Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California

Maestría en Ciencias en Ciencias de la computación

Técnicas de reconocimiento de patrones en imágenes hiperespectrales

Tesis para cubrir parcialmente los requisitos necesarios para obtener el grado de Maestro en Ciencias

Presenta:

Jesús Alberto Ocaña Acosta

Ensenada, Baja California, México 2017 Tesis defendida por Jesús Alberto Ocaña Acosta

y aprobada por el siguiente Comité

Dr. Jorge Torres Rodríguez Director de tesis

Dr. Hugo Homero Hidalgo Silva

Dr. Jesús Arturo Martín Barajas

Dr. Jesús Favela Vara Coordinador del Posgrado en Ciencias de la Computación

> **Dra. Rufina Hernández Martínez** Directora de Estudios de Posgrado

Jesús Alberto Ocaña Acosta © 2017 Queda prohibida la reproducción parcial o total de esta obra sin el permiso formal y explícito del autor y director de la tesis. **Resumen** de la tesis que presenta **Jesús Alberto Ocaña Acosta** como requisito parcial para la obtención del grado de Maestro en Ciencias de la Computación.

Técnicas de reconocimiento de patrones en imágenes hiperespectrales

Resumen aprobado por:

Dr. Jorge Torres Rodríguez Director de tesis

El proceso básico de reconocimiento de patrones se realiza en tres procedimientos: adquisición de datos, extracción de características y clasificación. La adquisición de datos emplea sensores para la medición de propiedades físicas y químicas de los objetos a identificar, posteriormente en el proceso de extracción de características se utilizan métodos de transformación para obtener nuevas propiedades útiles para la discriminación de los objetos. Entonces, en el proceso de clasificación se asigna una clase a cada uno de los objetos de estudio usando la información característica que se obtuvo en el proceso anterior o incluso empleando las características obtenidas en la adquisición de datos. El objetivo de este trabajo fue diseñar e implementar técnicas supervisadas de reconocimiento de patrones aplicadas a imágenes hiperespectrales con la finalidad de identificar tipos de cubiertas litológicas del terreno. Para alcanzar este objetivo se seleccionaron tres áreas de pruebas, la primera perteneciente a Tecate, Baja California con tipos de cubierta de terreno comunes (como agua, vegetación y suelo); y las otras dos áreas localizadas, respectivamente, en el centro sur y centro de la Isla Ángel de la Guarda, ambas con clases litológicas. El propósito de estas zonas y sus patrones de entrenamiento fue iniciar con un problema simple, como es la clasificación de tipos de cubierta comunes, para posteriormente conseguir resolver un problema más complejo como la identificación de litologías. Se adquirieron imágenes multiespectrales (ALI y TM) de dos áreas e hiperespectrales (Hyperion) de cada una de las zonas de pruebas. A continuación, se acondicionaron las imágenes para la extracción de características mediante el Análisis de Componentes Principales (ACP), y posteriormente se definieron criterios de selección de características. Para finalmente, seleccionar los patrones de entrenamiento y validación, y realizar la clasificación supervisada de cada una de las áreas empleando tres técnicas de reconocimiento de patrones: Mapeo de Ángulo Espectral (SAM), Máxima Verosimilitud (ML) y Perceptrón Multicapa con el optimizador Adam (MLP-Adam). El mejor resultado en el área de Tecate fue obtenido por el clasificador de ML con una precisión del 97.99 %, mientras que para la zona del centro sur de la Isla Ángel de la Guarda se logró el 95.82 % mediante MLP-Adam y para el área central de la isla se alcanzó un 85.23 % con el clasificador de ML.

Palabras clave: Reconocimiento de Patrones, Mapeo de Ángulo Espectral, Máxima Verosimilitud, Perceptrón Multicapa, Adam, Análisis de Componentes Principales, Imágenes hiperespectrales.

Abstract of the thesis presented **by Jesus Alberto Ocaña Acosta** as a partial requirement to obtain the Master of Science degree in Computer Science.

Pattern recognition techniques for hyperspectral images

Abstract approved by:

Dr. Jorge Torres Rodríguez Thesis Director

Basic pattern recognition process is performed in three procedures: data acquisition, feature extraction and classification. The data acquisition uses sensors for the measurement of physical and chemical properties of objects to be identified, later in the process of feature extraction, transformation methods are used to obtain new characteristics suitable for the discrimination of the objects. Finally, in the classification process, one class can be assigned to each of the study objects using the characteristic information obtained in the previous process or even the use of the necessary characteristics in the data acquisition. The objective of this work was to design and implement supervised techniques for the pattern recognition applied to hyperspectral images in order to identify lithological land cover types. To achieve this objective, three test areas were selected, the first belonging to the region of Tecate, Baja California, with common land cover types (such as water, vegetation and soil). The other two areas are located, respectively, in the center and center south of the Angel de la Guarda island, both using lithological classes. The purpose of selecting these zones and their training patterns was to start with a simple problem, such as the classification of common land cover types, to subsequently solve a more complex problem such as the lithological mapping. Multispectral images (ALI and TM) were acquired for two of these areas and hyperspectral (Hyperion) for all of the test areas. Firstly, a Principal Components Analysis (PCA) was realized, and subsequently several criteria for the feature selection were defined. Finally perform the supervised classification was perform for each of the areas using three pattern recognition techniques: Spectral Angle Mapping (SAM), Maximum Likelihood (ML) and Multilayer Perceptron with the Adam optimizer. The best result for the Tecate area was obtained by the ML classifier with an accuracy of 97.99%, while for the south central zone of the Angel de la Guarda island 95.82% was achieved by Adam and for the central area of the island 85.23% was obtained with the ML classifier.

Keywords: Pattern Recognition, Spectral Angle Mapper, Maximum Likelihood, Multilayer Perceptron, Adam, Principal Components Analysis, Hyperspectral images.

Dedicatorias

A mi familia, que siempre me ha brindado su apoyo y amor, y a mi director de tesis, por su paciencia y soporte.

Agradecimientos

A mis padres y mis hermanos, por su amor y apoyo incondicional.

A *mis amigos,* que siempre me han apoyado y calmado en esos momentos de estrés producido por el trabajo.

A la Dra. Alejandra Ortiz, por ser mi casera y amiga, y apoyarme siempre en lo que necesitara para sentirme cómodo en Ensenada.

A mi director de tesis, el *Dr. Jorge Torres*, por sus enseñanzas en procesamiento digital de imágenes, fotogrametría y teledetección, y tópicos selectos en geomática, además de su paciencia y guía durante su dirección.

A mis miembros del comité, Dr. Hugo Homero Hidalgo Silva y Dr. Jesús Arturo Martín Barajas, por su tiempo y enseñanzas.

A Karina y Angélica, por su amabilidad y apoyo en cuestiones administrativas.

A mis profesores de cursos, Dr. José Alberto Fernández, M.C. José Luis Briseño, Dr. Gustavo Olague, Dr. Vitaly Kober, Dr. Edgar Chávez y Dr. Jesús Favela, por sus enseñanzas.

Al *CONACYT* y *CICESE* por la oportunidad de pertenecer a su programa de posgrados, aunado al apoyo económico y académico.

Tabla de contenido

Página

Resume	n en es	pañol	ii
Resume	n en ing	;lés	iii
Dedicat	orias		iv
Agradeo	cimiento	95	v
Lista de	figuras.		х
Lista de	tablas		xvi
Canítul	a 1 In-	troducción	1
1 1	Antera		1 2
1.1	1 1 1	Anlicaciones del Reconocimiento de Patrones en imágenes hiperespectrales	2
	1 1 2	Tácnicas de extracción de características en imágenes hiperespectrales	2
	1.1.2	Técnicas de elacificación anlicadas a imágenes hinerespectrales núblicas	2
	1.1.3	Técnicas de clasificación de imágenes hiperespectrales aplicadas al mapeo	5
		litológico	3
1.2	Plante	amiento del problema	4
1.3	Objeti	VOS	5
	1.3.1	Objetivo general	5
	1.3.2	Objetivos específico	5
1.4	Organ	ización del documento	5
Capítulo	o 2. M	arco teórico	7
2.1F	undame	entos de teledetección	7
	2 1 1	Espectro electromagnético	, 8
	212	Imágenes multiespectrales e hinerespectrales	9
	213		10
2.2	Recono	cimiento de natrones	11
2.2	2 2 1		12
	2.2.1	1 Sensor	12
	2.2.1. 2.2.2	Droprocosomiento de datos	12
	2.2.2		12
	2.2.3	Extraction de Caracteristicas.	13
	2.2.4	Seleccion de características	14
	2.2.5	Clasificacion	14

