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Resumen de la tesis que presenta Claudia Beatriz Mercedes Quinteros Cartaya como requisito parcial
para la obtencion del grado de Doctor en Ciencias de la Tierra con orientacidn en Sismologia.

Prondstico de grandes sismos mediante el analisis de semiperiodicidad de procesos puntuales
etiquetados

Resumen aprobado por:

Dr. Fidencio Alejandro Nava Pichardo
Director de tesis

Los grandes sismos, ocurridos en una regién sismogénica determinada, son el resultado de procesos
criticamente auto-organizados de acumulacidon y relajaciéon de esfuerzos; y por tanto, conforman
secuencias semiperiddicas con tiempos de recurrencia que varian ligeramente de la periodicidad exacta.
Estudios previos han mostrado que es posible identificar estas secuencias mediante el analisis de Fourier
de series de tiempo de ocurrencia de grandes sismos en una region determinada; considerando que no
necesariamente todos los sismos ocurridos en la region pertenecen a la misma secuencia, ya que puede
haber mas de un proceso de acumulacién y relajacién de esfuerzos. La identificacion de secuencias
puede ser usada para pronosticar la ocurrencia de sismos con intervalos de confianza bien
determinados. Este trabajo presenta mejoras en el método mencionado sobre identificacion de
secuencias y prondstico: a) Considera la influencia del tamafio de los sismos en el andlisis espectral para
la identificacién de secuencias semiperiddicas, lo cual significa que los tiempos de ocurrencia de sismos
son tratados como procesos puntuales etiquetados. b) Utiliza estimacion de la probabilidad de no
aleatoriedad mejorada. c) Mejora la estimacion de los limites superiores de incertidumbre utilizados en
el prondstico. d) Aplica analisis Bayesiano para la evaluacion de resultados de postndsticos (prondsticos a
posteriori). e) EvalUa la robustez de los prondsticos mediante simulaciones tipo Monte Carlo de ruido en
las magnitudes de los datos. Este método mejorado fue probado exitosamente con datos sintéticos y
luego aplicado a datos reales de regiones especificas: la costa suroeste de México y el noreste del Arco
de Japon. Secuencias semiperiddicas con alta probabilidad de no aleatoriedad fueron identificadas: una
secuencia de nueve eventos con M>7.4 en México y una secuencia de cuatro eventos con M>8.0 en
Japon. Los postndsticos fueron acertados para los uUltimos eventos de cada una de las secuencias
identificadas y la probabilidad Bayesiana de los postnésticos fue comparada con la probabilidad
actualizada del pronéstico. Las probabilidades de los prondsticos, para un intervalo de incertidumbre con
un 95% de confianza, son mayores que las probabilidades Poissonianas , y las ganancias de probabilidad
y de informacidn son significativas.

Palabras clave: Prondstico de sismos, Semiperiodicidad, Procesos puntuales etiquetados.



Abstract of the thesis presented by Claudia Beatriz Mercedes Quinteros Cartaya as a partial
requirement to obtain the degree of Doctor of Science in Earth Sciences with orientation in Seismology.

Forecast of large earthquakes through semi-periodicity analysis of labeled point processes

Abstract approved by:

Dr. Fidencio Alejandro Nava Pichardo
Thesis Advisor

Large earthquakes have semi-periodic behavior as a result of critically self-organized processes of stress
accumulation and release in seismogenic regions. Hence, large earthquakes in a given region constitute
semi-periodic sequences with recurrence times varying slightly from periodicity. In previous studies, it
has been shown that it is possible to identify these sequences through Fourier analysis of the occurrence
time series of large earthquakes from a given region, by realizing that not all earthquakes in the region
need belong to the same sequence, since there can be more than one process of stress accumulation
and release in the region. Sequence identification can be used to forecast earthquake occurrence with
well determined confidence bounds.This work presents improvements on the above mentioned
sequence identification and forecasting method: a) Considers the influence of earthquake size on the
spectral analysis, and its importance in semi-periodic sequences identification, which means that
earthquake occurrence times are treated as a labeled point process. b) Uses an improved estimation of
non-randomness probability. c) Improves the estimation upper limit uncertainties to use in forecasts. d)
Uses Bayesian analysis to evaluate aftcast (forecast done a posteriori) performance. e) Estimates the
forecast robustness through Monte Carlo simulation of noise in magnitude data. This improved method
was successfully tested on synthetic data and subsequently applied to real data from some specific
regions: the southwestern coast of Mexico and the northeastern Japan Arc. Semi-periodic sequences
with high non-randomness probability were identified: 1 sequence of nine events with M>7.4 in Mexico
and 1 sequence of four events with M 2>8.0 in Japan. Aftcasts were successfully done for each of the last
events in the identified sequences, and the aftcast probabilities were upgraded through Bayesian
analysis and compared with the updated forecast probability for the sequence including the last event.
The forecast probabilities for intervals two standard deviations wide are larger than the corresponding
Poissonian occurrence probabilities, and the probability gains are significant.

Keywords: Earthquake forecasting, Semi-periodicity, Labeled point processes.
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Sinopsis

Los grandes sismos, ocurridos en una regién sismogénica determinada, son el resultado de procesos
criticamente auto-organizados de acumulacidon y relajacion de esfuerzos y, por tanto, conforman

secuencias semiperiddicas con tiempos de recurrencia que varian ligeramente de la periodicidad exacta.

La identificacion de secuencias semiperiddicas no aleatorias en series de tiempo de ocurrencia de
grandes sismos, en una regién especifica, permite pronosticar el proximo evento correspondiente a cada

secuencia semiperiddica.

Nava et al.,, 2014 y Quinteros et al., 2014 propusieron un método para identificar secuencias
semiperiédicas mediante el analisis de Fourier de series de tiempo de ocurrencia de grandes sismos. A
diferencia de otros estudios de recurrencia, ellos propusieron que no todos los sismos, ocurridos en una
region dada, necesitan pertenecer a la misma secuencia, ya que puede haber mas de un proceso de
acumulacién y relajacién de esfuerzo en la regidon. También utilizaron analisis de Fourier analitico en vez

de la transformada digital comunmente utilizada.

Aunque dicho método dio resultados muy satisfactorios, se aprecié la posibilidad de mejorarlo para
aumentar la confiabilidad de los resultados. Este trabajo considera el tamano de los sismos para mejorar
el analisis espectral y para identificar eventos pertenecientes a secuencias semiperiédicas, lo cual
significa que los tiempos de ocurrencia de sismos son tratados como procesos puntuales etiquetados.
También mejora la estimacion del valor tope apropiado de la incertidumbre del prondstico, y aplica
analisis Bayesiano para evaluar la bondad del prondstico. Este método mejorado es aplicado a datos

sintéticos y a datos reales de la costa suroeste de México y el noreste del Arco de Japdn.

La informacion de los sismos utilizada en los analisis es tomada del Catalogo instrumental ISC-GEM,
complementado con el Catdlogo ISC disponible en linea y el Catdlogo histérico GEM. Para ambas
regiones, Japén y México, las series de tiempo de ocurrencia de sismos abarcan una ventana de tiempo

en la cual se considera que los datos estan completos.

Los sismos principales junto con otros sismos proximos a ellos en tiempo y espacio, son considerados

Episodios de Liberacién de Momento (MRE, por sus siglas en inglés) que tienen magnitud de momento

equivalente, Meq, correspondiente a la suma de los momentos de todos estos sismos. Con el tiempo de

ocurrencia de cada evento principal y su correspondiente Meq, es construido un catalogo de MRE que

posteriormente es utilizado para el analisis de las series de tiempo.
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En general, el método consiste en identificar semiperiodicidad en series de tiempo de ocurrencia de
sismos mediante la transformada analitica de Fourier. Considerando ahora procesos puntuales
etiquetados, donde las etiquetas corresponden al tamafio de cada sismo, es asignado un peso a cada
evento, mediante una funcion de ponderacion de magnitud (MWF, por sus siglas en inglés), para

ponderar su contribucion al analisis espectral.

La MWF propuesta estd basada en la cantidad relativa de sismos de acuerdo a su magnitud,
utilizando la funciéon de probabilidad cumulativa de la relacién Gutenberg-Richter doblemente truncada.
El valor de los pesos toma valores desde 0.55, asignado a la magnitud minima incluida en el analisis,

hasta 1, asignado a la magnitud maxima existente en los datos.

Como los sismos mas grandes son aquellos con mayor probabilidad de presentar comportamiento
semiperiédico, para cada andlisis, la minima magnitud a incluir sera la mas alta posible que permita que
haya suficientes sismos para encontrar por lo menos una secuencia de al menos cuatro eventos, pero
gue no sean tantos que resulten en falsas secuencias, las cuales son reconocibles por su alta

probabilidad de aleatoriedad.

Una vez obtenido el espectro de frecuencias de las series de tiempo, es identificada una componente
de periodicidad y, con esta frecuencia y la fase correspondiente, se construye un "peine" estrictamente
periddico. El andlisis se repite cuatro veces (cuatro pases), excluyendo en cada pase los eventos mas

alejados del peine. En cada pase la tolerancia de la distancia evento-peine es cada vez mas estricta.

Para el Ultimo pase, es posible que haya mas de un candidato cercano a alguno de los dientes del
peine, pero, a diferencia del método anterior, tomar en cuenta las magnitudes de los eventos puede
hacer que el evento mas cercano al diente del peine no sea necesariamente el mejor candidato a
pertenecer a la secuencia; por lo que en el cuarto pase, cada posible combinacidon de los eventos

candidatos a la secuencia es evaluada mediante el error de ajuste ponderado.

Considerando que un proceso genera sismos dentro de un rango de magnitud caracteristico, el error
de ajuste es ponderado de acuerdo a la desviacién estandar normalizada de las magnitudes de los
eventos en la combinacion. La combinacion con menor error de ajuste ponderado es la secuencia

semiperiddica seleccionada finalmente.

Ya que los errores en tiempo entre los eventos de la secuencia y el peine son una pequefia muestra
de una poblacién asociada al proceso semiperiddico, la desviacién estandar medida podria no ser la mas
representativa del proceso. Un nuevo valor de desviacion estdndar es estimado con un 90 % de

confianza de no estar subestimando su valor representativo de la poblacién, considerando que estos
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errores provienen de una poblacién normal, con =0, cuyas varianzas tienen distribucion y°. Esta

desviacion estandar poblacional estimada es utilizada para la evaluacion de probabilidad del pronéstico.

Adicionalmente, es evaluada la significancia del prondstico, a partir de las ganancias de probabilidad

y de informacidn.

Para la region de Japdn, una secuencia semiperiddica de 4 eventos fue identificada, con probabilidad
de no aleatoriedad P =0.992. Al comparar estos resultados con los obtenidos mediante el analisis sin

etiquetar (considerando procesos puntuales simples), las secuencias identificadas difieren en el ultimo
evento, siendo la secuencia identificada en el andlisis etiquetado la que presenta mejor ajuste y

probabilidad.

Para la regién de México, una secuencia semiperidodica de 9 eventos fue identificada, con
probabilidad de no aleatoriedad P =0.971. Tanto para México como para Japon, se realiz6 pruebas de

postndstico (prondstico a posteriori), que lograron identificar exitosamente los eventos previos al ultimo

de cada secuencia, y postnosticar éste acertadamente.

