dielectric sphere of radius a with permittivity

εs in vacuum or air (permittivity 1), placed at the origin of our system of coordinates in an

initially uniform electric field which, at large distances from the sphere, is directed along

the z axis. In the absence of the sphere, the electric field E0 is

E0 = E0 ẑ = E0

(
r̂ cos θ − θ̂ sin θ

)
. (66)

a
y

εm

sε

z

x

E0

Figure 21: Dielectric sphere of radius a in a uniform electric field of magnitude E0 along the z-
direction. The sphere has permittivity εs and is in a medium with εm = 1.

The applied field and induces a polarization field in the sphere that modifies the original

one. An elementary electrostatics calculation (Jackson, 2007) reveals that the field inside
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the sphere is uniform and given by the expression

Ein =
3

εs + 2
E0. (67)

Similarly, the field outside the sphere can then be written as the sum of the original external

field and the polarization field:

Eout = E0 +
εs − 1
εs + 2

(a
r

)3
E0

(
r̂ 2 cos θ + θ̂ sin θ

)
. (68)

The polarization field, represented by the second term, has the form of the field produced

by an electric dipole at the origin of coordinates, which in cgs units has the expression:

Edipole =
p
r 3

(
r̂ 2 cos θ + θ̂ sin θ

)
, (69)

where p represents the magnitude of the dipole moment.

Comparing the second term of Eq. (68) with Eq. (69), we find that the induced dipole

moment can be written as

p =
εs − 1
εs + 2

a3 E0 = αE0, (70)

where we have introduced the polarizability of the sphere

α =
εs − 1
εs + 2

a3. (71)

4.2.2 A collection of dielectric spheres

Let us now consider, a cubic array of dielectric spheres in a dielectric medium under a

uniform electric field. The macroscopic electric field Emac is the sum of the external field

and the polarization field, and let us further assume that we know the macroscopic field

inside this medium.

The dipole moment induced on the spheres can be calculated if one knows the field
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acting upon them. The usual assumption (Lorentz, 2011) is that the local field experienced

by a sphere is not the macroscopic field but, instead, a local field that is produced by all the

sources and polarized dipoles in the system, except for the sphere on the site in question

(see Fig. 22). To calculate the local field we draw a sphere of radius L (Lorentz sphere)

centered on the point of interest. The dimensions of the Lorentz sphere must be greater

than the distance between particles but smaller than the wavelength. The contributions to

the microscopic field in this cavity can be divided in two parts:

1. Contributions due to the induced dipoles inside the Lorentz sphere.

2. Contributions due to the induced dipoles outside the Lorentz sphere.

The first contribution depends on the crystal structure, but Lorentz (1916) showed that

it vanishes for the case of a cubic lattices. It is also expected to vanish for completely

random arrangements (Jackson, 2007).

To calculate the second contribution it is convenient to adopt a macroscopic approach,

treating the medium outside the Lorentz sphere as a continuum with polarization P (elec-

tric dipole moment per unit volume). It is not difficult to show (Jackson, 2007) that this

contribution to the field inside the Lorentz sphere is E2 = (4π/3)P. Then, the local field

can be written as

Eloc = Emac +
4π
3

P , (72)

We denote the number of spheres per unit volume by n0, so that the Lorentz sphere of

volume V = (4π/3)L3 contains N spheres and n0 = N/V . In the continuum approximation,

the polarization inside the Lorentz sphere can be written as

P = n0p = n0αEloc. (73)

Using Eq. (72), we can write

P = n0α

[
Emac +

4π
3

P
]

, (74)



40

and solving for P, we find

P =
n0α[

1− 4π
3 n0α

]Emac. (75)

The electric displacement vector is

D = [Emac + 4πP] = εeffEmac, (76)

and using Eq. (75), the effective permittivity of the system εeff may be written as

εeff =

[
1 +

4πn0α

1− 4π
3 n0α

]
. (77)

We recall that the volume filling fraction of spheres is

f = n0

(
4π
3

a3
)

, (78)

and using also the definition of α [Eq. (71)], we can write

4πn0α = 3fα∗ , (79)

sε

Emac

Eloc

Lorentz
sphere

Figure 22: A collection of dielectric spheres embedded in a dielectric medium as considered in the
Maxwell Garnett model.
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where

α∗ =
εs − 1
εs + 2

(80)

represents the polarization factor of the sphere.

Then, Eq. (77) can be written as

εeff =
1 + 2fα∗

1− fα∗
. (81)

This is the Maxwell Garnett mixing formula for a host of dielectric materials that contain

inclusions of permittivity εs, where fs is the volume fraction of the inclusions. It is useful to

write this expression in the more symmetric form

εeff − 1
εeff + 2

= f
εs − 1
εs + 2

. (82)

Similar procedures can be carried out for system of one (slabs) and two dimensions

(cylinders). Defining d as the dimensionality of the problem (d = 3 in the present case),

the generalized form of Eq. (82) for spheres in a medium with permittivity εm is given by

(Bergman, 1978)
εeff − εm

εeff + (d − 1)εm
= f

εs − εm

εs + (d − 1)εm
. (83)

This expression applies for the case in which the polarization vector is perpendicular to

the cylinder axis or to the slabs. Solving for εeff, one finds

εeff = εm
1 + (d − 1)fα∗

1− fα∗
, (84)

where α∗ = (εs − εm) / [εs + (d − 1)εm].

4.2.3 the 1D case

When using effective medium theory in the 3D approach, we are considering spheres

immersed in a host medium in such a way that the orientation of the incoming light is not

important. However, when considering the 2D and 1D cases, we are no longer dealing



42

with spheres but with cylinders and thus, it is necessary to distinguish between the two

different polarizations, s and p, in the effective medium equations.

An expression for the MG solution in the p polarization (electric field perpendicular to

the z axis) is obtained from Eq. (83) by putting d = 2 or d = 1. For d = 1, we obtain

εp
eff =

εsεm

+εs − f (εm − εs)
(85)

A close form for the MG solution but for the s (electric field parallel to the z axis)

polarization has been used by Gabrielli (2011) when dealing with silicon structures of

nanopillars. This expression can be written as

εs
eff = f (εm − εs) + εs (86)

As recalled in the work of Nakamura et al., (2004), for the case of slabs of permittivity

εs in a medium with permittivity εm, the effective permittivities for the case of s and p

polarization are given by the same Eqs. (85) and (86).

4.3 Bruggeman theory

The Maxwell Garnett result is only valid in the dilute limit. As the filling factor increases,

the difference between the host material and the inclusions becomes less clear and the

theory is expected to fail. Motivated by the need for an effective medium approximation

that treats the components in a symmetric fashion, Bruggeman developed the approach

that today bears his name (Bruggeman, 1935; Choy, 1999). It also has the advantage that

it can straightforwardly be generalized to more than two components (Fig.23).

Considering now spherical particles of two different materials (ε1, ε2) that are dispersed

in a host medium of permittivity εh, and volume filling factors of the two inclusions given by

f1 and f2. For this case, Eq. (82) should be modified to

εeff − εh

εeff + 2εh
= f1

ε1 − εh

ε1 + 2εh
+ f2

ε2 − εh

ε2 + 2εh
, (87)
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where the two inclusions have been introduced in a symmetric manner. For a two-phase

composite where f1 + f2 = 1, each constituent should be regarded as an inclusion and the

host medium is the composite itself. Therefore, in Eq. (87) we set εeff = εh. Thus, we have

f1
ε1 − εeff

ε1 + 2εeff
+ f2

ε2 − εeff

ε2 + 2εeff
= 0 (88)

This is the effective medium expression first developed by Bruggeman (1935). We gener-

alize this expression by replacing the term (εi + 2εeff ) in the denominator by [εi + (d − 1) εeff ].

Equation (88) then becomes (Bergman, 1978; Zhang, 2007)

f1

(
ε1 − εeff

ε1 + (d − 1)εeff

)
+ f2

(
ε2 − εeff

ε2 + (d − 1)εeff

)
= 0. (89)

This equation is quadratic in εeff and its (physically acceptable) solution is

εeff =
1

2(d − 1)

(
γ +

√
γ2 + 4(d − 1)ε1ε2

)
, (90)

where γ = d ε̄− ε1 − ε2 and ε̄ = f1ε1 + f2ε2. In writing Eqs. (89) and (90), we have assumed

that, within the unit cell of sides a, the probability of having a material with dielectric con-

stant ε1 is f1, and the probability of having material with ε2 is f2. In contrast with the model

of Maxwell Garnett, the model of Bruggeman allows for an arbitrary concentration of the

inclusions.

Ez

ϵ0

V
ϵ1

ϵ2

Figure 23: A collection of dielectric spheres embedded in a dielectric medium as considered in the
Bruggeman mixed material model.
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Chapter 5 Experimental techniques

In this Chapter we describe the fabrication of nanostructured Si samples, purposely

designed to study the concepts described in Chapts. 3 and 4, as well as some practical

considerations for their implementation. Our aim was to fabricate samples with variable

densities of Si pillars with the smallest feature size achievable with our system and the

materials employed. We also present measurements of the reflectivity of random and

periodic samples with a uniform filling fraction, and compare the results with those of a

simple three-layer model in which we assume that the nanostructured layer behaves as a

homogeneous effective medium layer.

5.1 Fabrication procedure

The fine structure in the silicon samples was produced using electron beam lithography

(EBL) techniques. EBL is a specialized technique in which a beam of electrons is scanned

across a surface covered with a resist film sensitive to those electrons, thus exposing the

film to a desired pattern.

Figure 24: Binary elements displayed in the GDS format.

Conventionally, in EBL, the pattern that one wants to transfer to the sample is defined in

a Graphic Database System (GDS) (Griesmann, 2013) file. The GDS library or database
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format is a binary file format representing planar geometric shapes in hierarchical form.

This database is fed into an electron scanning microscope in a writing mode, where a

software converter translates the GDS data into a file which contains all the instructions

needed by the pattern generator to direct and scan the e-beam as required. When the file

is loaded into the control software of the microscope, the elements are displayed in binary

form, as shown in Figure 24.

The basic idea behind EBL is similar to that in other kinds of lithography. A substrate

is coated with a thin layer of resist, which is chemically changed under exposure to the

electron beam. Then, the exposed (positive lithography) or non-exposed (negative lithog-

raphy) areas can be dissolved in a specific solvent. The fabrication process is normally

carried out on with a silicon-on-insulator (SOI) wafer with a 340 nm layer of Si over a 2 µm

SiO2 substrate. These two layers are supported by a thicker silicon substrate.

Substrate

Positive resist

Silicon

Etching

Expose &
develop

Si pillar

Metal

Pattern

Deposit

Lift-off

Lift-off

Figure 25: Schematic image of the fabrication process using a positive resist.