2.3	B Parámetros estadísticos	14
	2.3.1 Vector promedio	15
	2.3.2 Desviación estándar	15
	2.3.3 Matriz de covarianza	15
	2.3.4 Matriz de correlación	16
	2.3.5 Imágenes de covarianza y correlación	16
2.4	Análisis de componentes principales	17
	2.4.1 Definición	18
	2.4.2 Procedimiento	19
2.5	Métricas de separabilidad	20
	2.5.1 Ángulo espectral	20
	2.5.2 Distancia de Jeffries-Matusita	21
2.6	Clasificación supervisada	21
	2.6.1 Mapeo del ángulo espectral	22
	2.6.1.1 Umbrales de decisión	22
	2.6.2 Máxima verosimilitud	23
	2.6.2.1 Regla de decisión	23
	2.6.2.2 Umbrales de decisión	25
	2.6.2.3 Número de patrones de entrenamiento	25
	2.6.3 Perceptrón multicapa con el optimizador Adam	25
	2.6.3.1 Perceptrón simple	26
	2.6.3.2 Perceptrón multicapa	28
	2.6.3.3 Retropropagación	30
	2.6.3.4 Adam	33
	2.6.4 Evaluación del desempeño de los clasificadores	35
Capítu	lo 3. Materiales y métodos	37
3.1	Insumos	37
	3.1.1 Áreas de pruebas	37
	3.1.2 Imágenes de satélite	38
	3.1.3 ENVI	40
	3.1.4 Hyperion Tools	40
	3.1.5 Python	41
	3.1.5.1 Librerías y sus aplicaciones	41

3	3.2 Metod	ología	41
	3.2.1	Preprocesamiento de datos	42
	3.2.1.1	Reordenamiento de bandas en imágenes Hyperion	43
	3.2.1.2	Corregistro de imágenes multiespectrales	43
	3.2.1.3	Selección y extracción de subimágenes	43
	3.2.1.4	Depuración de bandas	44
	3.2.2	Selección y extracción de regiones de interés para entrenamiento y validación	44
	3.2.3	Extracción de características mediante el ACP	44
	3.2.4	Selección de características	44
	3.2.5	Cálculo de separabilidad entre clases	45
	3.2.6	Mapeo de Ángulo Espectral	45
	3.2.7	Máxima Verosimilitud	46
	3.2.8	Perceptrón Multicapa	47
	3.2.9	Evaluación del desempeño de los clasificadores	48
	3.2.10	Comparación del desempeño de los clasificadores	48

Capítul	o 4. Re	sultados y discusiones	49
4.1	Resulta	idos del preprocesamiento	49
4.2	Regios	de interés para entrenamiento y validación	53
4.3	Selecci	ón de características: Diseño experimental	56
	4.3.1	Imágenes multiespectrales	57
	4.3.2	Imágenes hiperespectrales	57
	4.3.3	Número Máximo de características (NMC)	58
	4.3.4	Especificación de experimentos	59
4.4	Estadís	tica de los experimentos	60
	4.4.1	Experimento I	60
	4.4.2	Experimento II	64
	4.4.3	Experimento III	68
	4.4.4	Experimento IV	75
	4.4.5	Experimento V	79
	4.4.6	Experimento VI	82
	4.4.7	Experimento VII	88
	4.4.8	Experimento VIII	94
	4.4.9	Experimento IX	103

4.4.10 Experimento X	113
4.4.11 Experimento XI	121
4.4.12 Experimento XII	126
4.5 Separabilidad entre las regiones interés para entrenamiento	. 133
4.5.1 Área A	134
4.5.2 Área B	139
4.5.3 Área C	143
4.6 Clasificación supervisada	. 146
4.6.1 Área A	146
4.6.2 Área B	147
4.6.3 Área C	148
4.7 Evaluación del desempeño de los clasificadores	. 149
Capítulo 5. Conclusiones y trabajo futuro	155
5.1 Conclusiones	155

5.1 CONCI	usiones	100
5.1.1	Aportaciones	156
5.1.2	Limitaciones	157
5.2 Trab	ajo futuro	157
Literatura	citada	158
Apéndices		160
Apéno	lice A	160
Apéno	lice B	161

Lista de figuras

Figura 1. Proceso de Teledetección	8
Figura 2. Segmento del espectro electromagnético, con el cubrimiento espectral del sensor Hyperio regionalizado según Schowengerdt (2007).	n, 9
Figura 3. Imágenes multiespectrales e Hiperespectrales	10
Figura 4. Firmas espectrales de los tipos de cubierta del terreno comunes	11
Figura 5. Etapas del reconocimiento de patrones	11
Figura 6. Regiones y fronteras de decisión en un espacio de características. Modificado de Richards & J (2006)	lia 14
Figura 7. Ejemplo de la construcción de imágenes de covarianza y correlación	17
Figura 8. Ejes ortogonales en dirección a la máxima variabilidad de los datos	18
Figura 9. Ejemplo de ángulos calculados para el patrón x en un espacio de características bidimensional con dos clases de patrones disponibles (a, b).	l y 22
Figura 10. Funciones discriminantes de la regla de decisión	24
Figura 11. Analogía de la neurona biológica y la neurona artificial (perceptrón)	26
Figura 12. Función signo y Función escalón unitario2	27
Figura 12. Función signo y Función escalón unitario	27 29
Figura 12. Función signo y Función escalón unitario	27 29 30
Figura 12. Función signo y Función escalón unitario. Image: State St	27 29 30 35
 Figura 12. Función signo y Función escalón unitario. Figura 13. Funciones de activación más comunes. Figura 14. Arquitectura de un perceptrón multicapa de 1 capa oculta. Figura 15. Ejemplo de una matriz de confusión Figura 16. Áreas de pruebas: A) Tecate, Baja California, B) Centro-Sur de la Isla Ángel de la Guarda. 	27 29 30 35 C) 37
 Figura 12. Función signo y Función escalón unitario. Figura 13. Funciones de activación más comunes. Figura 14. Arquitectura de un perceptrón multicapa de 1 capa oculta. Figura 15. Ejemplo de una matriz de confusión Figura 16. Áreas de pruebas: A) Tecate, Baja California, B) Centro-Sur de la Isla Ángel de la Guarda, Centro de la isla Ángel de la Guarda. Figura 17. Imágenes Hyperion (a), ALI (b) y TM (c) del área de Tecate, Baja California. 	27 29 30 35 C) 37 38
 Figura 12. Función signo y Función escalón unitario. Figura 13. Funciones de activación más comunes. Figura 14. Arquitectura de un perceptrón multicapa de 1 capa oculta. Figura 15. Ejemplo de una matriz de confusión	27 29 30 35 C) 37 38 39
 Figura 12. Función signo y Función escalón unitario. Figura 13. Funciones de activación más comunes Figura 14. Arquitectura de un perceptrón multicapa de 1 capa oculta. Figura 15. Ejemplo de una matriz de confusión Figura 16. Áreas de pruebas: A) Tecate, Baja California, B) Centro-Sur de la Isla Ángel de la Guarda, Centro de la isla Ángel de la Guarda. Figura 17. Imágenes Hyperion (a), ALI (b) y TM (c) del área de Tecate, Baja California. Figura 18. Imágenes Hyperion (a), ALI (b) y TM (c) de la isla Ángel de la Guarda. Figura 19. Comparación del cubrimiento espectral de los sensores Hyperion, ALI y Thematic Mapper (TM en relación a las firmas espectrales de los principales tipos de cubierta de terreno. 	27 29 30 35 C) 37 38 39 40
 Figura 12. Función signo y Función escalón unitario. Figura 13. Funciones de activación más comunes. Figura 14. Arquitectura de un perceptrón multicapa de 1 capa oculta. Figura 15. Ejemplo de una matriz de confusión	27 29 30 35 C) 37 38 39 VI) 10 42
 Figura 12. Función signo y Función escalón unitario. Figura 13. Funciones de activación más comunes. Figura 14. Arquitectura de un perceptrón multicapa de 1 capa oculta. Figura 15. Ejemplo de una matriz de confusión	27 29 30 35 C) 37 38 39 VI) 40 42 13

