
CENTRO DE INVESTIGACIÓN CIENTÍFICA Y DE EDUCACIÓN SUPERIOR

DE ENSENADA

 PROGRAMA DE POSGRADO EN CIENCIAS

EN CIENCIAS DE LA COMPUTACIÓN

 “AGENTES AUTÓNOMOS EN AMBIENTES DE CÓMPUTO COLABORATIVOS

UBICUOS”

TESIS

que para cubrir parcialmente los requisitos necesarios para obtener el grado de
DOCTOR EN CIENCIAS

Presenta:

MARCELA DEYANIRA RODRIGUEZ URREA

Ensenada, Baja California, México, Agosto del 2005.

iii

RESUMEN de la tesis de Marcela Deyanira Rodríguez Urrea, presentada como
requisito parcial para la obtención del grado de DOCTOR EN CIENCIAS en CIENCIAS
DE LA COMPUTACIÓN. Ensenada, Baja California. Agosto del 2005.

AGENTES AUTONÓMOS EN AMBIENTES DE CÓMPUTO COLABORATIVOS

UBICUOS

Resumen aprobado por:

Dr. Jesús Favela Vara
 Thesis Advisor

La idea del cómputo ubicuo propone un ambiente físico dotado de dispositivos de

diferentes escalas, con capacidades computacionales y de comunicaciones, los cuales se
integran de forma natural a nuestras actividades diarias. Es decir, los dispositivos
computacionales se convierten en una herramienta de trabajo que solo requiere de nuestra
atención periférica. La interacción humano-computadora sucede en forma natural e
implícita, lo que permite que los usuarios no requieran estar concientes de la existencia de
los dispositivos. El proporcionar las anteriores características a los sistemas de cómputo
ubicuo, conlleva a los desarrolladores a abordar varias complejidades de estos sistemas y a
enfrentar importantes retos.

Esta tesis describe un middleware que facilita a los desarrolladores manejar algunas de

las complejidades asociadas con el desarrollo de los sistemas de cómputo ubicuo por medio
del uso de agentes autónomos, los cuales fueron utilizados para permitir que la tecnología
de cómputo ubicuo responda a las condiciones y demandas particulares de los usuarios. Los
agentes autónomos se utilizaron para implementar las características deseables de estos
sistemas de cómputo ubicuo y para mejorar la interacción de los usuarios con el ambiente.
Los agentes autónomos fueron identificados como los componentes de software que
representan usuarios, dispositivos y servicios y que tienen capacidades para tomar sus
propias decisiones acerca de que actividades hacer, cuando hacerlas, que tipo de
información debe ser comunicada y a quien y como asimilar la información recibida.

El middleware de agentes (SALSA) fue creado para facilitar la implementación y la

evolución progresiva de este tipo de sistemas inteligentes. SALSA principalmente
proporciona: una plataforma de comunicación entre agentes que consiste de un Broker que
actúa como canal de comunicación entre agentes y usuarios, y un protocolo de
comunicación que permite a los agentes intercambiar diferentes tipos de objetos entre

iv

agentes, (tal como información de contexto) entre agentes y usuarios (tal como eventos
generados por las acciones de los usuarios) y entre agentes y servicios (p.ej. estado de los
servicios). SALSA también proporciona un conjunto de clases que facilita la
implementación de los componentes de percepción, razonamiento y acción de los agentes.
Y finalmente, el middleware SALSA provee de un Directorio de Agentes para que los
agentes registren sus servicios y realicen búsquedas de otros agentes.

Las contribuciones de esta tesis se enfocan en presentar los requerimientos funcionales

de los agentes autónomos para implementar sistemas de cómputo ubicuo, y el diseño e
implementación del middleware SALSA creado para facilitar la implementación y
evolución de sistemas de cómputo ubicuo. Finalmente, se proporciona evidencia de la
flexibilidad de SALSA para desarrollar progresivamente sistemas de cómputo ubicuo, para
lo cual se presenta el diseño e implementación de un sistema de información consciente de
contexto para hospitales.

Palabras clave: cómputo ubicuo, agentes autónomos, middleware

v

ABSTRACT of the thesis presented by Marcela Deyanira Rodriguez Urrea as a
partial requirement to obtain the DOCTOR of SCIENCE degree in COMPUTER
SCIENCE. Ensenada, Baja California, Mexico, August 2005.

AUTONOMOUS AGENTS IN COLLABORATIVE UBIQUITOUS COMPUTING

ENVIRONMENTS

Approved by:

Dr. Jesús Favela Vara
 Thesis Advisor

The idea of ubiquitous computing (ubicomp) is an environment dominated by

computing and communication devices of different scales which are seamlessly integrated
to the users activities. Thus, under the ubicomp vision, computing devices become a work
tool that demands peripheral attention of users, and the human-computer interaction tends
to be more natural and implicit. These features of ubiquitous computing environments
require developers to face important challenges in dealing with the complexities associated
to the development of ubiquitous computing systems.

This thesis describes a middleware to facilitate developers to manage some of the
complexities associated with the development of ubiquitous computing systems by means
of the use of autonomous agents, which enable ubiquitous computing technology to
respond to users’ particular conditions and demands. Autonomous agents were used to
implement the desirable features of ubiquitous computing systems and for enhancing the
interactions of the users with the environment. In a ubicomp system, autonomous agents
were the software components that represent users, devices and services and that are able to
make their own decisions about what activities to do, when to do them, what type of
information should be communicates and to whom, and how to assimilate the received
information.

An agent middleware (SALSA) was created for facilitating the implementation and

progressive evolution of this type of intelligent systems. SALSA provides an agent
communication platform which is a Broker that acts as a communication channel among

vi

agents and users, and a communication protocol that enable agents to convey different
types of objects among agents (such as context information), among agents and users (such
as events generated by users) and agents and services (such as the state of the services).
SALSA provides a set of classes that facilitate the implementation of the agents’
components for perceiving, reasoning and acting. And finally, the SALSA middleware
provides an Agent Directory in which agents register their services and look for other the
services offered by other agents.

The contributions of this thesis focus on presenting the functional requirements of

autonomous agents for implementing ubiquitous computing systems and the agent SALSA
middleware, which was created with the aim of facilitating the implementation and
evolution of ubicomp systems. Finally, this thesis provides evidence of the SALSA
flexibility for enabling the progressive development of ubicomp systems by presenting the
development of a context-aware hospital information system.

Keywords: ubiquitous computing, autonomous agents, middleware

vii

DEDICATION

To my husband, my son, my parents and sister.

viii

ACKNOLEDGEMENTS

I feel extremely lucky to have worked under the guidance of Jesus Favela, and I am

thankful for all the confidence he had in me, and for assigning me important tasks in order

to help me to develop as a researcher. He not only gave me the opportunity to work with

him, but he advised, encouraged and inspired my research and most importantly became a

friend. I also would like to thank my thesis committee, Anind Dey, Leopoldo Moran,

Antonio Garcia, and Ana I. Martinez who gave me valuable feedback for finishing my

thesis.

At CICESE, I worked closely with many students with an interest in Ubiquitous

Computing. In particular I thank Miguel Angel Muñoz, Alfredo Preciado, Pedro C.

Santana, and Irma Amaya, and the group of the Fall 2004 Object Oriented Design course

who participated in the evaluation of my work. Special thanks to Cecilia Curlango who

volunteered to proofread this thesis.

I would like to thank my parents, my sister and my parents-in-law, for their

encouragement and all the support I received from them. I would also like to express my

gratitude and love to my husband, Angel, for the patience and emotional support he has

always provided to me. And to my dear son Angel Roberto, who without knowing it,

motivated me over these years.

Thanks to all of you!

Finally, I thank CONACYT and PROMEP for the scholarships granted for the
development of the work presented in this thesis.

ix

TABLE OF CONTENT
Chapter 1 Introduction and motivation……………………………………….. 1

1.1 Ubiquitous computing challenges…………………………………………….. 2
1.1.1 Providing a development platform: a major challenge ………………. 2
1.1.2 Selection of a programming approach for developing ubicomp
systems………………………………………………………………………

3

1.2 Autonomous agents……………………………………………………………... 6
1.3 Advantages of using software agents for building ubicomp systems…….. 7

1.3.1 Software Engineering and the Agent-oriented approach…………….. 7
1.3.2 Distributed systems and multi-agent systems ………………………… 7
1.3.3 Agents in Human-Computer Interaction ……………………………... 8

1.4 Agents as an alternative to deal with the challenges of developing
ubicomp systems………………………………………………………………………

9

1.5 Autonomous agents for developing Ambient Intelligence systems……….. 11
1.6 Research Objective……………………………………………………………… 12
1.7 Research questions……………………………………………………………… 12
1.8 Methodology……………………………………………………………………... 14

1.8.1 Scenario generation…………………………………………………... 15
1.8.2 Analysis of scenarios and applications………………………………. 15
1.8.3 Design and implementation of an agent middleware for ubicomp
systems……………………………………………………………………….

16

1.8.4 Evaluation……………………………………………………………. 16
1.9 Thesis contributions…………………………………………………………….. 17

1.10 Thesis outline…………………………………………………………. 18
Chapter 2 Background and related work…………………………………….. 20

2.1 Ubiquitous computing………………………………………………………….. 20
2.2 The challenge of developing ubiquitous computing systems………………. 22

2.2.1 Complexities of ubiquitous computing systems……………………... 24
2.3 Development platforms for ubiquitous computing systems………………… 27

2.3.1 Software architectures for mobile computing………………………... 27
2.3.1.1 YCab……………………………………………………………………… 27
2.3.1.2 DACIA…………………………………………………………………… 28
2.3.1.3 MIDAS-PROSE…………………………………………………………. 29
2.3.1.4 CARISMA……………………………………………………………….. 29

2.3.2 Architectures for context-aware systems…………………………….. 30
2.3.2.1 RCSM…………………………………………………………………….. 31

x

TABLE OF CONTENT
(Continue)

2.3.2.2 Semantic Space…………………………………………………………. 31
2.3.2.3 HIML…………………………………………………………………….. 32
2.3.2.4 CAMUS………………………………………………………………….. 32

2.3.3 Middleware for pervasive environments……………………………... 33
2.3.3.1 Gaia OS…………………………………………………………………. 33
2.3.3.2 One.world……………………………………………………………….. 33

2.4 Discussion………………………………………………………………………... 34
Chapter 3 Autonomous agents for designing ubiquitous computing
Systems for hospitals…………………………………………………………….

40

3.1 Characteristics of hospitals settings………………………………………….. 40
3.2 Autonomous agents in healthcare…………………………………………….. 41
3.3 Context-aware medical practices of mobile users………………………….. 44

3.3.1 Scenario: Context-aware access to medical information…………….. 44
3.3.2 Scenario: Context-aware communication……………………………. 45
3.3.3 Desirable features of the ubicomp system to support context-aware
medical practices…………………………………………………………….

45

3.3.4 Design issues regarding autonomous agents…………………………. 46
3.3.5 Using autonomous agents to support context-aware communication... 47

3.3.5.1 Scenario: Context-aware access to medical information………… 48
3.3.5.2 Scenario: Context-aware communication………………………….. 50

3.3.6 Conclusions…………………………………………………………... 51
3.4 Public displays to support coordination and communication…………….. 52

3.4.1 Scenario: Accessing medical information through public displays….. 53
3.4.2 Scenario: Physicians collaborating through ubiquitous devices……... 54
3.4.3 Management of medical knowledge through public displays……….. 54
3.4.4 Scenario: Context-aware presentation of medical knowledge……….. 55
3.4.5 Desirable features of context-aware public displays…………………. 56
3.4.6 Design issues regarding autonomous agents…………………………. 59

 3.4.7 Using autonomous agents to support context-aware public displays... 60
3.4.7.1 Scenario: Accessing medical information through public displays 61
3.4.7.2 Scenario: Context-aware presentation of medical knowledge…… 64

3.4.8 Conclusions…………………………………………………………... 65
3.5 Discussion………………………………………………………………………... 66

Chapter 4 The SALSA middleware………….………………………………… 68

xi

TABLE OF CONTENT
(Continue)

4.1 SALSA’s functional requirements…………………………………………….. 68
4.2 Design of SALSA………………………………………………………………… 71

4.2.1 Agent’s life cycle…………………………………………………….. 71
4.2.2 Architecture of the SALSA middleware.……………………………... 72

4.2.2.1 Communication Platform……………………………………………... 73
4.2.2.2 API (Application Programming Interface)…………………………. 74
4.2.2.3 Services………………………………………………………………….. 74

4.3 Implementation of SALSA……………………………………………………… 74
4.3.1 Agent Broker…………………………………………………………. 75
4.3.2 Agent Directory………………………………………………………. 76
4.3.3 SALSA class framework……………………………………………... 78

4.3.3.1 Agent perception………………………………………………… 78
4.3.3.2 Agent reasoning………………………………………………………... 81
4.3.3.3 Agent action…………………………………………………………….. 82
4.3.3.4 Agent communication…………………………………………………. 82
4.3.3.5 Agent initialization and registration………………………………… 87

4.4 Discussion………………………………………………………………………... 88
Chapter 5 Creation and evolution of ubicomp systems with SALSA……….. 90

5.1 Estimating mobile user’s location…………………………………………….. 90
5.1.1 Implementation of the location-estimation agent…………………….. 91

5.1.1.1 Perception Component………………………………………………... 92
5.1.1.2 Reasoning component…………………………………………………. 93
5.1.1.3 Action component ………………………………………………………. 94
5.1.2.1 Creation of the agent…………………………………………………… 94

5.2 Context-aware Hospital Information System (CHIS)………………………. 95
5.2.1 Architecture of CHIS………………………………………………… 95
5.2.2 Implementation of CHIS……………………………………………... 97
5.2.3 Integrating the location-estimation agent to the context-aware hospital
information system………………………………………………………….

98

5.3 Extending the functionality of CHIS through context-aware public
displays…………………………………………………………………………………

100

5.3.1 Extended architecture of CHIS………………………………………. 100
5.3.2 Implementation of the context-aware public displays……………….. 100

5.4 Conclusions……………………………………………………………………… 102

xii

TABLE OF CONTENT
(Continue)

Chapter 6 Evaluation…………………………………………………………... 104
6.1 Evaluation criteria and hypothesis…………………………………………… 104
6.2 Creating real ubicomp applications with SALSA…………………………… 107

6.2.1 Scenarios depicted the context-aware medical practices of mobile
users…………………………………………………………………………

107

6.2.2 Public Displays to support coordination and communication……….. 109
6.3 Completeness of SALSA………………………………………………………... 111

6.3.1 Conclusions…………………………………………………………... 113
6.4 Ease of use of the SALSA API …………………………………………………. 114

6.4.1 Experiment 1: An in-lab evaluation of the SALSA API……………... 114
6.3.1.1 Evaluating the participants’ background…………………………… 115
6.3.1.2 Introduction to SALSA for the development of ubicomp
Applications………………………………………………………………………..

116

6.4.2 In-lab Evaluation ……………………………………………………... 117
6.3.1.1 Description of the experiment tasks…………………………………. 118
6.3.1.2 Results from the inspection of the code……………………………... 124
6.3.1.3 Perception of ease of use……………………………………………… 125

6.4.3 Conclusions…………………………………………………………... 127
6.5 Autonomous agents as an abstraction tool for designing ubicomp
Systems…………………………………………………………………………………

129

6.5.1 Description of the Design Experiment………………………………. 129
6.5.2 Criterion to evaluate the design exercise …………………………….. 131
6.5.3 Results………………………………………………………………... 132
6.5.4 Conclusions…………………………………………………………... 137

6.6 Comparing SALSA with JADE-LEAP………………………………………… 137
6.6.1 Execution model of agents …………………………………………… 138
6.6.2 Communication protocol……………………………………………... 138
6.6.3 Autonomy of agents………………………………………………….. 140
6.6.4 Conclusions…………………………………………………………... 140

6.7 Discussion………………………………………………………………………... 141
Chapter 7 Conclusions………………………………………………………….. 144

7.1 Contributions and results………………………………………………………. 144
7.1.1 Identifying the complexities associated with the development of
ubicomp systems……………………………………………………………..

144

xiii

TABLE OF CONTENT
(Continue)

7.1.2 A set of realistic scenarios of ubiquitous computing systems……….. 145
7.1.3 Design issues regarding autonomous agents for developing
ubiquitous computing systems ………………………………………………

145

7.1.4 An agent middleware, named SALSA, for developing ubiquitous
computing systems…………………………………………………………..

147

7.2 Future research work…………………………………………………………... 148
7.2.1 Supporting mobile users’ disconnections……………………………. 148
7.2.2 Authentication of agents……………………………………………... 150
7.2.3 Providing alternative communication channels……………………… 151
7.2.4 Deriving secondary context information……………………………... 152

7.3 Conclusions……………………………………………………………………… 152
Bibliography……………………………………………………………………... 154
Appendix A API of SALSA……………………………………………………. 164

A.1 Creating and activating an Agent…………………………………………… 164
A.2 Perception component………………………………………………………… 167
A.3 Acting component……………………………………………………………… 172
A.4 Reasoning component…………………………………………………………. 178
A.5 Initializing and registering the Agent in the Agent Directory……………. 182
A.6 SALSA Events…………………………………………………………………... 186
A.7 Proxy to the Agent Broker…………………………………………………….. 189
A.8 Parsing the SALSA XML messages………………………………………….. 192

Appendix B Forms and questionnaires……………………………………….. 194
B.1 Questionnaire to evaluate Perceived Ease of Use of the API of
SALSA………………………………………………………………………………….. 194
B.2 Final Exam of the Object Oriented Analysis and Design Course………… 196

xiv

FIGURE LIST

Figure Page

1 Methodology followed to create and evaluate the agent middleware for

ubicomp systems………………………………………………………….. 14

2 Autonomous agents interacting for accessing patient's clinical records…. 49

3 Autonomous agents interacting to deliver a contextual-message………… 51

4 Autonomous agents’ interactions to personalize information on the

public display……………………………………………………………... 62

5 Agents interactions for transferring information from the public display

to the user's PDA…………………………………………………………. 63

6 The Knowledge Management Agent and the Medical Guide proxy-agent

retrieving medical information…………………………………………… 65

7 The life-cycle of an agent………………………………………………… 71

8 SALSA's Architecture……………………………………………………. 73

9 Architecture of SALSA…………………………………………………... 75

10 LDAP structure for the SALSA Agent Directory………………………... 76

11 Agent Directory Components interacting to provide information to Agent

A………………………………………………………………………….. 78

12 Class library of SALSA…………………………………………………... 79

13 Passive Perception of a SALSA Agent…………………………………… 80

14 Active Perception of SALSA agents……………………………………... 80

xv

FIGURE LIST
(Continue)

Figure Page

15 XML message requesting to personalize information to the Map agent…. 85

16 SALSA’s communication methods for requesting the execution of a

service…………………………………………………………………….. 86

17 SALSA’s communication methods for requesting information………….. 86

18 SALSA’s communication methods for sending information perceived

from a sensor……………………………………………………………... 87

19 Components of the Location-estimation agent and the Location-aware

client……………………………………………………………………… 91

20 a) AUML class diagram of the location-estimation agent…………………... 92

20 b) Sequence diagram of the location-estimation agent……………………… 92

21 a) Code for implementing the entity for perceiving information from the
WLAN card………………………………………………………………. 94

21 b) Code of the reasoning component………………………………………... 94

22 a) Code of the action sending data to the location-aware agent…………….. 95

22 b) Code of the LE-a for creating its components……………………………. 95

23 Architecture of the context-aware hospital information system………….. 96

24 Agents of CHIS interacting for enabling the physician to access the

patient’s clinical record…………………………………………………... 97

25 Location-estimation agent interacting with the agents of the context-

aware hospital information system……………………………………….. 99

xvi

FIGURE LIST
(Continue)

Figure Page

26 Architecture of the context-aware hospital information system………….. 101

27 Implementation of CHIS using the SALSA development framework…… 102

28 Scope of SALSA for implementing ubiquitous computing systems……... 113

29 Code of the patient's agent………………………………………………... 119

30 Agent's reasoning diagnosing hyperglycemia……………………………. 120

 31 a) Agent's actions when hyperglycemia is detected. The agent recommends
drinking water…………………………………………………………….. 120

 31 b) Agent's actions when hyperglycemia is detected. The agent notifies the

doctor about the patient's condition………………………………………. 120

32 XSL filter to detect hypoglycemia………………………………………... 121

33 Reasoning component detecting hypoglycemia………………………….. 122

 34 a) Agent's actions when hypoglycemia is detected. The agent recommends
the patient eat a sugar dose……………………………………………….. 123

 34 b) Agent's actions when hypoglycemia is detected. The agent notifies the

physician the patient’s health-condition………………………………….. 123

35 XSL filter to detect an hypoglycemia and hyperglycemia……………….. 123

36 Action component implemented by one of the participants……………… 124

37 Answers to the question: What agent functionality you consider to be the

easiest to implement?... 127

38 Design exercise of a ubicomp system…………………………………….. 130

xvii

TABLE LIST

Table No.
I Platforms for supporting mobile computing in ubicomp

environments………………………………………………………..
30

II Architectures for creating context-aware systems…………………. 32

III Middlewares for ubicomp systems…………………………………. 33
IV Description of the SALSA events generated when information is

perceived……………………………………………………………
84

V Methods used for communication by SALSA agents……………… 85

VI Attributes for a SALSA agent……………………………………… 89
VII Methods of the AgentDirectory class for requesting information

from the Agent Directory proxy-agent (AD-pa)……………………

90

VIII Results of a questionnaire measuring user acceptance of scenarios
and the system’s context-aware features……………………………

111

IX Architectures for creating context-aware systems…………………. 115

X Course agenda for introducing SALSA to the participants………… 119

XI Results of TAM questionnaire……………………………………... 130

XII Criterion applied to check the exercises of the experiment………... 134

XIII Participants score in the design exercise…………………………… 137

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xviii

Sinopsis en español (Tabla de contenido)

1 Introducción .. xix

1.1 Computación Ubicua ...xix

1.2 Retos y complejidades del cómputo ubicuo ...xix

1.3 Objetivo de la tesis..xx

1.4 Contenido de la tesis ...xx

2 Trabajo relacionado.. xxi

3 Agentes autónomos ... xxiii

4 Metodología ... xxiv

5 Agentes autónomos para diseñar sistemas de cómputo ubicuo para
hospitales... xxv

5.1 Prácticas médicas concientes del contexto de usuarios móviles xxv
Escenario 1: Acceso conciente del contexto a información médica. xxv
Escenario 2: Acceso a información médica a través de pantallas públicas......... xxvi

5.2 Diseño de las características de los agentes autónomos..............................xxvii

6 Diseño e implementación del middleware SALSA..................................... xxviii

6.1 Arquitectura de SALSA ..xxviii

6.2 API de SALSA.. xxx
6.2.1 Componente de percepción.. xxx
6.2.2 Componente de razonamiento... xxxi
6.2.3 Componente de acción .. xxxi

7 Implementando un sistema de cómputo ubicuo con SALSA xxxii

7.1 Estimando la localización del usuario...xxxiii

7.2 Sistema consciente del contexto para hospitales .. xxxv
7.2.1 Architecture of CHIS ... xxxv
7.2.2 Implementation of CHIS.. xxxvii

8 Discusión .. xxxviii

9 Conclusiones .. xxxix

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xix

Sinopsis en español

1 Introducción

1.1 Computación Ubicua

La idea del cómputo ubicuo propone un ambiente físico dotado de dispositivos de

diferentes escalas, con capacidades computacionales y de comunicaciones, los cuales se

integran de forma natural a nuestras actividades diarias [Weiser, 1991, 1993]. Es decir, los

dispositivos computacionales se convierten en una herramienta de trabajo que solo requiere

de nuestra atención periférica. La interacción humano-computadora sucede en forma

natural e implícita, lo que permite que los usuarios no requieran estar concientes de la

existencia de los dispositivos, lo cual es posible mediante el acceso consciente del contexto

a información y servicios disponibles en el ambiente [Abowd y Mynatt, 2000]. Por

contexto se entiende que es cualquier información relevante para mejorar la interacción

entre un usuario y una aplicación, por ejemplo localización, identidad y actividades de los

usuarios, [Dey, 2001]. Así, la tecnología conciente del contexto es considerada el corazón

de los sistemas de cómputo ubicuo ya que permite que el sistema reaccione ante los

cambios de contexto de los usuarios. Debido a que los ambientes de cómputo ubicuo se

caracterizan por ser reactivos y pro-activos para proporcionar servicios e información

adaptada al contexto de los usuarios, también se denominan ambientes inteligentes. Por lo

anterior, recientemente a esta área de la computación se le conoce como Inteligencia

Ambiental (AmI por sus siglas en ingles: Ambient Intelligence). Crear sistemas con

características como las mencionadas ha llevado a los desarrolladores a enfrentar varios

retos tal como se explica en la siguiente sección.

1.2 Retos y complejidades del cómputo ubicuo

Construir sistemas de cómputo ubicuo ha llevado a los desarrolladores a enfrentar retos

relacionados con la infraestructura de software cuyo propósito es facilitar que se aborden

las complejidades de estos sistemas. Entre estas complejidades están las fallas de los

sistemas debidas a eventos impredecibles, tal como las desconexiones de los dispositivos

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xx

móviles; la heterogeneidad de los dispositivos computacionales y de comunicación; la

adaptación de información y servicios para lo cual se debe considerar el contexto de los

usuarios, que es altamente dinámico; el descubrimiento de los servicios/dispositivos

disponibles debe requerir mínima o ninguna intervención de los usuarios; finalmente, los

sistemas deben ser escalables en cuanto al número de usuarios, dispositivos y el tiempo en

que el ambiente debe proporcionar sus servicios.

Para abordar algunas de las complejidades de los sistemas de cómputo ubicuo, los

desarrolladores han utilizado enfoques de programación (tal como programación orientada

a aspectos, y reflexión) y propuesto plataformas de desarrollo (tal como middlewares y

librerías de clases) [Popovici et al., 2003; Capra et al., 2003].

1.3 Objetivo de la tesis

El proveer de plataformas que faciliten el desarrollo de sistemas de cómputo ubicuo es

otro de los retos de esta área. En este sentido, esta tesis explora el uso de los agentes

autónomos como una abstracción para el diseño y construcción de sistemas de cómputo

ubicuo y se proporciona un middleware para facilitar la implementación de los agentes.

Así, el objetivo de la tesis es:

Diseñar e implementar un middleware que permita a los desarrolladores manejar

algunas de las complejidades asociadas con el desarrollo de sistemas de cómputo ubicuo

por medio del uso de agentes autónomos.

1.4 Contenido de la tesis

Antes de presentar este middleware llamado SALSA, la sección 2 presenta las

plataformas de software existentes que abordan algunas de las complejidades para

implementar sistemas de cómputo ubicuo; la sección 3 presenta una introducción a los

agentes autónomos; la sección 4 describe la metodología seguida durante esta tesis; en la

sección 5 se explican los escenarios de uso de sistemas de cómputo ubicuo que se

analizaron para obtener los requerimientos del middleware SALSA; la sección 6 presenta

estos requerimientos, y el diseño e implementación de SALSA; en la sección 7 se ilustra

como utilizar SALSA para implementar un sistema de cómputo ubicuo; sección 8 describe

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxi

la evaluación de SALSA; finalmente se presentan algunas conclusiones y trabajo futuro en

la sección 9.

2 Trabajo relacionado

Algunas plataformas de software se enfocan en facilitar la implementación de

aplicaciones para dispositivos móviles, tal como YCab el cual es un API para crear

aplicaciones descentralizadas que permiten a los usuarios colaborar en un ambiente

tolerante a fallas ante las desconexiones de los dispositivos móviles [Buzko et al., 2001].

Sin embargo YCab no permite que los usuarios interactúen con otro tipo de dispositivos

que podrían ofrecer servicios relevantes para sus actividades. Similarmente, DACIA lidia

con las desconexiones de los usuarios móviles permitiendo que una aplicación cliente,

residiendo en un servidor, represente al usuario. Este cliente realiza actividades especificas

y sencillas, tal como almacenar los mensaje dirigidos al usuario o informar que el usuario

no esta disponible. Mientras se reestablece la conexión, el usuario puede continuar

utilizando la aplicación en su dispositivo móvil [Litiu y Parkash, 2000]. En [Popovici et al.,

2003] se presenta una plataforma que permite a los dispositivos móviles extender o

modificar dinámicamente su funcionalidad para adaptar su comportamiento al entorno. Este

tipo de adaptación no se realiza tomando en cuenta el contexto de los usuarios, ya que ellos

son los que seleccionan la funcionalidad que el dispositivo móvil debe adquirir. CARISMA

es un middleware para cómputo móvil que explota el principio de reflexión para adaptar las

políticas de asignación de recursos tales como el ancho de banda de la red, memoria y

energía de los dispositivos [Capra et al., 2003]. Las anteriores plataformas no toman en

cuenta el contexto de los usuarios para realizar tal adaptación o para mejorar la

colaboración de los usuarios. Otras plataformas se enfocan en facilitar la implementación

de servicios concientes del contexto como las que se presentan a continuación.

RCSM facilita el desarrollo de aplicaciones que requieren comunicación espontánea

conciente del contexto mediante un modelo de comunicación descentralizado y un enfoque

orientado a mensajes. RCSM permite a los programadores enfocarse en implementar las

acciones de las aplicación conciente del contexto, sin preocuparse del monitoreo, detección

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxii

y análisis del contexto [Yau et al., 2002]. Semantic Space es una infraestructura que

mediante tecnologías del Web Semántico facilita que las aplicaciones recuperen

información de contexto utilizando consultas declarativas, infieran información de contexto

mediante reglas heurísticas, y monitoreen a los dispositivos que dinámicamente se unen al

ambiente para abstraer de ellos información de contexto [Wang et al., 2004]. En [Kim et

al., 2004] se presenta un middleware que propone un esquema estandarizado para

manipular información de contexto. Este esquema llamado HIML (Human Interaction

Markup Language) proporciona un lenguaje común para expresar información de

conciencia de contexto y facilitar que el usuario modifique o ajuste su propia información

contextual. El middleware CAMUS (Context-Aware Middleware for Ubiquitous

computing Systems) facilita la composición de contexto y permite que la información de

contexto extraída de sensores se represente como tuplas FTS (Feature Tuple Space), el cual

es un mecanismo de comunicación y almacenamiento utilizado por el middleware [Hgo et

al., 2004].

Otras plataformas de software proporcionan facilidades de programación para abordar

los retos de cómputo ubicuo relacionados con el sistema operativo o el middleware sobre el

cual se construyen los sistemas. Estas plataformas no solo proporcionan un API que facilita

la implementación de los sistemas, sino un conjunto de servicios que liberan a los

desarrolladores de abordar algunas complejidades del cómputo ubicuo. Entre estas

plataformas está Gaia, la cual proporciona un marco de clases que facilita la construcción

de ambientes de cómputo ubicuo y un conjunto de servicios que coordinan las entidades de

software y los dispositivos heterogéneos contenidos en el ambiente, facilitan el manejo de

eventos o detección de cambios que ocurren en el ambiente, y permiten a las aplicaciones

registrar y consultar información de contexto [Román et al., 2002; Ranganathan y

Campbell, 2003]. One.world es una arquitectura que permite el desarrollo de aplicaciones

de cómputo ubicuo adaptables. [Grimm, 2004]. Entre las facilidades que proporciona está

la composición espontánea del ambiente, el descubrimiento de servicios disponibles, y

compartir información entre dispositivos utilizando tuplas como medio de almacenamiento.

Sin embargo, el mecanismo de descubrimiento de servicios no permite la búsqueda

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxiii

especializada de servicios con características específicas. Finalmente, los componentes del

ambiente se comunican por eventos asíncronos, lo cual limita la cantidad de información

que puede comunicarse.

Las plataformas de desarrollo presentadas en esta sección proporcionan facilidades para

abordar algunas de las complejidades de implementar sistemas de cómputo ubicuo. Por

ejemplo, algunas plataformas proponen diferentes técnicas para manipular información de

contexto (p. ej. ontologías y lenguajes de marcado). Otros middlewares proponen utilizar

diferentes enfoques de programación, tal como programación por aspectos o reflexión para

permitir la adaptación de los dispositivos móviles a su entorno [Popovici et al., 2003; Capra

et al., 2003]. En esta tesis se explora el uso de agentes autónomos para implementar las

características deseables de los sistemas de cómputo ubicuo identificadas de un conjunto de

escenarios de uso.

3 Agentes autónomos

Un agente es definido como una entidad de software que funciona continuamente y

autónomamente en un ambiente en particular, comúnmente habitado por otros agentes y

procesos [Shoham, 1997]. Las características de continuidad y autonomía se derivan del

deseo de que un agente realice sus actividades de manera flexible e inteligente para

responder a los cambios del ambiente sin requerir la intervención humana. Idealmente, un

agente que funciona continuamente por largos periodos de tiempo debe ser capaz de

aprender de su experiencia en el ambiente. Finalmente, un agente que habita en un

ambiente con otros agentes y procesos debe poder comunicarse y cooperar con ellos

[Bradshaw, 1997]. Los agentes de software tienen una o mas de los siguientes atributos:

autonomía (para actuar por su cuenta), re-actividad (para responder a los cambios en el

ambiente), pro-actividad (para alcanzar sus objetivos); colaboración (con otros agentes),

adaptación (para acoplarse al ambiente aprendiendo de su experiencia) y movilidad (para

migrar a otros entornos de ejecución) [Bradshaw, 1997; Wooldridge y Jennings, 1995].

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxiv

4 Metodología

Para explorar el uso de agentes autónomos para diseñar sistemas de cómputo ubicuo y

proporcionar un middleware que facilite su implementación, se siguió una metodología que

consistió en las etapas ilustradas en la Figura 1. En la primera etapa se seleccionaron los

escenarios de uso, los cuales fueron resultado de estudios de campo realizados en el

dominio de trabajo de los usuarios. En este caso se seleccionó los hospitales para estudiar

como la tecnología de cómputo ubicuo mejora las actividades médicas que involucran

coordinación, administración de información, acceso oportuno a información y servicios

para permitir una apropiada toma de decisiones. Durante la segunda etapa se identificó

como los agentes autónomos pueden ser usados para diseñar sistemas de cómputo ubicuo y

se identificaron las características de diseño de estos agentes. En la tercera etapa se

obtuvieron los requerimientos para crear un middleware que permitiera crear agentes con

tales características.

Figura 1. Metodología para crear el middleware SALSA

Finalmente, se evaluó el middleware SALSA y el uso de agentes autónomos para

diseñar sistemas de cómputo ubicuo se identificaron los siguientes criterios de evaluación.

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxv

• Utilidad. Este criterio determina si otros pueden construir aplicaciones de cómputo

ubicuo reales utilizando una plataforma de desarrollo.

• Completo. Este criterio determina si la plataforma es suficientemente poderosa y

extensible para implementar aplicaciones interesantes.

• Facilidad de uso. El middleware es evaluado en cuanto a su facilidad de aprenderlo y

de uso.

De estos criterios se obtuvieron las hipótesis que permitieron determinar la flexibilidad

de los agentes SALSA para implementar y extender la funcionalidad de sistemas de

cómputo ubicuo, lo cual se describe en la sección 7.

5 Agentes autónomos para diseñar sistemas de cómputo ubicuo

para hospitales

Los siguientes son algunos de los escenarios que se seleccionaron para ilustrar como

tecnología de cómputo ubicuo puede mejorar y apoyar las actividades médicas de los

hospitales.

5.1 Prácticas médicas concientes del contexto de usuarios móviles

Mediante estudios de campo realizados en el Instituto Mexicano del Seguro Social en

Ensenada, B.C., se entendieron algunas de las prácticas médicas, y en base a este

entendimiento se propuso como tecnología de cómputo ubicuo conciente del contexto

apoya las actividades del personal del hospital. De este estudio surgieron ideas de diseño de

un sistema consciente del contexto para hospitales. El siguiente escenario ilustra la

funcionalidad de este sistema.

Escenario 1: Acceso conciente del contexto a información médica.

Mientras el Dr. Díaz revisa el estado de un paciente (en la cama 1 del cuarto 222), se

da cuenta que es necesario solicitar una prueba de laboratorio para el paciente. Utilizando

su PDA, el doctor añade esta solicitud al registro clínico del paciente en el Sistema de

Información del Hospital (HIS por sus siglas en inglés: Hospital’s Information System). El

químico (responsable de tomar las muestras para el análisis) visita el área de medicina

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxvi

interna cada mañana, entonces su PDA le informa que en la habitación 222 existen tres

pacientes que requieren un análisis médico. Cuando el químico está enfrente del paciente,

el PDA le muestra el tipo de análisis a realizar. El químico procede a tomar la muestra

para el análisis y al final de su ronda la lleva al laboratorio para ser analizada. Los

resultados del análisis son agregados al registro clínico del paciente. Cuando el doctor

está por terminar su turno de trabajo, y mientras camina por el corredor, su PDA lo alerta

que los resultados del paciente de la cama 1 de la habitación 222 están disponibles. El Dr.

Díaz regresa al cuarto del paciente, y cuando se detiene cerca de su cama, los resultados

del análisis son mostrados en el PDA. El doctor reevalúa al paciente y basándose en los

resultados, decide preparar al paciente para intervenirlo quirúrgicamente.

Escenario 2: Acceso a información médica a través de pantallas públicas

Mientras el Dr. García revisa al paciente de la cama 234, su PDA le alerta que tiene

un mensaje nuevo. Para mostrarle este mensaje, el PDA presenta un mapa del piso del

área de medicina interna indicando que los resultados de rayos X del paciente en la cama

225 están disponibles. Antes de visitar al paciente, el Dr. García se acerca a la pantalla

pública mas cercana, la cual detecta su presencia y le presenta una vista personalizada del

Sistema de Información del Hospital (HIS). En particular, le muestra el mapa del piso

personalizado, ya que resalta los cambios recientes en los registros clínicos de sus

pacientes, los mensajes recibidos y los servicios más relevantes para sus actividades

actuales. El Dr. Garcia selecciona el mensaje relacionado a la cama 225, lo que abre una

ventana mostrando el registro médico del paciente, la imagen de rayos X recientemente

tomada y la guía médica del hospital relacionada con este caso clínico. Mientras el Dr.

García analiza la imagen de rayos X, nota en el mapa que un médico residente está cerca y

lo llama para mostrarle este caso clínico interesante. El médico residente se da cuenta que

es un caso especial, y decide transferir la referencia del caso a su PDA para estudiarlo

posteriormente o discutirlo con otros colegas desde cualquier computadora dentro del

hospital.

Los componentes principales de los escenarios seleccionados fueron identificados como

agentes que tienen capacidades para tomar sus propias decisiones acerca de que actividades

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxvii

hacer, cuando hacerlas, que tipo de información debe ser comunicada y a quien, y como

asimilar la información recibida, por ejemplo, la personalizan y adaptan de acuerdo a la

localización e identidad de los usuarios.

5.2 Diseño de las características de los agentes autónomos

Los escenarios anteriores fueron utilizados para identificar las siguientes características

de diseño de los agentes autónomos en cuanto a su funcionalidad en ambientes de cómputo

ubicuo:

• Los agentes autónomos son capaces de tomar decisiones en base al contexto de los

usuarios.

• Los agentes autónomos para ser reactivos a información de contexto necesitan

mecanismos para percibir, reconocer y diseminar diferentes tipos de información de

contexto, tal como localización e identidad de los usuarios, estado de dispositivos, etc.

• Los agentes autónomos pueden ser utilizados para representar usuarios, actuar como

proxies a recursos de información (p. ej. el HIS), dispositivos o servicios (tal como la

pantalla publica), o implementar una funcionalidad compleja que debe ser transparente

a los usuarios (p. ej. estimar la localización del usuario).

• Los agentes autónomos necesitan una plataforma de comunicación que les permita

comunicarse con otros agentes o directamente con los usuarios y servicios.

• Los agentes deben estar concientes de la presencia de otros agentes y usuarios

disponibles en el ambiente para ofrecerle servicios cuando lo requieran.

• Los agentes necesitan mecanismos para autentificar a los usuarios o a otros agentes que

requieren acceder a sus servicios.

• Los agentes requieren comunicar diferentes tipos de mensajes, tal como, mensajes para

solicitar información, notificaciones a usuarios, o solicitudes para ejecutar una acción o

servicio.

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxviii

• Para que los agentes decidan como actuar necesitan un algoritmo de razonamiento que

puede ser tan simple como un conjunto de reglas o condiciones o un algoritmo más

complejo como una red neuronal.

Una vez que se exploró el uso de agentes autónomos para diseñar sistemas de cómputo

ubicuo ilustrados a través de escenarios de uso, el siguiente paso consistió en diseñar e

implementar un middleware que facilite el desarrollo de ambientes de cómputo ubicuo

mediante agentes autónomos. La siguiente sección explica este middleware llamado

SALSA (por sus siglas en inglés: Simple Agent Library for Smart Ambients).

6 Diseño e implementación del middleware SALSA

6.1 Arquitectura de SALSA

Tal como se ilustra en la Figura 2, el middleware SALSA consiste de los siguientes

elementos:

Figura 2. Arquitectura de SALSA

• Plataforma de comunicación. Un Broker de Agentes es el canal de comunicación entre

agentes y usuarios. La implementación del Broker es un servidor de mensajeria

instantánea basado en el protocolo Jabber (www.jabber.org), el cual fue extendido para

Plataforma de Communicación

Proxy al Broker

Percepción

Acción

Razonamiento

Eventos

Communicaión Movilidad

Inicializar

y

Registrar
Directorio

de Agentes

Librería de clases (API) Servicios

Derivar Contexto

Broker de Agentes

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxix

crear el protocolo de comunicación de SALSA. Este protocolo consiste de un lenguaje

que permite a los agentes intercambiar diferentes tipos de objetos entre agentes, (tal

como información de contexto, solicitudes de servicio) entre agentes y usuarios (tal

como eventos generados por las acciones de los usuarios) y entre agentes y servicios

(p.ej. estado de los servicios). Esta información es enviada o recibida por el agente a

través de un proxy al Broker, el cual es parte del agente. El proxy al Broker y el

conjunto de mensajes que pueden comunicarse entre los agentes son creados mediante

la librería de clases de SALSA (API).