Posterior a los postndsticos obtenidos, se revisé la probabilidad de los prondsticos, mediante el
analisis Bayesiano, calculando la probabilidad de que exista el proceso semiperiédico dado que un sismo
pronosticado ocurrié en un tiempo dado. Esto permitié actualizar y mejorar la estimacién la probabilidad

de no aleatoriedad de las secuencias.

Ya que las magnitudes referenciadas en los catdlogos estan usualmente redondeadas a un decimal,
ademas de que las magnitudes muchas veces difieren entre catdlogos, es posible tener errores de +0.1
en las magnitudes utilizadas. Por tanto, para evaluar los efectos de estos posibles errores sobre los
resultados obtenidos, 100 mil realizaciones introduciendo ruido aleatorio en las magnitudes fueron
hechas para ambas regiones. El resultado de estas pruebas de error muestran la robustez de los

prondsticos realizados, ya que la mayoria corresponden con los prondsticos obtenidos.

El método de analisis de semiperiodicidad, tomando en cuenta el tamafio de los sismos,
eficientemente ha identificado, en las regiones de estudio, secuencias semiperiddicas en series
etiquetadas de tiempo de ocurrencia de sismos, de manera igual o mejor que la version inicial del
método que no considera la magnitud. La ponderacidn segun las magnitudes y el criterio para evaluar el
error de ajuste ponderado para todas las posibles combinaciones, resulté muy util en la seleccién de la
mejor posible secuencia. Ademas la desviacidon estandar estimada, en lugar de la medida, permite tener

un intervalo de tiempo de prondstico mucho mas realista.



Chapter 1. Introduction

1.1 Problem definition

Many instances of considerable human and material losses have been caused by great earthquakes.
In order to contribute to risk mitigation, numerous studies have attempted to find some method for

earthquake forecasting; however, results so far have not been completely satisfactory.

Based on the Elastic Rebound theory (Reid H., 1910), it is assumed that earthquakes occur due to
sudden stress release when the accumulated shear stress overcomes the resistance of the rocks and,

once this stress has been released, a process of stress accumulation begins anew.

The relative motion of the tectonic plates is the main source of stress generation in the crust of the
Earth (e. g. Morgan, 1968; Cox, 1973; Richardson et. al., 1979). This motion is not the same for all
tectonic boundaries, but in every case the motion rate may be considered constant over hundreds, and

even thousands, of years, while earthquakes due to the associated stress accumulation repeatedly occur.

But, beyond this simplistic model of stress accumulation and release, earthquakes can be seen to be
the result of a critically self-organized process (e. g. Bak et al., 1988; Bak et al., 1994; Ito and Matsuzaki,
1990; Bak, 1996). Such a process evolves, presenting small seismic events, until it reaches a critical state,
which leads to collapses corresponding to great earthquakes accompanied by secondary seismic activity.
These collapses occur repeatedly, but not in a perfectly periodical way nor having always the same size,
since it is a non-linear process and there are physical and geological complexities of the system that

cause variations in its behavior.

Many probabilistic studies of earthquake forecasting are based on time-dependent models, which
consider that the time of occurrence of the future next earthquake depends on the occurrence times of
previous earthquakes, hence, the probability of occurrence of an earthquake increases with time,
contrary to time-independent models (for example, those that assume Poissonian probability) that use

the average rate of recurrence only, regardless of the time elapsed from last earthquake.
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Time-dependent models are consistent with the seismic gap hypothesis, which assumes that the
segments of plate boundaries with the longest times lapsed from the last rupture are the ones most

likely to rupture in a near future (Scholtz, 1990).

One of the main motivations for the development of time-dependents models has been the
observation of recurrence times of characteristic earthquakes in fault segments. Nishenko and Buland
(1987) explain characteristic earthquakes as those that break repeatedly the selfsame fault segment and
whose source has dimensions that define this segment. Other definitions of characteristic earthquakes
assume that, in some region, earthquakes with characteristic size or magnitude occur more frequently
than would be expected according to the Gutenberg-Richter relation, although not necessarily on the

same fault segment.

Quinteros (2012), Nava et al. (2014), and Quinteros et al. (2014) assumed that the occurrence of
great earthquakes should constitute semi-periodic sequences associated to seismogenic processes; that
is, recurrence times vary slightly form perfect periodicity. However, unlike other studies, they also
considered the possibility of there being, in a given region, several seismogenic processes that lead to
more than one semi-periodic sequence of earthquakes and, in addiction, the possibility of there being
earthquakes that do not correspond to an identifiable semi-periodic process. Another feature of the
above-mentioned works is the identification of semi-periodic sequences of great earthquakes through

Fourier analysis using the analytic, instead of the digital, transform.

A sequence of six earthquakes of magnitude M > 6.0, occurred between 1857 and 1966, having an
apparent periodicity of ~22 years and considered by some to be characteristic earthquakes, was
observed at the Parkfield segment of the San Andres fault, in California, USA. This lead to the forecast of
an earthquake to occur in 1993, with 0.95 probability (Bakun and Lindh, 1985); however, the earthquake
occurred eleven years late. Application of the semi-periodicity method by Nava et al. (2014) to the
Parkfield case, considering the same database used by Bakun and Lindh (1985), identified a sequence
composed of four seismic events; two events, that in other studies had been included as part of the
sequence, were correctly excluded by this analysis. From the identified sequence, the next earthquake
was aftcast (forecast a posteriori) for 2005.63 + 9.10 (+ 2 standard deviations) with 0.85 probability. This
aftcast was satisfactorily very close to the actual time of the earthquake, which occurred on September

28, 2004.
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The method was also applied to regions of Japan and Venezuela (Quinteros et al., 2014). As in the
Parkfield case, the method proved capable of identifying semi-periodic sequences in different
seismogenic regions. For Japan, two sequences of M > 8.0 earthquakes were identified: the first with
four earthquakes and the second with three. For Venezuela, semi-periodic sequences, comprising up to
six earthquakes, were identified for M > 5.6 earthquakes in two regions, and for M > 6.0 earthquakes in
other two regions. The estimated forecast probabilities were high compared to those from Poissonian

probability; so that this method gives information gains over the Poissonian estimations.

In other aftcasting study for northeastern Venezuela done by Quinteros and Nava (2014), a sequence
composed of six events with magnitudes M > 5.7 was identified, and the next earthquake was aftcast for
2014.67 + 3.05 (+ 2 standard deviations) with 0.8 probability. The earthquake occurred on October 11,

2013, which corresponds to At = 0.89 yr before the aftcast central time.

Nava et al. (2016) applied the Bayes’ formalism to use information from the occurrence or non-
occurrence of a forecast earthquake to validate the use of the non-randomness probability as the
forecast probability, to quantify the forecast accuracy, to support or negate the semi-periodic sequence
hypothesis, and to identify the occurrence of forecast earthquakes. This formalism was applied to the

Parkfield (Nava et al., 2014) and northeast Venezuela cases (Quinteros and Nava, 2014).

Application of the semi-periodicity forecasting method described above yielded quite satisfactory
results, but we considered that some aspects of the method could be improved, and this thesis is

devoted to exploring possible improvements.

In the present work we explore the influence of earthquake size on identification of the semi-
periodic sequences. To this effect, the earthquake occurrence series is no longer treated as a simple
point process in time, but as a labeled point process. The effects of the earthquake magnitudes on the
spectral identification of sequences and on the selection of events belonging to them are considered.
The standard deviation estimation for forecasts is revised. Bayes’ Theorem is applied to judge the
performance of the forecast method when applied to data series amenable to aftcasting. Finally, the
effect of possible rounding errors in the catalog magnitudes is evaluated using a Monte Carlo approach

in order to analyze the reliability of the results.



1.2 Hypotheses

Hypotheses 1 to 3, stated below, were used in the MSc thesis (Quinteros, 2012), and are also used in
this study. In this thesis, these three hypotheses are complemented by hypotheses 4 and 5, which lead

to improvements in the semi-periodicity forecasting method:

1. The processes of stress accumulation and release in some seismogenic region, which result in large
earthquakes, are critically self-organized processes so that large earthquakes have semi-periodic
behavior.

2. There can be more than one process of stress accumulation and release in a given region; therefore,
not all large earthquakes that occur in a region need be associated with the same semi-periodic
process.

3. Semi-periodic sequences of earthquakes, within a time series representing the occurrence times of
the large earthquakes in a given region, can be identified through Fourier analysis.

4. The larger the size of the earthquake, the greater its influence on the semi-periodic process; thus,
earthquake occurrence times will not be considered to constitute simple point processes, but will
rather be treated as labeled point processes, where labels correspond to the event magnitudes.

5. The earthquakes generated by each particular semi-periodic process may have different magnitudes,

but within some characteristic magnitude range.

1.3 Objective

The objective is to identify non-random semi-periodic sequences within occurrence time series of
large earthquakes occurring in some specific region, in order to forecast the next earthquake
corresponding to each semi-periodic sequence. Semi-periodicities in the time series are identified using
the analytic Fourier spectrum. Possible influences of the size of each earthquake in the analysis are

explored and evaluated. This method will be applied to specific regions of Mexico and Japan.



Chapter 2. Theory

2.1 Time series:

The occurrence times of earthquakes in a seismogenic region, can be considered as a point process
that constitutes a time series t, :{tj;j:1:N}; where t, is the occurrence time of the j'th event and N

is the number of earthquakes that occurred within the observation time.

An earthquake sequence corresponds to a periodic process if the occurrence times are expressible as
t =t +jtT,

where t, issome initial time, and the period is T, =t -t =T.

According to Nava et al. (2014) and Quinteros et al. (2014), an earthquake sequence is semi-periodic

if the occurrence times satisfy

t =t +jT+6,, (1)

where 0/, is a realization of a random variable such that ‘9}_‘ <« 7T (we assume it smaller than ~7/6).

Since we consider that not all earthquakes in the time series necessarily belong to the same semi-
periodic sequence, there may be more than one semi-periodic sequence of earthquakes, as well as
earthquakes extraneous to these sequences (Figure 1), the number of earthquakes contained in the time
series is thus

N=K,+K,+-+K +R,
assuming that there are n semi-periodic sequences and i=1:n, then K, is the number of earthquakes

that belong to the i'th semi-periodic sequence and R is the number of earthquakes extraneous to these

sequences.



Unlabeled Time Series
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Figure 1. Example of unlabeled time series; that is, earthquakes occurrence times are considered as simple point
processes. Time series represents synthetic data: a sequence of six earthquakes (solid violet lines),
another sequence of four earthquakes (dashed green lines), and two extraneous earthquakes (dashed
orange lines). Generally, in a real case, the sequences are not easy to recognize. The yellow triangles

indicate t and tf.

2.2 Analytical Fourier transform:

Since a time series such as the one describing the occurrence in time of earthquakes is not amenable
to the digital Fourier transform, it was decide to use the analytical Fourier transform to look for semi-
periodicities in the point processes; to do so, Nava et al. (2014) represented the time series by the

function

f()=2o(e-t)

where 5(t) is the Dirac delta and f(t) is recognized as a section of the function corresponding to the

infinite time series

so that

t—t
f(t)=fm(t)H( _ ) :

where H(t—tc/T) is the box function centered at time t_ :(to—tf)/Z , with length corresponding to the

observation time T:tf—t0 o and tf are, respectively, the initial and final time of the time window

containing the time series.