Figura 23. Imágenes correspondientes al área del centro-sur de la isla Ángel de la Guarda: a) Hyperion, b) ALI y c) TM. La asignación por banda para cada imagen se denota entre paréntesis......51 Figura 24. Imagen hiperespectral correspondiente al área del centro de la isla Ángel de la Guarda. Asignación por banda: RGB/29,20,12.....52 Figura 25. Campos de entrenamiento de las Imágenes del área de Tecate. NP = Número de Pixeles54 Figura 26. Campos de validación de las imágenes del área de Tecate. NP = Número de Pixeles54 Figura 27. Campos de entrenamiento de las imágenes del área del centro-sur de la isla Ángel de la Guarda. Figura 28. Campos de validación de las imágenes del área del centro-sur de la isla Ángel de la Guarda. NP = Número de Pixeles55 Figura 29. Campos de entrenamiento y validación en el área del centro de la isla Ángel de la Guarda. NP = Figura 30. Firmas espectrales (a) y desviaciones estándar (b) de la información espectral contenida en los campos de entrenamiento de la imagen TM perteneciente al área de Tecate.61 Figura 31. Imágenes de las matrices de covarianza (a) y de correlación (b) de la imagen TM del área de Figura 32. Firmas espectrales (a) y desviaciones estándar (b) de la información espectral contenida en los campos de entrenamiento de la imagen TM pertenecientes al área del centro-sur de la isla Ángel de la Guarda......63 Figura 33. Imágenes de las matrices de covarianza (a) y de correlación (b) de la imagen TM del área del centro-sur de la isla Ángel de la Guarda.....64 Figura 34. Vectores promedio de los campos de entrenamiento pertenecientes al área de Tecate66 Figura 35. Vectores promedio de los campos de entrenamiento pertenecientes al área del centro-sur de la isla Ángel de la Guarda......68 Figura 36. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos TM pertenecientes a los patrones de entrenamiento del área de Tecate70 Figura 37. Vectores promedio (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área de Tecate71 Figura 38. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos TM pertenecientes a los patrones de entrenamiento del área del centro-sur de la isla Ángel de la Guarda73 Figura 39. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área del centro-sur de la isla Ángel de la Guarda......74 Figura 40. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área de Tecate75

Figura 41. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos ALI del área de Tecate
Figura 42. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área del centro-sur de la Isla Ángel de la Guarda77
Figura 43. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos ALI del área del centro-sur de la Isla Ángel de la Guarda78
Figura 44. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área de Tecate
Figura 45. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área del centro-sur de la Isla Ángel de la Guarda
Figura 46. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos ALI pertenecientes a los campos de entrenamiento del área de Tecate
Figura 47. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área de Tecate
Figura 48. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos ALI del área del centro-sur de la isla Ángel de la Guarda
Figura 49. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área del centro-sur de la Isla Ángel de la Guarda
Figura 50. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de la información espectral contenida en las bandas seleccionadas de la imagen HP del área de Tecate
Figura 51. Vectores promedio (a) y desviaciones estándar (b) de las clases espectrales pertenecientes al área de Tecate
Figura 52. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de la información espectral contenida en las bandas seleccionadas de la imagen HP del área del centro-sur de la isla Ángel de la Guarda
Figura 53. Vectores promedio (a) y desviaciones estándar (b) de las clases espectrales pertenecientes al área del centro-sur de la isla Ángel de la Guarda92
Figura 54. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de la información espectral contenida en las bandas seleccionadas de la imagen HP del área de la isla Ángel de la Guarda
Figura 55. Vectores promedio (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área de la isla Ángel de la Guarda94
Figura 56. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) del subconjunto espectral de HP más similar a TM perteneciente al área de Tecate

- Figura 60. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) del subconjunto espectral de HP más similar a TM perteneciente al área del centro de la isla Ángel de la Guarda. 102
- Figura 62. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) del subconjunto espectral de HP más similar a ALI perteneciente al área de Tecate......105

- Figura 66. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) del subconjunto espectral de HP más similar a ALI perteneciente al área de la isla Ángel de la Guarda......111

- **Figura 71.** Firmas espectrales de los campos de entrenamiento utilizando la imagen Hyperion (a), y vectores promedio (b) y desviaciones estándar (c), de las regiones de interés, calculados de los CP pertenecientes a la imagen HP del centro-sur de la isla Ángel de la Guarda......118

- Figura 72. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de la imagen HP perteneciente al área de la isla Ángel de la Guarda......119

- Figura 78. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos HP pertenecientes a los campos de entrenamiento del área de la isla Ángel de la Guarda.125

- Figura 82. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de las bandas HP seleccionadas para el experimento XII en el área del centro-sur de la isla Ángel de la Guarda. 129
- Figura 84. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de las bandas HP seleccionadas para el experimento XII en el área de la isla Ángel de la Guarda......131

Figura 87. Gráficas de resultados de métricas de separabilidad para cada uno de los experimentosrealizados en el área del centro-sur de la isla Ángel de la Guarda142
Figura 88. Gráficas de resultados de métricas de separabilidad para cada uno de los experimentos realizados en el área de la isla Ángel de la Guarda145
Figura 89. Mapas temáticos de los mejores resultados por clasificador para el área de Tecate146
Figura 90. Mapas temáticos de los mejores resultados por clasificador para el área del centro-sur de la isla Ángel de la Guarda147
Figura 91. Mapas temáticos de los mejores resultados de los clasificadores para el área de la isla Ángel de la Guarda148
Figura 92. Gráficas por experimento de la precisión general de la clasificación en el área de Tecate152
Figura 93. Gráficas por experimento de la precisión general de la clasificación en el área del centro-sur de la isla Ángel de la Guarda153
Figura 94. Gráficas por experimento de la precisión general de la clasificación en el área de la isla Ángel de la Guarda154

Lista de tablas

Tabla 1 . P	orcentaje de precisión total de los clasificadores: ERWs, HMRF/SVM-NE y SVM
Tabla 2. P	orcentaje de precisión total de los clasificadores utilizados en Zhang & Li (2014)4
Tabla 3. P	orcentaje de precisión de la clase, rocas con recubrimiento, en Leverington & Schindler (2016)4
Tabla 4. ⊤	abla comparativa de los sensores empleados en este trabajo (Pearlman et al., 2001)
Tabla 5. Li	ibrerías de Python y sus aplicaciones en este trabajo41
Tabla 6. (Configuración del perceptrón multicapa, MLPClassifier de sklearn, para el reconocimiento de patrones
Tabla 7. C	aracterísticas de las imágenes del área de Tecate, Baja California
Tabla 8. C	aracterísticas de las imágenes del centro-sur de la isla Ángel de la Guarda
Tabla 9. C	aracterísticas de la imagen del Centro de la Isla Ángel de la Guarda
Tabla 10.	Abreviaturas de los tipos de cubierta del terreno53
Tabla 11.	Número Máximo de Características por área y por imagen. NPCMP = Número de Pixeles de la Clase Más Pequeña. (*) Para HP en el área C se realizó un ajuste a 16 características59
Tabla 12.	Definición de experimentos. La columna "Criterio" relaciona el experimento con el criterio de selección, "Características (n)" describe brevemente la fuente del conjunto de características empleado en el experimento, y la columna "Sensor" indica a qué instrumento formador de mágenes está dirigido el experimento
Tabla 13.	Matriz de covarianza de la imagen TM del área de Tecate. Las columnas y filas fueron tituladas de acuerdo a los nombres de las bandas espectrales de TM. (*) Representa la varianza máxima. 61
Tabla 14.	Matriz de correlación de la imagen TM del área de Tecate. El rango de valores es de -1 a 1. (*) Representa la correlación mínima62
Tabla 15.	Matriz de covarianza de la imagen TM del área del centro-sur de la Isla Ángel de la Guarda. (*) Representa la varianza máxima63
Tabla 16.	Matriz de correlación de la imagen TM del área del centro-sur de la Isla Ángel de la Guarda. El rango de valores es de -1 a 1. (*) Representa la correlación mínima
Tabla 17.	Valores propios de la matriz de covarianza de los datos TM del área de Tecate65
Tabla 18.	Vectores propios de la matriz de covarianza de los datos TM del área de Tecate65
Tabla 19. '	Valores propios de la matriz de covarianza de los datos TM del área del centro-sur de la isla Ángel de la Guarda67

Tabla 20. Vectores propios de la matriz de covarianza de los datos TM del área del centro-sur de la isla Ángel de la Guarda
Tabla 21. Matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del áreade Tecate. (*) Representa la varianza máxima69
Tabla 22. Matriz de correlación de los datos TM pertenecientes a los patrones de entrenamiento del áreade Tecate. Los valores van de -1 a 1. (*) Representa la correlación mínima
Tabla 23. Valores propios de la matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del área de Tecate70
Tabla 24. Vectores propios de la matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del área de Tecate.71
Tabla 25. Matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del áreadel centro-sur de la isla Ángel de la Guarda. (*) Representa la varianza máxima
Tabla 26. Matriz de correlación de los datos TM pertenecientes a los patrones de entrenamiento del áreadel centro-sur de la isla Ángel de la Guarda. Los valores van de -1 a 1. (*) Representa la correlaciónmínima.72
Tabla 27. Valores propios de la matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del área del centro-sur de la isla Ángel de la Guarda73
Tabla 28. Vectores propios de la matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del área del centro-sur de la isla Ángel de la Guarda74
Tabla 29. Matriz de correlación de la imagen ALI del área de Tecate. Los valores van de -1 a 1. Los títulosde las columnas y las filas son los nombres de las bandas espectrales. (*) Representa la correlación mínima
Tabla 30. Matriz de correlación de la imagen ALI del área del centro-sur de la Isla Ángel de la Guarda. Losvalores van de -1 a 1. (*) Representa la correlación mínima.78
Tabla 31. Valores propios de la matriz de covarianza de los datos ALI pertenecientes al área de Tecate.79
Tabla 32. Vectores propios de la matriz de covarianza de los datos ALI pertenecientes al área de Tecate.
Tabla 33.Valores propios de la matriz de covarianza de los datos ALI pertenecientes al área del centro-sur de la isla Ángel de la Guarda81
Tabla 34. Vectores propios de la matriz de covarianza de los datos ALI pertenecientes al área del centro- sur de la isla Ángel de la Guarda81
Tabla 35. Matriz de correlación de los datos ALI pertenecientes a los campos de entrenamientos extraídos del área de Tecate. Los valores van de -1 a 1. Los títulos de las columnas y las filas son los nombres de las bandas espectrales. (*) Representa la correlación mínima
Tabla 36. Valores propios de la matriz de covarianza de los datos ALI pertenecientes a los patrones de entrenamiento del área de Tecate