Figure 25 shows a schematic diagram of the fabrication process for cases in which

a positive resist like polymethyl methacrylate (PMMA) is used. The wafer is first spin-

coated with a layer of PMMA, rinsed in isopropanol, blown dry under nitrogen flux, and

baked on a hot plate for a few minutes. After this, a espacer (or charge dissipation liquid

polymer) layer is spin-coated on the wafer, and rinsed with deionised water. The thin

layer of espacer is highly conductive, and helps to avoid charging problems during the

writing processes. The exposure to the electron beam changes the solubility of the resist,

enabling selective removal of the exposed or regions of the resist by immersing it in a

solvent (developing). In the case of PMMA resist, the sample is developed in a solution
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of Methyl isobutyl ketone (MIBK) for a few seconds, rinsed in isopropanol and blown dry

under nitrogen flux. After exposure and development an inverse or negative pattern is then

created in the PMMA layer. Following the development, a metal layer is deposited over the

wafer, which includes the bared areas of the substrate (exposed regions) and the top of

the PMMA layer in the unexposed regions. After a lift-off process consisting of immersion

of the sample in acetone, the PMMA and the metal layer above it are removed, leaving

only a metal layer with the exposure patter over the silicon substrate. Finally, a reactive ion

etching (RIE) process using oxygen (O2) is performed, so that the silicon remains only in

regions protected by the metal coating. In RIE the plasma is generated under low pressure

(vacuum) by an electromagnetic field that ionizes gas molecules. High-energy ions from

the plasma attack the silicon on the wafer surface and remove material.

In negative lithography, the wafer is spin-coated with a thin layer of negative resist, like

hydrogen silsesquioxane (HSQ), rinsed in isopropanol, blown dry under nitrogen flux, and

baked on a hot plate for a few minutes. After this, a espacer layer is spin-coated on the

wafer and rinsed with deionised water. During the EBL, the resist is chemically changed

under exposure to the electron beam, so that the non-exposed areas can be dissolved

leaving regions covered by HSQ. After exposure the sample is developed in a solution of

MF-319 for a time that is normally under a minute, rinsed in deionised water, and blown

dry under a nitrogen flux. The patterns are then defined by a two step RIE process using

first O2, and then O2 and sulfur hexafluoride (SF6). The fabrication process is shown

schematically in Fig. 26.

Substrate

Expose &
develop

Negative resist

Silicon Etching

Si pillar

Figure 26: Schematic image of the fabrication process using a negative resist.

5.1.1 First tests

Some tests were carried out in order to gain expertise in the fabrication method. We

fabricated six samples with periodic arrays of pillars. Each sample contained four zones of
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80 µm× 80 µm with a 100 nm diameter pillars and periods of 150 , 200 , 300 and 400 nm,

and another four zones of the same with periodic arrays of pillars with a 200 nm period

and pillar diameters of 50 , 75 , 100 and 150 nm. The maximum SEM working area is

100 µm× 100 µm, thus, by choosing a smaller working area for the exposed areas we

avoided the use of stitching techniques. The fabrication of periodic samples of pillars with

different diameters and periods was helpful to determine the limits of resolution of our

system and fabrication process.

Of the six samples, two were fabricated using one layer of positive resist (PMMA), for

two other samples we used one layer of negative resist (HSQ) and for two more, we used

two layers of the same HSQ negative resist. The negative HSQ resist has been investi-

gated widely due to its high resolution capability, etch resistance and good stability under

SEM inspection. On the other hand, PMMA is a conventional electron beam resist that

is known for its good lift-off properties. Lift-off is applied in cases where a direct etching

of structural material would have undesirable effects on the layer below. Positive and a

negative resist, were used in order to determine the best option for the fabrication of the

structures. Samples of one and two resist layers were fabricated to find an adequate resist

thickness for fabrication. This parameter is important since a thicker resist layer allows a

longer etch time for better-defined pillars, but also reduces the achievable resolution. A

negative resist was preferred for the tests because it requires exposure of smaller areas

and consumes less EBL time.

For the two samples fabricated with positive resist, the process started by spin-coating

a 200 nm layer of PMMA. The coated wafers were then rinsed in isopropanol, blow-dried

under a nitrogen flux and baked on a hot plate at 180 ◦C for four minutes. After this, a 300Z

espacer layer was spin-coated on both samples and rinsed with deionised water. The EBL

was carried out in a Raith system with an exposure dose of 140µC/cm2. After exposure,

the samples were developed in a MIBK solution for 60 seconds, rinsed in isopropanol for

15 seconds and blow-dried under a nitrogen flux. Following the development, a 50 nm

layer of aluminum (Al) was deposited on one of the samples, while a layer of chromium

(Cr) of a 40 nm thickness was deposited on the other one. A lift-off process was performed

in both samples before the O2 RIE process, which was carried out with a Plassys MEB400
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at a 2 mTorr pressure and a 100 W power for 5 (Al) and 60 (Cr) seconds.

In Fig. 27 we show SEM images of the PMMA sample after the e-beam lithography

(left), and after the etching process (right). We see that by the use of the PMMA resist, we

obtained a good definition of the pillars once the etching process was performed.

Figure 27: SEM images of a fabricated sample using PMMA resist and 50 nm thick Al deposition in
the zone with a 100 nm pillar diameter and 300 nm period. After performing the EBL (left), and after
the etching process (right).

The fabrication process with the negative resist started by spin-coating a 200 nm HSQ

layer on each of the four remaining wafers. They were all then rinsed in isopropanol, blow-

dried under nitrogen flux and baked on a hot plate at 150 ◦C for two minutes. This process

was repeated with two of the samples, so they ended up with a 400 nm layer of HSQ. After

this, a 300Z espacer layer was spin-coated on all the samples and rinsed with deionised

water. With the single layer samples, the EBL was carried out in a Raith system using a

dose of 200µC/cm2 in one sample and 300µC/cm2 in the other one. For the two layer

samples, a dose of 500µC/cm2 was used in one sample and 1000µC/cm2 in the other.

After exposure, all samples were developed in a MF-319 solution for 60 seconds, rinsed

in deionised water for another 60 seconds and blow-dried under a nitrogen flux. The RIE

process was then performed using O2 in a Plassys MEB400 at 20 mTorr and 100 W for

two minutes in the first step, and then using O2 and SF6 at 4 mTorr and 80 W for two

minutes in the second step.

We also observe that the nominal diameter of the pillars is slightly increased but that

the period is mainteined. Although both, Al and Cr, could be use as etching masks, it was

the latter one which allowed a longer etch time and better-defined features.
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In Fig. 28 we present SEM images of a fabricated single layer sample using HSQ after

the e-beam lithography (left), and after the etching process (right). We observe that after

etching, the exposure pattern has been lost due to over etching.

In out attempts to correct this problem, we investigated the use of tetrafluoromethane

(CF4) gas instead of Sf6 in the RIE process. We also found that the problem of under

etching remained. For the bilayer samples, two different doses were used for the EBL.

With the lower dose, we were unable to achieve a good pattern definition in the EBL

exposure, presumable due to the resist thickness. We found that the pattern definition

improved with the increase of the dose, but this resulted in other issues caused by the

scattering of electrons in the layer such as an electron backscattering effect.

Figure 28: SEM images of a fabricated sample using HSQ single layer resist in the zone with a 100 nm
pillar diameter and 400 nm period. After the EBL (left), and after the etching process (right).

5.1.2 Samples with a variable density of pillars

After these tests, it seemed that the best option was to use PMMA resist. Once we

had determined the minimum period and feature size that we could reach, we focused our

attention on the fabrication of samples with a variable density of pillars. Our aim was to

determine the achievable range of pillar densities in nano-structured silicon. We present

results for three samples:

• a slab waveguide of Si;

• a sample with a linear variation of pillar density;
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• a sample with an exponential variation of pillar density.

To design the linear and the exponential samples, we first considered an area of the

same size as the delimited region of the slab waveguide sample, and divided it into a

square lattice whose period equals the pillar diameter. We fixed a density value of one

to all the cells located at the edge of the sample that is connected with the integrated

silicon waveguide, and a value of zero to the cells at the opposite edge of the sample,

with one being the corresponding value for silicon and zero for air. The density variation

along the samples was then numerically calculated as either linear or exponential. The

discrete version of the calculated density map, and thus the specific recipe of where to put

the pillars, was determined by means of the dithering algorithm explained in Sec. 3.2.1.

From the results obtained in our first tests, we decided to fabricate the samples with

a 150 nm diameter pillars using a PMMA resist and a Cr mask. The periods range from

500 nm in the regions with a low pillar density, to contiguous pillars with periods of 200 nm

in the higher density region. The three samples were designed with an integrated waveg-

uide to illuminate them for further characterization (Fig.29). The homogeneous Si sample

was proposed to explore the possibility of producing a design that could be the basis of an

experimental integrated optics setup.

Figure 29: Image of the GDS file for the homogeneous silicon sample.

The fabrication process started by spin-coating a 200 nm PMMA layer on the wafers,

rinsing them in isopropanol, blow-drying then under nitrogen flux and baking them on a

hot plate at 180 ◦C for four minutes. After this, a 300Z espacer layer was spin-coated

and rinsed with deionised water. For the homogeneous sample, an exposure dose of

140µC/cm2 was used to defined its structure on the wafer. The EBL process for the

samples with a density gradient was carried out in the same wafer, with the difference that
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the electron dose was varied as a function of the local density of pillars. The subsequent

SEM analysis reveled that the patterned features had a diameter of δ = 150 ± 15 nm

in the zones of the samples with pillar densities ranging from medium to low. For the

zones with a higher density of pillars, the definition was lost. After exposure, the samples

were developed in a MIBK solution for 60 seconds, rinsed in isopropanol for 15 seconds

and blow-dried under nitrogen flux. Following the development, a 40 nm layer of Cr was

deposited on the samples. A lift-off process was performed by immersing the samples

in acetone for two hours, and then placing them in an ultrasonic bath for ten minutes.

No problems were observed in the homogeneous sample. However, after the lift-off, we

observed that the samples with the density gradient of pillars had Cr residues. In our

attempts to improve the situation, a second lift-off was carried out, in which the samples

were immersed in acetone for two days, and placed later in an ultrasonic bath for ten

minutes. We performed the etching process in a Plassys MEB400 using O2 at a 2 mTorr

pressure and a 100 W power for 60 seconds. Finally, since there were still many Cr

residues in the density gradient samples, we placed them into a mixture made of four

tablets of potassium hydroxide (KOH) dissolved in 40 ml of deionised water for several

hours. However, the Cr residues remained in the zones of the samples with a higher

density of pillars.

Figure 30: SEM images of the sample with an exponential variation of density after lithography. Zone
with a low density of pillars (left). Zone with a high density of pillars (right).

Figure 31 shows the slab waveguide of silicon. In Fig. 30, a zoomed SEM image taken

from the sample with the linear density gradient after the lithography step, shows the lack

of definition in the zones with pillar densities ranging from medium to high. This appears
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to be due to an exposure dose that was not well calibrated in its variation as a function of

the density of pillars.

Figure 32 shows SEM images of the same fabricated sample after the chromium mask

Figure 31: SEM image of the slab waveguide of silicon.

Figure 32: SEM images of the sample with a linear variation of density after the lift-off.

