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Resumen de la tesis que presenta Josué Gabriel González Flores como requisito parcial para la
obtención del grado de Maestro en Ciencias en Ciencias de la Tierra con orientación en Geofı́sica
Aplicada.

Ondas extensionales en un cilindro poroso saturado con superficie radial impermeable

Resumen aprobado por:

Dr. Pratap Narayan Sahay Sahay
Director de tesis

Los estudios de onda extensional son un área activa de investigación experimental para la
caracterización de los módulos elásticos de materiales porosos saturados en el régimen de bajas
frecuencias (sub 100Hz). En estos estudios, un núcleo cilı́ndrico de longitud finita es excitado
en un modo caracterı́stico de onda longitudinal estacionaria. El problema de valor de frontera
asociado con las oscilaciones extensionales de un cilindro poroso saturado, para el caso de la su-
perficie radial libre de tracción con poros abiertos, se ha analizado completamente analı́ticamente.
Sin embargo, su contra parte de poros cerrados libre de tracción, en la que la superficie radial está
sellada de tal manera que el fluido no puede moverse fuera de la muestra, no ha sido analizada
analı́ticamente completamente. Aún ası́, los estudios experimentales con superficie cerrada son
un área importante de la investigación para entender la atenuación sı́smica en rocas porosas.
Con base en la teorı́a dCS de poroelasticidad, el problema de valor en la frontera del movimiento
extensional de un cilindro poro con superficie radial impermeable libre de esfuerzos es analizado
en este trabajo. Las condiciones en la superficie radial se consideran como: i) las tracciones cor-
respondientes a la suma total de esfuerzos en las partes sólida y fluida son iguales a cero, ii) el
movimiento relativo es nulo entre las fases en la dirección normal y, iii) sin esfuerzo interno en la
dirección tangencial. La relación de dispersión muestra que un cilindro poroso saturado aparte de
comportarse como un sólido elástico efectivo no drenado, como es considerado en la comunidad
experimental, tiene otros dos modos altamente disipativos. Debido a la presión de confinamiento
aplicada para sellar un cilindro poroso en un experimento de baja frecuencia, el cilindro es forzado
a oscilar bajo las condiciones de esfuerzo en su superficie radial. Por lo tanto, aparte de la ex-
citación del primer modo extensional, los otros dos modos naturales también deben ser inducidos
en la muestra. Por lo que, la atenuación observada en los experimentos puede ser explicada por
la presencia de los dos adicionales modos altamente atenuados.

Palabras Clave: poroelasticidad, atenuación de ondas, ondas extensionales



iii

Abstract of the thesis presented by Josué Gabriel González Flores as a partial requirement to
obtain the Master of Science degree in Master in Earth Science with orientation in Applied Geo-
physics.

Extensional waves in a fluid-saturated porous cylinder with an impermeable radial surface

Abstract approved by:

Dr. Pratap Narayan Sahay Sahay
Thesis Director

Extensional wave studies are an active area of experimental research for the characterization of
the elastic moduli of fluid-saturated porous materials in low frequency regime (sub 100Hz). Herein,
a cylindrical core of finite length is excited into a characteristic mode of a longitudinal standing
wave. The boundary-value problem associated with extensional oscillations of a fluid-saturated
porous circular cylinder, for the case of traction-free open-pore radial surface, is analytically an-
alyzed. However, its traction-free closed-pore counterpart, wherein the radial surface is sealed
such that the fluid cannot move out of the sample, has not been analytically analyzed properly yet.
Although, experimental studies with surface pores being held closed are a major area of research
to understand seismic attenuation in porous rocks. Based on the dCS framework of poroelasticity,
the boundary-value problem of extensional motion of a porous cylinder with a stress-free imper-
meable radial surface is analyzed in this work. The conditions on the radial surface are taken as
(i) the tractions corresponding to the sum total of phasic stresses vanishing, (ii) vanishing relative
motion between the phases in the normal direction and, (iii) no internal stress in the tangential di-
rection. The dispersion relation shows that a saturated porous cylinder, apart from vibrating as an
effective undrained elastic solid, as considered in the experimental community, has additional two
modes and they are highly dissipative. Due to the confining pressure applied to seal the sample in
a low frequency experiment (LF), the porous cylinder is subjected to forced oscillations under the
condition of non-vanishing stresses at its impermeable radial surface. Therefore, in addition to the
excitation of the mode of effective undrained elastic solid, the other two natural modes ought to be
induced also. Then, the observed attenuation in a LF experiment can be explained on account of
the presence of these two additional highly attenuated modes.

Keywords: poroelasticity, wave attenuation, extensional waves
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Chapter 1 Introduction

1.1 Background and perspective

Reservoir seismology aims, from the wave field data, to delineate reservoir structure as well

as to quantify the type of saturating geo-fluid (whether it is oil, or gas, or water), its volume (i.e.,

the porosity) and whether it will flow (i.e., the permeability). Reservoirs are elastic matrices satu-

rated with a fluid, that is, porous media. Therefore, the poroelastic theory ought to be the natural

framework to analyze waves propagating in reservoirs. It considers the role of fluid phase on equal

footing to that of solid phase. Porosity, permeability, and fluid properties are explicitly present in

this framework. Apart from the unison motion of phases, this framework takes also into account

the relative motion of phases. In contrast, the framework of elasticity is limited only to the motion

of phases in unison.

Plona (1980) corroborated experimentally the existence of a slow compressional wave pre-

dicted by the poroelasticity theory by Biot (1956, 1962). Slow waves are processes wherein rela-

tive motion of the fluid phase with respect to the solid frame dominates. Plona’s experiment was

a turning point. With that experimental demonstration of relative motion of phases, the framework

of poromechanics due to Biot became a viable candidate for seismic wave propagation modeling.

However, there is a riddle. In the surface seismic band (2-100 Hz), the predicted attenuation by the

Biot theory is orders of magnitude smaller than observed attenuation in field data, although, the

predicted velocity is well in agreement.

The Biot theory predicts P- and S- waves, akin to seismic waves predicted by the elasticity

theory, which are essentially in-phase motion of the phases. Apart from them, it also predicts

an additional process that is of diffusive character up to a cross-over frequency and thereafter

propagatory, and it is essentially out of phase compressive motion of the phases.

From a poromechanics point of view, there are two intrinsic mechanisms of attenuation, namely,

(a) the relative motion of fluid with respect to solid frame and (b) the viscous relaxation within

the fluid itself. Both mechanisms have a pronounced role of the fluid. Thus, from point of view

this framework, seismic attenuation is ought to be a key for characterization of geo-fluids. There
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have been concerted efforts to understand and quantify the fluid effect on seismic velocity and

attenuation by performing laboratory studies.

The pulse transmission technique is the earliest method applied to rocks. In this technique

two transducers, a transmitter and a receiver, are attached to the opposite ends of a sample and

the propagating signal’s travel time and amplitude are measured. The wave attenuation is quanti-

fied by the decrement in amplitude of the pulse. By late seventies appropriate compressibility rigs

were commissioned at several academic institutions and industrial laboratories to perform pulse

propagation experiments under the ambient pressure conditions of reservoir, on sandstones from

a variety of geological settings (Toksoz et al., 1979; Winkler, 1983). This method requires that

the travel distance for pulse propagation must be at least a few wavelengths long. Since a com-

pressibility rig can accommodate a sample no longer than 10 to 15 cm. The frequency in such

experiments is limited to ultrasonic band (0.1-2 MHz). There is a wide agreement in the literature

that for sandstones the measured velocity and attenuation in the ultrasonic band corroborate well

with the values predicted by the Biot theory (Bourbie et al., 1987; Best et al., 1994), provided the

micro-structure is such that equalization of the fluid pressure occurs at pore-scale.

By the end of seventies, the adaptation of resonance bar technique to rocks allowed the exten-

sion of the measurements range to the kHz regimen (Winkler and Nur, 1979; Tittmann et al., 1981).

In this method, a cylindrical core is excited into extensional mode of vibration. The sample length

and elastic properties define the peak resonance frequency. The attenuation is estimated from the

decay time of the resonance peak, once the exciting force is removed (Birch and Bancroft, 1938;

Born, 1941; Gardner et al., 1964). It is not possible to handle a rock core longer than a meter,

which constrains the lower bound of the resonance frequency to the kHz band. For a long time

there was a controversy, since the measured extensional attenuation turned out to be higher than

the attenuation predicted by the poroelasticity theory. However, by mid-eighties, this was explained

by White (1986). By analyzing the poroelastic extensional vibration in the Biot framework (Gardner,

1962), he showed that observed attenuation is due to the boundary effect of the stress-free radial

surface of core that allows saturating fluid to freely move in and out.

In the early eighties there was an effort to carryout experimental studies of sub-resonance

extensional deformation of cylindrical cores in the low frequency band (sub kHz) utilizing an inno-

vative adaptation of the Hoek apparatus (Spencer, 1981). This is a forced oscillation technique. It

studies the dynamic stress-strain relation on a cylindrical sample under a periodic uniaxial stress
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that induces low strain (∼ 10−6) such that the linear relation holds. This technique excites an ex-

tensional mode over the cylinder. From the magnitude of the applied axial stress to measured axial

strain the Young modulus is calculated. The phase difference measured between stress and strain

signal is used for determining the lossy part of the modulus.

Early experiments on forced oscillation of cylindrical cores were performed around 100Hz with

the radial surface of core sample subjected to stress-free condition with the saturating fluid per-

mitted to freely move in and out (Spencer, 1981). Significant attenuation was observed, akin to

resonance bar experiment results, and likewise, explained by (Dunn, 1986) as a consequence of

boundary effects, caused by the fluid flow through the open-pore stress-free radial surface of the

sample.

Based upon his analysis within the framework of quasi-static Biot poroelasticity, with his defi-

nition of closed-pore surface (or sealed surface) boundary as unison motion of the solid and fluid

phases in normal direction, Dunn (1986) concluded that if a porous cylinder is undergoing uni-

son motion at its exterior surface, it must be under unison motion in its interior as well, thereby, it

must behave as an effective ”undrained” solid. Thereafter, Dunn (1987) proposed that, perhaps,

by sealing the radial surface with an impermeable coating (of negligible mass) such boundary ef-

fect may be eliminated, and presumably, the intrinsic portion of the attenuation for the rock can be

measured.

With that, a new era of experimental research in low frequency sub-resonance extensional

mode with sealed boundary (LF) began which has been on for the past three decades but without

any benefit of a rigorous analytical scrutiny. The experimental community heuristically assumes

that in such experiments the sample is an effective elastic solid, no longer an interacting poro-

continuum (Batzle et al., 2006). Here the aims have been to develop innovations in apparatus

to mimic ambient conditions of reservoir and to bring measurements down to the surface seismic

band (2-100 Hz) and even lower to mHz range (Liu and Peselnick, 1983; Jackson et al., 1984, 2011;

Batzle et al., 2006; Tisato and Madonna, 2012; Madonna and Tisato, 2013; Subramaniyan et al.,

2014; Pimienta et al., 2015; Spencer and Shine, 2016). The overriding concern of experimental

low frequency research is to identify the missing intrinsic mechanism(s) that can explain the riddle

of underestimation of seismic attenuation by the Biot theory in low seismic band, which otherwise

corroborates well with laboratory measurements.
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Berryman (1983) has carried out an analysis of the closed-pore case in the Biot framework for

the ultrasonic band. He has shown that there are at least two fundamental extensional modes for

the closed-pore case. One of them corresponds to the extensional mode wherein phases are in

unison motion, and the other extensional mode is close to the slow P-wave in its character.