- Tabla 42. Bandas Hyperion seleccionadas como características para el proceso de clasificación en el área del centro-sur de la isla Ángel de la Guarda......91

- Tabla 50. Mapeo de bandas TM a HP mediante la similitud de la longitud de onda central de sus bandasespectrales. Las imágenes TM e HP de referencia son del área del centro de la isla Ángel de laGuarda.101

- Tabla 51. Matriz de covarianza del subconjunto espectral de HP más similar a TM en el área del centro dela isla Ángel de la Guarda. Las columnas y filas fueron nombradas de acuerdo a los nombres delas bandas espectrales de HP. (*) Representa la varianza máxima......101
- Tabla 52. Matriz de correlación del subconjunto espectral de HP más similar a TM en el área del centro dela isla Ángel de la Guarda. Las columnas y filas fueron nombradas de acuerdo a los nombres delas bandas espectrales de HP. (*) Representa la correlación mínima......102
- **Tabla 53.** Mapeo de bandas ALI a HP mediante la similitud de la longitud de onda central de sus bandasespectrales. Las imágenes ALI e HP de referencia son del área de Tecate.104
- Tabla 54. Matriz de correlación del subconjunto espectral de HP más similar a ALI en el área de Tecate. Las
columnas y filas fueron nombradas de acuerdo a los nombres de las bandas espectrales de HP.
(*) Representa la correlación mínima......104
- Tabla 56. Matriz de correlación del subconjunto espectral de HP más similar a ALI en el área del centro-
sur de la isla Ángel de la Guarda. Las columnas y filas fueron nombradas de acuerdo a los nombres
de las bandas espectrales de HP. (*) Representa la correlación mínima......107
- Tabla 57. Mapeo de bandas ALI a HP mediante la similitud de la longitud de onda central de sus bandas espectrales. Las imágenes ALI e HP de referencia son del área de la isla Ángel de la Guarda...110

Tabla 58. Matriz de correlación del subconjunto espectral de HP más similar a ALI en el área de la isla Ángel de la Guarda. Las columnas y filas fueron nombradas de acuerdo a los nombres de las bandas espectrales de HP. (*) Representa la correlación mínima.....110 Tabla 59. Los primeros 16 valores propios de la matriz de covarianza de los datos Hyperion pertenecientes al área de Tecate......114 Tabla 60. Los primeros 16 valores propios de la matriz de covarianza de los datos HP pertenecientes al área del centro-sur de la isla Ángel de la Guarda.....116 Tabla 61. Los primeros 16 valores propios de la matriz de covarianza de los datos HP pertenecientes al área de la isla Ángel de la Guarda.....119 Tabla 62. Primeros 16 valores propios de la matriz de covarianza de los datos HP pertenecientes a los patrones de entrenamiento del área de Tecate.....122 Tabla 63. Primeros 16 valores propios de la matriz de covarianza de los datos HP pertenecientes a los Tabla 64. Primeros 16 valores propios de la matriz de covarianza de los datos HP pertenecientes a los patrones de entrenamiento del área de la isla Ángel de la Guarda......125 Tabla 66. 16 Bandas Hyperion seleccionadas para el experimento XII en el área del centro-sur de la isla

Tabla 67. 16 Bandas HP seleccionadas para el experimento XII en el área de la isla Ángel de la Guarda.
Tabla 68. Abreviaturas de las clases de cubiertas de terreno del área de Tecate134
Tabla 69. Resultados de Jeffries-Matusita y Ángulo Espectral: media de separabilidad, combinación de clases de separabilidad máxima y combinación de separabilidad mínima para cada experimento en el área de Tecate
Tabla 70. Resultados de Jeffries-Matusita y Ángulo Espectral: media de separabilidad, combinación de clases de separabilidad máxima y combinación de separabilidad mínima para cada experimento en el área del centro-sur de la isla Ángel de la Guarda.139
Tabla 71. Resultados de Jeffries-Matusita y Ángulo Espectral: media de separabilidad, combinación de separabilidad máxima y combinación de separabilidad mínima para cada experimento en el área de la isla Ángel de la Guarda143
Tabla 72. Mejores porcentajes de precisión por experimento, clasificador y área

хх

Capítulo 1. Introducción

La teledetección se refiere a las tecnologías y procedimientos empleados para colectar, procesar e interpretar información relacionada con objetos o fenómenos que ocurren en la superficie terrestre, sin establecer contacto físico con éstos. Dentro de este conjunto de herramientas encontramos el proceso de reconocimiento de patrones que se lleva a cabo básicamente mediante tres procedimientos: adquisición de datos, extracción de características y clasificación. La adquisición de datos emplea sensores para la extracción de propiedades de los objetos o patrones a identificar, posteriormente en el proceso de extracción de características se utilizan métodos de transformación para la obtención de propiedades útiles para la discriminación de los objetos, y finalmente en el proceso de clasificación se asigna una clase a cada uno de los objetos de estudio usando la información característica que se obtuvo en el proceso anterior, o incluso empleando las características obtenidas en la adquisición de datos.

Las imágenes de satélite permiten la observación de la superficie terrestre a distancia, y son el resultado de un procedimiento fundamental en la teledetección y en el reconocimiento de patrones, es decir, la adquisición de datos. El dispositivo encargado de obtener este producto es el sensor, que mediante un arreglo de detectores permite percibir y cuantificar la luz reflejada y/o emitida desde la superficie terrestre en diferentes longitudes de onda del espectro electromagnético, dependiendo de la resolución espectral del sensor. Los sensores pueden ser multiespectrales e hiperespectrales, con base a la cantidad y la anchura de las bandas espectrales del sensor. Los multiespectrales poseen de 3 a 16 bandas de anchura posiblemente variable y relativamente amplia, distribuidas de manera arbitraria en un rango espectral determinado; mientras que los hiperespectrales poseen más de 16 bandas, de amplitud similar, distribuidas de manera casi continua en el rango espectral definido por el sensor.

El proceso de reconocimiento de patrones se torna más complejo cuando se emplean imágenes hiperespectrales. La cuestión está en dos aspectos: la necesidad de preprocesar los datos y el número de características disponibles por patrón. Para ello se utilizan procesos que permiten acondicionar los datos originales para posteriormente aplicar procedimientos de extracción de características. Todo con el propósito de que el proceso de clasificación pueda realizarse eficientemente.

El objetivo de esta investigación es diseñar e implementar técnicas supervisadas de reconocimiento de patrones espectrales aplicadas a imágenes hiperespectrales con la finalidad de identificar tipos de cubierta del terreno.

1.1 Antecedentes

En esta sección se presentan los trabajos relacionados a las técnicas de Reconocimiento de Patrones aplicadas a imágenes hiperespectrales.

1.1.1. Aplicaciones del Reconocimiento de Patrones en imágenes hiperespectrales

Las imágenes hiperespectrales permiten modelar casi de forma continua el comportamiento espectral de los objetos o los tipos de cubierta terreno de la superficie terrestre. Esto representa una gran utilidad para el proceso de clasificación; e investigaciones recientes han usado esta ventaja para emplearla en diferentes áreas de estudio. Como por ejemplo:

- Litología. Es la rama de la geología que estudia las rocas. En esta área de estudio se emplean las imágenes hiperespectrales principalmente para la clasificación de rocas en zonas remotas y de difícil acceso. Además, las bandas infrarrojas de onda corta (2.0 a 2.5 μm) del sensor Hyperion permiten identificar y mapear de forma única los minerales, sulfatos y carbonatos que contienen hidroxilo en los ensambles de alteración hidrotermal (Pour & Hashim, 2015).
- Biología. Es la ciencia que estudia el origen, la evolución y las propiedades de los seres vivos. En esta área se utilizan las imágenes para clasificar la vegetación en la superficie terrestre, ya sea con fines agrícolas, vitivinícolas (Gutiérrez et. al., 2015), ecológicos, forestales, etc.

