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Resumen de la tesis que presenta Eduardo Garcı́a Ramı́rez como requisito parcial para
la obtención del grado de Doctor en Ciencias en Electrónica y Telecomunicaciones.

Eliminación de retardos en el tiempo para el análisis y control de una clase de
sistemas dinámicos con retardos

Resumen aprobado por:

Dr. Luis Alejandro Márquez Martı́nez
Director de tesis

Los resultados de este estudio cubren temas de linealización mediante cambio de
coordenadas y la aproximación a sistemas lineales libres de retardo. Primero, se presen-
tan resultados generales que demuestran que el uso de la aproximación por series de
Taylor truncada a partir de cierto orden en una ecuación diferencial con retardo lleva a
una ecuación diferencial ordinaria inestable. Considerando este problema, se introducen
aproximaciones libres de retardo que lidian con esta inconsistencia para la ecuación difer-
encial lineal de primer orden con retardo puro y para una clase de ecuaciones hereditarias
de segundo orden. Estos resultados permiten el uso de teorı́a de control para sistemas
sin retardo en el diseño de leyes de control y observadores de estados. Además, se
reportan contribuciones en la linealización de sistemas con retardos por medio de her-
ramientas de control geométrico y algebraico. En años recientes, una extensión para
sistemas hereditarios del corchete de Lie ha sido usada en la solución de diversos prob-
lemas de linealización. Se presenta in algoritmo eficiente para el cálculo iterativo de esta
operación geométrica. Además, herramientas algebraicas son usadas para establecer
condiciones constructivas para la equivalencia de sistemas no lineales con retardo, por
medio de cambios de coordenadas, a sistemas que son lineales excepto por una parte
no lineal que depende sólo de la entrada y la salida. Más aún, se dan condiciones para la
bicausalidad de esta transformación. Dicha representación es usada en el diseño de un
observador tipo Luenberger que permite el cálculo de los valores del estado en el pasado
o en el presente. Todos juntos, estos resultados permiten encontrar una representación
lineal sin retardos para una clase de sistemas no lineales observables con retardos en
el tiempo. Esto se hace linealizando el sistema mediante un cambio de coordenadas y
luego, de ser necesario, usando la aproximación por series de Taylor para encontrar una
representación libre de retardos. Esta estrategı́a permite el uso de teorı́a de control sin
retardos.

Palabras Clave: Sistemas con retardo, sistemas no lineales, eliminación de retardos,
observadores no lineales con retardos, aproximación por series de Taylor
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Abstract of the thesis presented by Eduardo Garcı́a Ramı́rez as a partial requirement to
obtain the Doctor in Science degree in Electronics and Telecomunications.

Time-delay Elimination for the Analysis and Control for a Class of Retarded
Dynamical Systems

Abstract approved by:

Dr. Luis Alejandro Márquez Martı́nez
Thesis Director

The aim of this work is the investigation of techniques for the simplification of nonlinear
time-delay systems. The outcomes of this study cover results of linearization throughout
coordinates transformation and approximation to delay-free linear systems. First, general
results are given that show that the use of Taylor series approximations truncated at a
given order on time-delay linear systems leads to unstable ordinary differential equations.
Considering this problem, Taylor-approximated delay-free differential equations that deal
with this inconsistency are presented for a pure-delay first-order differential equation, and
for a class of linear second order hereditary system. This result permits to design control
laws or state observers using linear delay-free control theory. Contributions are reported
on linearization using geometric and algebraic tools for time-delay systems. In the recent
years an extension of the Lie bracket, valid for hereditary systems, has been used in the
solution of several linearization problems. An efficient algorithm, developed in this work,
that computes this geometrical operation in an iterative manner is presented. Algebraic
tools are used to give constructive conditions for the equivalence of a time-delay nonlinear
system, via a change of coordinates, to a time delay system which is linear observable
except for a nonlinear part that depends on the input and the output only. Conditions are
also given to ensure the bicausality of this transformation. This representation is used
to design a Luenberger-type observer that allows the computation of the present or the
past values of the state variables. Altogether, these results permit to find a linear delay-
free representation for a certain class of observable time-delay nonlinear systems. This is
done by linearizing the time-delay nonlinear system via a change of coordinates and then,
if necessary, using a Taylor series approximation to find a delay-free representation. This
strategy allows the use of delay-free control theory.

Keywords: Time-delay, nonlinear systems, delay elimination, time-delay nonlinear
observers, Taylor series approximation
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Notation

Z+ Set of non-negative integers.

x(t) Vector of instantaneous system state.

xe Vector of instantaneous and delayed system state (xT (t) xT (t −

1) · · · xT (t− s′))T for a context-defined s′ ∈ Z+.

x[p,s] Denotes the list (x(t + p), . . . ,x(t − s)) for p, s ≥ 0. z[p,s], and u[p,s] are

defined in a similar way. x[s] denotes x[0,s].

ū Represents (uT (t), u̇T (t), . . . , (u(n−1)(t))T )T . ȳ is defined in a similar way.

χ(x[l])
∣∣
x[l](−j)

Defines χ(x(t− j),x(t− j − 1), . . . ,x(t− j − l)).

K Field of meromorphic functions of the symbols {x(t − i), u(t −

i), . . . , u(k)(t− i), i ∈ Z, k ∈ Z+}

K(δ] Non-commutative Euclidean (left) ring of polynomials with coefficients

over K, and indeterminate δ.

R[δ] Ring of polynomials in δ with coefficients in R

deg(·) deg(·) the polynomial degree in δ of its argument

E Defined as E = spanK{dx(t− i), du(t− i), . . . , du(k)(t− i), i ∈ Z, k ∈ N}.

d Symbol defined as the differential operator, that maps elements from K

to E .

M Left-module over the ring K(δ]: M = spanK(δ]{dξ | ξ ∈ K}.

Ω Represents the spanK(δ]{ωi(x, δ), i = 1, . . . , p} which is the module

spanned over K(δ] by the row vectors ω1(x, δ), ω2(x, δ), . . . , ωp(x, δ) ∈

Kn(δ].

diag(·) Represents the diagonal matrix constructed by the elements in the argu-

ment.

addcol(·) Operator that concatenate columns of the elements in the argument.
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Chapter 1. Introduction.

1.1 Time-Delay Systems Background.

A system whose evolution depends on its own behavior occurred in the past, is known

as time-delay system. The period of time that takes to a certain event of the past to

affect a given system is called time-delay. Time-delay systems are equally known as

hereditary, memory, retarded, aftereffect, or time-lag systems. This kind of systems is

studied using the theory of retarded differential equations (RDE) which are a particular

case of the so-called functional differential equations, also known as differential equations

with deviating argument. Sources of the aftereffect can be due to material transportation,

computational delays, retarded measurements of the variable, signal transmissions, the

hereditary physical nature of some components of the system, among others. Since the

early years of the twentieth century, the scientific community had already reported several

phenomena that presented different behaviors depending on the past history. This was

reported in the well-known congress article Picard (1908) where the author stated.

“Mechanics, as we mentioned earlier, was more or less explicitly considered as a non-

hereditary principle. We still accept this principle, at least as a first approximation, to study

inanimate nature, even though various phenomena show that the current state keeps a

record of past states.”

The speech given by Picard was considered by V. Volterra who, in his lessons Volterra

(1913), treated the concept of hereditary mechanics and traced applications of this kind

of systems to Boltzmann (1878). He also speculated about the possibility that this kind of

systems was also considered by Leibniz.

As pointed out in Hale (2006), where several important publications are enlisted, re-

tarded systems gained popularity at the end of the first half of the twentieth century, par-

ticularly in the soviet union, since aftereffects were observed in engineering problems.

The contributions in this field, due to the consideration of the memory effect, have been

growing until this days. At the beginning of the current century, Richard (2003) presented

several advances in the study of this kind of systems concerning stability, structural prop-

erties, and several approaches and tools. The attention given to the time-lag effect has
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been growing since it has been observed in several fields (engineering, chemistry, physics,

life science, economics, etc.). A large number of publications can be found covering ad-

vances in the topic as described in Erneux (2009). Stability, chaos, and periodicity of

single, and multi-species are presented in Kuang (1993). In Smith (2011) the delay effect

on dynamical models of virus transmission and bacteria growing is analyzed.

One way to deal with the analysis and control problem is to find if a given system is

equivalent, or may be approximated to a linear form. This approach permits to take ad-

vantage of the well-known properties from the linear system theory. In the case of the

delay-free framework, two different techniques are commonly used for the linearization of

nonlinear dynamical systems, Taylor series expansion of the state variables, and coordi-

nate transformations. The Taylor series expansion approach is a well-known strategy that

consists in approximating a function by a power series neglecting the higher-order terms.

The coordinate transformation, or change of coordinates methods, are mainly studied in

control theory by two different mathematical approaches, geometric, and algebraic. The

geometric control theory was introduced in the decade of 1970 to study linear systems

(see for example Wonham (1979)). Later on, the concepts created for linear systems

were taken to the nonlinear context, taking advantage of the mathematical theory of differ-

ential geometry. Important results in this field can be found in Isidori (1995). More recently,

the algebraic control theory takes advantage of differential algebraic tools to solve, among

other, linearization problems (see Conte et al. (2007)). In the time-delay framework, Taylor

series expansion, and geometric and algebraic theory have had different levels of success

in the solution of the problem. The use of Taylor series expansion to substitute the delayed

variable for delay elimination presents inconsistencies in the stability parametric regions,

see some examples in Insperger (2015). Nevertheless, aftereffect elimination problems,

for commensurable time-delay systems, have been successfully solved in the linear case

(Gárate-Garcı́a et al., 2011), and in the nonlinear case using algebraic and geometric

approaches (see e.g. Márquez-Martı́nez et al. (2002) for the algebraic approach, and

(Califano et al., 2010, 2011a; Califano and Moog, 2011; Califano et al., 2011b; Califano

and Moog, 2012b,a; Califano et al., 2013b; Califano and Moog, 2014) for the geometric

approach). The algebraic approach takes advantage of the properties given by the poly-

nomial ring defined using the so-called delay operator. Meanwhile, several meaningful

results reached by the geometric approach have been possible thanks to the development
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of an extension, for time-delay systems, of the Lie bracket, cornerstone operation on the

differential geometry based delay-free results.

The main objective of this thesis is to find conditions to allow the use of control and

analysis strategies already defined in the classical control theory framework. To achieve

this goal, the following strategy is proposed: first, find if the system is equivalent to a linear

delay system, if the resultant representation is a hereditary system, use the Taylor series

expansion approach to eliminate the delays. Second, use delay-free techniques for the

study, and control law design, and finally, go back to the original nonlinear coordinates.

According to the strategy proposed, the following particular objectives are formulated:

• Find constructive conditions for the equivalence of a nonlinear time-delay system

with a linear system, up to input-output injection, through a change of coordinates.

• For a linear time-delay system, using a Taylor series expansion techniques, find a

delay-free approximated linear dynamical system.

• Contribute in the computational simplification of the, recently extended, geometrical

tools for time-delay systems.

The main contributions of this work are structured as follows. General conditions are given

under which the Taylor series approximation of a family of linear delay differential equa-

tions is tractable. Analytical results state the degree of truncation for which the substitution

of the delayed variable, on a class of linear delay system, by its Taylor series approxima-

tion leads to an unstable ordinary differential equation (ODE). Moreover, Taylor series

approximations that deal with the inconsistencies reported in the literature are delineated

for the pure-delay first-order linear differential equation, and for a family of second-order

linear differential equations. Furthermore, contributions to the change of coordinates tech-

niques for delay elimination where made in the algebraic, and the geometric frameworks.

Algebraic tools are used to find a solution for the problem of linearization via input-output

injection, by means of causal and bicausal transformations. Contributions are made in

the geometric theory by the characterization of properties of the extended Lie bracket that

permit to construct an efficient algorithm for the effective computation of such a tool. Fi-

nally, delay-free results for the computation of the relative degree of nonlinear time-delay

systems are given.
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The diagram in Figure 1 links the contributions given in this thesis. In Figure 1 it is

shown that the given results are related with extensions of the order of the dynamics. This

relationship will be treated throughout this document.

Time-delay
Systems

Polynomial 
approach

Extended
time-delay
dynamics

Delay-free
approximated

systems
with extended

order

Truncated 
extended
dynamics

(approximation
in a bounded 

window)

Linearization
by input-output

injection

Extended
Lie bracket
effective

computation

Relative 
degree

computation

Approximation
defined from 
the forward
shifted RDE

Truncated
Taylor

expansion
of linear
systems

Contributions
in this work

Figure 1: Thesis contributions.

The main contributions of this work can be used to create a framework for the controller

or observer design for a nonlinear time-delay system. This is proposed in the following

manner. First, check if the nonlinear time-delay system can be linearized by a change

of coordinates, by means of elimination of the nonlinear part of the equation. If it is not

possible, the tools proposed in this work can not be used to solve the problem. If it is

possible, the system can be equivalent to a delay or a delay-free system. If the linear

representation of the system is delay dependent, approximate the linear retarded system

to a delay-free system. Now use techniques based on delay-free control theory for linear

systems. Finally, compute the controller or observer nonlinear form using the inverse

change of coordinates. This strategy is summarized in Figure 2.

1.2 Outline.

This document is organized as follows. Chapter 2 introduces the mathematical back-

ground, and recalls some results from the literature used in the rest of the thesis. This
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Nonlinear
Hereditary

System

Is the system
linearizable, up 

to nonlinear
elimination?

NO

YES Is the system, in
 the new coordinates, 

an hereditary 
system? 

NO

YES
Use Taylor series 
approximation

Dessign a control 
law and/or observer

for the delay 
free system

STOP

Use the inverse
transformation 
in the design

Transform 
the system

Figure 2: Controller-observer design via delay elimination.

includes the definition of the studied general system, as well as the considered observabil-

ity definitions. The concept of invertible change of coordinates as a non-causal invertible

transformation is recalled from Garcı́a-Ramı́rez et al. (2016) as a medium to compute co-

ordinates in the past time. Also, we present a review of the algebraic structure, and some

remarkable properties established in Márquez-Martı́nez et al. (2000); Xia et al. (2002),

constructed by the delay operator, as indeterminate, in the polynomial ring with meromor-

phic functions as coefficients. Finally, in this section, the geometric frame, constructed

for systems with aftereffect introduced by Califano et al. (2011a), is revised enumerating

some achievements in the topic of change of coordinates to canonical forms. Chapter 3

explains how Taylor series expansion can be used to generate a family of approximated

equations of a class of linear systems with delays. The importance of this class of equa-

tions lies in the presence of several engineering control systems that can be described by

this kind of equations (see for example Micheau and Kron (2001), Olgac et al. (2004), Liu

and Chopra (2012), Singh and Ouyang (2013), Ge and Orosz (2014), Wang et al. (2014),

Xiang et al. (2015), among others). The given results show that the stability regions of

the hereditary system and its approximation match locally in the parametric space. Also,

it is shown by numerical means that, even if the stability regions match exactly, a certain

degree of truncation is necessary for an accurate approximation. Chapter 4 describes the

relationship between the well-known step method, for the solution of functional differential

equations, with the extended space system proposed by Califano et al. (2011a). This ap-

proach is illustrative, among other things, to answer how initial conditions of the extended

system are settled. Also, taking advantage of the extended system structure, sufficient

conditions are presented to find the relative degree of a retarded dynamical system, by
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means of a finite dimensional system which is a delay-free version of the time-delay ex-

tended system, obtained by variable substitution and dimension truncation. At the end

of the chapter, an algorithm for the effective computation of the so-called extended Lie

bracket for time-delay systems is presented. This algorithm can be used to reduce the

number of operations in coordinate transformation problems as the enlisted in Section

2.4. Chapter 5 covers the problem of linearization via input-output injection via invertible,

and bicausal transformations. A constructive algorithm, introduced in Garcı́a-Ramı́rez

et al. (2016), is recalled to be used in the solution of the equivalence problem with a time-

delay system which is linear up to an injection function that depends on the input and

output variables only. Also, results for the effective computation of change of coordinates

are presented. The effectiveness of Luenberger-type observer design strategy, based on

the canonical form given by the algorithm, is illustrated through numerical solutions of

academic examples. Finally, conclusions and perspectives of this work can be found in

Chapter 6.
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Chapter 2. Mathematical Setting

This chapter deals with the mathematical background used into the rest of the docu-

ment. It is divided into four main topics. First, the system definition of the general heredi-

tary nonlinear system is presented. Definitions of weak and strong observability are given.

Next, Section 2.2 sets basic definitions and properties of the polynomial ring constructed

with the delay operator δ as indeterminate over the field of meromorphic functions. Sec-

tion 2.3 covers the topic of the invertible and bicausal changes of coordinates. A formal

definition is given to the concept of invertible change of coordinates, which is an invertible

transformation whose inverse is not necessarily causal. On the other hand, bicausality in

the transformation ensures the computation of the present state of the system. Finally,

Section 2.4 is devoted to the geometrical background.

2.1 Systems Under Study

The commensurable time-delay systems considered in this work can be represented

by the equations

ẋ(t) = f(x(t), . . . ,x(t− sτ)) +
s∑
j=0

gi(x(t), . . . ,x(t− sτ))u(t− jτ)

y(t) = h(x(t), . . . ,x(t− sτ)),

(1)

where the function of initial conditions ϑ : [−sτ , 0]→ Rn is assumed to be continuous. The

variables x(t) ∈ Rn, y(t), u(t) ∈ R denote, respectively, the instantaneous values of the

state, output, and input functions. Without loss of generality, after rescaling, the constant

base delay τ can be set equal to 1.

The following notation is taken from Califano et al. (2011a): K denotes the field of mero-

morphic functions of the symbols {x(t − i), u(t − i), . . . , u(k)(t − i), i ∈ Z, k ∈ Z+}; d

is the differential operator that maps elements from K to E = spanK{dx(t − i), du(t −

i), . . . , du(k)(t − i), i ∈ Z, k ∈ N}. Using the time-shift operator δ as indeterminate, the

non-commutative Euclidean (left) ring of polynomials with coefficients over K is denoted

as K(δ]; R[δ] is the ring of polynomials in δ with coefficients in R. M is defined as the

left-module over the ring K(δ]: M = spanK(δ]{dξ | ξ ∈ K}. Let us define for p, s ≥ 0,

by (x[p,s]) = (x(t + p), . . . , x(t − s)); (z[p,s]), and (u[p,s]), are defined similarly. We will
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use x[s] for x[0,s]. Define ū = (uT (t), u̇T (t), . . . , (u(n−1)(t))T )T , and ȳ is defined in a simi-

lar way. For simplicity y(t), x(t), and u(t) will stand for y[0], x[0] and u[0]. Consider also

f̄(x[l]) |x[l](−j):= f̄(x(t − j),x(t − j − 1), . . . ,x(t − j − l)). Then, it is possible to rewrite

equation (1) as

ẋ(t) = f(x[s]) +
s∑
j=0

gj(x[s])u(t− j)

y(t) = h(x[s]).