The Fourier spectral analysis method used to identify semi-periodic sequences of earthquakes,

described by Nava et al. (2014) and Quinteros et al. (2014), is now adapted to the case of earthquake
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occurrence time series considered as labeled point processes, where the labels indicate the size of each

earthquake, through its magnitude.

These labels are used to assign to each datum a weight, W(M), that quantifies its importance in the

Fourier spectral analysis, by means of a Magnitude Weighting Function (MWF), which will be explained
in detail below. Thus, each earthquake occurrence time is represented now by a pulse with area
proportional to its weight (Figure 2); so that, the function corresponding to the time series is now
s t—t
(o

f(t)zzW(Mf)5(t_tf)H T =$;‘W(Mj)5(t—tl_), (2)

j=—oo

where W(M}_) is the weight assigned to the earthquake occurred at time t, with magnitude Mj.

a) Labeled Time Series
1 i A ¢ t +
E 0.5 ] : 1 : : :
1 : 1 : 1
0 1 1 1 1 1
0 20 40 60 80 10 120
t(yr)
b) Time series with indistinguishable sequences
1 . T T N T T R T N
- . t 1 e 1
= ¢ 1 1 ¢ [ L 3 1 1 1
e 0.5 1 1 11 ? 1 1 1 1 1 ? 1
1 1 11 11 1 1 1 1 1
0 1 1 1 1 1 11 1 1 1 1 1 1
0 20 40 60 80 100 120
t(yr)
c) Fourier Spectrum
S4f

IF(s)
o
<

0.02 0.04 0.06 0.08 0.1

s(yr)

Figure 2. Example of labeled time series, using the same synthetic data of Figure 1. a) Time series as a labeled point
process, with symbol lengths (arrows) proportional to weights. Conventions are as in Figure 1 b) Time
series as a labeled point processes where sequences are not recognizable. c) Fourier spectrum of the
labeled time series; the solid vertical blue lines are the guideline frequencies S and S o (Nava et al.,

2014).



The FT of (2) is thus

F(S): jf i W(Mj)a(t_tj)l_[{%j e—iZﬂts dt:iW(Mj)e—izmjs , (3)

=L

Jj=—oo

where s is frequency.

2.3 Magnitude Weighting Function (MWF):

Physical measures of the earthquakes size are given by the seismic moment or the seismic energy,
but these parameters cannot be used for weighting because only the largest earthquakes would be
significant. The MWF cannot be expressed as a simple function of magnitude, because the magnitude is

not a physical measure, but is related linearly to the logarithm of the seismic moment.

It is well known that the magnitude distribution of earthquakes follows the Gutenberg-Richter (GR)

relation, IoglON(M):a—b(M—Mmm), where the b-value is a constant that relates the relative numbers
of small to large earthquakes, N(M) denotes the cumulative number of earthquakes of magnitude

greater than or equal to a given magnitude M and M__ is the minimum magnitude for which the GR

relation behaves linearly. The GR relation implies that the probability density function of earthquake

magnitude is an exponential one

where ﬁ:bln(IO) and b-value is estimated using Utsu’s (1965) formula:

Iogme

AR “)
l\_ﬂ—(M _ —j
min 2

where AM=0.10 is the usual magnitude uncertainty.

We propose a MWF based on the relative abundance of earthquakes according to their magnitude,
using the cumulative probability function in terms of the doubly truncated Gutenberg-Richter (GR)
relation:

-BM; s

F(m)=Pr(m<m)==

e P oM
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where M, and M, are the minimum and maximum magnitudes in the data set, respectively. If we assign

a minimum weight, w, ,to M, and a maximum weight, w,,to M, the MWF can be defined as

W(M)=W1+(W2—W1)F(M) . (5)

Since w, and w, can be assigned arbitrarily, we use w,=1 to indicate full importance, and

w, =0.55 (a value arrived at from the results of many tests) for the least important events (Figure 3).

This value range is enough to obtain a weighting scale that distinguishes between data with different
magnitudes while avoiding weights so small that would make the role of the smaller earthquakes
negligible. The shape of the MWF (Figure 3) depends mainly on the magnitude range, and depends only

weakly on the b-values in the range 0.7 and 1.2.

1+ e 1+ 1
0.95F ",’:,4’ s 0.95F _..~,:‘:” .
09 e e 1 09} e T -

- 3 N s
- 4 - R
= 085r Gl 1 — 0.85F St |
3 A ---b=07 g P ---p=07
.

2 o8t b=08 | 1 = osf e b=0.8 |

= B = :

D _:/l e --b=1 [$) ”,/, --b=1

D 0751 AL 1 @ 075 4

s cob=t12] 207 b=12

A
e 7
0.7 Il 4 0.7+ e 744 4
/,' \:'/,'
7/ e
0.65F /s 1 065F 4 1
af! A
DA ;/"/
061 g 1 06 7 1
Fd &
7 4
0557 1 s s s s s 0552 i i i i i i i
8 8.2 8.4 8.6 8.8 9 75 7.6 7.7 7.8 7.9 8 8.1 8.2
Magnitude Magnitude

Figure 3. Examples of the MWF, W(M) , for various b-values and different magnitude ranges.

After assigning MWF weights according to (5), the Fourier spectrum is obtained from (3), using the
weighted time series (2). An example of differences between the amplitude spectra of the unlabeled
time series and the labeled one, is shown in Figure 4; these spectra differ in the amplitudes value and, in
general, the amplitude peaks are associated to a frequency that lightly differs from one spectrum to
another, but, sometimes, this difference can be enough to identify semi-periodic sequences that are not

the same in both case.
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Fourier Spectrum
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Figure 4. Comparison of labeled and unlabeled time series Fourier spectrum. The solid vertical blue lines are the

guideline frequencies s  and S o (Nava et al., 2014). b) Labeled time series, with symbol lengths (red

arrows) proportional to weights; the yellow triangles indicate ¢, and t,.
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Chapter 3. Data

3.1 Seismic catalog:

The earthquake occurrence data come from the ISC-GEM Global Instrumental Earthquakes
Catalogue, the ISC on line Catalogue, and the GEM Historical Earthquakes Catalogue. Only the time

window within which the information is complete is analyzed. Moment magnitudes are used throughout.

3.2 Minimum magnitude selection:

As mentioned above, large magnitude earthquakes are the ones most likely to show semi-periodic

behavior; therefore, for each analysis we select as M, the largest magnitude in the appropriate space

and time windows. The minimum magnitude, M, is chosen so that there is a sufficient number of
earthquakes to do the analysis, i. e. enough events for at least one possible sequence of at least four

events, but not so many events that may result in false sequences, which are recognizable as such

because their probability of random occurrence is high.

3.3 Moment Release Episodes (MRE) and the equivalent magnitude:

A large earthquake, together with its aftershocks and other associated events in its immediate

vicinity, are considered a Moment Release Episode (MRE), having an equivalent moment magnitude,
Meq corresponding to the sum of the moments of the main event and its associated events (Quinteros et

al., 2014).

In most cases, the equivalent magnitude is (after rounding) equal to the magnitude of the main
event of the MRE, and the data set does not change. But when an event is close to the minimum
magnitude of acceptance, and there are other large events in the MRE, the equivalent magnitude could
be large enough for the event to be included in the data set. Hence our semi-periodicity analysis is done

considering MRE events instead of individual earthquakes.
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The equivalent magnitudes are calculated based on the Hanks and Kanamori (1979) relation

log, M, =16.095+1.5M,, ,

where M is the seismic moment measured in dyne-cm.

Thus, for each MRE the equivalent magnitude is

2
I 1.5M,
Meq—glongl‘lo , (6)
where | is the set of indices of the events constituting it. MREs are built by associating to each
earthquake that does not already belong to an MRE, those events or MREs having magnitudes smaller

than that of the earthquake in question, and lying within given spatial and temporal windows with sizes

that depend on the earthquake’s magnitude.

The spatial closeness criterion correspond to ellipses that depend on the orientation of each earthquake,
with the major axis along the strike of the local fault system, and the length of the axes are given by the

Wells and Coppersmith (1994) empirical relations between magnitude and fault rupture length.

Even though aftershock activity can go on for years (time span varies with region and magnitude), the
largest part of the energy or moment is liberated within the first days or weeks of the occurrence of the

main event. Thus, the temporal closeness criterion used is 60 days.

The time of each MRE is that of the largest event in the set.
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Chapter 4. Data processing

4.1 Spectral analysis

In the amplitude spectrum obtained from the analytical Fourier transform (3), large eligible peaks
(Nava et al., 2014) correspond to frequencies that are possibly associated with semi-periodic sequences
in the time series (Figure 5). These peaks are explored, from highest to lowest frequencies, in order to
find frequencies that correspond to valid semi-periodic sequences. The reason for starting from the
highest frequencies, is twofold: low-frequency peaks could be submultiples of the real frequency of a
sequence; in time series including many seismic events, it is highly likely to find spectral peaks associated

to false long-period sequences.

The frequency s_, corresponding to the chosen peak, is used to build a strictly periodic sequence

that we call a “comb”, which is constituted by K teeth with period Tczl/sc and begins at time

t,. =(_¢c/2ﬂsc)+t0 , where ¢_= arctan{lm F(sc )/Re F(sc)} is the spectral phase corresponding to s_.

For a sequence of K earthquakes to be considered semi-periodic, the absolute difference between

the time of each comb tooth, tf;izl:K and that of, at least, one of the N earthquakes contained in the

series, tf,'j=1:N, should be less than a small fraction of the period

At=

c e
te—tf

<rt_,
c

where r S1/4 indicates the fraction of the period to consider, as discussed below.

Since the frequency corresponding to the maximum value of a peak is influenced both by the events
in the corresponding sequence, and by all other events in the series, the frequency determination is

refined by iteratively eliminating those events that cannot possibly belong to the sequence.

Thus, the spectral analysis (Figure 5) is carried out three times (three passes) and, in each pass, the

tolerance of the difference between events and comb, At<rz7_, is progressively stricter; we used for

each pass r={1/4,1/4.5,1/5}, respectively. If, during any pass the tolerance criterion is not satisfied,

then the frequency being explored is deemed unviable.
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When there is more than one event within the tolerance interval [tf—(rrc),tf+(rrc)] for a given

tooth, such as in the case of the first and fourth teeth in the example shown in Figure 5c, it is necessary
to decide which of the events that are close to the tooth to choose for the semi-periodic sequence. For
the unlabeled analysis the event closest to the tooth was the preferred one (Nava et al., 2014; Quinteros

et al., 2014; Quinteros and Nava, 2014), so that there was only one sequence to choose from.

For the case of labeled time series, after the third pass, all possible combinations of events that are
within the tolerance interval are considered as candidate sequences to be analyzed in the fourth pass

(Figure 6).