The closed-pore analysis of Dunn (1986) that lead to ”effective elastic solid” is under the as-

sumption that the sealed surface of the sample is externally open to air, i. e., stress-free with

vanishing total stress of the phases in the direction normal to the cylindrical surface. However, in a

LF experimental setting the external surface of the sample is in fact jacketed and it is subjected to

external pressure to hold the seal. Thus, the observed attenuation in LF experiments is for the case

of a boundary that is stressed and sealed, not a boundary that is stress-free and sealed. The latter

is a homogeneous boundary condition so it may permit excitation of a pure fundamental mode, the

first extensional mode (of the Berryman kind) and the sample may looks like an effective elastic

solid. However, the former is an inhomogeneous boundary condition; it will lead to the excitation

of all fundamental modes. Since the second extensional mode (of Berryman kind) is diffusive in

character, the energy pumped into this mode would dissipate and the sample would appear lossy.

These points have escaped the attention of the LF experimentalists.

Furthermore, the analysis of Berryman as well as Dunn are not complete, in the sense that

the condition along the tangential direction of the cylindrical surface of the core is unspecified for

their sealed boundary problem; they did not make any statement if the two phases in transverse

direction are unison or the tangential components of tractions of the two phases are balanced.

Also, only the fluid pressure part appears in their analyses. In any case, both shortcomings are

due to inherent limitation in the Biot framework, which excludes viscous stress from the very outset

(§2.1). At the time of their work an extended Biot framework that included the missing viscous

stress term was not available. A generalized framework, called dCS, which includes the missing

viscous term came into being by the mid-nineties, for which the Biot framework is a special case

(§2.2).

1.2 Thesis objectives and accomplishments

The objective of this work is to develop, based on the dCS theory of poroelasticity, the un-

derstanding to interpret the LF attenuation measurements, which are sub-resonance extensional
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motions of a sealed porous cylinder subjected to external pressure on its radial surface. It is to

investigate if the observed attenuations are due to an intrinsic property because the sample be-

haves as an effective elastic solid, or it is due to the excitation of additional unknown poroelastic

extensional mode(s). To achieve this, the following specific objectives are proposed:

1. Study the natural boundary conditions that are associated with the dCS poroelastic wave

equation and, thereby, deduce the impermeable boundary condition.

2. In the dCS framework, establish and solve the dispersion relation for the longitudinal motion

of porous cylinder with a stress-free impermeable radial surface.

3. Study the nature of the extensional modes that exist in a saturated porous cylinder with

stress-free impermeable radial surface.

4. Develop the asymptotic approximation which relates the velocity and attenuation of the first

extensional mode with the material properties.

An overview of the dCS theory is presented in chapter 2 with a succinct description of the

governing equations. In chapter 3, the adjoint boundary conditions associated with the dCS poroe-

lastic wave equation are presented. The choice for the impermeable boundary condition is made

on the basis of physical reasonings. In chapter 4, the boundary value problem for the longitudinal

motion of a fluid-saturated porous cylinder is formulated and the dispersion relation is worked out.

Afterwards, in chapter 5, the dispersion relation is specialized for the extensional modes, which is

solved numerically by the companion matrix technique (Golub and Van Loan, 1996; Section 7.4.6).

The solution shows that there are three natural extensional modes for this case. The nature of

these modes is described in chapter 6 and the concluding remarks are presented in chapter 7.
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Chapter 2 The poroelastic equations of motion

This chapter presents a brief account of the Biot theory in §2.1, and then introduces the dCS

theory. The latter may be viewed as a generalized framework that includes the former as a special

case. The Biot constitutive equations have missing viscous stress term and do not include non-

reciprocal interaction of compressive stresses of phases. These limitations are accounted for in

the dCS constitutive equations, which are presented in §2.2. They are in the form wherein their

generalizations over the Biot constitutive equations are apparent. Thereafter, the equations of

motion are recast in terms of field variables which are associated with fluxes for mass, momentums

and energy of poro-continuum. They are naturally conserved across material discontinuities, and

are compatible with recording/ measuring devices. Subsequently, the equations of motion are

presented in a compact notation that allows to view them as a 2x2 matrix generalization of the

equation of motion of viscoelasticity with Rayleigh dissipation. Finally those are expressed in the

frequency domain. For clarity and ease, all field variables and parameters appearing in this chapter

are also listed separately in the table of notations.1

2.1 The Biot theory

The foremost poroelastic framework of elastic wave propagation was developed by Biot (1956,

1962). From the outset, Biot deals with macroscopic quantities. The averaged displacement fields

of solid-frame and saturating fluid are taken as the field quantities. The Biot equations of motion

are set up via the Lagrangian approach by using the concepts of elastic energy potential, kinetic

energy density function and dissipation function. However, because of its very methodology, the

Biot constitutive equations have two major inherent limitations:

(A) Viscous stress is unaccounted: Biot constitutive relations are constructed by the variational

approach of “elastic energy potential”, which do not permit the presence of a rate term, since

it has to be a conserved quantity. Because the viscous stress part is missing in its (aver-

aged) fluid stress tensor, the bulk and shear viscous-loss mechanisms of pore fluid are not

accounted for. As a result, the fluid limit of Biot constitutive relations, obtained by tending

porosity to unity, does not converge to the constitutive relation for a Newtonian fluid. Instead,
1This chapter is based on lecture notes of CT1652 Fı́sica de medios porosos (Personal communications; P. Sahay, 2016).
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it is the constitutive relation for an ideal fluid. Furthermore, due to the lack of fluid viscous

stresses, the second (or slow) shear process, which accounts for relative shear motions of

the two phases, is non-propagating, i.e., it is a process with zero velocity.

The net result is that even though the Biot theory has six translational degrees of freedom, it

has to be recast in terms of four degree of freedom for studying a boundary value problem,

otherwise a mathematical inconsistency is encountered. However, doing so also completely

eliminates relative shear motion of phases from the framework.

(B) Non-reciprocal interactions are unaccounted: Biot’s axiomatic definition of the elastic en-

ergy potential assumes it to be a single function of ‘average solid strain’ and ‘increase of fluid

content’. The ‘increase of fluid content’ in turn is connected to the ‘fluid dilatation strain’, that

is, the divergence of the average ‘fluid displacement field’. Since the energy potential has to

be a well-behaved and differentiable function of its arguments, a reciprocity relation follows

from the symmetry of its partial derivatives. This symmetry requires a reciprocal interaction

of compressive stresses of phases.

As a result of such embedded reciprocity relation in the Biot constitutive equation, the un-

jacketed bulk and pore-space moduli are expected to be equal. The equality of moduli is also

indicative of a macroscopically homogeneous porous material that is also homogeneous at

the micro- (pore-) scale (Nur and Byerlee, 1971). However, by now ample experimental evi-

dence exists showing that some rocks exhibit differences in unjacketed bulk and pore-space

moduli (Al-Tahini et al., 2005; Hart and Wang, 2010, Blöcher et al., 2014; Pimenta et al.,

2017).

Brown and Korringa (1975) have pointed out that a porous material that is macroscopically

homogeneous but microscopically inhomogeneous will exhibit unequal unjacketed bulk and

pore-space moduli. Apart from them, others, notably Berryman (1992), have attempted to

incorporate an additional parameter in the Biot constitutive equations to account for this in-

equality due to micro-inhomogeneity.

Those attempts of extensions have failed to recognize that the unequal unjacketed bulk and

pore-space moduli is indicative of broken symmetry of the reciprocal interaction. Neverthe-
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less, the auxiliary equation that mediates the reciprocal interaction is not explicitly stated in

the Biot framework. Thus, there are no means to carry-out the extension that incorporates

the non-reciprocal interaction of phases to the Biot constitutive equations, unless and until,

there is a way to extract-out the (implicit) auxiliary equation of interaction (Sahay, 2013).

2.2 The dCS theory

2.2.1 A generalized framework

The dCS theory of poromechanics has its origin in de la Cruz and Spanos (1985, 1989a,

1989b), de la Cruz et al., (1993), and Hickey et al., (1995), and it is further developed in Sahay

et al., (2001) and Sahay (1996, 2001, 2008, 2013). This formulation is based on the mathematics

of volume-averaging (Slattery, 1967; Whitaker, 1967; Marle, 1967; Anderson and Jackson, 1967)

aided by order-of-magnitude and physical arguments. It obtains macroscopic continuity equations,

constitutive relations and equations of motion from the underpinning pore-scale equations. The

pore-scale equations exist in the frameworks of well established linear elasticity theory and Naiver-

Stokes equation. The links of poroelastic parameters to constituent end-members physical prop-

erties are naturally apparent in this framework. The fluid viscous stress term that had to be ruled

out from the very outset in the Biot framework, is included here from first principles (i.e. the Navier

Stokes Stresses). Also, this framework explicitly takes into account the interfacial strain (i. e., the

strain at pore interfaces or pore-deformation strain) that mediates the deformational interactions of

phases, which is not apparent in the Biot framework.

The dCS constitutive equations in terms of phasic fields

In the following, for definiteness, a two-phase poro-continuum made up of an elastic solid

matrix filled with a chemically inert viscous fluid is considered. It is assumed that there are no

sinks or sources of heat, and temperature remains unaltered during deformations so that thermo-

mechanical coupling can be ignored. For the case that pores and interfaces are distributed ran-

domly and the two end components are themselves homogeneous and isotropic when unper-

turbed, the dilatational and deviatoric parts of the pore-deformation strain, respectively, are taken

to be affected by the macroscopic pressure of both phases and the macroscopic shear stress of
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solid phase (Sahay et al., 2001). With these physical arguments, together with the assumption that

the linear elasticity holds true for the porous frame devoid of fluid (Sahay, 2008, Appendix B; Sahay

2013), the sum of strain at pore interfaces, per unit volume of poro-continuum, is given by

e?jk = φ0

δK

1− δK

1

Ks

(
ps − n pf

)
δjk −

δµ
1− δµ

1

2µs

τ̆ s
jk. (1)

Here, ps and pf are the solid and fluid macroscopic pressures, respectively, and τ̆ s
jk is the trace-

free part of macroscopic solid stress tensor. Ks and µs are the constituent solid bulk and shear

moduli, respectively. For convenience, 1− η
0
≡ φ

0
is introduced. The quadruplet set {η0, δK , δµ , n}

are the frame properties, which mediate deformational interactions of phases. They are, respec-

tively, unperturbed porosity, bulk and shear moduli decrement parameters of solid-frame and the

measure of non-reciprocal interaction (micro-inhomogeneity). The first three frame parameters are

bounded between zero and unity. The micro-inhomogeneity parameter is bounded between zero

and 1
δK

, although, its wider upper bound is Ks
Kf

. For n = 1, equation (1) specialize to the case of

reciprocal interaction of compressive stresses of phases.