(2)

A fundamental concept for this work is the time-shift operator which is defined as follows:

Definition 1 Let χ(t) be a function. The time-delay operator δ acts on χ(t) in the following

way

δαχ(t) = χ(t− α), α ∈ Z+.

The time-shift operator δ acts over the elements of E as follows: if a(·), f(·) ∈ K, then

δ(a(t)df(t)) = a(t− 1)δdf(t) = a(t− 1)df(t− 1). �

The differential-form representation of (2) is given by

dẋ(t) = F (x[s],u[s], δ)dx(t) +G(x[s], δ)du(t), (3)

and

dy(t) = H(x[s],u[s], δ)dx(t), (4)

where

F (x[s],u[s], δ) =
s∑
i=0

(
∂f(x[s])

∂x(t−i) +
∑s

j=0 u(t− j)∂gj(x[s])

∂x(t−i)

)
δi,

G(x[s], δ) =
s∑
j=0

gj(x[s])δ
j,

H(x[s],u[s], δ) =
s∑
i=0

∂h(x[s])

∂x(t−i)δ
idx(t).

(5)
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Let us consider the definition of the extended Lie derivative for nonlinear time-delay sys-

tems expressed in Zheng et al. (2011) as

Lfh(x[s]) = L1
fh(x[s]) =

s∑
i=0

∂h(x[s])

∂x(t− i)
δif(x[s]), (6)

and Llfh(x[s]) is defined as the l-th extended Lie derivative. The observability matrix is

established as

O(x[s], δ)dx[0] =


dh(x)

dLfh(x[p])
...

dLn−1
f h(x[p])

 =


dy

dẏ
...

dy(n−1)

 . (7)

The characterization of the algebraic observability property is stated by the next definitions

(Califano et al. (2013b))

Definition 2 System (2) is said to be weakly-observable if the matrix O has full rank

around x[0]. �

Definition 3 System (2) is said to be strongly observable if the matrix O is unimodular

around x[0]. �

Let us consider the input-output representation of the form

ψ(y
(n)
[s] ,y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s]) = 0. (8)

The next notation is taken from Halás and Anguelova (2013).

Let us define the r dimensional vector (ν1, . . . , νr) := (ν1 . . . νr)
T ∈ Kr, and let ∂(ν1,...,νr)

∂x
∈

Kr×n(δ] denote the matrix with entries

(
∂(ν1, . . . , νr)

∂x

)
j,i

=
s∑
ι=0

∂νj
∂xi(t− ι)

δι ∈ K(δ]. (9)
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The observability index d̄ is defined as the least nonnegative integer that fulfills

rankK(δ]
∂(H, . . . , H(d̄−1))

∂x
= rankK(δ]

∂(H, . . . , H(d̄))

∂x
, (10)

with d̄ ≤ n.

Definition 4 Let d̄ be the observability index. Then, the input-output equation (8) is said

to be retarded if

∂ψ(·)
∂y(d̄)(t− i)

= 0

for all i ≥ 1.

Definition 5 (Halás and Anguelova (2013)) Let d̄ be the observability index then, the

input-output equation (8) is said to be neutral if there exist i1 6= i2 such that

∂ψ(·)
∂y(d̄)(t− i)

6= 0, for i = i1, i = i2

2.2 Algebraical Setting

In this section, concepts, and definitions of the algebraic framework used in this thesis

are established. Using the time-shift operator δ as indeterminate, the elements of K(δ]

may be written as α(δ] =
∑rα

i=0 αi(t)δ
i, with αi ∈ K, and rα = deg(α(δ]). The operations

addition and multiplication for the non-commutative Euclidean (left) ring of polynomials

with coefficients over K, K(δ], are defined by

α(δ] + β(δ] =

max{rα,rβ}∑
i=0

(αi(t) + βi(t))δ
i,

and

α(δ]β(δ] =
rα∑
i=0

rβ∑
j=0

αi(t)βj(t− i)δi+j
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A matrix M(x[p,s], δ) ∈ Kn×n(δ] is called unimodular if it has a polynomial inverse. It is

called polymodular if there exists a polynomial matrix M ′(x[p,s], δ) such that

M(x[p,s], δ)M
′(x[p,s], δ) = diag(δk1 , . . . δkn),

for some ki ∈ Z+.

The right-module spanned over K(δ] by the column vectors r1(x, δ), . . . , rp(x, δ) ∈ Kn(δ] is

represented ∆δ = spanK(δ]{r1(x, δ), . . . , rp(x, δ)}.

Example 1 Consider the function χ(t) = x2(t − 1)x(t − 2) ∈ K, the differential operator d

acts on χ(t) as

dχ(t) = 2x(t−1)x(t−2)dx(t−1)+x2(t−1)dx(t−2) =
(
2x(t− 1)x(t− 2)δ + x2(t− 1)δ2

)
dx(t).

In this way, 2x(t − 1)x(t − 2)dx(t − 1) + x2(t − 1)dx(t − 2) ∈ E can be expressed as an

element ofM since
(
2x(t− 1)x(t− 2)δ + x2(t− 1)δ2

)
dx(t) ∈ spanK(δ]{dx | x ∈ K}, where

2x(t− 1)x(t− 2)δ + x2(t− 1)δ2 ∈ K(δ]. J

The following properties can be identified for the ring K(δ], ∀a(x[s], δ), b(x[s], δ) ∈ K(δ]

(Márquez-Martı́nez et al., 2000; Xia et al., 2002).

• Ore Ring: ∃α(x[s], δ), β(x[s], δ) ∈ K(δ] such that

α(x[s], δ)a(x[s], δ) = β(x[s], δ)b(x[s], δ). (11)

• Integral ring: a(x[s], δ)b(x[s], δ) ≡ 0 implies a(x[s], δ) ≡ 0, or b(x[s], δ) ≡ 0.

• Euclides division: ∃q(x[s], δ), r(x[s], δ) ∈ K(δ] with deg(r(x[s], δ) < deg(q(x[s], δ)) such

that

a(x[s], δ) = q(x[s], δ)b(x[s], δ) + r(x[s], δ). (12)

• Bezout identity: if a(x[s], δ), and b(x[s], δ) are prime relative, ∃q(x[s], δ), p(x[s], δ) ∈ K(δ]
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such that

p(x[s], δ)a(x[s], δ) + q(x[s], δ)b(x[s], δ) = 1 (13)

Considering such properties, it is always possible to find unimodular matrices P (x[s], δ) ∈

Kn×n(δ], Q(x[s], δ) ∈ Km×m(δ] such that a matrix A(x[s], u[s], δ) ∈ Kn×m(δ] can be expressed

as the matrix product

A(x[s], u[s], δ) = P (x[s], δ)Ŝ(x[s], u[s], δ)Q(x[s], u[s], δ) (14)

with Ŝ(x[s], u[s], δ) ∈ Kn×m(δ] defined as follows

Definition 6 Let n̄ ∈ Z+. It is said that a matrix Ŝ(x[s], u[s], δ) ∈ Kn×m(δ] is in the Smith

pre-form if it has the structure

Ŝ(x[s], u[s], δ) =



α1,1(x[s], δ) α1,2(x[s], δ) · · · α1,n̄(x[s], δ) 0 · · · 0

0 α2,2(x[s], δ) · · · α2,n̄(x[s], δ) 0 · · · 0
...

... . . . ...
... · · · 0

0 0 · · · αn̄,n̄(x[s], δ) 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
... · · · ...

0 0 · · · 0 0 · · · 0


. (15)

Let us end this section with the notion of normalized vector, which will be used in the

sequel.

Definition 7 Let λ(x, u, δ) = [λ1, · · · , λn] ∈ Kn(δ]. λ is called a normalized covector if for

λi = 0, with i ∈ [1, j − 1], λj = 1 , j = 1, . . . , n.

This means that the first nonzero element of ? is 1.
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2.3 Invertible Change of Coordinates

The concept of change of coordinates is of significant importance in automatic control

theory on account of the canonical representations that simplifies the analysis of dynami-

cal control systems. In this section, the concepts of invertible change of coordinates and,

as a particular case, bicausal change of coordinates are discussed.

Definition 8 Given the system defined by (2), z(t) = φ(x[p,s]) is an invertible change of

coordinates if there exists a differentiable function φ̄(z[p′,s′]) ∈ K, p, s, p′, s′ ∈ N, such that

φ̄(z[p′,s′]) |z(t)=φ(x[p,s])= x(t). �

To the invertible change of coordinates z(t) = φ(x[p,s]) we can associate a list of integers

ri = max{l ∈ Z | ∂φi(x[p,s])

∂x(t−l) ≡ 0}. Its differential representation can be written as

diag (δr1 , . . . , δrn) dz(t) = N(x[s̄], δ)dx(t).

For the inverse transformation, the corresponding indices are defined by ki = max{l′ ∈ Z |
∂φ̄(z[p′,s′])

∂z(t+l ′)
≡ 0}. The differential representation is

dx[0] = Ñ(z[p′,s′], δ)


dz(t+ k1)

...

dz(t+ kn)

 .

Consequently

diag (δr1 , . . . , δrn) dz(t) = N(x[0,s̄], δ)|x=ψ(z[p′,s′])
Ñ(z[p′,s′], δ)


dz(t+ k1)

...

dz(t+ kn)

 .

It follows that its

diag
(
δr1+k1 , . . . , δrn+kn

)
= N(x[p̄], δ)|x=ψ(z[p′,s′])

Ñ(z[p′,s′], δ)

differential representation is characterized by a polymodular matrix.
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Definition 9 Given the system defined by (2), z(t) = φ(x[s]) is a bicausal change of

coordinates if there exists a differentiable function φ̄(z[s′]) ∈ K, s, s′ ∈ N, such that

φ̄(z[s′]) |z(t)=φ(x[s])= x(t). �

Note that if p = j = 0, in Definition 8, the transformation is a bicausal change of coor-

dinates, and the associated differential representation is characterized by a unimodular

matrix.

2.4 Geometrical Settings

In this section, the mathematical framework of tools developed as an extension of the

geometrical control theory is presented. In particular, the extended Lie bracket introduced

in Califano et al. (2011a) has been the cornerstone for the solution of problems concern-

ing change of coordinates to useful canonical forms for the control theory. The problem

of equivalence of 1, under a bicausal change of coordinates, to a linear strongly con-

trollable system is solved in Califano et al. (2010), while the case for equivalence with a

weakly controllable system is attacked in Califano et al. (2011a). Solvability conditions for

the case of nonlinear feedback linearization are provided in Califano and Moog (2011).

Furthermore, the concept of accessibility is used in Califano and Moog (2012b) to find

a delay-free representation of the system. It is known that single-input driftless systems

without delays are not accessible when its dimension is higher than one. In Califano et al.

(2013a) it is shown that for time-delay systems this is not the case, and a characterization

of accessibility is made using the extended geometrical tools. Results on the equivalence

via a bicausal change of coordinates to an observable weakly and strongly observable

linear system up to input-output injection are presented in Califano et al. (2011b). The

same problem is solved in Califano and Moog (2014) with the additional consideration of

output transformation.

Consider the definition of the extended Lie bracket for time-delay systems.

Definition 10 Let r1(x,u, δ) =
∑s

j=0 rj1(x,u)δj, and r2(x,u, δ) =
∑s

j=0 rj2(x,u)δj. The
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Table 1: Results on the change of coordinates reported in the literature using geometrical tools.

System is equivalent to the form Characteristics of the system
Strongly controllablea.

ż(t) =
s∑
i=0

Aiz(t− i) +
s∑
i=0

Biu(t− i) Weakly controllableb.

By feedback linearizationc.

ż(t) =
s∑
i=0

Aiz(t− i) + ϕ(y[s],u[s]) , Weakly observabled.

y(t) =
s∑
i=0

Ciz(t− i)

ż(t) =
s∑
i=0

Aiz(t− i) + ϕ(ȳ[s],u[s]), Weakly / strongly

ȳ(t) =
s∑
i=0

Ciz(t− i) = ϕ̄(y[s]) observablee.

ż1(t) =
s∑
i=0

Aiz1(t− i) +
s∑
i=0

Biu(t− i) by means of

ż2(t) = η(x1,[s],x2,[s]), a feedback input

y(t) =
s∑
i=0

Ciz1(t− i) u(t) = α(x[s]) + β(x[s])v(t)f

aCalifano et al. (2010), bCalifano et al. (2011a), cCalifano and Moog (2011),
dCalifano et al. (2011b), eCalifano and Moog (2014), fCalifano and Moog (2012a)

extended Lie bracket [rk1(·,u), rk2(·,u)]Ei ∈ R(i+1)n, i ≥ 0 is defined as:

[
rk1(·,u), rl2(·,u)

]
Ei

=
min(k,l,i)∑

j=0

(
[
rk−j1 (·,u), rl−j2 (·,u)

]
E0

)T |(x(−j),u(−j))
∂

∂x(t−j) (16)

with:

[
rk1(·,u), rl2(·,u)

]
E0

=
k∑
i=0

∂rl2(x,u)

∂x(t−i) rk−i1 (x(−i),u(−i))−
l∑

i=0

∂rk1(x,u)

∂x(t−i) rk−i2 (x(−i),u(−i)) (17)

where l, k, i ∈ {0, 1, . . .}. �

Some properties of the extended Lie bracket are:

P.i. Skew symmetry.
[
rk1(·,u), rl2(·,u)

]
Ei

= −
[
rl2(·,u), rk1(·,u)

]
Ei
.

P.ii. Let k ≤ l, k ≤ γ, γ ≤ 0

[
rk1, r

l
2

]
Eγ

=
[
rk1, r

l
2

]
Ek

=
k∑
j=0

(
[
rk−j1 (·,u), rl−j2 (·,u)

]
E0

)T |(x(−j),u(−j))
∂

∂x(t−j) (18)
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P.iii. Let γ̂ ≥ k + ps ≥ 0, k ≤ l

[
rk+ps

1 , rl+ps2

]
Eγ̂

=
[
rk+ps

1 , rl+ps2

]
Ek+ps

=
k∑
j=0

(
[
rk−j1 (·,u), rl−j2 (·,u)

]
E0

)T

∣∣∣∣∣
(x(−ϑ))

∂
∂x(t−ϑ)

, (19)

where ϑ = j + ps, k ≥ s

P.iv. Let k ≤ l, k ≤ γ, γ ≤ 0

[
rk1, r

l
2

]
Eγ

=
[
rk1, r

l
2

]
Ek

= 0, l − k > 2s (20)

The set of vectors rj(x, δ) =
∑s

i=0 rji (x)δj, i = 1, . . . p, are associated now with the infinite

dimensional array Γ = addcol (Γ1, . . . ,Γp) where

Γi =



r1
i (x) · · · rsi (x) 0 · · · 0 · · · · · ·

0 r1
i (x(−1)) · · · rsi (x(−1)) 0 · · · 0 · · ·

... . . . . . . · · · . . . . . . ...

0 · · · 0 r1
i (x(−q)) · · · rsi (x(−p)) 0 · · ·

... · · · ... . . . . . . · · · . . . . . .


, (21)

with i = 1, . . . , p. The columns of Γ form an infinite dimensional distribution

∆∞(x[s]) =




r1
1(x)

0
...

 ,


r2

1(x)

r1
1(x(−1))

...

 , . . . ,


r1
p(x)

0
...

 ,


r2
p(x)

r1
p(x(−1))

...

 , . . .

 (22)

The elements of this space can be finitely represented, generating the rest of the elements

by time, and row shifts, through the finite number of the infinite dimensional vectors r̄jl (x) =∑j
i=0 rj−il (x(−i)) ∂

∂x(t−i) .



18

Consider the finite dimensional distributions

∆i(x[s]) = spanK

{
r̂γk(x[s]) =

γ∑
l=0

(
rγ−lk (x(−l))

)T
∂

∂x(t−l) , k ∈ [1, j], γ ∈ [0, i]

}
,

∆′i(x[s]) = spanK

{
r̂′γk (x[s]) =

min(γ,l)∑
l=0

(
rγ−lk (x(−l))

)T
∂

∂x(t−l) , k ∈ [1, j], γ ∈ [0, i+ s]

}
,

(23)

with elements defined on R(i+1)n, for i ∈ Z+. By construction ∆i ⊆ ∆′i. Let ρi =

rank(∆′(x[s]). Therefore, ∆′(x[s]) = span{υ1, . . . , υρi} ⊂ R(i+1)n is not singular around

x0. Note that ∆i, and ∆′i are endowed by a finite number of dimensional truncated column

elements of ∆∞. The extended Lie bracket is defined over the elements on ∆i, r̂γ1(x[s])

and,̂rβ2 (x[s]) as

[
r̂γ1(x[s]), r̂

β
2 (x[s])

]
=

∂r̂β2 (x[s])

∂xe
r̂γ1(x[s])−

∂r̂γ1 (x[s])

∂xe
r̂β2 (x[s]). (24)

Note that this definition is the well-known Lie bracket for delay-free vector spaces including

the delayed variables. This implies that a Lie algebra can be constructed using the Lie

bracket on the extended space defined above. The same can be said for ∆′i. However, it

is important to point out that the extended Lie bracket (16) defined over vectors in Kn(δ]

does not characterize a Lie algebra since the target set is R(i+1)n. Furthermore, the Jacobi

identity is not fulfilled.
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Chapter 3. Taylor–Series Approximation for a Class of

Retarded Dynamical Systems

The objective of this chapter is twofold. First, recall stability conditions for a class of

linear time-delay systems, and, second, to deal with an approximation based on a Tay-

lor expansion of linear time-delay differential equations. The purpose of such strategy

is aimed to the design of feedback control inputs. The use of approximations for this

purpose is a widely used strategy for selection of a feedback control law for this kind of

problem (Paraskevopoulos and Samiotakis (1994); Leipholz and Abdel-Rohman (1986);

Seborg et al. (2010)). Nevertheless, instability of the approximated system notwithstand-

ing the stability of the original time-delay system are reported in Mazanov and Tognetti

(1974), Driver (1977), and Insperger (2015) for the Taylor series approximation, and in

Silva et al. (2001) for the Padé approximation. In the following sections, a strategy to deal

with the decision for the selection of coefficients for a control feedback law is proposed us-

ing the Taylor series of the delayed and advanced variables on the time-shifted time-delay

differential equation. In this approach, the stability region of the approximation of the time-

shifted time-retarded system is chosen to be a subset of the stability region of the original

time-delay equation. This is done by the selection of the time-shift. The results presented

in this chapters are used in the following chapters to find a delay-free approximated dy-

namics to allow the use of no-hereditary system theory. However, the analysis of such

techniques has an importance in itself. The following motivational example is presented.