• API de SALSA. El elemento principal de SALSA es un conjunto de clases (API) que

facilita la implementación de los componentes de los agentes. SALSA proporciona una

implementación del Proxy al Broker, el cual es un cliente de mensajeria instantánea. A

través de este Proxy, el componente de percepción recibe información y genera eventos

para comunicar esta información al componente de razonamiento para que sea

analizada (p. ej. derivando contexto) o procesada (mediante algún algoritmo de

razonamiento) y decida que acción ejecutar. Este componente puede se fácilmente

modificado por el programador para implementar o modificar el algoritmo de

razonamiento que implemente la funcionalidad deseada del agente. Este razonamiento

puede consistir de un simple conjunto de reglas o de un algoritmo más complejo, tal

como una red neuronal. Como parte de las acciones, el agente puede requerir

comunicarse con otros agentes o usuarios, o actualizar su componente de razonamiento

adquiriendo el código del algoritmo de razonamiento de otro agente residiendo en un

servidor. Finalmente, el API proporciona un conjunto de clases que permiten al agente

registrarse en uno o más Directorios de Agentes y solicitar información de otros agentes

con los que requiera interactuar.

• Servicios. SALSA provee de un Directorio de Agentes para que los agentes registren

sus servicios y realicen búsquedas de otros agentes. Un agente puede buscar

información de otro agente con el cual requiera interactuar buscando por el servicio que

ofrece. La implementación del Directorio de Agentes consiste de un servidor LDAP

(Lightweight Directory Access Protocol y un agente actuando como proxy al Directorio

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxx

de Agentes (AD-proxy agent). Las solicitudes de información o de registro de agentes

son atendidas por el agente Proxy al Directorio de Agentes.

6.2 API de SALSA

La Figura 3 presenta el conjunto de clases de SALSA que facilitan la implementación

de la arquitectura interna de los agentes dada por sus componentes de percepción,

razonamiento y acción.

UserEvent

ArriveResponseEvent

ArriveNotificationInfoEvent

ArrivePresenceEvent ArriveRequestEvent

ArriveComponentEventArriveCommandEvent

ArriveCommandEvent

Event

ActingActivePerception

generate

PassivePerception
generate

Broker

Action

BrokerProxy
0..*0..*

send/receive

send

ArriveSensorDataEvent

ArriveSimpleMessageEvent

AgentDirectoryAgent

11

XMLPresence

PassiveEntityToPerceive

XMLMessage

SensorData

ActiveEntityToPerceive

SecondaryContext
Reasoning

derive

perceives

perceives

Figura 3. Librería de clases de SALSA

6.2.1 Componente de percepción

Dos tipos de percepción se identificaron para los agentes SALSA: activa y pasiva. En

percepción activa un agente decide cuando solicitar información de otro agente o entidad

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxxi

del ambiente, tal como un sensor. En percepción pasiva, el agente está en un modo

observador, y recibe información sin solicitarla.

 Para implementar la percepción pasiva, el programador especifica mediante la clase

PassiveEntityToPerceive la entidad (un agente o dispositivo) que el agente requiere

observar. A través de esta clase, esta entidad enviará información al componente de

percepción del Agente implementado como un objeto de la clase PassivePerception, el

cual se crea automáticamente cuando se inicializa al agente. El objeto

PassivePerception genera un evento para indicarle al componente de razonamiento el

tipo de información recibida. Cuando el agente requiere comunicarse con otros agentes a

través del Broker de Agentes, el Proxy al Broker requiere implementar la clase

PassiveEntityToPerceive para poder comunicar información.

Similarmente, en la percepción activa el programador requiere implementar un objeto

de la clase ActiveEntityToPerceive que representa la entidad (dispositivo o agente)

que enviará información disponible al componente de percepción del agente

(ActivePerception).

6.2.2 Componente de razonamiento

La clase Reasoning contiene el método abstracto think que debe ser especializado

por el desarrollador de acuerdo con la lógica del agente. El componente de razonamiento

utiliza las facilidades de SALSA para derivar información de contexto a partir de contexto

primario percibido por el agente. Para esto, SALSA proporciona la clase DeriveContext

que permite derivar contexto solo a partir de un conjunto de reglas especificadas por el

programador en un filtro XSL eXtensible Style Language (XSL). El contexto derivado es

especificado como un mensaje XML.

6.2.3 Componente de acción

Las clase abstracta Action permite al desarrollador especificar las acciones que el

agente ejecutará. A través del componente de acción los agentes pueden comunicase con

otros agentes o usuarios. Los métodos de comunicación de SALSA se presentan en la Tabla

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxxii

1, los cuales generan mensajes XML (eXtensible Markup Language) que especifican el tipo

y la información a comunicar mediante etiquetas definidas por el programador.

Tabla 1. Métodos de comunicación de SALSA

Métodos Mensajes de SALSA en formato XML
sendCommandRequest() <message to=’agentA@server_jabber’

 from=’agentB@server_jabber’>
 <x xmlns=’x:command’>
 <params><type>TypeOfCommand </type>
 // TAGS DEFINE BY THE DEVELOPER
 </params>
 </x> </message>

sendResquest() <message to=’agentA@server_jabber’
 from=’agentB@server_jabber’>
 <x xmlns=’x:request’>
 <params><type>TypeOfRequest </type>
 // TAGS DEFINE BY THE DEVELOPER
 </params>
 </x> </message>

sendResponse() <message to=’agentA@server_jabber’
 from=’agentB@server_jabber’>
 <x xmlns=’x:response’>
 <params><type>TypeOfResponse </type>
 // TAGS DEFINE BY THE DEVELOPER
 </params>
 </x></message>

sendNotificationInfo() <message to=’agentA@server_jabber’
 from=’agentB@server_jabber’>
 <x xmlns=’x:notificationInfo’>
 <params><type>TypeOfNotification </type>
 // TAGS DEFINE BY THE DEVELOPER
 </params>
 </x> </message>

sendDataSensor() <message to=’agentA@server_jabber’
 from=’agentB@server_jabber’>
 <x xmlns=’x:dataFromSensor’>
 <params><type>TypeOfData </type>
 //SENSED DATA
 </params>
 </x> </message>

7 Implementando un sistema de cómputo ubicuo con SALSA

Para ilustrar la flexibilidad de SALSA para desarrollar un sistema de cómputo ubicuo,

esta sección explica la implementación de uno de los agentes autónomos del sistema

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxxiii

conciente de contexto para hospitales descrito en la sección 5. Este agente reside en el PDA

y tiene como objetivo estimar la localización del usuario móvil.

7.1 Estimando la localización del usuario

Para estimar la localización de los usuarios móviles se han utilizado técnicas que toman

ventajan de la escalabilidad, y bajos costo de mantenimiento e instalación que ofrecen las

redes locales inalámbricas (WLAN, Wireless Local Area Network). Estos métodos miden la

fuerza de la señal de radio-frecuencia (RF, Radio Frequency) entre el dispositivo móvil y

varios puntos de acceso a la red. [Bahl y Padmanabhan, 2000].

Para estimar la localización de los usuarios del sistema descrito en los escenarios de la

sección 5, se propuso un agente autónomo residiendo en el PDA cuyo algoritmo de

razonamiento es una red neuronal, que una vez entrenada, fue utilizada para clasificar los

patrones percibidos de la señal de RF en coordenadas X,Y que indicaban la posición

aproximada del usuario. Mas detalles de este trabajo se describe en [Rodriguez et al.,

2004].

Figura 4 ilustra el diagrama de clases del agente que estima la localización (LE-a) y un

diagrama de secuencia mostrando las interacciones de los componentes del agente. Cada

componente son instancias de las clases SALSA. El módulo de percepción del agente

recibe la fuerza de la señal (SNR- Signal to Nose Ratio) a través del objeto

PassiveEntityToPerceive, el cual representa la memoria de la tarjeta de red

inalámbrica del PDA. La información percibida se encapsula en un objeto Input para ser

notificada (notifying()) al componente de percepción, el cual genera un evento de tipo

StateChangeEvent para indicarle al componente de razonamiento que hay información

nueva para procesar. Así, el componente de razonamiento obtiene una estimación de la

localización del usuario e invoca al componente de acción (Acting) para informarle al

cliente conciente del contexto (location-aware client) las coordenadas X,Y del usuario.

Este cliente traduce las coordenadas a una etiqueta indicando la localización del usuario

dentro del ambiente físico (p.ej. cuarto 222).

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxxiv

Figura 4. Diagrama de clases y de secuencias del LE-a (location-estimation agent)

Figura 5a) muestra el pseudo-código del componente de la entidad que percibe

información de la tarjeta de red inalámbrica y que la notifica al componente de percepción

(pp.notifying(new Input(SNR))). Figura 5b) presenta la implementación del

componente de razonamiento del LE-a. La clase ReasoningLE especializa la clase

Reasoning. Su método think() fue sobre-escrito para implementar el algoritmo de

razonamiento y decidir como actuar. Por ejemplo, cuando el razonamiento recibe un

evento de tipo stateChangeEvent, se invoca al método estimatesLocation() el

cual implementa la red neuronal entrenada para que estime la nueva localización del

usuario. Mediante el componente de acción, implementado por el objeto

communicateNewLocation, se notifica al cliente al cliente conciente del contexto la

nueva posición del usuario.

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxxv

Figura 5. Pseudo-código del LE-a. a) Implementación de la entidad que lee las señales
SNR de la tarjeta de red inalámbrica. b) Implementación del componente de razonamiento

7.2 Sistema consciente del contexto para hospitales

El sistema consciente del contexto para hospitales (CHIS, Context-aware hospital

information system) es un sistema que permite al personal médico localizar documentos

relevantes para sus actividades, tal como registros clínicos de los pacientes y resultados de

laboratorio; localizar pacientes y colegas; y localizar y conocer la disponibilidad de los

dispositivos disponibles en el ambiente, tal como equipo médico u otros recursos

computacionales como pantallas públicas de pared [Favela et al., 2004; Muñoz et al.,

2003b].

7.2.1 Architecture of CHIS

La Figura 6 presenta la arquitectura del sistema CHIS compuesta por los nodos

principales del sistema en donde se ejecutan los agentes quienes se comunican a través del

Broker.

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxxvi

PDA

Agent que estima
la localizacion

(LE-a)

Cliente consciente
Del contexto

WLAN

Servidor

LE-a

Servidor

HIS
Agente proxy

a HIS
(HIS-a)

Servidor

Agente consciente
del contexto

 (CA-a)

<<movilidad>>

Servidor

LDAP
Agente proxy al

Directorio de Agentes
(AD-a)

Broker de Agentes

Figura 6. Arquitectura del sistema consciente del contexto para hospitales

En el PDA de los usuarios reside el cliente consciente del contexto el cual notifica la

localización y presencia del usuario a otros usuarios y agentes; proporciona información

relevante a la localización del usuario, y permite que el usuario se comunique con otros

colegas. En el PDA también reside el agente que estima la localización del usuario (LE-a) y

la notifica al cliente consciente del contexto. El LE-a actualiza su componente de

razonamiento obteniendo de otro agente residiendo en un servidor, la red neuronal

entrenada para estimar la localización de usuarios en ese piso o área del hospital en

particular. HIS-a es el agente que actúa como proxy al sistema de información del hospital,

ya que administra y almacena la información médica de los pacientes. Este agente permite

el acceso a la información de los pacientes contenida en el sistema de información del

hospital y monitorea los cambios a esta información. Finalmente, el agente conciente del

contexto (Ca-a) es el componente del sistema que envía los mensajes que dependen de

variables contextuales para su envío, tal como localización del usuario e identidad.

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxxvii

7.2.2 Implementation of CHIS

La Figura 7 ilustra la funcionalidad del sistema de información consciente del contexto

y como los agentes interactúan utilizando el protocolo de comunicación de SALSA.

Figure 7. Interacciones de los agentes de CHIS para proporcionarle al médico acceso al
expediente electrónico del paciente

A continuación se describen las interacciones entre los agentes de CHIS para ofrecer la

funcionalidad descrita en el primer escenario de la sección 5.1. Cuando el Dr. Díaz está en

frente de uno de sus pacientes, el LE-a percibe (perceive(SNR)) el cambio de SNR

(señal de ruido) y estima la posición del usuario mediante la red neuronal implementada en

el metodo think(estima posición del usuario), y la comunica al cliente

consciente del contexto (sendDataSensor(posición X,Y)). El cliente traduce las

coordenadas X,Y a un identificador del lugar (p. ej. cuarto 222), actualiza su interfaz de

usuario para mostrar la localización del usuario (act(actualiza interfaz)) y la

Cliente consciente
del contexto

HIS-aDoctor

sendPresence (estado ,posición)

act(actualiza interface)

Broker

act(crear forma de
laboratorio)

act(solicita registro del
paciente)

sendRequest (forma de
laboratorio)

Registros
clínicos

act(obtener datos del
paciente)

sendResponse (forma de laboratorio)

sendNotificationInfo(forma para solicitar análisis)
act(almacena forma)

Llena forma de laboratorio

[si el doctor esta en frente
de la cama del paciente]

Solicita análisis de laboratorio

sendNotificationInfo(registro del paciente)

act(mostrar registro del paciente)

Visita al
paciente

act (personaliza información)

LE-a

perceive(SNR)
cambio en SNR

Puntos de
Acceso

think(estima posición del usuario)
sendDataSensor(posición X,Y)

Cliente consciente
del contexto

Cliente consciente
del contexto

HIS-aDoctor

sendPresence (estado ,posición)

act(actualiza interface)

Broker

act(crear forma de
laboratorio)

act(solicita registro del
paciente)

sendRequest (forma de
laboratorio)

Registros
clínicos

act(obtener datos del
paciente)

sendResponse (forma de laboratorio)

sendNotificationInfo(forma para solicitar análisis)
act(almacena forma)

Llena forma de laboratorio

[si el doctor esta en frente
de la cama del paciente]

Solicita análisis de laboratorio

sendNotificationInfo(registro del paciente)

act(mostrar registro del paciente)

Visita al
paciente

act (personaliza información)

LE-aLE-a

perceive(SNR)
cambio en SNR

Puntos de
Acceso

Puntos de
Acceso

think(estima posición del usuario)
sendDataSensor(posición X,Y)

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxxviii

comunica como parte de la presencia del usuario a los agentes y usuarios suscritos a ésta.

(sendPresence()). El HIS-a procede a verificar si las condiciones contextuales

concuerdan con el contexto percibido (p.ej. role y posición del usuario), y como el Dr. Díaz

está en frente de una de las camas de sus pacientes, el HIS-a recupera los registros médicos

del paciente (act(solicita registro del paciente)) y los envía al cliente

consciente del contexto (sendNotificationInfo()) para que sean analizados por el

médico. Después de consultar al paciente, Dr. Díaz decide solicitar un análisis de

laboratorio, para lo cual el cliente consciente del contexto se comunica con el HIS-a

(sendRequest(forma de laboratorio)). Este agente crea la forma de laboratorio la

cual incluye los datos generales del paciente (sendResponse(forma de

laboratorio)). El doctor llena la forma y la envía nuevamente al sistema de información

del hospital para ser almacenada (sendNotificationInfo(forma para solicitar

análisis)). Así, cuando el químico encargado de tomar las muestras de análisis ha

llegado al hospital para iniciar su ronda, el HIS-a detecte le notificará de los análisis

pendientes.

En la siguiente sección se presenta la discusión de los resultados de la evaluación del

mddleware SALSA.

8 Discusión

Para evaluar SALSA se identificaron que los aspectos relevantes de un middleware son

utilidad, qué tan completo es, y facilidad de uso [Klemmer et al., 2004] [Grimm, 2004].

Así, la evaluación de SALSA se enfocó en determinar como SALSA cumplía con estos

aspectos. Se aplicaron varios métodos de evaluación que incluyó evaluar los escenarios

identificados, utilizar el API de SALSA en un experimento de laboratorio y un ejercicio de

diseño de un sistema de cómputo ubicuo en donde participaron alumnos del curso de

Análisis y Diseño de Software del periodo Septiembre-Diciembre del 2004, y finalmente

un estudio comparativo entre el middleware SALSA y JADE el cual también permite

implementar agentes autónomos.

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xxxix

El criterio para determinar la utilidad de SALSA establecía que si éste permite crear

aplicaciones reales de cómputo ubicuo, entonces el middleware es útil. La evaluación de

los escenarios seleccionados de cómputo ubicuo, determinó que fueron percibidos como

fácil de utilizar por el personal del hospital, por lo que SALSA también fue considerado útil

para crear este tipo de sistemas [Favela et al., 2004; Muñoz et al., 2003a; Muñoz et al.,

2003b].

Para evaluar que tan completo es SALSA, se llevó a cabo un experimento donde se

determinó que SALSA es lo suficientemente flexible para permitir la implementación y

evolución de sistemas de cómputo ubicuo mediante agentes autónomos. Evidencia de lo

anterior se presenta en el documento extendido de la tesis y en la sección 7 de este

resumen.

Los resultados del ejercicio de programación y de diseño proporcionan evidencia de

que el modelo de ejecución de SALSA (percepción, razonamiento y acción) y las

facilidades para implementar agentes son comprensibles. Para algunos de los participantes

el uso de agentes autónomos como abstracción para desarrollar un sistema de cómputo

ubicuo no fue sencillo, ya que los participantes no entendieron varios de los conceptos

relacionados con agentes y las facilidades proporcionadas por SALSA, tal como el

protocolo de comunicación de agentes y el uso de XSL para derivar contexto.

Finalmente, para complementar la evaluación de SALSA, se realizo una comparación

con el middleware JADE-LEAP. Esta parte de la evaluación consistió en un ejercicio de

diseño de un mismo sistema utilizando ambos middlewares. Como resultado de la

evaluación se concluyó que el protocolo de comunicación de SALSA es más apropiado

para crear ambientes de cómputo ubicuo que el proporcionado por JADE-LEAP.

9 Conclusiones

Esta tesis ha presentado un middleware que facilita la creación de sistemas de cómputo

ubicuo mediante el uso de agentes autónomos. En estos sistemas los agentes autónomos se

utilizaron para implementar las características deseables de los sistemas y para mejorar la

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xl

interacción de los usuarios con el ambiente. Los agentes autónomos fueron identificados

como los componentes de software que representan usuarios, dispositivos y servicios.

Las contribuciones de esta tesis proporcionan evidencia de como los agentes autónomos

pueden ser utilizadas como una herramienta de abstracción para diseñar e implementar

sistemas de cómputo ubicuo y presenta un middleware que facilita la implementación de

estos agentes. Estas contribuciones se resumen a continuación.

• Se identificó un conjunto de escenarios de sistemas de cómputo ubicuo que reflejaban

las actividades reales del personal médico en hospitales.

• Se identificó los aspectos de diseño que los agentes autónomos deben cumplir para

permitir el desarrollo de sistemas de cómputo ubicuo.

• Alguno de los aspectos de diseño identificados para agentes autónomos, fueron

abordados mediante el diseño e implementación de un middleware de agentes que

facilita el desarrollo de sistemas de cómputo ubicuo.

• Uso del middleware propuesto en otros trabajos de investigación, a través de los cuales

se han identificado aspectos de SALSA que podrían mejorarse o abordarse como

trabajo futuro, tal como se explica a continuación.

Durante las diferentes etapas de esta tesis se identificaron varios aspectos de

funcionalidad de los agentes y de sistemas de cómputo ubicuo, algunos de los cuales no

fueron abordados por el middleware:

Soporte a las desconexiones de los usuarios móviles. Siendo este un aspecto relevante

que afecta la interacción natural e implícita que caracteriza a los ambientes de cómputo

ubicuo, es necesario identificar escenarios reales en los cuales las actividades de los

usuarios son afectadas, proponer como los agentes autónomos pueden abordar este

problema, y finalmente identificar los mecanismos a incorporar al middleware.

Autentificación de agentes. Los agentes deben ser capaces de identificar si el usuario o

agente que solicita sus servicios tiene privilegios de accederlos. Para integrar un

mecanismo de autentificación a SALSA, es necesario primero analizar la información a

tomar en cuenta para la autentificación, además de la identificación o rol de los usuarios.

Sinopsis en español

Tesis Doctoral de Marcela D. Rodríguez, CICESE

xli

Por ejemplo, en un hospital, los médicos modifican los registros de los pacientes para dar

un diagnóstico, pero las enfermeras solo pueden accederlos para leer las indicaciones de los

médicos. Considerando que en los ambientes de cómputo ubicuo las interacciones suceden

de forma natural e implícita, o requiriendo pocas interacciones, se debe explorar cuales

elementos de privacidad y seguridad de la información deben ser considerados para realizar

esta autentificación.

Proporcionar canales de comunicación alternos para los agentes. Se identificó que

el proveer de un Broker de Agentes como el de SALSA no resulta apropiado para algunas

interacciones entre agentes, como aquellas que requieren transferir grandes cantidades de

información. Se propone explorar si SALSA debe permitir que los agentes decidan que

canal de comunicación elegir de acuerdo al tipo de interacción requerida y al contexto de la

interacción del usuario.

Derivar información de contexto secundario. Proporcionar mecanismos para derivar

contexto secundario con SALSA, es un paso inicial para explorar otros mecanismos

complejos que permitan que los agentes infieran contexto.

Esta tesis exploró el uso de agentes autónomos para abordar algunas de las

complejidades abstraídas de escenarios de cómputo ubicuo. Estos escenarios fueron

utilizados como una herramienta para definir la funcionalidad de los agentes autónomos,

identificar como pueden apoyar y mejorar las actividades de los usuarios, e ilustrar como

pueden ser utilizados como abstracciones de diseño de los sistemas de cómputo ubicuo. Se

presentaron los requerimientos funcionales de los agentes autónomos para implementar

sistemas de cómputo ubicuo, y se presentó el diseñó e implementación del middleware

SALSA creado para facilitar la implementación y evolución de sistemas de cómputo

ubicuos mediante agentes autónomos. Y finalmente, se proporcionó evidencia de cómo

SALSA facilita la creación de sistemas de cómputo ubicuo.

Chapter 1

Introduction and motivation
The idea of ubiquitous computing, also known as pervasive computing, first arose from

contemplating the place of today's computer in actual activities of everyday life.

Anthropological studies of human daily activities teach us that people primarily work in a

world of shared situations in which the computer is too often the focus of attention, rather

than being a tool through which we work by disappearing from our awareness [Weiser,

1991, 1993]. The term ubiquitous computing was coined by Mark Weiser in 1988 to define

an environment in which computers are embedded in the objects we use everyday [Weiser,

1991].

The goal of ubiquitous computing is to enhance computer use by making many

computers available throughout the physical environment which are effectively invisible to

the user [Weiser, 1993]. This environment is furnished with computational resources of all

scales that provide information and services when and where desired, such as, digital

tablets, wall-sized electronic whiteboards, laptops, handhelds and personal digital assistants

(PDAs), some of which allow greater user mobility in pervasive environments.

Undoubtedly, the development and deployment of the necessary infrastructure to support

continuous mobile computation is arriving [Abowd and Mynatt, 2000]. However, ubicomp

promises more than just infrastructure, it suggests new paradigms of interaction and

collaboration between users and/or services, inspired by widespread context-aware access

to information and computational capabilities [Abowd and Mynatt, 2000], which have led

developers of ubicomp systems to cope with several challenges for creating these systems.

Such challenges have major implications for the software infrastructure that must facilitate

the progressive development of a ubicomp system.

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

2

1.1 Ubiquitous computing challenges

Building a ubicomp system requires developers to address several challenges in order to

cope with the complexities associated to the development of ubiquitous computing systems.

Among these complexities are the routine failures that happen due to unpredictable events,

for instance those related to disconnections of mobile users; heterogeneity in computing,

communication and sensing devices embedded in the physical environment which lead to

challenges related to the adaptation of information in more than one computing device as

required by the user. From this, new challenges for ubiquitous systems arise because

adaptation must often take place without human intervention to achieve what Weiser calls

calm computing [Weiser and Brown, 1996] since it should involve taking into account the

user’s context which is highly dynamic. Other challenges have surfaced in relation to the

gathering and inferring of context information. An additional complexity is the discovery

of service/devices which should be provided by the ubicomp infrastructure by requiring

minimal or no configuration at all from the user. Finally, issues regarding scalability are

implicit in the ubicomp paradigm that reinforce the desire to break the human away from

desktop-bound interaction thereby opening up opportunities for other users and new

devices to join the environment at any time, which implies scaling with respect to devices,

people, and time.

1.1.1 Providing a development platform: a major challenge

The ubicomp research community has emphasized the importance of facilitating the

development of ubicomp systems, providing support in order for applications to be easily

reused by other developers as well as integrated into larger applications, and that ubicomp

system should be implemented in an open and extensible manner to enable their reuse and

the system evolution [Banavar and Bernstein, 2002; Davies and Gellersen; 2002, Kindberg

and Fox, 2002]. Thus, providing such software support for building ubicomp systems is a

major challenge that has been addressed by other research projects. However, the existing

development architectures have not addressed how they facilitate the evolution of a

pervasive system. Instead they provide support for dealing with some of the complexities of

ubiquitous computing systems. Developers have adopted programming techniques already

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

3

used for developing complex distributed software systems and have also proposed new

development platforms, such as middlewares, toolkits and development frameworks, that

facilitate the building of ubicomp systems. For instance, some of the middlewares use non-

traditional programming approaches, such as aspect oriented programming or reflection, to

enable the adaptation of mobile computing devices in a ubicomp environment [Capra et al.,

2003, Popovici et al., 2003].

1.1.2 Selection of a programming approach for developing ubicomp systems

There are several programming approaches that may be used for developing a system.

This section presents a review of the most used approaches for developing complex

systems, and a discussion of what characteristics they offer for developing ubiquitous

computing systems in particular.

Object Oriented Programming (OOP), Component based software development

(CBSD), Agent Oriented Software Development (AOSD) and more recently, aspect-

oriented software development (AOSD) have been proposed to tackle problems

experienced during the software engineering process.

Object-oriented programming (OOP) is a technology that can fundamentally aid

software engineering, because the underlying object model provides a better fit with real

domain problems. Objects provide a high-level primitive notion of modularity for directly

modeling applications [Wegner, 1990]. In CBSD, a full-fledged software-system is

developed by assembling a set of pre-manufactured components which are the main

building blocks. Each component is a black-box entity, which can be deployed

independently and is able to deliver specific services through a public interface [Suvee et

al., 2003]. The aim of this paradigm is to improve the speed of development and the quality

of the produced software. Since the previous approaches were not sufficient to clearly

capture all the important design decisions the program must implement, a new

programming approach was proposed: Aspect Oriented Software Development (AOSD).

Contrary to the other approaches, aspects tend not to be units of the system’s functional

decomposition, but rather to be properties that affect the performance or semantics of the

components in systemic ways. Some aspects are so common that they can easily be thought

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

4

about without reference to any particular domain. One example is failure handling. Many

performance-related issues can be aspects, because performance optimizations often exploit

information about the execution context that components span [Suvee et al., 2003].

The granularity of these building blocks affects component reusability, productivity and

maintenance. In object-oriented programming, the basic building blocks are objects, which

are implemented as classes. The reuse of individual classes will not bring significant

productivity leaps because the granularity is small. Object-Oriented libraries enable

developers to compose an application from a set of classes from which objects may be

created. There are two levels of composition in OOP: declarative composition of classes

(by inheritance) and execution-time composition of objects. Objects are composed by

specifying module interconnections in a module interconnection formalism. Composition

of objects requires declarative composition of interfaces, specification of module

interconnections, and redrawing the boundary between public and private information

[Wegner, 1990]. The aim of CBSD is to find for each application the joints that allow

components to be designed for assembly into products with minimal “glue”, in which the

glue is a programming language. Thus, the properties of components, the notion of

composition, and the nature of glue are very different between OOP and the CBSD

approach. The reusable components in CBSD should have larger granularity than

traditional objects and packages [Wegner, 1990].

Some applications are inherently more decomposable than others, and there is no

guarantee that such joints will necessarily exist. [Wegner, 1990]. As mentioned at the

beginning of Section 1.1, ubiquitous computing (ubicomp) systems are characterized by the

heterogeneity and distribution of their entities or components (software and hardware) that

may need to interact for providing information and services whenever users need them.

Thus, these systems may have a large number of parts with many interactions. For dealing

with these systems’ characteristics, the OOP approach does not address the problem of

communication among heterogeneous components. An object’s message may request only

one operation, and that operation may only be requested via a message formatted in a very

exacting way [Odell, 2002]. Adding a new component to the ubicomp environment may

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

5

require the newly added object(s) to know a-priori the objects with which they can interact

and the exact format of their messages for invoking operations. Thus, the OOP is not a

flexible paradigm for implementing the spontaneous integration of new services or easily

adding an extra functionality to the ubicomp environment. Similarly, in the CBSD

approach, the components interact through their published interface which also has to be

known a-priori by the other systems’ components. Adding new system functionality or a

service to the ubicomp system may be easy from the point of view of implementation and

integration. However, changing the behavior of an existing component may require creating

a new component for replacing the old one, and if its communication interface has changed,

replacing other system’s components will also be required. Finally, since ubicomp

environments are highly dynamic (i.e. the context of the users) and unpredictable events

occur (i.e. disconnections, integration of new devices), identifying the system’s behavior or

functionality in order to encapsulate it in a component could not be feasible.

On the other hand, software agents have a more “opaque” notion of encapsulation

which means that agent behavior can be unpredictable. Agents are commonly designed to

determine their behavior based on individual goals and states, as well as the states of

ongoing conversations with other agents [Odell, 2002]. For this, agents need to be reactive

to external events, and autonomously initiate internal or external behavior at anytime (when

it receives a message o when it perceives information from the environment). These

characteristics of reactivity and autonomy are also desirable characteristics of the

components of a ubicomp system to achieve “calm computing”. The underlying agent

communication model is usually asynchronous. This means that there is no predefined flow

of control from one agent to another. Finally, agents are naturally interactive since they

communicate through a common and rich communication language, as humans do. This

enables agents to negotiate (for services, information, or for making a decision), coordinate

(for accessing a resource) or simply for transmitting information. This characteristic of

collaboration of agents can be used for enabling the transparent interaction of the ubicomp

system’s components required for providing opportunistic services to the user.

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

6

Thus, this thesis proposes using autonomous agents to deal with the complexities

abstracted from ubicomp application scenarios which can be related to the challenges

mentioned above. The following sections explain what an autonomous agent is and why

they are more appropriate for conceiving ubiquitous computing systems.

1.2 Autonomous agents

A software agent is a software entity that acts on behalf of someone to carry out a

particular task which has been delegated to it. To do this, an agent might be able to infer

users’ preferences and/or needs by taking into account the peculiarities of users and

situation. This definition is based on the notion of agenthood as an ascription made by

some person [Bradshaw, 1997] .

Other researchers provide a definition of a software agent based on a description of the

attributes that an agent may need to act on behalf of someone or something else. Under this

approach, each agent might possess a greater or lesser degree of attributes which have to be

consistent with the requirements of a particular problem. Some of these attributes are the

following: autonomy (to act on their own), re-activity (to respond to changes in the

environment), pro-activity (to reach goals), cooperation (with other agents to efficiently

and effectively solve tasks), adaptation (to learn from experience) and mobility (to migrate

to new places) [Bradshaw, 1997; Wooldridge and Jennings, 1995].

For some researchers, particularly those working in Artificial Intelligence (AI), the term

“agent” has a stronger meaning than the one presented above. By agent they mean a

computer system that in addition to the properties identified above, is conceptualized using

terms that are usually applied to humans. Thus, it is quite common in AI to characterize an

agent using mentalist notions, such as knowledge, beliefs, desires, intentions or obligations

[Wooldridge and Jennings, 1995].

As the aim of this thesis is to determine if autonomous agents are an appropriate

metaphor for designing and implementing ubiquitous computing systems, the following

section presents an analyses of the advantages of using autonomous agents from the

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

7

perspective of different areas involved in the building of ubicomp systems, such as

Software Engineering, Distributed Systems and Human-Computer Interaction.

1.3 Advantages of using software agents for building ubicomp systems

Software agents have been introduced in many fields of computer science. This makes

the term elusive, since some authors emphasize their distributed nature while others think

about agents from the perspective of being able to exhibit intelligent behavior. Being

ubicomp a multidisciplinary field, it can take advantage of the use of agents from these

different perspectives. We describe these perspectives of software agents and their

relevance to the design of ubiquitous computing systems.

1.3.1 Software Engineering and the Agent-oriented approach

From the software engineering perspective, an agent is seen as a computer system

situated in some environment and capable of flexible, autonomous action in that

environment in order to meet its design objectives [Wooldridge, 1997]. The role of

software engineering is to provide structures and techniques that make it easier to handle

complexity. One approach for doing this is to adopt an agent-oriented approach which

means decomposing a problem into multiple, autonomous software components that can act

and interact in flexible ways to achieve their objectives. Autonomous agents are software

components that offer greater flexibility and adaptability than traditional components [Griss

and Pour, 2001]. In the rest of this document, the term “components” will be used to refer

to the main building blocks that form part of a ubiquitous computing system.

1.3.2 Distributed systems and multi-agent systems

From the Distributed Systems stance, the technology of autonomous agents appears

appropriate for building systems in which data, control, expertise, or resources are

distributed; agents provide a natural metaphor for delivering system functionality

[Wooldridge and Jennings, 1999]. Agents and multi-agent systems have been used as a

metaphor to model complex distributed processes. While the area of multi-agent systems

addresses distributed tasks, distributed systems support distributed information and

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

8

processes. In short, multi-agent systems are often distributed systems, and distributed

systems are platforms to support multi-agent systems.

One characteristic of ubicomp systems is that they should provide services and

information whenever users need them. For this, implementing a ubicomp environment as a

multi-agent system hides the fact that devices, services and information are disseminated

all over the physical environment and makes it possible to create an environment with

autonomous components that provide largely invisible support for tasks performed by

users, for which the components may require to interact to achieve their objectives.

However, in a ubicomp environment it is impossible to a priori know about all potential

interactions that may occur at unpredictable times, for unpredictable reasons, between

unpredictable components. As agents are components with the ability to initiate and

respond to interactions in a flexible manner [Jennings, 2001], the agent oriented approach

can be the natural way to deal with unpredictable associations and interaction among

ubicomp systems’ components.

1.3.3 Agents in Human-Computer Interaction

Finally, autonomous agents have been used to change the way people interact with

computers which has been referred to as indirect management [Kay, 1990]. In this

approach, the agent is a personal assistant that gradually becomes more effective as it

learns about the user’s interests [Maes, 1994]. Thus, from the Human-Computer Interaction

(HCI) viewpoint, autonomous agents can be used to implement a complementary style of

interaction [Maes, 1994]. Agents can also radically change the style of human-computer

interaction and enhance collaboration in ubiquitous computing environments. The

metaphor used is that of a personal assistant who is collaborating with the user in the same

work environment. Autonomous agents can assist users in a variety of different ways: they

hide the complexity of difficult tasks, they perform tasks on the user’s behalf, they can train

or teach the user, they help different users collaborate, and they monitor events and

procedures. One of the major research directions for Human-Computer Interaction (HCI)

has been exploring the novel forms of interaction that can achieve Mark Weiser’s vision of

naturally integrating computer technology with our daily activities. In this sense,

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

9

autonomous agents can seamlessly assist users in their interactions with the ubicomp

environment. For this, autonomous agents can learn of the users’ interactions to infer their

preferences and continuously be aware of their contexts in order to be responsiveness to

their activities.

Many projects are under way to enable multi-agent systems on ubicomp environments,

especially on mobile devices with tight memory constraints, limited computing power, and

limited user interface peripherals. The section presents several projects that have integrated

agents in ubiquitous computing systems and the problems they have tackled.

1.4 Agents as an alternative to deal with the challenges of developing

ubicomp systems

There is a migration of technologies originally developed for PC’s to the realm of

handhelds and wireless networks, and agent technology is following this downsizing trend

[Caire et al., 2002]. Furthermore, agent technology is being considered of great help in the

development of pervasive computing environments [Campo, 2002]. Thus, several research

projects propose using multi-agent systems to cope with some of the challenges and

difficulties of building pervasive environments, especially those that include mobile

devices.

The rest of this section will present some of the projects that use an agent based

paradigm to build pervasive environments and that deal with some of the complexities

faced when building these environments.

Service/Device Discovery. Several projects, such as, Jini, Salutation, UPnP, SLP and

Bluetooth [Golden, 2002] have focused on proposing protocols and technologies for

discovering devices or services in ad-hoc networks. With service discovery technologies,

devices may automatically discover network services including their properties; and

services advertise their existence dynamically. Of the above projects, SLP [Bettstetter and

Renner, 2000] uses agents to advertise the location and characteristics of services, on

behalf of services; and agents to perform service discovery, on behalf of the client.

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

10

The PDP protocol uses a Service Discovery Agent to help other agents search for

services offered by other agents or other systems in the network [Campo, 2002]. In each

device of the environment resides a Service Discovery Agent, which uses the PDP protocol

to maintain the list of the services offered in the environment. The difference between this

project and the classical service discovery protocols previously mentioned is that it does

not use a centralized server that listens for broadcast or multicast announcements of

available services. Then, this solution adapts better to the case of spontaneous or ad-hoc

networks. In the above mentioned protocols, agents were used to allocate the main

functionality of a system that is inherently distributed. Thus, a ubicomp system using these

protocols may have several agents requesting services and others registering services

provided by the devices they represent.

Content adaptation based on context-awareness. To enhance the user’s interaction with

computational entities and other peers of a ubicomp environment, it is necessary to take

into account the context of the interaction. Improving the computer’s access to context

increases the richness of communication in human-computer interaction and makes it

possible to provide more useful computational services [Dey, 2001]. Context awareness

becomes a key feature for ensuring an appropriate response by the application to the user’s

requests. Several works have focused on using the context in which the interaction takes

place in order to adapt and personalize the presentation of information to the user, which is

one of the challenges explained above. These projects use a multi-agent paradigm, where

agents wrap functionality to obtain context information (such as, user’s profile, preferences,

activity, location and used device), which influence the way a service is accessed or service

results are presented to the user [Carolis and Pizzutilo, 2002; Laukkanen et al., 2002]. For

this, these projects use a multi-agent system approach, in which agents at different layers

need to coordinate their decisions to adapt information and services for the user.

Robustness. There are issues related to an application’s robustness and security that

have to be taken into account when trying to deploy ubicomp applications. Some of these

issues are the disconnection of mobile devices, dynamic IP-address assignment, and the

difficulties of pushing information to other wireless devices. Mobile user’s disconnection

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

11

limits the ubiquitous interaction with other entities (users, resources or services) of the

environment. Several projects consider that a disconnection is not a failure event; rather it

is a behavior that is natural to a mobile environment. Thus, these works provide methods

that support, in different ways, the disconnection of mobile users. For instance, the

CRUMPET project considers that agents are in charge of monitoring network connections

and buffering the messages when they occur, or advertising the user if he is moving away

from the coverage of the wireless network’s [Laukkanen et al., 2002]. Since mobile devices

are more vulnerable and fragile than stationary ones, the ANTARCTICA system uses agent

technology to manage and keep mobile user’s data in a secure and safe space (called

locker) in a network’s fixed node. In this approach, agents are autonomous, in the sense

that the data in the lockers are managed by agents working on behalf of the users,

representing them in the network even while the users are actually disconnected [Villate et

al., 2002].

As stated above, agents have been used as a technological alternative to deal with some

of the challenges in implementing ubicomp environments. Some of the above projects

identified as autonomous agents the software elements that “act on behalf of” users or

services. While others use the paradigm of agents to speed-up concurrent processing, and

provide more reliability because of the lack of a single point of failure and improve the

responsiveness of the system. However, they do not use autonomous agents as an

abstraction tool for the design and construction of these systems.

1.5 Autonomous agents for developing Ambient Intelligence systems

Ubiquitous computing (ubicomp) environments are spaces where computational

artifacts are invisible, become present whenever we need them, are adaptive to mobile

users, can be enabled by simple and effortless interactions, and act autonomously to

support users’ activities and goals. Because of these features, ubicomp environments have

also been referred to as smart spaces or Ambient Intelligence (AmI) environments.

The development of ambient intelligence systems demands an interdisciplinary

approach, borrowing methods and techniques from several computing fields: 1) Ubiquitous

Computing: which refers to a physical environment furnished with computational

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

12

communication devices of all scales naturally integrated into human activity. 2) Context-

aware Computing: to empower the system with technology that enables it to be responsive

to users’ activities and needs. 3) Human-Computer Interaction (HCI): to provide specific

interfaces that are responsive to users needs in an unobtrusive and often invisible way, and

finally, 4) Artificial Intelligence (AI): AmI systems need intelligent capabilities to be

adaptive to users, reactive to context, and learn from user’s behavior in order to provide

high quality services based on their preferences. To provide these intelligent capabilities to

ubicomp environments, we may use Artificial Intelligence (AI) techniques such as learning

algorithms, pattern matchers and agent technology.

Ubicomp or AmI environments possess the characteristics of distribution, reactivity,

collaboration and adaptation of their artifacts, thus sharing several characteristics with

agents. These agents have autonomy in order to make their own decisions about what

activities to perform, when to do them, what type of information should be communicated

and to whom, and how to assimilate the received information. This provided motivation for

this thesis to explore the use of autonomous agents as an abstraction tool for the design and

implementation of ubiquitous computing systems. From this motivation, the following

thesis objective was stated.

1.6 Research Objective

Design and develop a middleware to allow developers to manage some of the

complexities associated with the development of ubicomp systems by means of the use of

autonomous agents.