The constituent solid properties and the frame properties, together with {Kf , ξf , µf}, namely,

the constituent fluid bulk modulus, bulk and shear viscosities, are the 9 parameters of dCS con-

stitutive equations. The host of other poroelastic parameters, which arise in the context of various

deformation processes, are a combination of these 9 parameters. For the case of the above auxil-

iary equation (1) for deformational interactions of phases, the dCS theory yields the solid and fluid

macroscopic stresses, respectively, as

τ s
jk = K0us

llδjk + 2µ0ŭs
jk − n

(
α − η

0

)
pfδjk, (2)

and

τ f
jk = −η

0
pfδjk − η0

ξf

Kf

∂pf

∂t
δjk + 2µf

{
η

0

∂ŭf
jk

∂t
+ φ

0
δµ
∂ŭs

jk

∂t

}
(3)

with the macroscopic pressure given by

pf = −M? (αus
ll − ζ) . (4)
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The above equations are expressed in the form akin to Biot (1962) for the ease of their direct

comparison with the Biot constitutive equations. Here, us
jk and uf

jk are, respectively, the solid and

fluid macroscopic strain tensors and their trace-free parts are ŭs
jk and ŭf

jk. ζ = −η
0

(
uf
ll − us

ll

)
is interpreted as the increase of fluid content. The quintet set {K0 , µ0

, α, α?,M?} are the derived

parameters φ0(1 − δK)Ks ≡ K0 , φ0(1 − δµs)µs ≡ µ0 , η
0

+ φ0δK ≡ α, η
0

+ φ0δK n ≡ α? and
η

0
Kf

+

n
η

0
δ
K

Ks
≡ 1

M? . They are identified as solid-frame bulk and shear moduli, the Biot bulk coefficient, the

effective pressure coefficient for bulk volume and the generalized fluid storage coefficient. They are

the typical geomechanical parameters, which are measured by compressibility experiments. The

underlined term in (3) is the macroscopic fluid viscous stress term omitted in the Biot framework.

In equations (2)-(4), by dropping this term and setting micro-inhomogeneity parameter n = 1, the

dCS constitutive equations specialize to the Biot constitutive equations.

Substituting equation (4) into equations (2) and (3), and expressing the macroscopic fluid pres-

sure term therein in terms of the solid and fluid volumetric strains, the dCS constitutive equations

are cast as

 τ s
jk

τ f
jk

 = (Kb + ξb∂t)

 us
ll

uf
ll

 δjk + 2 (µb + νb∂t)

 ŭs
jk

ŭf
jk

 , (5)

where the following definitions have been employed

 K0 +
(
α − η

0

) (
α? − η

0

)
M? (α − η

0
)η

0
M?

(α − η
0
)η

0
M? η2

0
M?

 ≡ Kb, (6)

1 0

0 0

µ0 ≡ µb. (7)

 0 0

φ
0
δK η

0

 η
0
M?

Kf
ξf ≡ ξb, (8)



11

and  0 0

φ
0
δµ η

0

µf ≡ νb. (9)

Kb and µb are viewed as the bulk- and shear- modulus elastic coefficient matrices. ξb and νb

are the bulk and shear viscosity matrices. By setting the bulk and shear viscosities vanishing,

the matrices incorporating fluid viscous relaxation processes, ξb and νb, are dropped and the

Biot constitutive equations are recovered, once the micro-inhomogeneity parameter n is also set to

unity. The incorporation of fluid viscous relaxation terms render the form of this constitutive relation

to be a 2×2 matrix generalization of viscoelastic constitutive relation.

The dCS equations of motion in terms of phasic fields

In the dCS framework the two vector fields that describe the trajectories of the solid and fluid

masses are defined through their respective macroscopic continuity equation. That ensures these

fields are associated with the conservation of the solid and fluid mass at macro-scale, as it should

be. The equations of motion, expressed in terms of average solid and fluid displacements, read

φ
0
ρ◦s
∂2us

j

∂t2
= τ s

jk,k + Ij (10)

η
0
ρ◦f
∂2uf

j

∂t2
= τ f

jk,k − Ij (11)

where ρ◦s and ρ◦f are the unperturbed solid and fluid densities, respectively. As phases deform

not only they induce deformational forces (stresses) within themselves, they also exert forces

(intercomponent-interaction forces) on each other. Since Newton’s third law must hold true, the

intercomponent-interaction forces must be equal and opposite. In dCS framework this internal

force is quantified as the sum of forces exerted by one phase on the other through pore-interfaces

in a unit volume of the porous medium, and it appears as an effective body force, Ij , in the equa-

tions of motion. Guided by the dissipative function and kinetic energy density function as developed

in the Biot framework, it is taken as
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Ij = η
0
ρ◦f Ωb

∂

∂t

(
uf
j − us

j

)
− ρ12

∂2

∂t2

(
uf
j − us

j

)
(12)

where Ωb = η
0
νf/κ is the Biot critical frequency, νf = µf/ρ

◦
f is the pore-fluid kinematic shear

viscosity and κ is the permeability. ρ12 is the induced mass coefficient which is linked to tortuosity,

S, as ρ12 =−(S −1)η
0
ρ◦f .

For clarity, the equations of motion (10 and 11) recast as

φ0
ρ◦s 0

0 η
0
ρ◦f

 ∂2
t

 us
j

uf
j

 =

τ s
jk,k

τ f
jk,k

+

 1

−1

 Ij (13)

and substituting in the above the expression of Ij from equation (12) results in

φ0
ρ◦s − ρ12 ρ12

ρ12 η
0
ρ◦f − ρ12

 ∂2
t

 us
j

uf
j

+ η
0
ρ◦f Ωb

 1 −1

−1 1

 ∂t

 us
j

uf
j

 =

τ s
jk,k

τ f
jk,k

 . (14)

2.2.2 The dCS framework of centre-of-mass and internal fields: The natural fields

Surface measurements of wave motions consist of the three components of the displacement.

The phasic formulation of poroelasticity uses two displacement fields to describe the motion of the

solid-frame and the saturating fluid. Within this formulation of poroelasticity, there is no compat-

ible map between these six displacement components to the three components of displacement

recorded at the material surface.

To resolve this, Sahay (1996) interpreted poroelasticity as a two-body problem. He suggested

that the natural fields for dynamical problems are the centre-of-mass (mean) field and internal

(rotational) field. The former is the mass fraction weighted vector sum of solid and fluid phasic

fields. The latter is the difference density fraction weighted vector difference of solid and fluid

phasic fields.

In terms of new dynamical fields the equations of balance of mass, momentums and energy
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for porous media take the same form as the single continuum statements. The total mass of poro-

continuum is conserved with centre-of-mass field and it is associated with total linear momentum

flux. It describes the transport of translational kinetic energy, therefore, it represents three trans-

lational degrees of freedom of material points. The Internal field is associated with spin (angular

momentum about centre-of-mass) flux. It describes transport of rotational kinetic energy, therefore,

it represents three rotational degrees of freedom of material points. Since current recording de-

vices register translational degrees of freedom and measures the field associated with total linear

momentum, they indeed track centre-of-mass field.

The centre-mass or mean field is defined as

um
j = msu

s
j +mfuf

j , (15)

where ms = φ0ρ
0
s

ρ0
m

and mf =
η0ρ

0
f

ρ0
m

are solid and fluid mass fractions, respectively, and ρ0
m = φ0ρ

0
s +

η0ρ
0
f is the mean or total density of poro-continuum. The deformational force that drives this field

is associated with the total or mean stress of poro-continuum, given by

τm
jk = τ s

jk + τ f
jk. (16)

The internal rotational field, which describes a relative motion of the fluid with respect to the

solid, can not be measured directly by the current devices. However, it has a pronounced effect on

attenuation of center-of-mass field, the field that is recorded by the current devices. The internal

field is described by

ui
j = md

(
uf
j − us

j

)
, (17)

where md = η
0
ms − φ0

mf is the difference density fraction. This dimensionless difference density

fraction term ensures that in the limit when the elastic properties of the two phases are the same,

the force driving the difference motion is the same as the force driving the net motion of the two
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phases (Sahay, 2010). The couple-stress that drives this field is given by

τ i
jk =

1

md

(
msτ

f
jk −mfτ

s
jk

)
. (18)

This is called the internal stress of poro-continuum.

Orthogonal transformation matrix

For convenience, an orthogonal transformation matrix is introduced that allows to cast the dCS

phasic field framework to natural field framework with an ease. The state variables are defined by

(um
j ui

j)
T

= T−1 (us
j uf

j)
T
, (19)

in conjunction with its conjugate stresses given by

(
τm
jk τ i

jk

)T
= TT

(
τ s
jk τ f

jk

)T
, (20)

where T stands for transpose. The transformation matrix is defined by

T =

 1 −mf
md

1 ms
md

 (21)

which gives

TT =

 1 1

−mf
md

ms
md

 and T−1 =

 ms mf

−md md

 , with
(
TT
)−1

= (T−1)T. (22)

This transformation preserves the strain energy, which is apparent by below

(us
jk uf

jk)
(
τ s
jk τ f

jk

)T
=
(
T(um

jk ui
jk)

T
)T (

TT
)−1 (

τm
jk τ i

jk

)T
= (um

jk ui
jk)
(
τm
jk τ i

jk

)T
. (23)
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The dCS constitutive equations in terms of natural dynamical fields

Using transformation (20) into equation (5), the dCS constitutive equations are recast in terms

of natural dynamical fields as

 τm
jk

τ i
jk

= (K + ξ∂t)

 um
ll

ui
ll

 δjk + 2 (µ + ν∂t)

 ŭm
jk

ŭi
jk

 , (24)

where

TTKbT ≡ K, TTξbT ≡ ξ, TTµbT ≡ µ, and TTνbT ≡ ν . (25)

The dCS equations of motion in terms of natural dynamical fields

Using transformations (19) and (20), the dCS equations of motion (14) are recast in terms of

natural dynamical fields as

ρ◦m 0

0
ρ◦i
m2

d

 ∂2
t

 um
j

ui
j

+ η
0
ρ◦f Ωb

1

m2
d

0 0

0 1

 ∂t

 um
j

ui
j

 =

τm
jk,k

τ i
jk,k

 , (26)

or,

1 0

0 1

 ∂2
t

 um
j

ui
j

+
η

0
ρ◦f
ρ◦i

Ωb︸ ︷︷ ︸
Ωi

0 0

0 1

 ∂t

 um
j

ui
j

 =

 1
ρ◦m

0

0
m2

d
ρ◦i

τm
jk,k

τ i
jk,k

 . (27)

Herein, the definition ρ◦r − ρ12 ≡ ρ◦i is also introduced.