The fourth pass is done separately for each candidate sequence, considering an even smaller

tolerance, At<(1/6)rc. Finally, the combinations that fulfill the closeness criterion, are evaluated

through a weighted fit error (explained in the next section). The combination with the smallest weighted

fit error is selected as the identified sequence.
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Figure 5. a) First pass, b) Second pass, and c) Third pass of the spectral analysis. (Top) Fourier spectrum of the

time series shown immediately below; the vertical dot-dashed purple lines, at the left, indicate the
chosen frequency and one of its multiples at the right; the solid light blue vertical lines are the

guideline frequencies s and S o (Nava et al.,, 2014). (Middle) the labeled time series in where

dashed red arrows represent each event, and the f(t) bellow shows as dashed blue arrows those
events that are within the confidence interval (solid orange lines) and could belong to the sequence.

(Bottom) c(t) is the comb, whose teeth are shown by solid dark purple lines. The yellow triangles

indicate t and tf.
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Fourier Spectrum
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Figure 6. Fourth pass of spectral analyses of four combinations. Each combination corresponds to a possible
sequence. Conventions are as in Figure 5. Combination 3 shows the best representation of a semi-

periodic sequence.
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4.2 Weighted fit error in the semi-periodic sequence selection:

We consider the possibility that some process may generate earthquakes within some preferred
magnitude range and the time fit error is weighted according to the normalized standard deviation of

the event magnitudes in the sequence.

Since every possible sequence has the same K number of earthquakes, the weighted fit error

measure used to compare them, is
K
£,=2EV (7)
i=1
where g is the fit error of event times respect to the comb teeth times,

£ = , (8)

c e
te—t!

and v is a factor that penalizes magnitude departures from the mean of the magnitudes of the events

in a determined combination,

GM
= 1+==,
v M

eq

where o, and I\_/qu are the standard deviation and the mean of the magnitudes in the combination,
eq

respectively:

The combination with the smallest g, is selected as the identified sequence. The minimum possible

value of ¥ equals 1, corresponding to a combination of earthquakes that have all the same magnitude,
no matter how many events there are in the sequence, and the maximum possible value of ¥ depends

on K and on the ratio of minimum to maximum magnitudes of the combination; so that, for a given

magnitude ratio, the longer the sequence, the smaller the weight.
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4.3 Standard deviation estimation

Since we consider the fit errors, € (8), to be realizations of 6 (1), the measured standard deviation

of the ¢, =6, for the selected sequence, is

with K degrees of freedom because 6 is postulated to have zero mean, independently of the 9,, values.

However, these errors are a very small sample from a population associated to the semi-periodic
process, so that the measured standard deviation may not correctly reflect the standard deviation of the

process.

In order to have a more reliable estimation of the true standard deviation, since 9,, can be
considered to come from a normal population, with variance 6> and mean =0, their variances will be

distributed as y°

Hence, in order to have P confidence that the population standard deviation is not underestimated,

defining p=1—P, the estimated standard deviation is given by

where X, is the value }(2 corresponding to confidence P. For 90% confidence, x , =1.06362 and

0 =1.93926 G ; we will consider this to be the estimated standard deviation of the distribution, o, used

here for estimating the forecast probabilities.
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4.4 Sequence probabilities:

To test the hypothesis of semi-periodicity, the null hypothesis would be that earthquakes occur
randomly in time so that the number of events, n, in any interval 7 is distributed according to Poisson's

distribution

)L N -t
Pr(n):i( T?ﬂe , (9)

where l:N/T , N is the number of earthquakes that occurred over the interval [to,tf] that

corresponds to the observation time T:tf—to. Nava et al. (2016) estimated the probability of the

observed sequence occurring at random to be
K-1
P :(1—e”1®)(1—e’w) , (10)
where K is the number of events in the sequence. The period of the sequence must be between T/K+§

and T/(K—l) , where ¢ is a very small quantity introduced to ensure that no more than K elements fit

within time T. In the worst case that results in the largest random probability, when considering the

shortest period and taking into account the uncertainty, at least one event should occur within an

interval of length G):(T/K)—§+q0', §<<T/K, and the other events should occur each within an

interval of length 8 =2go . These time lengths, ® and 6, correspond to the uncertainty interval of the
event occurrence times, where o is the estimated standard deviation of the sequence and the
parameter q establishes how rigorous is the probability estimate; we use g=2 for a confidence level of

95.45%.

Hence, the probability that the sequence did not occur by chance, i. e., the non-randomness

probability, is

P=1-P . (11)
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Chapter 5. Forecast

5.1 The next event belonging to a sequence

If the identified sequence is indeed due to a semi-periodic process, the occurrence time of the next

event belonging to the sequence is

t =t tKt tqo.

Since observed sequences include too few events to fully characterize the probability density

function (pdf), p(t), of the variations from periodicity, invoking the Central Limit Theorem, we use, as a
working hypothesis for p(t), the normal distribution, centered on t , with standard deviation o,
truncated at the occurrence time of the most recent event (Figure 7), and normalized so that the area

under the curve is equal to the non-randomness probability of the sequence, P_. Thus, the probability

that the next event belonging to the comb occurs within the interval [tm —-qo,t_, +q0'] is

ch =P erf(q) . (12)

T T T

1 1

1 1
L[J I
0 20 40 60 80 100 120 140 160
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Figure 7. Example of forecast. Earthquakes are blue arrows and comb teeth are dashed red lines the forecast pdf

p(t) is shown by the red curve and the dotted line at its center indicates t . while the short vertical
black lines, on both sides of the teeth and the forecast, indicate 20, (g=2). The triangles indicates t

and tf.
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5.2 Significance

To estimate how significant the results of the labeled analysis are, we evaluated the probability and

information gains (Vere-Jones, 1998; Harte and Vere-Jones, 2005).

Following Nava et al. (2014) and Quinteros et al. (2014), the probability gain is obtained by

comparing the probability of having a comb event and/or a non-comb event during a given interval

[t —-qo,t +q0'], centered on time t _, calculated through P +7. —P &, with the Poissonian
nxt nxt nxt cq 1+

cq 1+’

probability of at least one earthquake occurring during the given interval:

P +m —P 1
_ 1+ cq 1+
- ’
© T

1+

where ch is the occurrence probability of the next event belonging to the sequence within the forecast

confidence interval (12), 77::+ is the Poissonian occurrence probability of at least one event within the
forecast confidence interval, considering that there is a determined semi-periodic sequence and the

—-A2q0

occurrence rate of events not belonging to the sequence is l*:(N—K)/T, and r, =1-e is the

Poissonian probability, in the absence of a forecast, of an earthquake occurring during the given interval,

with occurrence rate l:N/T .

The information gain (Fano, 1961; Harte and Vere-Jones, 2005), I :Iogz(PG), is the difference in the

Shannon (1948) information of the comb forecast probability and the background probability.

5.3 Bayesian probability

Nava et al. (2016) propose that a forecast probability can be revised, after the forecast event has
occurred, through the Bayesian formalism (e.g. Parzen, 1960; Winkler, 2003). Considering as event A the

presence of semi-periodicity, evidenced by the identification of a semi-periodic sequence with non-
randomness probability Pr(A)=P£ , after the occurrence of a later earthquake at observed time t_, event

B, Bayes formalism can be used to test whether B is indeed the aftcast event and whether its occurrence

supports the semi-periodicity assumption.
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For Bayes’ well-known formula, we can calculate the probability that a semi-periodic process exists,

given that the forecast earthquake occurred at a given time:

Pr(B|A)Pr(4)
Pr(B|A)Pr(A)+Pr(B|A)Pr(A)

Pr(A|B)= (13)

where Pr(BlA) is the probability given by the p(t) forecast (Figure 7) for occurrence in an interval

around the actual occurrence

Pr(B|A)=gW+n;W—P T,

aw  H+w
where P_is the probability that an earthquake belonging to the sequence occurs within the finite
. w w . . . .
interval {to—;,to+;] centered on t, that is the time in which occurred the aftcasted earthquake,

and with length w, discussed below :

For the case p(t): N(tnxt,O') illustrated in Figure 8,

t

p :Lje—xz/z dx:pc{sgn(tz)erf(|t2‘\/5)—sgn(tl)erf(‘tl‘\/g)} ,

2T t

where t, =[ |tnxt—to‘—(w/2)]/0' and t, =[|tnxt—to‘+(w/2)]/o' , for the normalized time (t—tnxt)/O'.

ﬂ:;w is the occurrence probability of at least one earthquake that does not belong to the sequence,

within a finite interval of length w

where l*:(N—K)/T.
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The probability of the semi periodic process does not exist is Pr(Z)ZI—Pr(A) , Which represents the

null hypothesis (10), and given A, the probability of the event B is just the Poisson probability

Pr(BIZ)=1—e‘M )

where 1=N/T.
0-5 T T T T t Tt T T
—_ o ‘nxt
e 0.4r L |
L I
:>;<' 03* 1 7
-~ 1
I 0.2f : b
~ |
S 0.1f : 1
0 1 1 1 : 1 1
-5 -4 -3 -2 -1 w 0 1 2 3
(t-t .)/o

nxt

Figure 8. The forecast probability density function (pdf), p(t) with normalized time. (Modified from Nava et al.,
2014).

The length of the finite interval, wherein the probability is evaluated, could take any value that
meets WSO'/4, because, for these values, the differences in probability estimations are ~10™. For

WSG/lO, the probability can be considered independent of w, and for practical purposes WSO‘/40 is

used.

The updated non-randomness probability, PCU, is estimated through (10) and (11), for the whole

series including all events up to and including the aftcast one.

The validity of the proposed Bayesian analysis can be judged by application to aftcasts. An aftcast is
the forecast of an event that has already occurred, on the basis of information previous to it, i. e. a

forecast a posteriori. For several aftcast cases Nava et al. (2014) showed that the posterior probability
Pr(AlB) agrees quite well with the updated PCU, the new non-randomness probability estimated from

the whole data set that includes the aftcast event and other events occurred since the aftcast.

Aftcasting the last event of an identified sequence can be used to judge how well the forecasting
method works and whether the sequence is indeed semi-periodic or not. The Bayes approach can be also

used to judge whether a given earthquake can be the forecast one.
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Chapter 6. Results and discussions

6.1 Synthetic data

The analysis method for identification of semi-periodic behavior in time series was tested using
synthetic data, in order to see whether the method is able to correctly identify known sequences and to

evaluate how reliable this identification is.

Since the number of events within the time series has significant influence on the effectiveness of
the analysis, many tests were performed using different time series, each one constituted by different

numbers of events and sequences.
Each time series was constructed as follows; we began by specifying:

1) A tentative duration time, T, of the whole time series.

2) The number of sequences.

3) The number of events, K, in each sequence.

4) The standard deviation of the 6 variation from periodicity for each sequence.
5) The magnitude range for each sequence.

6) The number of extraneous events, and their magnitude range.

For each sequence, the period was obtained randomly, with uniform probability, from those
satisfying T and K, T/K+§S7:ST/(K—1—2r), with Zj<<T/K (Section 4.4) and r=1/6 corresponding to
the stricter comb-event closeness criterion (Section 4.1). Next, the time of the first tooth was chosen

randomly, among the eligible ones, with uniform probability. Then, variations were applied to each event

time, using a normal distribution with the specified standard deviation and truncated so that variations
were within the maximum allowable variation Gmaxzrl'. If necessary, the tentative time interval was

adjusted so that all events lay within it, to obtain the final time interval T. Next, magnitudes were
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assigned randomly to each event, according to the G-R distribution, with a representative b-value = 1, for

the sequence magnitude range.