1.1.2. Técnicas de extracción de características en imágenes hiperespectrales

En conjuntos de datos de gran dimensionalidad, como las imágenes hiperespectrales, se emplean técnicas de extracción de características que explotan todas las mediciones espectrales disponibles para obtener atributos relevantes, que preservan la integridad de la información original en un menor número de características. Un ejemplo de estas técnicas es el Análisis de Componentes Principales, que busca un espacio nuevo de características sin correlación, y así, eliminar la información redundante. Otra técnica similar a esta es la Fracción de Ruido Mínimo (por sus siglas en inglés, MNF). En estas técnicas los datos hiperespectrales se proyectan en un nuevo sistema de coordenadas en el que los primeros componentes representan la mayor parte de la información total de los datos, y por lo tanto las características principales podrían ser conservadas (Bioucas-Dias et al., 2013).

1.1.3. Técnicas de clasificación aplicadas a imágenes hiperespectrales públicas

Existen imágenes hiperespectrales del sensor AVIRIS disponibles en Internet para el de acceso público, que son muy conocidas por ser usadas para la realización de pruebas de desempeño de técnicas de Reconocimiento de Patrones. Las imágenes más empleadas para este propósito son: Indian Pines y Salinas.

En la búsqueda por encontrar las mejores técnicas de clasificación aplicadas a estas imágenes, se ha llegado a los siguientes hallazgos:

- Caminante Aleatorio Extendido (ERW: Extended Random Walkers) ha sido de los clasificadores con los mejores resultados en las dos imágenes (Kang, Li, Fang, Li, & Benediktsson, 2015).
- La combinación de la Máquina de Soporte Vectorial (SVM: Support Vector Machine) para realizar el proceso de clasificación, y los Campos Aleatorios Ocultos de Markov (HMRF: Hidden Markov Random Fields) para efectuar un proceso de gradiente escalonado, genera buenos resultados de precisión (Ghamisi, Benediktsson, & Ulfarsson, 2014).
- Se ha observado que el Filtro de Gabor (FG) permite caracterizar los pixeles individualmente, lo que aporta un valor extra a la separación de clases realizado por la SVM (Rajadell & Pla, 2013).

A continuación, se muestra en la **Tabla 1** la comparación del desempeño de los clasificadores mencionados anteriormente:

AVIRIS								
# de clases	Imágenes	ERW (Kang	HMRF/SVM-NE (Ghamisi	SVM (FG) (Rajadell & Pla,				
		et al., 2015)	et al., 2014)	2013)				
16	Indian Pines	98.7%	90.50%	92.99%				
	Salinas	98 %	97.24%	-				

1.1.4. Técnicas de clasificación de imágenes hiperespectrales aplicadas al mapeo litológico

El Mapeo del Ángulo Espectral (SAM: Spectral Angle Mapper) ha sido ampliamente usado en la identificación y mapeo de tipos de litología utilizando datos hiperespectrales. SAM pondera la similitud espectral entre un espectro de los pixeles de la imagen y un espectro de referencia de los componentes conocidos. A continuación, en la **Tabla 2** se presentan los resultados obtenidos en el trabajo de Zhang & Li (2014), que propone varios métodos de SAM utilizando diferentes espectros de referencia.

Número de clases	Áreas	Matched Filtering	SAM usando espectro medio	SAM usando espectros y 1er derivada	SAM con múltiples referencias
10	Jung-gar Basing, Xinjiang, China	66.97	68.72	75.63	79.31

Tabla 2. Porcentaje de Precisión total de los clasificadores utilizados en Zhang & Li (2014).

En el trabajo de Leverington & Schindler (2016) se realiza la detección y mapeo de rocas con recubrimiento, factor que causa que el clasificador SAM obtenga un desempeño muy pobre al no poder distinguir entre los diferentes valores espectrales de las litologías. Sin embargo, otras técnicas como las Redes Neuronales Artificiales (ANN: Artificial Neural Network) y el algoritmo de Máxima Verosimilitud (ML: Maximum Likelihood) obtuvieron resultados muy positivos para este propósito (véase la **Tabla 3**).

Tabla 3. Porcentaje de precisión de la clase, rocas con recubrimiento, en Leverington & Schindler (2016)

Número de clases	Áreas	SAM	NN	ML sin clase nula	ML con clase nula
7	Copper Cliff	35.7	84.9	93.7	69.8
6	Coniston	19.5	97.9	97.9	63.3

1.2 Planteamiento del problema

Las imágenes hiperespectrales nos brindan un extenso número de características, denominadas bandas espectrales; las cuales se distribuyen a lo largo de un intervalo del espectro electromagnético manteniendo así una separación espectral muy pequeña con la finalidad de obtener un cubrimiento espectral casi continuo. Debido a esto son muy útiles para modelar las firmas espectrales de los objetos contenidos en la escena captada en estas imágenes. Sin embargo, el uso de todas las bandas de este tipo de imágenes tiene inconvenientes, tales como el alto costo computacional al procesar algoritmos complejos, y la redundancia de información entre las bandas debido a la correlación entre estas.

Como se mencionó anteriormente, un sistema básico de reconocimiento de patrones realiza tres procesos: adquisición de datos, extracción de características y clasificación. Para que el último proceso logre un buen desempeño necesita que los demás procedimientos se efectúen correctamente. Si los patrones poseen muchas características, así como sucede con los datos hiperespectrales, el reconocimiento de patrones aumenta su complejidad y el proceso de extracción de características toma una gran importancia. Para ello se usan técnicas de reducción de dimensionalidad, como el Análisis de Componentes Principales (ACP). Una alternativa a estas técnicas de extracción es crear criterios de selección de características, y así extraer subconjuntos de atributos que sean eficientes para la identificación de patrones. La clasificación se realiza después de haber seleccionado este conjunto de características. El encargado de realizar este proceso es el clasificador, es decir, el algoritmo de asignación de clases.

En una imagen de satélite típica, comúnmente podemos encontrar tres clases de cubierta del terreno: agua, suelo y vegetación. Sin embargo, cada una de estas clases contiene subclases que por su naturaleza presentan características espectrales semejantes. Realizar una clasificación de tipos de cubierta litológicas conlleva trabajar con clases muy semejantes, lo cual es complicado debido a la similitud espectral de los diferentes tipos de rocas. Existen muchos factores que alteran la precisión de un clasificador, y en los estudios litológicos se puede encontrar casos de rocas con revestimiento, condición problemática para su identificación. De igual manera, el encontrar conjuntos de características y técnicas que permitan discriminar entre clases de rocas, podría ser útil en otras aplicaciones.

1.3 Objetivos

1.3.1 Objetivo general

Diseñar, desarrollar e implementar técnicas supervisadas de reconocimiento de patrones aplicadas a imágenes hiperespectrales con la finalidad de identificar tipos de cubiertas litológicas del terreno.

1.3.2 Objetivos específicos

- 1) Implementar técnicas de extracción de características en imágenes hiperespectrales
- Implementar clasificadores supervisados empleando patrones de entrenamiento de tipos de cubiertas litológicas del terreno.
- 3) Implementar métricas para la evaluación del desempeño de los clasificadores.
- Realizar la comparación del desempeño de los clasificadores en cada uno de los criterios y condiciones planteadas en la selección de características.

1.4 Organización del documento

Este trabajo de tesis está organizado de la siguiente manera:

En el capítulo 2 se abordan los conceptos necesarios para entender esta investigación. Se presentan temas como, introducción a la teledetección, métricas de separabilidad, reconocimiento de patrones, análisis de componentes principales, mapeo de ángulo espectral, máxima verosimilitud y perceptrón multicapa.

El capítulo 3 explica cada una de las herramientas y metodologías usadas. Primeramente, se describen los materiales y sus usos, y posteriormente se explican los procedimientos utilizados para lograr el propósito de investigación.

En el capítulo 4 se presentan y se discuten los resultados obtenidos en cada uno de las metodologías presentadas en el capítulo anterior.

En el capítulo 5 se puntualizan las conclusiones derivadas del ejercicio de investigación, y se presentan las aportaciones y limitaciones del trabajo de tesis.

El documento continúa con la literatura citada, en la cual se organizan las referencias bibliografías que sustentan la investigación.

Para finalizar se anexan dos apéndices: A y B. El apéndice A hace mención de los niveles de procesamiento de las imágenes Hyperion, y en el apéndice B se muestra el cubrimiento espectral de TM, ALI e Hyperion.

En este apartado se reúnen los conocimientos que sustentan el presente trabajo de tesis. Los temas que se abordan son los fundamentos de teledetección, el proceso de reconocimiento de patrones, los parámetros estadísticos, el análisis de componentes principales,

2.1 Fundamentos de teledetección

La invención y el desarrollo de la fotografía, las tecnologías de transmisión y procesamiento de datos, y la construcción de las plataformas espaciales y aéreas le han permitido al ser humano captar escenas de la superficie terrestre, y transmitirlas en formato digital a una estación en tierra. Así mismo, estos avances tecnológicos originaron y convirtieron a la percepción remota en lo que es hoy.