2.2.3 Extended dynamical variables framework

For an ease for pursuing analytical work the following notation is introduced

uj =
(
um
j ui

j

)T
, (28)
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and

τ jk =
(
τm
jk τ i

jk

)T
, (29)

the preceding equations of motion (26) are rewritten in a compact form as

ρ ∂2
t uj + Ωi

ρ◦i
m2

d

I0 ∂tuj = τ jk,k , (30)

where ρ is the density matrix

ρ =

 ρ◦m 0

0
ρ◦i
m2

d

 , (31)

and
η

0
ρ◦f
ρ◦i
≡ df (also

φ
0
ρ◦s
ρ◦i
≡ ds), and dfΩb ≡ Ωi is the cross-over frequency from viscous to inertial

transition (the Biot relaxation frequency), which causes frictional loss. The frictional loss term in a

wave-equation is also known as Rayleigh dissipation. I0 is a 2×2 matrix whose element (2,2) is

unity and the rest of the elements are equal to zero, that is,

I0 =

 0 0

0 1

 . (32)

The constitutive equations (24) are re-expressed as

τ jk = (K + ξ∂t) ullδjk + 2 (µ + ν∂t) ŭjk. (33)

Notationally, the equations of motion (30) and the constitutive relation (33) are akin to the elas-

ticity theory, however, density and elastic parameters are now 2×2 matrices. Substituting equation

(33) into equation (30), and introducing the “extended dynamical vector” u whose elements are the

centre-of-mass and internal rotational field vectors,

u = êjuj = êj(u
m
j ui

j)
T, (34)
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êj is the unit vector in jth direction, and applying ρ−1 from the left, the equations of motion (30)

cast in vectorial notation read

I∂2
t u + ΩiI0∂tu = ρ−1 τ jk,k , (35)

and substituting constitutive equations (33) results in

I∂2
t u + ΩiI0∂tu = (Cα+Nα∂t)∇ (∇ · u)−

(
Cβ+Nβ∂t

)
∇×∇× u, (36)

where I is the 2× 2 identity matrix, and

ρ−1

(
K +

4

3
µ

)
≡ Cα, (37)

ρ−1

(
ξ +

4

3
ν

)
≡ Nα, (38)

ρ−1µ ≡ Cβ, (39)

ρ−1ν ≡ Nβ. (40)

It is apparent from equation (36) that Cα and Nα are associated with compressional processes,

whereas Cβ and Nβ are associated with shear processes. The elements of the second-order Cα

and Cβ matrices have dimensions of velocity squared. The elements of the second-order Nα and

Nβ matrices have dimensions of kinematic viscosity. It should be noted that these four matrices

are real. The explicit expressions of these are
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Cα = α?c
2



1 − 1
md

mf

×
(

1− α?

η
0

α?
fl

2

α?c
2

)

−mddf

(
1− α

η
0

α?
fl

2

α?c
2

)
df (mf + ε)


(41)

Nα = α?c
2

 Υ 1
md

(
η

0
−mfΥ

)
mddsΥ ds

(
η

0
−mfΥ

)
 1

Ωα
(42)

Cβ = β2
c

 1 −mf
md

−dfmd dfmf

 (43)

Nβ = β2
c

αµ 1
md

(η
0
− αµ mf)

mdαµ ds (η
0
− αµ mf) ds

 1

Ωβ
. (44)

For an ease in mathematical analysis, the velocity (square) and relaxation frequency terms in

(41)-(44) are factorized such that each elements are bounded by unity. α?
c

2 =
H?

c
ρ◦m

, β2
c

= µ0
ρ◦m

are

(generalized) Gassmann P- and S- wave speed (squared), respectively. Here, H?
c

= K0 +α α?M?+

4
3µ0, is the generalized Gassmann P-wave elastic modulus.

Ωα =
H?c

η
0

M?

Kf
ξf+

4
3
µf

and Ωβ = µ0
µf

are the saturated-bulk relaxation frequencies for P- and S-

process, respectively. These frequencies are associated with the relaxation of poro-continuum as

a whole on account of the relaxation within the pore-fluid.

The term ε =
{

1− (α+ α?)mf
η

0

}
α

fl
2

α?c
2 is a positive quantity less than unity, and the term Υ =

α + (αµ− α)4
3

ΩflP
ΩflS

is bounded as α ≤ Υ ≤ αµ. αfl
2 =

η
0
M?

ρf
, is identified as the velocity (squared)

of sound in fluid in the presence deformable solid-frame. ΩflP =
η

0
M?

η
0

M?

Kf
ξf+

4
3
µf

, ΩflS =
η

0
M?

µf
are

identified as, respectively, fluid P-modulus and fluid S-modulus relaxation frequencies, which are

pore-fluid viscous relaxations in the presence of deformable solid-frame.



19

2.2.4 Frequency domain representation

For the solutions harmonic in time,

u(x, t) = e−iωt u(x, ω), (45)

equation (35) reads in frequency domain as

Ω−1ρ−1 τ jk,k + ω2u = 0 (46)

and its displacement field form (36) is

α∇ (∇ · u)− β∇×∇×u + ω2u = 0 (47)

where α and β are the non-symmetric second-order matrices associated with P- and S- motion,

respectively, whose elements are dimensionally equal to velocity squared. They are

α = Ω−1 (Cα− iωNα) ≡

 αmm αmi

αim αii

 , (48)

β = Ω−1
(
Cβ− iωNβ

)
≡

 βmm βmi

βim βii

 , (49)

where Ω is a 2×2 diagonal matrix associated with the Biot relaxation frequency Ωi.

I + i
Ωi

ω
I0 ≡ Ω (50)

where I is the 2 × 2 identity matrix and I0 is the diagonal matrix diag(0, 1) defined earlier in (32).

This matrix is associated with the Biot relaxation frequency, the cross-over frequency of viscous /

inertial transition, and might be named the Rayleigh damping matrix.
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Substituting the definitions (37)-(40) into equation (33), the resulting expression for stresses

read as

τ jk = ρ [{(Cα−iωNα)− 2 (Cβ−iωNβ)} ullδjk + 2 (Cβ−iωNβ) ŭjk] ,

which in the view of definitions (48)-(49) are expressed as

τ jk = Ωρ {(α− 2β) ullδjk + 2β ŭjk} . (51)
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Chapter 3 Boundary conditions at a stress-free imper-

meable surface

The poroelastic seismic boundary conditions for an impermeable surface are not properly spec-

ified in literature. That is due the inherent limitation of the Biot theory on account of its two redun-

dant degrees of freedom. An overview of the status of the boundary conditions for an impermeable

surface, in the framework of Biot theory, is presented in §3.1. Thereafter, in §3.2 the boundary

conditions are viewed from the perspective of the dCS framework, the generalized framework that

includes the Biot theory as a special case. The set of sixteen natural boundary conditions are

deduced that allow the dCS equations of motion to be adjoint. From that set, in §3.3, one finds

two natural choices for the boundary conditions for an impermeable surface. Both cases have the

motions of two phases in unison at the interface in the direction normal to the interface. However, in

direction tangential to the interface, in one case motions of both phases are also in unison, whereas

in the other case, stresses of the two phases are balanced at the interface. From physical reason-

ings, in this work, it is the latter that is taken as the set of boundary conditions for impermeable

surface.

3.1 Perspective from literature

The poroelastic seismic boundary conditions are an open research problem. These were first

analyzed by Deresiewicz and Skalak (1963) in the Biot framework. They define the solid-solid

contact as the boundary of two porous media at which they took the solid displacement field (us
j),

the total traction (τ jkn̂k) and the normal component of the filtration velocity (ẇ⊥) are continuous.

The jump in fluid pressure (pf) in their framework is dictated by the normal component of filtration

velocity. The normal component of the filtration velocity is defined as porosity-weighted relative

velocity of the fluid with respect to the solid. However, due to the redundancy of two degrees of

freedom in the Biot framework, there is no description about what occurs with the filtration velocity

in the tangential direction to the interface (Solorza and Sahay, 2009). The boundary conditions

proposed by Deresiewicz and Skalak (1963) are
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[[
us
j

]]
= 0

[[τ jkn̂k]] = 0

[[ẇ⊥]] = 0[[
η

0
pf
]]

= 1
K
DS

ẇ⊥


(52)

where [[ ]] represent a jump in its argument. They include the parameter KDS , called interface

permeability, which describes the capability of fluid to move across the interface, and drives the

jump in the fluid pressure over the interface.

For the case when a fluid is free to move, the open-pore case, they propose KDS = ∞ such

that there is no jump in fluid pressure. The counterpart impermeable condition, closed-pore case,

is described by a zero interface permeability. That leads to vanishing normal component of the

filtration velocity at the interface.

Gurevich and Schoenberg (1999) have shown that the open-pore boundary conditions pro-

posed by Deresiewicz and Skalak (1963) are compatible with the Biot theory, but the impermeable

case violates that framework and it is not possible to validate it from the differential operator. Also,

Bourbie et al., (1987) argue that the Biot equation has to be modified such that the impermeability

condition can be obtained from the differential operator. Solorza and Sahay (2009) pointed out that

defining boundary conditions from the dCS framework avoids the mathematical inconsistency.

3.2 Adjoint boundary conditions of the dCS poroelastic wave equa-

tion

From (47), the dCS poroelastic wave operator D̂ is

D̂ = α∇ (∇ · )− β∇×(∇× ) , (53)
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which can be written as an eigenvalue problem,

D̂ u = − ω2 u. (54)

It is apparent from equations (46) and (47) that the equivalent representation of the left hand

side of equation (54) in terms of stresses is

D̂uj = Ω−1 ρ−1τ jk,k

=

 1
ρm

0

0 γ
R

m2
d
ρi

τm
jk,k

τ i
jk,k

 (using equations 29, 31, 50 and 1
1+iΩi/ω

≡ γ
R

)

≡

Σm
jk,k

Σi
jk,k

 = Σjk,k. (55)

The above notation is introduced for the calculation of the adjoint operator.

Let u(1) and u(2) be arbitrary functions that are continuous and differentiable as required by the

operator D̂. Both satisfy equation (54) in the domain V subjected to the same set of conditions

on the bounding surface S of the domain V . Let the inner product of the two functions be defined by

< u(1) , u(2) >=

∫
V

u(1)∗ · u(2)dV (56)

where ∗ stands for the complex conjugate. The adjoint of the differential operator D(∂) is defined

by the inner product of two functions as below (Friedman, 1962)

< u(1) , D̂u(2) > − < D̂u(1) , u(2) >= 0, (57)

where D̂† is the adjoint operator of D̂. In the following, the calculation for the adjoint operator D̂†

is carried out. The inner product of the first term of the left hand side of equation (57) is expressed

as
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< u(1) , D̂u(2) > =

∫
V

u(1)∗ ·
(
D̂u(2)

)
dV,

=

∫
V

u
(1)∗
j ·

(
Σ

(2)
jk,k

)
dV, (using equation 55)

=

∫
V

{
Σ

m(2)
jk,k u

m(1)∗

j + Σ
i(2)
jk,k u

i(1)∗

j

}
dV. (58)

By using the identity Σm
jk,k um

j =
(

Σm
jk um

j

)
,k
−Σm

kj um
j,k, wherein on account of symmetry of stress

tensor Σm
jk um

j,k = Σm
jk um

jk, and likewise the same identity for internal field term, the right hand of

equation (58) becomes

∫
V

{(
Σ

m(2)
jk u

m(1)∗

j

)
,k

+
(

Σ
i(2)
jk u

i(1)∗

j

)
,k

−
(

Σ
m(2)
jk u

m(1)∗

jk + Σ
i(2)
jk u

i(1)∗

jk

)}
dV, (59)

in which the first two terms are converted, using Gauss’s divergence theorem, into boundary terms

∫
S

(
Σ

m(2)
jk u

m(1)∗

j + Σ
i(2)
jk u

i(1)∗

j

)
n̂kdS −

∫
V

(
Σ

m(2)
jk u

m(1)∗

jk + Σ
i(2)
jk u

i(1)∗

jk

)
dV (60)

where n̂k is the unit normal to the surface S.

Using (51) and (55), the integrand of the volume integral in (60) is expressed as

Σ
m(2)
jk u

m(1)∗

jk = [(αmm − 2βmm) δjk δpq + 2βmm δjp δkq] um(2)
pq u

m(1)∗

jk +

[(αmi − 2βmi) δjk δpq + 2βmi δjp δkq] ui(2)
pq u

m(1)∗

jk (61)

Σ
i(2)
jk u

i(1)∗

jk = [(αim − 2βim) δjk δpq + 2βim δjp δkq] um(2)
pq u

m(1)∗

jk +

[(αii − 2βii) δjk δpq + 2βii δjp δkq] ui(2)
pq u

m(1)∗

jk . (62)

Here, because of symmetric strain tensors and the symmetry of equations (61) and (62), it is
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possible to interchange u
(1)∗

jk and u
(2)
pq without any effect.