Figure 33: SEM images of the sample with an exponential variation of density after the RIE process.
Zone with a low density of pillars (right). Zone with a high density of pillars (left).
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deposition and lift-off. We observe that the zone with a low density of pillars (upper part

of the sample) had a better feature definition compared to the one with a higher density

(middle part). In the latter one, we see that the chromium mask was not removed.

In Fig. 33 we see the SEM images of the same sample as that of Fig. 30 after the RIE

process. We observe that the exposure pattern has been deformed in the medium and

high density zones, and that there is no silicon at the lower density zone. In some areas of

the low pillar density region (upper part of the sample), it is observed that the silicon has

been completely etched. We then assume that the chromium mask has been lifted-off in

some of the resist holes, as a result of the increase in the time of the lift-off process, and

thus it did not played its role protecting the samples during the RIE.

The experiments described were designed to investigate the achievable pillar density

range in the samples fabricated with EBL with PMMA resist and a Cr mask. It was found

that for the desired range, we could not control the exposure dose that will leaded to a

good feature definition. In addition, the lift-off process was problematic and even after a

secondary process, the majority of the area of our samples with medium or high density

of pillars ended up with Cr residues.

Given the difficulties encountered with the HSQ resist in our first experiments, and the

lift-off problems just described when the PMMA resist is used, we decided to try another

negative resist (ma-N 2403). The ma-N 2400 resist has an excellent etch resistance and

a high pattern resolution, and can be removed residue-free after the fabrication process.

However, this resist requires special precautions like using yellow light and being allow

to cool and stabilize when deposited, and a longer sample preparation. Next, besides

optimizing the etching conditions, we proposed to limit ourselves to the fabrication of sam-

ples with a density of pillars that ensured a minimum center-to-center separation between

neighboring pillars of two pillar diameters.

5.1.3 Fabrication of samples used for the optical experiments

After the described tests, we decided to fabricate three samples with simple struc-

tures that will allow us to test the accuracy of simple EMTs in the context of silicon nano-
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structured layers at telecommunications wavelengths. The samples were fabricated in bulk

silicon waffers using ma-N 2403 negative resist and have the following characteristics:

• A periodic sample with a uniform density of pillars, referred to as Sample A.

• A random sample with a uniform density of pillars, referred to as Sample B.

• A sample with isolated silicon pillars, referred to as Sample C.

The fabrication process started with three 1 cm× 1 cm squares of bulk silicon with a

500 µm height. The bulk silicon samples were immersed in acetone in an ultrasonic bath

for 15 minutes, rinsed in isopropanol, blow-dried under a nitrogen flux, baked on a hot

plate at 300 for 15 minutes, and allowed to cool and stabilize overnight. An hexamethyl-

disilazane (HMDS) primer layer was spin-coated on the samples under yellow light. We

then deposited a ma-N 2400 resist layer and baked the samples in an oven at 80 ◦C for

two minutes. After this, a 300Z espacer layer was spin-coated on them, and rinsed with

deionised water.

The EBL was carried out in a 100 µm× 100 µm area in a Raith system using a 26µC/cm2

dose in Sample A and Sample B, and a 175µC/cm2 dose in Sample C. After exposure, all

samples were developed in a solution made by combining equal quantities of ma-D 525

developer and deionised water for 60 seconds, rinsed in deionised water for another three

minutes, and blow-dried under a nitrogen flux. Following the development, the samples

were baked in a oven at 100 ◦C for ten minutes. The final RIE process was performed in a

Plassys MEB400 using O2 and SF6 at 2x10−5 Torr and 90 W for three minutes in the first

step, and O2 with the same parameters for one minute in the second step.

In all cases, the pillars were designed to have a nominal pillar diameter of 150 nm. For

the Sample A, we chose a period of 450 nm, and for Sample C a period of 3450 nm. On

the basis of our previous experiments, the desired parameters should be achievable with

the procedures described and the available system.

To design the random sample (Sample B) we first considered an area of the same

size as the structured region of the periodic sample, and divided it into a square lattice

whose period equals the pillar diameter. Then, two uncorrelated random integers ξ i were
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drawn from a uniform distribution on the interval [1,N ] where N is the number of cells

in each direction of the lattice. If the cell labeled (ξ1, ξ2) was not occupied and neither

are their nearest neighbors, then a pillar was placed at the center of the cell (ξ1, ξ2). This

procedure was repeated until the number of pillars placed equaled the numbers of pillars

in the periodic sample. Note that for samples produced in this way the minimum center-

to-center separation between neighboring pillars is two pillar diameters (or 300 nm for the

radius assumed here).

Figure 34: SEM images of the Sample A after the etching process from far (left), and in zoom (right).

Figures 34, 35 and 36 present SEM images of Samples A, B and C, respectively. One

observes that the fabricated nanopillars have a lager cross section area at the base than

at the top (Fig. 34).

By analyzing SEM images of Sample A, (those in Fig. 34 and other images taken from

different angles and magnifications) it was found that the pillars have a shape that can be

approximated by a truncated cone with approximate top and base radii ρt = 85± 5 nm and

ρb = 105± 10 nm, respectively. The structure was measured to have a nominal period of

a = 450± 5 nm, and the height of the pillars was found to be ζ0 = 190± 5 nm. It should

be mentioned that due to the discretization of the ideal positions, Sample A showed some

undesired features; the distance between pillars ended up having periodic variations and

the cross section of the pillars was not quite circular. These issues are visible in the SEM

image presented on the left of Fig. 34.

For Sample B, the SEM images revealed that the top and base radii were, respectively,
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ρt = 85± 5 nm and ρb = 110± 10 nm, while their height was found to be ζ0 = 165± 5 nm.

The measured minimum distance between neighboring pillars was about 300 nm, which

is in good agreement with the design parameters.

For Sample C, on the other hand, the SEM images revealed that the top and base radii

were, respectively, ρt = 75± 5 nm and ρb = 90± 10 nm, while their height was found to be

ζ0 = 165± 5 nm. The measured period was about 3450 nm, which is in good agreement

with the design parameters.

Figure 35: SEM images of the Sample B in the zone after the etching process. Wide field view (left),
and zoomed image showing a pillar (right).

Figure 36: SEM images of the Sample C in the zone after the etching process. Wide field view (left),
and zoomed image showing a pillar (right).
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5.2 Reflectivity measurements

To explore the effective medium properties of nanostructured silicon layers at telecom-

munication wavelengths, we decided to carry out reflectivity measurements focusing on

two of Sample A and Sample B.

A schematic diagram of the optical setup employed to carry out the measurements

is shown in Fig.37. A Thorlabs IR laser diode with a (λ = 1.55 µm) wavelength and a

5 mW power was used to generate a beam that passed through a linear polarizer and

then through a chopper. After this, the beam was focused with a lens onto a mirror that

reflected the light at near normal incidence to illuminate the sample. The light reflected by

the sample was then collected by a lens and focused to a Thorlabs detector (883 nm - IR).

The samples were illuminated at near normal incidence [θ0 ≈ 2 mrad ≈ 1.15◦] by a lin-

early polarized beam of light from a laser of wavelength λ = 1.55 µm (Thorlabs LDM1550).

A small angle of incidence was used to avoid the use of a beamsplitter in the measure-

ments. The beam was focussed on the sample with a low power lens, and the reflected

light was measured in the specular direction using a collecting lens and an InGaAs detec-

tor (Thorlabs DET20C). The contribution from the back surface of the sample was reduced

by roughening it slightly and putting it in optical contact with an absorbing paste. Several

readings of the optical power reflected from a given spot of the sample were averaged

to obtain a measurement, that was later normalized by the signal produced by the flat

areas of the sample (the reflectivity of these flat regions was in good agreement with that

expected for a flat silicon surface).

The reflectivities of Samples A and B were measured to be RA = 0.2227 ± 0.0032

and RB = 0.2350 ± 0.0049, respectively. These estimated reflectivity values represent

the mean and standard deviation calculated from ten measurements that correspond to

different areas of the structured region of the samples.

Taking the value of the dielectric constant of silicon at the wavelength of the incident

light to be ε = 12.25, the Fresnel reflectivity for the planar silicon substrate is R0 ≈ 0.3086.

These reflectivities are both significantly smaller than what is expected for a planar silicon

substrate.



58

NIR laser

Chopper

Lens

Lens
Detector

Sample

Mirror

Polarizer

Figure 37: Schematic image of the experimental setup.
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5.3 Three-layer model

Since the structures that we consider have lateral dimensions that are much smaller

than the wavelength of the incident light, it is natural to assume that, in this long wavelength

limit, the layer containing the surface irregularities can be modeled as a homogeneous film

of thickness h = ζ0 with an effective dielectric constant εeff (Choy, 1999). The reflectivity

of the system can then be calculated using the reflection coefficient of a layered system

(Fig.(38)). For the the case of a thin film over a substrate (three-media or three-layer

Si pillars in air

Silicon

Air
Homogenous medium

kinc

n2

n1

n3

Figure 38: Schematic of the three layer model applied to our fabricated structures.

system), one has (Born and Wolf, 1970)

r =
r12 + r23 exp(2iβ)

1 + r12r23 exp(2iβ)
, (91)

where the subscripts 1, 2 and 3 refer to vacuum, the thin film of the effective medium, and

the substrate, respectively; rij (with i , j = 1, 2, 3) represents the reflection amplitude of the

interface between medium i and j ; and β denotes the optical path length for the light in the

film. For the case of normal incidence, we can write

rij =
ni − nj

ni + nj
, (92)

and

β = n2
ω

c
h, (93)

where ni =
√
εi represents the refractive index of medium i . The reflectivity of the system

is therefore given by

R = |r |2 =
r 2
12 + r 2

23 + 2r12r23 cos 2β
1 + r 2

12r 2
23 + 2r12r23 cos 2β

. (94)

The effective refractive index of the film, neff =
√
εeff, may then be estimated assuming
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a three-media model, to invert the reflectivity data obtained experimentally, or through

rigorous computer simulations. The result obtained in this way can be compared with

estimations based on the effective medium theories, like the Maxwell Garnett theory, which

has been used previously in the context of silicon photonics systems (Gabrielli and Lipson,

2011). This permits the evaluation of the validity of effective medium theories for the

estimation of the effective refractive index of a layer of supported silicon nanopillars.

For the samples that we study the host medium is air, which has a permittivity ε1 = 1,

and the inclusions are silicon, for which ε2 = 12.25. The filling fraction, defined as the ratio

of the volume of inclusion to the volume of host material, was found to be f = 0.14 for the

parameters of Sample A given in the preceding Section. To calculate the filling fraction

of the periodic sample, we considered a unit cell of sides a, the period of our structures,

with an embedded truncated cone of base radius ρb and top radius ρt . The volume filling

fraction is then given by the ratio of the volume of the truncated cone to the volume of the

cell. Since the average density of the pillars is the same in the two samples, the filling

fraction of Sample B is the same as the filling fraction of Sample A.