1.7 Research questions

Several research questions were the foundation of this thesis. The first and most

important is related with the objective of the thesis: Are autonomous agents appropriate

constructs for developers to deal with the challenges associated to the development of

ambient intelligence environments? In answering this question, other issues came up:

The main actors of a ubicomp environment are mobile users that may need to be

assisted opportunistically by the environment. Thus, the ubicomp infrastructure should

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

13

provide an environment to enable mobile users to collaborate with other users, and access

information and available services relevant for their activities whenever they need them.

From this, other issues were: How can autonomous agents enhance the activities of mobile

users in a ubicomp environment? How can agent technology solve some of the problems

associated with the opportunistic and spontaneous interactions of mobile users? How can

autonomous agents enable users to opportunistically access the services available in the

environment? What are the ubicomp systems’ features that can be addressed by using

autonomous agents? And, what are the challenges faced by developers when implementing

these systems’ features?

To address the above questions it was necessary to identify settings in which the nature

of the involved work is highly mobile such that information and services may need to be

accessed from different users and locations and through different devices. This led to, as

explained in the following section, the first part of this thesis in which the goal was to

identify a setting where these characteristics were present and envision ubicomp scenarios

such that ubiquitous computing technology combined with autonomous agents enhances

the users’ activities. This in turn led to the following research questions: What are the

ubicomp scenarios in which these characteristics are evident and relevant to the activities

of users? Of the selected scenarios, what is the functionality that can be supported by

autonomous agents?

Once the way in which autonomous agents support users’ activities in ubicomp settings

was identified, it was necessary to answer the following questions: What characteristics

must an agent have in order to act autonomously on behalf of the user, and to represent

services available in a ubicomp environment?

Answering these questions permitted the identification of the requirements of an agent

middleware for implementing ubicomp systems which in turn raised the following

questions: What are the minimum services that must be supported by a development

framework in order to implement these kinds of ubicomp systems? What are the

appropriate protocols of interaction and communication for these agents? Will this

development framework allow programmers to design and build ubiquitous computing

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

14

systems with little difficulty? And finally, what is the development process that a

programmer must follow in order to build these kinds of systems?

1.8 Methodology

To achieve the thesis objective, a methodology was followed to aid in identifying

design scenarios that illustrate how ubiquitous computing technology enhances users’

activities, and to explore the design of these systems by means of autonomous agents. From

these system designs, the requirements for a middleware that facilitated the implementation

of autonomous agents for ubiquitous computing systems were abstracted, and from them,

an agent middleware was developed. The proposed methodology consisted of several

iterative phases as illustrated in Figure 1. The first phase consisted of selecting scenarios

that were then analyzed to identify how autonomous agents can be used for designing

ubicomp systems. In the next phase the requirements of a middleware to support the

development these ubicomp systems were identified. Based on these requirements the

SALSA middleware was designed and implemented. Finally, the use of SALSA agents for

designing and implementing ubicomp systems was evaluated.

Figure 1. Methodology followed to create and evaluate the agent middleware for ubicomp
systems

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

15

1.8.1 Scenario generation

Scenario building is a powerful mechanism to generate design ideas for new systems

and to identify the possible uses and contexts of use of products by predicting how people

could act in a particular situation. That is why it is well suited for the design of new product

concepts and for the design of consumer products in the early phase of the development

cycle, where the context of use is not well-defined [Carrol, 1995]. One benefit of scenarios

is that they treat technology quite flexibly: they can either be described in detail or the

focus can be more on the context of use. Under this approach typical and significant

activities are explicitly envisioned and documented early and continuously in the

development process of a system. The value of scenarios is that they make ideas more

concrete for the purpose of analysis and communication. The concreteness enables

designers and users to deal with complicated and rich situations and behaviors in

meaningful terms, and to better understand the implications of particular design solutions

for performing realistic tasks [Carrol, 1995].

This stage consisted of identifying scenarios with the purpose of discovering how

ubiquitous computing systems can support the activities of users in their working

environment. As a result of this stage, the scenarios were described in textual or graphic

form. The scenarios briefly sketched user’s activities without committing to details of

precisely how the tasks are carried out or how the system enables the functionality for those

tasks [Carrol, 2000].

1.8.2 Analysis of scenarios and applications

The selected scenarios were analyzed with the purpose of discovering how autonomous

agents can enhance the activities of users. Then, the scenarios were transcribed in order to

express the situations in which it is relevant for an autonomous agent to act on behalf of a

user and/or allow the opportunistic interaction with a device or a service. The scenarios

were constructed in terms of hardware and software components that could implement the

envisioned functionality in order to provide a system view. Thus, representing the use of a

system or application with a set of interaction scenarios makes their use explicit and

meaningful to people using the system to achieve real goals [Carrol, 2000]. Thus, during

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

16

this stage it was possible to explore the way in which autonomous agents can be used to

design AmI systems, in addition to how they allow developers to integrate new

functionality into a system. Finally, this analysis phase enabled us to abstract the

requirements for the middleware from a desired set of scenarios.

1.8.3 Design and implementation of an agent middleware for ubicomp systems

From these application scenarios, the initial requirements related to the behavior of the

agents and their communication protocol were identified. To support these requirements the

following core features of the agent-based ubicomp middleware were designed and

implemented:

• The agents’ components for perceiving, reasoning and acting.

• The agents’ life cycle which was defined based on the agents components and the

agents behavior identified from the scenarios.

• The communication platform, which should enable the collaboration among agents,

users and services/devices.

• A library of abstract classes that provides the methods to create the components of

autonomous agents and control their life cycle.

• A service that enables agents to register and search information regarding available

agents with whom they need to interact in order to achieve their goals.

• Finally, it was possible to identify the attributes that an agent living in a ubiquitous

computing environment must have in order to support the functionality sketched in the

scenarios.

1.8.4 Evaluation

 The aim of this evaluation phase was to assess whether the thesis objective was

reached. In order to do this, the following properties were identified as being relevant and

desirable for evaluating in a middleware:

• Utility. This criterion determines whether others can build real pervasive applications

atop the infrastructure.

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

17

• Completeness. This criterion determines whether the architecture is sufficiently

powerful and extensible to support interesting user-space programs.

• Ease of use. Development frameworks should be evaluated on how readable programs

using the programming language are by other programmers, how learnable it is, how

convenient it is for expressing certain algorithms, and how comprehensible it is to

novice users.

These desirable features were used to state the hypothesis that permitted an evaluation

of how flexible SALSA agents are in enabling the progressive development of ubicomp

systems.

1.9 Thesis contributions

The following are the main contributions of the thesis:

• A set of realistic scenarios of ubiquitous computing systems. A set of selected scenarios

that represent real users’ activities in a hospital setting. They illustrate how users’

activities are enhanced by using ubiquitous computing and agent technologies.

• An analysis of the complexities that can be addressed by using autonomous agents.

During the thesis, the complexities associated to the development of ubicomp that can

be addressed thru the use of autonomous agents were identified, and this was illustrated

by the scenarios of use of ubicomp systems, and their design and implementation.

• The design issues regarding autonomous agents for developing ubiquitous computing

systems. These design issues describe the characteristics that autonomous agents must

have in order to provide the functionality needed by ubiquitous computing systems.

They were the foundation from which the requirements of a middleware for

implementing ubicomp systems were identified.

• An agent middleware, named SALSA, for developing ubiquitous computing systems.

This middleware had the goal of facilitating the building and evolution of ubicomp

systems by means of autonomous agents. SALSA provides an appropriate agent

communication language for enabling agents to convey information in a ubicomp

system; and defines an agent life cycle with different states through which agents

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

18

perceive information and decide how to act. The usefulness of SALSA was illustrated

by describing how ubiquitous computing systems are developed with this middleware,

and the facilities provided by SALSA for creating autonomous agents was evaluated by

a group of developers.

• Use of SALSA as a research test-bed. SALSA was used for building ubiquitous

computing systems in which autonomous agents were used as its main abstraction. The

creation of other applications enables the identification of the strengths and weaknesses

of SALSA agents.

1.10 Thesis outline

CHAPTER 2 (Background and related work) introduces the field of ubiquitous

computing, and then explains the complexities that developers have to address when

implementing ubicomp systems. Then, this chapter briefly introduces agent theory and

explains why agents are attractive for facilitating the development of ubiquitous computing

systems. Finally, it presents an analysis of the facilities provided by existing development

platforms for ubiquitous computing from which it is concluded that these approaches do

not address the progressive evolution of ubiquitous computing systems.

CHAPTER 3 (Scenarios envisioned for the healthcare) explains why the healthcare

domain was choose for analyzing the activities of users and propose a ubicomp system to

enhance them. It presents related research in which agents were used to cope with some of

the complexities of ubiquitous computing systems development. And finally, it presents the

scenarios envisioned from observing users in a healthcare domain. These scenarios were

analyzed to find design issues which were addressed by using autonomous agents. Thus,

this chapter illustrates how autonomous agents can be used as design abstractions for

ubiquitous computing systems.

CHAPTER 4 (The SALSA development framework) presents the functional

requirements of the SALSA agent middleware which were identified from the scenarios

described in CHAPTER 3. Then, it presents the design of the architecture of SALSA and

Chapter 1- Introduction and motivation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

19

finally, the API and services provided by SALSA to facilitate the development of ubicomp

systems.

CHAPTER 5 (Creation and evolution of ubicomp systems with SALSA) illustrates the

implementation of an autonomous agent and its integration into a ubicomp system, which

demonstrates how SALSA can easily enable the integration of a new functionality into a

pervasive system.

CHAPTER 6 (Evaluation) describes the experiments carried out for evaluating a set of

features of the middleware, and also presents the results of such experiments.

CHAPTER 7 (Conclusions) presents the conclusions and reflections of this work and

new research questions rose by this work.

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

20

Chapter 2

Background and related work
Beyond the era of personal computing, the era of ubiquitous computing begins with the

vision of decentralizing computing power: The computer is omnipresent becoming a part of

everyday life and an inevitable component when performing a variety of private and

business related tasks [Hansmann et al., 2001]. Devices of many forms and sizes enable

users to exchange and retrieve information they need quickly, efficiently, and effortlessly

from everywhere at any time [Hansmann et al., 2001]. This was the vision of Mark Weiser

in 1991 which led to diverse unresolved issues that must be addressed before ubiquitous

computing truly reaches its goal of improving our everyday lives. For coping with some of

these unresolved issues or challenges faced in creating ubicomp environments, several

research works have proposed development platforms, such as frameworks, toolkits or

middlewares to facilitate the implementation of ubicomp systems. Before presenting some

of these development platforms, this section first introduces the ubiquitous computing area,

then it exposes the challenges for implementing ubicomp environments and finally, it

presents the software systems that facilitate the development of these environments by

providing mechanisms that address some of the ubicomp challenges.

2.1 Ubiquitous computing

Ubiquitous computing involves a new way of thinking about computers, one that takes

into account the human world and allows computers themselves to vanish into the

background. The vision of a future ubiquitous computing landscape is dominated by the

pervasiveness of a vast manifold of heterogeneous computing devices, the autonomy of

their programmed behavior, the dynamicity and context-awareness of services and

applications they offer, the ad-hoc interoperability of services and the different modes of

user interaction upon those services [Fersha, 2002]. Today a variety of terms –like

Ubiquitous Computing (ubicomp), Pervasive Computing, Calm Computing, Invisible

Computing, Ambient Intelligence (AmI), Sentient Computing and Post-PC Computing –

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

21

refer to new paradigms for interaction among users and mobile and embedded computing

devices [Banavar, 2000]. Thus, ubiquitous computing is the attempt to modify the

traditional human-computer interaction paradigm not only by distributing computers, of all

scales, into the environment surrounding users, but by augmenting work practices,

knowledge sharing, and communication of users. For this, computers should be able to use

implicit situational information, or context, to provide useful services and relevant

information whenever users need them [Dey, 2001]. Context-aware computing refers to an

application’s ability to adapt to changing circumstances and respond based on the context

of use. A system is context-aware if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user’s task [Dey, 2001]. Dey defined

context as “any information that can be used to characterize the situation of an entity,

which can be a person, place, or object that is considered relevant between a user and the

application, including the user and application themselves”[Dey, 2001]. Among the main

types of contextual information considered relevant are identity, time, activity, and location

which are known as primary context [Dey, 2001; Schilit and Theimer, 1994]. This

information answers the questions of who, when, what, and where, which can be used to

identify whether a specific piece of information is relevant to establish context. Thus, the

environment should be aware of the user’s context to provide information and services

whenever users need them, in a proactive fashion and anticipating user’s needs.

Furthermore, the services provided by the environment have to be accessible to diverse and

non-specialist users through simple and effortless interactions. For this, human computer

interaction promises to support more sophisticated and natural input and output, to enable

users to perform potentially complex tasks more quickly, with greater accuracy, and to

improve user satisfaction.

From the previous explanation is can be stated that ubiquitous computing environments

are characterized by:

1) the distribution of their devices and services,

2) the high mobility of users

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

22

3) the need to opportunistically access information, services and devices available in

the environment;

4) and finally, the implicit and natural interactions of users with the ubicomp

environment.

Ubiquitous computing environments require software components that enable the

above characteristics. These software components need to seamlessly establish connections

and communicate among themselves in a transparent way to provide the services required

by the users; the software components should be reactive to the environment and the users’

context in order to enable them to opportunistically access pervasive computing resources.

For this, the components need to be perceptive to context changes which are highly

dynamic due the mobility of users; through adaptive components the environment can learn

from the user’s interaction in order to adapt its behavior to the users’ needs; and finally the

components need to act autonomously freeing users to explicitly access the ubiquitous

computing resources and decide how to act in order to enhance the users’ activities. Thus

ubiquitous computing environments are characterized by the collaboration, reactivity,

adaptability and autonomy of their software components and in this sense, they share many

characteristics with agents. For this reason, this thesis proposes using software agents as the

constructs to deal with the challenges in realizing the ubiquitous computing vision. The

following sections explain what challenges were identified for developing ubicomp systems

and present existing development platforms that facilitate programmers’ work as they face

some of these challenges.

2.2 The challenge of developing ubiquitous computing systems

The research community has identified research challenges for designing and

implementing ubicomp systems.

In [Banavar and Bernstein, 2002] it is stated that three characteristics have to be

addressed when implementing a ubicomp system: task dynamism, device heterogeneity and

resource constraints, and the impact of ubicomp in a social environment. From them,

several research challenges for coping with these characteristics were identified and

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

23

organized into four broad categories: 1) Semantic modeling. In order for the computing

environment to be adaptable and easy to compose, high-level semantic models are needed

to represent the users’ preferences and the relevant characteristics of computing

components. 2) Building the software infrastructure. A ubicomp infrastructure must be

capable of finding, adapting and delivering the appropriate applications to the user’s

computing environment based on his context. 3) Developing and configuring applications.

Configuring services and applications so they can be easily and reliably reused by other

developers and composed into larger applications will be a major challenge. 4) Validating

the user experience. Effective methods are needed for testing and evaluating the usage

scenarios enabled by pervasive applications.

Mark Weiser expounded that one important feature of ubicomp environments is the

physical integration and spontaneous interoperation of devices that arrive and leave

routinely. In order to address these features, Kindberg and Fox identified several challenges

that were classified in the following areas: discovery (of devices/services), adaptation

(presenting data and interfaces in heterogeneous devices), integration (of the computing

environment with the physical world), robustness (managing of failures, i.e. going out of

network range), security (user authentication, privacy, trust), and programming frameworks

(that facilitate building ubicomp systems) [Kindberg and Fox, 2002].

After analyzing the experiences and problems faced in implementing manifold ubicomp

prototypes, Davies and Gellersen affirmed that deploying systems beyond the limited

existing prototypes will require significant progress toward integration. This poses major

research challenges that must be overcome in supporting the requirements that integration

places on components that form a ubiquitous computing system. Some of these challenges

are: component interaction (components should be designed and implemented in an open

and extensible manner), adaptation and contextual sensitivity (components adapt

internally), appropriate management mechanisms and policies (zero or low configuration

of components, and support for rapid reconfiguration), components association and task

analysis (system’s ability to develop associations between components to assist the user in

his activities), user interface integration (as the number of applications increases, the

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

24

ubicomp environment should ensure the provision of a reasonable user interface), social,

legal and technical solutions to privacy and security concerns (designers have to empower

users to evaluate the tradeoff between protection of privacy and access to services) [Davies

and Gellersen, 2002].

Even when the above challenges where identified from different research works, they

coincided on various aspects: For instance, all of them agree that providing support for

adaptation (of applications, system’s components, data or interfaces) is a major issue. The

most important similarity among the previous works is that all of them, implicitly or

explicitly, present as a challenge providing facilities for developing ubicomp systems, such

as programming frameworks as exposed in [Kindberg and Fox, 2002]; while in [Banavar

and Bernstein, 2002] the emphasis is on the importance of providing support in order for

applications to be easily reused by other developers and composed into larger applications;

and in similar way, Davies and Gellersen emphasizes that ubicomp system’s components

should be implemented in an open and extensible manner to enable their reuse and the

evolution of systems [Davies and Gellersen, 2002].

2.2.1 Complexities of ubiquitous computing systems

Providing a development platform that eases the development of ubiquitous computing

systems is a challenge because it has to address other challenges faced in developing

ubicomp systems. From the challenges previously presented and the analysis of different

development platforms (presented in Section 2.3) the complexities that these development

platforms tackle by providing facilities for creating a ubicomp system were identified, as

well as the challenges faced in addressing these complexities without using a development

platform. What I obtained is the following list of complexities of ubicomp systems and an

explanation of the challenges faced in addressing them.

a) Robustness and routine failures. In a ubiquitous system we can see an increase in

the frequency of failures related to unpredictable events that happen in this type of systems.

For instance: a ubicomp system uses wired and wireless networks in which unpredictable

disconnections of mobile devices may happen. Coping with disconnections of mobile

devices has become a major challenge for developers of mobile and ubiquitous computing

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

25

systems. The heterogeneity of the devices that compose ubicomp systems may also

generate other “failures”. For instance, a user may need to access the same information

from a public display and later from his PDA which can be considered an unpredictable

event if the system does not provide the mechanisms to adapt the information to be

presented in different devices. Heterogeneity and adaptation are other complexities of

ubicomp systems, and dealing with them presents manifold challenges for developers.

b) Heterogeneity. In a ubicomp system we find devices of many scales, forms and with

different computing and communication capabilities. This is the major complexity of a

ubicomp system since it presents many challenges related with associating different devices

for providing a service to the user, and adapting information in any of the computing

devices as required by the user.

c) Adaptation. Adaptation in ubicomp is quantitatively hard. Instead of adapting a small

fixed set of content types to a variety of devices types (1-to-n), we must potentially adapt

content among n heterogeneous device types (n-to-n) [Kindberg and Fox, 2002]. A new

challenge for ubiquitous systems arises because adaptation must often take place without

human intervention, to achieve what Weiser calls calm computing [Weiser and Brown,

1996]. Thus, adaptation not only involves displaying information, interfaces and services

according to many devices with different computing capabilities, but taking into account

the user’s needs, and what his preferences are. Then, the challenge is applying adaptation

by using mechanisms invisible to the user. For this, a ubicomp system needs capabilities for

taking into account the user’s context.

d) Dealing with context information. Enhancing the human-computer interaction is a

major issue in ubicomp [Dourish, 2004]; and providing information and services based on

the user’s context is a way to contribute to the achievement of this goal. However, dealing

with context information is a complex problem that has deserved enough attention to give

birth to a new research area: Context-aware Computing. The aim of this area is to provide

the technology that will enable ubiquitous computing systems to be sensitive and

responsive to their setting.

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

26

Context is difficult to use for several reasons [Dey, 2000]. First, capturing primary

context information requires the use of sensors and computing devices. Context must be

abstracted to make sense to the application, for instance, the ID of a mobile user must be

abstracted into the user’s name or role. Finally, context is dynamic, i.e., a mobile tour guide

must update its display as the user moves, which require tracking the user’s location by

gathering information from multiple sensors, and using techniques that estimate the user’s

location or guess the route that a user will follow, which may introduce uncertainty. Thus,

in order to provide context-aware services, various issues and challenges are faced in order

to cope with the gathering, interpretation, representation and dissemination of context

information within dynamic and frequently changing computing environments.

e) Discovery of services/devices and interaction. In a ubicomp environment, new

devices may unpredictably join the environment. The system should provide the

mechanisms needed in order for this to happen with low or no configuration from the user.

As a new device or service joins the environment, it must be visible or available for the

other system’s components and vice versa. However, several implications related with the

discovery and interaction of devices/services are involved. For instance: what are the

policies for allowing new devices to interact with the ubicomp environment? What are the

appropriate protocols for mutual discovery of devices in ubiquitous computing, since many

of the devices may have different computing and communication capabilities? Answering

these questions poses significant challenges for ubiquitous computing.

f) Scalability. Weiser defined the notion of scale as incorporating a broad space of

computational devices [Weiser, 1991]. However, other issues of scale are implicit in the

definition of ubicomp: The ubicomp paradigm reinforces the desire to break the human

away from desktop-bound interaction, which implies users may collaborate with other users

or interact with the ubicomp environment from any other device. This opens up

opportunities for other users not attached to a desktop to join the environment, which

implies scaling with respect to people. A final dimension, time, presents new challenges for

scaling a system. Pushing the availability of interaction to a “24/7” basis uncovers another

class of unexplored interactions. To address scaling with respect to time, the term

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

27

“everyday computing” (synonymous with ubiquitous computing) was introduced to refer to

informal and unstructured activities that are continuous in time, since they do not have a

clear starting or ending point [Abowd and Mynatt, 2000].

2.3 Development platforms for ubiquitous computing systems

As one of the objectives of this thesis is to propose a middleware that facilitates the

development of ubicomp systems, this section presents a review of several development

platforms that deal in different ways with one or more of the ubiquitous computing

complexities previously presented. These development platforms were categorized as

follows: 1) those that emphasize the support provided for creating applications for

supporting the mobility of users (mobile computing) and their collaboration with other

users or accessing of services available in the ubicomp environment; 2) those that support

the implementation of context-aware features of the ubicomp system; 3) and finally,

platforms that provide some support for creating ubiquitous computing systems, which may

involve support for mobile computing and context-aware computing. These are

middlewares that not only provide a development framework or API, but an infrastructure

on which a ubicomp system is executed.

2.3.1 Software architectures for mobile computing

Several of the middlewares for creating ubicomp environments, focus on facilitating the

development of applications for mobile devices that need to interact with other devices of

the ubicomp environment.

2.3.1.1 YCab

YCab is a lightweight and flexible API that developers use to rapidly create small and

highly optimized applications that allow mobile users to collaborate in ad-hoc wireless

networks [Buzko et al., 2001]. This framework focuses on providing a fault-tolerant

environment by allowing collaborators to float in and out of an ad-hoc network without

causing disruption to the collaborative session. Thus, the collaborative system is entirely

decentralized with all the clients running exactly the same software. Users can use the

YCab application provided with the API, or they can implement their own application

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

28

using the services provided to fully customize the application for the target device. The

YCab framework provides default implementations for common “services”, such as, state

recovery (restoring the state information for a given service), optimization of the network

resources (such as, high and low bandwidth) or service initialization. Developers can

specify which services are to be included in the application, and how they are to be

arranged. In addition, they can enable or disable certain features of those services without

the need to redesign each service. Thus, the YCab framework allows implementing

modular collaborative applications that do not require extensive programming expertise to

design. Since the applications that can be developed with YCab are specifically for mobile

devices of ad-hoc networks, it only allows interactions between mobile users, restricting the

user’s opportunity of interacting spontaneously with any other device that could offer a

relevant service that may enhance the collaborative activities of the user. Furthermore, this

framework is not suitable for building applications for pervasive environments, where

heterogeneous computing devices can arrive and leave routinely.

2.3.1.2 DACIA

DACIA is a development framework that provides mechanisms for building groupware

applications that adapt to available resources and support user mobility [Litiu and Parkash,

2000]. Using DACIA, components of a groupware application can be moved to different

hosts during execution, while maintaining connectivity with groupware services and other

users. A mobile application can be parked while its user is disconnected or idle. A parked

application, also called client agent, can continue to interact, with some limitations, with

other parties on behalf of the user. It can reside on the same computing device the user had

been connected from, or it can move to a fixed host if the user’s device is disconnected.

When the user reconnects, eventually from a different place, he can take over control from

the parked application. The temporary failure of a connection between two components of

the application is made transparent. When a network connection is broken, the messages

are cached until the connection is re-established, assuming that the disconnection is

temporary. However, the support that DACIA provides for intermittent connectivity is

weak in the sense that it does not allow the client agent to continue interacting on behalf of

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

29

the user when the disconnection was produced due to a failure on the network. The

activities that a client agent can carry out while the user is disconnected are too specific and

simple, such as, save messages; inform other parties that the user is not active or forward

notifications. This agent neither acts on its own nor make decisions that enhance

collaboration if the user is inactive for a long period of time.

2.3.1.3 MIDAS-PROSE

In [Popovici et al., 2003] a platform is presented to enable mobile computing devices to

dynamically extend or modify the functionality of an application. The idea is to let the

environment proactively adapt the application rather than forcing the application to adapt

itself to every possible environment. Thus, this kind of adaptation is not based on sensing

the environment in order to adapt its behavior to the current context. Through this platform,

mobile devices acquire at execution time any functionality extension they may need to

work properly in a given environment, or they can provide extensions to other devices. For

this, the platform uses Jini technology to advertise to a base-station the presence of the

services that need to be adapted in a mobile device. The platform provides a layer of

security to assure that the extension comes from a trusted party and that the extension does

not access non-authorized resources. By using this kind of adaptation, users of the

application in the mobile device should explicitly select the functionality extension

available in the environment. This is a different approach to adaptation from the way in

which it is usually addressed in ubiquitous computing, in which the devices of the

environment are intelligent enough to adapt themselves to user’s context in order to

enhance his interaction with the ubicomp environment.

2.3.1.4 CARISMA

CARISMA is a mobile computing middleware that exploits the principle of reflection

to enhance the construction of mobile applications that have to adapt to changes in context,

such as variations in network bandwidth, memory or battery power [Capra et al., 2003].

The model followed by CARISMA, assumes that the behavior of the middleware with

respect to a particular service is determined, at any time, by only one policy; that is, a

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

30

service cannot be delivered using a combination of different policies. These policies are

specified by means of application profiles which can be dynamically changed through a

reflective API. Applications, however, may not be smart enough to cope with these

changes, which may lead to conflicts. A conflict may exist when different policies are used

in the same context to deliver a service, so that the middleware does not know which one to

apply. When a conflict occurs, a resolution mechanism is run to solve the conflict and find

out which policy to use to deliver the service. The conflict resolution mechanism is based

on microeconomic techniques, in which the middleware plays the role of an auctioneer; and

the applications are agents competing for goods, which are the execution of the policies

they value most among a set of alternatives that correspond to the policies that can be

applied in a particular context to deliver a service. The aim of the middleware is to select

the policy that satisfies the largest number of applications involved in the conflict. In this

way, this middleware focuses on providing a protocol to enable mobile devices to negotiate

for services available in the environment by adapting the access policies to these services.

Similar to the middleware previously presented, the adaptation provided by CARISMA is

not based on the context or preferences of users.

2.3.2 Architectures for context-aware systems

The above mentioned middlewares are projects that provide a high level development

API and services to allow the building of collaborative applications for mobile users, or the

adaptation of the functionality of mobile devices to interact with the ubiquitous computing

environment. However, these architectures do not take into account the users’ context to

enable the provision of adapted services or for enhancing the collaboration among users. To

address these issues, other middlewares focus on supporting the challenges associated with

the provision of context-aware services, such as, the gathering, representation and

dissemination of context information. As explained in Section 2.1, context-aware

technology is regarded as a core technology of ubiquitous computing. The following

sections present several middlewares that provide support to facilitate the implementation

of different aspects of context-aware systems, such as: extracting context information of the

environment, transforming this information to a language understood by the environment’s

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

31

components, reasoning about the perceived context, and automatically executing or

adapting services.

2.3.2.1 RCSM

RCSM is a middleware that provides development and runtime support to allow

applications to exploit their context sensitivity to communicate with other devices [Yau et

al., 2002]. RCSM was designed to facilitate the development of applications which require

context aware ad hoc communication. By using RCSM, a context-sensitive application is

modeled as context-sensitive objects, which consist of two parts: an interface that

encapsulates the application’s context sensitivity (which include the list of relevant context

elements, actions and mapping between both of them), and the implementation of the

actions that the application software must provide. Thus, the developer focuses on

implementing the actions, in any language, without worrying about context monitoring,

detection, and analysis. To support spontaneous communications between remote objects,

RCSM uses a decentralized communication model, and a message-oriented (CORBA,

ORB-oriented) approach, which allows the middleware to discover new devices and

functionalities and establish new communications links.

2.3.2.2 Semantic Space

Semantic Space is a pervasive computing infrastructure that exploits Semantic Web

technologies to support explicit representation, expressive querying, and flexible reasoning

of context in smart spaces [Wang et al., 2004]. An ontology is proposed to represent

context information that characterizes an environment. This context information was

identified as three classes of objects (user, location, computing entity) and one class of

conceptual object (activity) from which a higher-level context can be inferred. The

infrastructure of Semantic Space provides mechanisms to let applications retrieve context

information using declarative queries, infer higher-level contexts by using heuristic rules,

enable devices to dynamically join the environment, and monitor these devices in order to

abstract context information from them.

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

32

2.3.2.3 HIML

In [Kim et al., 2004] a context-awareness middleware is presented, which utilizes a

standardized context scheme called Human Interaction Markup Language (HIML) to

manipulate context information. It was created with the aim of providing a common

language for expressing context-awareness for any kind of device, and for facilitating the

user’s interaction with the context aware system by modifying his current contextual

information. This middleware enables the components of the ubicomp system to describe

and construct context messages and store them in a database for later use. The middleware

lets a user explicitly give or adjust contextual parameters through his terminal, thus new

context information is generated from the terminal and formed into HIML format in order

to be stored in a context database. The accumulated context knowledge is fused and

analyzed through data mining to form new contexts that can be used to activate the

operation of terminal devices.

2.3.2.4 CAMUS

Context-Aware Middleware for Ubiquitous computing Systems (CAMUS) is a

middleware that focuses on providing context composition and an efficient separation of

concerns between different sensing techniques and context formation processes [Hgo et al.,

2004]. The data extracted from sensors, called features, are represented as a Feature Tuple

Space (FTS), which is the communication and storage mechanism used by the middleware.

Tuples are mapped to convert a given feature into context, which is saved in an ontology

repository. The ontology contains the domain concepts and properties with formal

semantics which enables the categorization of context entities into agents, devices,

environment, location and time. Several reasoning mechanisms can be incorporated in

CAMUS as pluggable services. For instance, fuzzy logic and Bayesian networks can be

used to produce composite context which is derived from context information gathered

from multiple sensors.

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

33

2.3.3 Middleware for pervasive environments

This section presents software platforms that provide programming support for

addressing ubicomp challenges related with the operating system or middleware over

which a ubicomp environment is built. These platforms not only provide an API for

facilitating the implementation of ubicomp systems, but a set of services to cope with some

of the complexities for implementing ubicomp systems. Table III briefly presents the

features of these middleware.

2.3.3.1 Gaia OS

The ActiveSpaces project developed the Gaia meta-operating system, which is a

distributed middleware infrastructure that coordinates software entities and heterogeneous

networked devices contained in a physical space [Román et al., 2002]. This middleware

abstracts a space and all the resources it contains as a single programmable entity, called

active space. Thus, Gaia OS supports the development and execution of portable

applications for active spaces. Its OS kernel provides a set of basic services to ubicomp

applications, such as, managing events or changes that occur in the active space, letting

applications register and query for particular context information, or managing users’ data

automatically. Gaia also provides an application framework, which lets users construct,

run, or adapt existing applications to active spaces, and includes an infrastructure to add

context-awareness features to systems [Ranganathan and Campbell, 2003]. It involved

various agents, each one with a defined functionality, such as providing context to other

agents, or deducing high-level context. A key feature of this infrastructure is that it endows

agents with a variety of reasoning or learning mechanisms to help them reason about

context appropriately, for instance, one of the agents (User Mood Context Provider) uses

the Na Bayes algorithm for predicting user mood.

2.3.3.2 One.world

The aim of this architecture is to enable the development of adaptable pervasive

applications [Grimm, 2004]. To create this architecture, three requirements were identified:

System support must embrace contextual change of mobile users either carrying their own

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

34

portable devices or switching between devices, encourage a dynamic computing

environment by enabling ad-hoc composition, and allow user collaboration by facilitating

sharing between applications and between devices. Among the facilities supported by

one.world is the discovery of resources. For this, one device acts as the discovery server

which provides information (a descriptor and an event handler) of the available resources.

To advertise services, individual devices have to export their discoverable resources to all

visible servers. However, this mechanism of service discovery does not facilitate the

specialized look up, such as searching for a service with specific features, or searching for

the services within a sub-area of the physical environment. Related with the

communication among components, one.world expresses all communication, through

asynchronous events. Developers have to create their own event handlers according to the

information that want to be communicated. Under this approach, the quantity of data to be

communicated may be limited, since the focus of the event model is just to notify to

listener objects of changes in their runtime context. To simplify the sharing of data,

one.world represents all data as tuples, which are expressed in the form of code. This limits

the interaction of one.world components with other platforms. Finally, one.world provides

the ability to migrate an environment, including all execution state and all stored tuples to a

remote node, leaving no implicit back-references to the originating node.

2.4 Discussion

The development platforms presented in this Chapter provide support for addressing

some of the complexities associated to the development of ubiquitous computing systems.

Table I, II and III summarize how these development platforms cope in different ways with

the complexities identified in Section 2.2.1. The first row of these tables contains the name

of the development platforms and the type of application they support in parentheses; the

remaining rows give a brief explanation of how they tackle some of the complexities for

implementing ubicomp systems. The last row presents the programming techniques used by

the development platform for dealing with some of the complexities of ubicomp systems.

Among these techniques are software programming paradigms and languages (i.e. Aspect

Oriented Programming), models for representing data (i.e. ontologies) and mechanisms to

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

35

handle the system’s behavior (i.e. reflection) [Capra et al., 2003; Popovici et al., 2003]. For

instance, some of the development platforms propose using different implementation

techniques for providing a common language to represent and manipulate context

information (ontologies, or a new markup language such as HIML as described in Table I.

Others middlewares propose using different programming approaches, such as aspect

oriented programming or reflection, to enable the adaptation of mobile computing devices

in a ubicomp environment (see Table II).

Due to the characteristics of software agents, explained in Section 2.1, this thesis

explores the use of software agents as the key computer-based components of a ubiquitous

computing system. Agents can be software elements with autonomy that make their own

decisions about what activities to perform, when to do them, what type of information

should be communicated and to whom, and how to assimilate the received information;

with reactivity for perceiving the context of the users and acting based on it; with a

communication language that enables agents to convey different kinds of objects needed

for enabling not only the interoperability or collaboration among the software components

of the environment, but also among the components with users and devices; finally the

adaptability attribute of agents can be used for enabling the components to adapt their

services to users’ needs. Under this approach, autonomous agents are the software entities

that can represent the devices and services available in the environment, act on behalf of

users, or wrap a system functionality with which the user seamlessly interacts.

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

36

Table I. Platforms for supporting mobile computing in ubicomp environments.

DEVELOPMENT
PLATFORMS

CHALLENGES

YCab
(Collaborative
applications)

DACIA
(Collaborative
applications)

MIDAS/PROSE
(Proactive

adaptation of
applications)

CARISMA
(Adaptive context-
aware applications)

Robustness and
routine failures

Disconnections:
State recovery,
Decentralized

Disconnections:
An agent
represents the
user

Secure access to
resources/services
of the
environment

Resolution of
conflicts through
policies to
determine devices
interaction

Deal with context
information

N/A N/A N/A Application profiles
specify a set of
conditions to use a
service

Adaptation N/A N/A Adaptation of
application
functionality

Adaptation of the
policies to apply for
using a service

Discovery of
services/devices
and interaction

N/A N/A Advertisement of
the available
services (Jini)

N/A

Heterogeneity Mobile devices Mobile devices Mobile devices
(PDAs, laptops,
lego-robots) and
Servers

Mobile devices
(lap-tops)

Scalability N/A N/A A mobile device
can adapt itself to
a wide range of
settings

A scalability limit
given by:
Profiles with 10
policies, each with
5 or more
associated contexts,
and 10 or more
resources for each
of these contexts
By parallelizing the
auction protocol, it
was feasible to
increment the
number of devices

Implementation
techniques

N/A N/A Aspect Oriented
Programming

Reflection

N/A = Not Available

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

37

Table II. Architectures for creating context-aware systems.

DEVELOPMENT
PLATFORMS

CHALLENGES

RCSM
(Context aware

ad-hoc
applications)

Semantic Space
(Context-aware

applications)

HIML
(Access and
sharing of
Context

information)

CAMUS
(Context

composition)

Robustness and
routine failures

N/A N/A N/A N/A

Deal with context
information

Analyses of
context data and
trigger actions

Representation,
querying,
reasoning of
context
information, and
inferring of high-
level context

Representation,
and generation of
new context
information
Users have direct
access to
context
information

Unification
interface for
abstracting data of
sensors
Reasoning modules
to produce
composite context

Adaptation N/A N/A Present context
information in
several formats
(WML, HTML,
XHTML)

N/A

Discovery of
services/devices
and interaction

Publish/subscribe
RCSM objects

Devices
dynamically join to
the environment
(UPnP)

N/A N/A

Heterogeneity Heterogeneous
devices

Any device, such
as sensors, mobile
devices, PCs.

Terminals
(PCs and mobile
devices)

Any sensor or
device that provide
context information

Scalability N/A N/A N/A N/A

Implementation
Techniques

N/A Semantic Web
technologies,
Ontology

Markup
language

Tuples,
Ontology

N/A = Not Available

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

38

One of the features of autonomous agents is that they are appropriate abstractions for

implementing loosely-coupled distributed systems since agents have an asynchronous

communication language.

One of the challenges of providing a middleware for ubicomp is to facilitate the

creation and evolution of a ubicomp system. However, the middlewares analyzed do not

address how they facilitate the evolution of a pervasive system. Through autonomous

agents a ubicomp system can be created and extended if they use appropriate

communication mechanisms that enable them to seamlessly interact.

This thesis proposes a middleware that facilitates the implementation of autonomous

agents which are the main components of a ubiquitous computing system with the above

characteristics. Before presenting this middleware, the following Chapter introduces how

agent technology has been used for implementing ubiquitous computing systems.

Chapter 2- Background and related work

 Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

39

Table III. Middlewares for ubicomp systems.

DEVELOPMENT
PLATFORMS

CHALLENGES

Gaia
(Pervasive application)

One.world
(Pervasive applications)

Robustness and
routine failures

Error detection of software and
hardware

Resumes an application after a failure

Deal with context
information

Register and query for particular
context information

N/A

Adaptation N/A N/A

Discovery of
services/devices
and interaction

N/A Automatic registration and proactive
discovery of services

Communication trough asynchronous
events and share data as tuples

Heterogeneity Heterogeneous
devices

Heterogeneous
devices

Scalability N/A N/A

Implementation
approach

It includes agents for the context-
awareness infrastructure

Tuples for data, and events for
communication

N/A = Not Available

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

40

Chapter 3

Autonomous agents for designing ubiquitous

computing systems for hospitals
For analyzing how autonomous agents can enable developers to deal with the

complexities of ubiquitous computing systems, we decided to study the medical activities

in Hospitals, which are settings characterized by the need for coordination and

collaboration among specialists with different areas of expertise, an intense information

exchange, and the mobility of hospital staff, patients, documents and equipment.

3.1 Characteristics of hospitals settings

Information management and communication in a hospital setting is characterized by a

high degree of collaborative work, mobility, and the integration of data from many devices

or artifacts [Reddy and Dourish, 2002]. Exchanges of information are intense, and demands

from participants to promptly extract from the artifact useful pieces of data to perform their

job. In contrast with other settings such a control rooms [Theureau, ans Filippi, 2000],

information in hospitals is not generally concentrated in a single place but distributed

among a collection of artifacts in different locations. For instance, patients’ records are

maintained and used in coordination with data on whiteboards, computers, or binders

located in rooms, labs, common areas or offices. Following Bossen we might say that for

practical purposes the whole hospital becomes the information space and it is by

"navigating" this space that hospital's staff can get the data to perform effectively [Bossen

2002].

Given the high distribution of information together with the intensive nature of the

work, it results clear that tremendous coordination efforts are required from all members of

the hospital staff to properly manage the information to attend and take care of patients.

The right information has to be in the right place, whenever it is needed by whoever needs

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

41

it, in whatever format (representation) that they need it. Hence the characteristics of

artifacts containing information play a fundamental role to achieve this coordination. For

instance, patient’s records are easily moved from place to place and filled, checked, read

and consulted in many locations like nurses' room, analysis labs, or the actual bed where

the patient is being attended; nurses, physicians and other workers interact with those

records and use them to support their work or to transmit instructions to be followed by

others. To have the patient's records at the right place is what in part makes them successful

to support coordination, as well as the fact that the information contained in them is clear,

complete, accurate, and updated. Unfortunately those conditions are not always achieved.

Documents get lost, instructions are not clear, or the data is not complete to support

decisions. We therefore need to understand how each information item gets integrated

successfully into artifacts to support the coordination required in hospitals. From this

understanding we can derive adequate information technology. To provide adequate

support for managing information in hospital settings it is needed technological designs that

are based on a proper assimilation of the context where the hospital's staff performs their

job. We can assimilate the context of work done at a hospital by an active engagement of

researchers in daily work through which we can capture the routines, procedures, and

working practices of individuals. Consequently our approach is based on workplace studies

to achieve those understandings [Muñoz et al., 2003a]. Thus, from workplace studies

conducted in a local public hospital real scenarios were obtained that reflect how the

medical practice can be enhanced by ubiquitous computing technology.