The adjoint operator of D̂ is written as

D̂†u
(1)
j =

 Σ†m
(1)

jk,k

Σ†i
(1)

jk,k

 = Σ†
(1)

jk,k. (63)

Using the above structure, the inner product of the second term of the left hand of equation

(57) is now expressed as

∫
S

{
Σ
†m(1)∗

jk u
m(2)
j + Σ

†i(1)∗

jk u
i(2)
j

}
n̂kdS −

∫
V

{
Σ
†m(1)∗

jk u
m(2)
jk + Σ

†i(1)∗

jk u
i(2)
jk

}
dV (64)

From (60) and (64), the left hand side of (57) becomes

∫
S

{
Σ

m(2)
jk u

m(1)∗

j + Σ
i(2)
jk u

i(1)∗

j − Σ
†m(1)∗

jk u
m(2)
j − Σ

†i(1)∗

jk u
i(2)
j

}
nkdS −

∫
V

{
Σ

m(2)
jk u

m(1)∗

jk + Σ
i(2)
jk u

i(1)∗

jk − Σ
†m(1)∗

jk u
m(2)
jk − Σ

†i(1)∗

jk u
i(2)
jk

}
dV . (65)

In order to validate the identity (57), the above sum must vanish.

In expressions (61) and (62), upon interchanging u
(1)∗

jk and u
(2)
pq , and further algebraic manipu-

lation leads to

Σ
†m(1)∗

jk = [(αmm − 2βmm) δjk δpq + 2βmm δjp δkq] um(1)∗
pq +

[(αim − 2βim) δjk δlm + 2βim δjl δkm] u
i(1)∗

lm , (66)

Σ
†i(1)∗

jk = [(αmi − 2βmi) δjk δpq + 2βmi δjp δkq] um(1)∗
pq +

[(αii − 2βii) δjk δpq + 2βii δjp δkq] ui(1)∗
pq . (67)
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The expressions (61), (62), (66) and (67) indeed allow the volume integral term in (65) to

vanish. Thus, for the dCS wave operator to be adjoint, the boundary conditions must be such that

the surface integral in (65) also vanishes.

Using the fact that both the dCS operator D̂ and its adjoint D̂† are subjected to the same set

of conditions on the bounding surface S of the domain V, changing the notation (from Σ to τ ) and

specializing for the case cylindrical coordinate system with the unit normal to the surface taken in

radial direction, the following choice of boundary conditions must hold true

τm
rru

m
r = 0

τm
rzu

m
z = 0

τ i
rru

i
r = 0

τ i
rzu

i
z = 0


(68)

so that the surface integral in (65) vanishes and allows the dCS wave operator to have an adjoint.

Equations (68) describes sixteen sets of the homogeneous boundary conditions that allow to

have the adjoint operator for the dCS wave operator.

3.3 Stress-free impermeable boundary conditions

The stress-free condition at the boundary describes the state wherein there are no forces acting

on the totality of the poro-continuum. That requires the tractions corresponding to the sum total of

phasic stresses vanishing at the boundary, i.e., mean or total stress in the normal and tangential

directions to the surface must be set to zero. For the case of cylindrical coordinate system, with

the unit normal to the surface S taken in radial direction, the stress-free boundary condition must

read as

τm
rr|S

= 0, (69)

τm
rz|S

= 0. (70)

The impermeability of a surface means that no fluid is allowed to move across it. This requires
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that in direction normal to surface both phases must move in unison, i.e., there can not be relative

motion of phases in the direction perpendicular to the interface. Thus, the normal component of

the internal field must vanish at the interface since it is precisely the difference in motion of phases,

that is,

ui
r|S

= 0. (71)

The conditions (69) through (71) automatically satisfy the first three conditions of (68). The last

condition of (68) can be satisfied by either ui
z|S

= 0 or τ i
rz|S

= 0 to ensure that this set is an adjoint

boundary condition for the dCS wave operator.

ui
z|S

= 0 describes the state where, at the surface, the fluid is forced to move in unison with

the solid in the tangential direction. However, this condition does not have a physical meaning

because keeping the fluid welded to the solid at the interface in the tangential direction is physically

impossible.

Conversely, the choice of

τ i
rz|S

= 0 (72)

means that the tangential components of phasic stresses are balanced at the interface in the

tangential direction, which amounts to no restrictions on the relative motion in that direction. This

condition has a physical meaning. It is because together with the condition (70), it amounts to

maintaining the tangential components of stress of both phases vanished at the surface, which is

realistic.

Thus, the set of conditions (69) through (72) are the proper boundary condition for a stress-free

impermeable surface.
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Chapter 4 Longitudinal motion with stress-free imper-

meable radial surface

Longitudinal motion has displacements only in axial (uz) and radial (ur) directions and they are

independent of azimuth. As there is no azimuthal component of displacement, it is a 2D motion.

The governing equations of longitudinal motion of a poroelastic cylinder are presented in §4.1.

Thereafter, the associated set of boundary conditions on the radial surface of cylinder, which hold

it stress-free and impermeable, are stated in §4.2. In §4.3 the equations of motion are decoupled

using a generalization of Hansen vectors1. That leads to a set of fours scalar potentials, each

governed by a Helmholtz equation. Solutions for these potentials are constructed in terms of a

complete set of orthogonal cylindrical and trigonometric functions. Following that expressions of

displacements and stresses are developed in terms of these decoupled potentials in §4.4. After

that in §4.5 the system of equations satisfying boundary conditions at the radial surface are setup

and the resulting dispersion polynomial is developed in §4.6.

The methodology and notations adopted here are common to Solorza and Sahay (2009) who

have carried out the dispersion analysis of longitudinal motion of poroelastic circular cylinder with

stress-free and permeable radial surface.

4.1 Governing equations

The longitudinal waves have a cylindrical symmetry independent of the azimuth, so the poroe-

lastic equations of motion in frequency domain (46) become

Ω−1ρ−1

(
τ rz,z + τ rr,r +

1

r
(τ rr − τ θθ)

)
+ ω2ur = 0, (73)

Ω−1ρ−1

(
τ zz,z + τ rz,r +

1

r
τ rz

)
+ ω2uz = 0 , (74)

1Hansen’s vector wave functions have origin in electro-magnetism and later adopted to linear elasticity. Its historical
account is in Senior (1960).
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where ρ and Ω are the density and the Rayleigh damping matrices defined in (31) and (50), re-

spectively. From (51) the corresponding stresses are

τ rr = Ωρ

(
(α− 2β)

[(
∂r +

1

r

)
ur + ∂zuz

]
+ 2β∂rur

)
, (75)

τ zz = Ωρ

(
(α− 2β)

[(
∂r +

1

r

)
ur + ∂zuz

]
+ 2β∂zuz

)
, (76)

τ θθ = Ωρ

(
(α− 2β)

[(
∂r +

1

r

)
ur + ∂zuz

]
+ 2β

ur
r

)
, (77)

τ rz = Ωρβ (∂zur + ∂ruz) . (78)

α and β are the 2× 2 matrices associated with the P and S wave motion defined in equations (48)

and (49), respectively.

Substituting in (75) through (78) in (73) and (74), the equations of motion, in terms of displace-

ment fields only, are written as

α∇(∇ · u)− β∇×∇× u + ω2u = 0 (79)

where u = (ur uz)
T .

4.2 Boundary conditions

The case of a stress-free impermeable radial surface means that the tractions corresponding

to total stress vanish and the fluid is not capable of moving in and out of the radial surface. These

conditions are described by the set of conditions (69) through (72) developed in §3.3
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τm
rr|r=a

= 0

τm
rz|r=a

= 0

τ i
rz|r=a

= 0

ui
r|r=a

= 0,


(80)

which are re-expressed in terms the extended variables notation as

P̂1 τ rz|r=a = 0

P̂1 τ rr|r=a = 0

P̂2 τ rz|r=a = 0

P̂2 ur|r=a = 0


. (81)

Here P̂1 = (1 0) and P̂2 = (0 1) are the projection operators which allow the extraction of the 1st

row (the centre-of-mass field terms ) and the 2nd row (the internal field terms), respectively.

4.3 Decoupling of equations of motion by potentials

For the longitudinal case the displacement field u is independent of azimuth and there is no

azimuthal component of displacement, the equations of longitudinal motion (79) are decoupled

using generalized Hansen vectors as below

u = L + N, and L = ∇Φ, N = ∇×∇× (ẑΞ) (82)

where potentials are column vectors composed by two elements. They are

Φ =
(
Φm Φi

)T
, (83)

Ξ =
(
χm χi

)T
. (84)

Applying the Hansen vector decomposition (82) in equation (79) and using the identity ∇2 =

∇ (∇·)−∇× (∇×), the curl-free (compressional) and divergence-free (shear) parts are separated.
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Each is governed by a 2×2 matrix Helmholtz equation as

α∇2Φ + ω2Φ = 0 (85)

β∇2Ξ + ω2Ξ = 0 (86)

Equations (85) and (86) are 2 × 2 coupled system of equations. The coupling is because

of the non-symmetric α and β matrices. In order to decouple, their right- and left- eigenvector

matrices are constructed, which are developed in the sections below. Although, the eigenvalues

of a nonsymetric matrix A and its transpose AT are the same, but their eigenvectors are different.

They are called the right- and left- eigenvectors of matrix A.

4.3.1 Solution of the matrix Helmholtz equations for compressional waves

The matrix Helmholtz equation for compressional waves (85) is diagonalized by introducing the

transformation

Φ = Rαφ (87)

where

φ = (φI φII)T, (88)

Rα =
(
rα

I
rα

II

)
(89)

and

Lα =
(
lα

I
lα

II

)
. (90)

Rα and Lα are, respectively, right- and left- eigenvector matrices of the non-symmetric second

order α matrix such that they are orthonormal to each other,

LT
α Rα = I, (91)
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where their components are defined as

rαI =
1

NαI

 1

γαI

 and rαII =
1

NαII

 γαII

1

 (92)

and

lαI =
1

NαI

 1

γαI

αmi
αim

 and lαII =
1

NαII

 γαII

αim
αmi

1

 , (93)

with γαI
= (α2

I
− αmm)/αmi and γαII

= αmi/(α
2
II
− αmm). NαI =

(
1 + γ2

αI
αmi/αim

)1/2 and NαII =(
1 + γ2

αII
αim/αmi

)1/2 are normalizations constants.

Rα and Lα diagonalize the α matrix,

LT
α α Rα= Λα ≡

α2
I

0

0 α2
II

 , (94)

where (α2
I

and α2
II
) are the eigenvalues of the α matrix.

Applying the transformation (87) into equation (85), followed by the application of LT
α from the

left and using the identities (91) and (94), the set of two decoupled scalar Helmholtz equations for

φ are

Λα∇2φ+ ω2φ = 0. (95)

The elementary solutions of these Helmholtz equations, in cylindrical coordinates, are taken

in terms trigonometric and Bessel functions in axial and radial directions, respectively. Due to

the angular independence of the motion in longitudinal problems, for the radial component only a

Bessel function of order zero is allowed. Furthermore, the Bessel function of second kind must be

dropped because of its singularity at the origin.