Finally, the extraneous events were generated, with uniform probability over the whole time
interval, and assigned G-R magnitudes over a range chosen to include the lowest magnitudes in the
sequence ranges and slightly higher magnitudes than those in the ranges, to mimic the occurrence of

very large earthquakes belonging to sequences not identifiable from the duration time.

For all cases, we used T=125 years, which corresponds, approximately, to the time for which data are
complete and homogeneous in the seismic catalogs. We first tried time series comprised of one

sequence of five events and three extraneous events, with magnitudes in the range from 7.4 to 8.1

(Figure 9).
a) Labeled Time Series
1 R T T f f‘
8 1 1 1
< 0.5 i o
0 Il i Il Il i i\ Il Il
0 20 40 60 80 100 120
t(yn
b) Time series with indistinguishable sequences
1 T . . T T + f‘ . T + T
= N [} 1 1 1
< 05 1 (] t [ 1
] ] ] ] ] ] ] ]
0 1 1 1 | - | 1 L 1 1 |
0 20 40 60 80 100 12

t(yn

Figure 9. a) Example of the synthetic data labeled time series, constituted by one sequence of five events (violet
arrows) and three extraneous events (dot-dash green arrows). b) The labeled time series with

indistinguishable events (dashed red arrows); the yellow triangles indicate ¢  and t,.

In twenty-five of thirty random realizations, the correct sequence was identified (Figure 10). Five
realizations gave approximately correct results where the sequences’ periods were identified, but one of

the events in the sequence was substituted for an extraneous one (Figure 11).

The example in Figure 11 shows the identified sequence, where the third event of the sequence, that

occurred at t, =57.1601 yr, was substituted by the extraneous event close to it in time, occurred at

t,=60.1534yr. The right event was replaced by the extraneous one because both events are so close

that the time difference between them is less than the maximum expected variation of the sequence

period.
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Figure 10. Spectral analysis of the time series shown in Figure 9, for each pass. Two combinations were evaluated in
pass 4 and the Combination 2 was the fittest one and that corresponds to the predefined sequence. The
image conventions are like those in Figure 5.
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a) Labeled Time Series
1 T L T T f
= 1 + 1
= 05 1 1 1
0 Il Il E \I Il i Il
0 20 40 60 80 100 120
t(yr)
b) Time series with indistinguishable sequences
1 . T T f T T T
= 1 t i N 1 t
< 05 1 1 ] 1t 1 1
1 1 i 1 1 1 1
O 1 L 1 11 1 1 T | 1 L
0 20 40 60 80 100 120
t(yn)
c) Fourier Spectrum d) Fourier Spectrum
’_\4,I‘3ass1 ‘ “ ‘ ‘ :‘ ,A4"Pass4‘ ‘ ‘ ‘
E i i % | combination 4
oF } } 132
w w
IRV B S RN A VA VA SR A A TN Vad
%001 002 003 004 005 006 007 008 009 %01 002 003 004 005 006 007 008 009
st st
Labeled Time Series Labeled Time Series
~ 4 2 » - 4
S : |’r ':‘ 4 1 ’r g 1 'I' 'I' 4 'I'
s 4 R N A |
LA L L1 L1 A LAl L, N
G N U O U - A U A B
0 20 40 60 80 100 120 0 20 40 60 80 100 120
t(yr) t(yr)
Figure 11. Example of identified sequence where the third event of the sequence was substituted by another very

close to it. a) Synthetic data labeled time series constituted by one sequence of five events (violet
arrows) and three extraneous events (dot-dash green arrows). b) The labeled time series with
indistinguishable events (dashed red arrows). c¢) and d) Passes 1 and 4 of the spectral analysis,
respectively. Combination 4 is the fittest in the fourth pass.

However, the differences between the periods estimated including the replaced events and the

correct periods were so small that the forecast of the next events of the identified sequences were, for

all practical purposes, the same as for the correct sequences.

The correct forecast corresponding to the original sequence is t =140.9213+3.5111 yr

(considering 20 ), and the forecast of the identified sequence is t =141.61941+2.7323 yr. The

difference between both forecasts (0.6981 yr) is insignificantly small with respect to the period of the

sequence, which is 7=27.0258 yr.
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Next, we tried randomly generated time series including two sequences and one extraneous event
(Figure 12). Thirty realizations were done, of which nineteen correctly identified the sequences
(Figure 13), ten resulted in wrong sequences, eleven realizations resulted in sequences in which some
event belonging to the sequence was substituted with an extraneous event (Figure 14), and one did not

show semi-periodicity at all.
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1
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Figure 12. a) Example of the synthetic data labeled time series, constituted by one sequence of five events (violet
arrows), one sequence of four events (dot-dash green arrows), and one extraneous event (dashed
orange arrow) b) The labeled time series with indistinguishable events (dashed red arrows).

The example in Figure 14 shows the first identified sequence, in which the third event of the

sequence, occurred at t, =70.3686 yr, was substituted by the extraneous event close to it, occurred at
t,=67.2875 yr. The correct forecast corresponding to the original sequence is t  =149.9736+2.8810 yr

(considering 20 ), and the forecast of the identified sequence is t  =148.5425+2.3814 yr.

These results show that, if the number of events in a time series increases, the chance to find events
as close together as to be interchangeable also increases. However, it should be remembered that the
synthetic series include random variations from strict periodicity, so that if a given event is substituted
by an extraneous one within a sequence but the correct period is identified, then the resulting forecast

would be correct too, so that the method is performing correctly.

While any number of sequences may be postulated, since reliable observations are available for only
~125 years, the large number of events required by three or more series (of at least four events each)
plus possible extraneous events, results in such a large density of events that the probability of finding
apparent sequences occurring by chance is too high. Hence, we consider only the possibility of one or

two sequences.
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13. Two semi-periodic sequences identified through spectral analysis a) First pass of the analysis with all

events in the time series. b) The fittest combination in the fourth pass corresponding to semi-periodic
sequence with five events. c) First pass of the spectral analysis of the time series excluding events
belonging to the previous identified sequence. d) The fittest combination in the fourth pass
corresponding to the second semi-periodic sequence.
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Figure 14. Example of identified sequence where the third event of the sequence of five events was substituted by
another very close to it. a) Synthetic data labeled time series constituted by one sequence of five events
(violet arrows), one sequence of four events (dot-dash green arrows), and one extraneous event
(dashed orange arrow) b) The labeled time series with indistinguishable events (dashed red arrows).
c) and d) Passes 1 and 4 of the spectral analysis, respectively. Combination 2 is the fittest in the fourth
pass.
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6.2 Applications to real data

6.2.1 Japan

6.2.1.1 Study region and data

The study region was defined considering the tectonic setting (Nakamura, 1983; Tamaki and Honza
1985; Taira, 2001; Bird, 2003) and the epicentral distribution of large earthquakes in Japan. The region is
localized in the Northeastern Japan Arc (Figure 15), where the major seismic activity of Japan occurs as a
result of the subduction of the Pacific plate beneath the Japan and Kuriles arcs, at a rate of about

~8.5 cm/yr towards the WNW.

48° 1
44° 1
40° 1
[0}
©
._g PA Pacific Ocean
(4}
-
36°
JAPAN
a0 1. 1611-2015
® MRE
Meq =8.0
. —Region of interest
28° — Plate boundaries

128° 132° 136° 140° 144° 148° 152° 156°
Longitude

Figure 15. Map of MREs with Meq >8.0, occurred in Japan from 1611 to 2015.5 (ISCS-GEM Catalogs). Green circles

indicate epicenters of the main earthquake of the MRE. Dashed blue lines enclose the study region.
Solid purple lines indicate the boundaries between the Pacific (PA), Philippine (PS), Eurasia/Amur (AM),
and North America/Okhotsk (OK) tectonic plates (Bird, 2003).
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The Moment Release Episodes processing (MRE, section 3.3) was used to calculate equivalent

magnitudes, Meq(6). In some cases, Meq resulted only slightly higher than the magnitude of the main

earthquake (~0.01 higher than previous magnitude), but for the MRE occurred in 1938.84, which
included events that occurred close in time and space with magnitudes 7.8, 7.7, 7.7, 7.6, 6.5 and 6.8, the

equivalent magnitude, 8.1, resulted notably higher than the 7.8 magnitude of the main earthquake. Only

MREs with Meq >8.0 were included in the analysis.

There is information about earthquakes that occurred in the study region since 1611 (Table 1), but as
can be seen in Figure 16a, there are conspicuous gaps in the data before 1896, which we interpret as

missing data. Thus, the earthquakes included in the time series occurred from 1896 to 2015.5; the

catalog may be considered complete from this date on for MREs with Meq >8.0 (Figure 16b).

Magnitude weights (5), from 0.55 to 1.00, were assigned to events occurred from 1896 to 2015.5

with magnitudes between 8.0 and 9.1 (Table 1), using a b-value of 0.93. This b-value (4) was estimated
from 1820 earthquakes occurred between 1949-2015, with 5.62M_2>8.2 for which the G-R histogram

behaved linearly. It should be pointed out that the actual b-value is not critical since weights do not vary

greatly for different, reasonable, b-values.
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Figure 16. MREs occurrence time series, indicated by red arrows, for events with MquS.O in the study area of
Japan. a) Occurrence time series of events from 1611.9 to 2015.5. b) Labeled occurrence time series of

events from 1896 to 2015.5; the yellow triangles indicate t, and t,.
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Table 1. MREs occurred in the study region of Japan, with Meq >8.0, from 1611 to 2015.5 (ISC-GEM Catalogs).

No Time (yr) Latitude (°) Longitude (°) M, Depth (Km) Weight w(Mm, )
1 1611.9194 39.00 144.00 8.1

2 1677.8434 35.00 141.50 8.0

3 1703.9973 35.03 139.66 8.2

4 1793.1304 38.50 144.50 8.2

5 1896.4558 39.50 144.00 8.2 0.72
6 1923.6658 35.41 139.30 8.1 15.00 0.65
7 1933.1644 39.21 144.59 8.5 15.00 0.88
8 1938.8438 36.97 142.09 8.1 35.00 0.65
9 1952.1721 42.08 143.90 8.1 45.00 0.65
10 1960.2159 39.87 143.23 8.0 15.00 0.55
11 1968.3716 40.86 143.44 8.2 29.90 0.72
12 2003.7315 41.90 143.92 8.3 30.00 0.79
13 2011.1890 38.28 142.55 9.1 20.00 1.00

6.2.1.2 Analysis results

Labeled time series 1896-2015.5

In the analyzed time series there are N=9 events (Figure 16b) that occurred over 119.5 years

[t0=1896,tf:2015.5]. The comb determined in the first pass (Figure 17a) was constituted by K=4

teeth with period 7_=37.8165 yr (s_=0.0264 yr''). For the second pass of the analysis Event 9 (all event
numbers refer to Table 1) was dropped from the time series, because it did not satisfy the comb-event

closeness criterion. For the second pass (Figure 17b), the period of the comb was 7 =37.5786 yr

(s, =0.0266 yr 1), and event 10 was dropped from the time series for the next pass.