With these values for ε1, ε2 and f , the 3D Maxwell Garnett (MG) approach from Eq. (85)

predicts that the effective medium should have a dielectric constant εeff = 1.374. Using this

value of εeff, and assuming that the wavelength of the incident light is λ = 1.55 µm, on the

basis of Eq. (94), we estimate that the reflectivities of Samples A and B are 0.2626 and

0.2721, respectively. These values are considerably larger than those obtained experi-

mentally.

We can try to fit the experimental findings using other effective medium theories (EMTs),

like those described in Chapter 4. For the 2D MG approach, the calculated effective per-

mittivity is εeff = 1.27 for the same filling fraction of f = 0.14 and the estimated values for

the reflectivities of samples A and B are 0.2346 and 0.2499, respectively. Although these

values are closer, they still differ from the experimental ones.

Under the 3D Bruggeman approach, the calculated effective permittivity is εeff = 1.17

for the same filling fraction f = 0.14 that we used with the MG theory, and the estimated

values for the reflectivities are 0.2758 and 0.2825 for samples A and B, respectively. With
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the 2D approach, the effective permittivity is εeff = 1.30, and the corresponding reflectivities

for samples A and B are 0.2514 and 0.2631.

Thus, we have found that the reflectivity estimated for our structures by means of the

EMTs overestimates the values obtained experimentally. We now turn to more accurate

ways for calculating the reflectivity of our samples, namely the reduced Rayleigh equa-

tion (RRE) and the Fourier modal method (FMM). In the next Chapter we describe these

approaches.
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Chapter 6 Theoretical methods

Despite the possibilities offered by transformation optics in combination with silicon

photonics, a literature survey reveals that the practical success of the approach has been

limited by the challenging fabrication requirements and the difficult theoretical modeling,

among other things. The accuracy of the effective refractive index theories employed by

some authors to deal with nanostructured silicon (Gabrielli and Lipson, 2011) had not been

tested for the kind of geometries and refractive index contrast of the samples fabricated in

this work.

In the preceding section, it was found that the reflectivity estimated for our structures,

by means of effective medium theories (EMTs), did not agree with the reflectivity obtained

experimentally. Thus, in this Chapter we turned to more accurate ways of calculating

the reflectivity of our samples as a function of the height of the pillars, namely (i) the

reduced Rayleigh equation (RRE) and (ii) the Fourier modal method (FMM). We did two

sets of simulations based on these methods. The simulations performed with the former

method used an in-house developed code. The FMM/RCWA simulations used the publicly

available code called S4 (Stanford Stratified Structure Solver ) (Liu and Fan, 2012). These

approaches will now be described.

6.1 The reduced Rayleigh equation

An estimation of the effective refractive index of nanostructured surfaces, with an em-

phasis on the case of silicon nanopillars on a substrate, can be given theoretically and ex-

perimentally by the scattering of light from them. The scattering of electromagnetic waves

from such a surface can be calculated by the Rayleigh method. By means of the Rayleigh

hypothesis (Maradudin, 2007) and the use of the boundary conditions satisfied by the

electromagnetic fields on the interface (Jackson, 2007), it is possible to obtain a coupled

set of inhomogenious integral equations for the scattering and transmission amplitudes.

This equation is know as the Rayleigh equation and it depends on the surface profile func-

tion that the scattering geometry consists of. The Rayleigh equation is rigorous as long

as the Rayleigh hypothesis is satisfied, but the validity of this hypothesis is only known for
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a few periodic surface structures (Millar, 1971; Hill and Celli, 1978). For a general rough

surface it is not known for which roughness parameters the Rayleigh hypothesis is valid.

In such cases, a method based on the Rayleigh equation should therefore be considered

as an approximate method.

In the fist half of the 1980s, it was demonstrated that some of the Rayleigh equa-

tions can be eliminated, resulting in a smaller set of modified integral equations known

nowadays as the reduced Rayleigh equation (RRE) (Brown et al., 1984). The RRE is a

single inhomogenious matrix integral equation for either the scattering amplitude or the

transmission amplitude, but not both. This equation allows for the calculation of the field

scattered from rough or periodic surfaces. The RRE for such scattering geometries can

not be solved analytically so numerical technique has to be applied to obtain its solution.

The first purely numerical solution of the RRE for a two dimensionally randomly rough

interface was recently performed (Nordam et al., 2013). Other works based on the RRE

for two dimensional geometries include those of Soubret and coworkers for a film of finite

thickness on top of an infinitely thick substrate with one rough interface (Soubret et al.,

2001), the one of Nordam and coworkers for reflection from perfectly conducting two di-

mensional randomly rough surfaces (Nordam et al., 2014), and that of Hetland et al. for

transmission through clean penetrable two dimensional surfaces (Hetland et al., 2016).

It ought to be mentioned that most of the perturbative approaches to the scattering

and transmission of light through rough surfaces can be derived starting from the RRE.

However, a non-perturbative numerical solution of the RREs naturally includes the effect

of multiple scattering processes underlying, for instance, the enhanced backscattering

phenomenon (Simonsen, 2010).

The system we consider consists of vacuum in the region x3 > ζ
(
x‖
)

and a scattering

medium, characterized by a dielectric function ε (ω), in the region x3 < ζ
(
x‖
)
. The vector

x‖ = (x1, x2, 0) is an arbitrary position vector in the plane x3 = 0. The surface profile func-

tion, ζ(x‖), is assumed to be a single-valued function of x‖ that is differentiable with respect

to x1 and x2. If the dielectric function ε (ω) is independent of the (angular) frequency ω and

is real and positive, the scattering medium is a dielectric. On the other hand, if the func-

tion ε (ω) is frequency dependent and complex, with a negative real part and a positive
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imaginary part, the scattering medium is a lossy metal.

X2

X1

X3

θs
θ0

φs

ζ(x1,x2)

k
φ0

q

q||

k||

Figure 39: Schematic illustration of the considered scattering geometry. The angles of incidence
(θ0,φ0) and angles of scattering (θs,φs) are defined explicitly. The corresponding lateral wave vectors
of incidence and scattering are denoted k‖ and q‖, respectively, and indicated in the figure.

The interface x3 = ζ
(
x‖
)

is illuminated from the vacuum by a plane wave of frequency

ω. The total electric field in the vacuum region x3 > max ζ
(
x‖
)

can then be written as the

sum of an incident and a scattered field, E (x; t) =
[
E(i) (x|ω) + E(s) (x|ω)

]
exp (−iωt) where

E(i ) (x|ω) =
{c
ω

[
α0
(
k‖
)

k̂‖ + k‖x̂3

]
E0p(k‖) +

[
k̂‖ × x̂3

]
E0s(k‖)

}
× exp

[
ik‖ · x‖ − iα0(k‖)x3

]
(95a)

and

E(s) (x|ω) =
∫

d2q‖
(2π)2

{c
ω

[
−α0(q‖)q̂‖ + q‖x̂3

]
Ap(q‖) +

[
q̂‖ × x̂3

]
As(q‖)

}
× exp

[
iq‖ · x‖ + iα0(q‖)x3

]
. (95b)

In these expressions q‖ = (q1, q2, 0) is a two-dimensional wave vector, a caret over a vector

indicates that it is a unit vector, and

α0(q‖) =
[(ω

c

)2
− q2

‖

] 1
2

, Reα0(q‖) > 0, Imα0(q‖) > 0. (96)

Moreover, E0p(k‖) and E0s(k‖) are the amplitudes of the p- and s- polarized components

of the incident electric field with respect to the plane of incidence, while Ap(q‖) and As(q‖)
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are the amplitudes of the p- and s- polarized components of the scattered electric field

with respect to the local plane of scattering, respectively.

The expressions for the magnetic fields are obtained from the expressions for the cor-

responding electric field by the use of Faraday’s law ∇×E = i(ω/c)H(x|ω), here assuming

Gaussian-cgs units and a non-magnetic medium. In this way, with Eq. (95), we obtain the

expression for the incident magnetic field

H(i )(x|ω) =
{c
ω

[
k‖ − α0(k‖)x̂3

]}
×
{c
ω

[
α0(k‖)k̂‖ + k‖x̂3

]
E0p(k‖) +

[
k̂‖ × x̂3

]
E0s(k‖)

}
× exp

[
ik‖ · x‖ − iα0(k‖)x3

]
, (97a)

and the magnetic scattered field

H(s)(x|ω)

=
∫

d2q‖
(2π)2

{c
ω

[
q‖ + α0(q‖)x̂3

]}
×
{c
ω

[
−α0(q‖)q̂‖ + q‖x̂3

]
Ap(q‖) +

[
q̂‖ × x̂3

]
As(q‖)

}
× exp

[
iq‖ · x‖ + iα0(q‖)x3

]
. (97b)

These magnetic fields, like the corresponding electric fields, are valid for x3 > max ζ(x‖).

One may also write down expressions for the transmitted electric and magnetic fields,

E(t)(x|ω) and H(t)(x|ω), respectively, that are valid for x3 < min ζ(x‖). Such expressions will

not be given here but they can be found in e.g. Ref. (Hetland et al., 2016).

By imposing the Rayleigh hypothesis (Rayleigh, 1907), the forms of the fields given

by Eqs. (95) and (97) in the vacuum region and the corresponding expressions for the

transmitted fields in the region below the rough interface, can be used to satisfy the usual

boundary condition on x3 = ζ(x‖) (Jackson, 2007). This will result in the Rayleigh equation

which represents a coupled set of inhomogeneous integral equations where the unknowns

are the amplitudes Ap(q‖) and As(q‖) of the scattered electric field and the similar ampli-

tudes for the transmitted electric field. In 1984, Brown et al. (Brown et al., 1984) showed

that one set of field amplitudes can be eliminated to produce the reduced Rayleigh equa-

tion for either reflection or transmission. The former of these equations can be written in
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the form (Nordam et al., 2013; Hetland et al., 2016)

∫
d2q‖
(2π)2

I
(
α(p‖)− α0(q‖)|p‖ − q‖

)
α(p‖)− α0(q‖)

M(p‖|q‖)A(q‖)

=−
I
(
α(p‖) + α0(k‖)|p‖ − k‖

)
α(p‖) + α0(k‖)

N(p‖|k‖)E0(k‖), (98)

where p‖ denotes an arbitrary lateral wave vector, and

A(q‖) =

Ap(q‖)

As(q‖)

 E0(q‖) =

E0p(q‖)

E0s(q‖)

 . (99)

In writing Eq. (98) we have defined the functions

I
(
γ|Q‖

)
=
∫

d2x‖ exp
(
−iQ‖ · x‖

)
exp

[
−iγζ(x‖)

]
, (100)

α(q‖) =
[
ε(ω)

(ω
c

)2
− q2

‖

] 1
2

, Reα(q‖) > 0, Imα(q‖) > 0, (101)

and the matrix elements

M(p‖|q‖) =

p‖q‖ + α(p‖) p̂‖ · q̂‖ α0(q‖) −
(
ω
c

)
α(p‖)

[
p̂‖ × q̂‖

]
3(

ω
c

) [
p̂‖ × q̂‖

]
3α0(q‖)

(
ω
c

)2 p̂‖ · q̂‖

 (102a)

and

N(p‖|q‖) =

p‖q‖ − α(p‖) p̂‖ · q̂‖ α0(q‖) −
(
ω
c

)
α(p‖)

[
p̂‖ × q̂‖

]
3

−
(
ω
c

) [
p̂‖ × q̂‖

]
3α0(q‖)

(
ω
c

)2 p̂‖ · q̂‖

 . (102b)

Equation (98) is the reduced Rayleigh equation (for reflection) that relates the amplitudes

Aν(q‖) of the scattered field to the amplitudes E0ν′(k‖) of the incident field for ν, ν ′ = p, s. It

is worth noticing from Eqs. (98)–(102) that the surface profile function ζ(x‖) only enters in

the expression for I
(
γ|Q‖

)
. Hence, it is this function that encodes the form of the surface

profile function that is assumed.