The elementary solution of (95) is
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φ =

 φI

φII

 =

 J0

(
qα

I
r
)

0

0 J0

(
qα

II
r
)
 eikz

 aI

aII

 , (96)

where qα
I
, qα

II
are the radial wave numbers P-waves. They are

qα
I

=

√
ω2

α2
I

− k2, qα
II

=

√
ω2

α2
II

− k2, (97)

and the imaginary part of the radial wave numbers must be taken such that the Sommerfeld radia-

tion condition is satisfied in the manner suggested by Krebes and Daley (2007).

The solutions of two decoupled potentials are written jointly in a matrix form for algebraic con-

venience. The axial wave number k is the free parameter. The elementary solutions are labeled

by the pair (k, ω). They are to be viewed as the Fourier spatial and temporal wave-numbers. By

imposing the boundary conditions (81) the interrelation between these wave-numbers is yet to

determined by the dispersion analysis.

4.3.2 Solution of the matrix Helmholtz equations for shear waves

Likewise the precceding §4.3.1, the matrix Helmholtz equation for shear waves (86) is diago-

nalized by introducing the transformation

Ξ = Rβχ (98)

with

χ = (χI χII)T (99)

Rβ =
(
rβ

I
rβ

II

)
(100)

and

Lβ =
(
lβ

I
lβ

II

)
(101)
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where Rβ and Lβ are, respectively, right- and left- eigenvector matrices of the non-symmetric

second order β matrix and they are orthonormal to each other,

LT
β Rβ = I, (102)

where their components are

rβI
=

1

NβI

 1

γβI

 and rβII
=

1

NβII

 γβII

1

 (103)

and

lβI
=

1

NβI

 1

γβI

βmi
βim

 and lβII
=

1

NβII

 γβII

βim
βmi

1

 , (104)

with γβI
= (β2

I
− βmm)/βmi and γβII

= βmi/(β
2
II
− βmm). NβI

=
(

1 + γ2
βI
βmi/βim

)1/2
and NβII

=(
1 + γ2

βII
βim/βmi

)1/2
are normalizations constants.

Rβ and Lβ diagonalize the β matrix,

LT
β β Rβ= Λβ ≡

β2
I

0

0 β2
II

 . (105)

where β2
I

and β2
II

are the eigenvalues of the β matrix.

Applying the transformation (98) into equation (86) followed by the application of LT
β from the

left side, as in the compressional case, this becomes a set of two decoupled scalar Helmholtz

equations for χ

Λα∇2χ+ ω2χ = 0. (106)

The elementary solutions of (106) are given, akin to equation (95), in terms of trigonometric

and zeroth-order Bessel functions as
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χ =

 χI

χII

 =

 J0

(
q
β

I
r
)

0

0 J0

(
q
β

II
r
)
 eikz

 bI

bII

 , (107)

where q
β

I
, q

β
II

are the radial wave numbers for shear waves given by

q
β

I
=

√
ω2

β2
I

− k2, q
β

II
=

√
ω2

β2
II

− k2. (108)

4.4 Expressions of displacements and stresses in terms of poten-

tials

From equations (87) and (98) substituting in equation (82) and followed by some algebraic ma-

nipulations, the expressions for radial and axial deformations in terms of the decoupling potentials

φ and χ are given by

ur = Rα∂rφ+ R
β
∂2
rzχ, (109)

uz = Rα∂zφ−R
β

(
∂2
r +

1

r
∂r

)
χ, (110)

and, likewise, from equations (75) and (78) stresses are

τ rr = Ωρβ
{[(
β−1α− 2

)
Rα∇2 + 2Rα∂

2
r

]
φ+ 2R

β
∂2
r∂zχ

}
, (111)

τ rz = Ωρβ

{
2Rα∂

2
rzφ+ R

β
∂r

[
∂2
z −

(
∂2
r +

1

r
∂r

)]
χ

}
. (112)

Substituting (96) and (107) into the above equations, the displacements and stresses become



36

ur = − r

2ik

[
1

k2
RαQαΘαΛαA−2R

β
Θ
β
Λ
β
B

]
eikz, (113)

uz =
1

k2

[
RαΛαA + 2R

β
Λ
β
B
]
eikz, (114)

τ rr = −Ωρβ

ik

[{(
β−1α−2

)
Rα

ω2

k2
+2Rα

(
ω2

k2
I−Λα

)(
I− 1

2
Θα

)}
A

− 2R
β
Λ
β

(
2I−Θ

β

)
B
]
eikz, (115)

τ rz = −rΩρβ
[
Rα

(
ω2

k2
I−Λα

)
ΘαA+R

β

(
ω2

k2
−2Λ

β

)
Θ
β
B

]
eikz, (116)

where Qα, Q
β
, Θα, Θ

β
are diagonal 2× 2 matrices and A, B are two-component vectors. These

are defined in terms of their components as

 q2
αI

0

0 q2
αII

 ≡ Qα (117)

 q2
βI

0

0 q2
βII

 ≡ Qβ (118)

 2J1(qαI r)

rqαI J0(qαI r)
0

0
2J1(qαII r)

rqαII J0(qαII r)

 ≡
 Θ(qαIr) 0

0 Θ(qαIIr)

 ≡ Θα (119)

 2J1(qβI r)

rqβI J0(qβI r)
0

0
2J1(qβII r)

rqβII J0(qβII r)

 ≡
 Θ(qβIr) 0

0 Θ(qβIIr)

 ≡ Θβ (120)

ik3 (Λα)−1

 J0(qαIr) 0

0 J0(qαIIr)

 aI

aII

 ≡
 AI

AII

 ≡ A (121)
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1

2
k2 (Λβ)−1Qβ

 J0(qβIr) 0

0 J0(qβIIr)

 bI

bII

 ≡
 BI

BII

 ≡ B (122)

It is to be noted that cylindrical function Θα (Θβ) and coefficient A (B) are divided and multi-

plied by zeroth-order Bessel function, respectively. The scaling of the cylindrical functions are for

algebraic convenience in dispersion analysis. This analytic manipulation traces back to the works

of Pochhammer and Chere in the late eighteenth century on vibration of elastic cylinders.

4.5 Setting up the boundary conditions

The boundary conditions for a stress-free impermeable surface are defined in (81). They are

explicitly stated in terms of extended variables notations for displacement fields and stresses in

equations (113), (115) and (116). From them the centre-mass- and internal- field components are

extracted by apply the projection vectors from the left side to the desired expression. The projec-

tion operators are the row matrices as below

P̂1 = (1 0) , (123)

P̂2 = (0 1) , (124)

where P̂1 extracts the 1st row which corresponds to the centre-mass field terms and P̂2 extracts

the 2nd row corresponding to the internal field terms. These are the same operators defined earlier

in equation (81).

The boundary conditions on the radial surface r = a are satisfied by applying the operator P̂1

on equation (115), (116) and operator P̂2 on equation (113) and (116) and setting r = a in the

resulting expressions. Here onwards, the notations ω2

k2 ≡ V 2 , Θα |r=a ≡ Θa
α and Θ

β
|r=a ≡ Θa

β are

used.

Applying operator P̂1 on equation (116) and setting r = a yields
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τmrz|r=a = P̂1 R
β

(
Λ
β

LT
β

Rα

(
V 2I−Λα

)
ΘαA+Λ

β

(
V 2I−2 Λ

β

)
Θ
β
B
)

= 0. (125)

Upon applying the operator P̂1 on equation (115), followed by setting r = a and adding the

expression to the above equation results into

τmrr|r=a + τmrz|r=a = P̂1 R
β

((
V 2 I− 2Λ

β

)
LT
β
Rα ΛαA + Λ

β

(
V 2Θa

β
−4Λ

β

)
B
)

= 0. (126)

This combination is made for mathematical ease in algebraic manipulation for dispersion anal-

ysis later on.

Applying operator P̂2 on equation (113) and setting r = a leads to

uir|r=a = P̂2Rβ

(
LTβRαQV

αΘa
α
A−2Θa

β
Λ
β
B
)

= 0, (127)

where

QV
α ≡

ΛαQα

k2
=

 (V 2 − α2
I
) 0

0 (V 2 − α2
II

)

 . (128)

Applying operator P̂2 on equation (116) and setting r = a results into

τ irz|r=a = P̂2 R
β

(
Λ
β

LT
β

Rα

(
V 2I−Λα

)
ΘαA+Λ

β

(
V 2I−2 Λ

β

)
Θ
β
B
)

= 0. (129)

In equations (125), (126), (127) and (129) the matrix LTβRα describes the interaction of P and

S waves. It is a coupling matrix (Cβα) defined as
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LTβRα =

 l
βI
· rαI l

βI
· rαII

l
βII
· rαI l

βII
· rαII

 ≡
 Cβ

I
α
I

Cβ
I
α
II

Cβ
II
α
I

Cβ
II
α
II

 ≡ Cβα (130)

where Cβ
I
α
I

describes the interaction between the fast P wave and the fast S wave, Cβ
I
α
II

the

interaction for the fast S with the slow P wave, Cβ
II
α
I

for the slow S with fast P wave and finally

Cβ
II
α
II

for the interactions of both slow waves.

Collecting the equations (125), (126), (127) and (129) together, the linear system of equation

for the constants AI , AII , BI and BII is

0 =



(
V 2 − α2

I

)
−2β2

I
Θa
β

I

P̂2 · rβ
I

Θa
α

I

(
P̂2 · rβ

I
Cβ

I
α
I

+ P̂2 · rβ
II

Cβ
II
α
I

)
(
V 2 − α2

I

)
β2

I

(
V 2 − 2β2

I

)
Θa
β

I

P1 · rβ
I

Θa
α

I

(
β2

I
P̂1 · rβ

I
Cβ

I
α
I

+ β2
II
P̂1 · rβ

II
Cβ

II
α
I

)
(
V 2 − α2

I

)
β2

I

(
V 2 − 2β2

I

)
Θa
β

I

P̂2 · rβ
I

Θa
α

I

(
β2

I
P̂2 · rβ

I
Cβ

I
α
I

+ β2
II
P̂2 · rβ

II
Cβ

II
α
I

)

α2
I

{
(V 2 − 2β2

I
)P̂1 · rβ

I
Cβ

I
α
I
+ β2

I

(
V 2 Θa

βI
−4β2

I

)
P̂1 · rβI

(V 2 − 2β2
II

)P̂1 · rβ
II

Cβ
II
α
I

}
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(
V 2 − α2

II

)
−2β2

II
Θa
β

II

P̂2 · rβ
II

Θa
α

II

(
P̂2 · rβ

I
Cβ

I
α
II

+ P̂2 · rβ
II

Cβ
II
α
II

)
(
V 2 − α2

II

)
β2

II

(
V 2 − 2β2

II

)
Θa
β

II

P̂1 · rβ
II

Θa
α

II

(
β2

I
P̂1 · rβ

I
Cβ

I
α
II

+ β2
II
P̂1 · rβ

II
Cβ

II
α
II

)
(
V 2 − α2

II

)
β2

II

(
V 2 − 2β2

II

)
Θa
β

II

P̂2 · rβ
II

Θa
α

II

(
β2

I
P̂2 · rβ

I
Cβ

I
α
II

+ β2
II
P̂2 · rβ

II
Cβ

II
α
II

)

α2
II

{
(V 2 − 2β2

I
)P̂1 · rβ

I
Cβ

I
α
II

+ β2
II

(
V 2 Θa

βII
−4β2

II

)
P̂1 · rβII

(V 2 − 2β2
II

)P̂1 · rβ
II

Cβ
II
α
II

}





AI

BI

AII

BII



(131)

where equations for vanishing uir, τmrz, τ irz and (τmrr + τmrz) correspond to the first, second, third and

fourth row, respectively. This system of equations define the modes of longitudinal vibration in a

porous cylinder with stress-free impermeable radial surface.