Before presenting the scenarios that were developed based on the understanding of the

medical practices, the next section presents related research of how agent technology has

been used in systems that support medical activities.

3.2 Autonomous agents in healthcare

As the aim of this thesis is to explore the use of autonomous agents in real ubiquitous

computing scenarios, we selected the healthcare domain to study how ubicomp technology

in combination with autonomous agents can enhance users’ activities. For this reason, this

section presents

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

42

Agent technology has been used to create systems with a specific focus on improving

the management of clinical information within a hospital. For instance, PalliaSys is a multi-

agent system that collects information about the status of palliative patients and reports it to

a doctor. This system enables physicians to consult medical information through different

communication technologies, such as mobile phones, PDAs and computers [Moreno et al.,

2004]. In [Greenwood et al., 2003] an adaptable agent-based system is proposed to aid the

medical staff in analyzing the data of diabetic patients which could be previously

downloaded from the patient’s PDA.

Other research projects have focused on providing support for the management of

clinical information that may be distributed among the different hospitals and departments

within a hospital. In [Castro-Oliveira et al., 2000] a multi-agent system is presented that

physicians may use to access multiple and heterogeneous medical data sources available at

the hospital, in a transparent way. This system enables the proactive construction of unified

medical repositories which may contain wide range of data type, such as video, images, and

text. A multi-agent community works autonomously, gathering data from the operational

systems, and applying procedures for transforming the data which is then written to a

patient record repository. In [Singh et al., 2004] the use of agents along with grid

technology is proposed to merge organizational knowledge from various hospitals. While

agents deal with the management of information, such as retrieving and presenting

information, grid technology copes with issues of security, such as authentication and

authorization services. In [Kirn, 2003] the concept of ubiquitous healthcare is introduced

that refers to the disposition of any type of health service such that individual consumers

can access them through mobile computing devices. This work presents the OnkoNet

initiative which proposes developing a multi-agent system for cancer treatments. This

system will enable authorized persons/institutions to store, maintain, retrieve and access

medical data by using local and mobile devices in order to integrate all patients’

information related to diagnosis, therapy and care.

Agents have also been used for dealing with other challenges in providing better

healthcare services, such as monitoring the state of a patient, providing assistance services

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

43

to remote patients, and the care of disabled and senior people. These projects selected

agents as the main system’s components that exhibit dynamic changes and autonomous

behavior. For instance, the e-Tools project uses sensors, wireless communications devices

and agent technology to provide supportive services to people with disabilities. One such e-

Tool is an electric-powered wheelchair in which a multi-agent system autonomously

controls its behavior, monitors the state of the patient, interacts with him/her through an

interface that provides assistance in navigation, and sends messages indicating the state of

the patient to the PDA of the patient’s caregivers and relatives [Cortés et al., 2003]. The

AINGERU project proposes a multi-agent system for offering tele-assistance services to

elderly people. This system consists of agents running on the patient’s PDA, in charge of

monitoring the patient’s health condition and communicating with other agents residing in

the healthcare center which perform other tasks, such as appointment negotiation [Tablado

et al., 2003].

Most of the projects presented support the management of patient information by means

of the use of software agents that have well defined objectives and that must collaborate

among themselves to support different activities related to the management of medical

information. Thus through a multi-agent system these information management tasks are

transparent to the users. To do this, these systems provide agents at different system’s

layers. For instance, all of them provide agents at the user interface layer, that interprets the

user’s request or that present the information to them. Then, agents at a higher layer are in

charge of extracting this information and passing it to the interface agents in order to be

presented to the user. For instance, in the case of the OnkoNet project, agents residing on a

PDA can receive information requests from users, and then these agents move to a desktop

to contact the agents that locate and extract the requested information from the hospital’s

databases. The use of agents enabled these projects to cope with the distribution and

heterogeneity of clinical information. In spite of the fact that some of the above projects

introduce the concept of AmI or ubiquitous computing healthcare, these systems do not

address other challenges related to the implementation of ubiquitous computing

environments, such as taking into account the context of users for presenting and adapting

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

44

the clinical information, neither do they address the need to access the medical information

from multiple and heterogeneous computing devices. However, providing systems such as

the one previously presented is a step towards creating a ubiquitous healthcare computing

system. An infrastructure that supports the integration and retrieval of clinical information

facilitates the introduction of pervasive and context-aware systems that enable the

opportunistic access of medical information.

The next section presents a set of ubiquitous computing scenarios within the health-care

domain that were developed as part of this thesis. These scenarios show how a hospital can

become a ubiquitous computing environment that supports the medical activities of the

hospital staff and serve as a basis for identifying the type of support that an agent-based

infrastructure should provide.

3.3 Context-aware medical practices of mobile users

The first workplace study was conducted in the internal medicine area of the IMSS

General Hospital at Ensenada, B.C. with the goal of finding out how handheld computers

along with context-aware technology could support medical activities . The focus was on

capturing the essential contextual elements that support the management of information and

influence hospital staff interactions with colleagues and with medical services and devices

available in the environment. In this study, scenarios were used as a way to frame our

understanding of medical practices and also our vision of how their work could be

augmented with mobile computing devices and a context-aware system. Given that such

technologies are not commonly used by the subjects in our study, scenario building enabled

to generate design ideas for a context-aware hospital system, and to identify the possible

users and contexts of use for the system. These scenarios are presented in the following

sections.

3.3.1 Scenario: Context-aware access to medical information

While Dr. Diaz is checking the status of a patient (in bed number 1 of room 222), he

realizes that he needs to request an ordinary laboratory test for her. Through his PDA, he

adds this request to the patient’s clinical record of the Hospital’s Information System. The

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

45

chemist (responsible for taking the samples for the analysis) visits the internal medicine

area every morning. His PDA informs him that inside room 222 there are three patients

that require a medical analysis. When the chemist stands in front of the patient, his PDA

shows him the samples that have to be taken and the type of analysis to be performed. He

labels the samples and at the end of his round he takes them to the lab to perform the

analyses. The results are added to the patient’s clinical record. When the doctor is about to

finish his shift and while walking through the corridor, his PDA alerts him that the test

results of the patient in bed number 1 in room 222 are available. Dr. Diaz goes back to the

patient’s room and when he stands near the patient’s bed the results of the analysis are

displayed on his PDA. At that point, the doctor revaluates the patient and based upon the

results just received, decides to prepare him for surgery.

3.3.2 Scenario: Context-aware communication

Rita is a doctor in a local hospital. As she makes her final round, she notices that a

patient, Theresa, is not responding well to her medication. Rita wishes to leave a note to

the doctor who will be reviewing Theresa in the afternoon shift. She doesn’t know who that

will be, so she writes a message to the first doctor to check the patient after her.

3.3.3 Desirable features of the ubicomp system to support context-aware medical

practices

Our study of IMSS General Hospital revealed four critical contextual elements that a

context-aware system would have to consider in supporting the hospital’s information

management and activity coordination . The selected scenarios also illustrated how users

can communicate with other users and interact with services through messages that are

delivered when certain contextual conditions are met.

The scenarios present how a context-aware system for mobile users can enhance

medical practices by directly addressing those contextual elements which characterize

them:

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

46

1. Location. Where hospital staff members are at a particular time determines in part the

type of information they require. For example, access to a patient’s medical records is

most relevant when the doctor or nurse is with that patient.

2. Delivery timing. Communication exchanges in a hospital tend to be time sensitive,

which means that a message might be relevant for only a certain period. For example,

in scenario 3.3.2 a doctor might leave a message that describes recommendations for

treatment to any nurse on the next shift.

3. Role reliance. In hospitals, parties who might be strangers or rarely meet must

communicate with each other. A user often addresses messages not to particular

individuals but to “the nurse on the afternoon shift,” or “the next doctor to visit the

patient.” Thus, the system must be able to recognize roles as well as particular

individuals.

4. Artifact location and state. An artifact, particularly a device, can have many states.

The state of devices (temperature reading) and other artifacts (availability of lab results)

can be important triggers for appropriate actions, including information exchanges.

Medical staff might need to communicate directly with documents or devices. For

example, a doctor might want to display the patient’s lab analysis on her office desktop

as soon as results become available.

3.3.4 Design issues regarding autonomous agents

From the above scenarios and the desirable features identified for the system, several

design issues arose regarding the functionality of autonomous agents for creating ubicomp

systems.

• Autonomous agents are decisions makers. First, the need for third-party decision

makers, which can be autonomous agents, was identified. The agents would review the

context and make decisions about what activities to do, when to do them, and what type

of information to communicate to whom.

• Autonomous agents are reactive to the contextual elements of the environment. As

explained in the previous section, these contextual elements are: location, delivery time,

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

47

users’ role, and location and state of artifacts and users that agents may need to monitor

for opportunistically providing information and services to users. For instance, an

autonomous agent can be aware of changes to medical information to be aware of when

a patient’s medical analyses are available and then notify it to the doctor. Another agent

can monitor the environment to make sure that the contextual requirements are satisfied

before delivering a message. For this, agents need mechanisms to perceive, recognize

and disseminate different types of context information: role, location (of users and

devices), state (of documents, services, devices, and users) and time.

• Autonomous agents can represent users, act as proxies to information resources of the

environment or to wrap a complex system’s functionality. In the scenarios, users require

access to information resources such as the hospital information system from which a

doctor access patient’s clinical records. For this, the doctor can interact with her

personal agent on the PDA that will request, on her behalf, medical information from an

agent acting as proxy to the hospital information server. Finally, agents can be wrappers

of complex system’s functionality, such as the location-estimation agent that may need

an intelligent mechanism for estimating the user’s position.

• Autonomous agents should be able to communicate with other agents, or directly to

users and services. For this, agents need a platform of communication that enables

them to convey information to other agents, users, and information resources (such as

the hospital information system) by using the same protocol of communication. This

platform and protocol of communication should enable agents to seamlessly interact

with users in order to enhance their interaction with the ubicomp environment.

3.3.5 Using autonomous agents to support context-aware communication

The above scenarios were analyzed to identify how autonomous agents can be used to

design the system illustrated in the presented scenarios which was named as context-aware

hospital information system. As described below, the design of this system included several

agents :

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

48

• Location-aware client. The location-aware client is an agent with whom the user can

interact in order to compose a message and specify its delivery context. The agent

should include an interface that requires only peripheral attention through which users

are aware of the presence of other users and the available services in the environment,

and with which he can interact with them.

• Context-aware agent (CA-a). All context-aware messages go to this agent, which

monitors the environment to determine whether conditions are such that the system can

deliver the message. It has mechanisms for monitoring the environment, configuring

the environment (devices available, groups of users, site map, and so on) and detecting

changes in contextual information, such as the device state and user position. When the

agent perceives changes in the environment context, it determines if the message’s

delivery context matches current conditions.

• Location-estimation agent (LE-a). This agent resides in all users’ PDAs and estimates

each user’s position which is communicated to the Location-aware client which notifies

it to other users and agents subscribed to its presence [Rodriguez et al., 2004].

• Hospital Information System agent (HIS-a). This agent provides access to, and

monitors, the state of, the hospital’s information system, which manages all artifacts

other than devices in the form of digital documents. For example, when it detects that a

user has updated the IS with the results of a laboratory analysis, the agent notifies the

physician. It also provides patient information to the medical staff according to their

role and location.

As part of the design of the context-aware hospital information system, scenarios 3.3.1

and 3.3.2 were rewritten to identify how the autonomous agents interact to enable the

context-aware communication of hospital’s personnel as described in the following

sections.

3.3.5.1 Scenario: Context-aware access to medical information

The sequence diagram of Figure 2 illustrates how the agents of the system interact for

the first scenario:

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

49

Figure 2. Autonomous agents interacting for accessing patient's clinical records

 Dr. Díaz begins his daily routine by visiting each one of his patients. While he moves

around the patient’s rooms, the Location-aware client in his PDA communicates with the

Location-estimation agent (LE-a), to constantly update his position. When the doctor’s

location changes, the Location-aware client notifies his position to all users and agents.

Then the HIS-a verifies if its contextual conditions match the new context, i.e. the user’s

role and location, in order to send him a message through which the physician can directly

retrieve the patient’s clinical record.

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

50

 After consulting both the record and the patient, Dr. Diaz decides to request a lab

analysis which is customized for him based on his identity (Dr. Diaz) role (physician) and

current location (bed 222). The HIS-a creates the lab form, which includes some of the

patient’s data such as his name and bed number, and sends it to the Location-aware client

to be display for Dr. Diaz. Then, he fills the lab form and sends it to the Hospital IS to be

added to the patient’s clinical record.

The HIS-a will inform the chemist of the analysis to be performed and the medical

samples to be taken. The chemist performs the analyses and the results are added to the

patient’s clinical record through the HIS-a. As Dr Diaz is still at the hospital, the HIS-a

decides to notify the doctor that the test results of patient in bed number 1 in room 222 are

available. Thus, the Location-aware client receives the notification and alerts him. Dr.

Diaz goes back to the patient’s room and when he stands near the patient’s bed, the HIS-a

sends the results of the analysis to his Location-aware client to be displayed on the PDA.

3.3.5.2 Scenario: Context-aware communication

Figure 3 illustrates how the autonomous agents of the system interact to support the

activities of the scenario that describes context-aware communication:

Rita is a doctor in a local hospital. As she makes her final round, she notices that a

patient, Theresa, is not responding well to her medication. Rita wishes to leave a note to

the doctor who will be reviewing Theresa in the afternoon shift. She doesn’t know who that

will be, so by using the interface of the Location-aware client, she writes a message to the

first doctor to check the patient after her. For this, Rita also specifies information of the

user that should read it, such as his role (a doctor), and location (in front of Theresa’s

bed). Rita sends the message and this is received by a Context-aware agent which will be

checking when the contextual conditions met to deliver the message.

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

51

Figure 3. Autonomous agents interacting to deliver a contextual-message

Later, Doctor Gómez, the physician in that afternoon’s shift, begins his daily routine by

visiting each one of his patients. As illustrated in Figure 3, while he moves around the

patient’s rooms, the Location-aware client in his PDA communicates with the Location-

estimation agent, to constantly update his position. When his location changes, the

location-aware client sends the doctor’s position to all authorized users and agents. When

doctor Gómez enters Theresa’s room, the Location-aware client updates his presence and

notifies this to the context-aware agent. As the message delivery conditions match the new

context, the context-aware agent sends to doctor Gómez the message written by Rita.

3.3.6 Conclusions

Conceiving the context-aware hospital information system was the result of the first

iteration of the methodology proposed for exploring the use of autonomous agents for

designing ubicomp systems and for making some of the preliminary design decisions for a

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

52

middleware that facilitated the development of these autonomous agents. Mainly, during

this phase it was identified that agents in a ubicomp system may act on the user’s behalf,

represent information resources or services, or wrap a complex system’s functionality;

these agents might run in a user’s PDA (such as the Location-aware client and LE-a), a

desktop computer or a trusted server (HIS-a and CA-a); finally, in order for agents to

communicate with other agents and users, they need a common protocol and channel of

communication.

Thus, the design issues raised by the scenarios presented were the basis for defining the

functional requirements (described in Chapter 4) for designing a middleware that supports

the implementation of autonomous agents for ubiquitous computing systems. In order to

continue refining these design issues of autonomous agents and finding new ones, scenarios

3.3.1 and 3.3.2 were evaluated with the aim of validating that the scenarios supported real

users’ activities and for identifying other opportunities for proposing the use of ubicomp

technology and autonomous agents for enhancing the medical activities. The results

obtained from this evaluation enable this thesis to continue exploring other alternatives and

propose new ubicomp scenarios. One such result showed that the participants considered

that it would be useful if the system supported the visualization of X-Ray images.

However, a discussion among the participants made it clear that visualizing medical images

through a handheld computer had significant limitations. This suggested the use of tablet

computers or public displays. As other works have reported, whiteboards hung on walls

play a crucial role for coordination [Bardram et al., 2003; Bardram and Bossen, 2003]. So,

it was decided to further explore the second option in a second case study, not only for

exploring the use of public displays for visualizing medical images, but as a means of

coordination and communication.

3.4 Public displays to support coordination and communication

A second case study was performed, this one directed specifically at understanding the

current uses of whiteboards, corkboards, and X-Ray viewers with the aim of integrating

public displays to support coordination and communication of the hospital staff. Public

displays by themselves would offer only limited services, thus we explored their integration

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

53

into the context-aware mobile computing system envisioned as a result of the first case

study.

The workplace study was conducted in the trauma area of the hospital with the goal of

proposing innovative uses of interactive public displays in a hospital [Favela et al., 2004].

The study was intertwined with the design phase. While design scenarios were being

developed, issues were raised by the designers, which often led to one of the researchers

going back the next day to the hospital to confirm assumptions or gather a missing piece of

information. The scenarios thus combine our vision of the support that can be provided by

interactive public displays with actual, and in some cases very concrete, issues faced

everyday by hospital workers. The findings from the study were used to inspire the creation

of design scenarios that depict innovative uses of interactive public displays in a hospital

[Favela et al., 2004]:

3.4.1 Scenario: Accessing medical information through public displays

While Dr. Garcia is checking the patient in bed 234, his PDA alerts him that a new

message has arrived. His handheld displays a hospital floor map indicating to him that the

X-ray results of patient in bed 225 are available. Before Dr. Garcia visits this patient, he

approaches the nearest public display that detects the physician’s presence and provides

him with a personalized view of the Hospital Information System. In particular, it shows a

personalized floor map highlighting recent additions to clinical records of patients he is in

charge of, messages addressed to him, and the services most relevant to his current work

activities. Dr. Garcia selects the message on bed 225, which opens windows displaying the

patient’s medical record, the X-ray image recently taken and the hospital’s medical guide

related with this case. While Dr. Garcia is analyzing the X-ray image, he notices in the

map, that a resident physician is nearby and calls him up to show him this interesting

clinical case. The resident physician notices that this is indeed a special case and decides

to make a short note on his handheld computer by linking both the X-ray image and the

medical guide. He can later on use these links to study the case in more detail or discuss it

with other colleagues from any computer within the hospital.

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

54

3.4.2 Scenario: Physicians collaborating through ubiquitous devices

The cardiologist is notified on his PDA that the electrocardiogram he requested for the

patient in bed 233 is available. The doctor approaches the nearest public display that

detects his presence and provides him with a personalized view of the Hospital Information

System. The doctor selects bed 233, which opens windows displaying the patient’s medical

record and the electrocardiogram recently taken. While he is analyzing the information, he

notices on the map, that the traumatologist assigned to this patient, is walking down the

corridor in the next floor. By selecting the icon representing the doctor, the cardiologist

can invite him to a collaborative session. The traumatologist receives a message indicating

that the cardiologist would like to discuss a case with him and specifying the location of the

nearest display available. He accepts the invitation by tapping the “accept” button on the

message, and moves to the nearest display. When the display recognizes his presence, it

opens an application sharing and audio-conference session with the cardiologist. Both

doctors can now browse the patient’s medical record and discuss whether it is appropriate

for the scheduled operation to take place considering the patient’s cardiac condition.

3.4.3 Management of medical knowledge through public displays

Scenario 3.4.1 illustrates how pervasive technology, that integrates handhelds

computers and large public displays, can be used to provide timely access to medical

knowledge thru context-aware information retrieval.

Physicians, who are in a continuous learning process through their daily practice, are

motivated to seek information to reduce the uncertainty of the route they ought to follow

for the patient’s treatment when faced with a complex clinical case [Casebeer et al., 2003;

Schoen, 1983]. During the workplace study it was observed that the hospital provides

medical guides to be consulted by the physicians. However, given their current workloads,

they seldom have the time to search for information on the local medical guide or in

medical digital libraries. On the other hand, doctors often use information from previous

clinical cases in their decision-making. For this, they might rely on their own experience or

consult other colleagues who are more experienced on a given subject, or just to have a

second opinion. Physicians, however, seldom consult the clinical records of previous

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

55

patients, to a large extent because they are difficult to locate, or because the data that could

be used to retrieve them, such as the patient’s name or the date of a given case, are difficult

to recall. The development of hospital information systems that provide access to electronic

patient records is a step in the direction of providing accurate and timely information to

hospital staff in support for adequate decision-making.

Traditional Web information retrieval systems are isolated from the context in which a

request occurs. Information requests occur for a reason (related to the current user’s

activity), and that reason grounds the query in contextual information necessary to interpret

and process it. Without access to this context, requests become highly ambiguous, resulting

in incoherent results, and unsatisfied users [Budzik and Hammond, 2000]. This is evident

in the health-care domain, in which vast quantities of medical information are now

available through the web and can easily lead to information overload [Budzik and

Hammond, 2000]. One way to overcome such a problem is to provide an environment that

proactively retrieves and presents information based on the hospital professionals’ context,

thus providing Context-Aware information Retrieval (CAR) [Brown and Jones, 2001].

Context-aware computing technology is a key element to construct this new generation of

Web retrieval systems by sensing the changes on the users’ activities, to predict users’

interests and then, retrieve information based on them.

Ubiquitous and context-aware computing technology may provide support to healthcare

professionals for opportunistically acquiring, managing, and sharing knowledge, which are

issues faced everyday by hospital workers. The aim of the following scenario is to bridge

the gap between the medical knowledge management practices and an idealized pervasive

hospital environment. This scenario addresses current sources of misshapes or look to

simplify time consuming tasks, such as searching in digital libraries from the Web through

the use of ubiquitous computing technology .

3.4.4 Scenario: Context-aware presentation of medical knowledge

While Dr. Garcia is evaluating the patient in bed 234, her PDA alerts her that a new

message has arrived. Her handheld displays a hospital floor map indicating her that the X-

ray results of patient in bed 225 are available. Before Dr. Garcia visits this patient, she

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

56

approaches the nearest public display that detects the physician’s presence and provides

her with a personalized view of the Hospital Information System. In particular, it shows a

personalized floor map highlighting recent additions to clinical records of patients she is in

charge of, messages addressed to her, and the services most relevant to her current work

activities. Dr. Garcia selects the message on bed 225, which opens windows displaying the

patient’s medical record and the X-ray image recently taken. Aware of the context of the

situation (patient’s original diagnosis, the fact that X-rays where just taken from the

patient’s hand, etc.), the system automatically opens a window with the hospital’s medical

guide that relates to the patient’s current diagnosis, and shows an icon which displays

references to previous similar patient’s cases. Dr. Garcia analyses the X-ray image and

writes on it to emphasize the clinical problem. As she is interested in knowing about the

efficiency of the treatment received by other patients with similar problems, she selects a

reference to a previous patient’s case. By the doctor’s interaction with the information on

the public display, the system infers she is still interested in learning more about this case,

in particular, in alternative treatments for this medical condition. Then the application

suggests links to medical digital libraries from the Web that are considered by the

hospital’s clinicians as reliable sources of medical information. She selects the first

recommended Web link which presents information about alternative treatments. Thus, Dr.

Garcia uses this trusted medical information combined with their medical experience to

make a more accurate decision about the treatment to follow.

3.4.5 Desirable features of context-aware public displays

Based on the findings and scenarios such as the one presented above, we identified the

following aspects to be addressed by context-aware interactive public displays [Favela et

al., 2004]:

• User’s location and authentication. Hospitals are characterized by the mobility of the

professionals that work there, that of the artifacts they use, such as clinical records or

medical equipment, and even the patients, who are moved from one hospital area to

another as required. When a doctor examines a patient, he needs to move to obtain the

patient’s clinical records and other documents. Hospital workers also need to move to

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

57

locate information displayed in whiteboards. For instance, the schedule of patient’s

operations for the current day is displayed on the whiteboard in the office of the chief

surgeon, and the activities and working area assigned to nurses are advertised in

different boards throughout the hospital. Boards help to communicate information

regarding patients' condition and location, and hospital staff often visits the boards to

find this information. Thus, hospital workers require access to information from

anywhere within the hospital. In addition, as exemplified by the scenarios, the public

display should be able to recognize the user as he approaches it and give him access to

relevant clinical data without cumbersome login procedures.

• Content adaptation and personalization based on contextual information.

Contextual information such as, location, role, and identity should be taken into account

to adapt and personalize the presentation of information to the user. For instance, in

scenario 3.4.1 when Dr. Garcia is in front of the display, the pervasive environment

displays the messages addressed to him and highlights the beds of the patients he is

examining. A traumatologist attends to mostly a small and well defined number of

patients assigned to him. He might be required to occasionally access the medical

record of another patient, but this is seldom the case. Thus, information overload is

prevented by personalizing the display to provide immediate access to the clinical

records of those patients assigned to the doctor.

• Information transfer between heterogeneous devices. In the hospital users frequently

transfer information from public spaces to personal spaces. For instance, the chief nurse

might leave a note on a public board in order to advertise the date of the next meeting;

then, another nurse would write this information into her personal agenda. A few

physicians actually carry PDA’s and reported using them to record information

displayed on whiteboards or corkboards. A pervasive environment furnished with

devices of all scales, should support the simple and safe transfer of information between

devices. Some of these devices are public, such as large displays, while others are

personal, such as PDAs. In scenario 3.4.1, the resident physician decides to keep a

personal record of the clinical case presented on the display. Thus, the physician

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

58

transfers the relevant information from the large display (public space) to his PDA

(personal space). A doctor may also want to transfer information from his PDA to a

public display in order to discuss it with a colleague such as illustrated by scenario

3.4.2. Information is also transferred from both devices when the physician approaches

the board and is authenticated, the display will use information stored in the user’s PDA

to personalize the applications running in the public display. For instance in the

scenario, the message received by the physician indicating that the X-rays are available

and the dates stored in the PDA of the physicians’ calendar are transferred to the

display to personalize the map and calendar applications.

• Context-aware retrieval of medical information. The electronic patient record offers

the opportunity to retrieve relevant medical cases with little effort from the user. To

retrieve this information, the pervasive environment has to take into account contextual

information, such as, type of clinical problem, and if the device where it will be

displayed is a public display that enables to clearly appreciate and analyze documents

and images. The recommended clinical cases are ranked by similarity with the current

case. For instance, it may be more relevant for the physician to consult first how she

solved previous cases akin to this, and after that, find out the treatment or diagnostic

given by other clinicians to similar problems. Besides, the most significant clinical

cases are those that coincide with the personal patient’s data such as gender, age or

weight, which may be factors correlated with the causes of a medical problem or

treatment. Depending on the type of diagnosis some of these data will be more relevant

than other to retrieve previous cases. The environment may also opportunistically

display medical guides relevant to the patient’s diagnosis as supporting information for

doctors or even locate and establish contact with a specialist who might be available. In

the scenario, the display presents the hospital’s medical guide relevant to the case they

are discussing and links to previous cases that were estimated to be relevant. Based on

the description of the diagnosis, the system presents the hospital’s medical guide related

with this particular case.

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

59

3.4.6 Design issues regarding autonomous agents

From the desirable features of a context-aware public display that support the activities

depicted in Scenarios 3.4.1, 3.4.2 and 3.4.4, autonomous agents were identified as the

software entities that enable the personalization and adaptation of medical information on

the public display and the transferring of information between different devices. Other

design issues came up which complemented those identified during the previous iteration

of the methodology followed for creating a middleware for ubicomp systems:

• Autonomous agents act as proxies to devices. Agents representing devices, such as the

public display, can be aware of the presence of other agents and users available in the

environment. These agents enable allowed users and other agents to use the devices.

For instance, presenting information on the public display. From this, the following

design issue was raised.

• Autonomous agents need mechanisms for authentication. Autonomous agents

representing devices or services need mechanisms for authenticating users and agents

that want to access them. For instance, not all users are allowed to access the hospital

information system or present information on the public display. The physician agent

on the PDA may need to know a priori the agent acting as proxy to the public displays

available on the environment. An autonomous agent such as this, that represents a

public display, needs mechanisms for authenticating users that require accessing it.

Thus, only authorized personnel may access these devices or services. And the same

can be applied to agents. For instance, the agent acting as a proxy to public display

needs to know in advance which other agents may require to publish information on

them, or request the personalization of information for a user. Similarly, the Map agent

needs to authenticate whether the agent requesting its services has permission for

accessing it.

• Autonomous agents need to communicate different types of messages. From the

scenarios presented in this section and section 3.3, were identified that agents need a

communication language that enables them to communicate. This communication

language needs to convey messages for requesting information from devices or services

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

60

(i.e. requesting medical information from the hospital information system) and

responding to such requests, notifying information to users and devices (i.e. notifying

that the lab results are available to the user), and requesting from another agent the

execution of an action (i.e. personalizing the hospital map for the user).

• Autonomous agents may have a reasoning algorithm as complex as the logic of its

functionality. An autonomous agent needs to be aware of information regarding the

environment in order to generate its actions. For this, agents may need a reasoning

algorithm which may include a simple set of rules or conditions, such as the Context-

aware agent (Ca-a), from Scenarios 3.3.1 and 3.3.2, which verifies that a set of

conditions are met in order to deliver a message; or a more complex reasoning

algorithm needed for estimating the user’s location, or for indexing and retrieving

medical cases such as in the Scenario 3.4.4.

3.4.7 Using autonomous agents to support context-aware public displays

The design of the architecture for the context-aware hospital information system was

extended to integrate public displays that are context-aware, to personalize information to

the user, to allow the transfer of information to and from PDA’s, and to offer opportunistic

access to clinical information. To accommodate these features, three agents were identified:

• Public Display agent (PD-a). This component acts as a proxy for the public display.

The Public Display agent (PD-a) represents the public display available at the hospital.

It enables users to access the Public Display and have control over the applications

displayed.

• User’s Proxy agent (UP-a). This agent acts as proxy of the user. It visually represents

the user by presenting his photograph in the display and it references information stored

in the user’s PDA. By selecting the icon with his own photo a user opens a folder with

references to documents stored on his PDA or WebDAV folder . Finally, if a user drags

and drops a window onto his photo icon it will add a link to the document contained in

the window (electronic patient record, X-ray image, medical guide, etc.) into the folder

in his PDA.

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

61

• Medical Guide proxy-agent (MGp-a). It is responsible for displaying the hospital

medical guide. The agent retrieves information from the record of the patient being

consulted by the user of the public display, such as the current diagnosis and type of

analysis performed and displays a medical guide, if one is found to be relevant.

By revisiting scenario 3.4.1, the next section illustrates how the system’s autonomous

agents address the desirable features of context-aware interactive public displays discussed

above.

3.4.7.1 Scenario: Accessing medical information through public displays

As Dr. Garcia examines the patient in bed 234, the X-ray results he requested are

included into the electronic record of his patient in bed 225. As depicted in Figure 4 the

HIS agent notifies this to the doctor by sending him a message. Dr. Garcia approaches the

nearest public display when finished with his current patient, and before visiting patient

225. The doctor’s location, which is constantly being tracked by the location-estimation

agent on his PDA, is notified to all users and agents in the environment, such as the

context-aware agent and the Public Display agent (PD-a). The PD-a acknowledges the

user’s presence by displaying his photograph, indicating with this that the user has been

logged into the system, and the applications on the display are personalized for him. In

addition to his photograph, Dr. Garcia will be shown a personalized public map indicating

the location of hospital staff and services available (printer, public display, etc) and

highlighting the beds of patients assigned to the current user of the display. The public map

also shows messages addressed to the user that depend on his location. This includes

messages related to his patients, such as additions to their electronic records (e.g. analysis

results or a medical note).

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

62

Figure 4. Autonomous agents’ interactions to personalize information on the public display

As Dr. Garcia wants to examine the recently taken X-rays and thus selects bed 225. The

public display agent requests the electronic patient’s records to the HIS agent and these

are presented to the user in two windows, one with the main page of this patient’s medical

records, and a second one with its latest addition, in this case, the X-ray image of interest

to the doctor. A Knowledge Management agent (KM-a) will also be notified that the user is

consulting the records of a particular patient. The KM-a will open the relevant medical

guide and manifest himself in the public display with an icon next to the user’s photo.

While Dr. Garcia is analyzing the patient’s medical condition, he notices on the map,

that a resident physician is nearby and calls her up to discuss with her this clinical case.

The resident physician considers this case to be of particular interest and decides to store a

link to this information in her personal space. She does so by dragging the window with the

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

63

X-ray image to her user-proxy agent represented by her photograph. As illustrated in

Figure 5 the user-proxy agent sends the link to the image to the Location-aware client in

order to be saved on the user’s PDA. Thus, the resident physician can later on access this

information.

Figure 5. Agents interactions for transferring information from the public display to the
user's PDA

During the design of this system, new uses for public displays were explored.

Specifically, we identified that accessing medical knowledge on the public display, such as

medical guides and previously documented cases, can help physicians make clinical

decisions. For this, the system was extended by adding an autonomous agent that enables

the context-aware retrieval of medical information:

• Knowledge Management agent (KM-a). This agent was designed to use a Case-based

Reasoning (CBR) paradigm aimed at solving new problems by retrieving and reusing

similar experiences of past cases [Aamodt and Plaza, 1994]. The model of the case

memory consists in organizing specific medical cases with the same diagnosis under a

generalized episode (GE) [Aamodt and Plaza, 1994]. Each GE contains indices that are

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

64

features that discriminate between GE's cases, for instance, medical treatment, or the

name of the physician who treated that patient. Thus, the GE is an indexing structure

for matching and retrieving similar cases. The KM-a first identifies the features that

best describe the patient’s medical condition given by the diagnosis, which are

translated to a search query. Then the agent retrieves a set of plausible candidates by

comparing the query to the descriptions of the generalized episodes in the index

structure. The agent will use specific patient data (gender, age, etc.) as a criterion to

rank the retrieved cases. References to these previous cases are presented to the user

when requested. Finally, the KM-a updates the case memory by (a) adding a reference

to the patient’s case as a leaf of the GE tree, if one of the recommended treatments was

applied, (b) as a leaf indicating that it is a case by the physician in particular, and (c)

creating a new GE if it is a new clinical case.

The following scenario describes the interactions of the agents identified during the

design of the context-aware public displays system and the KM-a to support the context-

aware retrieval of medical information.

3.4.7.2 Scenario: Context-aware presentation of medical knowledge

As represented in the sequence diagram of Figure 6, when the Public Display agent

(PD-a) retrieves the information most recently added to the patient’s records, it notifies to

the Knowledge Management agent (KM-a) and the Medical Guide proxy agent (MGp-a)

that this document has been presented to the user. The KM-a formulates the search query

based on the diagnosis and personal information of the patient, and the MGp-a formulates

its query based on information that describes the patient’s medical condition, such as,

symptoms and diagnosis. Based on these queries, the agents retrieve medical information

from the Case Base (CB) repository and from the Hospital’s Medical Library (HML)

respectively. The retrieved information will be sent to the Public Display agent (PD-a) that

will adapt it on the display. For instance, while the medical guide is automatically

displayed, the links to previous clinical cases will be represented with the KM-a icon. In

our scenario, while Dr Garcia analyzes the X-ray image and the medical guide retrieved by

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

65

the MGp-a, she selects the KM-a agent’s icon for additional recommendations, then the

links to previous relevant cases are displayed.

Finally, the Doctor selects the link to the first recommended case, which is ranked as

the most relevant since it is one of her patients and the medical condition is the most

similar to the new patient’s case. When the physician prescribed the treatment to her

patient, the KM-a perceives that it is highly similar to the case consulted earlier. Then the

agent updates its case-base by adding this case to the same generalized episode.

Figure 6. The Knowledge Management Agent and the Medical Guide proxy-agent
retrieving medical information

3.4.8 Conclusions

This section has presented how autonomous agents can be used for addressing other

desirable features of a ubicomp system, which are different from those features that were

identified during the design of the context-aware hospital information system that is

characterized by supporting the users’ mobility and the context-aware access to medical

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

66

information. The above scenarios were proposed with the aim of exploring the integration

of other ubiquitous computing devices and services to the design of the context-aware

hospital information system by means of the use of autonomous agents. Thus, it presented

how autonomous agents can be used as the main components required for extending the

functionality of a ubicomp system. To do this, autonomous agents acted as proxies to

devices and services incorporated into the system without requiring modifications to the

design of other system components.

In order to enable developers to easily extend the functionality of a ubicomp system by

means of autonomous agents, they need well defined interfaces for communicating with

other agents and users, as well as for perceiving information directly from the devices or

services they represent. These issues are reflected in the definition of the requirements for

the agent middleware for ubicomp systems which are presented in Chapter 4.

3.5 Discussion

As presented in this chapter, scenarios were used for defining the functionality of

ubicomp technology in hospitals. In a first stage, the scenarios were used as a way to frame

our understanding of hospital work. For instance, the researchers that carried out the

workplace study at the hospital, participated in a design session by communicating their

findings to the designers, if there was some misunderstanding regarding the medical

practices, or some new issue arose, researchers went back to investigate it. Thus, scenarios

enabled us to visualize how the medical practices could be augmented with ubicomp

technology. Some scenarios were grounded in workplace studies, and then validated by the

people involved in them. Other scenarios such as the one presented in Section 3.4.4

(Scenario: Context-aware presentation of medical knowledge) were not validated, but they

were created based on observations and facts found during the study, and by investigating

other research work regarding the use of medical guides and evidence-based medicine. This

with the aim of proposing real scenarios that supported and reflected the activities of the

hospital’s personnel.

Following the iterative methodology proposed for implementing a middleware for

ubicomp systems, the following phase consisted of analyzing the proposed scenarios to find

Chapter 3- Autonomous agents for designing ubiquitous computing systems for hospitals

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

67

out how autonomous agents can be the proactive components that cope with the desirable

features of these systems. By rewriting the scenarios, it was possible to visualize how the

user’s activities could be supported by autonomous agents that seamlessly execute actions

for the users (such as personalizing information in a public display) or on behalf of a user

(i.e. delivering a message to another physician when certain contextual conditions are met).

In these scenarios, autonomous agents were proposed as the main components of a

ubicomp system since they have the following attributes that help to implement the

desirable functionality of the ubicomp system: Autonomous agents are proactive entities

that control their behavior [Bradshaw, 1997]; they are reactive, which means agents

perceive their environment and respond in a timely fashion to changes that occur in it;

agents have a collaborative behavior since they must be able to communicate with the

users or devices that they represent and with other agents in order to collectively tackle

problems that no single agent can handle individually; they also have temporal continuity,

this means that agents remain in execution while they provide relevant services to users, or

until their services are no longer needed in the ubicomp environment; they also possess

mobility which refers to the fact that an agent is able to migrate in a self-directed way from

one host platform to another [Bradshaw, 1997]. This last characteristic was identified in

agents that require updating their reasoning behavior when certain conditions in their

environment change.

Thus, the selected scenarios were used to define the functionality that can be supported

by autonomous agents, identify how autonomous agents augment users’ activities, and use

autonomous agents as a design abstraction for designing ubicomp systems. The design

issues raised during the analyses of these scenarios were used as the basis for identifying

the functional requirements of an agent middleware for ubiquitous computing systems and

designing this middleware as described in Chapter 4.

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

68

Chapter 4

The SALSA middleware
Once the use of autonomous agents for designing ubicomp systems depicted in the

scenarios previously presented was explored, the next step was to make the design

decisions for a middleware that facilitated the development of these autonomous agents.

Based on the analysis made through the scenarios, the functional requirements for an agent

middleware for ubiquitous computing systems were identified. This section presents these

requirements and the design and implementation of the middleware.

4.1 SALSA’s functional requirements

Chapter 3 presented how autonomous agents can be used for designing a ubiquitous

computing system in which autonomous agents play the role of decision makers in the

environment. Each of the agents has specific goals, and to achieve them, they have to

monitor the context of the environment, and autonomously decide how to act. This lead to

the first requirement for the agent middleware for ubiquitous computing systems proposed

in this thesis:

To implement autonomous agents as decision makers, the middleware should provide

mechanisms for implementing the agents’ components for perceiving, reasoning, and

acting. An agent should include a perception module to gather information from

environment sensors and devices (e.g. to estimate the users location), directly from users

(through an interface), and other agents; a reasoning module governs the agent’s actions,

including deciding what to perceive next; and finally, the agent executes the appropriate

action, which may include: sending a notification message to a user or requesting a service

from a device.

Autonomous agents in a ubiquitous computing environment can perceive different

types of context information. For instance: the Location-aware client may need to be aware

of the location and state of users and devices to predict the user’s needs; this information is

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

69

provided by agents representing other users and devices; the Knowledge Management

agent needs to abstract information of the case being consulted by the physician in order to

present relevant medical information to him. Thus, the requirement is:

The middleware should provide higher-level mechanisms to enable agents to perceive

context information from other agents, directly from the devices or services, or from the

users. Considering that ubiquitous computing environments are highly dynamic, mainly

due the fact that the user’s context may change unpredictably, the agent’s perception

component should be able to perceive context information at unpredictable times. The

middleware should provide an agent communication language flexible enough to enable

programmers to specify the type of context information that will be perceived by the agents

of a ubicomp system. Thus, the agent communication language should enable agents to

identify the type of information perceived and the target of the information.

Once an agent received information, the reasoning component of an autonomous agent

has to analyze it to decide how to act. As illustrated by the scenarios, the agent’s reasoning

algorithm can be as simple as a set of rules for checking when the contextual conditions are

met for delivering a message to a user, or more complex such as the Case Base Reasoning

of the Knowledge Management agent, which lead to the following requirement:

The middleware should be flexible enough to enable developers to endow agents with

any reasoning algorithm. The middleware should provide abstractions that permits not only

the implementation of any kind of reasoning algorithm, but also enables developers to

easily modify or update the agent’s reasoning requiring little or no modifications to the

other agent’s components.

Agents may need to update its reasoning algorithm at execution time. This particular

requirement came up particularly from the features of the Location-estimation agent that

resides on the user´s PDA. This agent should be able to estimate the user’s location

independently in of the floor or department of the building in which is located the user. For

this, it is proposed that the middleware provides facilities for enabling agents to update

their reasoning algorithm by acquiring the code from a trusted server.