In the following, our main concerned will be surface profile functions ζ(x‖) that are

doubly periodic functions of x‖ and characterized by the lattice parameter a. We express
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this by writing

ζ
(
x‖ + x‖(`)

)
= ζ
(
x‖
)

, (103)

where {x‖(`)} are the translation vectors of a two-dimensional Bravais lattice. They are

expressed by

x‖(`) = `1a1 + `2a2, (104)

where a1 and a2 are the two noncollinear primitive translation vectors of the lattice, while

`1 and `2 are any positive or negative integers, or zero, which we denote collectively by

` = (`1, `2). The area of a primitive unit cell of this lattice is ac = |a1 × a2|. In this work our

main concern will be a square lattice for which a1 = a x̂1 and a2 = a x̂2.

It will be convenient for what follows to introduce the lattice that is reciprocal to the one

defined by Eq. (104). Its lattice sites are given by

G‖(h) = h1b1 + h2b2, (105)

where the primitive translation vectors of this lattice are defined by the equations

ai · bj = 2πδij i , j = 1, 2, (106)

with δij denoting the Kronecker symbol. In Eq. (105), h1 and h2 are any positive or negative

integers, or zero, which we denote collectively by h. For a square lattice of parameter a

the primitive reciprocal lattice vectors are b1 = (2π/a) x̂1 and b2 = (2π/a) x̂2.

Due to the periodicity of the surface profile function (Fig. 39), ζ(x‖) the electric field in

the vacuum must satisfy the Floquet-Bloch condition (Russell, 1985), i.e.

E
(
x‖ + x‖(`), x3|ω

)
= exp

[
ik‖ · x‖(`)

]
E
(
x‖, x3|ω

)
. (107)
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Consequently, we rewrite the amplitudes Aν(q‖) of the scattered electric field in the form

Aν(q‖) =
∑
G‖

(2π)2 δ
(
q‖ − k‖ −G‖

)
aν(k‖ + G‖), ν = p, s. (108)

In writing Eq. (108) we have replaced summation over h by summation over G‖. For a

periodic surface, we write Eq. (100) in the form

I
(
γ|Q‖

)
=
∑
`

∫
ac (`)

d2x‖ exp
(
−iQ‖ · x‖

)
exp

[
−iγζ(x‖)

]
, (109)

make the change of variable x‖ = x‖(`) + u‖ and use the the periodicity property (103) of

the surface to obtain

I
(
γ|Q‖

)
=
∑
`

∫
ac

d2x‖ exp
[
−iQ‖ ·

(
x‖(`) + u‖

)]
exp

[
−iγζ(u‖ + x‖(`))

]
=
∑
`

exp
[
−iQ‖ · x‖(`)

] ∫
ac

d2u‖ exp
(
−iQ‖ · u‖

)
exp

[
−iγζ(u‖)

]
. (110)

Now, taking advantage of the relation

∑
`

exp
[
−iQ‖ · x‖(`)

]
=
∑
G‖

(2π)2

ac
δ
(
Q‖ −G‖

)
, (111)

enables us to write Eq. (110) in the form

I
(
γ|Q‖

)
=
∑
G‖

(2π)2 δ
(
Q‖ −G‖

)
Î
(
γ|G‖

)
, (112)

with

Î
(
γ | G‖

)
=

1
ac

∫
ac

d2x‖ exp
(
−iG‖ · x‖

)
exp

[
−iγζ(x‖)

]
. (113)

When the expansions (108) and (112) are substituted into Eq. (98), the equation satis-
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fied by the amplitudes
{

ap,s(k‖ + G‖)
}

is

∑
K‖

(2π)2δ
(
p‖ − K‖

) ∑
K′
‖

Î
(
α(K‖)− α0(K ′‖)

∣∣K‖ − K′‖
)

α(K‖)− α0(K ′‖)
M
(
K‖|K′‖

)
a(K′‖)

= −
∑
K‖

(2π)2 δ
(
p‖ − K‖

) Î
(
α(K‖) + α0(k‖)

∣∣K‖ − k‖
)

α(K‖) + α0(k‖)
N
(
K‖|k‖

)
E0(k‖). (114)

In writing this equation, we have defined the two lateral wave vectors

K‖ = k‖ + G‖ K′‖ = k‖ + G′‖, (115)

and summations over G‖ and G′‖ have been replaced by summations over K‖ and K′‖.

Equating coefficients of delta functions on both sides of Eq. (114) gives

∑
K′
‖

Î
(
α(K‖)− α0(K ′‖)

∣∣K‖ − K′‖
)

α(K‖)− α0(K ′‖)
M
(
K‖|K′‖

)
a(K′‖)

= −
Î
(
α(K‖) + α0(k‖)

∣∣K‖ − k‖
)

α(K‖) + α0(k‖)
N
(
K‖|k‖

)
E0(k‖). (116)

Equation (116) implies a linear relation between aα(K′‖) [α = p, s] and E0β(k‖) [β = p, s]

which we write as

aα
(
K′‖
)

=
∑
β

Rαβ

(
K′‖
∣∣k‖)E0β

(
k‖
)

. (117)

Combining Eqs. (116) and (117) results in the final form of the reduced Rayleigh equation

for a periodic surface in reflection that we write as

∑
K′
‖

Î
(
α(K‖)− α0(K ′‖)

∣∣K‖ − K′‖
)

α(K‖)− α0(K ′‖)
M
(
K‖|K′‖

)
R(K′‖

∣∣k‖)
= −

Î
(
α(K‖) + α0(k‖)

∣∣K‖ − k‖
)

α(K‖) + α0(k‖)
N
(
K‖|k‖

)
, (118)
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where

R
(
K′‖
∣∣k‖) =

Rpp(K′‖
∣∣k‖) Rps(K′‖

∣∣k‖)
Rsp(K′‖

∣∣k‖) Rss(K′‖
∣∣k‖)

 . (119)

The set of solutions of this equation {Rαβ(K′‖
∣∣k‖)} describes the reflection of incident light

of polarization β and lateral wave vector k‖ that is scattered by the periodic surface ζ(x‖)

into reflected α-polarized light characterized by the lateral wave vector K′‖ = k‖ + G′‖.

6.1.1 The I-integral

In order to completely define the RRE for a periodic surface, Eq. (118), the Î-integrals

that appear in this equation have to be calculated. From the definitions of these integrals,

Eq. (113), it should be apparent that to do so one is required to assume a specific form for

the periodic surface profile function that we write as

ζ(x‖) =
∑
`

S
(
x‖ − x‖(`)

)
. (120)

Here S(x‖) represents the part of the surface profile that is repeated inside each unit cell.

In this work we will carry our numerical calculations assuming two forms of this function,

both which are rotational symmetric about the x3-axis, and these forms are depicted in

Fig. 40.

The first form of S(x‖) that we will consider is the truncated cone of in-plane circular

cross-section characterized by top and base radii ρt and ρb (see Fig. 40). Mathematically

this function can be defined as

S(x‖) =


ζ0 0 ≤ x‖ < ρt

ζ0
ρb−x‖
ρb−ρt

ρt ≤ x‖ < ρb

0 ρb ≤ x‖

, (121)

where 0 ≤ ρt ≤ ρb, the amplitude ζ0 ≥ 0 and x‖ = |x‖|.



71

Instead of calculating directly the Î-integral associated with the truncated cone, we will

start with a simpler calculation for which the surface profile function is a the circular pillar of

height ζ0 and radius ρ0. The corresponding profile function is defined as a special case of

a Eq. (121) obtained when ρt = ρb = ρ0. In this case and with Eq. (113), a direct calculation

leads to

Î
(
γ|G‖

)
=

1
ac

∫
ac

d2x‖
{

1 + exp
[
−iγζ(x‖)

]
− 1
}

exp
(
−iG‖ · x‖

)

= δG‖,0 +
1
ac

ρ0∫
0

dx‖ x‖

π∫
−π

dφ [exp (−iγζ0)− 1] exp
(
−iG‖x‖ cosφ

)

= δG‖,0 +
2π
ac

[exp (−iγζ0)− 1]

ρ0∫
0

dx‖ x‖J0(G‖x‖) (122)

where δG‖,0 denotes a Kronecker delta function. In obtaining this result, a factor of one has

been added and subtracted from the exponential function containing the surface profile

function so that the function exp
[
−iγζ(x‖)

]
− 1 vanishes whenever the surface profile

function ζ(x‖) vanishes. Moreover, in arriving at Eq. (122) polar coordinates has been

introduced and we have used that the Bessel function of the first kind and order zero has

x
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Figure 40: The truncated cone and cosine forms assumed for the surface profile in the modeling.
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the integral representation (Olver et al., 2010)

J0(z) =
1

2π

π∫
−π

dθ exp (ix cos θ) . (123)

This function enters into the expressions for Î
(
γ|G‖

)
due to the rotational symmetry of the

profile function S(x‖) = S(x‖). The integral that appears in Eq. (122) can be evaluated

analytically with the results that (Gradshteyn and Ryzhik, 2007)

Î
(
γ|G‖

)
= δG‖,0 + 2π

ρ2
0

a2 [exp (−iγζ0)− 1]
J1(G‖ρ0)

G‖ρ0
, (124)

where J1(·) denotes the Bessel function of the first kind and order one and we have

used that ac = a2 for a square lattice. We note that when G‖ρ0 = 0 in Eq. (124) then

J1(G‖ρ0)/(G‖ρ0) = 1/2.

We are now prepared to calculate the Î-integral for the truncated cone; the proce-

dure that we will follow mimics how the result in Eq. (124) was obtained. By introducing

Eq. (121) into Eq. (113) and using Eq. (123) one obtains

Î
(
γ|G‖

)
= δG‖,0 +

2π
ac

ρb∫
0

dx‖ x‖J0(G‖x‖)
[
exp

{
−iγζ(x‖)

}
− 1
]

= δG‖,0 +
2π
a2 [exp (−iγζ0)− 1]

ρt∫
0

dx‖ x‖J0(G‖x‖)

+
2π
a2

ρb∫
ρt

dx‖ x‖J0(G‖x‖)
[
exp

(
−iγζ0

ρb − x‖
ρb − ρt

)
− 1
]

. (125)

The two first terms on the right-hand-side of Eq. (125) are given by the right-hand-side of

Eq. (124) if ρ0 is replaced in this expression by ρt . To calculate the last integral of Eq. (125),

we Taylor expand the exponential function that appears in the integrand and integrate the
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resulting expression term-by-term to obtain

Î
(
γ|G‖

)
= δG‖,0 + 2π

ρ2
t

a2 [exp (−iγζ0)− 1]
J1(G‖ρt )

G‖ρt

+
2π
a2

∞∑
n=1

(−iγζ0)n

n!