Consider the linearized equation (taken from Stépán (1989)) of the single degree of

freedom mechanical system subjected to a delayed following force defined as

ml2q̈(t) + (s− Fl)q(t) = −Flq(t− τ), (25)

where q represents the general coordinate, which is the angle with respect to the vertical

axes, s is the torsional stiffness at the pin, m represents the mass at the end of the rod, τ

is the constant time-delay of the bar angle, and F corresponds to the constant magnitude

of the control input force. Note that, the feedback control law depends on the values at

the past of the angle of the bar. This delay may be caused by a delayed measurement,
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transportation delay, or computational delay of the angle q. To find a value for the param-

Figure 3: Mechanical system.

eter F which defines a stable solution for the equation (25) it is possible to use the next

result taken from Cahlon and Schmidt (2004). Consider the time-delay system given by

the equation

ÿ(t) = p1ẏ(t) + p2ẏ(t− τ) + q1y(t) + q2y(t− τ). (26)

It is assumed that p1p2 ≥ 0 and q1q2 < 0, and set A = τp1, B = τ 2q1, C = τp2, and

D = τ 2q2. Consider the next result from Cahlon and Schmidt (2004).

Theorem 1 Assume A = C = 0, and D > 0 in equation (26). Then the zero solution of

(26) is asymptotically stable if and only if B < 0, and there exists k ∈ Z+ such that

• 2kπ <
√
−B < (2k + 1)π, and

• D < min (−(2k)2π2 −B, (2k + 1)2π2 +B).

This means that Theorem 1 establishes a stability region for the asymptotic stability of the

system given by the equations

ÿ(t)− q1y(t)− q2y(t− τ) = 0 (27)

with q2 > 0. A particular useful stability region for this work is the one defined by 0 <
√
−B < π and D < min (−B, π2 +B), i.e. k = 0. In Figure 4, this region is presented for

τ = 1 units of time, and the index k = 0.
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Instable 

Stable

Instable 
Stable

Figure 4: Stability region for a class of second-order linear time-delay system.

From Theorem 1 stability regions for the mechanical system (25) are defined by the

next corollary

Corollary 2 The zero solution of (25) is asymptotically stable if and only if − (s−Fl)τ2

ml2
< 0,

and there exists k ∈ Z+ such that

• 2kπ <
√

(s−Fl)τ2

ml2
< (2k + 1)π, and

• − F
ml
< min

(
−(2k)2π2 + (s−Fl)τ2

ml2
, (2k + 1)2π2 − (s−Fl)τ2

ml2

)
.

Corollary 2 establishes a stability region for the parameter F for equation (25). Neverthe-

less, despite that the stability regions are defined, the behavior of the system, once the

selection of F fulfills the stability conditions, can not be defined only by this result. The

study of approximations to linear delay-free systems is a possible solution for this problem.

3.1 Taylor Expansion of the Linear first-order Pure-Delay System.

In this section the dynamical system given by the equation

ẋ(t) = −ax(t− τ) (28)

is considered, with a a real number. The following theorem is taken from Matsunaga

(2007).
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Theorem 3 The zero solution of (28) is asymptotically stable if and only if

0 < a <
π

2τ
. (29)

A strategy that can be followed to approximate equation (28) is by means of the Taylor

series expansion of the delayed variable x(t− τ) defined as

x(t− τ) ' x(t)− τ ẋ(t) +
τ 2

2!
ẍ(t)− τ 3

3!
x(3)(t) + . . . (30)

The accuracy of this approach is questioned by the fact that, if more than three terms of

the Taylor series (for this particular equation) are taken, the resulting equation is unstable.

This inconsistency implies that for a truncation of order higher than two the system is no

longer an approximation of the original system. Furthermore, as it is shown in Table 2, the

stability regions for lower truncations do not match with the one given by Theorem 3.

Table 2: Stability regions of several truncations of the delayed variable Taylor approximation.

Equation Stability regions
ẋ(t) = −a (x(t)) a > 0

ẋ(t) = −a (x(t)− τ ẋ(t)) 0 < a < 1
τ

ẋ(t) = −a
(
x(t)− τ ẋ(t) + τ2

2!
ẍ(t)

)
0 < a < 1

τ
= 2

2τ

ẋ(t) = −ax(t− τ) 0 < a < π
2τ

ẋ(t) = −a
(
x(t)− τ ẋ(t) + τ2

2!
ẍ(t)− τ3

3!
x(3)(t)

)
Unstable

and truncations of higher order

The inconsistency in the stability regions mentioned above raises the discussion about

the possibility of use of the Taylor series expansion to find a free of delay approximation

for linear hereditary systems. In the following sections, it will be introduced a strategy,

based on Taylor series approximations combined with the use of the advance operator,

that shows a wider range of consistency in the stability regions.
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3.1.1 Taylor Approximation of the Advanced Pure-Delay First-Order Linear System

Shifted by the Amount of the Delay.

In this section the Taylor series expansion of the advance variable x(t+ τ) is proposed

instead of the expansion of the delayed variable. This is done by the use of a time advance

shift on the equation 28. Let us rewrite equation (28) as

ẋ(t+ τ) + ax(t) = 0. (31)

Consider the expansion given by

x(t+ τ) = x(t) + τ ẋ(t) +
τ 2

2
ẍ(t) +

τ 3

6
x(3)(t) + . . . . (32)

If (32) is substituted into the equation (28), the Taylor series expansion truncation by the

first, second, and third order differential equation and using the Routh-Hurwitz criterion

the resultant stability conditions are presented in Table 3.

Table 3: Stability regions for the fordwarded τ shift variable Taylor series approximation.

Equation Stability conditions
τ ẍ(t) + ẋ(t) + ax(t) = 0 a > 0

τ2

2
x(3) + τ ẍ(t) + ẋ(t) + ax(t) = 0 0 < a < 2

τ
τ3

6
x(4) + τ2

2
x(3) + τ ẍ(t) + ẋ(t) + ax(t) = 0 0 < a < 4

3τ

From this results the following result is stated

Proposition 4 If the system described by the equation

τ 3

6
x(4) +

τ 2

2
x(3) + τ ẍ(t) + ẋ(t) + ax(t) = 0 (33)

is asymptotically stable, then system (28) is asymptotically stable.

Note that, for a fifth order expansion the resultant system is unstable as can be seen
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in system

τ 6

720
x(7)(t) +

τ 5

120
x(6)(t) +

τ 4

24
x(5)(t) +

τ 3

6
x(4)(t) +

τ 2

2
x(3)(t) + τ ẍ(t) + ẋ(t) + ax(t) (34)

that has the Routh-Hurwitz array



τ6

720

... τ4

24
τ2

2
1

τ5

120

... τ3

6
τ a

τ4

72

... τ2

3
−aτ−6

6
0

− τ3

30

... aτ2+4τ
10

a 0

aτ3+12τ2

24

... aτ+4
4

0 0

a2τ3+18aτ2+56τ
10aτ+120

... a 0 0


.

Since − τ3

30
< 0 is always true, this array has a change of sign on the fourth row so the

system (34) is unstable despite the stability of (28).

3.1.2 Taylor Approximation by Forward Shifting a Half of the Delay.

The stability analysis of the approximation of the equation (35) is valid only on the

interval 0 < a < 8/3
2τ

. In contrast, the stability interval presented by equation (28) has an

stability interval defined on 0 < a < π
2τ

. Now equation (28) is time-shift advanced resulting

in the equation

ẋ(t+
τ

2
) + ax(t− τ

2
) = 0. (35)

Substituting the advanced and delayed variables by their corresponding Taylor series, up

to order 2, the new expression is written as

τ 2

8
x(3)(t) +

(
τ

2
+ a

τ 2

8

)
ẍ(t) +

(
1− aτ

2

)
ẋ(t) + ax(t). (36)
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The Routh-Hurwitz array is described by


τ2

8

... 1− aτ
2

aτ2

8
+ τ

2

... a

−a2τ2+4aτ−8
2aτ+8

... 0

a
... 0

 .

From the Routh-Hurwithz criteria, the stability conditions for (36) are given by the inequal-

ities

a > 0

τ 2a2 + 4τa− 8 < 0,

and then

0 < a <
−4 + 4

√
3

2τ
. (37)

Which is a subset of the stability region of the original time-delay system. This conditions

allows to state the following result.

Proposition 5 If the system described by the equation (36) is asymptotically stable, then

system (28) is asymptotically stable.

Proof. The sufficiency is given since (37) defines a subset of the stability conditions of

the pure-delay first-order system given in Theorem 3.

3.1.3 Taylor Approximation by Forward Shifting a Customized Fraction of the De-

lay.

As it can be seen in the previous sections, the accuracy of the stability region of the

Taylor expansion approximation is improved, with respect to the original time-delay equa-

tion (28), by shifting forward a fraction of the delay. In this section, it is proved that the

stability regions of the original, and approximate equations can be paired enough by a

proper choice of the delay fraction to be advanced.
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Let us time-shift equation (28) by τ
κ
. Equation (28) is rewritten then as:

ẋ(t+
τ

κ
) + ax(t− τ +

τ

κ
) = 0, (38)

where τ ≥ τ
κ
.

At this point it is important to show that, even if the stability parametric regions match

exactly, the truncation order affects the accuracy of the approximation. Consider the Taylor

series expansion truncated at the second element of equation (38) described as

τ

κ
ẍ(t) +

(
1− aτ κ− 1

κ

)
ẋ(t) + ax(t) = 0 (39)

Consider now the following Lemma

Lemma 6 Consider system (39), and let a0 ∈ R, τ ∈ R+. Then, there exists only one

k = κ̄ ∈ R for which necessary and sufficient conditions for the asymptotic stability of (39)

are defined by the inequality

0 < a <
π

2τ
. (40)

Proof. By Routh-Hurwitz criteria, necessary and sufficient conditions for the asymptotic

stability of (39) are given

τ
κ

> 0,(
1− aτ κ−1

κ

)
> 0,

a0 > 0,

That implies κ > 0, and

−aτ(κ− 1) > −κ.



27

There exist three possibilities κ < 1, κ = 1, and κ > 1. For κ < 1, 1− κ > 0, and then

a > − κ

1− κ
1

τ
,

where κ
1−κ

1
τ

is positive. Such a choice implies stability conditions a0 > 0 > − κ
1−κ

1
τ

that are

not the ones proposed by Lemma 6. κ = 1 implies the same stability condition a0 > 0 and

correspond to the case of equation (35). For κ > 1 the inequality

a <
κ

κ− 1

1

τ

stands. This means that, conditions for the stability of (38) can be stated as

0 < τ <
κ

κ− 1

1

τ
.

Since κ
κ−1

1
τ

= π
2

has only one solution, assigning κ̄ = κ = π
π+2

, the proof is completed.

Lemma 6 states that the stability regions of equations (28), and (39) are equal. Notwith-

standing, in Figure 5, where numerical solution of both equations are displayed, it is shown

a notable difference between the original equation and the approximated one even if the

stability regions match. Numerical solutions presented on Figure 5 consider values of

τ = 1, κ = π
π+2

and several values of the parameter a. Note that, to establish a relationship

with the solution of (38), the solution of the differential equation (28) is time-shifted π+2
π

units of time.

As it is shown later on, if a higher number of elements of the truncated expansion are

0 5 10 15 20
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−5

0

5

10

time t

x
(t
)

(a) Solution for a = π
2

0 5 10 15 20
−10

−5

0

time t

(b) Solution for a = π
4

0 5 10 15 20
−10

−8

−6

−4

−2

0

time t

x(t)

x(t) aproximation

(c) Solution for a = π
20

Figure 5: Truncation at second element of the Taylor series for a customized forward shift.

admitted, the approximated signal presents an smaller error with respect to the signal from
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the time-delay system.

Consider a truncation at the third element of the Taylor series expansion on system (38)

that lead to the delay-free differential equation

τ 2

2κ2
x(3)(t) +

(
a
(
τ
κ
− τ
)2

2
+
τ

κ

)
ẍ(t) +

(
a
(τ
κ
− τ
)

+ 1
)
ẋ(t) + ax(t) = 0. (41)

The following proposition is formulated about the asymptotic stability of system (41).

Proposition 7 Consider system (41), let a0 ∈ R, τ ∈ R+. Then, there exists k = κ̄ ∈ R for

which necessary and sufficient conditions for the asymptotic stability of (41) are defined

by the inequality

0 < a <
π

2τ
. (42)

Proof. The proof comes from the Routh-Hurwitz criteria on the equation on (41). The

Routh-Hurwithz array of equation (41) is



τ2

2κ2

... a
(
τ
κ
− τ
)

+ 1

a( τκ−τ)
2

2
+ τ

κ

... a

−(a2κ3−3a2κ2+3a2κ−a2)τ2+(−aκ3+4aκ2−2aκ)τ−2κ2

(aκ3−2aκ2+aκ)τ+2κ2

... 0

a
... 0


Since, from the second row of the Routh-Hurwitz array, (aκ3 − 2aκ2 + aκ) τ+2κ2 > 0, from

the third row of this array we have that

(
κ3 − 3κ2 + 3κ− 1

)
τ 2a2 +

(
−κ3 + 4κ2 − 2κ

)
τa− 2κ2 < 0. (43)

From the rest of the Routh-Hurwitz conditions, the inequality

0 < a <
κ
√

(κ2 − 2κ+ 2) (κ2 + 2κ− 2) + κ3 − 4κ2 + 2κ

(κ3 − 3κ2 + 3κ− 1)

1

2τ
=

π

2τ
, (44)
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must be fulfilled. Since

κ
√

(κ2 − 2κ+ 2) (κ2 + 2κ− 2) + κ3 − 4κ2 + 2κ

(κ3 − 3κ2 + 3κ− 1)
= π

has at least one real solution, κ̄ ' 1.5669, the Proposition is proved.

Figure 6 shows the solution of equation (41) for τ = 1, κ = 1.5669 and different values

of the parameter a. The 1
1.5669

time-shifted solution of equation (28) is included for the

corresponding value of a in seek of comparison.
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2
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4
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(c) Solution for a = π
20

Figure 6: Truncation at third element of the Taylor series for a customized forward shift.

The above allows to present the following result.

Proposition 8 Let κ = κ̄ satisfy Proposition 7. Then, the time-delay linear system de-

scribed by the equation (28) is asymptotically stable if and only if system (41) is asymp-

totically stable.

3.2 Taylor Approximation for a Class of Linear second-order Time-Delay Differen-

tial Equation.

Let us consider the τ
κ

shift of the equation (27).

ÿ(t+
τ

κ
)− q1y(t+

τ

κ
)− q2y(t− τ +

τ

κ
) = 0 (45)
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The approximated system, substituting the advanced and delayed variables by its Taylor

series expansion up to order two, is given by the equation

τ 2

2κ2
y(4)(t) +

τ

κ
y(3)(t) +α(τ , κ, q1, q2)ÿ(t) +

(
q2

(
τ − τ

κ

)
− q1τ

κ

)
ẏ(t)− (q1 + q2)y(t) = 0, (46)

where κ ∈ R, and α(τ , κ, q1, q2) =

(
1− q2( τκ−τ)

2

2
− q1τ2

2κ2

)
.

Conditions for asymptotic stability can be summarized in the following Lemma.

Lemma 9 Suppose that q2 > 0, and κ > 1. System (46) is asymptotically stable if and

only if conditions

i. 0 < −q1τ
2 < 2κ2

κ−1
,

ii. q2τ
2 < min

(
−q1τ

2, 2κ2

(1−κ)2 − q1τ2

(1−κ)

)
,

hold.

Proof. Sufficiency and necessity are derived as follows. Consider the following Routh-

Hurwitz array



τ2

2κ2

... −(κ2−2κ+1)τ2q2+q1τ2−2κ2

2κ2 −q2 − q1

τ
κ

... (κ−1)τq2−q1τ
κ

0

− (κ−1)τ2q2−2κ
2κ

... −q2 − q1 0

(κ2−2κ+1)τ3q22+((−κ+1)q1τ3−2κ2τ)q2
(κ2−κ)τ2q2−2κ2

... 0 0

−q2 − q1
... 0 0


.

Stability conditions are summarized by the following inequalities

q2 > 0 q1 + q2 < 0

τ
κ

> 0 (κ− 1)q2τ
2 − 2κ < 0

− q2τ2(1−κ)2

2κ2 + 1− q1τ2

2κ2 > 0 (κ2 − 2κ+ 1)τ 2q2 + (−κ+ 1)q1τ
2 − 2κ2 < 0

q2τ(κ−1)
κ
− q1τ

κ
> 0
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That implies κ > 0, q1 < 0, and

q2τ
2 <

2κ2 − (1− κ)q1τ
2

(1− κ)2
<

2κ2 − q1τ
2

(1− κ)2
, (47)

q2τ
2 < −q1τ

2, (48)

q2τ
2 <

2κ

(κ− 1)
, (49)

q2τ
2 >

q1τ
2

(κ− 1)
. (50)

From (47), (48), and (49),

q2τ
2 < min

(
2κ

(κ− 1)
,−q1τ

2,
2κ2 − (1− κ)q1τ

2

(1− κ)2

)
. (51)

The inequality −q1τ
2 < 2κ2−(1−κ)q1τ2

(1−κ)2 holds for

− q1τ
2 <

2κ

(κ− 1)
, (52)

and the inequality 2κ2−(1−κ)q1τ2

(1−κ)2 < 2κ
(κ−1)

for

− q1τ
2 >

2κ

(κ− 1)
, (53)

so min
(
−q1τ

2, 2κ2−(1−κ)q1τ2

(1−κ)2

)
< min

(
2κ

(κ−1)
,−q1τ

2, 2κ2−(1−κ)q1τ2

(1−κ)2

)
. That proves i.

Finally, since q2τ
2 > 0 (50) always hold true, and, from (47),

0 < −q1τ
2 <

2κ2

κ− 1
. (54)

Conditions of the proof can be illustrated by Figure 7.

Note that a proper selection of κ in Lemma 9 can lead to a stability region of (46) which

is a subset, in the parametric space, of the regions established in Theorem 1 for system

(27). This is illustrated by the following corollaries.
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0

Figure 7: Stability region for a Taylor series approximation family of equations of a class of second-
order time-delay equation.