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

70

The actions of autonomous agents may require them communicate with other agents by

interchanging different types of messages for conveying the intention of the interaction and

the information content. Agents may also need to communicate with users in order to notify

and present information to them. For this, it is require that:

The middleware should provide a communication platform that enables agents to

convey information to other agents, users, devices and services by using the same protocol

and communication channel. The communication platform should enable users to be aware

of the presence of other users and agents that offer relevant services for their activities, but

they should be unconscious of other agents with whom they do not need to interact

explicitly or that hide a complex functionality. Finally, it should enable agents to negotiate

services with other agents, or request them to execute an action. Thus, based on the design

issues regarding the communication of agents presented in Chapter 3, the messages

conveyed among agents can be of the following types: a request of information, response to

a request, request to execute an action or service, notification that the action was executed,

notification of information (that was not previously requested), notification of the presence

of an agent (representing a user or a service), and notification of information perceived

from a device or sensor. The communication language should be flexible enough to allow

programmers specify the content of each of these messages and the programming language

of the middleware should facilitate the creation of these messages.

Autonomous agents need mechanisms for registering and authenticating agents.

Autonomous agents need to know what agents have permission of requesting their services.

The middleware should provide an infrastructure of services that enable the naming,

registration, authentication, and location of agents representing users, devices and services.

To enable developers to create the software entities of a ubiquitous computing

environment with which users need to seamlessly interact, the Simple Agent Library for

Smart Ambients (SALSA) was created. The following Section presents the design of

SALSA to address the above requirements.

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

71

4.2 Design of SALSA

The design of SALSA includes defining: the agent’s life cycle which implements the

agent’s behavior; an expressive language that enables agents to communicate with other

agents; and the architecture which consists of a set of services and a library of abstract

classes to implement autonomous agents

4.2.1 Agent’s life cycle

Since it was identified that a SALSA agent should have components for perceiving,

reasoning and acting which may involve communicating with other agents, the life cycle of

agents in a ubicomp environment was defined. As showed in Figure 7 the agent’s life cycle

includes the following states:

Figure 7. The life-cycle of an agent

• Activated. This is the initial state of an agent when it is created. This is a super-state

that contains different sub-states that an activated agent can present.

• Perceiving. It is the initial sub-state. An agent acquires contextual information from its

environment in different ways. For example, an agent may receive information from a

user or another agent representing a service; or agents may perceive information

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

72

directly from devices or sensors. An agent may get into this state if its action plan

requires it. That is, it moves from the acting state to the perceiving state.

• Reasoning. The agent evaluates the perceived information, which may require applying

a simple or complex reasoning algorithm to interpret or transform this information into

derived contextual information.

• Executing. Based on the results of the reasoning component, the agent executes an

action that may involve: communicating with other agents; moving agent’s code to

another platform, continuing perceiving information, or terminating its execution.

• Communicating. The agent interacts with one or more agents in order to provide the

information that is necessary to reach its goals. An agent can enter into this state if it is

dictated by its action plan or because the agent needs to transmit specific knowledge.

• Suspended. An agent in this state is alive but it is not performing any activity. It is

waiting to be reactivated. For example, if an agent is waiting for information that it has

requested from another agent, then it changes from the communicating state to the

suspended state, and when contacted by another agent, its state returns to

communicating.

• Deactivated. If the agent has met its goal, then it is deactivated and killed.

4.2.2 Architecture of the SALSA middleware

As illustrated in Figure 8, the SALSA middleware consists of the following layers:

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

73

Figure 8. SALSA's Architecture

4.2.2.1 Communication Platform

The communication channel among agents and users is a Broker component which is

responsible for coordinating the communication, and enables the configuration of the

environment in a manner that is transparent for users since they do not know the location of

the agents even though they can be aware of the presence of some of these agents. Thus, an

Agent Broker is the component that should handle the communication among the

ubiquitous devices, services and users, which are represented by agents. SALSA should

provide a protocol of communication which consists of an expressive language that enables

the exchange of different types of objects between agents (such as perceived information,

requests for services), between agents and users (such as events generated by the user’s

actions), and between agents and services (such as the state of a service). This information

will be sent or perceived by the agent through a proxy to the Broker, which is an agent’s

component. The Broker’s Proxy and the set of messages that can be communicated among

agents are created by developers by using the SALSA API as explained in the next section.

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

74

4.2.2.2 API (Application Programming Interface)

This is a class framework designed for facilitating the implementation of the agents’

components and the use of the services provided by the SALSA middleware. Thus, it is the

SALSA API that enables developers to implement the agent’s components for perceiving,

reasoning and acting, and to control the agent’s life cycle. The Perception component

gathers context information from the environment’s sensors and devices, from the users

through a graphical user interface, and from other agents through the Broker’s Proxy. The

perceived information generates events which are captured by the Reasoning component,

which governs the agent’s actions. The programmer, based on the logic of the agent,

implements this component by using a reasoning algorithm, such as a simple condition-

action rule, a neural network or case based reasoning. The Action component contains the

action plan to follow based on the agent’s reasoning. It also includes sub-components that

allow the agent Communication, Mobility in order to update its reasoning component, and

to Derive Context information based on information perceived by the agent.

4.2.2.3 Services

The SALSA middleware provides an Agent Directory service which is accessible

through the Initialize and Register module of the SALSA API. It provides a set of classes

that allow programmers to register the agent’s attributes in one or more Agent Directories,

and enable agents to look for services provided by other agents.

4.3 Implementation of SALSA

Figure 9 presents a physical view of the middleware represented as a package

containing the following components:

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

75

Agent Directory (AD)

AD-proxy Agent

LDAP Server

XSL

AGENT BROKER

IM&P
Server

Observer
(Passive

Perception)

Observer
Subject

PassiveEntityToPerceive

PassivePerception

subject

observer

Reasoning

Derive
Context

Action

Communication Mobility

SALSA Agent
<<Framework>>

ClientUtilities

SALSA
<<Middleware>>

Adapter
(Active

Perception)

Adaptee
AdapterActiveEntityToPerceive

ActivePerception

Adaptee

Adapter

Initialize
and

Register

Figure 9. Architecture of SALSA

• Resources represented by physical components deployed in nodes.

• A class framework represented by a stereotyped package that includes the collection of

SALSA classes. These classes are grouped in collaborations that shape the way in

which they were organized.

• And the Client and Utilities packages that provide the classes to facilitate the

development of the agent’s proxy to the Broker and to parse the messages

communicated via the Broker.

An explanation of the main SALSA subsystems follows:

4.3.1 Agent Broker

Given the nature of ubiquitous computing systems in which agents need to

asynchronously notify information to users and communicate with other agents by using

the same channel of communication, an Agent Broker was proposed. The implementation

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

76

of the Agent Broker is the Jabber Instant Messaging and Presence (IM&P) server

(www.jabber.org). This server reports the state of people and agents, and handles the

interaction among people, agents, and devices through XML messages.

Figure 10. LDAP structure for the SALSA Agent Directory

An agent interacts with other agents and users through its Proxy to the Agent Broker,

which is an instant messaging client that sends XML messages. The IM&P server stores the

status of people and agents and notifies their changes to other agents subscribed to them.

Developers can define new states according to the device or service the agent represents.

For instance, an agent representing a printer may notify if it is busy or has a paper jam. This

allows developers to provide a consistent interface for users to interact with other people,

devices, and services [Favela et al., 2002].

4.3.2 Agent Directory

 SALSA provides a set of services that allow programmers to register and look for new

agents added to the ubicomp environment in an Agent Directory. The implementation of

the Agent Directory consists of a server that implements the Lightweight Directory Access

Protocol (LDAP); and a SALSA agent (AD-proxy agent) acting as proxy to the Agent

Directory.

dc=hospital

ou=InternalMedicine

ou=Emergencies

ou=services ou=servicesou=users ou=users

cn =
JorgeGomez

typeHost =
PDA

jabberID =
gomez@jserver

objectClass=agentUnit

. . . .

. . . .

cn =
PD-a

typeHost =
server

jabberID =
pd-a@jserver

objectClass=agentUnit

. . . .

. . . .

. . . .

attributes

organizational units

domain component

agents

organizational units

dc=hospital

ou=InternalMedicine

ou=Emergencies

ou=services ou=servicesou=users ou=users

cn =
JorgeGomez

typeHost =
PDA

jabberID =
gomez@jserver

objectClass=agentUnit

. . . .

. . . .

cn =
PD-a

typeHost =
server

jabberID =
pd-a@jserver

objectClass=agentUnit

. . . .

. . . .

. . . .

attributes

organizational units

domain component

agents

organizational units

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

77

The LDAP information model is based on entries. An entry is a collection of attributes

that has a globally-unique Distinguished Name (DN). The DN is used to refer to the entry

unambiguously. Each of the entry's attributes has a type and one or more values. The types

are typically mnemonic strings, like "cn" for common name.

As illustrated in Figure 10 entries are arranged in a hierarchical tree-like structure. For

the SALSA Agent Directory, it reflects the organizational boundaries of a ubicomp

environment. Entries representing an organization (or the domain of the ubicomp system)

appear at the top of the tree. Below them are entries representing the areas of an

organization. In the next level are entries representing organizational units, which are the

users and services/devices of the ubicomp environment. After this level, are the agents that

represent users or services/devices. And finally the leaves of the tree represent the attributes

of these agents. Figure 10 shows an example of an LDAP directory tree for the context-

aware hospital information system illustrated in the scenarios presented in Chapter 3.

The SALSA API provides the facilities to register agents in the LDAP directory and for

making specialized searches of agents. Thus, agents can communicate with the AD-proxy

agent by using the communication protocol provided by SALSA. As illustrated in Figure

11 when an environment agent (Agent A) requests information from the AD-proxy agent, it

converts the received SALSA message into an LDAP message. This is done through the

XSL filter (eXtensible Stylesheet Language) of the AD-proxy agent. Then, the LDAP

server retrieves the information requested and sends it to the directory agent which

transforms this information into a SALSA message by wrapping the response to be

delivered to Agent A.

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

78

Figure 11. Agent Directory Components interacting to provide information to Agent A

4.3.3 SALSA class framework

 The SALSA class framework provides a set of classes to facilitate the implementation

of the internal architecture of an agent and control its life cycle. The collaborations of

classes included in the package of the SALSA class framework, shown in Figure 9,

represent the mechanisms to implement the agent’s components, such as the classes for

implementing passive and active perception, reasoning and action. The complete set of

classes provided by SALSA are depicted in Figure 12 and explained in the following

sections.

4.3.3.1 Agent perception

Two types of perception were identified for SALSA agents: active and passive. In

active perception, an agent decides when to request or gather information from another

agent or entity in the environment such as a sensor. In passive perception, the agent

receives data without requesting it.

LDAP server

AD-proxy agent Agent A
1: Request information

6: Response

2: Transform SALSA
message into LDAP

message

5: Transform LDAP
message into SALSA

message

3: Request information 4: Retrieved Information

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

79

UserEvent

ArriveResponseEvent

ArriveNotificationInfoEvent

ArrivePresenceEvent ArriveRequestEvent

ArriveComponentEventArriveCommandEvent

ArriveCommandEvent

Event

ActingActivePerception

generate

PassivePerception
generate

Broker

Action

BrokerProxy
0..*0..*

send/receive

send

ArriveSensorDataEvent

ArriveSimpleMessageEvent

AgentDirectoryAgent

11

XMLPresence

PassiveEntityToPerceive

XMLMessage

SensorData

ActiveEntityToPerceive

SecondaryContext
Reasoning

derive

perceives

perceives

Figure 12. Class library of SALSA

As illustrated in Figure 9, the Passive Perception was implemented based on the

Observer design pattern [Breemen, 2003]. This type of agent perception starts when a user,

device or other agent sends data to an agent through the Agent Broker. In this case an agent

has the role of observing the environment and acting according to the information received.

Figure 13 shows the main classes for implementing this type of perception. The

PassiveEntityToPerceive class represents the subject to be observed by the agent;

and the PassivePerception class captures the information sent by the subject. For the

active perception, an agent decides on its own when to sense an environment entity, and

requests this information from another agent, or directly from a sensor’s entity. This type of

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

80

perception implements the Adapter design pattern. Figure 14 shows that the classes for

implementing active perception are ActiveEntityToPerceive, which has the role of an

Adaptee according to the Adapter design pattern. This class represents the environment

entity that obtains data from a sensor or device. An agent decides when to perceive

information by invoking the method passivePerception.perceive() from the

Action object. Then ActivePerception, which has the role of Adapter, invokes the

ActiveEntityToPerceive object, that is the interface to the sensor, in order to get data

from a sensor or device (activeEntityToPerceive.getInput()).

Figure 13. Passive Perception of a SALSA Agent

return activeEnt it yToPerc eive.getInput

ActiveEntityToPerceive

<<abstract>> getInput()

Acting

Agent

Act ion
<<Interface>>

ActivePerception

getEntityToPerceive()
setEntityToPerceive()
perceive()

11

activePerception.perceive()

Figure 14. Active Perception of SALSA agents

PassiveEntityToPerceive

detach(p : PassivePerception)
attach(p : PassivePerception)
notifying(input : Input)

Agent
PassivePerception

perceive(input : Input) 11

p.perceive(input)
reasoning.think(event)

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

81

When any of the perception components receive information, a SALSA event is

generated indicating the type of information to the reasoning component as described in

Table IV. In addition to this, a SALSA event also contains the perceived data, which can be

an XML message received through the Agent Broker, or an object containing the data that

was read directly from a sensor’s interface.

Table IV shows in column 1 the events produced when information is perceived by an

agent. The second column explains the type of information that was received and how the

event may be produced. Column 3 describes the information contained in the object event,

which can be an XML message or an object data. Column 4 presents the type of perception

that can generate each type of event. For instance, the UserEvent is created when the user

is interacting with the agent through its GUI (Graphical User Interface); this event can only

be perceived directly through a passive perception as indicated in column 4 of Table IV.

The only active perception supported by SALSA, is when the agent perceives data directly

from a sensor or device. The passive perception of a SALSA agent, in which data is

received through its IM client, is due to another agent that sends information by using the

communication methods of the SALSA API as presented in column 5.

4.3.3.2 Agent reasoning

The information perceived by an agent is subtracted from the event by the reasoning

component in order to be analyzed. The programmer, based on the logic of the agent,

implements this component by using an appropriate reasoning algorithm, such as

production rules, a neural network or case base reasoning. The Reasoning class contains the

abstract method think() that should be implemented by the developer. Its implementation

depends on the complexity of the agent’s behavior. The reasoning component can use the

facilities of SALSA to derive context information from the primary context information

perceived by an agent. For this, SALSA provides the class DeriveContext which uses an

XSL file as a filter that contains a set of rules to deduce secondary context from the data

perceived by the agent. The set of rules of the XSL filter should be defined by the

developer. Using these facilities of SALSA, developers need only indicate, to the

DeriveContext class, the primary contextual variables and the name of the XSL file.

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

82

Thus, when an event is passed to the reasoning component, its derive context component is

in charge of: detecting the type of event, extracting the data contained in the event, and

verifying if the data is an expected contextual variable in order to be analyzed by the filter

to check if some of the conditions have been met. Then, the derive context component

returns an XML message to the agent’s reasoning in order to indicate the inferred situation.

4.3.3.3 Agent action

To implement the action component, the framework provides the Action class with an

abstract method that a developer should overwrite to specify how the agent must react.

From, the action component, the agent can invoke the methods of communication provided

by SALSA in order to collaborate with other agents. These methods are presented in Table

V and SALSA communication protocol is explained in the next section. The acting

component also enables the agent mobility. It was implemented based on the pattern Rc2s

(request a component to a server) , which enables an agent to update its reasoning

component by getting a copy of the reasoning algorithm from other agent residing on a

server [Koukoumpetsos and Antonopoulos, 2002].

4.3.3.4 Agent communication

The messages sent among agents through the Agent Broker, are encoded using XML

(eXtensible Markup Language). A number of researchers have suggested that ACL (Agent

Communication Language) messages and its content ought to be encoded in XML because

it offers several advantages over traditional ACLs, e.g. KQML and FIPA ACL, which are

based on Lisp-like. Some of these advantages are [Labrou, 2001]:

• XML describes data in a human-readable format

• It is a database-neutral and device neutral format. Data marked up in XML can be

targeted to different devices using the eXtensible Style Language (XSL).

• One can use off-the-shelf tools for parsing XML, instead of writing customized parsers

to parse the ACL messages.

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

83

Table IV. Description of the SALSA events generated when information is perceived

1. Event 2. Description 3. Wrapped
information

4. Type of
perception

5. Method used for
communicating the perceived

information
UserEvent Programmers may use this event to

wrap an event produced when the
user interacts with the user
interface of the ubicomp system.
For instance, to request
information.

A GUI’s event Passive

ArriveRequestEvent Arrives a request of information
from an agent

XML message: Passive
(through IM)

sendResquest()

ArriveResponseEvent Arrives information that was
previously requested by this agent

XML message: Passive
(through IM)

sendResponse()

ArriveCommandEvent An agent is requesting to execute a
functionality provided by this
agent, such as a service

XML message: Passive
(through IM)

sendCommandRequest()

ArriveNotificationInfoEv
ent

Arrives information that was not
previously requested

XML message: Passive
(through IM)

sendNotificationInfo()

ArrivePresenceEvent Arrives a presence message
indicating a change of state of
others agents and users

XML message: Passive
(through IM)

sendPresence()

ArriveSensorDataEvent Arrives data perceived from a
sensor

An XML message:
or SensorData
object

Passive
(through IM)
or Active

sendDataSensor()

ArriveSimpleMessageEvent Arrives a non-SALSA message.
It could be defined by the
programmer,

XML message: Passive
(through IM)

sendMessage()

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

84

Table V. Methods used for communication by SALSA agents

Method for requesting an
action or service

XML message sent by the SALSA method

sendCommandRequest() <message to=’agentA@server_jabber’
 from=’agentB@server_jabber’>
 <x xmlns=’x:command’>
 <params><type>TypeOfCommand </type>
 // TAGS DEFINED BY THE DEVELOPER
 </params>
 </x> </message>

sendResquest() <message to=’agentA@server_jabber’
 from=’agentB@server_jabber’>
 <x xmlns=’x:request’>
 <params><type>TypeOfRequest </type>
 // TAGS DEFINED BY THE DEVELOPER
 </params>
 </x> </message>

sendResponse() <message to=’agentA@server_jabber’
 from=’agentB@server_jabber’>
 <x xmlns=’x:response’>
 <params><type>TypeOfResponse </type>
 // TAGS DEFINED BY THE DEVELOPER
 </params>
 </x></message>

sendNotificationInfo() <message to=’agentA@server_jabber’
 from=’agentB@server_jabber’>
 <x xmlns=’x:notificationInfo’>
 <params><type>TypeOfNotification </type>
 // TAGS DEFINED BY THE DEVELOPER
 </params>
 </x> </message>

sendDataSensor() <message to=’agentA@server_jabber’
 from=’agentB@server_jabber’>
 <x xmlns=’x:dataFromSensor’>
 <params><type>TypeOfData </type>
 //SENSED DATA
 </params>
 </x>
</message>

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

85

• XML makes the ACL more WWW-friendly, which facilitates the development of

software agents.

• Using XML will facilitate the practical integration with a variety of Web

technologies.

XML incorporates links, which allow interfacing the ACL message to the knowledge

repository that is the WWW.

The aim of the SALSA development framework is to use a friendly agent language

taking advantage of XML to encode any kind of message. For defining the types of

messages that can be communicated among SALSA agents, the Extensible Messaging

and Presence Protocol (XMPP) of the IM server (www.jabber.org) was extended.

SALSA provides developers with an API that facilitates the composing, sending, and

receiving of messages between agents. However, the code for every content message type

of the communicative act is left to the programmer, because it depends on the intent of

the message generated by each agent in the ubiquitous environment.

The API of SALSA for implementing the communication among agents consists of

several methods that form the message that wants to be communicated. For instance, the
sendCommandRequest(mapa@serverJabber,”personalize”,marcerod)

method is used by an agent to request another agent to execute a specific action or

service. When it is invoked, it will form an XML message (as the illustrated in Table V)

with tags that specify to whom the message is addressed (mapa@serverJabber), the type

of service requested (personalize), and the parameters needed to perform the action

(userID). An example of this XML message is illustrated in Figure 15.

<message to=’ mapa@serverJabber @server_jabber’
 from=’agentB@server_jabber’>
 <x xmlns=’x:command’>
 <params><type>personalize </type>
 // TAG INDICATING THE USER FOR WHOM PERSONALIZED

 THE MAP
 <user > marcerod </user>
 </params>
 </x>

</message>

Figure 15. XML message requesting to personalize information to the Map agent

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

86

The communication protocol of SALSA enables agents to collaborate to reach a

common goal, such as adapting and personalizing information for a user. This

collaboration may involve one or more of the following actions:

• Negotiating for a service. In this case, an agent (A) requires a service from another

agent (B). As illustrated in Figure 16, agent A requests agent B to execute a service or

a specific action. Agent B could respond by notifying agent A that the action was

successfully executed or notifying that it can provide such service (Figure16 b)); or

by providing information returned by the requested service (Figure16 c)).

 a) b) c)
Figure 16. SALSA’s communication methods for requesting the execution of a service

• Requesting information. An agent (A) requires information from another agent (B).

As depicted in Figure 17, agent B can respond by sending the requested information

to agent A (Figure 17 a)); or by sending a notification that it can provide this

information (Figure 17 b)).

a) b)
Figure 17. SALSA’s communication methods for requesting information

A : Agent B : Agent

sendCommandRequest(command)

act(command)
act(command)

A : Agent B : Agent

sendCommandRequest(command)

sendNotificationInfo()

Notifying if the
action was executed

act(command)

A : Agent B : Agent

sendCommandRequest(command)

sendNotificationInfo()

Notifying if the
action was executed

A : Agent B : Agent

sendCommandRequest(command)

sendNotificationInfo()

Notifying if the
action was executed

A : Agent B : Agent

sendCommandRequest(command)

act(command)

sendResponseInfo()

Sending information
generated by the action

A : Agent B : Agent

sendCommandRequest(command)

act(command)

sendResponseInfo()

Sending information
generated by the action

A : Agent B : Agent

sendDataSensor(data)

act()

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

87

• Notifying information perceived from a sensor or device. Agents that act as proxies to

devices or sensors, get information from them and may require to communicate with

other agents of the environment to be processed. In Figure18, agent A sends

information perceived from a sensor to agent B.

Figure 18. SALSA’s communication methods for sending information perceived from a
sensor

• Notifying the presence and status of agents. An agent notifies a change of presence or

status to other agents subscribed to its presence. This enables agents to be aware of

the available services of the ubicomp environment. Agents also received the presence

of the users in the ubicomp environment.

4.3.3.5 Agent initialization and registration

SALSA provides the class AgentDirectory which includes methods for registering

an agent on the Agent Directory, and for making different types of searches on it. By

using the method register(), a developer indicates how the agent will register its

attributes on the Agent Directory. This allows developers to update the agent’s attributes

without having to manually configuring the records on the Agent Directory. Developers

can define the SALSA attributes for an agent with the methods contained in the class

AgentAttributes which are presented in Table VI.

The current searches supported by the proxy-agent to the Agent Directory (AD) are:

looking for agents available in the ubicomp environment, searching for agents available

in a specific area of the ubicomp environment, and looking for a specific service in the

environment or in an area. These methods are described in Table VII, and can be invoked

A : Agent B : Agent

sendRequest()

sendNotificationInfo()

Notifying it can provide
the requested information

act(retrieveInfo)

A : Agent B : Agent

sendRequest()

sendResponse()

act(retrievInfo)

A : Agent B : Agent

sendRequest()

sendNotificationInfo()

Notifying it can provide
the requested information

act(retrieveInfo)

A : Agent B : Agent

sendRequest()

sendResponse()

act(retrievInfo)

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

88

by any of the agent’s components. Thus, while an agent is executing, it can look for

information regarding other agents with whom it needs to interact or it can look for

information about itself. For instance, an agent representing a service may require

publishing an image that represents it on the map of the ubicomp area showed on a public

display; then the agent requests this information from the proxy-agent of the AD.

 Table VI. Attributes for a SALSA agent

Attribute Description SALSA methods
typeAgent Type of agent: represents a user or

service
setTypeAgent(String
type)

Name Name assigned to the agent during the
design phase. For instance, LE-a, KM-
a, or Ca-a.

setName(String name)

Jid Identification of the agent on the
Instant Messaging server (Jabber). For
instance: LEagent@jabberServer

setJabberID(String
jid)

description Brief description of the agent setDescription(String
description){

typeHost Type of host on which the agent
resides: PC, Table PC, PDA, mobile
phone, etc.

setTypeHost(String
typeHost)

urlImage Link to the image used for
representing an agent.
Agents that represent services or
devices may require being represented
by an image on a GUI of the ubicomp
system.

setUrlImage(String
urlImage)

Area Department of the organization setArea(String area)

Floor Floor of the building in which a
department of the organization is
located

setFloor(String
floor)

4.4 Discussion

This Chapter has presented the requirements of the SALSA middleware which were

defined when addressing the design issues raised in the scenarios that describe how

autonomous agents can be used as the main components of ubiquitous computing

Chapter 4- The SALSA middleware

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

89

systems. These requirements were addressed during the design phase of the middleware.

The implementation of the SALSA API was introduced in this Chapter, and more details

regarding the API can be found in Appendix A.

The SALSA API was initially implemented in Java, which enabled agents to be

executed on any computing platform. However, it was observed that this version of

SALSA does not enable agents to access the native libraries of Widows CE, therefore a

sub-set of the SALSA API was implemented in C#, called micro-SALSA (mSALSA),

which enables developers to create the components of the agents and use the SALSA

communication protocol. Developers have the option of programming in any of these

languages and take advantage of the programming facilities offered by each of them.

The following Chapter illustrates how SALSA facilitates the development of an

ubicomp system by revisiting one of the scenarios presented in Chapter 3.

Table VII. Methods of the AgentDirectory class for requesting information from the
Agent Directory proxy-agent (AD-pa)

Methods Description
lookForAllAgents() By invoking this method, an agent requests

from the AD-pa, information about all agents
available in the ubicomp environment

lookForAllAgents(String area) An agent requests from the AD-pa,
information about all agents available in a
specific area of the ubicomp environment

lookForAservice() An agent requests from the AD-pa,
information about all agents offering a
specific service available in the ubicomp
environment

lookForAservice(String area) An agent requests from the AD-pa
information about all agents offering a
specific service available in a specific area of
the ubicomp environment

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

90

Chapter 5

Creation and evolution of ubicomp systems

with SALSA
To illustrate the flexibility of SALSA for allowing the progressive development of

ubiquitous computing systems, this Chapter explains how an autonomous agent can be

implemented with SALSA, and then, how this agent can be easily integrated to a ubiquitous

computing system. For this, the following sections describe the implementation of the

location-estimation agent and its integration into the context-aware hospital information

system (CHIS) which was introduced in scenario 3.3.1. Finally, it is presented how the

CHIS functionality was extended to support context-aware public displays by revisiting the

scenario 3.4.1.

5.1 Estimating mobile user’s location

Estimating the location of a user has been a subject of considerable attention in recent

years. Of particular interest are location estimation techniques that make use of an existing

wireless LAN (Local Area Network) infrastructure, since they have better scalability and

less installation and maintenance costs than ad-hoc solutions. These methods measure the

RF (Radio Frequency) signal strength between a mobile device and several access points of

the wireless LAN to estimate location [Bahl and Padmanabhan, 2000].

To estimate the location of the mobile users of the CHIS system, we used an

autonomous agent that wraps in its reasoning component a neural network trained to map

RF signals from a WLAN to 2D coordinates. Once trained, the neural network was used to

classify incoming patterns into labeled classes, X,Y coordinates. More details of the neural

network implementation are explained in [Rodriguez et al., 2004].

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

91

5.1.1 Implementation of the location-estimation agent

Figure 19 represents the main components of the LE-a and how it is attached to the

location-aware client. The figure represents as a circle the interface from which an agent

perceives information and as a receptacle the perception component. This notation helps to

clearly visualize how an agent may perceive information directly from a device/sensor or

from another agent. For instance, the LE-a has one entity to perceive the SNR, while the

location-aware client (which is also an agent) has an entity to perceive the user’s position

sent by the LE-a and a second entity to perceive information from other agents through an

IM client, through which this agent can also communicate with other agents as part of its

action plan. According with the perceived information the LE-a decides what action to

execute. Thus, the agent decides to estimate the user’s location based on the SNR received

from three access points, or to update its reasoning component when the SNR decays

considerably from floor to floor. It was considered that one location-estimation agent had to

be trained for each hospital floor in order to calculate the current user’s location. When the

strength of the signal from the access points in one floor goes below certain threshold, the

LE-a asks the Agent Directory to request information of the server in which resides the LE-

a that holds the trained neural network for that floor. Thus, by using the mobility attribute

of agents, the LE-a on the PDA can update its reasoning component.

Figure 19. Components of the Location-estimation agent and the Location-aware client

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

92

Figure 20Figurea) shows a class diagram based on the AUML (Agent Unified

Modeling Language) notation that illustrates the design of the location-estimation agent

(LE-a). At the top of the diagram is specified the information that define the state of the

agent: the perceived information (SNR- Signal to Noise Ratio) and the output information

(coordinates X,Y). After that, the diagram defines the actions of the agent; i.e. notifying the

estimated user’s position to the location-aware client, for which the LE-a uses the SALSA

communication protocol (sendDataSensor()) as indicated at the diagram bottom. Figure

20 b) shows how the agent’s components for perceiving, reasoning and acting, interact to

estimate the user’s location. These components are instances of SALSA classes as

explained in the following sections.

Figure 20. AUML class diagram (a), and sequence diagram of the Location-estimation
agent (b)

5.1.1.1 Perception Component

The agent’s perception module receives the SNR (Signal to Noise Ratio) through the

PassiveEntityToPerceive object, which represents the memory of the wireless

network (WLAN) card. The developer implemented this interface to read data from the

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

93

WLAN card, wrap the data in an Input object, and then notify it to the

PassivePerception component of the LE-a. When the SNR value is changed, the

PassivePerception object generates an arriveSensorDataEvent which is passed to

the reasoning component.

Figure 21a) shows the pseudo code for implementing the perception component of the

LE-a using the SALSA classes. The code was numbered to illustrate what element of the

LE-a is being implemented according to Figure 20. Thus, element of the LE-a is the

entity for perceiving information. This is the WirelessCardInterface that contains the

code for reading the SNR from the wireless LAN card. This class has embedded a

PassiveEntityToPerceive object (pp) which has a reference to the LE-a. Thus, when

a new SNR is read, it is passed to the passive perception component () by invoking the

method pp.notifying(). Thus, developers need to implement just the interface that

reads the data from a device/sensor and to use the SALSA classes to connect the interface

with the perception component, which is automatically activated when an instance of the

Agent class is created.

5.1.1.2 Reasoning component

As illustrated in Figure 21 b), the ReasoningLE class () is specialized from the

Reasoning abstract class of SALSA. Its think method was overwritten to process the

perceived input and then, to indicate to the agent what action should be executed. If the

received SALSA event was of type arriveSensorDataEvent, it indicates that a new

estimation of the user’s location has to be calculated. Then, the estimatesLocation()

method is invoked, which implements the trained Neural Network. Providing an abstract

class to implement the reasoning component enables programmers to easily update or

replace its logic with another algorithm that may be more efficient.

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

94

Figure 21. a) Code for implementing the entity for perceiving information from the WLAN
card. b) Code of the reasoning component

5.1.1.3 Action component

When a new user’s location is estimated, the reasoning component decides to

communicate it to the location-aware client which is also executing in the handheld

computer. Figure 22 a) presents the code for implementing the LE-a communication with

the location-aware client. To do this, the execute() method of the abstract class Action

was overwritten to invoke the SALSA method sendDataSensor()().

5.1.1.4 Creation of the agent

Finally, once the Perception, Reasoning, and Action components of the agent were

implemented, the main body of the agent had to be created. This was done by extending the

SALSA Agent class (see Figure 22 b)). Thus, when an instance of this agent is created, its

components are activated and the life cycle of the agent begins.

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

95

Figure 22. Code of the action sending data to the location-aware agent a). Code of the LE-a
creating its components b)

5.2 Context-aware Hospital Information System (CHIS)

With SALSA we built the context-aware hospital information system (CHIS) with the

aim to support the activities of the hospital staff [Favela et al., 2004; Muñoz et al., 2003].

CHIS is a handheld-based system that enables users to locate relevant documents, such as

patient’s records and laboratory results; locate patients and colleagues; and locate and track

the availability of devices such as medical equipment, and other computational resources

such as public displays.

5.2.1 Architecture of CHIS

Figure 23 presents the design of the system architecture illustrating the main nodes in

which the system’s components are executing. These components are SALSA agents

communicating through the Agent Broker (an IM server), as specified by the SALSA

communication infrastructure.

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

96

PDA

Location-
estimation

agent (LE-a)

Location-aware
Client

WLAN

Server

Location-
estimation agent

(LE-a)

Server

HIS
HIS agent

(HIS-a)

Server

Context-aware
agent (CA-a)

<<mobile>>

Server

LDAP
Proxy agent to
Agent Directory

(AD-a)

IM&P server: Agent Broker

Figure 23. Architecture of the context-aware hospital information system

In the handheld computer resides the Location-aware client which notifies the user’s

location to other users and agents, provides mobile users with information relevant to their

location, and communicates with other members of the hospital staff. Its interface is based

on the IM paradigm, through which users are notified of the availability of other users and

their location. In the handheld also resides the location-estimation agent (LE-a) with the

purpose of obtaining the user’s position (X,Y coordinates), and informs it to the location-

aware client. By using the mobility attribute of agents, the LE-a on the PDA can update its

reasoning component by getting the reasoning component from the server in which resides

the LE-a that holds a trained neural network for a specific building’s floor. The Agent

Directory provides information of the agents available in the environment. For instance, the

LE-a can know in which server resides the agent containing the trained neural network by

communicating with the agent acting as proxy to the Agent Directory (AD-a).

The hospital information system agent (HIS-a) acts as proxy of the HIS that manages

and stores the patient’s clinical records and other data relevant to the hospital. This agent

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

97

provides access to information contained in the HIS, and monitors its changes. Finally, the

Context-aware agent (Ca-a) is the system’s component that sends the messages that depend

on contextual variables for their delivery, such as the recipients, location and role.

5.2.2 Implementation of CHIS

This section revisits the scenario 3.3.1 to explain the functionality of the context-aware

hospital information system as illustrated in Figure 24.

Figure 24. Agents of CHIS interacting for enabling the physician to access the patient’s
clinical record

When the Location-aware client perceives that Dr. Diaz is in front of one of his

patients, it acts by updating its user interface to show his location (act(update

interface)) and notifying to all users and agents subscribed to the presence of the user

(sendPresence()). Then the HIS-a verifies if its contextual conditions match the

Location
Aware Client

Location
Aware Client

Hospital IS
AgentUser

sendPresence (state,position)

act(update Interface)

AgentBroker

act(create lab form)

act(request patient record)

sendRequest (lab form)

Clinical
Records

act(get patient data)

sendResponse (lab form)

sendNotificationInfo(form to request analysis)
act(store lab request)

fill lab form

[if doctor is in front
patient’s bed]

select lab request option

sendNotificationInfo(patient record)

act(show patient
record)

visit the patient

Location-
estimation Agent

Location-
estimation Agent

estimates
users’ location

notify user’s location

act (personalize info)

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

98

perceived context, i.e. the user’s role and location. As Dr. Diaz is in front of one of his

patient’s bed, the HIS-a retrieves the patient’s clinical record (act(retrive patient

record)) and sends it to the Location-aware client (sendNotificationInfo()) in

order for the physician can analyze the patient’s health-condition.

After consulting both the record and the patient, Dr. Diaz decides to request a lab

analysis (sendRequest(lab form)) from the HIS-a. This agent creates the lab form,

which includes some of the patient’s data, such as his name and bed number, and sends it to

the context-aware client to be displayed for Dr. Diaz (sendResponse(lab form)). The

location aware client customizes (act(personalize info)) the lab form for the doctor

based on his identity (Dr. Diaz), role (physician) and current location (bed 222). Then, he

fills the lab form and sends it to the Hospital IS to be added to the patient’s clinical record

(sendNotificationInfo(form to request analysis)).

Finally, the HIS-a will inform the chemist of the patient analysis to be performed and

the medical samples to be taken. When, the chemist adds the lab analysis to the patient’s

clinical record, the HIS-a will notify the test results to the doctor who will make a diagnosis

of the patient’s health condition.

5.2.3 Integrating the location-estimation agent to the context-aware hospital

information system

To integrate the LE-a to the context-aware hospital information system, it was modified

the location-aware client. Initially the user explicitly specified his location on the GUI of

the location-aware client. As indicated in the pseudo code of Figure 22 b), in order for the

location-aware client to perceive the user’s X,Y coordinates from the LE-a, a

PassiveEntityToPerceive object was created in the location-estimation through

which the passive perception of the Location-aware agent () was attached to the LE-a.

As illustrated in Figure 19, the location-aware client has two receptacles for perceiving

information: one for receiving data from the LE-a, and another one for receiving data

contained in XML messages sent by other agents through the Agent Broker. The reasoning

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

99

and action components were not modified during the integration process of the LE-a to the

context-aware system for a hospital environment.

Figure 25 illustrates the interactions among the components of CHIS which includes the

location-estimation agent. When Dr. Diaz visits his patient, then the SNR to the access

points change. This is perceived by the LE-a (perceive(SNR)), which estimates the

user’s location based on its trained neural network (think(estimate user’s

position)). Thus, the agent obtains the user’s position (X,Y coordinates) which is

communicated to the location aware client (sendDataSensor()). The location aware

client translates the X,Y coordinates to an id of the place in which is located the user (i.e.

bed number, room). Thus, the reasoning component maps the user’s X,Y coordinates to an

area identifier (location: think()) and finally, its acting component communicates the

user’s location to the rest of the system’s agents and users

(sendPresence(state,location)). Figure 25 shows the architecture of CHIS

including the location-estimations agent.

Figure 25. Location-estimation agent interacting with the agents of the context-aware
hospital information system

Location
Aware Client

Location
Aware ClientUser

sendPresence (state,location)

location: think()

AgentBroker

visit the patient

Location-
estimation Agent

Location-
estimation Agent

perceive(SNR)

SNR changes

Access PointsAccess Points

think(estimate user’s position)

sendDataSensor(user X,Y position)

act(update interface)

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

100

5.3 Extending the functionality of CHIS through context-aware public

displays

As explained by scenarios of Section 3.4, the system was extended to integrate context-

aware public displays which can be used to visualize medical information, to support

coordination and collaboration of the hospital staff [Favela et al., 2004].

5.3.1 Extended architecture of CHIS

Figure 26 presents the architecture of CHIS incorporating new agents to support users’

activities through context-aware public displays. In the display server node resides several

agents offering several services for the medical personnel. These services were assigned

implemented as SALSA agents. Thus, the responsibility of the Public Display agent (PD-a)

is to act as a proxy to a public display available at the hospital. This agent enables users to

access the public display and have control over the applications displayed. The

responsibility of presenting a personalized map of the hospital floor was delegated to the

map agent (Map-a). It displays a map of the hospital floor that indicates the location of the

hospital staff, available services, and highlights the beds of patients assigned to the current

physician using the display. The Map-a also shows messages addressed to the user, i.e.

messages related to his patients that may indicates additions to their electronic records.

Finally, the knowledge management agent (KM-a) is responsible for displaying the hospital

medical guide and previous cases relevant to the case being consulted on the public display.

5.3.2 Implementation of the context-aware public displays

By revisiting scenario 3.3.1, Figure 27 depicts a sequence diagram illustrating how the

autonomous agents of CHIS interact by using the SALSA communication protocol (the

SALSA methods are in bold font style on the diagram). In this scenario, the HIS-a

perceives a change on the hospital information system and notifies it to Dr. Garcia by

sending a message (sendNotificationInfo) indicating that the X-ray results of patient

on bed 225 are available. When the location-aware client receives this message, it will act

by updating its instant messaging interface. Dr. Garcia approaches the nearest public

display when finished with her current patient and before visiting patient 225.

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

101

Figure 26. Architecture of the context-aware hospital information system

The doctor’s location, which is constantly being tracked by the location-estimation

agent on her PDA, is notified (sendPresence) to all users and agents in the environment

by the Location-aware client. The Public Display agent acts by displaying the user’s

photograph, indicating with this that the user has been logged into the system. Then, the

PD-a requests (sendCommandRequest) to the Map-a that personalizes the map

application for Dr. Garcia. Finally, the PD-a also requests (sendRequest) the contextual

messages recently received to the location-aware client, and display them on the floor map.

Thus, the physician can continue accessing the records of his patients and other medical

information by interacting with the public display.