ρb∫
ρt

dx‖ x‖J0(G‖x‖)
(
ρb − x‖
ρb − ρt

)n

. (126)

If now the change of variable

u‖ =
ρb − x‖
ρb − ρt

(127)

is made in the last term in Eq. (126) one obtains after some rewriting

Î
(
γ|G‖

)
= δG‖,0 + 2π

ρ2
t

a2 [exp (−iγζ0)− 1]
J1(G‖ρt )

G‖ρt

+ 2π
ρb − ρt

a2

∞∑
n=1

(−iγζ0)n

n!

1∫
0

du‖
[
ρb − (ρb − ρt )u‖

]
J0
(
G‖
[
ρb − (ρb − ρt )u‖

])
un
‖ .

(128)

The integrals that appear in this equation have to be evaluated numerically, and in most

cases, only a few terms were needed in the sum to obtain convergent results. It is readily

checked that the expression in Eq. (128) in the limit ρt → ρb reduces to that of Eq. (124),

as it should.

The second form of the surface profile function for which we will perform calculations

is the cosine surface profile (see Fig. 40) defined as

S(x‖) =


ζ0 cos

(
πx‖
2ρ0

)
0 < x‖ < ρ0

0 x‖ > ρ0

. (129)

We now use this expression in Eq. (113) in order to obtain the corresponding expression
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for the integral Î. The result is

Î
(
γ|G‖

)
= δG‖,0 +

1
ac

ρ0∫
0

dx‖ x‖

π∫
−π

dφ
{

exp
[
−iγζ(x‖)

]
− 1
}

exp
(
−iG‖x‖ cosφ

)

= δG‖,0 +
2π
a2

ρ0∫
0

dx‖ x‖J0(G‖x‖)
{

exp
[
−iγζ(x‖)

]
− 1
}

= δG‖,0 +
2π
a2

∞∑
n=1

(iγ)n

n!

ρ0∫
0

dx‖ x‖J0(G‖x‖) ζn(x‖), (130)

where Eq. (123) and a Taylor series expansion of exp
[
−iγζ(x‖)

]
have been used in the

first and last transmission, respectively. The integrals present in Eq. (130) have to be

calculated numerically, and sufficiently many terms to reach were included to reach con-

vergence.

6.1.2 Efficiencies of the diffracted Bragg beams

From the knowledge of the reflection amplitudes the diffraction efficiencies of the scat-

tered beam can be calculated. They are measurable quantities and in this section we will

derive expressions for them.

To this end, we start by calculating the power flux that is incident and scattered by the

surface. The magnitude of the total time-averaged power flux incident on the surface is

defined as

Pinc = −Re
∫

d2x‖ Sc
inc · x̂3, (131)

where Sc
inc denotes the complex Poynting’s vector of the incident electromagnetic field.

This vector is defined as Sc = (c/4π)E × H∗ where the asterisk means complex conju-

gate (Jackson, 2007). The minus sign that appears on the right-hand side of Eq. (131)

compensates for the fact that the 3-component of the incident flux is negative. With the

forms of the incident electric and magnetic fields from Eqs. (95a) and (97a) and the use of
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the vector identity a× (b× c) = (a · c) b− (a · b) c, it is readily demonstrated that

Pinc =
c2A
8πω

α0(k‖)
[∣∣E0p

(
k‖
)∣∣2 +

∣∣E0s
(
k‖
)∣∣2] , (132)

where A denotes the area of the plane x3 = 0 illuminated by the incident light.

Similarly, the magnitude of the total time-averaged scattered flux follows from

Psc = Re
∫

d2x‖ Sc
sc · x̂3. (133)

From the expressions for the scattered fields, Eqs. (95b) and (97b), one finds after what is

a lengthy but straight forward calculation [see (Hetland et al., 2016) for details]

Psc =
c2

32π3ω

∫
q‖<ω/c

d2q‖ α0(q‖)
[∣∣Ap(q‖)

∣∣2 +
∣∣As(q‖)

∣∣2] . (134)

The reason that the q‖-integration that appears in this expression is limited to the domain

q‖ < ω/c is a direct consequence of the real value that is taken in Eq. (133). When q‖ >

ω/c, we are evanescent in vacuum and α0(q‖) is purely imaginary. When this happens,

the integrand in Eq. (134) is also purley imaginary and will therefore not contribute to Psc.

The periodicity of the surface profile function ζ(x‖) is taken into account via the relations

in Eq. (108). From these expressions one obtains the relation

∣∣Aν(q‖)
∣∣2 =

∑
G‖

[
(2π)2δ

(
q‖ − k‖ −G‖

)]2 ∣∣aν(k‖ + G‖)
∣∣2

=
∑
G‖

(2π)2δ (0) (2π)2δ
(
q‖ − k‖ −G‖

) ∣∣aν(k‖ + G‖)
∣∣2 , (135)

which when combined with Eq. (134), gives

Psc =
c2A
8πω

∑
G‖

′
α0(|k‖ + G‖|)

[∣∣ap(k‖ + G‖)
∣∣2 +

∣∣as(k‖ + G‖)
∣∣2] . (136)

Here we have used a prime on the summation symbol to indicate that the sum over G‖

only runs over values for which |k‖ + G‖| < ω/c. Equation (136) demonstrates that each
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diffracted beam contributes independently to the scattered flux.

When the incident field is β polarized [β = p, s], the incident power is

P (β)
inc =

c2A
8πω

α0(k‖)
∣∣E0β(k‖)

∣∣2 β = p, s (137)

and, after using Eq. (117), the corresponding scattered power can be expressed in the

form

P (β)
sc =

c2A
8πω

∑
G‖

′
α0(|k‖ + G‖|)

∑
α=p,s

∣∣Rαβ(k‖ + G‖|k‖)
∣∣2 ∣∣E0β(k‖)

∣∣2 . (138)

When the scattered power is normalized by the power of the incident light P (β)
inc one gets

P (β)
sc

P (β)
inc

=
∑
G‖

′∑
α=p,s

eαβ
(
k‖ + G‖|k‖

)
, (139)

where

eαβ
(
k‖ + G‖|k‖

)
=
α0(|k‖ + G‖|)

α0(k‖)
∣∣Rαβ(k‖ + G‖|k‖)

∣∣2 . (140)

The quantity eαβ
(
k‖ + G‖|k‖

)
is the diffraction efficiency of incident light of β polarization

into the G‖th Bragg beam of α polarization. This quantity only has a physical meaning for

those values of G‖ for which |k‖ + G‖| < ω/c; this situation is often referred to as open

diffraction channels.

The reflectivity of the periodic structure is obtained from the diffraction efficiency when

α = β and G‖ = 0;

Rα(k‖) = eαα(k‖|k‖) α = p, s. (141)
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6.1.3 Numerical solution of the RRE

A challenge faced when performing a direct numerical solution of the RRE for the

scattering of light from two-dimensional surfaces is the numerical complexity. In this

section we discuss the aspects worth mentioning.

In order to obtain a numerical solution of the RRE for a periodic surface profile function,

Eq. (118), we start by restricting the indices h1 and h2 that appear in the wave vector G′‖
(see Eq. (105)) to the intervals −H ≤ hi ≤ H, (i = 1, 2) , where H is a positive integer.

This implies that the number of terms in the summation in Eq. (118) is reduced from an

infinite number to a finite number. Therefore we only have a finite set of unknow scat-

tering amplitudes Rαβ

(
k‖ + G′‖ | k‖

)
to solve for. To numerically calculate these scattering

amplitudes, the RRE (118) is converted into a linear system of equations. To this end,

Rαβ

(
k‖ + G′‖ | k‖

)
is mapped into a vector by adapting a certain storage convention for

its elements that depends on both vector and polarization indices. It should be noticed

that the value of the index β appearing in the scattering amplitudes is given by the polar-

ization of the incident field. The scattering amplitudes for the two possible values of this

index are obtain by solving the RRE under the assumption of an incident field of either

p- or s-polarization, i.e. β = p or β = s. From Eq. (118), one observes that the polariza-

tion of the incident field only enters on the right-hand-side of the RRE, so that the matrix

on the left-hand-side remain unchanged by the change of the polarization of the incident

field. With the storage convention assumed, the elements M(K‖|K′‖) times the prefactor

appearing in the RRE that depend on the two polarization indices and two wave vector

indices, are mapped onto a matrix that forms the left-hand-side of the linear system. A

detail account of this procedure is given in Apendix A. The linear system obtained in this

way is then solved by standard routines from LAPACK (Anderson et al., 1999; Barker et al.,

2001). The solution vector is then mapped back onto Rαβ

(
k‖ + G′‖ | k‖

)
, which are the

quantities that we search, and from which physically observable like diffracted efficiencies

can be calculated.

In order to obtain accurate simulation results, the value of H used in the calculations

has to be sufficiently high so that the maximum wave number resolved in the simulations

is well into the evanescent regime. For instance, for light of wavelength λ = 1550 nm (in
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vacuum) incident on a square periodic structure characterized by a period of a = 450 nm

the value H = 5 was used. It was found that increasing H above this value did not change

the obtained results in any significant way.

A better way of evaluating the quality of the obtained results is to check that the simu-

lations respect energy conservation when applided to a scattering system where none of

the media involved have aborption. In order to be able to do that, one also needs to calcu-

late the transmittance. This requires to solve the RRE for transmission, in addition to the

corresponding equation for reflection given by (118). The transmission equation is simpler

than the one for diffraction because the inhomogeneous term is simply proportional to a

Kronecker symbol: there is no Î integral in it. The Î integral is the same as for the diffraction

problem, and the M matrix elements are close to those arising in the diffraction problem.

For the parameters used in this work, energy was conserved to within 0.03%.

6.2 The Fourier modal method

To model the reflectivity of the studied samples, we adapted the Fourier modal method (FMM)

also known as the rigorous coupled wave analysis (RCWA) (Moharam et al., 1995; Li,

1996; Liu and Fan, 2012). This (Fourier-space) simulation method assumes that the ge-

Figure 41: Schematic of the staircase approximation adopted in the FMM.

ometry is periodic and it is particularly well suited for the study of dielectric systems. It

is also assumed that the geometry is piece wise invariant in the vertical direction (the x3

direction); if this is not the case, a staircase approximation is adopted so that a curved

geometry is divided into a set of layers each of which is uniform in the vertical direc-

tion (Fig. 41). The electromagnetic fields within each layer are expanded in Bloch waves
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(Floquet functions) so that the desired periodicity of the fields is guaranteed. The full

electromagnetic field is obtained by satisfying the boundary conditions at each of the in-

terfaces between the layers. In this way the Maxwell’s equations are converted into an

infinitely large set of algebraic equations. To be able to solve it on the computer, this set

is truncated at a large but finite Fourier order.