4.6 Dispersion polynomial

The non-trivial solution of the system of equations (131) is obtained by setting the determinant

of its 4× 4 coefficient matrix equal to zero. The vanishing determinant of this matrix yields a poly-

nomial which describes the behavior of waves under the applied boundary conditions and it is the

dispersion relation. The determinant, which was computed using Wolfram Mathematica, is a third

order polynomial2 in V 2 as below

B3Z
3 +B2Z

2 +B1Z +B0 = 0, (132)

where Z = V 2 and coefficients are
2There is an additional trivial root of V 2 which is ignored.
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B0 = 4αI αII βmi{
(β

I
− β

II
)(h1 h2 Θa

α
I
− h3 h4 Θa

α
II

) Θa
β

I
Θa
β

II
+ αmi h5 (αI − αII) Θa

α
I
Θa
α

II

}
(133)

B1 = 4
(
α2

II
− α2

I

)
αmiβmiΘ

a
α

I
Θa
α

II
−(

β
I
− β

II

){
2αII (2h1h6βmi + (h7 + h9 − αIβmih1)) Θa

α
I

−2αI (2h3h6βmi + αII (h7 + h8 − αIIβmih3)) Θa
α

II
+ αIαIIαmiβmiβmmh14

}
Θa
β

I
Θa
β

II
(134)

B2 = (αI − αII)αmi βmi Θa
α

I
Θa
α

II

[
4h5 + (αI + αII)

(
β

I
− β

II

)
βmm Θa

β
I
Θa
β

II

]
+

(2h10 + h12)αI

(
β

I
− β

II

)
Θa
α

II
Θa
β

I
Θa
β

II
− (2h10 + h11)αII

(
β

I
− β

II

)
Θα

I
Θa
β

I
Θa
β

II
(135)

B3 = αmi

(
β

I
− β

II

)
βmi

{
h13 − (αI + αII)βmm Θa

α
I
Θa
α

II

}
Θa
β

I
Θa
β

II
(136)

with

h1 = ((αII − αmm)βmi + αmi βmm) (137)

h2 = (αmi βim − (αI − αmm)βmm) (138)

h3 = ((αI − αmm)βmi + αmi βmm) (139)

h4 = (αmi βim − (αII − αmm)βmm) (140)

h5 = β2
II

(
β

I
− βmm

)
Θa
β

I
− β2

I

(
β

II
− βmm

)
Θa
β

II
(141)

h6 = αmi βim − αmm βmm (142)

h7 = 2 αmi βmi (αmm − βmm)βmm − αmi
2
(
β

I
− βmm

) (
β

II
− βmm

)
(143)

h8 = βmi
2 (αI − αmm) (αmm − 2βmm) (144)

h9 = βmi
2 (αII − αmm) (αmm − 2βmm) (145)

h10 = βmi
2 (αI − αmm) (αII − αmm) + αmi

2
(
β

I
− βmm

) (
β

II
− βmm

)
(146)

h11 = αmi βmi (αI − αmm) (αI + 4βmm) (147)

h12 = αmi βmi (αII − αmm) (αI + 4βmm) (148)

h13 = αII (αI − αmm) Θa
α

I
− αI (αII − αmm) Θa

α
II

(149)

h14 = αI

(
Θa
α

II
− 2
)

Θa
α

I
− αII

(
Θa
α

I
− 2
)

Θa
α

II
(150)
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Chapter 5 Dispersion relation for extensional waves

The extensional waves are a particular case of the longitudinal motion wherein the axial motion

is compressional in nature, that is, the direction of propagation is along the axial direction, and the

radial motion is shear in nature. Such oscillation is excited when a non-vanishing component of

stress is in axial direction only and the wavelength is orders in magnitude greater than radius of

the cylinder. In contrast to the elastic case, for the poroelastic case, there are more than one such

mode because a porous medium supports two compressional and two shear waves.

In this chapter, the slender rod approximation of longitudinal solution is derived. That is, the

extensional limit case is developed for which the ratio of radius to wavelength is less than one.

The approximations for the transcendental functions Θα and Θβ are derived in §5.1. Thereafter,

in §5.2 the companion matrix technique is utilized to find the roots of the dispersion relation. This

method solves for roots of a polynomial by constructing a (companion) matrix with the characteristic

equation that is the same as the polynomial in question. In this manner, solving for roots is reduced

to solving an eigenvalue problem. In §5.3 for illustrative purposes the numerical computation of the

dispersion relation is carried out with physical properties of a sample of Berea sandstone.

5.1 Approximations of theta functions

The longitudinal dispersion relation (132) involves Θ functions, which are the ratio of Bessel

functions as 2 J1(z)
zJ0(z) . For the limiting case of small and large arguments exist algebraic approxima-

tions for the Θ function (Solorza and Sahay, 2009). Those approximations are

Θ(z) ≈

 1 + 1
8z

2 − 1
24z

4 + ... for z < 1

2
z for z > 1.

(151)

5.1.1 Theta functions for the fast-P and fast-S waves

For the case of the fast-P wave, the argument of Θa
α

I
(z) is
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z = aqα
I

= a

√
ω2

α2
I

− k2 = a

√
ω2

(
1

α2
I

− k2

ω2

)
= aω

√
1

α2
I

− 1

V 2
. (152)

Therefore, in the low frequency regime, aqα
I
< 1, Θa

α
I

is approximated as

Θa
α

I
= Θa

α
I
(aqα

I
) ≈ 1 +

a2ω2

8

(
1

α2
I

− 1

V 2

)
. (153)

For common geomaterials in the low frequency regime, ‖a2ω2

8

(
1
α2
I

− 1
V 2

)
‖ � 1, so one may

take in such cases

Θa
α

I
(aqα

I
) ≈ 1 . (154)

Similarly, for the fast-S wave, the argument of Θa
β

I
(z) is

z = aqβ
I

= a

√
ω2

β2
I

− k2 = a

√√√√ω2

(
1

β2
I

− k2

ω2

)
= aω

√
1

β2
I

− 1

V 2
, (155)

which is less than 1 for low frequency regime. So Θa
β

I
is approximated as

Θa
β

I
= Θa

β
I
(aqβ

I
) ≈ 1 +

a2ω2

8

(
1

β2
I

− 1

V 2

)
≈ 1. (156)

5.1.2 Theta functions for the slow-P and slow-S waves

For the case of slow-P wave, the argument of Θa
α

II
is approximated as
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z = aqα
II

= a

√
ω2

α2
II

− k2 = a

√
ω2

α2
II

(
1−

α2
II

V 2

)
≈ a ω

αII

(
1− 1

2

α2
II

V 2

)
(157)

where |αIIV | � 1 in the low frequency regime, so

aqα
II
≈ a ω

αII
. (158)

For frequencies below the Biot relaxation frequency, the norm |αII| � 1 implies that aqα
II
> 1.

So, Θa
α

II
is approximated as

Θa
α

II
(aqα

II
) ≈ 2

αII
aω

. (159)

In the same manner, for the slow-S wave, the argument of Θa
β

II
(z) is approximated as

z = aqβ
II

= a

√√√√ ω2

β2
II

(
1−

β2
II

V 2

)
≈ a ω

β
II

(
1− 1

2

β2
II

V 2

)
≈ a ω

β
II

, (160)

where a ω
β
II

� 1 in the low frequency regime. So, Θa
β

II
becomes

Θa
β

II
= Θa(aqβ

II
) ≈ 2

β
II

aω
. (161)

5.2 Companion matrix technique

The companion matrix technique is a powerful tool to solve a polynomial of high order. It solves

for roots of a polynomial by computing the eigenvalues of the matrix that has the polynomial in

question as its characteristic equation (Golub and Van Loan, 1996; section 7.4.6).

The dispersion polynomial (132), after rescaling with respect to its leading term coefficient is
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z3 + a2z
2 + a1z + a0 = 0 (162)

where a0 = B0
B3

, a1 = B1
B3

and a2 = B2
B3

.

The solution of (162) is computed by solving the eigenvalue problem of the matrix M of the

following structure

M =


0 0 −a0

1 0 −a1

0 1 −a2

 (163)

where the roots of dispersion relation (162) are the eigenvalues of M .

5.3 Numerical solution of the dispersion relation

The dispersion relation (162) is solved by the companion matrix technique. In order to probe for

the behavior of a real geo-material, the numerical solution of the dispersion relation is computed

with physical properties of a sample of Berea sandstone saturated with water. The data of physical

properties are presented in Table 6. The solution of the dispersion relation is computed for the

regime below the Biot critical frequency, which for this case is 2.04× 107 Hz. This solution exhibits

that there exists three natural modes of extensional motion.
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Table 6: Physical properties of water saturated Berea sandstone

fluid density: ρ0
f = 1.00× 10+03

(
kg
m3

)
fluid bulk modulus: Kf = 2.2× 10+09 (Pa)

fluid bulk viscosity: ξf = 2.8× 10−03
(
kg
m3

)
fluid shear viscosity: µf = 1.00× 10−03

(
kg
m3

)
solid density: ρ0

s = 2.65× 10+03
(
kg
m3

)
solid-mineral shear modulus: µs = 2.30× 10+10 (Pa)
solid-frame shear modulus: µ

0
= 6.70× 10+09 (Pa)

solid-frame bulk modulus: K0 = 5.20× 10+09 (Pa)
solid-mineral bulk modulus: Ks = 35× 10+09 (Pa)
permeability: K = 1.00× 10−14

(
m2
)

porosity: η
0

= 0.25
tortuosity factor: S = 4

3
radius of the cylindrical core: a = 1.9× 10−2 (m)

Figure 1: Dispersion curve for the first extensional mode. The phase velocity (solid-line) and attenuation
(dash-line) of the extensional mode are shown in blue. For reference purposes, the fast-P and fast-S phase
velocities (solid-line) and attenuation (dash-line) are presented in magenta and cyan, respectively.

The first mode describes a wave with the velocity in between fast-P and fast-S velocities. For the

low regime, this mode has insignificant attenuation, although it is linearly increasing with frequency.

In Figure (1), the phase velocity of this mode is represented by the blue solid-line and its attenuation
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represented by the blue dash-line. For reference purposes, the phase velocities (solid line) and

attenuation (dash-line) of the fast-P and fast-S waves are plotted in the colors magenta and cyan,

respectively.

Figure 2: Dispersion curve for the second extensional mode. The phase velocity (solid-line) and attenuation
(dash-line) of the extensional mode are shown in blue. For reference purposes, the slow-P and slow-S phase
velocities (solid-line) and attenuations (dash-line) are presented in magenta and cyan, respectively.