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

102

Figure 27. Implementation of CHIS using the SALSA development framework

5.4 Conclusions

The main components of the context-aware hospital information system are agents that

respond autonomously in accordance with the context surrounding the activities performed

at the hospital. SALSA was used to implement this system since it offers facilities to easily

implement and add functionality to ubicomp systems. As the architecture of SALSA is

based on the instant messaging (IM) paradigm, it allows a standardized form of interaction

among users and services represented by autonomous agents. In the same form, users are

aware of the presence of other users, they are also aware of the presence and state of the

environment’s services and devices. The scalability of a system implemented with SALSA

is enabled by the IM server used as an Agent Broker, since it scales to a high volume of

streaming XML connections serving hundreds of thousands of simultaneous users and

agents. By using SALSA, developers may easily integrate any mechanism of reasoning; or

change the current reasoning algorithm for other, without modifying the code of the rest of

the agent’s components. For instance, we may change the neural network of the Location-

Chapter 5- Creation and evolution of ubicomp systems with SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

103

estimation agent by a nearest neighbor algorithm without altering the perception and acting

component. With SALSA, it can be created different types of agents, such as personal

agents and service agents that may have attributes of autonomy, mobility, reactivity and

collaboration. SALSA agents have well-defined interfaces to interact with their

environment, and mechanisms to encapsulate its implementation. For this reason, these

agents may be considered as units of independent deployment or components, which may

be re-used or integrated to any SALSA ubiquitous system. For instance, the location-

estimation agent may be integrated to a different environment than a hospital by just

training its neural network for this new physical environment.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

104

Chapter 6

Evaluation
The goal of evaluating SALSA was to find out if SALSA facilitates the development of

ubiquitous computing systems. The process followed for evaluating SALSA involved

studying existing evaluation methodologies that could be used or adopted for evaluating

SALSA. This investigation led to the definition of the criteria for evaluating SALSA and to

state a set of hypothesis based on what SALSA offered to developers of ubicomp systems.

Different methods were followed for evaluating one or more of the hypothesis. For

instance, the ease of use of SALSA was evaluating through an in-lab experiment in which

several users completed a programming exercise, while the use of autonomous agents as a

design abstractions for ubicomp systems was evaluated with a design exercise. This chapter

explains this criterion, the hypothesis stated, the methods followed for evaluating these

hypothesis, and finally, the results and conclusions of evaluating SALSA.

6.1 Evaluation criteria and hypothesis

Not much research has been published on evaluating infrastructures (such as

middleware, toolkits, or APIs) that support the development of systems. Software

Engineering evaluation methods may be adapted to evaluate performance and reliability

when producing an application. However, these metrics do not address the end-user

experience of software development. They do not provide evidence of the infrastructure’s

ease of use or its usefulness for implementing systems within a specific domain. Inspired

by empirical studies for evaluating infrastructures used for implementing interactive

systems [Klemmer et al., 2004; Grimm, 2004] several desirable properties were identified

that are relevant for evaluating a middleware:

Utility. “This criterion determines whether others can build real pervasive applications

atop the infrastructure. After all, system architecture is only as useful as the programs

running on top of it” [Grimm, 2004]. To evaluate whether SALSA met this criterion, the

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

105

following questions were posed.

Can we build real ubicomp applications with SALSA?

Does SALSA support a variety of useful systems? If so, what are these useful systems?

The methodology followed to determine the functional requirements of SALSA was

based on selecting scenarios which were used to envision how ubicomp technology along

with autonomous agents support users’ activities. As presented in Chapter 3, these

scenarios became our vision of how ubicomp technology can support the activities of real

users working in hospitals. The selected scenarios were used to propose how autonomous

agents can be used as the main constructs of a ubicomp system. This leads to the first

hypothesis:

Hypothesis 1:

“SALSA is useful since it is suitable for implementing useful ubicomp applications”

Completeness. “This criterion determines whether the architecture is sufficiently

powerful and extensible to support interesting user-space programs” [Grimm, 2004].

Middlewares, frameworks and toolkits are developed with the goal of facilitating the

development of applications that share the same characteristics, such as distribution of

components. Implementing a ubicomp application involves coping with other complexities

such as heterogeneity of devices, providing context-aware services, and issues related to

human-computer interaction. To determine the completeness of SALSA, the following

questions had to be answered:

• How does SALSA allow developers to deal with the complexities associated with the

development of ubicomp systems?

• Does SALSA enable the evolution of ubicomp applications?

This last question led to state hypothesis 2:

Hypothesis 2:

“SALSA is flexible enough to enable the evolution and iterative implementation of

ubicomp applications”.

Ease of use. “Programming languages and toolkits should be evaluated on how readable

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

106

the programs that are written with the programming language are to other programmers,

how learnable they are, how convenient they are for expressing certain algorithms, and how

comprehensible they are to novice users” [Klemmer et al., 2004]. SALSA was developed

with the aim of facilitating the implementation of ubicomp environments by means of the

use of autonomous agents. However, during the development of SALSA, the question arose

as to why it was necessary to provide another API for agents, and what differences and

advantages SALSA offered with respect to other agent frameworks. Thus, it was

determined that to evaluate the ease of use of SALSA, the following questions had to be

addressed:

• How learnable is the SALSA framework?

• How comprehensible is SALSA for users who are not familiar with agents?

• How easy is it to modify the reasoning component of agents and to add new

functionality to the ubicomp system by means of the use of SALSA agents?

• How convenient is SALSA for expressing the agent’s pro-activity, reactivity and

collaboration?

To evaluate the ease of use of the SALSA class framework, the following hypotheses

were stated:

Hypothesis 3:

SALSA is considered by programmers as easy to learn even when they do have no

previous knowledge of agent technology.

Hypothesis 4:

SALSA provides appropriate abstractions that facilitate the implementation of agents’

reactivity.

Hypothesis 5:

The execution model of SALSA agents (perception-reasoning-action) enables

developers to easily conceive a ubicomp application.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

107

6.2 Creating real ubicomp applications with SALSA

The first hypothesis emphasizes that if SALSA enables developers to create real

ubicomp applications, then it is evidence that SALSA is useful. To envision some of the

scenarios presented in Chapter 4 that could be implemented with SALSA, the activities of

users in their real work settings were observed. To determine whether the scenarios

identified from the workplace studies were considered realistic by the hospital’s staff,

evaluation sessions were conducted with some of them. The following sections describe the

results obtained from evaluating the scenarios.

6.2.1 Scenarios depicted the context-aware medical practices of mobile users

In the evaluation of scenarios 3.3.1 and 3.3.2, 28 hospital staff members of the internal

medicine area of the IMSS General Hospital —13 physicians, 8 nurses, and 7 support staff

participated, including the chemist responsible for laboratory analyses. We presented staff

members with animations of the scenarios and then gave them a questionnaire to measure

how real they thought the scenarios were, if they would change anything, and if they could

imagine new scenarios for context-aware mobile technology. More information regarding

the evaluation methodology can be found in [Muñoz et al., 2003a; Muñoz et al., 2003b].

The results of the scenarios’ evaluation showed that the interactions of the first and

second scenario were considered realistic by 89.28% and 89.75% of the participants

respectively. These percentages included all the physicians. On the other hand, one (1) of

the nurses had an opposing opinion, and another nurse did not give any opinion at all.

Similarly, one (1) member of the support staff (who were not represented in any of the

scenarios) did not answer this issue for the first scenario, and two (2) of them did not

provide an answer for the second scenario.

The questionnaire also included questions to evaluate the main characteristics of the

scenarios. Table VIII shows the four questions and their responses. The results validate

some of our findings from the workplace study: The staff found location information

useful, that communication exchanges depend on context, and that handheld computers are

an appropriate mechanism for accessing medical data. Additionally, most potential users

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

108

were not concerned with the likely distractions from the messages received since they are

already confronted with constant disruption in their daily work. The information obtained

in this evaluation enabled us to measure the usefulness of the system in the context of the

scenarios of use.

Table VIII. Results of a questionnaire measuring user acceptance of scenarios and the
system’s context-aware features

 Strongly
Disagree

Disagree Slightly
Disagree

Neither Slightly
Agree

Agree Strongly
Agree

It is useful to
know who is in
the hospital and
where they are in
relation to me

1 0 0 0 0 7 20

It is useful to
send messages
that depend on
context for their
delivery

1 0 0 0 1 7 19

It is useful to
have access to the
patient’s medical
records through a
handheld
computer

1 0 0 0 0 8 19

Receiving
messages can
distract me from
my daily work*

9 9 2 3 3 0 1

*One person did not respond to this question.

After the participants validated both scenarios, they provided us with additional insights

by proposing the inclusion of interactions in the scenarios or modifying them so that they

reflected real medical practices. Regarding the first scenario, some participants suggested

that the system could enable users to visualize X-Rays images. The hospital staff

considered it important for the system to inform the physician when the chemist received

the lab analysis request. Similarly, they emphasized that for scenario 3.3.2, it was necessary

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

109

to provide a mechanism to verify whether the message was received by the physician on

the next shift. However, this problem exists in other communication systems in which there

is no guarantee that a message has been seen by the addressee. In addition, in current work

practices in the hospital there is no mechanism to notify whether the requests for lab

analysis or medical notes have been delivered. Recommendations like this one were

considered in the design of the system. Another relevant comment was that messages like

the one sent by the physician in scenario 3.3.2 had to be integrated into the electronic

patient record. However, our objective was not to emphasize the message content, but to

illustrate how the system enables users to condition the delivery of a message. Other

comments related to this scenario indicated that the system enables hospital personnel to

transfer some medical information to personnel on the next shift. This indicated to us that

the main idea of this scenario was understood and well accepted. The participants also

suggested opportunities for applying the technology proposed by the scenarios—for

example, scheduling a surgery by tracking the availability of the operating room and the

specialists involved. This confirmed that the system illustrated in the scenario was

considered useful. This evaluation helped us to see that it is only when people have a

picture of their work that they can provide details beyond what we can observe without

their input.

6.2.2 Public Displays to support coordination and communication

For this evaluation, a 3 minute animation presenting scenario 3.4.1 was created and

showed to eleven physicians and two nurses. Afterwards, the subjects were asked to fill out

a questionnaire and brief interviews were conducted with them in order to validate the

system design depicted by the scenario. The questionnaire focused on specific aspects of

the support provided by the technology. In the interviews, we asked them whether the

scenarios were realistic and if the suggested use of the technology would enhance their

professional practice. More information regarding the methodology followed in this

evaluation is found in [Favela et al., 2004].

The results of the questionnaires indicated that 70% of the subjects discuss clinical

records or lab results with other doctors and nurses at least once a day, and all of them

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

110

share this information at least once a week. When asked what media they considered to be

the most appropriate for consulting a patient’s medical record, 8 of them (61%) favored

PDAs and 7 (53%) public displays. Only two respondents marked personal computers as

their preferred option and none of them selected the current paper versions. Answers do not

add up to 100% since subjects were allowed to mark more than one option. Responses

changed slightly when asked about laboratory results, including X-rays. In this case public

displays were the preferred media for 9 people (69%) and 7 of them mentioned PDAs

(53%). Two people selected personal computers and two more paper versions. Clearly,

physicians are attracted to the idea of having computerized access to patient records and

favor the mobility offered by PDAs for clinical records, and large displays for lab results

because of the limited screen size of handhelds. Yet, it seems that the need to share

information with other people favored large displays over traditional personal computers.

One physician expressed concern for having only a few public displays in the hospital, he

believed that they would be insufficient to accommodate all potential users, since

physicians often start their rounds and consult clinical records at around the same time. As

made clear by this comment, these devices should be adequately distributed throughout the

hospital to facilitate access. However, while the scenarios emphasized the use of handhelds

and large displays, it is expected that PCs would be part of the computing infrastructure.

As illustrated by scenario 3.4.4 support for physicians to consult medical guides

through the public display was proposed. Thus the use of medical guides was also

investigated by asking the subjects if they found it to be helpful (38% agreed) and if the

technology described in the scenario would make these guides more useful and increase

their use (92% agreed). The 54% increase is an indication of a potential benefit of our

design.

Finally, when the subjects were asked to compare the use of public displays, as

illustrated in the scenario, with that of the whiteboards they currently use, 10 out of the 13

respondents agreed that the functionality displayed in the scenario covered all the functions

of the whiteboards, and the same number of people thought that there would be no need for

whiteboards at the hospital if the public displays were introduced there.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

111

In the interviews, all participants found the scenario to be realistic and we got a clear

sense that immediate and easy access to the medical records was the most attractive feature

of the technology, and that they saw the combination of handhelds and public displays as

providing adequate support to achieve this. One person mentioned that a limitation of the

display was the fact that the map shows a single floor at the time, while on the board they

include beds from different floors that are assigned to the area. This comment was

considered for changing the design of the interface of the PublicDisplay application.

Furthermore, the interviewees suggested extending the system to support distributed

collaboration while working on the public display. In particular, one physician suggested

that it would be desirable to be able to locate colleagues in other hospitals with whom they

had worked before and perhaps call to consult on a clinical case. We perceive that the

support could include providing awareness of the presence of remote contacts, application

sharing and audio-conferencing. The evaluation presented in this section determined not

only that the selected scenarios of use of ubicomp systems were considered realistic by the

hospital personnel, but that the systems represented in the scenarios were also perceived as

being useful for supporting their activities. The results from this evaluation showed that

SALSA enabled the building of real and useful pervasive systems and facilitated their

implementation as presented in Chapter 5. Thus, SALSA can be considered useful for

implementing this type of pervasive systems in which users, devices and services were

represented by autonomous agents. The following sections evaluate SALSA’s flexibility

and ease of use for developing autonomous agents for ubicomp systems.

6.3 Completeness of SALSA

As explained in Chapter 4, SALSA provides a set of mechanisms (an API and services)

to enable developers to cope with some of the complexities (described in Section 2.2.1) for

building ubicomp applications. Even though these development frameworks provide

support for some of the same complexities, they address them in different ways than

SALSA as summarized in Table IX. This shows that SALSA supports the creation of

ubiquitous computing systems by giving support for dealing with context information,

discovery of services/devices and interaction, heterogeneity, and scalability by means of

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

112

the use of autonomous agents. But, the main difference between SALSA and the other

middlewares is that it provides an appropriate communication language in order for the

main system’s entities of the ubicomp environment, represented by agents, to communicate

asynchronously. Thus, services, devices, and users can seamlessly interact by using the

same communication protocol.

Table IX. Architectures for creating context-aware systems

DEVELOPMENT
PLATFORMS

COMPLEXITIES

SALSA

Robustness and
routine failures

N/A

Deal with context
information

SALSA provides facilities to obtain context information that can
be derived by using simple rules specified in an XSL filter.
Through a set of conditions in which the variables were defined
as primary context information, secondary context information is
derived. For instance, when an agent detects that certain values
are met for specific contextual variables, it infers another context
situation. In Appendix A the classes that enable this functionality
are explained.

Adaptation N/A

Discovery of
services/devices
and interaction

An Agent Directory contains information about the environment
configuration. An agent acting as proxy to the Agent Directory
provides the information requested by other agents.

Heterogeneity SALSA agents can be executed in mobile devices (such as
PDA’s and Tablet PC) and personal computers acting as servers.

Scalability SALSA supports scalability by enabling the extension of the
functionality of the environment by adding other agents that
represent devices, services and users.

Implementation
Techniques

Autonomous Agents

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

113

Figure 28 contrasts the type of applications that can be implemented with the

development frameworks explained in Chapter 2, and SALSA. These development

frameworks were classified as: architectures that provide support for enabling mobile

devices to interact, (mobile computing), for dealing with context-information (context-

aware computing), for creating distributed systems by means of agent technology (multi-

agent systems) and development architectures that enable ubiquitous and heterogeneous

devices to interact (pervasive computing). In this Figure, SALSA is presented as a

middleware with which developers can develop ubicomp systems as multi-agent systems,

and that provides some support for dealing with context information.

Context-aware
Computing

Pervasive
Computing

Mobile
Computing

Multi-agent
Systems

YCab
DACIA

MIDAS/PROSE Carisma

RCSM

CAMUS Semantic
Space

HIML

GAIA

JADE-LEAP

One.world

SALSA

Context-aware
Computing

Pervasive
Computing

Mobile
Computing

Multi-agent
Systems

YCab
DACIA

MIDAS/PROSE Carisma

RCSM

CAMUS Semantic
Space

HIML

GAIA

JADE-LEAP

One.world

SALSA

Figure 28. Scope of SALSA for implementing ubiquitous computing systems

6.3.1 Conclusions

The hypothesis for evaluating the completeness of SALSA states that it is flexible

enough to facilitate the progressive development of ubicomp systems. As explained in

Chapter 5, SALSA was used to implement the context-aware hospital information system

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

114

(CHIS) and the integration of new functionality wrapped in autonomous agents. In order to

illustrate the process followed to make this possible, Section 5.1 provided a detailed

description of the implementation of the location-estimation agent (LE-a) and the agents

that enable the users interaction with public-displays and how they were integrated into the

context-aware hospital information system. This provided evidence that the SALSA agent

development framework facilitates the progressive development of a pervasive system.

6.4 Ease of use of the SALSA API

The first hypothesis for evaluating the ease of use of SALSA states that: “The SALSA

framework is considered by developers to be easy to learn even if they have little or no

previous familiarity with agent programming”. In order to evaluate this, I conducted two

experiments. The first experiment evaluated the API of SALSA in an in-lab experiment,

and in the second one, I evaluated the use of agents as design abstractions for conceiving

ubicomp systems. A group of the Fall 2004 offering of the Object Oriented Analysis and

Design (OOAD) class at the CICESE Research Center participated in these experiments.

Both experiments are described in the following sections.

6.4.1 Experiment 1: An in-lab evaluation of the SALSA API

The objective of this experiment was: “Evaluate the ease of use of the SALSA class

framework to develop ubiquitous computing applications.”

To achieve the above mentioned objective, an experiment conducted in three separate

sessions was carried out. In the first session, we assessed the participants’ abilities and

experience in developing software systems. In the second session we explained to them the

concepts of ubiquitous computing, software agents, SALSA, and the in-lab experiment in

which they were going to participate. Finally, the evaluation session was conducted in a

computing laboratory, in which the participants were asked to solve a programming

problem using SALSA. These sessions and the results are described in the following

sections.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

115

6.3.1.1 Evaluating the participants’ background

A group of nineteen (19) students was selected to participate in the experiment. Their

programming and design background was evaluated in order to adapt the experiment to

their level of expertise by providing information they would need to carry out the

experiment using SALSA. For instance, as most of the students have little knowledge about

autonomous agents, the students received information regarding the design of the system

they had to implement which identified the autonomous agents and how they had to interact

for providing the requested functionality.

Sixteen graduate students (of the 19) completed a questionnaire to assess their abilities

and knowledge in software development and provided some personal information such as

their age. Of the 16 students 5 are in the first year doctoral program and the other 11 are

first-year masters students. The questionnaire consisted of four sections. The first one asked

about their experience in programming software systems, programming paradigms and

languages they have used. The second section questioned them about their knowledge of

the JAVA programming language. Section three asked about their expertise in modeling

systems using UML (Unified Modeling Language). And finally, the last section inquired

about their knowledge of Software Agents.

The results showed that 93% of the participants had more than 4 years experience in

developing software applications. Although 100% knew about the object oriented

paradigm, 50% expressed having less experience in using the OO approach than other

approaches such as imperative programming. The programming language they were more

familiar with was C/C++ (87% of the participants) followed by JAVA (75 %); the rest of

the participants mentioned other visual object oriented languages, such as Visual Basic and

Delphi. 81 % were familiar with HTML, and half of them had used XML. Only 18% had

recently learned UML during the current object oriented programming course they were

taking, while the rest of the participants said they had used or learned UML before this

course. With respect to their experience with software agents, 25% stated that they had no

idea or only a vague idea of what an agent is. 56% were familiar with the concept of agents.

Finally, 18% (3 of the 16 students) had implemented applications based on software agents.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

116

The results obtained from this survey indicated that the participants did not have the

same level of knowledge in some issues relevant for the experiment, such as the use of

autonomous agents, which were then introduced during a class of the OOAD course. The

results were also used to determine the additional information that they might need to

consult during the in-lab experiment. For instance, since many of them were not

experienced JAVA and/or XML programmers, online help was available during the

experiment which provided a reference to the Java and SALSA library, and examples of

how to parse XML messages with SALSA.

6.3.1.2 Introduction to SALSA for the development of ubicomp applications

A two-hour class was given to all participants to introduce them to concepts that were

required in order to participate in the study. The agenda of the course is presented in Table

X.

Table X. Course agenda for introducing SALSA to the participants

November 12, 2004
Time Activity
 1.- Evaluation of participants’ background

 10-15 min. Apply questionnaire (See Appendix B)
November 17, 2004
 2.- Introduction
5 min. Explain the process of the experiment
15 min. Introduce ubiquitous computing, context-aware computing and

autonomous agents.
20 min. Introduce SALSA (agent’s components, facilities offered by

SALSA, agents of the context-aware hospital system, and the
design of SALSA)

10 min. Questions and comments
 3.- SALSA API
30 min. Explain the SALSA API and illustrate its use.
10 min. Respond students questions about SALSA

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

117

We explained the concepts of ubiquitous and context-aware computing. Through a use

scenario, we illustrated how ubicomp technology may enhance users’ activities. Then, we

explained the concept of autonomous agent, its attributes, and illustrated with the same use

scenario, how ubicomp systems can be designed using autonomous agents. We explained

SALSA’s architecture and the execution model of SALSA agents, which specifies that

when an agent perceives information, it reasons, based on the information perceived, to

decide what action to execute. Then, we introduced the SALSA API by explaining the

abstractions used for implementing the agent’s components for perceiving, reasoning and

acting, and for deriving secondary context by means of an XSL filter. Finally, we

illustrated how to implement the Hello World Agent with the SALSA API.

At the end of the presentation, the participants were allowed to make questions and

comments. Their main concerns were relating to the events created by the SALSA agents to

perceive information; and about the use of XSL to derive contextual information. In this

regard, they asked questions such as: “What happens if any of the conditions in the XSL

are not satisfied?”, “What is the format of the XSL?” All questions were answered. Two

students made comments in the sense of the SALSA API being appropriate for

implementing scenarios as the one presented”.

6.4.2 In-lab Evaluation

We conducted an informal, controlled evaluation of SALSA to learn about its ease of

use. During this evaluation all (19) nineteen students from the OOAD course participated.

Through three programming tasks, participants were asked to implement and extend the

functionality of one of the autonomous agents of a ubicomp system that monitors the state

of a patient with diabetes, and based on this information, decide on a course of action.

During the experiment, we recorded the participants’ comments and questions, and saved

their code for further review. When the participants finished their programming exercises,

they were asked to answer a questionnaire to evaluate the ease of use of the SALSA API.

The description of the experiment and the analysis of the results of this in-lab evaluation

are explained in the following section.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

118

6.3.1.1 Description of the experiment tasks

We began the evaluation session by explaining the experiment. Then we handed out a

description of the programming tasks as shown in Appendix B. To illustrate the desired

functionality of the system, the following scenario was provided to the participants.

“George, a patient with diabetes, is alone at home watching a soccer game. Suddenly,

he feels sick and the ubicomp system detects that he has hypoglycemia. That is, his glucose

levels are low (76mg/dl). Thus, the system recommends him to take 2 tablespoons of sugar.

A little later, the system measures the glucose level to be lower (70 mg/dl) and starts

monitoring the patient’s pulse and his level of perspiration, which at that moment are

normal. At the same time, the system notifies George’s daughter of his condition. The

system continues perceiving George’s vital signs. As he still presents hypoglycemia, and his

pulse and level of perspiration increase, the system decides to send a warning message to

George’s doctor.

The main components of the system depicted in the scenario are modeled with three

autonomous agents acting as proxies to the sensors, which monitor the levels of glucose,

pulse, and perspiration, respectively. These agents send the information detected to a fourth

agent, the patient’s agent, which determines the patient’s health-state and decides what

action to execute. Participants were asked to develop the patient’s agent. For the other

agents the participants were given executables that simulated that they were actually

perceiving information from the sensors. Thus, the conditions of the patient, such as

hypoglycemia (low glucose) or hyperglycemia (high glucose), were simulated, which

enabled the participants to verify if their agent acted as expected.

We gave the participants the code of the general structure of the patient’s agent as

presented in Figure 29. They had to implement the agent’s reasoning and action

components as requested in each task according to the execution model of SALSA.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

119

Figure 29. Code of the patient's agent

Task 1 asked the students to code the conditions for the patient’s agent to diagnose

hyperglycemia. Thus, when the agent perceived that the glucose was greater than 120, it

had to recommend that the patient drink 2 glasses of water. If the agent again detected

hyperglycemia 15 minutes latter, it had to notify the patient’s doctor by sending a warning

through instant messaging. We expected the participants to implement the reasoning

component of the agents (see Figure 30) with the appropriate conditions to determine that

the patient had hyperglycemia, and the actions to be execute as illustrated in Figure 31.

In task 2, participants were asked to modify the agent to detect hypoglycemia by using

the facilities provided by SALSA to derive context. The agent had to act as indicated in the

scenario presented before. We provided the participants with the code of the XSL filter (see

Figure 32) with the conditions to detect hypoglycemia. The XSL filter read the primary

context, which in this case was the information of the levels of glucose, perspiration and

pulse, and then deduced a secondary context, it indicated that the patient was having

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

120

hypoglycemia or hyperglycemia.

Figure 30. Agent's reasoning diagnosing hyperglycemia

a) b)
Figure 31. Agent's actions when hyperglycemia is detected. a) The agent recommends

drinking water. b) The agent notifies the doctor about the patient's condition

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

121

Figure 32. XSL filter to detect hypoglycemia

 Figure 33 and Figure 34 present how we expected the participants to code the

reasoning and action components. The constructor of the class that implements the

reasoning component (see Figure 33) specifies that the variables used to derive contextual

information are: the level of glucose, perspiration and pulsations. Thus, when an event of

type ArriveSensorDataEvent is passed to the method think(), the context information is

abstracted from the event by the derive(ev) method to return the context derived as an

XML message in the secondaryContext variable. This message is then parsed to check the

level of hypoglycemia of the patient. Thus, if the patient presents hypoglycemia for the first

time, the agent acts by recommending a dose of sugar, and requests the other sensing

agents to start monitoring the patient’s pulse and perspiration as illustrated in Figure 34 a).

If the level of glucose does not stabilize and the patient continues presenting hypoglycemia,

the agent notifies this to the patient’s doctor, as illustrated in the code in Figure 34 b).

XSL Transformation

Primary context Derived Context

XSL Transformation

Primary context Derived Context

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

122

Figure 33. Reasoning component detecting hypoglycemia

Finally, in task 3, we required the participants to modify the XSL filter to include the

conditions to detect hyperglycemia as was indicated in task 1. The XSL filter had to be

modified as depicted in Figure 35 a) in which the added code lines are enclosed in a

dashed box.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

123

Figure 34. Agent's actions when hypoglycemia is detected. a) The agent recommends the
patient eat a sugar dose. b) The agent notifies the physician the patient’s health-condition

Figure 35. XSL filter to detect an hypoglycemia and hyperglycemia

a)

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

124

6.3.1.2 Results from the inspection of the code

The source code of the patient’s agent produced by the students was analyzed to

evaluate whether they comprehended the execution model and the communication protocol

of SALSA agents. Only five (5) participants did not distribute the functionality of the agent

as we expected. These participants implemented part or the whole reasoning logic (a set of

rules) in the action component as illustrated in Figure 36. For this, the information

perceived in the reasoning component was passed to the action component to detect the

patient’s health condition and decide how to act, rather than having the reasoning

component do this. Three (3) of the participants failed at implementing the perception of

information. They did not verify whether the event received in the reasoning component

was of type ArriveSensorDataEvent, which means that any perceived message, such as a

presence message, is analyzed by the reasoning component to find out the patient’s

condition.

Figure 36. Action component implemented by one of the participants

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

125

Most of the participants were able to successfully implement each of the agent’s

components, but not without some difficulties. Participants were allowed to check

SALSA’s user manual during the study or they could ask questions to any of the two

graduate students running the experiment, either relating to SALSA or any other

programming issue that came up.

During the first activity participants became familiar with the API of SALSA. Even

though some of the participants understood the execution model of SALSA, they did not

remember the name of the abstractions and methods of the SALSA API explained during

the 2-hours course. Among the main questions they made were: “What are the methods for

communicating information to other agents?”; and “What are the events received in the

reasoning object?” But, the main concerns of the participants during the first activity were

related to XML. Their major questions were about how to abstract the information from the

message by using the facilities of SALSA since the majority of the participants were

familiar with HTML, but not with XML. As we expected, during the second and third

activity the participants’ main questions were about XSL and the facilities offered by

SALSA to derive secondary context using an XSL filter, which was new for most of them.

6.3.1.3 Perception of ease of use

When the participants finished their programming tasks, they completed a survey

presented in section B.1, which included topics such as their perception on the use of

SALSA, how difficult it was for them to learn the API of SALSA and finally, what

functionalities they considered easier to implement and which ones were the most difficult

ones.

The section of the questionnaire that evaluates the perception of ease of use of the

SALSA API included six assertions, each one with 7 Likert-scale answers. These questions

are important predictors of Information Technology adoption according to TAM [Davies et

al., 1991]. In this case, SALSA is the information technology that may be adopted by users

who in this case are software developers. As illustrated in Table XI, the participants

perceived the API to be easy to use since most of them “slightly agree” (5) or “agree” (6)

with all the questionnaire assertions. Even though some of the participants perceived that

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

126

learning (Q1) and interacting (Q3) with SALSA was not so easy (5.27) and understandable

(5.267), most of them “agree” that it would be easy for them to become skillful at using the

SALSA API (Q5).

Two final questions were included in the questionnaire to find out the agent’s

functionalities that were perceived as easier to implement, and which ones were considered

the most difficult ones. As illustrated in Figure 37, the Action component was considered

as the agent’s functionality that is easiest to implement. A participant wrote that this

component was the easiest to implement “because it does not need so many lines of code

for implementing the communication of the agent”; another participant stated: “you just

need to select the appropriate method of communication according to the type of

information to convey”. Users considered that the Action component was the simplest to

implement, and as they stated, some of the difficulties they faced during the agent’s

implementation was that they were not familiar with the communication methods of

SALSA. Implementing the Reasoning component was easy to implement for eight (8) of

the participants. One subject stated that “it was easy, because you just have to overwrite the

reasoning logic”, which means that once they were familiar with the implementation of the

first programming activity, they considered that it was easy to modify the agent’s behavior

for the second and third activity.

The agent’s functionality that was considered the most difficult to implement, by six (6)

of the participants, was to derive context information by using the XSL filter. This is

comprehensible, since these persons had no previous experience in XML and XSL, as they

stated: “I have never used XSL files”, “programming in XML is new to me”. For the same

reason, some of the subjects stated that the reasoning component was also difficult to

implement. One of them commented: “It was difficult to parse the XML message”.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

127

Table XI. Results of TAM questionnaire

Questions Average Stand. Dev. Mode
Q1: Learning the SALSA API would be easy for
me. 5.27 1.033 6
Q2: I would find it easy to implement intelligent
systems with SALSA 5.667 0.617 6
Q3: My interaction with SALSA would be clear
and understandable 5.267 1.033 6
Q4: I would find SALSA to be flexible to interact
with 5.4 1.639 6
Q5: It would be easy for me to become skillful at
using the SALSA API 5.8 0.676 6
Q6: I find SALSA easy to use 5.467 0.834 5

0

2

4

6

8

10

12

Reasoning Action Communication Derive Context

Figure 37. Answers to the question: What agent functionality you consider to be the easiest
to implement?

6.4.3 Conclusions

Even though participants had concerns about how to use the SALSA API to implement

some of the functionalities of the agent, most of them could successfully create the agent as

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

128

we expected. It may be evidence that the execution model of SALSA and the facilities to

implement it are comprehensible. For some of the participants the use of autonomous

agents as an abstraction for the deployment of an ubicomp system was not innate. The

problems faced by some of the participants for distributing the agent’s functionality among

the action and the reasoning components were due to their lack of experience in

implementing SALSA agents and that they were not familiarized with the execution model

of SALSA (defined in the SALSA agent’s life cycle). However, the participants faced

minimum problems for implementing and understanding the functionality of the perception

component. This was due to the fact that most of the agent’s perception is left to the

SALSA infrastructure which automatically creates and activates this component when the

agent is instantiated, and the programmer only has to extract the received information from

the launched event. Thus, some of the participants did not remember how to capture the

event generated when the information is passed to the reasoning component, which was

easily solved by consulting the documentation of SALSA.

Participants had to understand that agents communicate in a different way than other

type of components, such as objects or processes. The subjects perceived that the

communication protocol was easy to understand. They expressed that for implementing the

agent’s communication they just had to select the appropriate methods according to the

information that want to be conveyed. The difficulties experienced by the participants for

implementing the agents’ communication was due to agents using a communication

language that is semantically richer than that commonly used by object technology. The

SALSA communication language is based on XML, which is too verbose and adds

additional complexity to the API of SALSA, a fact that was also noticed by the participants

which have no experience parsing XML messages. Even though SALSA provides some

facilities for extracting the content of a SALSA message, the lack of knowledge in XML by

the subjects did not enable them to easily comprehend the syntaxes of the SALSA

messages. In the same way, participants also experienced difficulties using XSL since they

had no previous experience with it. This did not enable participants to perceive that the

mechanisms in SALSA to derive secondary context were easy to use. Thus, we conclude

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

129

that the SALSA API needs to include mechanisms at a higher level of abstraction to

facilitate the management of XML messages and the creation of the XSL filter.

6.5 Autonomous agents as an abstraction tool for designing ubicomp

systems

The objective of this stage was: “To evaluate the ease of use of SALSA agents in

designing a ubicomp system”.

6.5.1 Description of the Design Experiment

During the experiment eighteen (18) graduate students (of the nineteen that participated

in the Lab evaluation of SALSA) could participate in a design problem of a ubicomp

system by using autonomous agents. For this, the design problem was included in the

evaluation exam of the Object Oriented Analysis and Design course taken by these

students. The complete exam is in section B.2. The exam lasted two hours, and the design

problem, which was part of the exam, was planned to be solved in one hour. As presented

in Figure 38, the exercise consisted of a description of a use scenario of a ubicomp system

for an Airport setting, a sequence diagram to express the interactions among the system’s

agents, and instructions requesting participants to design the proposed system and then

modify it to extend its functionality. Participants had to first analyze the description of the

ubicomp system and its sequence diagram to identify the main components of the system.

Since the aim of SALSA is to build ubicomp systems by means of autonomous agents that

represent users, services or wrap a complex system’s functionality, it was expected that the

participants would identify the main components of the ubicomp system as autonomous

agents. This activity enabled the participants to familiarize themselves with the design of

the current ubicomp system. In the next activity, they were asked to extend the

application’s functionality according to the scenario of use provided. For this, they had to

identify new agents and their interactions with the other system’s agents by elaborating a

sequence diagram and a component diagram. Participants were not penalized for not using

the communication methods of SALSA. Finally, they had to provide a detailed description

of each of the agents’ components, such as perceiving, reasoning, and acting.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

130

The Mexico City airport has an ubiquitous computing system that allows users to consult flight
information in a public display or the user’s handheld computer (PDA). The following sequence
diagram illustrates the interaction of the components of the system, which have been implemented as
SALSA agents.

You have been hired to extend the functionality of the system with SALSA agents, so that the system
can also recommend services available within the airport that could be useful to the passengers while
they wait for their flight. The system should have the following functionality: The user’s PDA when
notified that his flight has been delayed, request information of the available services and their
location to the airport’s Service Directory. The Service Directory provides this information and a map
of their location. The system in the PDA personalizes the map according to the user’s preferences and
available time, highlighting services such as restaurants, book stores, internet café. A use scenario of
the extended system will be as follows:

“When Mr. Jorge Gomez enters the airports waiting room, his PDA notices him that he has received
a message indicating that his flight has been delayed by 40min. The system in the PDA requests to the
airport’s Service Directory those services that are available to determine those that could be useful to
Mr. Gomez and that he could take advantage of while he waits for his flight. The Service Directory
provides this information and a map with the location of the services. The PDA, knowing the time he
has and his preferences, elects to highlight the location of the Vips restaurant and the ‘Mexico”
bookstore, since Mr. Gomez needs to buy a book for her daughter. Mr. Gomez goes to the restaurant
and while he waits for his food, accesses information of the bookstore, selecting in the map a link to
the bookstore’s web page to consult the availability of the book he wants.”

You are asked to:
a) Create a diagram showing the components of the original system. (10 pts.)
b) Modify the previous sequence diagram, incorporating the components that implement the new

functionality required by the system. (20 pts.)
c) Modify the components’ diagram elaborated in question a. to incorporate the new components of

the extended system. (10 pts.)
d) Describe the sequence diagram you have extended, explaining the behavior of the agents. That

is, what functionality is implemented by each of the components of each agent (perception,
reasoning, action) (10 pts.)

updateInformatcion ()

usuario :
Agent

aeropuerto :
Agent

aeromexico :
Agent

sistemaInformacion :
Agent

pantalla pública

sendNotificationInfo(" 508 40 min.")

sendRequestInfo("passengers of flight 508”)

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

display()

Aeroméxico

The airport agent updates
its information and shows
them in the public display.,

The airport agent requests
Information of the registered
passengers to notify them that
the flight is delayed.

,

()

usuario :
Agent

aeropuerto :
Agent

aeromexico :
Agent

sistemaInformacion :
Agent

pantalla pública

sendNotificationInfo(“flight 508 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

()

user :
Agent

Airport: :
Agent

aeromexico :
Agent

Information System :
Agent

Public display

sendNotificationInfo(" 508, delayed 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<number flight =508>
<state> delayed </state
<time> 40 min </time>

</number flight>

sendNotificationInfo(“flight 508 is delayed 40 min.”);

Aeroméxico notifies the airport
that flight 508 is delayed by 40
min.

,

,

updateInformatcion ()

usuario :
Agent

aeropuerto :
Agent

aeromexico :
Agent

sistemaInformacion :
Agent

pantalla pública

sendNotificationInfo(" 508 40 min.")

sendRequestInfo("passengers of flight 508”)

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

display()

Aeroméxico

The airport agent updates
its information and shows
them in the public display.,

The airport agent requests
Information of the registered
passengers to notify them that
the flight is delayed.

,

()

usuario :
Agent

aeropuerto :
Agent

aeromexico :

updateInformatcion ()

usuario :
Agent

aeropuerto :
Agent

aeromexico :
Agent

sistemaInformacion :
Agent

pantalla pública

sendNotificationInfo(" 508 40 min.")

sendRequestInfo("passengers of flight 508”)

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

display()

Aeroméxico

The airport agent updates
its information and shows
them in the public display.,

The airport agent requests
Information of the registered
passengers to notify them that
the flight is delayed.

,

()

usuario :
Agent

aeropuerto :
Agent

aeromexico :
Agent

sistemaInformacion :
Agent

pantalla pública

sendNotificationInfo(“flight 508 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

()

user :
Agent

Airport: :
Agent

aeromexico :
Agent

Information System :
Agent

Public display

sendNotificationInfo(" 508, delayed 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<number flight =508>
<state> delayed </state
<time> 40 min </time>

</number flight>

sendNotificationInfo(“flight 508 is delayed 40 min.”);

Agent
sistemaInformacion :

Agent
pantalla pública

sendNotificationInfo(“flight 508 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

()

user :
Agent

Airport: :
Agent

aeromexico :
Agent

Information System :
Agent

Public display

sendNotificationInfo(" 508, delayed 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<number flight =508>
<state> delayed </state
<time> 40 min </time>

</number flight>

sendNotificationInfo(“flight 508 is delayed 40 min.”);

Aeroméxico notifies the airport
that flight 508 is delayed by 40
min.

,

,

Figure 38. Design exercise of a ubicomp system

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

131

6.5.2 Criterion to evaluate the design exercise

To evaluate the programming exercise, the following criterion was established. The

total score of the activities of the design exercise was 50 points. Each exercise was

reviewed to verify if it fulfilled a set of conditions. In case a condition was not achieved,

the value of the exercise was decremented by a penalization value as explained in Table

XII.

Table XII. Criterion applied to check the exercises of the experiment.

Exercise Value Criterion (Penalization)
a) 10 pts An agent was not included as a component in the diagram (-4)

A relationship between two components was not specified (-1)
Conceptual problem: use of the wrong relationship to associate
components (-2)
Conceptual problem: a component was identified as interface or
node (-3)

b) 20 pts The system’s functionality is not complete or clear due to:
an interaction was not specified (-3)
an agent was not specified (-2)

c). 10 pts A component that extended the system’s functionality was not
included in the diagram (-4)
A relationship between two components was not specified (-1)
Conceptual problem: use of an incorrect relationship to associate
components (-2)
Conceptual problem: a component was identified as interface or
node (-3)
Note: The mistakes made in exercise a) were not penalized again in
exercise c).

d) 10 pts Functionality not correctly distributed to each of the agents’
components: perception-reasoning-action (-4)
One of the agent’s components not explained (-1)
The explanation of an agent’s component is not clear or correct (-1)

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

132

6.5.3 Results

The diagrams presented in Figure 39 and Figure 40 illustrates how the system can be

designed by using autonomous agents. Figure 39 presents a version of the Sequence

Diagram illustrating the interaction of the Agents. It shows that the functionality of the

system was extended by adding two agents that enable the user to access the available

services: the Agent Directory which acts as a proxy to the Airport Directory by providing

information of all the available services and the map of the airport; and the Library Agent

which enable the user to access information of the Library. In this design the

communication protocol of SALSA was used to enable the interactions among agents.

Figure 40 presents the diagram of components illustrating the system’s agents that were

identified.

Figure 39. Solution of exercise b) illustrating the agent’s interactions for the requested
functionality

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

133

The design exercise of the participants was evaluated based on the above diagrams and

the criteria of evaluation established.

Table XIII shows the points obtained by each participant in the exercise, and the

average grade obtained in each task by the group. The following sections discuss the

experiment’s results.

Figure 40. Diagram showing as components the system’s agents

Exercise a: Create a diagram showing the components of the original system

The average grade of all participants was 7.67 out of 10 points. Of the eighteen (18)

participants, four (4) obtained the maximum score, 10 points; three (3) persons got 9 points;

and six (6) got 8 points. The points of the other five (5) participants ranged from 3 to 6. The

most common mistake was related to conceptual problems of UML for modeling

Component Diagrams. For instance, one of the participants used a notation for Deployment

Diagrams, and the majority of the participants (13) made mistakes in establishing the

relationships among the components.