Corollary 10 Let κ = 2, in equation (46). Then, system (46) is asymptotically stable if and

only if

i. 0 < −q1τ
2 < 8,

ii. q2τ
2 < min (−q1τ

2, 8 + q1τ
2).

The stability region for equation (46) with conditions stated in Corollary (10) are graphically

illustrated in the Figure 8.

Corollary 10 leads to the following immediate result.

Proposition 11 Let κ = 2, in equation (46). If the system described by the equation (46)

is asymptotically stable, then system (27) is asymptotically stable.

In Figure 9, numerical results of the solutions, with a time-delay τ = 1, considering

different values of q1 and q2 are located on the parametric plane that describe the stability

regions defined by Corollary 10 clear gray, and for 1 dark gray.
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0

Figure 8: Parametric plane stability regions for an approximation of the τ/κ̄-forward time shift
second-order equation.
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Figure 9: Numerical results on the parametric plane for an approximation of the τ/2-forward time
shift second-order equation.
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Now consider a different selection for the parameter κ. Define

2κ2

κ− 1
= π2,

to match the base of the triangle that defines the stability region 0 <
√
−B < π from

Theorem 1, with the one from Lemma 9. The above implies two possible solutions

κ̄1,2 =
π2 ± π

√
π2 − 8

4
.

Since solution κ̄2 = π2−π
√
π2−8

4
defines a stability region of the delay-free system (46) with

points outside the stability region of equation (27). Consider the following corollary for

solution κ̄1 = π2+π
√
π2−8

4
.

Corollary 12 Let κ = π2+π
√
π2−8

4
, in equation (46). Then, system (46) is asymptotically

stable if and only if

i. 0 < −q1τ
2 < π2,

ii. q2τ
2 < min

(
−q1τ

2, 2π3
√
π2−8+2π4−8π2

(π3−4π)
√
π2−8+π4−8π2+8

+ 4q1τ2

π
√
π2−8+π2−4

)
' min (−q1τ

2, 3.9 + 0.4q1τ
2).

In Figure 10 the stability region defined by Corollary 12 is presented and superpose on

the one described by Theorem 1. This allows to illustrate that the region defined from

Corollary 12 is a subset of the one defined by Theorem 1.

Proposition 13 Let κ = π2+π
√
π2−8

4
, in equation (46). If the system described by the equa-

tion (46) is asymptotically stable, then system (27) is asymptotically stable.

In Figure 11, numerical results of the solutions for time-delay τ = 1 are located on the

parametric plane that describe the stability regions defined by Corollary 12 in blue, and for

1 in red. This is done for different values of q1 and q2.
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Figure 10: Parametric plane stability regions for an approximation of the τ/κ̄-forward time shift
second-order equation.
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Figure 11: Numerical results on the parametric plane for an approximation of the τ/κ̄-forward time
shift second-order equation.
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3.3 Feedback Stabilization of a Class of Time-Delay Linear System Using the Tay-

lor Expansion Approximation.

In this section, the approximation theory presented throughout this chapter is used in

the selection of coefficients of a feedback control law for a second-order linear time-delay

system.

Consider the SISO delay free linear system given by the equation

x(n)(t) +
n−1∑
i=0

aix
(i)(t) = u(t), (55)

where u(t) ∈ R is the input, x(t) ∈ R is the state variable, and ai, i = 0, . . . , n − 1 are

constant coefficients. However, if the state of the system is available only after some

(constant) delay τ , then the actual state feedback which is plugged into the system is

u(t) = −
n−1∑
i=0

kix
(i)(t− τ), ∀ τ ≥ 0, (56)

yielding the closed-loop dynamics

x(n)(t) +
n−1∑
i=0

aix
(i)(t) +

n−1∑
i=0

kix
(i)(t− τ) = 0, (57)

which is a delayed-differential equation. The delay τ cannot be neglected in the stability

analysis of (57). Nevertheless, the use of Taylor expansion (30) can lead to instability of

the systems as can be presumed from Table 2. Consider the case where k0 6= 0, and

ki = 0 for i = 1, . . . , n − 1. If m � n, then the expansion of the delayed variable at the

m-order truncation for equation (55) is given by

∑m
i=n+1

(
k0

(−1)i

i!
τ i
)
x(i)(t) +

(
1 + k0

(−1)n

n!
τn
)
x(n)(t)+∑n−1

i=0

(
ai + k0

(−1)(i)

i!
τ i
)
x(i)(t) = 0.

(58)

Now, the following result shows that (58) is unstable independently of the system param-

eters for a truncation greater than n+ 2.
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Proposition 14 For any τ > 0, k0 6= 0, and m ≥ n+ 2 system (58) is unstable.

Proof. The first two coefficients of (58) are k0
(−1)m

m!
τm, and k0

(−1)m−1

(m−1)!
τm−1, which neces-

sarily have opposite signs for k0 6= 0 and τ > 0. So, there is at least one unstable root

which makes (58) unstable.

Now theory developed in this section is proposed for the design of closed loop control

inputs for two different control systems. Consider the first-order time-delay system

ẋ(t) = āx(t− τ) + bu(t− τ 2),

y(t) = cx(t− τ 3),
(59)

with τ 2 + τ 3 < τ . Then, consider the input

u(t) =
k − ā
cb

y(t− τ 4) =
k − ā
b

x(t− τ 3 − τ 4), (60)

with τ 4 = τ − τ 2 − τ 3, that leads to a closed-loop equation

ẋ(t) = kx(t− τ). (61)

Then, results given in Subsection 3.1.3 can be applied for the selection of k.

Proposition 15 Let system (41) be asymptotically stable at the origin x = 0, with κ defined

as in Lemma 6, then the closed-loop system form of equation (59) is asymptotically stable

at the origin x = 0 with a control law defined by (60) with k = −a.

Proof. It comes directly from (61), and Proposition 8.

Now consider the second-order time-delay linear system given by

ẍ(t) = a1x(t) + a2x(t− τ) + bu(t− τ 2)

y(t) = cx(t− τ 3)
(62)
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with τ 2 + τ 3 < τ . The feedback input

u(t) =
k − a2

cb
y(t− τ 4) =

k − a2

b
x(t− τ 3 − τ 4), (63)

with τ 4 = τ − τ 2 − τ 3, defines a closed loop time-delay differential equation

ẍ(t) = a1x(t) + kx(t− τ). (64)

Now, the following proposition can be stated for the stability of system (62) in its closed

loop form.

Proposition 16 Let system (46) be asymptotically stable at the origin x = 0 with κ defined

as in Propositions 11 or 13, and let it be an approximation of the closed loop equation

(63) with a1 = q1 and k = q2. Then, the closed loop system form of equation (62) is

asymptotically stable at the origin x = 0 with a control law defined by (63).

Proof. It comes directly from (64), and Propositions 11 and 13.

3.4 Discussion.

In this chapter, general conditions on the truncation order of the Taylor expansions to

ensure the stability of the approximating ordinary differential equations where presented.

Furthermore, Taylor series approximations for a class of time-delay equations were suc-

cessfully defined. These approximations are computed by forward-shifting the original

equations, and substituting the delayed and advanced state variables by the first terms of

their Taylor series expansion. The resultant equations obtained throughout this procedure

are linear delay-free ordinary delay equations with an extended derivative order. It was

proven that the stability regions, in the parametric space, of the approximated system are

subsets of the stability regions of the original studied time-delay systems. In the case

of single delay first-order differential equation it was possible to find a unique parameter

value, for the forward-shift system, to match the stability regions for a first, and second-

order truncation of the Taylor series expansion. Numerical results shown that the solution

for the second-order truncation fits better with the aftereffect system than the one of the
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expansion truncated at the second element. It is important to remark that both approxima-

tions were the result of a parameter selection with different values. Since the second-order

truncation presented a satisfactory response, in this work higher order truncations where

not considered. Because the difference in the response of both approximations are con-

siderable an error criteria is not considered in this work. Similar inferences can be done for

the family of approximations of the studied second-order delay differential equation. Fur-

ther observations about the stability region described by this delay-free equations should

be done. While the characterized regions of the approximated delay-free equations do

not match exactly with the produced by the second-order delay differential equation, the

technique used allows to choose, excluding a certain region, the most convenient approx-

imated equation. The manner to choice of such equation is beyond the scope of this work,

however, the use of optimization techniques may lead to a solution. Finally, in Section

3.3 the results exposed in the previous sections are used in the control design for a class

of control systems. The results of this chapter can be used in the strategy described in

Figure 2 from page 6.
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Chapter 4. Geometrical Theory

In the present chapter, it is presented the enumeration of several contributions to the

geometrical theory introduced by Califano et al. (2011a) used in several linearization re-

sults, as shown in Table 1. Particularly, a connection between the extended system with

the step method of solution for functional differential equations is introduced. A remark-

able consequence of this relationship is that it makes clear that the initial conditions of

the extended system are the same as the ones of the original dynamics plus the solution

for t > 0 of this equation. Also, through a change of variable in the truncated system,

sufficient conditions for the computation of the relative degree of a time-delay system are

stated. This is possible considering the variables that depend on the higher delay vari-

ables as parameters. An advantage of this consideration is that the analysis is made on

a finite-dimensional system instead of an infinite-dimensional one. Finally, properties of

the extended space, and the extension of the Lie bracket given in Definition 10 are used

to define an algorithm that computes efficiently the extended Lie bracket operation. This

operation is useful in the computation in applications as the ones enlisted in Table 1.

4.1 Expanded Dynamics of Nonlinear Time-Delay Systems

Consider the delay-differential system given by the equation

ẋ(t) = f(x(t),x(t− 1)),

x(t) = ϑ0(t), −1 ≤ t ≤ 0.
(65)

The solution of the equation (65), computed by the step method, on the interval (k − 1) ≤

t ≤ k, k ∈ Z+ is given by the differential equation

ẋ = f(x(t), ϑk−1(t− 1)),

x(t) = ϑk−1(t), (k − 2) ≤ t ≤ (k − 1).
(66)
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The set of equations defined on the interval (α− 1) ≤ t ≤ α

ẋ(t) = f(x(t), ϑα−1(t− 1)),

ẋ(t− 1) = f(x(t− 1), ϑα−2(t− 2)),
...

ẋ(t− (α− 1)) = f(x(t− (α− 1)), ϑ0(t− α)),

(67)

defines the solution on the first α units of time of the equation (65) shifted into the interval

(α− 1) ≤ t ≤ α. This means that it is possible to group the solution of (65) on the interval

(α − 1) ≤ t ≤ α. Moreover, setting t0 = (α − 1), The solution of (65) on (α − 1) ≤ t ≤ α

can be computed solving the extended delay-differential equation

ẋ(t) = f(x(t),x(t− 1)),

ẋ(t− 1) = f(x(t− 1),x(t− 2)),
...

ẋ(t− (α− 1)) = f(x(t− (α− 1)),x(t− α)),

x(t) = ϑk(t), (k − 1) ≤ t ≤ k, k ∈ [0, α], α ∈ Z+,

(68)

on the interval t0 ≤ t ≤ t0 + 1.

Figure 12: Solution for a time-delay system.

Since the extended system described by equation (68) is a system of delay-free dif-

ferential equations, the conditions for existence and uniqueness of the solution, for the

interval 0 < t < α are the same as the ones for non-autonomous differential equations.

Moreover, through a change of variable x0(t) = x(t), x1(t) = x(t − 1), xα(t) = x(t − α),
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Figure 13: Solution for a extended time-delay system.

system (68) also can be represented as

ẋ1(t) = f(x0(t), x1(t)),

ẋ2(t) = f(x1(t), x2(t)),
...

ẋα−1(t) = f(xα−1(t), ϑ0(t− 1)),

with initial conditions x1(0) = x1(1), x2(0) = x3(1), . . ., xα−1(0) = ϑ0(0). The above analysis

can be easily extended to the case of multiple delays.

Example 2 Consider the time-delay system described by the differential equation

ẋ(t) = −ax(t) + bx(t− 1), (69)

with x(t) = 1 for t ∈ [−1, 0]. Now, associate system

ż0(t) = −az0(t) + bϕ(t) (70)
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to the system (69). System (70) is a copy of (69) considering x(t) for t ∈ [−1, 0] as an

external signal ϕ(t + 1) with z0(0) = x(0) = 1. This approximation is defined for a time

window on the interval 0 ≤ t < 1. Computing the solution of (70) for the interval 0 ≤ t < 1

is exactly the first step of the step method to compute the solution of (69) on the interval

0 ≤ t < 1. This can be observed in Figure 14 which is the simulation of the system (70)

compared with the numerical solution of (69). Note that for t > 1 the solution of (70) does
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Figure 14: Extended system solution for a = 3, and b = −2 for a window 0 ≤ t < 1.

not match with the one of (69). The next approximation is endowed using an extended

system of ordinary differential equations. Let us call z1(t) = ϕ1(t) the solution of (70) on

the interval 0 ≤ t < 1.

Continuing with the step method, the solution of

ẋ(t) = −ax(t) + bϕ1(t− 1), (71)

for 1 ≤ t < 2. Shifting (71) a units of time to the left we have

ẋ(t+ 1) = −ax(t+ 1) + bϕ1(t), (72)

is found for 0 ≤ t < 1. Now setting the change of variable z1(t) = x(t − 1) we are able to

write the next extended system

ż0(t) = −az0(t) + bz1(t)

ż1(t) = −az1(t) + bϕ(t)
(73)
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with z0(0) = z2(1), z2(0) = 1. Note that doing this, the solution z1(t) = ϕ2(t) on the interval

0 ≤ t < 1 is equivalent to the solution of the second step of the step method shifted 1 unit

of time to the left. So doing this, the solution of (73) defines the window approximation for

0 ≤ t < 2. The solution of z1(t) on 0 ≤ t < 1 defines the approximation for the section

0 ≤ t < 1 while the solution of z0(t) on 0 ≤ t < 1 describes the approximated system on

1 ≤ t < 2. The same step method approach can be done for larger windows of time. The
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Figure 15: Extended system solution for a = 3, and b = −2 for a window 0 ≤ t < 2.

approximation on the section 0 ≤ t < 3 is defined using the next set of equations

ż0(t) = −az0(t) + bz1(t)

ż1(t) = −az1(t) + bz2(t)

ż2(t) = −az2(t) + bϕ(t)

(74)

with z0(0) = z1(1), z1(0) = z2(1), z2(0) = 1. Where the solutions of z1(t), z2(t), and z3(t) on

0 ≤ t < 3 defines the sections 2 ≤ t < 3, 1 ≤ t < 2, and 0 ≤ t < 1 respectively. In the

Figure 16 the approximation on the window 0 ≤ t < 3 is represented by the solid blue line.

The approximation can be extended until the k-th order given by the ordinary differential
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Figure 16: Extended system solution for a = 3, b = −2, and 1 = 1 for a window 0 ≤ t < 3.

system

ż0 = az0(t) + bz1(t)

ż1 = az1(t) + bz2(t)

ż2 = az2(t) + bz3(t)
...

żk = azk(t) + bϕ(t)

(75)

with initial conditions z0(0) = z1(1), z1(0) = z2(1), . . . , zk(0) = ϕ(0). Where the solutions

z1(t), . . . , z2(t) on 0 ≤ t < 1 defines the approximation on the sections k ≤ k + 1, . . . , 0 ≤

t < 1 respectively. Figure 17 shows the simulation of the approximation for a large value

of k. The solution on the interval 0 ≤ t ≤ 1 of the equation (75) is presented in Figure 18
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Figure 17: Extended system solution for a = 3, and b = −2 for a window 0 ≤ t < 9.
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for k = 9. J
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Figure 18: Solution for a extended time-delay system on the interval 0 ≤ t ≤ 10.

4.2 Relative degree

As an application of the analysis included in the previous section, consider the nonlin-

ear dynamical time-delay system with commensurable delays represented by the equation

Σ : ẋ(t) = F (x(t), x(t− 1), . . . , x(t− s)) +
∑s

j=0 Gj(x(t), x(t− 1), . . . , x(t− s))u(t− j),
(76)

and the dynamics described by the equation

Σ0 : ż0(t) = F (z0(t), z1, . . . , zs) +
∑s

j=0Gj(z0(t), z1, . . . , zs)vj , (77)

where v0, v1, . . . , vs are independent, and z1, . . . , zs are constant parameters.

Lemma 17 Consider a function φ(z0(t)). Given the system Σ, the relative degree of



47

φ(x(t)) is greater or equal to 2 if and only if

dφ(x(t)) ∈ kerK(δ]{Gi(x(t), x(t− 1), . . . , x(t− s)), i = 0, . . . , s} (78)

Proof. The time derivative of φ(x(t)) is given by

φ̇(x(t)) = ∂φ(x(t))
∂x(t)

(
F (x(t), . . . , x(t− s)) +

∑s
j=0Gj(x(t), . . . , x(t− s))u(t− j)

)
, (79)

Then, the derivative is independent of the input variable for ∂φ(x(t))
∂z0(t)

Gj(x(t), . . . , x(t−s)) = 0

for j = 0, . . . , s that implies (78).

Lemma 18 Given the system Σ0, the relative degree of φ(z0(t)) is greater or equal to 2 if

and only if

dφ(z0(t)) ∈ kerK(δ]{Gi(z0(t), z1, . . . , zs), i = 0, . . . , s} (80)

Proof. The time derivative of φ(z0(t)) is given by

φ̇(z0(t)) = ∂φ(z0(t))
∂z0(t)

(
F (z0(t), z1, . . . , zs) +

∑s
j=0Gj(z0(t), z1, . . . , zs)vj

)
, (81)

Then ∂φ(z0(t))
∂z0(t)

Gj(z0(t), z1, . . . , zs) = 0 for j = 0, . . . , s

From this result, and Lemma 81, the following corollary is stated

Corollary 19 The relative degree of φ(z0(t)) for Σ0 is greater or equal to 2, if and only if

the relative degree of φ(x(t)) for Σ is greater or equal to 2.
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Let us define the extended dynamical system Σs given by the set of equations

Σs :



ż0(t) = F (z0(t), . . . , zs(t)) +
∑s

j=0Gj(z0(t) . . . , zs(t))vj

ż1(t) = F (z1(t), . . . , zs(t), zs+1) +
∑s

j=0 Gj(z0(t) . . . , zs(t), zs+1)vj+1

...