In the third pass (Figure 17c) the comb period was the same as that obtained in the previous pass,
but event 6 was dropped from the analysis, and the six events that satisfied the comb-event closeness
criterion: 5, 7, 8, 11, 12, and 13, became candidates for the four-event sequence. These six candidate
events resulted in four combinations of four events (Figure 18, Table 2), and the fourth pass was carried

out for each combination.
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Figure 17. Spectral analysis of Japan data from 1896 to 2015.5. a) First pass, b) Second pass, and c) Third pass.
Conventions are the same as in previous spectral analysis figures: (Top) Fourier spectrum of the time
series shown immediately below; the vertical dot-dashed purple lines, at the left, indicate the chosen
frequency and one of its multiples at the right; the solid light blue vertical lines are the guideline

frequencies s and s (Nava et al., 2014). (Middle) the labeled time series where dashed red arrows
represent each event, and the f(t) bellow shows as dashed blue arrows those events that are within
the confidence interval (solid orange lines) and could belong to the sequence. (Bottom) c(t) is the

comb, whose teeth are shown by solid dark purple lines. The yellow triangles indicate t, and t,.
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Figure 18. Spectral analyses of the four combinations in the fourth pass to identify the semi-periodic sequence for
Japan region. The chosen semi-periodic sequence corresponds to combination 1, which has the lowest
weighted fitting error. Conventions are like those in Figure 17.

Table 2. Event combinations analyzed in pass 4. The shaded combination is the selected semi-periodic sequence.

Combination

Events (yr)

Weighted fitting

Combination Events (yr)

Weighted fitting

error (yr) error (yr)
5 1896.45578 5 1896.45578
7 1933.16438 7 1933.16438
1 1.3686 2 6.3729
11 1968.37158 11 1968.37158
12 2003.73151 13 2011.18904
5 1896.45578 5 1896.45578
8 1938.84384 8 1938.84384
3 8.8690 4 10.0355
11 1968.37158 11 1968.37158
12 2003.73151 13 2011.18904
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The selected sequence was that of combination 1, which had the lowest weighted fitting error

(Table 2), with a comb period 7 =35.7784 yr ( s =0.0280 yr'), starting at t,, =1896.7864 yr

(¢ =-0.1381). The measured standard deviation of 6 was 6=0.3943 yr, and the estimated

distribution standard deviation was 0 =0.7646 yr.

The epicenters of the events constituting the identified sequence are shown in the Figure 19,

together with all other MRE with Meq >8.0 in the region. The epicenters of the events in the sequence

are clustered in the NE part of the study region.

48° 1

44° 1

N
S

Latitude

36°

JAPAN
1611-2015

® MRE
Meq =8.0

% Semi—periodic
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. —Region of interest

— Plate boundaries

128° 132° 136° 140° 144° 148° 152° 156°
Longitude

Figure 19. Map of MREs with MquS.O, occurred in study region of Japan from 1611 to 2015.5 (ISCS-GEM

Catalogs). Orange stars indicate epicenters of the events belonged to the semi-periodic sequence, and
green circles show epicenters of that not belonging to it. The image conventions are the same as in
Figure 15.
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We would expect the next MquS.O event belonging to the sequence around
t . =2039.9001+1.5292 yr (with 95.45% confidence, g=2). The probability of random occurrence of

the semi-periodic sequence is P, =0.008, so that the sequence/comb probability is P =0.992.

The identified sequence and the pdf of the forecast, p(t), are presented graphically in Figure 20,
together with the survival and the hazard functions (Nava et al.,, 2014) that help to visualize some

consequences of the forecast.

a) T T T
05 T—%(t) | .
N ===c(t)
——p(1)
I I I I I I A 1A
1900 1920 1940 1960 1980 2000 2020 2040
t(yr)
b)

b
050 - _g5(1) ‘/\H-
0 - L B R, R

2036 2037 2038 2039 2040 2041 2042 2043 2044
t(yr)
c)

Pr
>
-~

2036 2037 2038 2039 2040 2041 2042 2043 2044
t(yr)

Figure 20. Japan forecast. a) Forecast based on the sequence identification shown in Figure 18a; same convention

as in Figure 7. b) Close-up of the pdf, p(t), red curve; and the survival function of the forecast, S(t), dot-
dash green curve. c) Hazard function h(t) .

The occurrence probability of the next event belonging to the sequence within a £20 interval,
centered ontime t__, is ch =0.947 ; the Poissonian occurrence probability of at least one event within a
+20 interval, considering the occurrence rate of the whole time series A=0.075/yr , is r, =0.206 the
Poissonian occurrence probability of at least one event within £20 , considering the occurrence rate of

events not belonging to the sequence, A =0.042/yr, is 77::+ =0.120. The probability gains, evaluated

from these probabilities through eq. 11 (section 5.1), for different values of g, are significant (Table 3).
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Table 3. Probabilities, probability gains and information gains for the Japan sequence.

*

q P, T, T, P, I, (bits)
1 0.677 0.109 0.062 6.410 2.680
2 0.947 0.206 0.120 4.634 2.212
3 0.989 0.292 0.175 3.393 1.763

Unlabeled vs. Labeled time series

Results obtained using the unlabeled and labeled time series analyses are compared in order to
know whether the influence of the earthquakes magnitude on the analysis leads to significant

differences between the forecasts.

Quinteros et al. (2014) analyzed the unlabeled time series for the Japan region with data from an
older seismic catalog than the one used in the present work. However, to correctly compare results, we

used the same data both in the unlabeled and the labeled analyses.

Hence, the analysis of the unlabeled time series is done here using the Japan data from the ISC-GEM
catalog (Table 1) as in the labeled analysis, but without weights (Figure 21), which is the same as

assigning the same magnitude to all events. So that, the unlabeled time series is constituted by N=9

events that occurred over 119.5 years [t0 =1896, tf =2015.5].

The semi-periodic sequence identified in the unlabeled analysis is constituted by K=4 events, which
are the same as the sequence identified in the labeled analysis except for the last event. In the labeled
analysis the last event of the sequence is event 12 (all event numbers refer to Table 1) and the unlabeled

analysis is event 13.

This difference is because in the third pass of the unlabeled analysis (Figure 22), the selected events
to be used in the last pass are only the closest ones to the comb, identification is limited to only one
combination of events, and in this case, event 13 is slightly closer to the comb than event 12. Since in the
labeled analysis every possible combination is evaluated, not only by the closeness of time (comb-event)

criterion, but also by the closeness of magnitudes in the sequence criterion, the combination that

included event 12 (Meq=8.3) fitted the sequence better than the combination that included event 13



(Figure 23), whose

sequence.
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magnitude (/\/leq=9.1) is notably higher than those of the other events in the
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Figure 21. a) Comparison between the unlabeled and labeled spectrum analysis (pass 1) of Japan data; b) and c) are
their respective time series. Conventions are like those in previous figures.
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Figure 22. a) Comparison between the unlabeled and labeled spectrum analysis (pass 3) of Japan data. In the
unlabeled analysis (b), the selected events to be analyzed in the pass 4 are the closest events (dark blue
dashed rows) to the comb (purple lines), while in the labeled analysis (c), the events (blue dashed rows)
within the acceptance interval (dark green lines) are combined in different possible sequences to be

analyzed in pass 4.
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Figure 23. a) Comparison between the unlabeled and labeled spectrum analysis (pass 4) of Japan data. In b) and
c) the identified sequence (dark blue dashed rows) and the comb (purple lines) are shown for the

unlabeled and the labeled cases, respectively.

Thus, in the unlabeled analysis, the resulting comb period is 7 =38.0573 yr, the phase is

¢_=0.1271, so that the origin time of the comb is t, =1895.2302 yr. The difference between the period

of the sequences obtained from the two different analyses is ~ 2.28 yr (~0.06 7 ).

In the unlabeled series analysis the measured standard deviation, 6 =1.8405 yr, was used as the
standard deviation for the forecast; but, since it is better to use the estimated population standard

deviation, we will do so for both methods. For the unlabeled method, the estimated population standard

deviation is 0=3.5693 yr and the forecast is t  =2047.4595+7.1386 yr (with 95.45% confidence,

g=2). The difference between the forecast times estimated from the two different analyses is ~ 7.56 yr,

which is not very high compared to the unlabeled forecast confidence interval.

The probability of random occurrence of the sequence, considering the estimated standard
deviation, is P =0.268, so that the sequence/comb probability, P =0.732, is smaller then the P
obtained in the labeled analysis. The results of the analyses, both unlabeled and labeled, are shown for

comparison in Table 4.
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Table 4. Results obtained with the labeled and unlabeled analyses for Japan region.

nxt

Sequence T (yr) 9, t,y) S(y) oy t_(y) P P, (iZO’)

1896.45578
1933.16438
Unlabeled 38.0573 0.1271 1895.2302 1.8405 3.5693 2047.4595 0.732 0.698
1968.37158

2011.18904

1896.45578
1933.16438
Labeled 35.7784 -0.1381 1896.7864 0.3943 0.7646 2039.9001 0.992 0.947
1968.37158

2003.73151

While most comparisons of unlabeled versus labeled analyses gave very similar results, this example
is particularly important, because it clearly shows how simple proximity in time to a comb’s tooth is too
simplistic a criterion for choosing a sequence event. The choice of an alternative event that is not quite
as close to the tooth, but has a magnitude that agrees better with the other magnitudes in the sequence,

yields a period that is a much better fit to the sequence events, which results in a much better forecast.

Aftcasts and Bayesian analysis

We will now present an example of an aftcast and its subsequent Bayesian evaluation.

In the forecasting example presented above, a sequence of four events was identified from events

occurring from 1896 to 2015.5; we will try to aftcast the last of the sequence events, occurred at

2003.7315, using only those events that occurred before it, between t =1896 yr and t = 1969 yr.

The time series is constituted by N=7 events (Figure 24) that occurred over 73 years. Magnitude

weights, from 0.55 and 1.00 (Table 5), were assigned to magnitudes between 8.0 and 8.5.

Labeled Time Series
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1
1
1
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1
1
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| | | |
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A A
1 1
1 1
1 ]

0 1960 1970

Figure 24. MREs occurrence labeled time series, indicated by red arrows, for events with MquS.O in the study

region of Japan, from 1896 to 1969.
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Table 5. MREs used in the afcast analysis, occurred in the study region of Japan, with Meq >8.0, from 1986 to 1969
(ISC-GEM Catalogs).

No Time (yr) Latitude (°) Longitude (°) M, Depth (Km) Weight w(Mm, )
1 1896.4558 39.50 144.00 8.2 0.79
2 1923.6658 35.41 139.30 8.1 15.00 0.68
3 1933.1644 39.21 144.59 8.5 15.00 1.00
4 1938.8438 36.97 142.09 8.1 35.00 0.68
5 1952.1721 42.08 143.90 8.1 45.00 0.68
6 1960.2159 39.87 143.23 8.0 15.00 0.55
7 1968.3716 40.86 143.44 8.2 29.90 0.79

Four passes were done (Figure 25), with two combinations considered in the fourth pass (Figure 25d

and 25e). The selected sequence is that in Combination 2, with period 7_=36.1386 yr (s_=0.0277 yrh),

starting at t,_=1896.5663 yr (¢ =-0.0985). The measured standard deviation of 6 is 6 =0.3856 yr,

and the estimated distribution standard deviation is o =0.8737 yr.