Six (6) persons did not name the components as agents, and two (2) of them also

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

134

described the system’s functionality in terms of components or subsystems instead of

agents in exercise d. One of these two (2) participants declared to “have a vague idea of

what an agent is” in the questionnaire applied in phase one. Although most participants said

they had a vague idea of what an agent is and of its application, the majority of them (16

persons) had no difficulty identifying the agents of the proposed system as components

which wrap the main functionality of the ubicomp system.

Table XIII. Participants score in the design exercise

PARTICIPANT a) b) c) d) TOTAL

G1/1 5 13 3 6 27

G2/7 8 13 5 7 33

G1/7 8 15 6 5 34

G1/4 8 10 6 10 34

G2/9 3 18 5 10 36

G1/3 5 15 6 10 36

G2/5 8 13 6 10 37

G1/6 4 18 9 6 37

G1/5 8 13 9 7 37

G1/2 10 18 6 5 39

G2/3 6 20 6 8 40

G1/8 9 15 6 10 40

G2/6 10 20 10 0 40

G2/4 9 17 9 6 41

G2/2 8 18 6 10 42

G2/1 10 18 6 9 43

G2/8 10 18 9 9 46

G1/9 9 20 10 9 48

AVERAGE 7.67 16.22 6.83 7.61 38.33

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

135

Exercise b: Modify the previous sequence diagram, incorporating the components

that implement the new functionality required by the system

The value of exercise b) was 20 points. The group averaged 16.22 points. Three (3)

participants got 20 points, and six (6) participants got 18 points. The minimum score was

10 obtained by one (1) person; and the rest of the participants obtained from 13 to 17

points. In this exercise, there were no errors due to conceptual problems with the notation

of UML for Sequence Diagrams. The most frequent mistake was that the scenario was

incomplete: Seven (7) participants did not include the interaction with the library service

which had to be represented by a proxy-agent; two (2) participants did not specify the

interaction to personalize the map for the user’s preferences; and one (1) participant did not

include the Service Directory, but the User Agent requested the available services to the

Information System Agent. In spite of the fact that two weeks before the participants made

a laboratory practice using SALSA, not all of them comprehended the scope of SALSA to

extend the functionality of a system. This, may be because they did not design the system’s

agents that they were asked to implement during the laboratory practice, but they used

some of the core features of SALSA to get an idea of how to create a single agent that

interacts with other predefined agents. The second major error in which five (5) participants

incurred was that the Airport Agent was used as a communication intermediary between

the User Agent and the Service Directory. In spite of this, the protocol of interaction of

SALSA agents was well expressed in the diagram sequence for the majority of the

participants. They correctly and clearly specified the agents’ interactions to send or request

information to other agents. Even though they were not requested to use the real names of

SALSA’s methods for communication, several of them (8 persons) remembered and used

them.

Exercise c: Modify the components’ diagram created in question a. to incorporate

the new components of the extended system

The group average for this exercise was 6.83 out of 10 points. To check this exercise,

we did not take into account the conceptual problems in which participants incurred in

solving exercise a. For instance, the participants again made mistakes establishing the

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

136

relationships between components. Just two (2) participants got 10 points. Four (4) of the

participants, who missed specifying a relationship among two of the components, got 9

points, even though in the sequence diagram they clearly specified it. Nine (9) persons got

6 points; two (2) obtained 5 points; and finally, one (1) person obtained 3 points. They were

penalized with -4 points since they did not include a component. Nine (9) persons did not

identify the Library Service as an agent, even though two (2) of them included this agent in

the sequence diagram. Two (2) of these nine (9) persons did not include the Directory

Service in the component diagram. Some of the mistakes made in this exercise were due to

incorrect design decisions made in the sequence diagram. For instance, if the participants

did not indicate the interactions with a proxy-agent to the Library in the sequence diagram,

they also were not included in the component diagram. However, the other nine (9)

participants created agents to add the new functionality to the system following the

approach suggested by SALSA to develop ubicomp systems.

Exercise d: Describe the sequence diagram you have extended, explaining the

behavior of the agents. That is, what functionality is implemented by each of the

components of the agent (perception, reasoning, action)

The average of the group for this exercise was 7.61 of 10 points. Six (6) persons got 10

points; three (3) persons got 9 points; and the rest of the participants got from 5 to 8 points.

Five (5) of the participants who obtained 6 points or fewer points failed to explain each of

the components of the system’s agents (perception, reasoning and action), but they gave a

general description of each of the system’s agent.

Most of the participants (14) described the agents’ components clearly. They stated

how and when the agents perceive; reason based on the perceived information; and

specified what events trigger an agent’s action. One of them envisioned that the user’s

agent may perceive from the to-do list of his PDA that he had to buy a book for his

daughter.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

137

6.5.4 Conclusions

The results of exercise a) shows that the participants could abstract the agents as the

main system’s building blocks from the ubicomp application scenario. However some of

them (8 persons) did not model correctly the extended system as requested in exercise c)

since they did not identify all the agents’ interactions in exercise b). The results of this

evaluation show that using autonomous agents for designing a ubicomp system requires

that developers understand the agent-oriented programming paradigm well. Mainly they

need to comprehend that in this approach the idea of interaction is emphasized, as well as

the idea of choice and options at the time of action rather than at the time of programming

[Makoto, 2005]. This evaluation also shows that even though the students had learned

about the use of SALSA agents approximately 2 weeks before, they were able to identify

the agent’s components and some of them used the SALSA methods for communication.

Thus, autonomous agents were used by the participants as the main building blocks or

components which wrap the main functionality of the ubicomp system. Autonomous agents

were used to represent the system’s components that need to proactively act to enable the

seamlessly user’s interaction with the computing devices and services of the environment.

This section evaluated the ease of use of SALSA agents for designing ubicomp

systems, but it is also necessary to evaluate SALSA by comparing it with other

middlewares that enable the implementation of multi-agent systems. For this, SALSA was

contrasted with the JADE-LEAP framework as explained in the following section.

6.6 Comparing SALSA with JADE-LEAP

There are several agent development frameworks that facilitate the building of multi-

agent systems. Among these, the JADE-LEAP project which is a FIPA complaint

platform, has been used to implement agents for ubiquitous computing environments since

JADE-LEAP allows the deployment of agents on any Java-enabled device with sufficient

resources and with wired or wireless connection [Bergenti and Poggi, 2001]. This section

compares JADE-LEAP with SALSA in terms of their execution model and communication

protocol for creating ubicomp systems with the aim of finding out which are more

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

138

appropriate for handling the new interaction paradigms that emerged from the vision of

ubiquitous computing (i.e. spontaneous interactions among the ubicomp components,

context-aware interaction).

6.6.1 Execution model of agents

The aim of SALSA is to facilitate the building and iterative evolution of a system. In

this sense, SALSA provides a suitable agent execution model and communication protocol

to implement ubicomp systems. The creation of a ubicomp system involves the

identification of software entities that may provide opportunistic services and information

to users or hide a complex functionality from users with which they do not need to

explicitly interact. To do this, the entities have to monitor the ubicomp environment,

process the perceived information (i.e to infer the context of users) and decide how to act

(i.e. adapting information to user’s context) which might require communication with other

entities. These entities are software agents that perceive context information, and reason to

autonomously decide how to act. The agent execution model of SALSA enables

programmers to naturally conceive the entities of a ubiquitous computing system as agents

that, when alive, perceive context information, reason and then act. The agent execution

model offered by JADE requires that developers analyze how to distribute the agent’s tasks

among one or more types of behaviors, which may be an annoying design task. For

instance, developers have to decide if the logic of an agent will be implemented as a single

behavior or distributed among several behaviors.

6.6.2 Communication protocol

The SALSA communication protocol provides a small set of specialized messages that

indicate what the agent intends to achieve in the ubicomp environment when sending a

message. An agent representing a user, service or device may require communication with

other agents in order to:

- send context information which may be perceived through ubiquitous sensors;

- notify when the state of a device or the location of a mobile user has changed;

- request the mobility of an agent, which enables an agent to update its reasoning

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

139

component when some conditions of the environment have dynamically changed. Thus, an

agent adapts to these changes in order to continue providing its services;

- request a service or action from another agent;

- and finally, request information that can only be retrieved by another agent acting as a

proxy to an information system or repository.

Thus, with SALSA’s communicative messages, agents can get context information

from the environment, adapt their actions to new contexts, and collaborate with other

agents by requesting information or services from them. The JADE communication

protocol follows the FIPA specifications for requesting actions, information and

notifications, and for negotiating services in the same way that negotiations are carried out

at an auction (i.e. seller agents wait for a proposal from the highest bidder). Therefore,

JADE may be more suitable for implementing applications that involve this kind of

transaction, such as e-commerce applications, than for ubicomp applications. In order to

illustrate the support offered by SALSA and JADE to create a pervasive system for health-

care, Figure 41 presents how JADE agents interact to implement support for the scenario of

Section 3.3.1, and we compare it with the SALSA implementation depicted in Figure 27 of

Chapter 5. It can be seen that JADE does not provide facilities in the communication

protocol and infrastructure in order for the context-aware client to notify the presence of the

mobile user and his change of state and location, as SALSA does. In addition, the messages

do not provide enough information about the intention of the communicative act as SALSA

does. For instance, the INFORM message may be used to send the instant messages from

the user’s PDA to the map agent, notify of the user’s presence, and communicate some type

of context information. This leads the implementers to have to extend the content of the

message. Thus, the transactions between agents of a ubicomp environment are better

supported by SALSA than by JADE. Some of the disadvantages of using JADE are that its

communication protocols rely on technology based on RPC, such as RMI. It has been

considered that RPC (or its newer implementations) is not a suitable paradigm for

ubiquitous computing systems [Saif and Greaves, 2001]. RPC may be inflexible and

inefficient for the communication requirements of ubiquitous computing systems in several

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

140

aspects, such as [Saif and Greaves, 2001]: Most of the interactions among services or

devices are one way in order to indicate “do this” type commands or notifications.

However, RPC enforces a tightly coupled bidirectional interaction. Thus, the calling thread

is suspended even for interactions that do not require a return value to continue with its

operation.

6.6.3 Autonomy of agents

An important requirement of agents is that they must be able to act autonomously when

needed. FIPA establishes that an agent, representing (the AMS agent) the managing

authority on an agent platform (AP), is responsible for managing the operation of an AP,

such as the creation of agents, the deletion of agents, deciding whether an agent can

dynamically register with the AP and overseeing the migration of agents to and from the

AP (if agent mobility is supported by the AP). The life cycle of all the agents in the AP is

maintained and controlled by the AMS [Bergenti and Poggi, 2001]. Thus, agent autonomy

is not supported by FIPA platforms since an autonomous agent can not be controlled by

any external agent or object [Bergenti and Poggi, 2001].

6.6.4 Conclusions

SALSA enables developers to cope with the requirements of ubiquitous computing

scenarios such as the ones presented in Chapter 3. SALSA provides an appropriate and

easy to understand agent execution model. We have argued that the SALSA

communication language is more appropriate then the one provided by JADE-LEAP, to

convey information among the software entities of a ubicomp system, which are conceived

as autonomous agents.

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

141

Figure 41. Design of scenario 3.3.1 by using JADE

6.7 Discussion

This Chapter has presented the results of evaluating the utility, completeness and ease

of use of SALSA through different evaluation methods, that included evaluating scenarios

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

142

of use with real users, in-lab programming experiments, and design exercises for evaluating

the facilities provided by SALSA agents.

The criterion for determining the utility of the middleware stated that if others can build

real pervasive applications atop the infrastructure, then the architecture is useful. The first

experiment determined that the selected scenarios of use of ubicomp systems, which were

implemented with SALSA, were perceived as being useful by real users (such as physicians

and nurses) therefore SALSA can be considered useful for creating ubicomp systems in

which autonomous agents enable users to seamlessly interact with other users, services and

devices.

To evaluate the completeness of SALSA, an evaluation experiment was conducted to

determine if the architecture was sufficiently powerful and extensible to support interesting

user-space programs. For this a hypothesis arose stating that SALSA was flexible enough

to enable the evolution and iterative implementation of ubicomp applications. For

demonstrating this, Chapter 5 presented how SALSA facilitated the implementation and

extension of the context-aware hospital information system which was proposed for

supporting medical activities carried out in a hospital.

The results of the programming exercise provided evidence that the execution model of

SALSA and the facilities to implement it are comprehensible (H3). For some of the

participants the use of autonomous agents as an abstraction for the deployment of an

ubicomp system (H4) was not innate since participants had to understand various concepts

related with agents and the facilities provided by SALSA, such as the agents’

communication protocol, and the use of XSL for deriving context information.

The design exercise, in which the students participated in, approximately two weeks

after the programming exercise, reinforced the veracity of hypothesis 3 and 5 since the

participants used autonomous agents as the main system’s components. Most of them were

able to identify the agents’ components as defined by the execution model of SALSA, and

some of them remember how to use the SALSA communication protocol.

To complement the evaluation of the SALSA facilities (H5), SALSA was compared

with the JADE-LEAP middleware, a middleware used for creating agents that may also be

Chapter 6- Evaluation

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

143

executed in mobile devices. This was done through the design of a system by using JADE-

LEAP, and designing the same system by using SALSA. As a result of this evaluation it

was concluded that the SALSA communication language is more appropriate then the one

provided by JADE-LEAP, to convey information among the software entities of a ubicomp

system, which were conceived as autonomous agents.

Chapter 7- Conclusions

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

144

Chapter 7

Conclusions
This thesis has presented how a ubiquitous computing system can be implemented by

using autonomous agents as its main components. Autonomous agents have characteristics

that can be used to implement some of the desirable features of ubicomp systems such as

those described in Chapter 4. In those systems, autonomous agents were mainly used to

enhance the user’s interaction with the ubicomp environment in which autonomous agents

were the software components that represented users, devices, and services. This was

possible since autonomous agents are reactive to the environment (to the users’ context)

and proactive to decide how to act (providing services and information to users). This

thesis takes advantage of these agents’ characteristics in order to provide an agent

middleware (SALSA) that facilitates the development of ubicomp systems.

7.1 Contributions and results

The contributions of this thesis was in providing evidence of how autonomous agents

can be used as an abstraction tool for designing and implementing ubiquitous computing

systems, and providing a middleware that facilitates their implementation. The results of

the contributions of this thesis and how they were addressed in previous Chapters are

summarized in the following sections.

7.1.1 Identifying the complexities associated with the development of ubicomp

systems.

Before illustrating how autonomous agents can assist the development of ubicomp

systems, this thesis focused on identifying the complexities associated to the design and

implementation of pervasive computing applications. Chapter 2 explains the challenges

faced when developers try to address these complexities of ubiquitous computing systems

which were identified as: robustness and routine failures, dealing with context information,

Chapter 7- Conclusions

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

145

adaptation, discovery of services/devices and interaction, heterogeneity, scalability and

implementation techniques.

In order to aid developers in dealing with these complexities, several development

architectures have been proposed. Providing a development architecture that helps

developers to address the ubicomp complexities represents another one of the challenges

faced in ubicomp research. Chapter 2 also presents an analysis of the support provided by

existing development architectures for dealing with some of these complexities.

Finally, as this thesis proposes that autonomous agents can be used as an alternative for

dealing with ubicomp complexities, Chapter 3 introduces autonomous agents and their

characteristics and how they can be an appropriate alternative for creating ubiquitous

computing systems.

7.1.2 A set of realistic scenarios of ubiquitous computing systems

A set of scenarios of ubiquitous computing systems enabled me to analyze how

autonomous agents can be used as the main system’s components. These scenarios were

selected from observing users while performing their activities in their working setting. The

chosen setting for studying and proposing how ubiquitous computing technology could

enhance the users’ activities was a local public hospital. These scenarios are described in

Chapter 4. Chapter 7 presents evidence that the hospital staff felt that the scenarios

represented real medical activities, and that the proposed systems were useful for

enhancing their activities.

7.1.3 Design issues regarding autonomous agents for developing ubiquitous

computing systems

From the proposed systems described in the scenarios it was possible to identify the

desirable system features and the design issues of the functionality of autonomous agents

for creating these ubicomp systems. The following are the design issues described in

Chapter 4:

Chapter 7- Conclusions

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

146

• Autonomous agents are decisions makers. Autonomous agents review the users’

context and make decisions about what activities to do, when to do them, and what type

of information to communicate, and to whom.

• Autonomous agents are reactive to the contextual elements of the environment.

Autonomous agents may need to monitor context information, such as the location of

users and of services as well as the state of artifacts and users for opportunistically

providing information and services to users. For this, agents need mechanisms to

perceive, recognize and disseminate different types of context information.

• Autonomous agents can represent users, act as proxies to information resources of the

environment or wrap a complex system’s functionality. In the scenarios, users require

access to information resources, services or devices which were identified as agents

acting as proxies to them. These agents can be aware of the presence of other agents

and users available in the environment. A user can interact with her personal agent that

acts on her behalf for accessing information or services. Finally, agents can be wrappers

of complex system’s functionality that should be transparent to users.

• Autonomous agents should be able to communicate with other agents, or directly with

users and services. Agents need a platform and communication protocol that enables

them to convey information to other agents, users, information resources, devices and

services. This platform and communication protocol should enable agents to seamlessly

interact with users in order to enhance their interaction with the ubicomp environment.

• Autonomous agents need mechanisms for authentication. Agents should enable allowed

users and other agents to interact with the devices and services of the ubicomp

environment. Thus, autonomous agents need mechanisms for authenticating users and

agents that want to access them.

• Autonomous agents need to communicate different types of messages. Agents need a

communication language to convey messages for requesting information from devices

or services and responding to such requests, notifying information to users and devices,

and requesting from another agent the execution of an action.

Chapter 7- Conclusions

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

147

• Autonomous agents may have a reasoning algorithm as complex as the logic of its

functionality. An autonomous agent needs to be aware of information regarding the

environment in order to decide how to act. For this, agents need a reasoning algorithm

which may need a simple set of condition-action rules or exhibit a more complex

behavior.

7.1.4 An agent middleware, named SALSA, for developing ubiquitous computing

systems.

The above design issues were the foundation for creating an agent middleware that

provides the mechanisms to facilitate the development of ubicomp systems as explained in

Chapter 5.

The communication channel among agents and users is an Agent Broker (its

implementation is an Instant Messaging Server) which is responsible for coordinating the

communication among agents. To implement autonomous agents as decision makers, the

SALSA middleware provides a library of classes for implementing and handling the

execution model of agents, which consists of the components for perceiving information,

reasoning, and acting as described next:

Due to the fact that the ubicomp environment is highly dynamic, an agent can perceive

context information at unpredictable times from other agents, from the devices or services,

or from the users. Agents can perceive information through the Agent Broker or directly

from devices or sensors. The perceived information generates events which are captured by

the reasoning component which governs the agent’s actions. The programmer, based on the

logic of the agent, implements the reasoning component by using any reasoning algorithm,

such as a simple condition-action rule, a neural network or case based reasoning. SALSA

provides abstractions to enable developers to easily modify or update the agent’s reasoning

requiring little or no modifications to the other agent’s components. The action component

implements the action plan to follow based on the agent’s reasoning. It also includes sub-

components that allow the agent’s communication and mobility in order to update its

reasoning component, and to derive context information based on information perceived by

the agent. The actions of autonomous agents may require that they communicate with other

Chapter 7- Conclusions

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

148

agents and users. The communication protocol of SALSA allows agents to negotiate

services with other agents, request them to execute an action and communicate with users

in order to notify or present information to them. The communication platform, which is

based on the instant messaging paradigm, enables users to be aware of the presence of other

users and agents that offer relevant services for the users’ activities.

Finally, SALSA enables the naming and registration of agents in an Agent Directory

(AD). This is a service which is accessible through an agent acting as a proxy to the AD.

The SALSA API provides a set of classes that allow programmers to register the agent’s

attributes and to look for agents available in the ubicomp environment.

Use of SALSA as a research test-bed computing systems in which autonomous agents

were used as the main systems’ components. These systems made it possible to identify

how SALSA facilitates the development of ubicomp systems. Some of these systems were

documented in Chapter 6 to provide evidence of how SALSA facilitates the

implementation of autonomous agents for ubicomp systems and how these agents can be

easily integrated in a ubicomp environment in order to extend its functionality. Thus, the

implementation of these systems and the results of evaluating SALSA, described in

Chapter 7, not only enabled the identification of the strengths of SALSA agents, but also

their weaknesses which open opportunities for further research in this area as explained

next.

7.2 Future research work

During the different stages of this thesis several research issues were identified. Some

of them were addressed while others were not in order to define the orientation of this

research and delimit its scope. This section explains the research issues that can be the

foundation for further investigation.

7.2.1 Supporting mobile users’ disconnections.

Mobile computing devices such as Personal Digital Assistants (PDAs) and smart cell

phones are becoming major players in ubiquitous collaborative environments. As illustrated

in our scenarios, these devices can act as mediators of the user's personal space and the

Chapter 7- Conclusions

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

149

public infrastructure, and allow the ubicomp environment to know the presence and

location of users.

A natural event of mobile computing devices is that they can be disconnected for

several reasons: users decide to turn off them; the device is out of the range of the network

coverage; or the device’s battery power is consumed. Disconnections can be a problem

from different points of view:

- From the HCI (Human Computer Interaction) perspective: disconnections restrict the

users’ opportunity for interacting with the ubicomp environment in order to

opportunistically access information and services. Thus, disconnections can limit the

opportunity for reaching the “calm computing” vision in which computing devices should

be naturally integrated into the users’ activities.

- From the CSCW (Computer Supported Collaborative Work) perspective: the

collaboration of users may be interrupted by the disconnections of their mobile devices.

Some solutions propose keeping a copy of the data and collaborative application in the

mobile device in order for users to continue using the application when they are next able

to [Buzko et al., 2001; Litiu and Parkash, 2000]. However, users lose the opportunity for

continuing collaborating with their peers and participating in making important decisions.

- From the Distributed Systems approach: mobile devices can maintain data replicated

in the mobile device in order to continue accessing them, but due to memory limitations it

may not always be appropriate.

For dealing with disconnections, autonomous agent can be used for representing users

while they are disconnected. In this case, an autonomous agent might be able to maintain a

limited user presence and execute actions on his behalf, such as making decisions,

accessing services on his behalf, or executing some actions. Studying the current

collaborative activities of mobile users could help in identifying how autonomous agents

can act on behalf of users. And then, incorporate to the SALSA middleware the support

necessary for dealing with disconnections. For instance, autonomous agent may need

mechanisms for knowing the users’ preferences in order to know how to act, or learn from

the users’ behavior and activities to identify their preferences.

Chapter 7- Conclusions

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

150

7.2.2 Authentication of agents

The authentication of agents that may represent users or services, was a design issue

raised during the analysis stage of the ubiquitous computing scenarios. Existing research

work in this issue seeks to provide a mechanism for supporting the authentication of users

by using dedicated hardware, i.e. in the Gaia middleware, users have to wear active badges

[Al-Muhtadi et al., 2002] which requires that users accessing a service or device be

physically present in the physical environment. Similarly in [Bardram et al., 2003] the term

proximity based-login is introduced which allows users to be authenticated by means of a

Smart Card when they approach a device.

For integrating authentication mechanisms to SALSA, it is necessary to first analyze

what users’ information has to be taken into account for authenticating them in a ubicomp

environment. For instance, in a hospital, physicians can modify the patient records for

providing instructions to the nurses, but nurses only have permission to read this

information. Besides that, a patient in a hospital may be examined by different nurses and

physicians during the three different working shifts. Thus, the users’ id and a password may

not be the only items required for controlling the users’ access to the ubiquitous computing

devices, services and information. The users’ role, her location and current time of day may

be other elements that should be considered to provide users access to the ubicomp

environment. We realize that the authentication problem may involve other issues

regarding privacy and security for accessing entities of the environment.

Different alternatives or a mixture of them should be analyzed for integrating the

service for authenticating users to SALSA:

• An autonomous agent could be the component that checks the credentials of incoming

users to the environment.

• An alternative for deploying the authentication service is that this agent accesses the

Agent Directory of SALSA, which could be extended for storing the profile that users

should have for allowing them to interact with the services or devices registered in the

Agent Directory.

Chapter 7- Conclusions

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

151

• An appropriate authentication protocol for ubicomp systems should be identified.

• Finally, analyze what changes the communication protocol of SALSA may require for

enabling the secure transmission of the users’ credentials among agents.

7.2.3 Providing alternative communication channels

By using SALSA for implementing autonomous agents for ubicomp environments,

several issues were raised for improving its communication support.

Recently SALSA was used for implementing a component that included several agents

to enable information transfer between different devices [Amaya et al., 2005]. During the

implementation of this component, we realized that using the SALSA XML messages to

transmit files, such as documents and pictures, was not appropriate since the length of the

messages may have a size limit when transmitted through the Agent Broker. Besides that,

in some situations it is not appropriate to send the information through the Agent Broker:

For instance, SALSA agents are also being used for enabling users to use their PDAs as an

interaction interface with a public display. This application provides feedback of the results

of the user’s actions by showing the same information presented in the Public Display on

his PDA. However, the presentation of this information was delayed for several seconds

since this information was notified through the Agent Broker. This situation may disturb

the flow of the user’s interaction with the Public Display, thus this feedback may not be as

useful as expected.

In both of the above cases it was useful to use the Agent Broker to notify the presence

and state of the agents, and to initiate the interaction of the user’s PDA with other devices,

such as a Public Display. Thus, the component for transferring information could be aware

of whether the source device was available for receiving information. Then, a client-server

connection was established for the transferring of files among the source and target devices.

For the second case, the option of using a peer to peer connection for communicating

information feedback between the user’s PDA and the Public-display was analyzed, which

avoided decreasing the performance of the users’ interaction.

Chapter 7- Conclusions

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

152

Autonomous agents may need alternative communication channels. Agents may decide

which channel to use based on the type of information to be communicated, the type of

interaction required, or the context of the user’s interaction. Thus, context-aware

communication channels may be activated in order for agents to effectively exchange

information or interact with other agents and users.

7.2.4 Deriving secondary context information

During the evaluation of SALSA, presented in Chapter 7, one of the issues that arose

was that the middleware needs to facilitate the creation of the XSL filter which enables the

agents to predict the context situation based on a simple set of conditions. Besides that, the

context information that can be derived by SALSA is limited to the conditions that can be

specified in the XSL filter.

Proposing this mechanism for deriving context information, is an initial step for

exploring more complex mechanisms that could be incorporated into SALSA for allowing

agents to infer secondary context information. For instance, Artificial Intelligence

algorithms could be used in order to learn of the users’ interactions with the environment,

and predicting what information or services they may need.

7.3 Conclusions

This thesis explored the use of autonomous agents to deal with some of the

complexities abstracted from ubicomp application scenarios. Scenarios were used as a tool

to define the functionality that can be supported by autonomous agents, identify how

autonomous agents augment users’ activities, and illustrate how autonomous agents can be

the design abstraction of ubicomp systems. To address the design requirements for using

autonomous agents to develop ubiquitous computing systems, an agent middleware that

enables their development was designed and implemented.

The proposed agent middleware facilitates the implementation and evolution of

ubiquitous computing systems in which autonomous agents are the proactive components

that enable users to seamlessly and opportunistically interact with the ubicomp

environment.

Chapter 7- Conclusions

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

153

Thus, autonomous agents were used as a technique to model and design ubiquitous

computing systems since they provide a natural and elegant means to manage the system’s

complexities and to integrate new functionality.

Bibliography

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

154

Bibliography

Aamodt, A. and Plaza, E. 1994. "Foundational Issues, Methodological Variations, and
System Approaches." AI Communications, IOS Press, 7(1): 39-59 p.

Abowd, G.D. and Mynatt, E.D. 2000. "Charting Past, Present, and Future Research in
Ubiquitous Computing". ACM Transactions on Computer-Human Interaction, 7(1): 29–58

Al-Muhtadi, J., Ranganathan, A., Campbell, R., and Mickunas, M.D. 2002. "A Flexible,
Privacy-Preserving Authentication Framework for Ubiquitous Computing Environments".
In Proceedings of International Workshop on Smart Appliances and Wearable Computing
(IWSAWC) part of ICDCS 2002, Vienna, Austria. 771-776 p.

Amaya, I., Favela, J., and Rodríguez, M.D. 2005. "Componentes de software para el
desarrollo de ambientes de cómputo ubicuo". In Proceedings of Ubiquitous Computing and
Ambient Intelligence (UCAMI). Granada, Spain. September 13-16. Ed. Thomson. 173-180
p.

Ametler, J., Robles, S., and Borrel, J. 2003. "Agent Migration over FIPA ACL Messages".
In Proceeding of Mobile Agents for Telecommunication Applications (MATA). Marakech,
Morocco. October 8-10. LNCS 2881, Springer-Verlag. 210-219 p.

Bahl, P. and Padmanabhan, V.N. 2000. "RADAR, An In-Building RF-Based Location and
Tracking System". In Proceeding of the Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, IEEE INFOCOM. Tel-Aviv, Israel. March 26 -
30. 775-784 p.

Banavar, G. 2000. "Challenges: An Application Model for Pervasive Computing". 6th.
Annual Intl. Conference on Mobile Computing and Networking (MobiCom). Boston, MA
USA. August 6-11. 266-274 p.

Banavar, G. and Bernstein, A. 2002. "Software Infrastructure and Design Challenges".
Communications of the ACM, 45(12): 92-96 p.

Bardram, J., Kjær, R.E., and Pedersen, M.Ø. 2003. "Context-Aware User Authentication -
Supporting Proximity-Based Login in Pervasive Computing". Fifth International
Conference on Ubiquitous Computing (UbiComp). Seattle, Washington. October 12-15.
LNCS 2864, Springe-Verlag. 107-123 p.

Bibliography

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

155

Bardram, J.E. and Bossen, C. 2003. "Moving to get aHead: Local Mobility and
Collaborative Work". In Proceeding of the European Conference on Computer Supported
Cooperative Work (ECSCW). Klüwer Academic Publishers: Dordrecht, Boston, London.
355-374 p.

Bergenti, F. and Poggi, A. 2001. "LEAP: A FIPA Platform for Handheld and Mobile
Devices". Presented at Agent Theories, Architectures, and Languages. The Eight
International Workshop (ATAL). Seattle, WA. August 1-3. LNAI 2333, Volume package:
Intelligent Agents, Springer-Verlag. 436-446 p.

Bettstetter, C. and Renner, C. 2000. "A comparison of Service Discovery Protocols and
Implementation of the Service Location Protocol". In Proceedings of the 6th Open
European Summer School: Innovative Internet Applications Twente (EUNICE).
Netherlands. September.

Bossen, C. 2002. ”The Parameters of Common Information Spaces: the Heterogenity of
Cooperative Work at a Hospital Ward” In Proceedings of ACM Conf. on Computer
Supported Cooperative Work (CSCW). New Orleans, Louisiana, USA. 16-20 November.
176-185 p.

Bradshaw, J. 1997. "Software Agents". AAAI Press/MIT Press: 3-49 p.

Breemen, A.J.N.v. 2003. "Integrating Agents in Software Applications". In Proceedings of
the Agent Technology Workshops LNAI 2692, Springer-Verlag. 343-354 p

Brown, P.J. and Jones, G.J.F. 2001. "Context-aware Retrieval: Exploring a New
Environment for Information Retrieval and Information Filtering". Personal and
Ubiquitous Computing, 5: 253-263 p.

Budzik, J. and Hammond, K. 2000. " User Interactions with Every Applications as Context
for Just-in-time Information Access". In Proceedings of Intelligent User Interfaces 2000.
New Orleans, LA, USA January 9-12. ACM Press. 44-51 p.

Buzko, D., Lee, W., and Helal, A. 2001. "Decentralized Ad-Hoc Groupware API and
Framework for Mobile Collaboration". Proceedings of the 2001 International ACM
SIGGROUP Conference on Supporting Group Work, Boulder, Colorado. 5-14 p.

Caire, G., Lhuillier, N., and Rimassa, G. 2002. "A communication protocol for agents on
handheld devices". Presented at the First International Joint Conference on Autonomous
Agents and Multiagents Systems (AAMAS), Bologna, Italy.

Bibliography

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

156

Campo, C. 2002. "Service Discovery in Pervasive Multi-Agent Systems". Presented at the
First International Joint Conference on Autonomous Agents and Multiagents Systems,
(AAMAS) Bologna Italy.

Capra, L., Emmerich, W., and Mascolo, C. 2003. "CARISMA: Context-Aware Reflective
Middleware System for Mobile Applications". IEEE Transactions on Software Engineering,
29(10): 929-945 p.

Carolis, B.D. and Pizzutilo, S. 2002. "A MultiAgent Infraestructure supporting
Personalized Interaction with Smart Environments". In Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagents Systems
(AAMAS), Bologna, Italy.

Carrol, J.M. 1995. "Scenario-Based Design". John Wiley & Sons. London. 368 pp.

Carrol, J.M. 2000. "Making Use: Scenario-Based Design of Human-Computer
Interactions". MIT Press, Cambridge, MA. 376 pp.

Casebeer, L.L., Strasser, S.M., Spettell, C., Wall, M.T., Weissman, N., Ray, M.N., and
Allison, J.J. 2003. "Designing Tailored Web-Based Instruction to Improve Practicing
Physicians' Preventive Practices". Journal of Medical Internet Research, 5(3): p.

Castro-Oliveira, I., Belo, O., and Cunha, J.P. 2000. "Agents Working on the Integration of
Heterogeneous Information Sources in Distributed Healthcare Environments". In
Proceedings of International Joint Conference, 7th Ibero-American Conference on AI, 15th
Brazilian Symposium on AI, IBERAMINA-SBIA. Atibaia, SP, Brazil. November 19-22.
Springer-Verlag. 136-145 p.

Cortés, U., Annicchiarico, R., Vázquez-Salceda, J., Urdiales, C., Cañamero, L., López, M.,
Sánchez-Marré, M., and Caltagirone, C. 2003. "Assistive technologies for the disabled and
for the new generation of senior citizens: the e-Tools architecture". AI Communications,
IOS Press, 16: 193-207 p.

Saha, D. and A. Mukherhee. 2003. "Pervasive Computing: A Paradigm for the 21st
Century". IEEE Computer, 36: 25-31 p.

Davies, F., Bagozzi, R., and Warshaw, P. 1991. "User Acceptance of Information
Technology: A Comparison of Two Theoretical Models". Management Science, 35(8):
982-1003 p.

Bibliography

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

157

Davies, N. and Gellersen, H.-W. 2002. "Beyond Prototypes: Challenges in Deploying
Ubiquitous Computing Systems". IEEE Pervasive Computing, 1(1): 26-35 p.

Dey, A.K. 2000. Providing Architectural Support for Building Context-Aware
Applications. PhD dissertation. Georgia Institute of Technology.

Dey, A.K. 2001. "Understanding and Using Context". Personal and Ubiquitous
Computing. Springer-Verlag. London, UK. 4-7 pp.

Dourish, P. 2004. "What we talk about when we talk about context". Personal and
Ubiquitous Computing, 8: 19-30 p.

Edwards, K., Bellotti, V., Dey, A.K., and Newman, M. 2003. "Stuck in the Middle: The
Challenges of User-Centered Design and Evaluation for Middleware". In Proceedings of
the Conference on Human Factors in Computing Systems (CHI). Lauderdale, FL. April 5-
10. ACM Press, CHI Letters 5(1): 297-304 p.

Favela, J., Rodríguez, M., Alba, M., and Morán, A.L. 2002. "Supporting Opportunistic
Interacting with People, Resources and Agents in Ubiquitous Enviroments". Presented in
Mobile Ad-hoc Collaboration Workshop at CHI 2002, Minneapolis, Minnesota.

Favela, J., Rodríguez, M., Preciado, A., and González, V.M. 2004. "Integrating Context-
aware Public Displays into a Mobile Hospital Information System". IEEE Transactions on
Information Technology in Biomedicine, 8(3): 279-286 p.

Fersha, A. 2002. "Context-aware: Bridging Physical and Virtual Worlds". In Proceedings
of Reliable Software Technologies - Ada-Europe. Vienna, Austria. June 17-21. LNCS
2361, Springer-Verlag, 51-64 p.

Finin, T., Fritzson, R., McKay, D., and McEntire, R. 1994. " KQML as an Agent
Communication Language". In Proceedings of Third International Conference on
Information and Knowledge Management. Gaithersburg, Maryland, USA. November 29 -
December 02. ACM Press. 456-463 p.

Golden, G. 2002. "Service Advertisement and Discovery: Enabling Universal Device
Cooperation". IEEE Internet Computing: 18-26 p.

Bibliography

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

158

Greenwood, S., Nealon, J.L., and Marshall, P. 2003. "Agent-Based User Interface
Adaptivity in a Medical Decision Support System". Applications of Software Agent
Technology in the Health Care Domain. Whitestein Series in Software Agent
Technologies, Birkhäuser Springer-Verlag, Basel, 35-48 pp.

Grimm, R. 2004. "One.world: Experiences with a Pervasive Computing Architecture".
IEEE Pervasive Computing, 3(3): 22-30 p.

Griss, M.L. and Pour, G. 2001. "Accelerating Development with Agent Components". IEEE
Computer: 37-43 p.

Hansmann, U., Merk, L., Nicklous, M.S., and Stober., T. 2001. "Pervasive Computing
Handbook". Springer-Verlag.

Hgo, H.Q., Shehzad, A., Liaquat, S., Riaz, M., and Lee, S. 2004. "Developing Context-
Aware Ubiquitous Computing Systems with a Unified Middleware Framework". In
Proceedings of International Conference on Embedded and Ubiquitous Computing (EUC).
Aizu, Japan. August 25-27. LNCS 3207, Springer-Verlag. 672-681 p.

J. M. Carrol, 2000. 2000. "Making Use: Scenario-Based Design of Human-Computer
Interactions". Cambridge, Massachusetts; London England: The MIT Press.

Jennings, N.R. 2001. "An Agetn-based Approach for Building Complex Software Systems".
Communications of the ACM, 44(4): 35-41 p.

Kay, A. 1990. "User Interface: A personal view". In B. Laurel (ed.): The Art of Human-
Computer Interface Design. Addison-Wesley, Reading, Mass. 190 pp.

Kim, G., Shin, D., and Shin, D. 2004. "Design of a Middleware and HIML (Human
Interaction Markup Language) for Context Aware Services in a Ubiquitous Computing
Environment". In Proceedings of International Conference on Embedded and Ubiquitous
Computing (EUC). Aizu, Japan. August 25-27. LNCS 3207, Springer-Verlag, 682-691 p.

Kindberg, T. and Fox, A. 2002. "System Software for Ubiquitous Computing". IEEE
Pervasive Computing, 1(1): 70-81 p.

Kirn, S. 2003. "Ubiquitous Healthcare: The OnkoNet Mobile Agents Architecture". In
Proceedings of International Conference NetObjectDays (NODe). Erfurt, Germany.
October 7-10. LNCS 2591, Springer-Verlag. 265-277 p.

Bibliography

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

159

Klemmer, S.R., Li, J., Lin, J., and Landay, J.A. 2004. "Papier-Maché: Toolkit Support for
Tangible Input". In Proceedings of Human Factors in Computing Systems (CHI). Vienna,
Austria. ACM Press. 399-406 p.

Koukoumpetsos, K. and Antonopoulos, N. 2002. "Mobility Patterns: An Alternative
Approach to Mobility Management". In Proceedings of the 6th World Multi-Conference on
Systemics, Cybernetics and Informatics (SCI), Orlando , Florida, USA. 14-18 July.

Labrou, Y., Finin, T., and Peng, Y. 1999. "Agent Communication Languages: The Current
Landscape". IEEE Intelligent Systems, 14(2): 45-52 p.

Labrou, Y. 2001. "Standardizing Agent Communication". Advanced Course on Artificial
Intelligence (ACAI-01). LNCS 2086, Springer-Verlag. 74-97 p.

Laukkanen, M., Helin, H., and Laamanen, H. 2002. "Tourists on the Move". In Proceedings
of International Workshop Series on Cooperative Information Agents (CIA). Madrid,
Spain. September 18-20. Springer-Verlag. 36-50 p.

Lesser, V. 1999. "Cooperative Multiagent Systems: A Personal View of the State of the
Art". IEEE Transactions on Knowledge and Data Engineering, 11(1): 133-141 p.

Litiu, R. and Parkash, A. 2000. "Developing Adaptive Groupware Applications Using a
Mobile Computing Framework". In Proceedings of Computer Supported Cooperative Work
(CSCW). Philadelphia, Pennsylvania, USA. December 2-6. ACM Press. 107-116. p.

Maes, P. 1994. "Agents that Reduce Work and Information Overload". Communications of
the ACM, 37(7): 30-40 p.

Makoto A. 2005. “Agent-Oriented Approach to Ubiquitous Computing”. In Proceedings of
the First International Conference on Embedded Software and Systems, (ICESS 2004)
Revised Selected Papers. Hangzhou, China. LNCS 3605, Springer-Verlag. 30-37p.

Moreno, A., Valls, A., and Riaño, D. 2004. "Medical Applications of Multi-Agent Systems".
Presented at ECAI Workshop on Agents Applied in Health Care. Valencia, Spain. August
22-27.

Muñoz, M.A., Gonzalez, V.M., Rodríguez, M., and Favela, J. 2003a. "Supporting Context-
aware Collaboration in a Hospital: an ethnographic informed design". In Proceedings of

Bibliography

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

160

Workshop on Artificial Intelligence, Information Access, and Mobile Computing 9th
International Workshop on Groupware (CRIWG). Grenoble, France. Springer-Verlag. 330-
344 p.

Muñoz, M.A., Rodriguez, M., Favela, J., Martinez-García, A.I., and Gonzalez., V.M.
2003b. "Context-aware mobile communication in hospitals". IEEE Computer, 36(9): 38-46
p.

Odell J. J. 2002. “Objects and Agents Compared”. Journal of Object Technology. 1(1)
May-June. 41-53 p.

Oviatt, S. and Cohen, P. 2000. "Multimodal Interfaces that Process what Comes
Naturally". Communications of the ACM, 43(3): 45-53 p.