La teledetección, también denominada percepción remota, se refiere a las tecnologías y procedimientos empleados para colectar, procesar e interpretar información relacionada con objetos o fenómenos que ocurren en la superficie terrestre, sin establecer contacto físico con éstos. A continuación, se presentan algunos conceptos básicos de la teledetección.

Teledetección activa y pasiva

La percepción remota se puede dividir en dos clases según la fuente de emisión de energía electromagnética:

- La *teledetección activa* ocurre cuando el sistema de percepción emite y recibe su propia energía de radiación para escanear la reflectancia de objetos y áreas objetivo. El ejemplo más común es el RADAR.
- La *teledetección pasiva* se lleva a cabo cuando el emisor de energía es independiente del sistema de percepción remota, es decir, la energía proviene de una entidad externa y de origen natural. La fotografía es la herramienta más común que emplea este tipo de teledetección.

Proceso básico de la teledetección pasiva

Uno de los fines de la teledetección es estudiar la superficie terrestre usando sensores abordo de plataformas espaciales o áreas. Cuando los sensores se ubican en plataformas espaciales, a la

teledetección se le denomina de tipo: espacial u orbital. Las imágenes utilizadas para esta investigación se adquirieron mediante la teledetección espacial. Por ello a continuación, se describe brevemente cada uno de los elementos que participan en este tipo de percepción remota:

- a) *Emisor de energía*. Es aquel objeto o entidad que emana energía electromagnética. El sol constituye la mayor fuente de energía electromagnética para la Tierra, y en la teledetección pasiva es el emisor por excelencia.
- b) *Escena*. Comprende un conjunto de objetos perteneciente a un área de la superficie terrestre.
- c) **Sensores.** Son los instrumentos formadores de imágenes que se encargan de capturar escenas a diferentes longitudes de onda del espectro electromagnético.
- d) **Satélite.** Es la plataforma espacial que lleva a bordo los sensores y el medio de transmisión de los datos.

Figura 1. Proceso de Teledetección

Estos elementos interactúan entre sí para llevar a cabo el proceso de teledetección. El emisor de luz emana energía electromagnética, el sensor a bordo del satélite realiza diferentes tipos de barridos sobre la superficie terrestre capturando en imágenes espectrales las escenas objetivo a diferentes longitudes de onda del espectro electromagnético (ver **Figura 1**).

2.1.1 Espectro electromagnético

La radiación es el fenómeno de propagación de la energía en forma de ondas electromagnéticas a través del vacío o un medio material. Cuando la materia interacciona con esta energía reacciona de manera distinta para ciertas longitudes de onda; el ser humano aprovechando esta propiedad ha designado rangos de longitud para diferentes usos y propiedades. A esta distribución de longitudes de onda se le denomina

espectro electromagnético. En la **Figura 2** se muestra el cubrimiento espectral del sensor Hyperion, como un fragmento del espectro electromagnético.

Figura 2. Segmento del espectro electromagnético, con el cubrimiento espectral del sensor Hyperion, regionalizado según Schowengerdt (2007).

2.1.2 Imágenes multiespectrales e hiperespectrales

Una imagen espectral es aquella que representa la apariencia de un objeto en relación de la longitud de onda que refleja. Estas imágenes generalmente se dividen en dos tipos, multiespectrales e hiperespectrales. Según Gomarasca (2009) está categorización es de acuerdo al número de imágenes del mismo objeto representado en diferentes longitudes de onda; donde a cada una de estas imágenes se le denomina: banda espectral. Él define a las imágenes hiperespectrales como aquellas con más de 16 bandas. Buckingham & Staenz (2008) aportan a este conocimiento que las imágenes hiperespectrales pueden considerarse como una extensión de la formación de imágenes multiespectrales, donde las bandas espectrales se vuelven contiguas y el ancho espectral de cada banda se vuelve lo suficientemente pequeño como para que se puedan realizar análisis espectroscópicos.

Para comprender mejor lo antes mencionado, en la **Figura 3** se muestran dos modelos que representan los conjuntos de bandas espectrales que forman las imágenes multiespectrales e hiperespectrales. Además, se puede apreciar el cubrimiento espectral de estos ejemplos.

Figura 3. Imágenes multiespectrales e Hiperespectrales

Según Schowengerdt (2007) en un espacio multidimensional de datos definidos por k bandas espectrales, cada pixel (DN) es representado como un vector columna con k dimensiones, tal que para el pixel P_{ij} .

$$DN_{ijk} = [DN_{ij1}, DN_{ij2}, ..., DN_{ijk}]^T = \frac{DN_{ij1}}{DN_{ij2}} \dots$$

Simplificando, para el pixel p se tiene:

$$DN_{p} = [DN_{p1}, DN_{p2}, ..., DN_{pk}]^{T} = \frac{DN_{p1}}{...}$$
$$DN_{pk}$$

2.1.3 Firma espectral

La materia reacciona de manera única ante la radiación electromagnética debido a sus características de absorción, emisión y reflectancia. Cuando se mide la reflectancia de un objeto se debe contemplar todos aquellos factores que modifican su respuesta espectral. Factores como el ángulo de iluminación solar, relieve de la superficie, influencia de la atmosfera, variaciones medioambientales de la cubierta terrestre y el sustrato edafológico o litológico. Por lo tanto, al comportamiento puro de la radiación reflejada de un

objeto en diferentes longitudes de onda se le denomina firma espectral. Los tipos de cubiertas del terreno principales se muestran en la **Figura 4**.

Figura 4. Firmas espectrales de los tipos de cubierta del terreno comunes

2.2 Reconocimiento de patrones

El identificar objetos es una tarea habitual del ser humano. El ser humano posee sentidos que sirven como sensores para percibir su entorno, y además posee conocimientos previos que le permiten relacionar el objeto percibido con los anteriormente conocidos. Este modelo biológico para la identificación de objetos, en la actualidad ha sido transformado en una ciencia.

El reconocimiento de patrones es la ciencia que se encarga de la representación y clasificación (reconocimiento) de objetos, personas, representaciones, etc. Esta ciencia trabaja en relación a un conjunto previamente establecido de todos los posibles objetos (patrones) individuales a reconocer. El reconocimiento de patrones conlleva los siguientes procedimientos básicos: adquisición de datos, extracción de características y clasificación. Sin embargo, en la práctica se pueden añadir procedimientos que refuerzan el reconocimiento de patrones. En la **Figura 5** se muestran los procesos básicos y los añadidos para realizar un proceso más completo de reconocimiento de patrones.

Adquisición de datos

Preprocesamiento de datos

Extracción de características

Figura 5. Etapas del reconocimiento de patrones

Selección de características

Clasificación

En el reconocimiento de patrones, primeramente, se recaudan los datos que caracterizan a los objetos de estudio. Después, en caso de ser requerido, los datos se someten a procesos de calibración, preparación o ajustes. Posteriormente los patrones (objetos) se procesan para generar características candidatas para la etapa de clasificación. Se continúa con la elección de los rasgos característicos que son los más adecuados para describir a los objetos. Y finalmente se realiza la clasificación de los objetos.

En los subtemas posteriores se explica brevemente cada uno de los procesos mencionados previamente.

2.2.1 Adquisición de datos

Los datos son la parte fundamental del proceso de reconocimiento de patrones. Sin información característica no hay manera de distinguir los objetos, así que para esta etapa se colecta toda la información posible de los objetos de estudio mediante sensores.

2.2.1.1 Sensor

El sensor es el dispositivo encargado de la adquisición de datos. Su función es medir y representar los elementos a ser clasificados; por este motivo el sensor condiciona en cierta medida el rendimiento del sistema, ya que debería adquirir todas las propiedades físicas que permiten discriminar los objetos.

En la teledetección, los sensores son sistemas que permiten percibir la cantidad de energía en ciertos intervalos del espectro electromagnético; intervalos que son de interés para la discriminación de los tipos de cubiertas de terreno. Por ejemplo, las longitudes de onda pertenecientes al infrarrojo cercano (0.7 a $1.1 \ \mu m$) son importantes para la detección de vegetación (ver **Figura 4**).

2.2.2 Preprocesamiento de datos

En el proceso de adquisición de datos se emplean sensores para colectar la información relevante de los patrones de interés. Estos sensores en su tarea de medir pueden presentar distintos tipos de errores, dependiendo de la magnitud que mide, su fabricación, posibles defectos, falta de calibración, en dónde y en qué condiciones ejerce su función, etc. Entonces, con base a esto suponemos que los datos adquiridos por el sensor pueden presentar errores.

La información errónea no es útil para el reconocimiento de patrones. En este hecho, radica la importancia del preprocesamiento de datos. El conocimiento que se tiene del sensor utilizado en la adquisición de datos es esencial. De esta forma, los errores conocidos pueden ser reducidos o eliminados durante el preprocesamiento de datos.