Thus, we would expect the next MquS.O event belonging to the sequence around
t . =2004.9822+1.7474 yr (with 95.45% confidence, g=2). The probability of random occurrence of the

sequence is P, =0.074, so that the sequence/comb probability is P =0.926.

The events belonging to the identified sequence are the same as the first three events belonging to
the identified sequence in the previous analysis (1896-2015.5), and the aftcast clearly coincides with the
event occurrence in 2003.7315 yr. The aftcast error with respect to the actual occurrence time of the
event is 1.25 yr, less than the time given in the confidence interval; so that, the aftcast is considered

successful.

The identified sequence and the pdf of the forecast, p(t), are presented graphically in Figure 26,
together with the occurrence time of the event that occurred in 2003.7315, just when the survival
function begins to decline and well before the hazard function of the forecast reaches its maximum

value.
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Figure 25. Spectral analysis of data from Japan from 1896 to 1969. a) First pass, b) Second pass, c) Third pass, and in
d) and e) Two combinations in the Fourth pass. Conventions are the same as in previous figures. The
selected sequence is that in Combination 2.
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Figure 26. Japan aftcast. a) Aftcast based on the sequence identification shown in Figure 25; same convention as in
Figure 20. b) Event that occurred in 2003.7315, in blue dashed row, and close-up of the pdf, p(t), in
thick red line; and the survival function of the forecast, S(t), in dot- dash green line. c) Event that
occurred in 2003.7315, in blue dashed row, and Hazard function h(t) .

After the occurrence of the aftcast event, Bayes formalism is used to test prior estimates or

assumptions about possible semi-periodicity.

We considered three possible assumptions about the prior probability: 1) Confident: Semi-periodicity
occurs and the probability of there being a non-random semi-periodic earthquake sequence in the study
region is Pr(A)=P. =0.926; 2) Undecided: Semi-periodicity may or may not occur, so that Pr(A)=0.5; 3)

Skeptical: The probability of there being semi-periodicity is very small, say Pr(A)=0.1.

The results of the Bayesian evaluation are shown in Table 6. It is clear that the occurrence of the
aftcast event so close to the forecast time supports the semi-periodicity thesis, since posterior
probabilities are higher than prior ones, and probability gains are all greater than one; note that the gain

is largest for the most skeptical approach.

Let us now compare the results of the Bayesian analysis that, from a prior probability of 0.926,

resulted in a posterior probability of 0.979, with the updated semi-periodic probability for the four
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events sequence PCU=0.993. We see that Bayesian analysis gives a quite good approximation to the

updated probability (it is smaller by only ~0.014). We note that coincidence between these two

probabilities is even better for some other aftcasts not shown here.

Table 6. Results of aftcast of the event occurred in 2003.7315, in Japan, and the posterior comb probability and
probability gains.

Pr(A)
Pr(AlB)
e P, t, P, P
P 0.5 0.1
0.979 0.789 0.293
2004.9822 0.926 2003.7315 1.058 1.578 2.933 0.993
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6.2.2 Mexico

6.2.2.1 Study region and data

The study region is localized in the Pacific coast of southwest Mexico (Figure 27), south of the Colima
graben and parallel to the subduction zone of the Cocos plate beneath the North American plate (e.g.
Bandy et al., 1995, Demets and Wilson, 1997, Manea et al., 2013); within the region interplate velocities
range from ~4.7 cm/yr in the north to ~6.4 cm/yr in the south. This region presents important seismic
activity, and the earthquakes focal mechanisms are predominantly reverse near the coast and normal

inland.
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Figure 27. Map of MREs with Meq >7.4 MRE occurred in the study region of Mexico, from 1568 to 2015.5 (ISCS-

GEM Catalogs). Green circles indicate epicenters of earthquakes. Dashed blue lines enclose the study
region. Solid purple lines indicate the boundaries between the Rivera (Rl), Cocos (CO), North America
(NA), and Pacific (PA) tectonic plates (Bird, 2003).

The equivalent magnitudes, Meq, of each MRE, were calculated. In the cases of the events occurred
in 1985.7 and 2014.3, the respective Meq was ~0.1 higher than the main earthquake magnitude. In other

cases, Meq is the same as that of the main earthquake of the respective MRE.
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We have information about earthquakes that occurred in the study region since 1697 (Table 7), but,
like in the Japan case, there are conspicuous gaps in the historical data, as can be seen in Figure 28a,

which we interpret as missing data; so that the earthquakes included in the time series occurred from

1899 to 2015.5; the catalog may be considered complete from this date on for MREs with Meq27.4

(Figure 28b).
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Figure 28. MREs occurrence time series, indicated by red arrows, for events with Meq >7.4 in the study area of

Mexico. a) Occurrence time series of events from 1697 to 2015.5. b) Labeled occurrence time series of
events from 1899 to 2015.5.

Magnitude weights, from 0.55 to 1.00 (Table 7), were assigned to events occurred from 1899 to

2015.5 with magnitudes form 7.4 to 8.1, using a b-value of 0.94. This b-value (eqg. 3) was estimated from

189 data, occurred between 1950-2015, with 58<M <7.4 for which the G-R histogram behaved

linearly.
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Table 7. MREs occurred in the study region of Mexico, with Meq >7.4, from 1697 to 2015.5 (ISC-GEM Catalogs).

No Time (yr) Latitude (°) Longitude (°) M, Depth (Km) Weight w(Mm, )
1 1697.1014 16.50 -99.00 7.5

2 1754.6658 16.80 -100.00 7.8

3 1776.3033 16.80 -100.00 7.7

4 1787.2356 16.00 -97.00 8.6

5 1820.3388 16.50 -99.00 7.8

6 1837.8932 16.00 -98.00 7.7

7 1845.2630 16.80 -100.00 8.3

8 1858.4630 19.00 -103.00 7.5

9 1899.0657 17.10 -100.50 7.9 0.93
10 1903.0356 15.00 -98.00 7.7 0.83
11 1907.2849 16.51 -97.30 7.8 30.00 0.88
12 1909.5753 16.47 -99.43 7.5 20.00 0.66
13 1911.4301 18.52 -102.44 7.6 30.00 0.75
14 1928.2213 16.14 -96.11 7.6 15.00 0.75
15 1928.4590 16.18 -96.58 7.9 20.00 0.93
16 1928.7705 16.19 -97.50 7.5 25.00 0.66
17 1931.0384 16.04 -96.58 7.6 35.00 0.75
18 1937.9753 16.75 -98.36 7.4 25.00 0.55
19 1941.2849 18.69 -102.99 7.6 30.00 0.75
20 1943.1425 17.46 -101.45 7.4 20.00 0.55
21 1957.5698 17.05 -99.09 7.6 37.80 0.75
22 1965.6411 16.08 -95.87 7.4 25.00 0.55
23 1973.0794 18.49 -102.89 7.6 35.30 0.75
24 1978.9095 16.11 -96.55 7.8 20.00 0.88
25 1979.1973 17.79 -101.25 7.4 30.00 0.55
26 1985.7151 18.34 -102.39 8.1 20.00 1.00
27 1999.7452 16.01 -96.90 7.4 40.00 0.55
28 2012.2159 16.47 -98.37 7.5 19.40 0.66
29 2014.2932 17.50 -100.94 7.4 10.00 0.55
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6.2.2.2 Analysis results

Labeled time series 1899-2015.5

In the analyzed time series there are N=21 events (Figure 28b) that occurred over T=116.5 years,

[t,=1899, t, =2015.5]. The comb determined in pass one (Figure 29a) is constituted by K=9 teeth with

period 7 _=14.3120 yr (s, =0.0699 yr'). Event 10, 11, 12, 18, 22, 24 and 25 (all event numbers refer to

Table 7) were dropped from the time series for the second pass of the analysis, because they did not

satisfy the comb-event closeness criterion.
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Figure 29. Spectral analysis of Mexico data from 1899 to 2015.5. a) First pass, b) Second pass, ¢) Third pass.
Conventions are the same as in previous figures.
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In pass two (Figure 29b), the period of the comb is 7 =14.3473 yr (s_=0.0697 yr"), and no event

was dropped from the time series for the next pass.

In the third pass (Figure 29c) the comb period is the same as in the pass two. No event was dropped
from the time series; so that the fourteen events closest to the comb: 9, 13, 14, 15, 16, 17, 19, 20, 21, 23,
26, 27, 28, and 29, became candidates to the nine event sequence. The fourth pass was applied to 16
combinations of nine events each, of which combination 4 had the lowest weighted error. Figure 30 and

Table 8 show results for the best four combinations.

Table 8. The best four combinations analyzed in the pass 4. The shaded combination is the selected semi-periodic

sequence.
Combination Events (yr) Weiegrl::)erd(;irt)ting Combination Events (yr) Weieg::)erc:;irt)ting
9 1899.0657 9 1899.0657
13 1911.4301 13 1911.4301
14 1928.2213 15 1928.4590
20 1943.1425 19 1941.2849
4 21 1957.5699 7.475 6 21 1957.5699 7.996
23 1973.0795 23 1973.0795
26 1985.7151 26 1985.7151
27 1999.7452 27 1999.7452
29 2014.2932 29 2014.2932
9 1899.0657 9 1899.0657
13 1911.4301 13 1911.4301
15 1928.4590 16 1928.7705
20 1943.1425 20 1943.1425
8 21 1957.5699 7.688 12 21 1957.5699 7.988
23 1973.0795 23 1973.0795
26 1985.7151 26 1985.7151
27 1999.7452 27 1999.7452
29 2014.2932 29 2014.2932




51
The period of the comb from the spectral analysis of the selected combination is 7 =14.5262yr

(s, =0.0688 yr), starting at t ,=1898.8443yr (¢ =0.0674). The measured standard deviation of 6 is

6 =0.9814yr, and the estimated distribution standard deviation is 0 =1.4421 yr.
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Figure 30. Spectral analyses of the best 4 combinations of the 16 made to identify the first sequence for Mexico
data. The chosen semi-periodic sequence corresponds to combination 4, which has the lowest weighted
fitting error (Table 8). Conventions are the same as in previous figures.

Thus, we would expect the next Meq27.4 event belonging to the sequence around
t . =2029.5799+2.8842 yr (with 95.45% confidence, q=2). The probability of random occurrence of the

sequence is P, =0.029, so that the sequence/comb probability is P =0.971.
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The identified sequence and the pdf of the forecast, p(t), are presented graphically in Figure 31,
together with other probability functions that help to visualize some consequences of the forecast: the

survival function and the hazard function of the forecast.
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Figure 31. Mexico forecast. a) Forecast based on the sequence identification shown in Figure 30a; same convention
as in Figure 20. b) Close-up of the pdf, p(t), in thick red line; and the survival function of the forecast,

S(t), in dot- dash green line. c) Hazard function h(t) .

The occurrence probability of the next event belonging to the sequence within 20, centered on

time t is ch=0.927; the Poissonian occurrence probability of at least one event within a 20

nxt ’

interval, considering the occurrence rate of the whole time series A =0.180/yr, is ., =0.647; the
Poissonian occurrence probability of at least one event within £20 , considering the occurrence rate of
events not belonging to the sequence, A" =0.103/yr, is 77::+=0.448. The probability and information

gains, evaluated from these probabilities, for different values of g, are significant (Table 9).