żs(t) = F ((zs(t), zs+1, . . . , z2s+1)) +
∑s

j=0Gj(zs(t), zs+1, . . . , z2s+1)vj+s

, (82)

Corollary 20 The relative degree of φ(z0(t)) for Σs is greater or equal to 3 if and only if the

relative degree of φ(x(t)) for Σ is greater or equal to 3.

Proof. The proof comes from the Corollary 19. From the equation (81), and considering

a relative degree larger than 2

φ̇(z0(t)) =
(
LFφ

)
(z0(t), . . . , zs(t))

φ̈(z0(t)) =
s∑
i=0

(
∂LFφ
∂zi(t)

(z0(t), . . . , zs(t))
)
· żi(t)

(83)

and from (79)

φ̇(x(t)) =
(
LFφ

)
(x(t), . . . , x(t− s))

φ̈(x(t)) =
s∑
i=0

(
∂LFφ
∂x(t−s)(x(t), . . . , x(t− s))

)
· ẋ(t− i).

(84)

From this it is shown that the conditions for the system Σs for having a relative degree

greater or equal to 3 are necessary and sufficient for having a relative degree equal or

greater than 3 for the system Σ
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Now let us consider the extended system Σsk

Σsk :



ż0(t) = F (z0(t), . . . , zs(t)) +
∑s

j=0Gj(z0(t) . . . , zs(t))vj
...

żs(k−1)(t) = F (zs(k−1)(t), . . . , zsk(t), zsk+1)+∑s
j=0Gj(zs(k−1)(t), . . . , zsk(t), zsk+1)vj+s(k−1)+1

...

żsk(t) = F ((zsk(t), zsk+1, . . . , z2sk+1))+∑s
j=0Gj(zsk(t), zsk+1, . . . , z2sk+1)vj+ks+1

, (85)

Corollary 21 The relative degree of φ(z0(t)) for Σsk is greater or equal to k+2, if and only

if the relative degree of φ(x(t)) for Σ is greater or equal to k + 2.

The proof for the Corollary 21 comes from the successive derivation of the output as it

is done in the Corollary 20.

The same logic can be used with a function φ(z0(t), . . . , zs(t)).

Corollary 22 The relative degree of φ(z0(t), . . . , zs(t)) for Σsk is greater or equal to k + 2,

if and only if the relative degree of φ(x(t), . . . , x(t− s)) for Σ is greater or equal to k + 2.

4.3 Effective computation of the Extended Lie Bracket

In this section properties of the extended Lie bracket (16) are described, concerning

the reduction of operations for the effective computation of this product operation on the

elements of the distributions ∆i, ∆′i, i = 0, . . . , γ as defined in (23). An algorithm based

on these properties that can be used in the solution of problems as integrability (Califano

et al., 2011a), and existence of a linearizing feedback (Califano and Moog, 2011), among

others, is presented. Consider the following proposition reported in Garcı́a-Ramı́rez and

Márquez-Martı́nez (2014).

Proposition 23 Let r1(x,u, δ) =
∑s

j=0 rj1(x,u)δj, and r2(x,u, δ) =
∑s

j=0 rj2(x,u)δj, and

consider the set of operations defined by the extended Lie bracket εj = [rj1, r
q+j
2 ]Ei , p ≤
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q, i ≤ q, j = 0, . . . , p. It is possible to compute εj using the next iterative expression

εj+1 = [rj1, r
q+j
2 ]E0

∂

∂x(t)
+ εj |x(−i), ε0 = 0 (86)

Proof. It comes from the definition of the extended Lie bracket

[rj1(·), rq+j2 (·)]Ei=
j∑

κ=0

([rj−κ1 (·), rq+j−κ2 (·)]E0)T
∣∣∣∣
(x(−κ))

∂
∂x(t−κ)

= ([rj1(·), rq+j2 (·)]E0)T ∂
∂x(t)

+
j∑

κ=1

([rj−κ1 (·), rq+j−κ2 (·)]E0)T
∣∣∣∣
(x(−κ))

∂
∂x(t−κ)

= ([rj1(·), rq+j2 (·)]E0)T ∂
∂x(t)

+
j−1∑̄
κ=0

([rj−κ̄−1
1 (·), rq+j−κ̄−1

2 (·)]E0)T
∣∣∣∣
(x(−κ̄−1))

∂
∂x(t−κ̄−1)

= ([rj1(·), rq+j2 (·)]E0)T ∂
∂x(t)

+ εj |x(−i)

where κ̄ = κ− 1, and εj |x(−i) is [rj−1
1 (·), rq+j−1

2 (·)]Ei |(x(−1)) shifted by n rows.

Note that, instead of performing j operations in the form of equation (16), at each step

time and row shifts substitutes a total of p(p+ 1)/2 symbolic derivative operations.

The proof of Proposition 23 can be visualized using the set of vectors

{
[r0

1, r
ρ
2]Ei , . . . , [r

p−1
1 , rq−1

2 ]Ei , [rp1, r
q
2]Ei
}

=



[r0
1, r

ρ
2]E0

0

0
...

0

0


,



[r1
1, r

ρ+1
2 ]E0

[r0
1, r

ρ
2]E0(−1)

0
...

0

0


, . . . ,



[rp−1
1 , rq−1

2 ]E0

[rp−2
1 , rq−2

2 ]E0(−1)

[rp−3
1 , rq−3

2 ]E0(−2)
...

[r0
1, r

ρ
2]E0(−p+ 1)

0


,



[rp1, r
q
2]E0

[rp−1
1 , rq−1

2 ]E0(−1)

[rp−2
1 , rq−2

2 ]E0(−2)
...

[r1
1, r

ρ+1
2 ]E0(−p+ 1)

[r0
1, r

ρ
2]E0(−p)




(87)

with ρ = q − p. Consider now the following lemma.

Lemma 24 Let r1(x[α], δ) =
∑s

j=0 rj1(x[α])δ
j, r2(x[α], δ) =

∑s
j=0 rj2(x[α])δ

j, and, without loss

of generality, s = max(deg(r1(·), r2(·)), α). Then

[
rk1(·), rl2(·)

]
E0

= 0 (88)
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for k, l > s.

Proof. It comes directly from equation (17) in Definition 10, (i.e. the definition of the

extended Lie Bracket) since rk1(·), rl2(·) = 0 due to the condition established in the premise

of the lemma s = max(deg(r1(·), r2(·)), α).

Lemma 24 implies that for p > s in equation (87) it is not necessary to make any other

computation than delay and row shifts in the computation of the extended Lie Bracket since

the n elements of the resultant vector are zero. Furthermore, given finite dimensional

distributions ∆γ̄, ∆′γ̄ given by (23), because of property P.ii, from Section 2.4, the extended

Lie bracket

[rk̄1(·), rl̄2(·)]Eγ̄ = 0, (89)

for k̄, l̄ > s+ γ̄ or | k̄ − l̄ |> 2s.

Another consideration for the computation of the extended Lie bracket can be pointed out

by the following example.

Example 3 Consider the right module defined as

∆ = spanK(δ]


2x1(t)x2

1(t− 1)δ − 6x1(t)δ2

−x2(t)x2
1(t) + 3x2(t)δ

 . (90)

The involutivity of ∆′i distributions is now tested. The distribution

∆′0 = spanK

{
−x2(t)x2

1(t) ∂
∂x2(t)

, 2x1(t)x2
1(t− 1) ∂

∂x1(t)
+ 3x2(t) ∂

∂x2(t)
,−6x1(t) ∂

∂x1(t)

}
is involutive since its dimension is two and is generated by two independent vectors and it

is not necessary to perform the extended Lie Bracket operation.

Example 3 shows that for ∆k, k = 0, 1, . . . , γ̄, γ̄ ∈ Z+, can define a locally full rank distribu-

tion, and the computation of the extended Lie bracket is not needed.

Considering Proposition 23, Lemma 24, and Example 3 the following algorithm for the

computation of the extended Lie bracket for two elements that belong to distribution ∆′γ is

presented
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Algorithm 1

STEP 0.

Check: Is ∆′γ̄ generated by γ̄n independent vectors?

YES: STOP, NO: Continue to next step.

STEP 1.

STEP 1.1 Compute [r0
i (·), r0

j(·)]Eγ̄ =
(
r0
i (·), r0

j(·)]E0

)T ∂
∂x(t)

+ 0 ∂
∂x(t−1)

+ . . .+ 0 ∂
∂x(t−γ̄)

Is

[rji (·), r
j
j(·)]Eγ̄ ∈ ∆′γ̄?

NO: STOP, YES: Continue to the next step

STEP 1.2 Compute [r1
i (·), r1

j(·)]E0, and shift one unit of time [r0
1(·), r0

2(·)]E0 from STEP

1.0. Is

[r1
i (·), r1

j(·)]Eγ̄=
(
r1
i (·), r1

j(·)]E0

)T ∂
∂x(t)

+
(
[r0
i (·), r0

j(·)]E0

)T ∣∣∣
x(−1)

∂
∂x(t−1)

+

0 ∂
∂x(t−2)

+ . . .+ 0 ∂
∂x(t−γ̄)

∈∆′γ̄?

NO: STOP, YES: Continue to the next step

STEP 1.k Compute [rk−1
i (·), rk−1

j (·)]E0, with [rk−1
i (·), rk−1

j (·)]E0 = 0 for k − 1 < s, and

shift k̄ units of time [rk̄1(·), rk̄2(·)]E0 from STEP 1.k̄, for k̄ = 0, . . . , k − 2. Is

[rk−1
i (·), rk−1

j (·)]Eγ̄ =
(
rk−1
i (·), rk−1

j (·)]E0

)T ∂
∂x(t)

+
k−3∑̄
k=0

(
[rk̄i (·), rk̄j (·)]E0

)T ∣∣∣∣
x(−k+k̄+2)

∂
∂x(t−k+k̄+2)

+

0 ∂
∂x(t−k+1)

+ . . .+ 0 ∂
∂x(t−γ̄)

∈∆′γ̄?

NO: STOP, YES: Continue to the next step until k > s+ γ̄

STEP ρ.k Compute [rk−1
i (·), rk+ρ−1

j (·)]E0, with [r− 1ki (·), r
k+ρ−1
j (·)]E0 = 0 for k − 1 > s, and
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shift k̄ unit of time [rk̄1(·), rk̄+ρ
2 (·)]E0 from STEP 1.k̄, for k̄ = 0, . . . , k − 2. Is

[rk−1
i (·), rk+ρ−1

j (·)]Eγ̄ =
(
rk−1
i (·), rk+ρ−1

j (·)]E0

)T
∂

∂x(t)
+

k−3∑̄
k=0

(
rk̄i (·), r

k̄+ρ
j (·)]E0

)T ∣∣∣∣
x(−k+k̄+2)

∂
∂x(t−k+k̄+2)

+

0 ∂
∂x(t−k+1)

+ . . .+ 0 ∂
∂x(t−γ̄)

∈ ∆′γ̄?

NO: STOP, YES: Continue to the next step

Continue answering until k > s+ γ̄ or ρ > 2s. �

The following examples show how the Algorithm 1 is employed to compute the extended

Lie Bracket on elements of ∆.

Example 4 Consider the distribution defined by the submodule (90) from Example 3,

∆′1 = spanK




0

−x2(t)x2
1(t)

0

0

 ,


2x1(t)x2

1(t− 1)

3x2(t)

0

−x2(t− 1)x2
1(t− 1)

 ,


−6x1(t)

0

2x1(t− 1)x2
1(t− 2)

3x2(t− 1)

 ,


0

0

−6x1(t− 1)

0




= spanK

{
−x2(t)x2

1(t) ∂
∂x2(t)

, 2x1(t)x2
1(t− 1) ∂

∂x1(t)
+ 3x2(t) ∂

∂x2(t)
−

x2(t− 1)x2
1(t− 1) ∂

∂x2(t−1)
,−6x1(t) ∂

∂x1(t)
+ 2x1(t− 1)x2

1(t− 2) ∂
∂x1(t−1)

+

3x2(t− 1) ∂
∂x2(t−1)

,−6x1(t− 1) ∂
∂x1(t−1)

}
= spanK

{
r0

1(x[2]), r
1
1(x[2]), r

2
1(x[2]), r

3
1(x[2])

}
.

STEP 1.1. The extended Lie bracket
[
r0

1(x[2]), r
1
1(x[2])

]
E1

is computed

[
r0

1(x[2]), r
1
1(x[2])

]
E0

=
∂r1

1(x[2])

∂x(t)
r0

1(x[2])−
∂r0

1(x[2])

∂x(t)
r1

1(x[2])

=

(
2x2

1(t− 1) 0

0 3

)(
0

−x2(t)x2
1(t)

)
−
(

0 0

−2x2(t)x1(t) −x2
1(t)

)(
2x1(t)x2

1(t− 1)

3x2(t)

)
=

(
0

−4x2(t)x2
1(t)x2

1(t− 1)

)
.

Setting
[
r0

1(x[2]), r
1
1(x[2])

]
E1

= −4x2(t)x2
1(t)x2

1(t− 1) ∂
∂x2(t)

∈ ∆′1.

All the other operations in STEP 1 are zero.
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STEP 2.1.

[
r0

1(x[2]), r
2
1(x[2])

]
E0

= 12x2(t)x2
1(t) ∂

∂x1(t)[
r0

1(x[2]), r
2
1(x[2])

]
E1

= 12x2(t)x2
1(t) ∂

∂x2(t)
∈ ∆′1

(91)

STEP 2.2. from the STEP 2.1

[
r1

1(x[2]), r
3
1(x[2])

]
E0

= −6x1(t)x2
1(t− 1) ∂

∂x1(t)[
r1

1(x[2]), r
3
1(x[2])

]
E0

= −24x1(t)x2
1(t− 1) ∂

∂x1(t)
+ 12x2(t− 1)x2

1(t− 1) ∂
∂x1(t−1)

∈ ∆′1

(92)

The other elements in the following steps are zero.

In fact the function x1(t)x2
2(t − 1) fulfills the integrability condition given in Califano et al.

(2011a) since x2
2(t− 1)dx1(t) + 2x1(t)x2(t− 1)δdx2(t) defines the kernel of ∆.

4.3.1 Numerical results.

In this section, numerical results are presented to compare step 0 from the proposed

Algorithm 1 with the direct algorithmic computation of the extended Lie bracket. The algo-

rithm used for the test consists in computing the extended Lie brackets

[
rj1(x[s]), r

j
2(x[s])

]
Ei

(93)

for j = 1, . . . , 12, i = 1, 3, 6, 9, rj1(x[s]), r
j
2(x[s]) ∈ Kn(δ]. Different values of dimension of

the polynomial vectors, polynomial degree on the delay operator, and degree on the state

variable product (i.e. coefficient degree) were tested. Vectors were randomly generated.

Figure 19 shows numerical results of the test for vectors generated in K2(δ], with poly-

nomial degree 6 on δ, changing the degree of the coefficients of the polynomial vectors,

which are generated by the product of the state variables.

Figure 20 displays results for different elements of K2(δ] with coefficient degree 6, for

different polynomial degrees.

Finally, the test was performed varying the vector dimension from 2 to 6, keeping con-

stant the values of the polynomial degree on δ as 6, and a coefficient degree as 1. Nu-
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Figure 19: Numerical test of the proposed algorithm for different coefficient degrees.
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Figure 20: Numerical test of the proposed algorithm for different polynomial degrees.
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Figure 21: Numerical test of the proposed algorithm for different vector dimensions.

merical results are presented in Figure 21. It is important to remark that the saved time

is notable for higher dimension, polynomial degree, and coefficient degree values. Note

that, Algorithm 1 computes ρ-times a similar procedure. Computations in this section
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were performed using wxMaxima version 12.04.0 with a Maxima version 5.27.0, and GNU

Common Lisp (GCL) version 2.6.7.

4.4 Discussion.

Contributions for a better understanding of the new geometrical approach for hered-

itary systems have been presented in this chapter. The algorithm presented in Section

4.3 is defined in such a way that can be implemented in computational software (see for

example Gárate-Garcı́a et al. (2011)) to simplify the cumbersome procedures that imply

the big number of operations required by the conditions for solutions of problems as the

ones enlisted in Table 1. The implementation of these algorithms directly benefits to the

final user, scientists, and engineers, since this allows them to take advantage of the new

results on geometrical control theory for time-delay system, with a reduced inversion of

training and computational time. In Section 4.3.1 numerical results show the computa-

tional effectiveness of the proposed procedure.
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Chapter 5. Linearization Via Input-Output Injection

In this chapter, it is discussed the equivalence of nonlinear system representation 2

ẋ(t) = f(x[s]) +
s∑
j=0

gj(x[s])u(t− j)

y(t) = h(x[s]),

and the input-output representation

ψ(y
(n)
[s] ,y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s]) = 0 (94)

to a canonical representation composed by a not necessarily delay-free linear part, and

a nonlinear part, also known as injection function, that only depends on the input and the

output, described by the equation

ż(t) =
s∑
i=0

Aiz(t− i) + ϕ(y[s],u[s]),

y(t) =
s∑
j=0

Cjz(t− j).
(95)

where z ∈ Rn, u ∈ R, y ∈ R, Ai ∈ Rn×n for i = 0, . . . , s, and Cj ∈ R1×n for j = 0, . . . , s.

The results presented in Garcı́a-Ramı́rez et al. (2016) concerning constructive necessary

and sufficient conditions to find a delay-free linear representation, modulo input-output

injections, of an input-output nonlinear time-delay system representation are examined.

Also the equivalence of dynamics (2) to an equivalent linearized, modulo input-output in-

jection, system through an invertible change of coordinates are studied and used for the

observer design problem. Also, the stronger condition of the existence of a bicausal trans-

formation to this kind of linearized form is addressed. The main interest of the canonical

form (95) is due to its viability in the design of a Luenberger-type observer. This is done

by defining an observer dynamics for the system 95 is characterized by the equation

ζ̇(t) =
s∑
i=0

Aiζ(t− i) + ϕ(y[s],u[s]) +
s̄∑
i=0

s∑
j=0

KiCjζ(t− i− j)−
s∑
i=0

Kiy(t− i). (96)
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For such dynamical system, an error equation given by

e(t) = z(t)− ζ(t), (97)

defines an error dynamics expressed as

ė(t) =
s+s̄∑
i=0

(
Ai +

i∑
j=0

KjCi−j

)
e(t− i). (98)

It is important to consider that, while the solution of the differential equation defined by (96)

converges asymptotically to the instantaneous state value of the linearized system (95),

the computed information, corresponding to the nonlinear system (2), by the use of a non-

bicausal invertible change of coordinates is time-delayed. Consequently, the bicausality

of the transformation used is of interest in the pursuit of the desired canonical form.