Otra tarea, en este procedimiento, es la preparación de los datos. En ocasiones, no se tiene control directo sobre los sensores, de tal forma que los datos son brindados por intermediarios en conjuntos de tamaño predeterminado. Por ello, se aplica procedimientos de recorte de datos.

2.2.3 Extracción de características

La extracción de características es la etapa del reconocimiento de patrones que emplea técnicas de transformación, procedimientos de realce, u otros métodos con el propósito de facilitar la discriminación de los objetos de interés, y así mejorar y simplificar el proceso de clasificación.

Este procedimiento puede ser descartado en el reconocimiento de patrones, ya que el conjunto de datos adquirido por el sensor puede pasar directamente a la etapa de clasificación. Sin embargo, en la práctica es muy común y recomendado utilizar las técnicas de extracción de características. En las imágenes hiperespectrales se convierte en un proceso fundamental, debido al número de bandas espectrales (características) que definen a un patrón.

Las funciones principales de este procedimiento son:

- Extraer información que permita la discriminación.
- Eliminar información redundante e irrelevante.
- Reducir la dimensionalidad del problema.

Algunos ejemplos de técnicas de extracción de características son:

- Análisis de Componentes Principales (ACP)
- Análisis Discriminante Lineal
- Análisis de Componentes Independientes
- ACP no lineal
- Mapa Autorganizado

2.2.4 Selección de características

La selección de características o variables consiste en la elección de los rasgos apropiados para la identificación de patrones. Estas características deben ser distinguibles para cada clase permitiendo al algoritmo de clasificación definir regiones de decisión separadas y sin traslapes.

2.2.5 Clasificación

Con los patrones de entrenamiento definidos y las características seleccionadas, se someten los objetos sin identificar a un proceso de clasificación. Para ello se aplica un clasificador, ya sea paramétrico o no paramétrico, para asignar una o más clases, según sea el algoritmo, a los objetos sin clasificar.

El clasificador tiene como objetivo dividir el espacio de características en regiones de decisión asociadas a las clases de objetos, entidades, representaciones, dependiendo del objeto de estudio. Por lo tanto, la clasificación de un patrón consiste en localizar a qué "región" pertenece en el espacio de características. Las fronteras entre las regiones de decisión se llaman fronteras de decisión (ver **Figura 6**).

Figura 6. Regiones y fronteras de decisión en un espacio de características. Modificado de Richards & Jia (2006).

2.3 Parámetros estadísticos

En esta sección se presentan los parámetros estadísticos que se emplearon en el Análisis de Componentes Principales (**Sección 2.4**) y en la estadística de los experimentos (**Sección 4.4**). Las definiciones utilizadas en esta sección están orientadas a las imágenes multiespectrales y fueron reunidas en su mayoría de Richards & Jia (2006). Las posiciones de puntos de píxeles en el espacio multiespectral se pueden describir mediante vectores, cuyos elementos son las respuestas espectrales individuales de cada banda. Con base a este conocimiento, se pueden definir los siguientes parámetros estadísticos.

2.3.1 Vector promedio

La media es una medida de tendencia central de una distribución de datos. En un espacio multiespectral, la posición media de los pixeles son definidos por el valor esperado del vector pixel x, de acuerdo a

$$m_x = E\{x\} = \frac{1}{N} \sum_{j=1}^{N} x_j$$
(1)

Donde m es el vector pixel promedio, x_j son los vectores de pixeles individuales de un número total de N y E es el operador de esperanza.

2.3.2 Desviación estándar

La desviación estándar se define como el promedio de la variabilidad de los datos con relación a su media. Se denota por σ o *s*, y se define con la siguiente expresión:

$$\sigma_x = \sqrt{E\{(x_j - m_x)^2\}} = \sqrt{\frac{1}{N}} \sum_{j=1}^N (x_j - m_x)^2$$
(2)

2.3.3 Matriz de covarianza

Mientras que le vector promedio es útil para definir la posición esperada de los pixeles en el espacio vectorial multiespectral, es valioso tener un medio para describir su dispersión o propagación. Este es el papel de la matriz de covarianza, la cual se define como

$$\Sigma_x = E\{(x - m_x)(x - m_x)^T\}$$
(3)

donde Σ_x es la matriz de covarianza, y T representa la transpuesta del vector. Una estimación no sesgada de la matriz de covarianza es dado por

$$\Sigma_x = \frac{1}{N-1} \sum_{j=1}^{N} (x_j - m_x) (x_j - m_x)^T$$
(4)
La matriz de covarianza es uno de los conceptos matemáticos más importante en el análisis de datos de teledetección multiespectral, ya que permite calcular la correlación que existe entre las bandas espectrales.

2.3.4 Matriz de correlación

La matriz de correlación R se calcula, con base a los elementos de la matriz de covarianza, mediante la siguiente expresión:

$$\rho_{ij} = \frac{c_{ij}}{(c_{ii} \cdot c_{jj})^{1/2}}$$
(5)

donde ρ_{ij} es un elemento de la matriz de correlación y c_{ij} es un elemento de la matriz de covarianza; c_{ii} y c_{jj} son las varianzas de las *i-esimas* y *j-esimas* bandas de datos. El elemento ρ_{ij} describe la correlación entre la banda *i* y *j*. Los valores en la matriz de correlación varían de -1 a 1 de tal manera que, si el valor absoluto de los elementos fuera de la diagonal es cercano a 1, la correlación es alta. Por otro lado, si los elementos fuera de la diagonal son cercanos a 0, la correlación es baja.

2.3.5 Imágenes de covarianza y correlación

El tamaño de las matrices de covarianza y correlación está en función del número de bandas espectrales de las imágenes de satélite. Por ello, en el caso de las imágenes hiperespectrales, estas matrices pueden ser difíciles de visualizar e interpretar por su gran tamaño. En este apartado se propone utilizar la función de estiramiento lineal del contraste para construir una matriz que pueda ser utilizada como una imagen, y así, poder visualizar las matrices de covarianza y correlación para su interpretación.

Para una imagen de 8 bits, la expresión para el estiramiento lineal del contraste es la siguiente:

$$DN = 255 \cdot \left(\frac{M - v_{min}}{v_{max} - v_{min}}\right)$$
(6)

donde *M* es la matriz que se desea convertir a imagen, v_{min} es el valor mínimo que pueden recibir los elementos de M y v_{max} es el valor máximo que pueden recibir los elementos de M. A continuación, en la **Figura 7** se presentan dos ejemplos, una matriz de covarianza y su matriz correspondiente de correlación.

Figura 7. Ejemplo de la construcción de imágenes de covarianza y correlación

2.4 Análisis de Componentes Principales

El Análisis de Componentes Principales (ACP) es una técnica estadística utilizada para reducir la dimensionalidad de un conjunto de datos mediante la búsqueda de un nuevo sistema de coordenadas, en el espacio de características, que permita representar los datos de forma descorrelacionada. A esta técnica también se le conoce como Transformada de Componentes Principales, Transformada de Hotelling, Transformada Autovector o Transformada Discreta de Karhunen-Loeve.

Con base a Richards & Jia (2006), a continuación se define el ACP y se elabora un algoritmo para la ejecución de este procedimiento.

2.4.1 Definición

Si los vectores que describen las variables están representados como y en el nuevo sistema de coordenadas, entonces se desea encontrar una transformación lineal G de las coordenadas originales, tal que:

$$y = Gx \tag{7}$$

Dadas las variables iniciales x_1 , x_2 , ... x_n , las nuevas variables o componentes principales se obtienen transformando linealmente las variables originales de forma que satisfagan dos condiciones:

1. que maximicen la varianza, de tal manera que la matriz de covarianza Σ_y sea diagonal y que además esté ordenada de forma descendente según su varianza.

$$\Sigma_{y} = \begin{bmatrix} \lambda_{1} & 0 & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 & 0 \\ 0 & 0 & \lambda_{3} & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \lambda_{N} \end{bmatrix} \text{donde } \lambda_{1} > \lambda_{2} > \lambda_{3} \dots > \lambda_{N}$$
(8)

2. que las nuevas componentes sean ortogonales entre sí (ver Figura 8).

Figura 8. Ejes ortogonales en dirección a la máxima variabilidad de los datos

2.4.2 Procedimiento

El algoritmo del ACP es el siguiente:

1. Calcular el vector promedio m_{χ} de los datos.

Para realizar este paso se utiliza la Ecuación 1:

$$m_x = \frac{1}{N} \sum_{j=1}^{N} x_j$$

donde N es el número de datos y x_j es el valor de la *j*-esimo vector de datos.