Coupled wave analysis was first used to study grating diffraction problems for holo-

grams, mostly involving a sinusoidally varying dielectric function in a single layer. These

core principles were summarized by Moharam and Gaylord (1995) detailing the original

RCWA formulation, and subsequently reformulated into a numerically stable method. The

extension to crossed gratings and general two-dimensionally periodic structures occurred

later with improved computational power and numerical algorithms.

6.2.1 Derivation of the FMM

We will now present a general derivation of the FMM, for more details see (Liu and

Fan, 2012). The starting point of the derivation is Maxwell’s equations in time-harmonic

form, assuming an exp(−iωt) time dependence:

∇× H = −iωε0εE, (142a)

∇× E = −iωµ0H. (142b)

The next step is to take the spatial Fourier transform in the xy-plane. Because of the

periodicity and separability of the z-axis the fields must have the form

H (r,z) =
∑

G

HG (z) exp [i (k + G) · r] , (143)

where k is the in-plane component of the k-vector set by the excitation, and G is a recip-

rocal lattice vector. A similar equation holds for E.

After several assumptions, the Fourier transform of each field component can be ex-
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pressed as

i k̂yhz (z)− h′y (z) = −iωdx (z) (144a)

h′x (z)− i k̂xhz (z) = −iωdy (z) (144b)

i k̂xhy (z)− i k̂yhx (z) = −iωε̂zez (z) (144c)

i k̂yez (z)− e′y (z) = iωhx (z) (144d)

e′x (z)− i k̂xez (z) = iωhy (z) (144e)

i k̂xey (z)− i k̂yex (z) = iωhz (z) (144f)

where the primes denote differentiation with respect to z, and k̂x is a diagonal matrix with

entries (kx + G1x , kx + G2x , ...) and analogously for k̂y . The last two equations contain dx

and dy which are the Fourier coefficients of the displacement field D. We assume then

that there exists a matrix ε such that−dy (z)

dx (z)

 = ε

−ey (z)

ex (z)

 . (145)

Eliminating the z in Eqs.(144c),(144d) and (144e), they can be written in a matrix form

as (
ω2I − K

)hx (z)

hy (z)

 = −iω

−e′y (z)

e′x (z)

 (146)

and

K =

 k̂y ε̂
−1
z k̂y −k̂y ε̂

−1
z k̂x

−k̂x ε̂
−1
z k̂y k̂x ε̂

−1
z k̂x

 (147)

where I is the identity matrix of the proper dimensions. Similarly, for Eqs.(144f), (144a)

and (144b), we can write the matrix expression

(
ω2ε− K

)−ey (z)

ex (z)

 = −iω

−h′x (z)

h′y (z)

 (148)
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and

K =

k̂x k̂x k̂x k̂y

k̂y k̂x k̂y k̂y

 (149)

Therefore, the original Maxwell’s equation are reduced to (146) and (148).

The basic idea behind the FMM is to expand the fields within a layer into eigenmodes

which have a simple exp (iqz) dependence for some complex number q. We assume that

the form of the magnetic field eigenmode is

H (z) =
∑

G

[
φG,xx+φG,yy−

(kx + Gx )φG,x +
(
ky + Gy

)
φG,y

q

]
exp [i (k + G) · r+iqz] (150)

where x, y, and z are the Cartesian unit vectors and φG,x and φG,y are expansion coeffi-

cients that may be written as vectors in the form

φx =
[
φG1,x ,φG2,x , ...

]T (151)

and analogously for φy . We then have

h (z) =
[
φxx + φyy−q−1

(
k̂xφx + k̂yφy

)
z
]

exp (iqz) (152)

where h (z) is a column vector whose elements correspond to G vectors. Using these

expressions in Eqs.(146) and (148), they become

(
ω2I − K

)φx

φy

 = ωq

−ey

ex

 (153)

and

ωq

φx

φy

 =
(
ω2ε− K

)−ey

ex

 (154)

where we have dropped the z dependence on ex and ey to represent a fixed mode with
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exp (iqz) variation. Eliminating the electric field and using the fact that K K = 0,

(
ε
(
ω2 − K

)
− K

)
φ = φq2, (155a)

φ =

φx

φy

 . (155b)

where q2 is the diagonal matrix whose diagonal elements are the eigenvalues q2
n . The

columns of the square matrix φ are
[
φx ,n,φy ,n

]T , the Fourier coefficients of the eigenmodes.

The solution of the eigenvalue equation forms the bulk of the computing time and is

solved using LAPACK (Anderson et al., 1999; Barker et al., 2001). One can see directly

that the size of the eigenvalue problem scales as N, the number of G. Thus the storage

requirements for an entire simulation scale as O
(
MN2

)
where M is the number of layers.

After solving Eq. (155b), the transverse magnetic field in layer i may be represented ashx (z)

hy (z)

 =
∑

n

φx ,n

φy ,n

 (an exp(iqnz) + bn exp(iqn(di − z))) , (156)

where n indexes the eigenmodes, an is the coefficient of a forward propagationg wave at

z = zi , and bn is the coefficient of a backward propagating wave at z = zi + di . For q

there are two choices depending on the sign chosen, but for numerically stability Im q ≥ 0.

Defining now a diagonal matrix operator f (z) with entries

f (z)nn = exp (iqnz) . (157)

We also define the transverse field component vectors in the Fourier basis as

ht (z) =
[
hx (z), hy (z)

]T , (158a)

et (z) =
[
−ey (z), ex (z)

]T , (158b)
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as well as mode amplitude vectors for forward and backward waves

a = [a1, a2, ...]T , (159a)

b = [b1, b2, ...]T . (159b)

Using these definitions, we can now relate the mode amplitudes to the physical fields by

means of the expressionet (z)

ht (z)

 =

(ω2I − K
)
φq−1 −

(
ω2I − K

)
φq−1

φ φ

×
 f (z) a

f (d − z) b

 (160)

The next stages of solution involve forming the layer matrix. For further details see (Liu

and Fan, 2012).

6.2.2 Numerical implementation of the FMM

The FMM is a highly accurate method for calculating the reflectivity of a periodic struc-

ture. However, there are several reasons why it may lead to poor performance. First, FMM

computations involve solving eigenvalue systems, which are computationally expensive to

solve. Second, when many layers are used to discretize a given geometry, boundary con-

ditions must be enforced at the interfaces between layers, resulting in a large linear system

(van der Aa and Mattheij, 2007).

Also, being a Fourier-space method it suffers several drawbacks. The main one is its

slow convergence compared to other methods like the RRE method presented here. In the

presence of materials with a high dielectric contrast, the Gibbs phenomenon (Arfken and

Weber, 2005) to which it gives rise is particularly severe. The same Gibbs phenomenon

introduces ringing in the real space reconstruction of a function. The amplitude of the

Gibbs ringing is a problem independent of the number of Fourier components.

In this work, we use the publicly available FMM code called S4 (Stanford Stratified

Structure Solver ) (Liu and Fan, 2012), a frequency-domain computational electromag-

netics tool that can compute reflection, transmission, or absorption spectra of periodic
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structures composed of layers invariant in the direction normal to the periodicity. The

electromagnetic fields throughout the structure can also be obtained. The S4-package

also provides a set of FMM formulations. This is beneficial since different formulations

can have different convergence rates and therefore can produce better results in shorter

amounts of computation time. Here we provide a summary of the various formulations of

the FMM (Liu and Fan, 2012):

Closed: This corresponds to the earliest FMM formulations. This model works for

problems in which the dielectric constant profile in each layer can be specified in a non-

discretized way, by means of simple geometric shapes in which the dielectric constant is

assumed constant.

FFT: Instead of using closed form Fourier transforms, in this model the dielectric con-

stant is discretized onto a grid and the fast Fourier transform (FFT) is applied to approxi-

mate the Fourier series of epsilon.

Subpixel: This method computes an average of the dielectric function over a discretized

unit cell, and then the FFT is used.

Vector-field-based formulations: Both, the Jones and the Pol formulations use a vec-

tor field that is generated on the discretized unit cell and uniformly scale so its maximum

length is unity. These formulations achieve significantly faster convergence than the other

methods, being the Pol method the one that shows slightly faster and more stable conver-

gence behavior.

An important aspect of the S4 code is that among its implementations, a proper Fourier

factorization is used to achieve better convergence compare to other formulations (Liu

and Fan, 2012). Its use has being widely reported in the literature and validated against

published FMM results, and to results obtained by other simulation methods.
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Chapter 7 EMT in silicon photonics

In this Chapter, we present and discuss the numerical results obtained with the meth-

ods of calculation described in Chapt. 6, and contrast them with the experimental results

for the reflectivity of our samples, and with the results based on EMTs. For this, we have

considered the classical approaches of Maxwell Garnett (1904) and Bruggeman (1935) in

their 3D and 2D versions.

In the calculations we considered two circularly symmetric profile forms for the sup-

ported silicon pillars. The first one consists of truncated cones characterized by their top

and base radii ρt and ρb (see Fig. 40), and defined mathematically by Eq. (121). The model

is simple and fairly realistic, as attested by the electron microscope images presented in

Fig. 34. The values used in the calculations for the base and top radii were the experi-

mentally determined ones, namely, ρt = 85 nm and ρb = 105 nm. For the pillar heights ζ0

achieved experimentally the surface slopes can be quite large, and this poses a problem

for the method based on the Rayleigh hypothesis.

To circumvent this problem in the calculations based on the RRE, we considered pro-

files in the form of a cosine, defined mathematically in Eq. (129). The base radius of the

cosine profile was chosen in such a way that, for the same height, its volume is the same

as that of the truncated cone. With our experimental parameters, this resulted in a value of

ρ0 = 140 nm. It is important to point out that, although a cosine does not represent a good

fit to the experimental shape of the pillars, the adoption of this shape does not change the

volume fraction of the inclusions in the structured region and permits calculations based

on the RRE with larger height values.

Figure 42 presents FMM calculated results for the reflectivity R(ζ0) (solid lines) of the

truncated cones as a function of their height ζ0 obtained using the S4-software package

(Liu and Fan, 2012). The period of the square lattice was a = 450 nm, and we assumed

normally incident illumination with linearly polarized light of wavelength λ = 1550 nm. At

this wavelength the dielectric constant of silicon is ε = 12.25. In obtaining these results

N = 600 in-plane Fourier components were retained in the calculations (the number of

reciprocal lattice vectors inside a circular domain), and the height of the truncated cones,
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ζ0, was divided into L = 10 layers of equal thickness. It was found that increasing N and

L above these values did not result in any noticeable change in the simulation results; at

least, this was the case for the geometrical parameters that we considered. The radius of

the disc approximating the cone inside each layer was taken as the cone’s radius at the

center-height of the layer.