The following problem is stated starting from the input-output representation:

Problem 1 Given the input-output equation 94 where the differential ideal generated by ψ

is prime, find, if possible, a realization of the form (95)

Following problems are considered starting from the state-space representation of the

system:

Problem 2 Given the observable time-delay dynamical system (2) find, if possible, an

invertible change of coordinates z(t) = φ(x[p,s]) such that (2) is transformed into (95).

Problem 3 Given the observable time-delay dynamical system (2) find, if possible, a bi-

causal change of coordinates z(t) = φ(x[s]) such that (2) is transformed into (95).

The next section concerns the solution of Problem 1, which is important for the construc-

tion of the algorithm used to solve Problems 2, and 3.

5.1 Linear Delay-Free Realization for the Input-Output Representation.

In this section, the solution of Problem 1 is studied as it was presented in Garcı́a-

Ramı́rez et al. (2016). This is done as a preliminary for the solution of Problems 2, and
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3. First, a lemma that concerns the three main problems of this chapter is presented as

follows.

Lemma 25 Problems 1, 2, and 3 are solvable, only if the given system admits an input-

output equation of retarded type, and of the form

y(n)(t) =
n∑
i=1

Φi(y[s],u[s])
(i−1). (99)

Proof. Consider the differential form of (95) which is given by

dż(t) = A(δ)dz(t) + dϕ(y[s],u[s])

dy(t) = C(δ)dz(t).
(100)

Consider the differential form for the first derivative of the output given by

dẏ = C(δ) ·
(
A(δ)dz(t) + dϕ(y[s],u[s])

)
(101)

and iteratively

dy(k) = C(δ)Ak(δ) · dz(t) +
k−1∑
i=0

C(δ)Ai(δ)dϕ(y[s],u[s])
(k−i−1) (102)

with k = 0, . . . n. Because of the commutativity of R[δ], the use of the Cayley-Hamilton’s

theorem is allowed, so it is possible to find σi ∈ R[δ], i = 0, . . . n such that

n∑
i=0

σiC(δ)Ai(δ) = 0, (103)

with σn = 1. Then the differential form of the input-output representation of (95) can be

written as

dy(n) = −
n−1∑
i=0

σidy
(i)(t) +

n∑
k=1

k−1∑
i=0

σkC(δ)Ai(δ)dϕ(y[s],u[s])
(k−i−1), (104)
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which has the structure (104), with

dΦk+1(y[s],u[s]) = −σkdy(t) +
n−k−1∑
j=0

σn−jC(δ)An−k−j−1(δ)dϕ(y[s],u[s])

for all k = 0, . . . , n− 1.

In Márquez-Martı́nez et al. (2002), an observable system that may be written in the

form (104) is called linearizable by additive output injections. An algorithm for the effec-

tive computation of the functions Φi was included. For the sake of completeness, that

linearization algorithm is presented.

Define

E0 = 0

Ek = spanK(δ]{dy(t), . . . , dy(k−1)(t), du(t), . . . , du(k−1)}

and assume that dimK(δ]E
n = 2n.

Algorithm 2

STEP 0: Set ψ1 = ψ, and compute the differential form of equation (94)

dy(n)(t) = d
(
ψ1(y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s])(t)

)
(105)

STEP 1: By assumption dy(n) ∈ En. Compute λ0
n−1 =

∑s
i=0

∂ψ1(·)
∂y(t−i)(n−1) δ

i (the coefficient of

dy(n−1)(t)) and µ0
n−1 =

∑s
i=0

∂ψ1(·)
∂u(t−i)(n−1) δ

i (the coefficient of du(n−1)(t)). Now Set

ω1 := λ0
n−1dy + µ0

n−1du,

if dω1 6= 0 then STOP! there is no solution,

Compute Φ1(y[s],u[s]) such that ω1 = dΦ1(y[s],u[s]). Set

ψ2(y
(n−2)
[s] , . . . ,y[s],u

(n−2)
[s] , . . . ,u[s]) := ψ1(y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s])−

Φ
(n−1)
1 (y[s],u[s]),
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Compute the differential form of equation ψ2(·)

d
(
ψ2(y

(n−2)
[s] , . . . ,y[s],u

(n−2)
[s] , . . . ,u[s])

)
= d

(
ψ1(y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s])−

Φ
(n−1)
1 (y[s],u[s])

)
(106)

Check: dψ2(t) ∈ En−1?

NO: Stop, YES: Continue to the next step

STEP k: Define λk−1
n−k =

∑s
i=0

∂ψk(·)
∂y(t−i)(n−k) δ

i and µk−1
n−k =

∑s
i=0

∂ψk(·)
∂u(t−i)(n−k) δ

i as the coefficient

of du(n−k)(t) from the last equation in step k − 1. Now Set

ωk := λk−1
n−kdy + µk−1

n−kdu,

if dωk 6= 0 then STOP! there is no solution,

if dωk = 0 then compute Φk(y[s],u[s]) such that ωk = dΦk(y[s],u[s]), and set

ψk+1(y
(n−k+1)
[s] , . . . ,y[s],u

(n−k+1)
[s] , . . . ,u[s]) := ψk(y

(n−k)
[s] , . . . ,y[s],u

(n−k)
[s] , . . . ,u[s])−

Φ
(n−k)
k (y[s],u[s])

d
(
ψk+1(y

(n−k+1)
[s] , . . . ,y[s],u

(n−k+1)
[s] , . . . ,u[s])

)
= d

(
ψk(y

(n−k)
[s] , . . . ,y[s],u

(n−k)
[s] , . . . ,u[s])−

Φ
(n−k)
k (y[s],u[s])

)
(107)

Check: dψk+1(t) ∈ En−k?

For k = 2, . . . , n. �

If Algorithm 2 can be completed for each step k, for k = 1, . . . , n, then it is possible to

establish necessary and sufficient conditions for the solution of Problem 1, as it is stated

in the next theorem

Theorem 26 (Garcı́a-Ramı́rez et al., 2016) The input-output equation (94) admits a linear

state-space representation up to input-output injection of the form (95) if and only if

i) The system can be represented by an input-output equation of retarded type.
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ii) The linearization Algorithm 2 ends with n exact one-forms ωi

Then the state-space representation is obtained by setting

z1(t) = y(t)

z2(t) = ẏ(t)− Φ1(y[s],u[s])

... (108)

zn−1(t) = yn−1(t)−
n−1∑
i=1

Φ
(n−i−1)
i (y[s],u[s])

Proof. Since the procedure is constructive, we only need to prove the necessity. To this

end, recall that if the given system represented through its input-output equation can be

written in the form (95) then, due to Lemma 25, necessarily the system must admit an

input-output equation of retarded type given by

dy(n) = −
n−1∑
i=0

σidy
(i)(t) +

n∑
k=1

k−1∑
i=0

σkC(δ)Ai(δ)dϕ(y[s],u[s])
(k−i−1)

which proves the necessity of i). Applying the linearization algorithm, one gets that at the

generic step k ≤ n− 1

ωk = dΦk+1(y[s],u[s]) = −σkdy(t) +
n−k−1∑
j=0

σn−jC(δ)An−k−j−1(δ)dϕ(y[s],u[s])

which shows that the algorithm ends up with n exact differentials ωk, that is, ii) must be

satisfied. From (124), one thus gets that the state-space representation is given by

ż1(t) = z2(t) + Φ1(y[s],u[s]),

ż2(t) = z3(t) + Φ2(y[s],u[s]),

... (109)

żn(t) = Φn(y[s],u[s]),

y(t) = z1(t),
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which ends the proof.

As a corollary, one gets the following result.

Corollary 27 If the input-output equation (94) admits a retarded linear state-space repre-

sentation, up to input-output injection, then it can be written in the form (109).

Example 5 This example illustrates the use of Algorithm 2 in the solution of Problem 1.

Let us consider the input-output equation

ÿ(t) = y(t− 1)u(t− 3) + y(t)ẏ(t− 1) + ẏ(t)y(t− 1) (110)

dÿ(t) = y(t− 1)du(t− 3) + u(t− 3)dy(t− 1) + y(t)dẏ(t− 1)+

ẏ(t− 1)dy(t) + ẏ(t)dy(t− 1) + y(t− 1)dẏ(t)

Following the algorithm, we define

ω1 = y(t)dy(t− 1) + y(t− 1)dy(t) = d(y(t)y(t− 1))

ω2 = u(t− 3)dy(t− 1) + y(t− 1)du(t− 3) = d(y(t− 1)u(t− 3)),

which defines

z1(t) = y(t),

z2(t) = ẏ(t)− y(t)y(t− 1),

and then a realization of the equation (110) is

ż1(t) = z2(t) + y(t)y(t− 1)

ż2(t) = y(t− 1)u(t− 3)

y(t) = z1(t)

(111)

which is in the form (95). /
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Example 6 Consider the system

ÿ(t) = −a0y(t)− a1y(t− 3) + y(t− 3)y(t− 4) + u(t− 3), (112)

with a differential form given by

dÿ(t) = −a0dy(t)− a1dy(t− 3) + y(t− 3)dy(t− 4) + y(t− 4)dy(t− 3) + du(t− 3)

with the injection functions defined by

ω1 = 0,

ω2 = −a0dy(t)− a1dy(t− 3) + y(t− 3)dy(t− 4) + y(t− 4)dy(t− 3) + du(t− 3),

dΦ2 = d
(
− a0y(t)− a1y(t− 3) + y(t− 3)y(t− 4) + u(t− 3)

)
,

that allows to define the change of variable

z1(t) = y(t),

z2(t) = ẏ(t),

taking the system (112) into the form

ż1(t) = z2 (t) ,

ż2(t) = −a0z1 (t)− a1z1 (t− 3) + z1 (t− 3) z1 (t− 4) + u(t− 3),

y(t) = z1(t),

(113)

which is in the desired form. Consider now the change of variables

z1(t− 3) = y(t),

z2(t− 3) = ẏ(t),

ż1(t) = z2(t),

ż2(t) = −a0z1(t)− a1z1(t− 3) + z1(t− 3)z1(t− 4) + u(t),

y(t) = z1(t− 3),

(114)
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Which is a different realization of (112) not related by a bicausal change of coordinates

with (113). Note that Φ2 = −a0y(t+ 3)− a1y(t− 3) + y(t− 3)y(t− 4) + u(t− 3) is no longer

the injection function since is a noncausal equation.

5.2 Association of the Input-Output Equation and the Linear Time-Delay System

State-Space Representation

The objective of this section is to present several properties that relates the input-

output representation and the state-space linear, up to input-output injection, time-delay

system. The importance of the study of this relationship lies in the constructive conditions

presented in Garcı́a-Ramı́rez et al. (2016) for the solution of Problem 2, and by extension

to the solution of Problem 3. As part of the linearizing procedure, the original nonlinear

time-delay system is taken into the input-output representation to compute the injection

functions of the desired normal form. To be able to do this it is needed to consider cases

as the one that follows.

Example 7 Consider the system

ẋ(t) = x(t)u(t)

y(t) = x(t) + x(t− 1),

that has an input-output representation of neutral-type

ẏ − α(u[s])ẏ(t− 1)− u(t)y(t) + α(u[s])u(t− 2)y(t− 1) = 0

where α(u[s]) = u(t−1)−u(t)
u(t−1)−u(t−2)

.

Example 7 shows that it is possible that a state-space representation of a time-delay

system may have a neutral-type input-output representation. Notwithstanding this, using

the Algorithm 2 is possible due to Lemma 25 since system (2) should be linearizable by

additive output injections, as defined in Márquez-Martı́nez et al. (2002), to have a solution

of Problems 2, and 3. Moreover, Lemma 25 is not a sufficient condition. Example 8 shows

that Problem 1 and Problem 2 are not equivalent. Note that for the delay-free case the

equivalence of this two problems is true.
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Example 8 The dynamical system defined by the delay-differential equation

ẋ1(t) = x1(t− 1) + x1(t− 2) + x2(t)x2(t− 2),

ẋ2(t) = 0,

y(t) = x1(t) + x1(t− 1),

(115)

has an input-output equation

ÿ(t) = ẏ(t− 1) + ẏ(t− 2), (116)

that, through the change of variables z1(t) = y(t) and z2(t) = ẏ(t)− y(t− 1)− y(t− 2), can

be taken into the linear state-space representation

ż1(t) = z2(t) + z1(t− 1) + z1(t− 2),

ż2(t) = 0,

y(t) = z1(t).

(117)

Nevertheless, (115) and (117) are not related by an invertible change of coordinates. J

The above must be considered in the procedure for finding a solution of the problem of

equivalence aimed in this chapter.

5.2.1 Effective Computation of the Input-Output Equation

The rest of the section is dedicated to present results, conditions to take the system

into the input-output equation without a transformation of the state-space variable into the

output variable. This allows to use algebraical computation strategies as the Euclidian

division and concepts as the Smith form to find a solution of the addressed problem. This

results were reported in Garcı́a-Ramı́rez et al. (2016).

Lemma 28 Assume that the given system is in its state-space representation, and let
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Ā(x[s],u[s], δ) ∈ K(2n+1)×2n(δ] be

Ā(x[s], ū[s], δ) =
(
Â(x[s],ū[s],δ) B̂(x[s],ū[s],δ)

0 I

)
(118)

where setting ū(t) = (uT (t), u̇T (t), · · · , (u(n−1))T ),

Â(x[s], ū[s], δ) =
s∑
i=0

∂(H(n),H(n−1),...,H)
∂x(t−i) δi, B̂(x[s], ū[s], δ) =

s∑
i=0

∂(H(n),H(n−1),...,H)
∂ū(t−i) δi. (119)

Then, the given system admits an input-output equation of retarded type, if and only

if the left-annihilator of the matrix Ā(x[s], ū[s], δ) is generated by a normalized covector

λ(x[s], ū[s], δ), as defined in Definition 7.

Proof. Consider the set of equation

0 = λ(x[s],u[s], δ)



dy(n)

dy(n−1)

...
dẏ
dy

du(n−1)

...
du̇
du


= λ(x[s],u[s], δ)Ā(x[s],u[s], δ) ( dxdū ) (120)

Since the dimension of the columns of Ā(x[s],u[s], δ) is 2n + 1, and the system is claimed

to be observable, rank(Ā(x[s],u[s], δ)) = 2n, so that there is one solution in the left ker-

nel. If the system admits an input-output equation of retarded type, then there exists a

λ = [χn, · · · , χ0, µn−1, · · · , µ0] with χn = 1 satisfying equation (120). Conversely if λ is a

normalized vector, then χn = 1 6= 0

dy(n) =
n−1∑
j=0

pj(ȳ, ū, δ)dy
(j) +

n−1∑
j=0

qj(ȳ, ū, δ)du
(j)

which, as before, ensures that the input–output equation is of retarded type.

The system is claimed to be observable so rank(A(x[s], u[s], δ)) = n. Then, the problem

of finding the elements λi, µj, i = j = 0, . . . n − 1 of λ(x[s], ū[s], δ) is the same problem of

finding the kernel of the matrix A(x[s], u[s], δ). The next result is presented since it is useful
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in the effective computation of the vector λ(x[s], ū[s], δ).

Lemma 29 Let Ā(x[s], u[s], δ) ∈ K(n+1)×n(δ] be a matrix of row rank 2n − 1, Ŝ(x[s], u[s], δ) ∈

K(n+1)×n(δ] its Smith pre-form such that the equality

Ā(x[s], u[s], δ) = P (x[s], u[s], δ)Ŝ(x[s], u[s], δ)Q(x[s], u[s], δ), (121)

is satisfied with Q ∈ R2n×2n a full rank matrix and P (x[s], u[s], δ) ∈ K(2n+1)×(2n+1)(δ] unimod-

ular. Then, the n− th row of P−1(x[s], u[s], δ) is a left-annihilator of Ā(x[s], u[s], δ).

Proof. P (x[s], u[s], δ) is a unimodular matrix (121) can be rewriting as

P−1(x[s], u[s], δ)Ā(x[s], u[s], δ) = Ŝ(x[s], u[s], δ)Q, (122)

Ŝ(x[s], u[s], δ) has the form

Ŝ(x[s], u[s], δ) =



α1,1(x[s], δ) α1,2(x[s], δ) . . . α1,2n(x[s], δ)

0 α2,2(x[s], δ) . . . α2,2n(x[s], δ)
...

... . . .

0 0 . . . α2n,2n(x[s], δ)

0 0 . . . 0


,

and Q is a column-shift transformation matrix that does not perform row operations. The

above implies that the last row of P−1(x[s], u[s], δ) annihilates the columns of A(x[s], u[s], δ)

by the left since the last row of Ŝ(x[s], u[s], δ)Q is zero.

Considering Lemma 29, it is possible to compute the vector λ(x[s], ū[s], δ) using the Smith

pre-form algorithm, and assigning the entries of the last row of P−1(x[s], u[s], δ) as the

elements of the vector
(
1 λn−1 · · · λ0 µn−1 · · · µ0

)
. See Garate-Garcı́a (2006), or Garcı́a-

Ramı́rez (2011) to find implemented results about this calculation.
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Example 9 Consider the dynamical retarded system given by the equation

ẋ1(t) = 2
(
a0x

2
2(t− 2)− a0x1 (t− 1) + (x1 (t− 5)− x2

2(t− 6)− a1)x1 (t− 4) +

(x2
2(t− 6)− x1 (t− 5) + a1)x2

2(t− 5)
)
x2(t− 1)+

x2(t) + 2x2 (t− 1) u (t− 1) ,

ẋ2(t) = (x1 (t− 4)− x2
2(t− 5)− a1)x1 (t− 3)− a0x1 (t) + a0x

2
2(t− 1)+

(−x1(t− 4) + x2
2(t− 5) + a1)x2

2(t− 4) + u (t) ,

y(t) = x1(t− 3)− x2
2(t− 4).

(123)

The first n-derivatives with respect to time of the output are

y(t) = x1(t− 3)− x2
2(t− 4),

ẏ(t) = x2 (t− 3) ,

ÿ(t) = −a0x1 (t− 3) + a0x
2
2(t− 4) + (x1 (t− 7)− x2

2(t− 8)− a1)x1 (t− 6) +

(−x1 (t− 7) + x2
2(t− 8) + a1)x2

2(t− 7) + u (t− 3) .