Parunak, H.V.D. and Odell, J. 2001. "Representing Social Structures in UML". In
Proceedings of the 5th International Conference on Autonomous Agents. ACM Press. 100-
101 p.

Pizzutilo, B.D.C.a.S. 2002. " A MultiAgent Infraestructure supporting Personalized
Interaction with Smart Environments". Presented at First International Joint Conference on
Autonomous Agents and Multiagents Systems (AAMAS), Bologna, Italy.

Popovici, A., Frei, A., and Alonso, G. 2003. "A Proactive Middleware Platform for Mobile
Computing". In Proceedings of International Middleware Conference. Rio de Janeiro,
Brazil. June 16-20. LNCS 2672, Springer. 455-473 p.

Ranganathan, A. and Campbell, R.H. 2003. "An infrastructure for context-awareness based
on first order logic". Personal and Ubiquitous Computing, 7: 353-364 p.

Reddy, M. and Dourish, P. 2002. "A Finger on the Pulse: Temporal Rhythms and
Information Seeking in Medical Work". Computer Supported Cooperative Work (CSCW).
New Orleans, Louisiana, USA. November 16-20. ACM Press. 344-353 p.

Rist, T. 2004. "Issues in Designing Human-Computer Interaction in AmI". Extended
abstracts of the 2004 Conference on Human Factors in Computing Systems (CHI). Lost in
Ambient Intelligence Workshop. Vienna, Austria. April 24-29. ACM Press. 1725-1726 p.

Riva, G., Vatalaro, F., Vatalaro, F., Davide, F., and Alcañiz M. (Edts.). 2005 "Ambient
Intelligence: The evolution of technology, communication and cognition towards the future
of human-computer interaction". IOS Press. 295 pp.

Bibliography

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

161

Rodriguez, M.D., Favela, J., Martínez, E.A., and Muñoz, M.A. 2004. "Location-aware
Access to Hospital Information and Services". IEEE Transactions on Information
Technology in Biomedicine, 8(4): 448- 455 p.

Román, M., Hess, C., Cerqueira, R., Ranganatha, A., Campbell, R.H., and Nahrstedt, K.
2002. "A Middleware Infrastructure for Active Spaces". IEEE Pervasive Computing, 1(4):
74-83 p.

Saha, D. and Mukherhee, A. 2003. "Pervasive Computing: A Paradigm for the 21st
Century". IEEE Computer, 36: 25-31 p.

Saif, U. and Greaves, D.J. 2001. "Communication Primitives for Ubiquitous Systems or
RPC Considered Harmful". Presented at 21st International Conference on Distributed
Computing Systems Workshops (ICDCSW '01). Arizona, USA. IEEE Press. 240-245 p.

Satyanarayanan, M. 2001. "Pervasive Computing: Vision and Chal-lenges". IEEE Personal
Communications: 10-17 p.

Schilit, B.N. and Theimer, M.M. 1994. "Disseminating active map information to mobile
hosts". IEEE Network, 8(5): 22-32 p.

Schoen, D.A. 1983. "The reflective practitioner: how professionals think in action." New
York: Basic Books.

Shadbolt, N. 2003. "Ambient Intelligence". IEEE Intelligent Systems, 18(4): 2-3 p.

Shoham, Y. 1997. "An Overview of Agent-oriented Programming". Software Agents,
Menlo Park, Calif.: AAAI Press.

Singh, S., Ikhwan-Ismail, B., Haron, F., and Yong, C.H. 2004. "Architecture of Agent-
based Healthcare Intelligent Assistnat on Grid Environment". In Proceedings of The
International Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT). Singapore. December 8-10. LNCS 3320, Springer-Verlag. 58-61
p.

Suvee, D., Vanderperren, W., Jonckers, V. “JAsCo: an Aspect-Oriented approach tailored
for Component Based Software Development”. Aspect-Oriented Software Development
Conference (AOSD). Boston, MA USA. March 17 – 21. ACM Press. 21-29 p.

Bibliography

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

162

Tablado, A., Illarramendi, A., Bermúdez, J., and Goñi, A. 2003. "Intelligent Monitoring of
Elderly People". In Proceedings of the 4th. Annual IEEE Conference on Information
Technology Applications in BiomedicineBuckingham, UK. 78-81 p.
Theureau, J., Filippi, G. 2000. “Analysing cooperative work in a urban traffic control
room for the design of a coordination support system”, In Workplace Studies: Recovering
Work Practice and Informing System Design. Edited by Luff, P. et. al. Cambridge Press.
68-91 p.

Tveit, A. 2001. "A survey of agent-oriented software engineering." NTNU Computer
Science Graduate Student Conference. Report. Norway.

Villate, Y., Illarramendi, A., and Pitoura, E. 2002. "Keep your data safe and available
while roaming". In Proceedings of Mobile Networks and Applications (MONET), ACM
Press. 315-328 p.

Wang, X., Song-Dong, J., Yau-Chin, C., and Ravipriya-Hettiarachchi, S. 2004. "Semantic
Space: An Infraestructure for Smart Spaces". IEEE Pervasive Computing, 3(3): 32-39 p.

Wegner, P. 1990. Concepts and Paradigms of Object-Oriented Programming. Keynote Talk
of OOPSLA. ACM SIGPLAN OOPS Messenger. ACM Press. New York, USA. 1(1): 3-
87p.

Weiser, M. 1991. "The Computer for the Twenty-First Century". Scientific American,
265(3): 94-104 p.

Weiser, M. 1993. "Some Computer Science Issues in Ubiquitous Computing."
Communications of the ACM, Special issue on computer augmented environments: back to
the real world, 36(7): 75-84 p.

Weiser, M. and Brown, J. 1996. "Designing Calm Technology". PowerGrid Journal, 1(1).

Wooldridge, M. and Jennings, N. 1995. "Intelligent Agents: Theory and Practice".
Knowledge Engineering Review, Cambridge University Press, 10(2): 115-152 p.

Wooldridge, M. 1997. "Agent-based software engineering". IEE Proc. Software
Engineering, 144(1): 26-37 p.

Bibliography

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

163

Wooldridge, M.J. and Jennings, N.R. 1999. "Software Engineering with Agents: Pitfalls
and Pratfalls". IEEE Internet Computing: 20-27 p.

Yau, S., Karim, F., Wang, Y., Wang, B., and Gupta, K.S. 2002. "Reconfigurable Context-
Sensitive Middleware for Pervasive Computing". IEEE Pervasive Computing, 1(4): 33-40
p.

Zimmermann, G., Vanderheiden, G., Gandy, M., Laskowski, S., Ma, M., Trewin, S., and
Walker, M. 2004. "Universal remote console standard - toward natural user interaction in
ambient intelligence". Extended Abstracts on Human Factors in Computing Systems,
(CHI), Vienna, Austria. 1608-1609 p.

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

164

Appendix A
API of SALSA
This Section presents the API for facilitating the implementation of agents for ubiquitous
computing environments. This API includes two class libraries: SALSA which was
implemented in Java (jdk 1.2) for creating agents that can be executed in any computing
platform and mSalsa which was implemented in C# for creating agents for mobile devices.
The classes of the API are grouped according to the functionality that the agent
implements. At the top of each class shows the name of the library in which it can be
found, i.e. mSalsa, SALSA, Client; followed by a description of the class and the fields and
methods it provides.

A.1 Creating and activating an Agent
mSalsa, SALSA
Class Agent
public class Agent

An agent is a component of a ubicomp system. It may represent users, act as a
proxy to devices or services, or wrap complex system functionality. An Agent class
must be a superclass of any agent that is a component of a ubiquitous computing
system.

The following is an example that illustrates how to create an Agent that perceives
information through the Agent Broker.

Example A:

import SALSA.*;
import Client.*;
public class HelloWorldAgent extends Agent{
 JabberClient jc; //JabberClient acting as proxy to the Agent
Broker
 public HelloWorldAgent(){
 jc=new JabberClient("pc-
coolab5","5222","marcerod","anro1224"); //Instant messaging client
 HelloWorldReasoning reasoning=new HelloWorldReasoning();
 activate(reasoning, jc);
 }

 public static void main(String[] args) {
 HelloWorldAgent agentito1 = new HelloWorldAgent();

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

165

 }
}

Fields

attributes

protected SALSA.AgentAttributes attributes
Contains the attributes that characterizes an Agent.

acting

protected SALSA.Acting acting
The Acting object is the agent's component through which the actions of the agent
are invoked.

passivePerception

public SALSA.PassivePerception passivePerception
The PassivePerception object is the agent's component through which the agent
perceives information.

jc

protected SALSA.ProxyBroker jc
The ProxyBroker is the object that enables the agent's to communicate through the
Agent Broker.

reasoning

protected SALSA.Reasoning reasoning
Contains the implementation of the agent's reasoning. This object is automatically
instantiated in the activate method.

Constructors

Agent

public Agent()

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

166

Creates an Agent instance

Methods

activate

protected void activate(SALSA.Reasoning rsn,
 SALSA.ProxyBroker pb)

Creates the agent's components and then activates the agent which perceives
information and communicates by sending XML messages through the
ProxyBroker that is passed as an argument. The Reasoning object that is passed as
an argument should contain the reasoning algorithm for this agent.

Parameters:
rsn - Reasoning
pb - ProxyBroker

activate

protected void activate(java.lang.String typeAgent,
 SALSA.Reasoning rsn,
 SALSA.ProxyBroker pb)

Creates the agent's components and then activates the agent. This agent perceives
information and communicates through the ProxyBroker that is passed as an
argument. The typeAgent argument indicates the type of agent, such as "user" or
"service". The value of this argument can be specified by passing attributes.USER,
attributes.SERVICE, or any other value indicated by the user. This value will be
part of the agent’s attributes which will be registered in the Agent Directory. The
Reasoning object specifies the reasoning algorithm.

Parameters:
type Agent - the type of Agent: i.e. "user", "service"
rsn - Reasoning
pb - ProxyBroker

activate

protected void activate(SALSA.Reasoning rsn)
Creates the agent's components and then activates the agent which directly
perceives information from a sensor, device or service, and directly communicates
with other agents. The Reasoning object specifies the reasoning algorithm.

Parameters:
rsn - Reasoning

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

167

A.2 Perception component
mSALSA, SALSA
Class PassivePerception
public class PassivePerception

PassivePerception component of the Agent. When the Agent is created, an object
of this class is automatically created.

Methods

perceive

public void perceive(SALSA.Input input)
This method should be invoked by the PassiveEntityToPerceive object to notify
the received information to this PassivePerception component. When a SALSA
message is perceived, this method generates a SALSA event and notifies it to the
reasoning component of the agent.

Parameters:
input - the input argument wraps the information perceived, which can be an
XMLpresence, XMLmessage, or any other kind of object

SALSA
Class PassiveEntityToPerceive
public class PassiveEntityToPerceive

Represents the entity from which the PassivePerception will perceive. In passive
sensing or perception, the entity takes the initiative to send data to the agent.
The passive perception component perceives information from a
PassiveEntityToPerceive object attached to the entity from which the Agent
needs to receive information. For instance, if the Agent will perceive information
from an instant messaging client (the proxy to the Agent Broker), it needs to embed
a PassiveEntityToPerceive object as illustrated in the following code:

-->THE PassiveEntityToPerceive OBJECT IS INHERETED BY THE
-->ProxyBroker CLASS
public class JabberClient extends SALSA.ProxyBroker{
 private SALSA.Input in;

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

168

public JabberClient(String server, String port, String userName,
 String password) {

 connect();
->START THREAD FOR READING INCOMING DATA
 incomingData();
}

private synchronized void incomingData(){
 while(true){
 String xml = "";
 xml = read();
-->WHEN A NEW MESSAGE ARRIVES:
 parse(xml);
 }
}

public void parse(String xml){
-->PARSE THE MESSAGE....
-->VERIFY THE TYPE OF MESSAGE:
 if (tag.equalsIgnoreCase("message") == true) {
 SALSA.XMLmessage xmlMessage = new
 SALSA.XMLmessage(nl.item(i).toString());
 in = new SALSA.Input(xmlMessage);
 passiveEntity.notifying(in);
 }
 else
 if (tag.equalsIgnoreCase("presence") == true) {
 SALSA.XMLpresence xmlPresence = new
 SALSA.XMLpresence(nl.item(i).toString());
 in = new SALSA.Input(xmlPresence);
 passiveEntity.notifying(in);

 }

 }

NOTE: The above code is part of the implementation of the proxy to the Agent
Broker, or IM client, provided by SALSA which has the perception component
implemented already.

The following is an example of a class that reads data from a sensor or device and
notifies the data to the agent's perception component.
Example B:

import SALSA.*;
public class HelloWorldSensingData {
 PassiveEntityToPerceive passiveEntity;

 public HelloWorldSensingData(Agent agent)
 {

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

169

 passiveEntity=new PassiveEntityToPerceive();
 passiveEntity.attach(agent.passivePerception);
 }

 public void readDataFromSensor()
 {
 -->INSERT CODE CREATING A THREAD THAT READS DATA FROM A SENSOR

 passiveEntity.notifying(new Input(sd));
 }
}

Methods

attach

public void attach(SALSA.PassivePerception pp)
Specifies the PassivePerception component to which the perceived information
has to be notified.

Parameters:
pp - the PassivePerception component

detach

public void detach(SALSA.PassivePerception pp)
Removes the PassivePerception component from this entity

Parameters:
pp - the PassivePerception component

notifying

public void notifying(SALSA.Input input)
This method is invoked from the ProxyBroker each time a message arrives. Then
the method passes the message which contains the perceived information to the
PassivePerception component of the Agent.

Parameters:
input – the object that contains the message

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

170

mSalsa, SALSA
Class Input
public class Input

An object Input contains the data perceived through the
passiveEntityToPerceive object.

Fields

data

private java.lang.Object data
It is the perceived data.

Constructors

Input

public Input(java.lang.Object data)
Creates an Input object with the data passed as an argument.

Methods

setData

public void setData(java.lang.Object data)
Sets the data object.

getData

public java.lang.Object getData()
Return the value of the data object.

mSalsa, SALSA
Class XMLmessage
public class XMLmessage

Contains the xml message received through the Agent Broker

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

171

Fields

msg

java.lang.String msg
It is the XML message.

Constructors

XMLmessage

public XMLmessage(java.lang.String msg)

Creates an instance of the XMLmessage class containing the msg variable.

Parameters:
msg - The xml message

mSalsa, SALSA
Class XMLpresence
public class XMLpresence

Contains a presence message perceived through the Agent Broker.
Fields

presence

java.lang.String presence
Contains the presence message

Constructors

XMLpresence

public XMLpresence(java.lang.String presence)
Creates an XMLpresence object containing the presence message passed as an
argument

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

172

SALSA
Class SensorData
public class SensorData

An instance of the SensorData class contains the data perceived from a sensor.
Fields

data

public java.lang.Object data
The perceived data.

Constructors

SensorData

public SensorData(java.lang.Object data)
Creates a SensorData object containing the data perceived

Parameters:
data – an object that contains the data perceived

Methods

getData

public java.lang.Object getData()
Returns the perceived data.

Returns:
Object containing the data

A.3 Acting component
mSalsa, SALSA
Class Acting
public class Acting

Acting is the component of the Agent that enables the reasoning component to
execute an action.

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

173

Methods

act

public void act(SALSA.Action action)
Executes the action indicated as an argument. This method should be invoked from
the agent's reasoning component.

Parameters:
action - the action to be executed

mSalsa, SALSA
Class Action
public abstract class Action

This class implements the agent's actions which may involve communicating with
other agents through the Agent Broker. The following is an example of the
implementation of the Action component:

import SALSA.*;

public class HelloWorldAction extends Action {
 public Object execute(){
-> INSERT CODE FOR AGENT'S ACTION, WHICH MAY INCLUDE COMMUNICATING
WITH ANOTHER AGENT:
 sendCommandRequest("map_agent@jabber","","display","internal
medicine");

 return null;
 }
}

Methods

execute

public abstract java.lang.Object execute()
This method should be overwritten to implement the agent's actions.

Returns:
Object - an object containing information related with the execution of the action.
The content of this object should be defined by developers.

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

174

sendRequest

public void sendRequest(java.lang.String to,
 java.lang.String body,
 java.lang.String type,
 java.lang.String params)

Sends a message to request information from another Agent
Parameters:

to - the id of the Agent
body - a message to be displayed in a GUI of the agent. This argument is optional.
type - Type of the information to be requested. This is defined by the developer.
params - XML tags defined by the user. They contain information specifying other
characteristics that the information requested should have.

The format of the XML message sent by this method is:

<message to='agentA@jabber_server'
 from='agentB@jabberserver'>
 <body>a message </body>
 <x xmlns='x:request'>
 <params><type>Type of information requested</type>
 Other tags specifying the parameters necessary for this

 request
 </params>
 </x>
</message>

sendResponse

public void sendResponse(java.lang.String to,
 java.lang.String body,
 java.lang.String type,
 java.lang.String params)

Sends a message that responds to a request message sent by another Agent
Parameters:

to - id of the Agent.
body - a message to be displayed in a GUI of the agent. This argument is optional.
type - Type of the information send to another Agent.
params - XML tags defined by the user. They contain the information requested by
another agent.

The format of the message sent by this method is:

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

175

<message to='agentA@jabber_server'
 from='agentB@jabberserver'>
 <body>a message </body>
 <x xmlns='x:response'>
 <params><type>Type of the information sent as a
response</type> Other tags specifying the parameters necessary for
this response
 </params>
 </x>
</message>

sendNotificationInfo

public void sendNotificationInfo(java.lang.String to,
 java.lang.String body,
 java.lang.String type,
 java.lang.String params)

Sends a message to another agent notifying that an event happened or notifying new
information relevant for the execution of the other agent.

Parameters:
to - id of the Agent.
body - a message to be displayed in a GUI of the agent. This argument is optional.
type - Type of notification sent to another Agent.
params - XML tags defined by the user. They contain the information requested by
another agent.

The format of the message sent by this method is:

<message to='agentA@jabber_server'
 from='agentB@jabberserver'>
 <body>a message </body>
 <x xmlns='x:notificationInfo'>
 <params><type>Type of notification</type>
 Other tags specifying the parameters necessary for this
notification
 </params>
 </x>
</message>

sendCommandRequest

public void sendCommandRequest(java.lang.String to,
 java.lang.String body,
 java.lang.String command,

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

176

 java.lang.String params)
Request the execution of an action or service from another Agent

Parameters:
to - id of the Agent
body - a message to be displayed in a GUI of the agent. This argument is optional
command - the name of the requested command or service to be executed
params - XML tags specifying data needed for requesting the execution of an action
or service

The format of the message sent by this method is:

<message to='agentA@jabber_server'
 from='agentB@jabberserver'>
 <body>a message </body>
 <x xmlns='x:command'>
 <params><type>Type of action or service</type>
Other tags specifying the parameters necessary for the execution of
the action
 </params>
 </x>
</message>

sendContextualMsg

public void sendContextualMsg(java.lang.String to,
 java.lang.String body,
 java.lang.String type,
 java.lang.String params)

Sends a contextual message to other Agent
Parameters:

to - id of the Agent
body - a message to be displayed in a GUI of the agent. This argument is optional
type - Type of the message
params - Set of xml tags specifying other information the other agent needs to send
the message

The format of the message sent by this method is:
<message to='agentA@jabber_server'
 from='agentB@jabberserver'>
 <body>a message </body>
 <x xmlns='x:contextual message'>
 <params>Your tags specifying the parameter </params>
 </x>
</message>

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

177

sendPresence

public void sendPresence(java.lang.String status,
 java.lang.String nickUser,
 java.lang.String area,
 java.lang.String location,
 java.lang.String typeOfAgent)

Sends a presence message
Parameters:

status - State of the agent: online, available, ...
nickUser - Name of the agent
area - Area of the ubicomp environment in which this agent is located
location - Specific place of the area (i.e. No. of room) in which this agent is
located
typeOfAgent - Type of agent: user, service, device

The format of the message sent by this method is:
<presence>
 <params><area>areaName</area>
 <location>location</location>
 <type>typeOfAgent</type>
 </params>
</presence>

sendDataSensor

public void sendDataSensor(SALSA.PassiveEntityToPerceive passiveEntity,
 SALSA.SensorData sd)

Sends the data perceived directly to the passive perception of another Agent
Parameters:

passiveEntity - PassiveEntityToPerceive entity from which another Agent
perceives information
sd - SensorData object containing the data perceved from the sensor attached to this
Agent.

sendDataSensor

public void sendDataSensor(java.lang.String to,
 java.lang.String body,

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

178

 java.lang.String type,
 java.lang.String params)

Sends the data perceived from a sensor to another Agent. This data is sent through
the Agent Broker.

Parameters:
to - String instant messagin id of the other Agent
body - String a simple message. This parameter is optional.
type - String the type of information. For instance: noiseLevel
params - String information describing the perceived data.

The format of the message sent by this method is:

<message to='agentA@jabber_server'
 from='agentB@jabberserver'>
 <body>a message </body>
 <x xmlns='x:dataFromSensor'>
 <params><type>Type of data</type>
Other tags providing information of the data perceived
 </params>
 </x>
</message>

A.4 Reasoning component
mSalsa, SALSA
Class Reasoning
public abstract class Reasoning

Creates the Reasoning component of the Agent.

The following is an example of a Reasoning component:

import SALSA.*;
import java.util.*;
public class HelloWorldReasoning extends Reasoning{
 public void think(EventObject ev){
->INSERT THE REASONING CODE, WHICH MAY INCLUDE VERIFY
THE RECEIVED INFORMATION IN ORDER TO DECIDE HOW TO ACT:
......
 SALSA.Events.Event event=(SALSA.Events.Event)ev;
 if (event.getType()==event.ArriveSensorDataEvent){

 ->INVOKE THE ACTION(S):
 acting.act(new HelloWorldAction(dat_int));

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

179

 }
 }
}

Fields

acting

public SALSA.Acting acting
The Acting component of the Agent.

Methods

think

protected abstract void think(java.util.EventObject ev)
This method should be overwritten to specify the reasoning
algorithm of the Agent. This is automatically invoked in the
perception component when it perceives information.

Parameters:
ev - the EventObject contains the perceived data in the perception
component

SALSA
Class SecondaryContext
public class SecondaryContext

Provides the methods to derive secondary context information from
the perceived context information. As illustrated in the following
example, the code for obtaining secondary context information is
implemented in the Reasoning component.

public class patientAgentReasoning extends Reasoning{
 SALSA.SecondaryContext sc;
 public patientAgentReasoning()extends Reasoning{
 String xslFile = "C:\\Documents and
Settings\\Usuario\\jbproject\\patientagent\\secondaryContext.xsl";
 sc = new SALSA.SecondaryContext(xslFile);
 -->SPECIFY THE PRIMARY CONTEXTUAL VARIABLES:
 sc.setContextualVariable("glucose", "80");
 sc.setContextualVariable("pulsations", "0");
 sc.setContextualVariable("perspiring", "0");
 }

 public void think(EventObject ev){
 SALSA.Events.Event event = (Event)ev;
 String secondaryContext = "";

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

180

 if (event.getType()==event.ArriveSensorDataEvent){
-->WHEN NEW CONTEXT INFORMATION IS PERCEIVED, THE AGENT
DERIVES SECONDARY CONTEXT INFORMATION
 secondaryContext = sc.derive(ev);
 Utilidades.Parser p =
 new Utilidades.Parser(secondaryContext);
 String contexto = p.getTag("context");
 String tipo=p.getAtt("context", "type");
 if (tipo.equals("hypoglycemia")){
 switch(Integer.parseInt(contexto)){
 case 0: acting.act(new patientAgentAction());
 break;
 case 1: acting.act(new recomend());
 break;
 case 2: acting.act(new notifyToHospital());
 break;
 }
 }
 }
 }
}

Constructors

SecondaryContext

public SecondaryContext(java.lang.String xsl)
Creates an object of the SecondaryContext class that will derive context based on
the set of conditions stated in the file passed as an argument.

Parameters:
xsl - the name of the file that contains the set of conditions for deriving secondary
context information. The name of the file should specify the complete path to the
file. For instance:
String xslFile = "C:\\Documents and
Settings\\Usuario\\jbproject\\patientagent\\secondaryContext.xsl";
sc = new SALSA.SecondaryContext(xslFile);

Methods

setContextualVariable

public void setContextualVariable(java.lang.String variable)
Sets a variable that contains primary context information. Indicates to the reasoning
component that this contextual information will be used for deriving secondary
context. Thus, each time this variable has new information, the reasoning
component will analyze it and check the contextual conditions of the xsl file.

Parameters:

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

181

variable - name of the variable which is specified in the type argument of the
sendDataSensor method.

See Also:
Action class for details of the sendDataSensor method.

setContextualVariable

public void setContextualVariable(java.lang.String variable,
 java.lang.String valorPorDefecto)

Sets a variable that contains primary context information and initializes it with the
indicated default value.

Parameters:
variable - the name of the variable which is specified in the type argument of the
sendDataSensor method.
valorPorDefecto - the value for initializing the variable.

generatePrimaryContext

private java.lang.String generatePrimaryContext(SALSA.Events.Event event)
This method should be invoked in the reasoning component when an event is
generated, it may indicate that a new primary context information has been
perceived by the Agent.

Parameters:
event - the event that contains the perceived information.

Returns:
an xml message containing the current values of the set of primary contextual
variables specified by using the method setContextualVariable

derive

public java.lang.String derive(java.util.EventObject ev)
Obtains the secondary contextual information based on the current values of the
primary contextual variables.

Parameters:
ev - the event produced

Returns:
a String with the secondary contextual information in an xml format.

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

182

A.5 Initializing and registering the Agent in the Agent
Directory

SALSA
Class AgentDirectory
public class AgentDirectory

The AgentDirectory provides the methods to communicate with the agent acting as
proxy to the Agent Directory. It enables the Agent to request information from the
Agent Directory and to register its attributes into it.

Fields

agent

private SALSA.Agent agent

attributes

private java.lang.String attributes
Attributes of the agent.

imAddressAD

protected java.lang.String imAddressAD
Instant Messaging id of the Agent.

Methods

register

public void register(java.lang.String typeAgent)
Registers the Agent's attributes in the Agent Directory

lookForAllAgents

public void lookForAllAgents()

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

183

Requests information of all agents available in the ubiquitous computing
environment.

lookForAllAgents

public void lookForAllAgents(java.lang.String area)
Requests information of all agents available in a specific area of the ubiquitous
computing environment.

Parameters:
area - an area of the ubicomp environment.

lookForAservice

public void lookForAservice()
Requests information of all agents offering services in the ubiquitous computing
environment.

lookForAservice

public void lookForAservice(java.lang.String area)
Requests information of all agents offering services in a specific area of the
ubiquitous computing environment.

Parameters:
area - an area of the ubicomp environment.

SALSA
Class AgentAttributes
public class AgentAttributes

AgentAttributes contains information that describes the agent.

Fields

typeAgent

public java.lang.String typeAgent
Defines the type of agent which can represent a user, device, service or wrap a
complex system functionality.

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

184

name

public java.lang.String name
This is the name assigned to the agent. For instance: PublicDisplay_Agent

description

public java.lang.String description
Contains a brief description of the functionality of the agent.

typeHost

public java.lang.String typeHost
Defines the type of computing device in which the agent is executing. For instance,
PC, PDA, etc.

urlImage

public java.lang.String urlImage
Specifies the location of the image to be used by the ubicomp system to graphically
represent the agent. For instance, an image of the device represented by the agent.

area

public java.lang.String area
Specifies the area or department of an organization in which the ubicomp system
provides information and services to the users. For instance: "internal medicine" of
the hospital

floor

public java.lang.String floor
Specifies the floor of the building in which the agent is to be executed.

jid

public java.lang.String jid

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

185

id of the agent. Any agent of the ubicomp environment should have an id to login in
the AgentBroker.

Constructors

AgentAttributes

public AgentAttributes()
Creates an instance of the AgentAttributes for the agent.

Methods

setTypeAgent

public void setTypeAgent(java.lang.String type)
Sets the type of the Agent.

setName

public void setName(java.lang.String name)
Sets the name of the Agent.

setDescription

public void setDescription(java.lang.String description)
Sets the description of the Agent.

setTypeHost

public void setTypeHost(java.lang.String typeHost)
Sets the type of host in which the Agent resides.

setUrlImage

public void setUrlImage(java.lang.String urlImage)
Sets the location in where the image used for representing the Agent is available.

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

186

setArea

public void setArea(java.lang.String area)
Sets the area of the organization in which the ubicom system is executing.

setFloor

public void setFloor(java.lang.String floor)
Sets the floor on which the Agent provides its services.

setJabberID

public void setJabberID(java.lang.String jid)
Sets the id of the Agent.

A.6 SALSA Events
mSalsa, SALSA.Events
Class Event
public class Event
extends java.util.EventObject

Specifies the type of event generated in tha PassivePerception object

Fields

StateChangeEvent

public final int StateChangeEvent
Indicates a change of state in this agent. For instance, if the agent represents a
device, it can be used to indicate a change of state of the device.

ArriveCommandEvent

public final int ArriveCommandEvent
Indicates that a message arrived requesting execution a command or service.

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

187

ArriveResponseEvent

public final int ArriveResponseEvent
Indicates that a response to an information request arrived.

ArriveNotificationInfoEvent

public final int ArriveNotificationInfoEvent
Indicates that a notification message arrived.

ArriveRequestEvent

public final int ArriveRequestEvent
Indicates that a message requesting information has arrived.

ArriveContextualMsgEvent

public final int ArriveContextualMsgEvent
Indicates that a contextual message has arrived.

ArriveComponentEvent

public final int ArriveComponentEvent
Indicates that the requested component has arrived.

ArriveSimpleMessageEvent

public final int ArriveSimpleMessageEvent
It is used to indicate that any other type of message arrived.

ArrivePresenceEvent

public final int ArrivePresenceEvent
Indicates that a presence message has arrived.

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

188

ArriveSensorDataEvent

public final int ArriveSensorDataEvent
Indicates that information perceived from a sensor has arrived.

type

public int type
The type variable can be use to specify another kind of event not considered by
SALSA.

input

public SALSA.Input input
The input object contains the data perceived

xml

public java.lang.String xml
XML message abstracted from the input object

sensorData

public SALSA.SensorData sensorData
If the type of the event generated is ArriveSensorDataEvent, then the
sensorData object contains the perceived data

Constructors

Event

public Event(SALSA.Input in,
 java.lang.Object obj)

Creates an Event that wraps the Input object with the information
perceived

Parameters:
in - Input object that contains the information perceived
obj - Object in which the event was generated

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

189

Event

public Event(java.lang.String xml,
 java.lang.Object obj)

Creates an Event that wraps the xml message perceived
Parameters:

xml - Message perceived through a Client (IM client)
obj - Object in which the event was generated

Event

public Event(SALSA.SensorData sd,
 java.lang.Object obj)

Creates an Event that wraps the data perceived from a sensor (a
SensorData object)

Parameters:
xml - Message perceived through a Client (IM client)
obj - Object in which the event was generated

Method Detail

getType

public int getType()
Returns the type of event.

getInput

public SALSA.Input getInput()
Returns the Input object containing the perceived data.

A.7 Proxy to the Agent Broker
Client (to be used for SALSA agents)
Class JabberClient
public class JabberClient
extends SALSA.ProxyBroker

This is an Instant Messaging client (Jabber client) that can be used as a proxy to the
Agent Broker. This enables the SALSA agents to communicate with other agents
and users. In order for any other Jabber client to be used as Agent Broker proxy, it

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

190

should inherit the methods of the superclass ProxyBroker and overwrite the
methods: send() and connect().

See Also:
ProxyBroker class.

Fields

in

private SALSA.Input in
Stores the perceived information

Constructors

JabberClient

public JabberClient(java.lang.String server,
 java.lang.String port,
 java.lang.String userName,
 java.lang.String password)

Creates an instance of the JabberClient.
Parameters:

server - IP address or hostname of the Jabber server
port - number of port of the server
userName - username to login to the server
password - password to login to the server Example for creating a client:

JabberClient jc =
new JabberClient("158.97.22.238","5222","userName","password");
jc.connect();

Methods

setHost

public void setHost(java.lang.String host)
To specify the host of the Jabber server

Parameters:
host - name or ip address of the host

connect

public void connect()

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

191

Connects to the Jabber Server specified in the Host variable.

disconnect

public void disconnect()
Disconnects from the Jabber Server.

send

public void send(java.lang.String xml)
Sends the xml message specified as an argument.

Parameters:
xml - the xml message

mSalsa (to be used for mSalsa agents)
Class JabberClient
public class JabberClient: XmppClientConnection

This is an Instant Messaging client (Jabber client) implemented in C# that can be
used as a proxy to the Agent Broker. This enables mSalsa agents to communicate
with other agents and users.
** Note: More information about this client is found in the documentation of
mSalsa.

SALSA
Class ProxyBroker
public abstract class ProxyBroker

Proxy to the Agent Broker. This should be a superclass of the Instant Messaging
client through which the agent will communicate.

Methods

send

public abstract void send(java.lang.String xml)
Sends a message through the Agent Broker to another agent. This method should
be overwritten by the Instant Messaging Client.

Parameters:
xml - Message to be sent

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

192

connect

public abstract void connect()
Connects to the Agent Broker. This method should be overwritten by the connect
method of the Instant Messaging Client.

A.8 Parsing the SALSA XML messages
mSalsa, Utilidades (to be used for SALSA agents)
Class Parser
public class Parser

Provides the methods that facilitate parsing the received xml messages. The
following is an example of how to parse an SALSA message.

Utilidades.Parser p = new Utilidades.Parser(secondaryContext);
String context = p.getTag("context");
String type=p.getAtt("context", "type");

Constructors

Parser

public Parser(java.lang.String xml)
Creates a Parser object that will be used to parse the xml message specified as an
argument.

Parameters:
xml - message to be parsed.

Methods

getTag

public java.lang.String getTag(java.lang.String tag)
Obtains the value of the tag specified as an argument.

Parameters:
tag - name of the tag

Returns:

Appendix A- API of SALSA

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

193

the value of the tag

getType

public java.lang.String getType(java.lang.String xml)
Obtains the type of the message which can be: "command", "request", "response",
"notificationInfo", "dataFromSensor", "contextual message"

Parameters:
xml - the xml message.

getAtt

public java.lang.String getAtt(org.w3c.dom.Node node,
 java.lang.String att)

Returns the value of an attribute of a tag.
Parameters:

node - the name of the tag.
att - the name of the attribute of the tag

Returns:
the value of the attribute

Appendix B- Forms and questionnaire

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

194

Appendix B

Forms and questionnaires

B.1 Questionnaire to evaluate Perceived Ease of Use of the API of

SALSA

A) Mark with √ the response you consider more appropriate.

1. Learning the SALSA API would be easy for me.

Likely [] [] [] [] [] [] [] Unlikely

 extremely quite slightly neither slightly quite extremely

2. I would find it easy to implement intelligent systems with SALSA

Likely [] [] [] [] [] [] [] Unlikely

 extremely quite slightly neither slightly quite extremely

3. My interaction with SALSA would be clear and understandable

Likely [] [] [] [] [] [] [] Unlikely

 extremely quite slightly neither slightly quite extremely

4. I would find SALSA to be flexible to interact with

Likely [] [] [] [] [] [] [] Unlikely

 extremely quite slightly neither slightly quite extremely

5. It would be easy for me to become skillful at using the SALSA API

Likely [] [] [] [] [] [] [] Unlikely

 extremely quite slightly neither slightly quite extremely

Appendix B- Forms and questionnaire

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

195

6. I find SALSA easy to use

Likely [] [] [] [] [] [] [] Unlikely

 extremely quite slightly neither slightly quite extremely

B) Answer the following questions:

7. What functionality of the agent do you think was easier to implement and why?

 [] Reasoning component [] Communication of agents

 [] Derive context [] Action component [] other_____________

Comments:___

8. What functionality of the agent do you think more difficult to implement and why?

[] Reasoning component [] Communication of agents

 [] Derive context [] Action component [] other_____________

Comments:___

__

Appendix B- Forms and questionnaire

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

196

B.2 Final Exam of the Object Oriented Analysis and Design Course

Final Exam (December 3 2004)

(2 hour exam, closed book.)

Name:__

1. Explain one advantage and one disadvantage of RMI with respect to CORBA. (10 pts.)

2. ¿Why is it useful to separate the interface from the implementation of a class or
subsystem? (10 pts.)

3. Explain the concept of “design pattern” and provide an example of its application in the
design of a system. (10 pts.)

4. ¿What is the problem of authors presenting the architecture of a system using a single
diagram? (10 pts.)

5. Provide two benefits to a programmer offered by the use of ‘Middleware’ and one
benefit for the final user of the system developed using the middleware. (10 pts.)

The Mexico City airport has an ubiquitous computing system that allows users to

consult flight information in a public display or the user’s handheld computer (PDA). The

following sequence diagram illustrates the interaction of the components of the system,

which have been implemented as SALSA agents.

Appendix B- Forms and questionnaire

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

197

You have been hired to extend the functionality of the system with SALSA agents, so

that the system can also recommend services available within the airport that could be

useful to the passengers while they wait for their flight. The system should have the

following functionality:

The user’s PDA when notified that his flight has been delayed, request information of

the available services and their location to the airport’s Service Directory. The Service

Directory provides this information and a map of their location. The system in the PDA

personalizes the map according to the user’s preferences and available time, highlighting

services such as restaurants, book stores, internet café, etc. A scenario of use of the

extended system will be as follows:

“When Mr. Jorge Gomez enters the airports waiting room, his PDA notices him that he

has received a message indicating that his flight has been delayed by 40min. The system in

the PDA requests to the airport’s Service Directory those services that are available to

determine those that could be useful to Mr. Gomez and that he could take advantage of

while he waits for his flight. The Service Directory provides this information and a map

with the location of the services. The PDA, knowing the time he has and his preferences,

elects to highlight the location of the Vips restaurant and the ‘Mexico” bookstore, since

updateInformatcion ()

usuario :
Agent

aeropuerto :
Agent

aeromexico :
Agent

sistemaInformacion :
Agent

pantalla pública

sendNotificationInfo(" 508 40 min.")

sendRequestInfo("passengers of flight 508”)

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

display()

Aeroméxico

The airport agent updates
its information and shows
them in the public display.,

The airport agent requests
Information of the registered
passengers to notify them that
the flight is delayed.

,

()

usuario :
Agent

aeropuerto :
Agent

aeromexico :
Agent

sistemaInformacion :
Agent

pantalla pública

sendNotificationInfo(“flight 508 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

()

user :
Agent

Airport: :
Agent

aeromexico :
Agent

Information System :
Agent

Public display

sendNotificationInfo(" 508, delayed 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<number flight =508>
<state> delayed </state
<time> 40 min </time>

</number flight>

sendNotificationInfo(“flight 508 is delayed 40 min.”);

Aeroméxico notifies the airport
that flight 508 is delayed by 40
min.

,

,

updateInformatcion ()

usuario :
Agent

aeropuerto :
Agent

aeromexico :
Agent

sistemaInformacion :
Agent

pantalla pública

sendNotificationInfo(" 508 40 min.")

sendRequestInfo("passengers of flight 508”)

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

display()

Aeroméxico

The airport agent updates
its information and shows
them in the public display.,

The airport agent requests
Information of the registered
passengers to notify them that
the flight is delayed.

,

()

usuario :
Agent

aeropuerto :
Agent

aeromexico :

updateInformatcion ()

usuario :
Agent

aeropuerto :
Agent

aeromexico :
Agent

sistemaInformacion :
Agent

pantalla pública

sendNotificationInfo(" 508 40 min.")

sendRequestInfo("passengers of flight 508”)

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

display()

Aeroméxico

The airport agent updates
its information and shows
them in the public display.,

The airport agent requests
Information of the registered
passengers to notify them that
the flight is delayed.

,

()

usuario :
Agent

aeropuerto :
Agent

aeromexico :
Agent

sistemaInformacion :
Agent

pantalla pública

sendNotificationInfo(“flight 508 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

()

user :
Agent

Airport: :
Agent

aeromexico :
Agent

Information System :
Agent

Public display

sendNotificationInfo(" 508, delayed 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<number flight =508>
<state> delayed </state
<time> 40 min </time>

</number flight>

sendNotificationInfo(“flight 508 is delayed 40 min.”);

Agent
sistemaInformacion :

Agent
pantalla pública

sendNotificationInfo(“flight 508 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<vuelo numero=508>
<estado>retrasado</estado>
<tiempo>40 min</tiempo>

</vuelo>

sendNotificationInfo("

()

user :
Agent

Airport: :
Agent

aeromexico :
Agent

Information System :
Agent

Public display

sendNotificationInfo(" 508, delayed 40 min.")

sendRequestInfo("

sendResponseInfo("JorgeGomez")

<number flight =508>
<state> delayed </state
<time> 40 min </time>

</number flight>

sendNotificationInfo(“flight 508 is delayed 40 min.”);

Aeroméxico notifies the airport
that flight 508 is delayed by 40
min.

,

,

Appendix B- Forms and questionnaire

Marcela D. Rodríguez, Doctoral Thesis, CICESE Research Center

198

Mr. Gomez needs to buy a book for her daughter. Mr. Gomez goes to the restaurant and

while he waits for his food, accesses information of the bookstore, selecting in the map a

link to the bookstore’s web page to consult the availability of the book he wants.”

You are asked to:

a. Create a diagram showing the components of the original system. (10 pts.)
b. Modify the previous sequence diagram, incorporating the components that

implement the new functionality required by the system. (20 pts.)
c. Modify the components’ diagram elaborated in question a. to incorporate the new

components of the extended system. (10 pts.)
d. Describe the sequence diagram you have extended, explaining the behavior of the

agents. That is, what functionality is implemented by each of the components of
each agent (perception, reasoning, action) (10 pts.)