It is observed from Fig. 42, where we present the reflectivity as function of the height

of the truncated cones or cosine shaped silicon particles supported by a planar silicon

substrate, that the FMM calculated reflectivity values agree rather well with the reflectivity

values measured for Sample A and B (red filled circles). Moreover, as we have already

mentioned, the values of the geometrical parameters assumed in performing the FMM

calculations are in good agreement with the values of the corresponding geometrical pa-

rameters obtained by analyzing the SEM images of the same samples (Figs. 34 and 35).

It is recalled that Sample A is periodic, which is what is assumed in FMM calculations,

while Sample B is random but with the same (surface) density of nanopillars as Sample A.

The fact that the results of the FMM calculations also agree well for Sample B is considered

as an indication that it is the density of pillars that is the key parameter in determining
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Figure 42: The reflectivity R(ζ0) as function of the height ζ0 of the truncated cones or cosine shaped
silicon particles supported by a planar silicon substrate. The horizontal dotted lines indicate the
Fresnel reflectivity of the corresponding planar silicon surface. The thin solid black line represents
the reflectivity of a three-layer model, Eq. (94), that fits the RRE (and FMM) simulation results in
the low-height limit. The layer assumed in this model was characterized by the thickness ζ0 and
refractive index n2 = 1.30.
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the reflectivity of the sample and not the periodicity; at least, this is the case for for the

wavelength that was used in the measurements and calculations. It is speculated that this

agreement will no longer hold true when the wavelength is reduced so that more than one

diffraction channel is open.

For the FMM calculations reported in Fig. 42, we used the formulation termed Polar-

izationBasis (or “Pol”) in Ref. (Liu and Fan, 2012). This formulation is original to the code

S4, and it gave the fastest convergence, at least, for the geometrical parameters that we

assumed. Some of the other FMM formulations available in S4 (and other FMM software

packages) converged more slowly; this we attribute to the high value of the dielectric con-

stant of silicon (ε = 12.25) (Liu and Fan, 2012).

An inspection of the SEM images of the structures (Fig. 34) seems to reveal that the

cross section of the structures are elliptical instead of having the circular shape assumed

in performing the above calculations. An elliptical cross section will lead to a difference

in the reflectivity for an electric field oriented along the long or short axis of the ellipse

even at normal incidence. To investigate what effect this elongated shape will have on the

reflectivity, we took the two semi-axes of the base to be (1.00 ± 0.05)ρb, and similarly for

the top semi-axis (1.00 ± 0.05)ρt . With these values the reflectivity of unpolarized light at

normal incidence departed only a few percent from what was obtained for the reflectivity

of the corresponding truncated cones of a circular cross section defined by the radii ρb

and ρt (and the same height ζ0).

The FMM calculations presented in Fig. 42 are computationally intensive. It is therefore

of interest to explore alternative computational approaches and we will here use the RRE

approach introduced in Chapt. 6 In the first set of RRE calculations the truncated cones

assumed in the FMM calculations were considered. The results of such calculations are

presented in Fig. 42 as filled blue triangles. Here the error bars indicate ±|1 − Rα − Tα|

where Tα denotes the transmissivity for incident light of polarization α [see Soubret et al.,

(2001); Hetland et al., (2016)]. From Fig. 42 it is observed that the results of the FMM

and RRE calculations agree rather well. However, from the inset to Fig. 42 it is apparent

that the RRE results for the truncated cones of height ζ0 > 60 nm can not be trusted due

to the lack of energy conservation. It is speculated that the poorer convergence property
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seen for the RRE approach when applied to the truncated cone is due to the steep slopes

and the sharp corners around the top radius ρt (Banon and Simonsen, 2016). Therefore,

the next set of calculations were performed with the RRE approach for pillars of a cosine

form characterized by a base radius ρ0 = 140 nm. As we have mentioned, this radius was

chosen so that the volumes of the cosine particles and the truncate cones are the same for

structures of the same height. The reflectivity values calculated by the RRE method for the

cosine profile are presented in Fig. 42 as filled orange diamonds. For comparison we also

performed calculations of the reflectivity by the FMM for the same profile, and the results

were found to agree well with what was obtained by the RRE approach (dashed orange

line in Fig. 42). Such good agreement hints towards the correctness of the obtained

results. The deviation between the RRE and FMM calculated reflectivities for a cosine

form is less than two percent at height ζ0 = 100 nm.

The reflectivity values obtained by the FMM and RRE approaches are observed to be

slightly larger for the cosine form than those obtained for the truncated cones of the same

volume. The fact that the reflectivity values are so similar for the two particle forms we take

as an indication that the particle volume is one of the critical parameters for determining

the reflectivity of the surface.

It should be mentioned that the computational time required to produce the the FMM

and RRE simulation results presented in Fig. 42 are rather different. For instance to check

for convergence, we performed FMM calculations with N = 1000 which took several days

on a modern desktop computer when it was run in sequential mode. Reflectivity calcu-

lations for the same particle form using the RRE approach required only a few seconds

on the same computer. Even if this latter approach is not able to handle the largest pillar

heights, it is still useful due to its much better computational performance.

On the basis of the low-height RRE simulation results for the cosine form presented

in Fig. 42 the three-layer model of thickness ζ0 was fitted for the refractive index n2 of

the layer. In this way we obtained the effective refractive index n2 = 1.30 for the layer.

The corresponding dependence of the reflectivity with the height ζ0 of the layer that is

predicted by Eq. (94) is presented in Fig. 42 as a thin black line. These results demonstrate

that a three-layer model of a fixed value of n2 is inadequate to accurately describe the
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reflectivity variations predicted by the solution of the RRE and the FMM. The three-layer

model reflectivity drops off too fast and for larger heights of the pillars the discrepancy is

significant.

Figure 43 presents the results for R(ζ0) calculated from the Maxwell Garnett (blue lines)

and Bruggeman effective medium theories (orange lines). These results are summarized

in Table 1. Note that the since the truncated cone and the cosine bump both have the

same volume, the filling fractions are the same for both particle forms. Therefore, the

EMT reflectivities are identical for these two particle forms. The filled/open symbols in this

figure represent the 2D/3D versions of there EMTs. It is observed from Fig. 43 that all

the reflectivities obtained from the EMTs are significantly higher then those obtained from

FMM (or RRE) simulations or the values measured for Samples A and B. The 2D versions

of the considered EMTs produce results that are the closest to the simulation results, and

the 2D Bruggeman result is better than the results obtained on the basis of the 2D Maxwell

Garnett EMT (for the 3D EMTs it is the opposite). Even if the numerical values predicted

by the EMTs depart substantially from the measured (and simulated) values, it is still noted

that the slopes of the reflectivity curves R(ζ0) are more realistic for the EMTs than for the

three-layer model.
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Figure 43: The same as Fig. 42 but now the 2D and 3D Maxwell Garnett (MG) and Bruggeman (BR)
effective medium theories are used to calculate the reflectivity at normal incidence for pillars of a
given height. For comparison the FMM calculated and Fresnel reflectivities are given.
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Table 1: Summary of the calculated reflectivities by means of EMTs for the nanostructured silicon
samples.

Sample Experimental MG 2D MG 3D BR 2D BR 3D
Periodic 0.2227± 0.0032 0.2596 0.2626 0.2514 0.2758

Non-periodic 0.2350± 0.0049 0.2717 0.2721 0.2631 0.2825

On the basis of the results presented in Fig. 43 and Table 1 it is concluded that both

the (2D and 3D) Maxwell Garnett and Bruggeman EMTs fail to predict accurately the

reflectivity of the silicon system under study. The reason that the EMTs fail to predict the

reflectivity we speculate is due to the high value of the dielectric constant of silicon.

To test this idea, we have carried out the same kind of calculations but with glass,

rather than silicon. The results are presented in Fig. 44 In this case, the pillars and the

substrate are made from glass (ε = 2.25). We observe that the 2D Maxwell Garnett and

2D Bruggeman EMTs produce virtually identical reflectivity values; they only deviate from

the FMM calculated reflectivity by 0.5%, or less, over the entire interval 0 ≤ ζ0 ≤ 200 nm

of pillar heights.

From the results presented in this Chapter we see that our attempts to reproduce the

experimental measurements of the reflectivity using simple EMTs and a three-layer model
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Figure 44: The same as Fig. 43 but now for glass.
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have failed. The rigorous results based on the FMM for the reflectivity as a function of

pillar height indicate that it is not possible to model the problem as a three-media system,

and that the structured layer needs to be modeled as an inhomogeneous layer.
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Chapter 8 Conclusions

In this chapter, we present an overview of the work carried out in this thesis. We

discuss, in comparative terms the results obtained with the experimental and numerical

approaches, in addition to the main conclusions drawn from those results.

We have presented a literature review of works in which transformation optics concepts

are employed in silicon photonics. The central idea is to design structures in which the

spatially dependent refractive index is controlled through the density of silicon nano-pillars.

On such a basis, we have presented the design of an expander/compressor to couple light

from a monomode glass waveguide into a high index silicon waveguide.

We have also tested the accuracy of effective medium theories (EMTs) in silicon struc-

tures at telecommunication wavelengths. To fabricate these samples at the University of

Technology of Troyes, we have explored a technique that has not been used for this pur-

pose before. Several tests were carried out in order to gain expertise in the fabrication

method. With this technique, by selectively etching silicon wafers we fabricated structured

surfaces that consisted of sub wavelength silicon pillars with a truncated-cone shape, on

an otherwise flat silicon substrate.

Using effective medium concepts, we have tried to model the structured region of our

samples as a flat homogeneous layer over a flat silicon substrate. However, our attempts

to reproduce the experimental measurements of the reflectivity using simple EMTs and

this three-layer model have failed. The EMTs we have considered are the 2D (cylindrical

inclusions) and 3D (spherical inclusions) versions of the Maxwell Garnett theory, as well

as the Bruggeman approach.

Given the failure of the EMTs to model the physical situation, we have carried out

more rigorous numerical calculations based on the Fourier modal method (FMM) and the

reduced Rayleigh equation (RRE). The former is often employed to model periodic struc-

tures in nanophotonics, and the simulations with this method were performed using a pub-

licly available code. The latter approach is typically employed in rough surface scattering

problems, and to perform the simulations with this method, we used a specially developed

code.



93

The two numerical approaches produce results that are in good agreement with each

other and with the experimental results. The FMM is computationally intensive, while the

Rayleigh method is faster but cannot deal with surfaces that have large slopes. Although

with this approach we were unable to reach the pillar heights of our samples, the method

can be useful when the concept of a homogeneous layer is valid, as in that case the

effective refractive index of the layer does not depend on the height of the pillars.

The rigorous results based on the FMM for the reflectivity as a function of pillar height

indicate that it is not possible to model the problem as a three-media system, and that the

structured layer needs to be modeled as an inhomogeneous layer.

We believe that the failure of the EMTs and the three-layer media model to describe

adequately the physical situation is due to the large dielectric contrast between silicon and

air. This idea is supported by the good numerical agreement between experiment and

theory we have found for similar structures made in glass, rather than silicon.
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