From the differential form of the input-output equation represented as

dψ = αλ



(
x1 (t− 6)− x2

2(t− 7)
)
δ7+

(
2x2 (t− 8)x2

2(t− 7)− 2x2 (t− 8)x1 (t− 6)
)
δ8+(

x1 (t− 7)− x2
2(t− 8)− a1

)
δ6−

(
2x2

2(t− 8)− 2x1 (t− 7) + 2a1

)
x2 (t− 7) δ7+ 0 δ3

a0δ
3 2a0x2 (t− 4) δ4

0 δ3 0 0

δ3 −2x2 (t− 4) δ4 0 0

0 0 0 1

0 0 1 0




dx1(t)

dx2(t)

du̇(t)

du(t)



From the Smith preform calculation the matrices that correspond to the equality (122) are

P−1(x[s], u[s], δ) =


0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0(
−x1 (t− 6) + x2

2 (t− 7)
)
δ4 +

(
−x1 (t− 7) + x2

2 (t− 8) + a1
)
δ3 + a0 0 1 −δ3 0





70

and

Ŝ(x[s], u[s], δ)Q =


0 0 1 0

0 0 0 1

δ3 −2x2 (t− 4) δ4 0 0

0 δ3 0 0

0 0 0 0


The vector λ(x[s], δ) is then defined as

λ(x[s], δ) =
(

1 0
(
−x1 (t− 6) + x2

2(t− 7)
)
δ4 +

(
−x1 (t− 7) + x2

2(t− 8) + a1

)
δ3 + a0 0 −δ3

)
.

J

5.3 Observer Design Through Linearization, Up To Input-Output Injection, Via In-

vertible Transformation.

In this section a constructive effective computational solution of Problem 3 is presented.

This result were reported in Garcı́a-Ramı́rez et al. (2016). The procedure to be followed

starts finding the normalized vector λ(x, ū, δ) that defines the coefficients, in the state-

space variables, of the differential form of the input-output equation of the system. Then, if

the system is equivalent to the form (104), using λ(x, ū, δ) the computation of the injection

functions Φi(x,u, δ), i = 1, . . . n can be used to calculate

h1(t) = y(t)

h2(t) = ẏ(t)− Φ1(y[s],u[s])

... (124)

hn−1(t) = yn−1(t)−
n−1∑
i=1

Φ
(n−i−1)
i (y[s],u[s]),

that, if the Problem 2 is solvable for the system, eliminates the non linearities from the first

n− 1 time-derivatives of the input, allowing to compute the desired change of coordinates.

Note that, if the linear part of the linearized system is delay-free, which means that is

equivalent to equation (109), z(t) = h(t) defines an invertible change of coordinates. The

Algorithm 3 computes, if possible, the injection functions Φi(x,u, δ), i = 1, . . . n, and h(t)
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from the normalized vector λ(x, ū, δ).

Algorithm 3

Let λ(x, ū, δ) := [1, χ0
n−1, · · · , χ0

0, µ
0
n−1, · · · , µ0

0] be a normalized covector satisfying Lemma

28.

Set

Ψ1 := −
n−1∑
i=0

χ0
i (x, ū, δ)dy

(i)(t)−
n−1∑
i=0

µ0
i (x, ū, δ)du

(i)(t). (125)

and set

dh0 := dH(x[s]) (126)

STEP 1. Set ω1 := −χ0
n−1(x, ū, δ)dy(t)− µ0

n−1(x, ū, δ)du(t)

Check: dω1 = 0?

NO: Stop, YES: Compute Φ1(x,u, δ) such that ω1 = dΦ1(x,u, δ), and set

dh1(x) := dḢ(x(t))− dΦ1(x,u, δ) (127)

and

Ψ2 := −
∑n−2

i=0 χ
1
i (x, ū, δ)dy

(i)(t)−
∑n−2

i=0 µ
1
i (x, ū, δ)du

(i)(t). (128)

with

χ1
i (x, ū, δ) = χ0

i (x, ū, δ)−
(

n− 1

n− 1− i

)
(χ0

n−1(x, ū, δ))(n−1−i)

µ1
i (x, ū, δ) = µ0

i (x, ū, δ)−
(

n− 1

n− 1− i

)
(µ0

n−1(x, ū, δ))(n−1−i)

STEP k. Set ωk := −χk−1
n−k(x, ū, δ)dy(t)− µk−1

n−k(x, ū, δ)du(t)

Check: dωk = 0?
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NO: Stop, YES: Compute Φk(x,u, δ) such that ωk = dΦk(x,u, δ). Set

dhk(x) := dH(x(t))(k) −
k−1∑
j=0

dΦk−j(x, ū, δ)
(j), (129)

and

Ψk+1 := −
∑n−k−1

i=0 χki (x, ū, δ)dy
(i)(t)−

∑n−k−1
i=0 µki (x, ū, δ)du

(i)(t), (130)

with

χki (x, ū, δ) = χk−1
i (x, ū, δ)−

(
n− k

n− k − i

)
(χk−1

n−k(x, ū, δ))
(n−k−i)

µki (x, ū, δ) = µk−1
i (x, ū, δ)−

(
n− k

n− k − i

)
(µk−1

n−k(x, ū, δ))
(n−k−i)

�

The following proposition ensures that computations of Algorithm 3, that are made on

the state-space variables, define the input-output injection functions Φi(y(t), · · · , y(t −

s), u(t), · · · , u(t− s)) from the input-output representation (104).

Proposition 30 Assume that ωi in Algorithm 3 is an exact differential for i = 1, · · · k. Then

i) ωi = dΦi(y(t), · · · , y(t− s), u(t), · · · , u(t− s))

ii) Ψi = y(n)(t)−
∑i−1

l=1 Φ
(n−l)
l (ȳ, ū)

Proof. By construction

ωi = −χi−1
n−i(x, ū, δ)dy − µi−1

n−i(x, ū, δ)du.

Since ωi is an exact differential, then necessarily it is only a function of y(t), u(t) and their

delays, which proves i).



73

As for ii), the proof is iterative. Ψ1 is computed starting from the normalized covector λ

and thus Ψ1 = y(n)(t). Assume that ii) is true from k, then

ωk = −χk−1
n−k(x, ū, δ)dy − µ

k−1
n−k(x, ū, δ)du = dΦk(y, u)

Accordingly

dΦ
(n−k)
k = −

n−k∑
`=0

(
n− k
`

)[(
χk−1
n−k(x, ū, δ)

)(`)
dy(n−k−`) −

(
µk−1
n−k(x, ū, δ)

)(`)
du(n−k−`)

]
.

It follows that

Ψk+1 = −
n−k−1∑
i=0

χki (x, ū, δ)dy
(i)(t)−

n−k−1∑
i=0

µki (x, ū, δ)du
(i)(t)

= −
n−k−1∑
i=0

(
χk−1
i (x, ū, δ)−

(
n− k

n− k − i

)
(χk−1

n−k(x, ū, δ))
(n−k−i)

)
dy(i)

−
n−k−1∑
i=0

(
µk−1
i (x, ū, δ)−

(
n− k

n− k − i

)
(µk−1

n−k(x, ū, δ))
(n−k−i)

)
du(i)

= Ψk +
n−k∑
i=0

((
n− k

n− k − i

)
(χk−1

n−k(x, ū, δ))
(n−k−i)dy(i)+(

n− k
n− k − i

)
(µk−1

n−k(x, ū, δ))
(n−k−i)du(i)

)
= Ψk − dΦ

(n−k)
k = y(n)(t)−

k∑
j=1

dΦ
(n−j)
j

Now, the main contribution from Garcı́a-Ramı́rez et al. (2016), that solves Problem 2 is

presented in Theorem 31.

Theorem 31 Problem 2 is solvable if and only if

i) the system admits an input–output equation of retarded type

ii) The one-forms ωi defined by Algorithm 3 are exact for all i = 1, . . . , n.

iii) There exists a polymodular matrix T (x[p,j], δ) and a full-rank matrix Q(δ) ∈ R[δ] such

that Q(δ)T (x[p,j], δ)dx(t+ p) = P (x[s], δ)dx(t) = (dhT0 , . . . , dh
T
n−1)T from Algorithm 3.
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Proof. From Lemma 25, it follows that system (2) is linearizable by additive input-output

injections only if i) stands. Assume now that the system is already in the form (95), and

apply Algorithm 3. Because of its structure, the differential of its input-output equation is

given by (104), that is,

dy(n) = −
n−1∑
i=0

σidy
(i)(t) +

n∑
k=1

k−1∑
i=0

σkC(δ)Ai(δ)dϕ(y[s],u[s])
(k−i−1),

Accordingly one gets that, starting from dh0 = C(δ)dz, at the first step

ω1 = −σn−1dy + C(δ)dϕ = dΦ1

dh1 = C(δ)A(δ)dz + σn−1dy

and at step k

ωk = −σn−kdy +
k−1∑
j=0

σn−k+1+jC(δ)Aj(δ)dϕ = dΦk

dhk =
k∑
j=0

σn−jC(δ)A(δ)jdz(t)

which proves that the ωi’s must be exact one-forms. Furthermore, in the x-coordinates

one thus gets

dĥ =



1 0 0 . . . 0

σn−1 1 0 . . . 0

σn−2 σn−1 1 . . . 0
...

...
... . . . ...

σ1 σ2 σ3 . . . 1





C(δ)

C(δ)A(δ)

C(δ)A(δ)2

...

C(δ)A(δ)n−1


dz(t) = Q(δ)dz(t). (131)

Since by assumption z(t) = φ(x(t+ p), · · · , x(t− j)), dz(t) = T (x[p,j], δ)dx(t+ p), we have

that

dĥ = Q(δ)T (x[p,j], δ)dx(t+ p) = P (x[0,s], δ)dx(t)
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which proves the necessity of iii).

For the sufficiency, according to iii) there exists z(t) = φ(x(t+p), · · · , x(t−j)), such that

dz(t) = T (x[p,j], δ)dx(t + p). Since conditions i) and ii) are verified, in the z–coordinates

the output of the Algorithm 3 is given by



dy

dẏ − dϕ1(y, u)

dy(2) − dϕ̇1(y, u)− dϕ2(y, u)
...

dy(n−1) − dϕ(n−2)
1 (y, u)− . . .− dϕn−1(y, u)


= Q(δ)dz. (132)

Differentiating equation (132) and denoting by qi(δ) the i-th row of the matrix Q(δ)

Q(δ)dż =



dẏ

dÿ − dϕ̇1(y, u)

dy(3) − dϕ̈1(y, u)− dϕ̇2(y, u)
...

dy(n) − dϕ(n−1)
1 (y, u)− . . .− dϕ̇n−1(y, u)


=


q2(δ)dz + dϕ1

...

qn(δ)dz + dϕn−1

dϕn



=


q2(δ)

...

qn(δ)

0

 dz + dϕ = Ā(δ)dz + dϕ

(133)

Multiplying by the adjunct matrix Q(a)(δ) we get


q̄1(δ)

. . .

q̄n(δ)

 dż = Â(δ)dz + dϕ̂

Using the identity of polynomials one thus gets that

dż = A(δ)dz + dΨ(y, u)
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which ends the proof.

Theorem 31 solves 2 allowing to take the system in the canonical linear, up to input-

output injection, form (95) for which a Luenberger-type observer described by equation

(96) can be design. Nevertheless, an invertible change of coordinates of ζ(t) = φ(ξ[p,s])

can lead to a non causal observer dynamics. To deal with this consider ξ(t) = φ̄(ζ [p,s]) that

fulfills φ̄(ζ [p′,s′]) |z(t)=φ(ξ[p,s])= x(t), and define a change of variable is proposed as follows

ξ̄(t) =


ξ1(t− p1)

...

ξn(t− pn)

 =


φ̄1(ζ [0,s′+p1])

...

φ̄n(ζ [0,s′+pn])


that takes the observer into a non-anticipative dynamical system.

The following example illustrates how the results given in this section can be used for the

observation of a dynamical system.

Example 10 Consider the equation describing system (123) from the Example 9.

The normalized vector λ(x[s], δ) is then defined as

λ(x[s], δ) =
(

1 0
(
−x1 (t− 6) + x2

2(t− 7)
)
δ4 +

(
−x1 (t− 7) + x2

2(t− 8) + a1

)
δ3 + a0 0 −δ3

)
.

is used as an input for the Algorithm 3. First set

Ψ1 := −
(

(−x1 (t− 6) + x2
2(t− 7)) δ4 + (−x1 (t− 7) + x2

2(t− 8) + a1) δ3 + a0

)
dy(t)+

δ3du(t)

dh0 = δ3dx1(t)− 2x2 (t− 4) δ4dx2(t)

STEP 1. Since ω1 = 0 is exact, and it is possible to set

Ψ2 := −
(

(−x1 (t− 6) + x2
2(t− 7)) δ4 + (−x1 (t− 7) + x2

2(t− 8) + a1) δ3 + a0

)
dy(t)+

δ3du(t),

dh1 = δ3dx2(t).

Since ω2 = Ψ2 = d
(
a0y(t) + a1y(t − 3) + y(t − 3)y(t − 4)

)
is exact, the algorithm ends.
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These results allow to find an invertible change of coordinates defined from the differential

form given by

dh0 = δ3dx1(t)− 2x2(t− 4)δ4dx2(t) = d (x1(t− 3)− x2
2(t− 4)) ,

dh1 = δ3dx2(t) = d (x2(t− 3)) ,
(134)

with an inverse described by the equations

x1(t− 3) = z1(t) + z2
2(t− 1),

x2(t− 3) = z2(t)

that takes system (123) into the form

ż1(t) = z2 (t) ,

ż2(t) = −a0z1 (t)− a1z1 (t− 3) + z1 (t− 3) z1 (t− 4) + u(t− 3),

y(t) = z1(t),

(135)

which is in the desired form. Note that the use of this non bicausal change of coordinates

allows to compute the delayed state only. A Luenberger-type observer for system (135) is

proposed as

ζ̇1(t) = ζ2(t) + k1

(
ζ1(t)− z1(t)

)
,

ζ̇2(t) = k2

(
ζ1(t)− z1(t)

)
− a0y (t)− a1y (t− 3) + y (t− 3) y (t− 4) + u(t− 3).

(136)

That defines an error dynamics defined as

ε̇1(t) = ε2(t) + k1ε1(t),

ε̇2(t) = k2ε1(t).
(137)

In the coordinates ξ̄(t)

ξ̄1(t) = ξ1(t− 3) = ζ1(t) + ζ2
2(t− 1),

ξ̄2(t) = ξ2(t− 3) = ζ2(t),
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the observed is defined

˙̄ξ1(t) = ξ̄2(t) + 2ξ̄2(t− 1)2
(
y(t− 4)y(t− 5)− a0y(t− 1)− a1y(t− 4)+

k2

(
ξ̄1(t− 4)− ξ̄2

2(t− 5)− x1(t− 4) + x2
2(t− 5)

)
+ u(t− 4)

)
+

k1

(
ξ̄1(t− 3)− ξ̄2

2(t− 4)− x1(t− 3) + x2
2(t− 4)

)
,

˙̄ξ2(t) = k2

(
ξ̄1(t− 3)− ξ̄2

2(t− 4)− x1(t− 3) + x2
2(t− 4)

)
− a0y (t)−

a1y (t− 3) + y (t− 3) y (t− 4) + u(t− 3).

(138)

Since the equivalent linear system has a state feedback linearizable canonical form, a

linearization input is chosen as to drive the system into the time delay linear differential

equation

ż1(t) = z2(t),

ż2(t) = −a0z1(t)− a1z1(t− 3)− k̄ζ1(t− 3).
(139)

Such an input in the original coordinates is u(t) = −(−a1 + k̄)ζ1(t − 3) −
(
ξ1(t) + ξ2

2(t −

3)
)(
ξ1(t − 1) + ξ2

2(t − 4)
)
. Note that −(−a1 + k̄) should be taken considering the stability

region as defined in Theorem 1 or, for a delay-free approximation, the stability region

defined in Proposition 11 or 13.

In Figure 22 numerical simulations of the state variable x(t), and the observed delayed

state x(t−3). For this simulation the base time-delay of the system is taken as 1/3 units of

time, the system parameter values are a0 = 5, and a1 = −3, and the observer gain values

are set as k1 = −1.414, and k2 = −1.

The error of the observed signals are compared shifting the solution of the system as

is presented in Figure 23. J

5.4 Observer Design Through Linearization, Up To Input-Output Injection, Via Bi-

causal Transformation.

In this section, Problem 3 is discussed. Problem 3 consists in the search of a canonical

structure with delays in the linear part, and a nonlinear part depending on the input, the

output, and their respective delays only. In Section 5.3 it was shown that a non bicausal

invertible change of coordinates allows to design an observer to compute the retarded
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Figure 23: Error of the time-delayed observation of the NLDS (123).

state variable of the system. Nevertheless, a bicausal change of coordinates permit to

calculate the actual value of the state variables, for example by means of a Luenberger-

type observer, since the observer dynamics is not affected by variables that depends of

the future. Note also that a bicausal transformation allows to keep invariant the strong

and weak observability properties of the dynamical system. As it is pointed out in Garcı́a-

Ramı́rez et al. (2016), non bicausal change of coordinates can modify these properties.

Consider, for instance, next example:
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Example 11 The strong observable system

ẋ(t) = ax(t),

y(t) = x(t).

The change of coordinates z = x(t+ 1) takes the system into the form

ż(t) = az(t),

y(t) = z(t− 1),
(140)

which is weakly-observable.

Now, considering Theorem 31 to design an observer for (140) the change of coordinates

is computed

y(t) = h0 = z̄(t) = z(t− 1),

ẏ(t) = ϕ = az(t− 1).

The equations of the system in the new coordinates are

˙̄z(t) = az̄(t− 1),

y(t) = z̄(t).
(141)

an observer defined by the equation

˙̄ζ(t) = k
(
ζ̄(t)− z̄(t)

)
− az̄(t− 1),

with an error equation ē(t) = z̄(t)− ζ̄(t) defines an error dynamical system

˙̄e(t) = kē(t). (142)

Since the change of coordinates is not bicausal any observer designed using system (141)

allow to compute the delayed state z(t− 1). System (140) is already in the form (95) so it
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is possible to design an observer

ζ̇(t) = aζ + k
(
ζ(t− 1)− z(t− 1)

)
,

with an error e(t) = z(t)− ζ(t) with dynamic

ė(t) = ae(t) + ke(t− 1). (143)

This means that for system (140), the design of an observer whose solution converges to

the present state value is feasible. Note also that error dynamics (142) is linear delay-free,

and (143) is a linear time-delay system, so time-delay stability considerations should be

taken for (143) while for (142) classical delay-free techniques may be used. J

To solve Problem 3, the next corollary of 31 will be used.