In Figure (2), the second extensional mode (blue lines) is presented together with the slow-P

(megenta) and slow-S (cyan) waves. Also, the frequency for which the slow-P wavelength is equal

to the sample radius, the White frequency (White, 1986), is marked. The nature of this mode

changes at the White frequency, which in this case is 239 Hz. It is apparent that this mode is due

to the interaction of the slow-P and slow-S motions. In the regime below the White frequency, the

mode is strongly influenced by slow-S wave. In the regime above the White frequency, its nature is

dominated by slow-P wave, however, significantly more dampened than slow-P wave.
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Figure 3: Dispersion curve for the third extensional mode. The phase velocity (solid-line) and attenuation
(dash-line) of the extensional mode are shown in blue. For reference purposes, the slow-P and slow-S
phase velocities (solid-line) and attenuations (dash-line) are presented in magenta and cyan, respectively.

The third mode is plotted in the Figure (3) with slow-P (red) and slow-S (blue) waves for refer-

ence purposes. This mode is a slow-P wave. It is progressively faster and less attenuating in the

frequency regime above the White frequency, although still remains diffusive in character. Below

the White frequency, it is essentially a slow-P wave.
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Chapter 6 Analysis of the nature of waves

The numerical solution of the dispersion relation shows the existence of three extensional

modes for a saturated porous cylinder with stress-free impermeable radial surface with each mode

having a characteristic behavior. In order to interpret the LF measurements, it is necessary to

understand the nature of these modes. The LF experiments are the studies of sub-resonance ex-

tensional motion of porous cylindrical cores that have non-vanishing stresses at its impermeable

radial surface. Therefore, the observed motion in a LF experiment is naturally a combination of

these three modes of the stress-free impermeable case.

Furthermore, these modes ought to be related with the modes generated when the fluid is able

to move through the radial surface that is stress-free, the stress-free open-pore case, which are

fully understood (Gardner, 1962; Berryman, 1983; White, 1986; Dunn, 1986; Johnson and Kostek,

1995; Solorza and Sahay, 2009).

A synthesis of the stress-free open-pore extensional mode problem is presented in Solorza and

Sahay (2009), who have analyzed in the dCS framework and shown the existence of three natural

modes. Therein, the first mode is the coupled fast-P and fast-S waves. Below White’s frequency

it tends to become the extensional motion of the drained frame only, and in the regime above

White frequency, it is the extensional motion of the undrained frame, i.e., the effective Gassmann

elastic solid. There is an attenuation peak, at the White frequency, due to the in and out fluid flow

through open pore at the radial surface. Here, both second and third modes are the manifestations

of interacting slow-P and slow-S processes, which respectively degenerate to slow-P and slow-S

waves in the regime above the Biot critical frequency. These two modes are damped so heavily

that energy pumped into these modes dies off rapidly.

In this chapter the nature of each of the three closed-pore modes are analyzed and compared

with the modes that occur in open-pore case (§6.1, §6.2, §6.3). Then, in section §6.4, the veloc-

ity and attenuation of the first extensional mode is expressed in terms of physical properties by

carrying out an asymptotic approximation.
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6.1 First extensional mode with stress-free impermeable radial sur-

face

The first extensional mode in a porous cylinder with impermeable radial surface is coupled

fast-P and fast-S motion. The velocity of this mode corresponds to the extensional modulus of

the undrained frame, i.e., an effective undrained elastic solid (Gassmann medium). While the

attenuation, although not significant, is linear dependent on frequency.

Due to the impermeable surface, the fluid is not capable to relax the pressure through the radial

surface, so there is no attenuation peak at the White frequency, as it occurs in the open-pore case.

This is illustrated in Figure (4). Also, in closed-pore case there is no longer dry-frame (or drained)

behavior. So, for all frequencies below the Biot critical frequency the velocity corresponds to that

of the extensional modulus of the effective (undrained) elastic medium.

Figure 4: Comparison of the first extensional modes of the closed-pore (CP) and open-pore (OP) cases.
The phase velocity (solid-line) and attenuation (dash-line) for the closed-pore and open-pore cases are
shown in blue and red, respectively.
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6.2 Second extensional mode with stress-free impermeable radial

surface

The second extensional mode is a diffusion process. It is due to the interactions of the slow-

P and slow-S waves. Its velocity is in between those two waves and it can be interpreted as a

slow-extensional wave. This mode is highly attenuated and its attenuation is the largest among the

three extensional modes. The attenuation is so high that it dampens within a minuscule fraction of

a cycle.

By comparing this mode with the second and third extensional modes generated in the open

pore case Figure (4), one finds it to be a combination of the two open pore cases. This phe-

nomenon could be attributed to the influence of the impermeable radial surface.

Figure 5: Comparisons of the second mode of the closed-pore (CP) and with the second and third exten-
sional modes of the open-pore (OP) case. The phase velocity (solid-line) and inverse (dash-line) of closed
pore case are shown in blue. The phase velocity (solid-line) and attenuation (dash-line) of the second and
third modes of the open-pore case are plotted in red and green, respectively.
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6.3 Third extensional mode with stress-free impermeable radial sur-

face

The third extensional mode for closed-pore case behaves as a slow-P wave. It is a diffusive

process and its velocity and attenuation are close to the slow-P wave. Unlike the second and third

modes of the open-pore case, this mode is not influenced by the slow-S process at all. Its existence

as a pure slow P-wave is due to the impermeable radial surface.

Figure 6: Comparisons for the third extensional mode of the closed-pore (CP) case and the second and
third extensional modes of the open-pore (OP) case. The phase velocity (solid-line) and inverse attenuation
(dash-line) of closed pore case are shown in blue. The phase velocity (solid-line) and inverse attenuation
(dash-line) of the second and third modes of the open-pore case are plotted in red and green, respectively.

6.4 Asymptotic approximation of the first extensional mode

In order to relate the first extensional mode velocity and its attenuation with physical properties,

their analytical expressions are developed using the exact formula for roots of a third order polyno-

mial. Thereafter, the leading parts from their analytical expressions are extracted out to the extent

needed to match the exact values in the desired domain.
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The exact solution of the third order dispersion relation (132) is written, using the formula given

by Press et al. (1996), as

Z1 = A+B − B2

3B3
, (164)

Z2 = −1

2
(A+B)− B2

3B3
+ i

√
3

2
(A−B) , (165)

Z3 = −1

2
(A+B)− B2

3B3
− i

√
3

2
(A−B) , (166)

with,

A =
(
R+

√
R2 − T 3

) 1
3
, (167)

B =

 T
A if A 6= 0

0 if A = 0
, (168)

T =
(B2
B3

)2 − 3B1
B3

9
, (169)

R =
2(B2
B3

)3 − 9B1B2
(B3)2 + 27B0

B3

54
, (170)

where B0, B1, B2 and B3 are the coefficients of the dispersion polynomial (132).

The approximations for the elements of matrices α and β below the Biot critical frequency are

developed by Solorza and Sahay (2009) for micro-homogeneous case. Extending those to include

the micro-inhomogeneous term, the expressions become

αmm ≈ α?c
2, (171)

αmi ≈ α?c
2mf

md

(
1− α?

η
0

α?fl
2

α?c
2

)
, (172)

αim ≈ α?c
2df

((
ω

Ωi

)2

− i
(
ω

Ωi

))(
1− α

η0

α?fl
2

α?c
2

)
md, (173)

αii ≈ α?c
2df

((
ω

Ωi

)2

− i
(
ω

Ωi

))
(mf + ε?) , (174)
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and

βmm = β2
c

(
1− i ω

Ωβ
αµ

)
, (175)

βmi = β2
c

(
1 + i

ω

Ωβ

(
η

0

mf
− αµ

))
mf

md
, (176)

βim ≈ β2
c

[(
ω

Ωi

)2

− i
(
ω

Ωi

)](
df + i

ω

Ωβ
dsαµ

)
md, (177)

βii ≈ β2
c

[(
ω

Ωi

)2

− i
(
ω

Ωi

)](
df − i

ω

Ωβ
ds

(
η

0

mf
− αµ

))
mf . (178)

Furthermore, in the region below Biot critical frequency, the complex square fast- and slow- P

velocities are

α2
I
≈ α?c

2

[
1− i

(
ω

Ωi

){
dfmf

(
1− α?

η
0

α?fl
2

α?c
2

)(
1− α

η
0

α?fl
2

α?c
2

)}]
, (179)

α2
II
≈

{
dfα

?
fl

2 H0

Hc

}[(
ω

Ωi

)2

(1 + df (mf + ε?))− i
(
ω

Ωi

)]
, (180)

and, the fast- and slow- S velocities are

β2
I
≈ β2

c

(
1− i

(
ω

Ωi

)
dfmf

)
, (181)

β2
II
≈ −ω

(
ω

Ωi

)[
1 + i

(
ω

Ωi

)
(1 + dfmf)

]
dfνf . (182)

By applying the approximations (171)−(182), as well as Θa
α

I
≈ 1, Θ

β
I
≈ 1, Θa

α
II
≈ 2αII

aω and

Θa
β

II

≈ 2βII
aω , in the solution (164), and after some algebraic manipulation, the expression for the

first extensional mode in terms of material properties is
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√
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with

λ1 = 1− α?

η0

α2
fl

α2
c

, (184)

λ2 = 1− α

η0

α2
fl

α2
c

, (185)

where the phase velocity (Re(VE)) correspond to the Gassmann effective elastic medium, and the

attenuation is obtained by the expression

1

Q
= −2

Im(VE)

Re(VE)
. (186)

The approximation for the fast extensional wave is plotted in Figure (7). It is remarkable that

the attenuation is a precise fit using the leading two, underlined, terms of the imaginary part to plot

expression (183).
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Figure 7: Asymptotes for the first extensional mode for closed-pore case. The exact phase velocity and
attenuation of the first mode are shown by the blue solid- and dash- line, respectively. Its approximations for
phase velocity (empty circles) and attenuation (dot-line) are plotted in black
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Chapter 7 Conclusions

Based on the dCS theory, I have solved the extensional problem of a poroelastic cylinder with

impermeable surface. For this, the boundary conditions for a stress-free impermeable surface are

taken as the following:

i) vanishing total stress,

ii) no relative motion of the fluid with respect to the solid in the normal direction and

iii) no internal stress in the tangential direction.

This set is an adjoint boundary condition of the dCS wave operator.

With these boundary conditions, the dispersion relation is established, whose solution shows

that a saturated porous cylinder apart from being like an effective elastic solid, as considered in

the experimental community, has two additional modes.

The first mode, a fast-extensional mode, has a phase velocity corresponding to an undrained

extensional modulus, and negligible attenuation that is also linearly frequency dependent.

The second mode is the result of the interaction between slow P and slow S waves. This mode

is highly dissipative, such that it dampens within a minuscule fraction of the excitation cycle.

The third mode is essentially a slow P wave. This mode is very attenuated, its amplitude

decreases by a factor of e−π in half a cycle.

The asymptotic analysis of the fast-extensional mode shows that the phase velocity of this

corresponds to the undrained extensional modulus.

Due to the confining pressure applied to seal a sample in a LF experiment, a sealed porous

cylinder is subjected to oscillations under the conditions of stress on its radial surface. Therefore,

instead of excitation of the first extensional mode exclusively, other two natural modes are also

induced in the sample. The unexplained observed loss of energy in LF experiments are due to the

presence of those two highly attenuated modes. I plan to work on the quantitative modeling of the

observed attenuations in the LF experiments using these modes. Also, I intend to further examine

the significance of the impermeable boundary conditions used in this study; in particular, its effect

on the reflection and transmission of seismic wave fields.
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