Table 9. Probabilities, probability gains and information gains for the Mexico sequence.

53

*

q - T, T, P, I, (bits)
1 0.6777 0.1608 0.1103 4.4349 2.1489
2 0.9475 0.2958 0.2085 3.2403 1.6961
3 0.9900 0.4090 0.2958 2.4275 1.2795

The epicenters of the events constituting the identified sequence are shown in Figure 32, together

with all other large, Meq >7.4 MRE in the region.
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Map of MREs with Meq27.4, occurred in the study region of Mexico from 1697 to 2015 (ISCS-GEM

Catalogs). Orange stars indicate epicenters of the earthquakes belonged to the semi-periodic sequence,
and green circles show epicenters of earthquakes not belonging to it. The image conventions are the
same as in Figure 27.
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Aftcasts and Bayesian analysis

The nine event sequence presented above was identified from events occurring from 1899 to

2015.5; we aftcast the last of the sequence events that occurred at 2014.2932, using only those events

that occurred before it, between t =1899 yr and t, =2000 yr.

The time series is constituted by N=19 events occurred over 101 years (Figure 33). Since the
magnitude range of the events is between 7.4 and 8.1, the same as the analysis including earthquakes
from 1899 to 2015.5, magnitude weights assigned to each event from 1899 to 2000 are the same as
Table 7 shows.

Labeled Time Series 1899 — 2000

T T T

A N
- AN A A AT
— 0.5 nl A A 1 A 1 A 1 A
- [} (] 1 1 1 ] 1 1
| | | 1111 | I 1 1 L1 1
1920 1940 1960 1980 2000
t(yr)

Figure 33. MREs occurrence labeled time series, indicated by red arrows, for events with Meq27.4 in the study

region of Mexico, from 1899 to 2000; the yellow triangles indicate t, and t,.

Four passes were done (Figure 34) and the fourth pass was applied to eight combinations of eight
events each one, of which Combination 2 had the lowest weighted error (Figure 34d). Table 10 shows

results for the best four combinations.

The period of the comb obtained from the selected combination is 7 _=14.5954yr (s_=0.0685 yrh),

starting at t | =1898.6815yr (¢ =0.1371). The measured standard deviation of Ois 6 =0.9950yr, and

the estimated distribution standard deviation is o =1.5066 yr.
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Figure 34. Spectral analysis of data from Mexico from 1899 to 2000. a) First pass, b) Second pass, c) Third pass, and
d) Fourth pass of Combination 2 that is the selected sequence. Conventions are the same as in previous
figures.

Thus, we would expect the next Meq27.4 event belonging to the sequence around
t .=2015.4445+3.0132 yr (with 95.45% confidence, g=2). The probability of random occurrence of

the sequence is P, =0.053, so that the sequence/comb probability is P =0.947.

The events belonging to the identified sequence are the same as the first eight events belonged to
the identified sequence in the previous analysis (1896-2015.5), and the aftcast clearly coincides with the

event occurrence in 2014.2932 yr. The aftcast error with respect to the actual occurrence time of the
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event is 1.151 yr less than the time given in the confidence interval; so that, the aftcast is considered

successful.

The identified sequence and the pdf of the forecast, p(t), are presented graphically in Figure 35,
together with the occurrence time of the event that occurred in 2014.2932, when the survival function

begins to decline and well before the hazard function of the forecast reaches its maximum value.
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Figure 35. Mexico aftcast. a) Aftcast based on the sequence identification shown in Figure 34d; same conventions
as in Figure 20. b) Close-up of the pdf, p(t), in thick red line, and the survival function of the forecast,

S(t), in dot- dash green line. c) Hazard function h(t) .

The results of the Bayesian evaluation are shown in Table 10. The occurrence of the aftcast event so
close to the forecast time, as in the Japan case, supports the semi-periodicity thesis, since posterior

probabilities are higher than prior ones, and probability gains are all greater than one.

From a prior probability of P =0.947, resulted in a posterior probability of Pr(A|B)=0.979, with the

updated semi-periodic probability for the nine events sequence PCU=O.971. We see that Bayesian

analysis gives a quite good approximation to the updated probability (it is smaller by only ~0.008).
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Table 10. Results of aftcast of the event occurred in 2014.2932, in Mexico, and the posterior comb probability and
probability gains.

Pr(A)
Pr(AlB)
L P, t, P, P
P 0.5 0.1
0.979 0.720 0.222
2015.4445 0.947 2014.2932 1.033 1.440 2.221 0.971

6.3 Test of the effects of possible errors in rounded magnitudes on forecasts

The magnitudes referred in catalogs are usually rounded to one decimal place because of the
uncertainties inherent in magnitude determinations, and in many cases magnitudes differ among
catalogs and among sources, so that rounded magnitudes may be in error by more than %0.1. Thus,
since the effects of possible errors in location and time are not significant, catalog magnitudes are the
main source of uncertainty for the labeled point process semi-periodicity analysis, because due to these
possible errors, there may be earthquakes erroneously excluded from, or included in, the analysis, and

the magnitude weights may be wrong.

We studied effects of possible rounding error in magnitudes with a Monte Carlo approach, adding
noise to the magnitudes listed in the catalogs, from ISCS-GEM, used for the analyses for Mexico and
Japan. Normally distributed noise was added to the original catalog magnitudes, and the resulting

magnitudes were rounded to obtain variations of the original catalogs.

N_=100000 realizations of modified catalogs were made to give a reliable statistical estimation,

with noise ¢ =0 and 6 =0.05, rounded to one decimal place. This standard deviation is sufficiently
large, because for both Japan and Mexico, all realizations resulted in catalogs that differed in some

aspect from the original one; the number of modified catalogs N =N .

Many of the Moment release episodes (MRE) time series resulting from the Nn modified catalogs
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were not equal to the original MRE time series; the number of MRE time series differing from the original

one were N_=97404 for Japan and N_=99994 for Mexico

Forecasts based on the N time series were determined in order to test whether the original

forecast was robust in the face of uncertainties in the magnitudes, by observing how many new forecasts
differed significantly from it. We consider that a given forecast differs significantly from the original one,
when the forecast times differ by more than 1/6 of the forecast period (the comb-event closeness

criterion used in the last pass of the analysis).

For Mexico N, =71742 realization resulted in forecasts very close to the original one, having mean
forecast time t  =2029.4121 yr, with 0,=0.2884 standard deviation, a mean that differs by only

At  =0.1678 yr (~0.01 of the sequence period) from the original forecast t =2029.5799 yr. Hence,

we are assured that the original forecast was not an artifact of a particular combination of data, and that

it is a robust estimation since the probability of obtaining essentially the same forecast in the face of

possible errors in the magnitudes is Pf =N, /Nm =0.7571

The robustness for the Japan original forecast is even better. N, =97404 realizations resulted in
forecasts very close to the original for all the MRE time series; so that the probability of obtaining

practically the same forecast given magnitude noise in the MRE time series is Pf =1. The mean of these
forecasts is t = =2039.8700 yr, and the standard deviation of the forecast values is 0, =0.1222. The
mean of the forecasts differs only by At =0.0301 yr (~0.0008 of the sequence period) from the original

forecast t =2039.9001 yr.

The above mentioned robustness estimates do not include the MRE time series that did not differ
from the original (N —N ), because they result in exactly the same forecast as the original one. If we
include these cases, the probability of having practically the same forecast when there is magnitude
noise in the catalog is Pf:(N0+Nn—Nm)/Nn, that is probability Pf=1 for Japan and Pf:0.7175 for

Mexico, which are extremely good confidence estimates.
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Chapter 7. Conclusions

7.1 About results

The semi-periodicity analysis method, modified to take into account the earthquake sizes, effectively
identified semi-periodic sequences within labeled occurrence time series of large earthquakes, with
results equal or better than the old version of the method. The weighting by magnitude introduced in
the analysis, and also the criterion to evaluate the weighting fit error for all possible event combinations,
were useful in selecting the best possible sequence. Also, the use of estimated population standard
deviation of semi-periodicity, instead of the measured one, resulted in more realistic occurrence time

forecasts.

We consider that sequences with less than four events and (usually) low non-randomness
probability, are not reliable. Hence, although more than one semi-periodic sequence was identified in
most study regions, only sequences with more than three events and high non-randomness probability

were considered as valid forecasts, and worth showing.

The identified semi-periodic sequence, in the Japan case, is constituted by four events and the

forecast is t =2039.9001%£1.5292 yr with P =0.992 . The semi-periodic sequence of Mexico is

constituted by nine events and the forecastis t =2029.5799+2.8842 yr with P =0.971.

The most notable case to illustrate the influence of the weights in the analysis, was the Japan case, in
which the event occurred in 2011.1890 (Meq =9.1) was the last event of the sequence identified in the
unlabeled analysis; but in the labeled analysis, the last event of the identified sequence was the one
occurred in 2003.73151 (Meq:8.3), and this choice resulted in a much better forecast. Aftcasts from

both labeled and unlabeled analyses were closer to the 2003.73151 event than to the 2011.1890 one;
this bolsters the assumption that this last event, which has a magnitude considerably higher than the

others belonging to the sequence, could really belong to another sequence with much longer period.



60

As in the Japan case, aftcasts done for Mexico, using the new method, were successful and the

posterior probabilities of the sequence, obtained through the Bayesian analysis, were high and very close

to the new PCU )

The tests of the effects of possible rounding error in magnitudes showed the robustness of our
forecasts, because in spite of noise in the magnitudes, that causes different events to be included in or
excluded from the analyses, or causes the same events to have different magnitudes and weights that

result in different spectra, most of the forecasts are very close to the corresponding noiseless ones.

7.2 About the method

The method is a mathematical/computational embodiment of the assumptions stated at the
beginning of this work; the main assumption is, of course, the existence of physical processes that
produce semi-periodic sequences of strong earthquakes. Experience shows that the method does find
semi-periodic sequences, supporting our main assumption, and the very high non-randomness

probabilities of the identified sequences further upholds it.

The method still includes some arbitrary aspects and parameters: the way in which study regions are
chosen, the parameters used for event association into MREs; the actual way in which magnitude
weights for the FT are assigned, the closeness criteria for discarding non-comb events at each pass, the
way of weighting for magnitude spread. These arbitrary aspects and values have been set to result in the

best and most reliable results.

The method is limited in its possible applications by the length and quality of seismic catalogs, which

for many regions are not long or homogeneous enough.

As before, the main limitation to forecasting using this method is that there is no assurance that the
identified sequences in fact correspond to physical semi-periodic processes that will continue to produce
large earthquakes with the same sequence periods. This is a limitation common to all statistical
methods: if the observed processes are changing in some unpredictable manner, all forecasts based on

their history will be useless.
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An important factor to consider is that the forecast of an earthquake indicated by some identified
sequence, does not imply at all that other earthquakes, not related to the given sequence, may not occur

at any time before, during, or after the forecast time.

7.3 Future work

We will continue to work on improvements to our method for identifying semi-periodic
sequences of large earthquakes, and the method will be applied to other interesting regions. If and when
a reliable short-term forecast is obtained; it will be presented to the international scientific community

for judging, and, if it is judged reliable enough, it will be communicated to the appropriate authorities.
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