Corollary 32 Problem 2 is solvable only if

i) the system admits an input–output equation of retarded type

ii) The one-forms ωi defined by Algorithm 3 are exact for all i = 1, . . . , n.

iii) There exists a bicausal matrix T (x[p,j], δ) and a full rank matrix Q(δ) ∈ R[δ] such that

Q(δ)T (x[p], δ)dx(t) = P (x[s], δ)dx(t) = (dhT0 , . . . , dh
T
n−1)T from Algorithm 3.

Sufficiency of conditions on Corollary 32 are not sufficient, as it can be illustrated by the

following example

Example 12 Consider the system

ẋ(t) = x(t)u(t− 1),

y(t) = x(t− 1).
(144)

The system defined by equation (144) is linear up to injection of the state variable that

defines the output in the new coordinates, and fulfills the procedure described until now
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but is not in the form (95), since the nonlinear terms depend on the future values of the

output (e.g. x(t)u(t − 1) = y(t + 1)u(t − 1)). This example shows that Problem 2 has a

solution in the case of the input-output representation derived from (144), but the existence

of such a solution does not imply that Problem 3 is solvable because a bicausal change of

coordinates to a system in the canonical form (95) does not exist. /

In the next paragraphs a solution for Problem 3 is presented dealing with the depen-

dence of noncausal output dependent non linearities as the ones presented by Example

12.

Without loss of generality, the differential derivative of equation (95) can be expressed as

dż(t) = A(δ)dz(t) + ϑ(δ)dy(t) + d
(
ϕ̂(y[s],u[s])

)
,

dy(t) = C(δ)dz(t),
(145)

with ϑ(δ) ∈ Rn[δ]. By means of the bicausal transformation z(t) = ϕ(x[s]), defined through

Corollary 32, the system in the new coordinates can be described, without loss of gener-

ality, by

żi = f̄i(z[s],u[s]), i = 1, . . . n

y(t) = c1(δ)z1(t).
(146)

Using the notation established in (146), the linear part of the equation (145) is written as

d (ai(δ)z(t)) =
n∑
j=1

aij(δ)dzj(t) + ϑi(δ)dy(t), i = 1, . . . n, (147)

where ai(δ) is defined by the i-th row of the matrix A(δ), and each aij(δ), i = 1, . . . n by its

entries. The remaining part of the computation of

d (ai(δ)z(t)) ∧ dy(t), . . . ,∧dy(t− s) =

(
n∑
j=1

aij(δ)dzj(t)

)
∧ dy(t), . . . ,∧dy(t− s) (148)
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is not generated by spanR[δ]{dy(t), . . . , dy(t − s)}. Besides this, the part of the equation

(145) that is generated by dy(t) can be computed as

dφi(y[s],u[s]) = dżi(t)−
n∑
j=1

aij(δ)dzj(t), i = 1, . . . n. (149)

The following result can be stated.

Proposition 33 Problem 3 is solvable if and only if

(i) dωi = 0 for all ωi, i = 0, . . . , n from Algorithm 3,

(ii) There exists a unimodular transformation matrix T (x[s], δ) ∈ K(δ], and a full-rank

matrix Q(δ) ∈ R[δ], such that Q(δ)T (x[s], δ)dx = P (x[s], δ)dx = (dh0, . . . , dhn−1)T from

Algorithm 3,

(iii) There exists dh̄i =
∑n

j=1 αij(·, δ)dzj(t) with αij ∈ R[δ] ∀i = 1, . . . , n such that dh̄i ∧

dy(t), . . . ,∧dy(t− s) = df̄i(z[s], 0) ∧ dy(t), . . . ,∧dy(t− s), i = 1, . . . n, and

(iv) dφ̄i(·, ·) ∈ spanK(δ]{dy, . . . , dy(n−1), du, . . . , du(n−1)}, with dφ̄i(·, ·) := dżi − dh̄i, i =

1, . . . , n.

Proof. Sufficiency: Because Problem 3 has a solution only if conditions (i) and (ii) are

fulfilled, then a bicausal transformation dz(t) = T (x[s], δ)dx(t) must exist. If (iii) is fulfilled,

then dh̄i =
∑n

j=1 αij(·, δ)dzj(t) =
∑n

j=1 aij(δ)dzj(t), i = 1, . . . n as defined in (147), and

dφ̄i(·, ·) := dżi − dh̄i = dφi(y[s],u[s]), i = 1, . . . n as defined in (149). Then, it is sufficient

that the system in the new coordinates fulfills (iii) and (iv) to have an equivalent state-

space representation in the form (95).

Necessity: The necessity of (iii) comes directly from the computation

df̄i ∧ dy(t) ∧ . . . ∧ dy(t− s) =

(
n∑
j=1

s∑
k=0

akijdzj(t− k)

)
∧ dy(t) ∧ . . . ∧ dy(t− s)+(

d
(
ϕ(y[s], 0)

))
∧ dy(t) ∧ . . . ∧ dy(t− s)

=

(
n∑
j=1

s∑
k=0

akijdzi(t− k)

)
∧ dy(t) ∧ . . . ∧ dy(t− s)

= dh̄i ∧ dy(t) ∧ . . . ∧ dy(t− s)

(150)
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on (95). Let us assume now that the system (2) is linearizable by additive input-output

injections but (iv) does not stand, which means that the nonlinear part of the system in

the new coordinates is not a function of the output and the input only. From the equation

(150) on (95) we get dh̄ = A(δ)dz and then it is possible to compute

d
(
ϕ(y[s],u[s])

)
= dż(t)− A(δ)dz(t). (151)

but, because of the necessity of (i), (ii), and (iii), after the bicausal change of coor-

dinates given by dz(t) = T (x[s], δ), the system must be in the form (95), and from (151)

d
(
ϕ(y[s],u[s])

)
∈ spanK(δ]{dy, . . . , dy(n−1), du, . . . , du(n−1)}, which is a contradiction with the

asseveration that (iv) does not hold.

The next example shows how, by means of Proposition 33, a bicausal change of coordi-

nates can be found.

Example 13 Consider the dynamical system described by the state-space representation

ẋ1 = x1 (t) + x2 (t− 2) + x1 (t− 3)2,

ẋ2 = 2x2 (t) + x1 (t) + x1 (t− 3) u (t− 1)− 2
(
x2 (t− 3) + x1 (t− 4)2)x1 (t− 1) ,

y(t) = x1(t− 3).

(152)

First the matrix A(x[s],u[s], δ) is given by



dy(2)

dẏ

dy

du̇

du



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=H(x[s])

=



u (t− 6) δ8 + 6x1 (t− 6) δ6 + δ5 + δ3 3δ5 x1 (t− 8) δ6 0

2x1 (t− 6) δ6 + δ3 δ5 0 0

δ3 0 0 0

0 0 1 0

0 0 0 1




dx1(t)

dx2(t)

du̇

du

 .

The left annihilator of the matrix A(x[s],u[s], δ) is given by the normalized vector

λ|y=H(x[s]) =
(

1
... −u (t− 6) δ5 − δ2 + 2

... −3
... −x1 (t− 8) δ6... 0

)
.
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Using the Algorithm 3 it is possible to compute (condition (i))

dh0 = dy(t) = δ3dx1(t)

dh1 = dẏ(t)− dΦ1 =
(
δ3 + 2x1(t− 6)δ6

)
dx1(t) + δ5dx2(t) + 3dx1(t)

(153)

which defines, as required by the condition (ii) of the Proposition 33, P (x[s], δ)dx =

Q(δ)T (x[s], δ)dx expressed as

dh =

 δ3 0(
3 + δ3 + 2x1(t− 6)δ6

)
δ5

 dx(t) =

 δ3 0

3 + δ3 δ5

 1 0

2x1(t− 1)δ 1

 dx(t). (154)

This define the change of coordinates characterized by

T (x[s], δ)dx(t) =

 1 0

2x1(t− 1)δ 1

 dx(t) = d

 z1(t)

z2(t) + z1(t− 1)2

 , (155)

That leads to the system in the new coordinate system expressed now as

ż1 = z1(t) + z2(t− 2)

ż2 = z1(t) + 2z2(t) + z1(t− 3)u(t− 1),

y(t) = z1(t− 3).

(156)

From the system (156) and the deffinition given by the equation (146) we get df̄1(z[s], 0) =

dz1(t)+dz2(t−2), and df̄2(z[s], 0) = dz1(t)+2dz2(t). Performing the wedge product with the

delayed output, and df̄1(z[s], 0), i = 1, 2 df̄1(z[s], 0)∧dy(t)∧dy(t−1)∧dy(t−2)∧dy(t−3) =(
dz1(t) + dz2(t− 2)

)
∧ dy(t)∧ dy(t− 1)∧ dy(t− 2)∧ dy(t− 3) and df̄2(z[s], 0)∧ dy(t)∧ dy(t−

1) ∧ dy(t− 2) ∧ dy(t− 3) =
(
dz1(t) + 2dz2(t)

)
∧ dy(t) ∧ dy(t− 1) ∧ dy(t− 2) ∧ dy(t− 3) the

vector dh̄, defined by dh̄1 = dz1(t) + dz2(t − 2) and dh̄2 = dz1(t) + 2dz2(t), is computed.
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Finally,

d
(
φ̄(z[s],u[s])

)
= dż(t)− dh̄(t) =

 0

z1(t− 3)du(t− 1) + u(t− 1)dz1(t− 3)

 ,

=

 0

d (z1(t− 3)u(t− 1))

 =

 0

d (y(t)u(t− 1))

 .

(157)

From (157) it is straightforward to check that condition (iv) of the Proposition 33 is fulfilled.

This means that the system defined by the equation (152) is linearizable via input-output

injection. /

Example 14 Consider System (123) from Example 9. In example 10, conditions of The-

orem 31 are used to find a non bicausal transformation to a system of the canonical form

(95). Nevertheless, note that the use of this non bicausal change of coordinates allows to

compute the delayed state only. Now, by means of Proposition (33) it is possible to prove

that a bicausal change of coordinates takes System (123) into the form (95). This is done

be rewriting (134) in the following way:

dh1

dh2

 =

δ3 0

0 δ3

1 −2x2(t− 1)δ

0 1

dx1(t)

dx2(t)

 = Q(δ)P (x[s], δ)dx (158)

P (x[s], δ)dx defines the bicausal change of coordinates given by the equations

z1(t) = x1(t)− x2
2(t− 1), x1(t) = z1(t) + z2(t− 1),

z2(t) = x2(t), x2(t) = z2(t),
(159)

that takes system into the form

ż1(t) = z2 (t) ,

ż2(t) = −a0z1 (t)− a1z1 (t− 3) + z1 (t− 3) z1 (t− 4) + u(t),

y(t) = z1(t− 3).

(160)
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In the new coordinates is possible to design a Luenberger observer of the form (96) as

ζ̇1(t) = ζ2(t) + k1

(
ζ1(t− 3)− z1(t− 3)

)
,

ζ̇2(t) = −a0ζ1(t) + k2

(
ζ1(t− 3)− z1(t− 3)

)
− a1y(t) + y(t)y(t− 1) + u(t),

(161)

which, defining an error equation e(t) = z(t)− ζ(t), leads to the error time-delay equations

ė1(t) = e2(t) + k1e1(t− 3),

ė2(t) = −a0e1(t) + k2e1(t− 3).
(162)

A proper selection of k1, and k2 lead to a stable solution of (162) that converges to the

solution of (161). The observer in the coordinates ξ1(t) = ζ1(t) + ζ2
2(t− 1), ξ2(t) = ζ2(t) is

expressed as

ξ̇1(t) = ξ2(t) + k1

(
ξ1(t− 3)− ξ2

2(t− 4)− x1(t− 3) + x2
2(t− 4)

)
+

2ξ2(t− 1)
(
− a0

(
ξ1(t)− ξ2

2(t− 1)
)
− a1y(t− 1) + y(t− 1)y(t− 2)+

k2

(
ξ1(t− 4)− ξ2

2(t− 5)− x1(t− 4) + x2
2(t− 5)

)
+ u(t− 1)

)
ξ̇2(t) = −a0

(
ξ1(t)− ξ2

2(t− 1)
)
− a1y(t) + y(t)y(t− 1) + u(t)+

k2

(
ξ1(t− 3)− ξ2

2(t− 4)− x1(t− 3) + x2
2(t− 4)

)
.

(163)

The linearized dynamics (161) allows to define a control law u(t) = −
(
k̄1 − a0

)(
ξ1(t) +

ξ2
2(t− 1)

)
− k̄2ξ2(t) + a1

(
ξ1(t− 3) + ξ2

2(t− 4)
)
−
(
ξ1(t− 3) + ξ2

2(t− 4)
)(
ξ1(t− 4) + ξ2

2(t− 5)
)
.

Using such a control feedback in Figure 24 the numerical solution of the of the closed loop

system is presented considering the system parameters a0 = 5, a1 = −3, a time delay

of 1/3, observer coefficient values k1 = 1.2 and k2 = 3, and the values for the controller

coefficients chosen as k̄1 = 14.14 and k̄2 = 10.

J

5.5 Discussion.

The linearization results, reported in Garcı́a-Ramı́rez et al. (2016), define a construc-

tive solution for the invertible transformation to the canonical form (95). Throughout the

chapter, results for the effective computation complements the conditions given. Also, we

give conditions that ensure that, after the change of coordinates, the system is represented



88

0

2000

4000

6000

x
1
(t
)

x
1
(t)

ζ
1
(t)

error

0 1 2 3 4 5 6 7 8

−50

0

50

time t

x
2
(t
)

x
2
(t)

ζ
2
(t)

error

Figure 24: Observation of the NLDS (123).

in the linearized form (95). An academic example is proposed to show the computations

required for the linearization and the observer design. Numerical results are reported to

show the performance of the designed observer. The observed signals used as a feedback

were successful stabilizing the system. It is important to point out that the syntonization of

both, observer and controller, is a topic outside of the scope of this work, so the efficiency

of the response is not evaluated. Moreover, observations should be considered about the

resultant linear equations in Examples 10, and 14. Note that, after the elimination of the

nonlinear part, (135) is a delay-free system, while (161) is affected by the time-lag. This al-

lowed to use delay-free strategies on the error dynamics (137) for the selection of the gain

for the observer, and reserved the observer design for the time-delayed error differential

equation (162) to time-delay techniques. A strong restriction consists in the impossibility

to change the parameter a0. Therefore, for values outside of 0 <
√
a0τ 2 < π, there does

not exist a value k2 that fulfills Theorem 1 for the asymptotic stability of the error dynamics

(162), for k1 = 0. This means that in such a case Lemma 9 is not applicable. Also, the

error of the observed states computed by observer (138) converges to zero faster than

observer (163), which computes the present state. This might be because the criteria

for the restrictions presented for the observer design on an aftereffect error dynamics as

(162). Moreover, since the initial conditions of the system are not provided to the observer

dynamics, the observation error is considerably big until the information of the system is

injected on the observer. This should be considered in unstable systems with fast rates
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of change since observations might not be fast enough to stabilize the system. The study

of this results on a quarter-car dynamical system was reported in Garcia-Ramirez et al.

(2016).
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Chapter 6. Conclusions and Pespectives

The main contributions of this work are addressed to the problem of simplification of

hereditary dynamical systems via coordinate transformations and approximation by delay-

free equations. The conclusions and perspectives, enlisted in the order of the methodol-

ogy proposed, are summarized as follows.

The solution presented for the problem of linearization , via elimination of the injection

function, by means of an invertible change of coordinates is constructive allowing to imple-

ment an algorithm which permits to compute explicitly the transformation and the injection

function. Moreover, since the algorithm performs its computations step by step, using the

state-space variables, its implementation using computational software is straightforward.

The extension of this solution to the case where the coordinate transformation is bicausal

ensures also the causality in the design of control laws or state-space observers. Never-

theless, as was pointed out by examples, the use of bicausal transformations may lead to

representations where the injection functions depend on future values of the output vari-

able. Despite this, an observer that computes the delayed state can be designed using the

results given using an invertible change of coordinates. Furthermore, numerical results of

an academical example are presented to show the effectiveness of a Luenberger-type

observer designed based on the canonical form given by this strategy. This example illus-

trates how the observed variables can be effectively used to stabilized a nonlinear system,

and how the knowledge of the observed state variable in the present time permits to de-

sign a control input using delay-free techniques. Further investigations on the controller

and observer syntonization might improve the performance of the technique and it is left

for future work.

The importance of the geometrical control approach, particularly in the solution of prob-

lems of equivalence with canonical forms, motivated the study of the extension of the Lie

bracket operation recently developed for the time-delay system framework. The algorithm

developed in this work of thesis simplify the procedure needed in the solution of problems

that involves this important operation. The computation time is reduced in the iterative

procedures as the required in the test of equivalence with linear systems, the existence

of an integrable left-annihilator of a submodule with elements in Kn(δ], among others (see

Table 1 in page 15). This is a direct consequence of the reduction of a numerous amount
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of computations involved in the direct calculation of the extended Lie bracket. Future

work on the implementation of the above results in symbolic computational software (see

Gárate-Garcı́a et al. (2011)) is a direct consequence of the constructive solutions pro-

posed throughout this work. It is notable that the algorithm presented provides a structure

that allows the implementation using parallel processing techniques. Such techniques are

capable of a considerable computational time reduction. An implementation in a software

environment permits to take advantage of results produced in this thesis, and in other

works with a reduced inversion of training and computational time.

The linearization results involving coordinate transformations allows to treat locally a

family of time-delay nonlinear systems as, not necessary delay-free, linear systems. Nev-

ertheless, to deal with delay-free differential equations brings advantages considering the

wide developed theory of this kind of systems. A well-known strategy to eliminate the

aftereffect on the equations is the approximation by Taylor series of the delayed vari-

ables. In this work, general conditions that ensure the stability of the ordinary differential

equations that results from the Taylor series approximation of the delayed variable are

presented. These conditions show that, after the approximation, the resulting ordinary

differential equation is unstable, despite the stability of the original time-delay system, for

a certain truncation order. Even more, numerical results indicate that, for small values of

the truncation, the approximation is not accurate. However, as a result of this thesis, it is

proved that, for a class of linear delay differential equations, feasible approximations can

be characterized by forward-shifting the time, and substituting the delayed and advanced

variables by the truncated Taylor series. This approximation takes account of the stability

regions, in the parametric space, of the studied systems. Nevertheless, since the results

in this thesis are restricted to the mentioned equations, a problem stated for future work

is to investigate if the methodology used can be extended to the general case. Another

limitation of this strategy is that it is limited to those families of hereditary linear systems

where stability regions are defined. Nonetheless, a direct application of this result is in the

selection of coefficients for the stabilization of linear time-delay control systems.
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