2. Calcular la matriz de covarianza Σ_x de los datos.

Esta matriz se obtiene utilizando el vector promedio m_{χ} y los datos al aplicar la **Ecuación 4**:

$$\Sigma_x = \frac{1}{N-1} \sum_{j=1}^{N} (x_j - m_x) (x_j - m_x)^T$$

3. Calcular los valores λ y vectores propios g de la matriz de covarianza Σ_{χ} .

Los valores propios son dados por la solución para la ecuación característica:

$$|\Sigma_x - \lambda I| = 0 \tag{9}$$

donde I es la matriz identidad. La matriz de covarianza Σ_y puede ser reconocida como una matriz diagonal de los valores propios de Σ_x (véase la **Ecuación 8**).

Posteriormente para encontrar los vectores propios g se sustituyen los valores propios λ en la siguiente expresión:

$$[\Sigma_x - \lambda I]g = 0 \tag{10}$$

4. Normalización de vectores propios.

El resultado de la matriz de transformación G tiene que ser ortonormal, así que se requiere que:

$$G^{-1} \equiv G^t \tag{11}$$

y que los vectores propios estén normalizados:

$$\sum_{i=1}^{m} (g_{i1})^2 = 1 \tag{12}$$

La variable g_{i1} en la expresión anterior representa el primer vector propio de la matriz de covarianza Σ_x y *m* el número de elementos que tiene.

5. Obtener la matriz de transformación G.

Se aplica la transpuesta a los vectores propios g para obtener la matriz de transformación:

$$G = g^T \tag{13}$$

6. Mapear los datos originales x al nuevo sistema de coordenadas Y.

Para realizar este procedimiento se utiliza la **Ecuación 6**. Esta operación se ejecuta para cada vector de datos (Véase la **Figura 8**). Los ejes son rotados en dirección a la máxima variabilidad de los datos, satisfaciendo las dos condiciones antes señaladas.

2.5 Métricas de separabilidad

En el proceso de selección de características se pueden introducir las métricas de separabilidad como herramientas para evaluar los patrones de entrenamiento y los conjuntos de características candidatos. En este apartado se abordan dos métricas: ángulo espectral y la distancia de Jeffries-Matusita; ambos métodos están estrechamente relacionados con los clasificadores supervisados, mapeo de ángulo espectral y máxima verosimilitud.

2.5.1 Ángulo espectral

En este procedimiento se emplean los ángulos como métricas de separabilidad que se producen al comparar los vectores promedio de las clases de entrenamiento. A continuación, se muestra la ecuación para encontrar el ángulo de separación:

$$\theta(x,y) = \cos^{-1}\left(\frac{\sum_{i=1}^{n} x_i y_i}{(\sum_{i=1}^{n} x_i^2)^{\frac{1}{2}} \cdot (\sum_{i=1}^{n} y_i^2)^{\frac{1}{2}}}\right)$$
(14)

donde x es el vector promedio de la clase base, y es el vector promedio de la clase a comparar, y n es el número de características de los patrones de entrenamiento. El ángulo resultante varía de 0, cuando los vectores son idénticos, a 90 cuando son completamente distintos.

2.5.2 Distancia de Jeffries-Matusita

Esta distancia mide la separación entre dos distribuciones de probabilidad, donde cada una representa una clase de patrón diferente. En Richards & Jia (2006) se presenta la siguiente expresión matemática para el cálculo de la distancia de Jeffries-Matusita:

$$J_{xy} = 2(1 - e^{-B}) \tag{15}$$

en el que:

$$B = \frac{1}{8} (x - y)^{T} \left(\frac{\Sigma_{x} + \Sigma_{y}}{2}\right)^{-1} (x - y) + \frac{1}{2} \ln \left(\frac{\left|\frac{\Sigma_{x} + \Sigma_{y}}{2}\right|}{\sqrt{|\Sigma_{x}||\Sigma_{y}|}}\right)$$
(16)

donde *B* es la distancia Bhattacharyya que producen los vectores promedio x y y, así como sus respectivas matrices de covarianzas Σ_x y Σ_y . La distancia Jeffries-Matusita tiende a 2 cuando los vectores promedio son diferentes, y tiende a 0 cuando son idénticos.

2.6 Clasificación supervisada

Las técnicas de clasificación supervisadas son aquellas en los que, a partir de un conjunto de patrones reconocidos (patrones de entrenamiento), se busca asignar una clase a otro conjunto de patrones no identificados. En algunos casos se utiliza la información estadística de los patrones de entrenamiento, mientras que en otros, se emplean estos patrones para que la técnica aprenda a clasificarlos.

A continuación, se presentan los clasificadores, Mapeo de Ángulo Espectral, Máxima Verosimilitud y Perceptrón multicapa con el optimizador Adam. Para finalizar con descripción de la evaluación del desempeño de estos clasificadores.

2.6.1 Mapeo del Ángulo Espectral

El clasificador de Mapeo de Ángulo Espectral (SAM: Spectral Angle Mapper) es empleado para asignar los patrones de un conjunto de datos a una clase correspondiente según su información angular respecto a las demás clases. Cada patrón produce *m* número de ángulos, donde *m* es igual al número de clases espectrales. Al final al patrón se le asigna la clase del ángulo más pequeño.

Este clasificador consiste en el cálculo del ángulo entre los patrones y los vectores promedio de las clases de entrenamiento. El ángulo espectral θ se obtiene empleando la **Ecuación 14**. Entonces, un patrón pertenece a una clase si cumple con la siguiente expresión:

$$x \in C_k \Leftrightarrow \theta(x, y_k) < \theta(x, y_j) \forall k \neq j$$
(17)

donde C_k representa la clase k, y_k es el vector promedio de la clase k y y_j es el vector promedio de la clase j. En la **Figura 9** se muestra un ejemplo para un patrón, en un espacio bidimensional, que puede ser asignado a una de dos clases disponibles.

Figura 9. Ejemplo de ángulos calculados para el patrón x en un espacio de características bidimensional y con dos clases de patrones disponibles (a, b).

2.6.1.1 Umbrales de decisión

Para excluir de la clasificación patrones con ciertos ángulos, se define un umbral T_k , tal que:

$$\theta(x, y_k) < T_k \tag{18}$$

El ángulo que produce el patrón x y la clase k, debe satisfacer la **Ecuación 17** y además no puede igualar o superar el valor del umbral definido para la clase k.

2.6.2 Máxima Verosimilitud

El clasificador de Máxima Verosimilitud (ML: Maximum Likelihood) supone que los datos siguen una función de distribución normal para asignar la probabilidad de que un patrón cualquiera pertenezca a cada una de las clases. De este modo el patrón se asigna a la clase a la que es más probable que pertenezca.

$$x \in \omega_i$$
, si $p(\omega_i | x) > p(\omega_j | x)$ para toda $j \neq i$ (19)

Para un patrón en una posición x, en el espacio multiespectral, se puede calcular un conjunto de probabilidades que den las probabilidades relativas de que el patrón pertenezca a cada clase disponible.

En los subtemas posteriores se describe, con base a Richards & Jia (2006) el camino para encontrar la regla de decisión de ML y la inclusión de un umbral de decisión en el procedimiento.

2.6.2.1 Regla de decisión

El Teorema de Bayes se define como:

$$p(\omega_i|x) = \frac{p(x|\omega_i) p(\omega_i)}{p(x)}$$
(20)

donde $p(\omega_i)$ es la probabilidad de que la clase ω_i aparezca en el conjunto de datos, y p(x) es la probabilidad total que está definida con la siguiente expresión:

$$p(x) = \sum_{i=1}^{M} p(x|\omega_i) p(\omega_i)$$
(21)

Entonces usando (20) se puede probar que la regla de clasificación de (19) es:

$$x \in \omega_i$$
, si $p(x|\omega_i)p(\omega_i) > p(x|\omega_j)p(\omega_j)$ para toda $j \neq i$ (22)

Por conveniencia matemática se utiliza la siguiente definición

$$g_i(x) = \ln\{p(x|\omega_i)p(\omega_i)\} = \ln p(x|\omega_i) + \ln p(\omega_i)$$
(23)

para reformular el problema de la siguiente manera:

$$x \in \omega_i$$
, si $g_i(x) > g_j(x)$ para toda $j \neq i$ (24)

Suponemos que las distribuciones de probabilidad para las clases son de la forma de modelo normal multivariante.

Por lo tanto, en (23), suponemos que para N características

$$p(x|\omega_i) = (2\pi)^{-N/2} |\Sigma_i|^{-1/2} \exp\{-\frac{1}{2}(x-m_i)^t \Sigma_i^{-1}(x-m_i)\}$$
(25)

El término resultante $-\frac{N}{2}\ln(2\pi)$ es común para todo $g_i(x)$ y no ayuda a la discriminación; por lo tanto, se omite.

La forma final de la función de discriminación para la clasificación de máxima verosimilitud, basado en el supuesto de estadísticas normales es:

$$g_i(x) = \ln p(\omega_i) - \frac{1}{2} \ln |\Sigma_i| - \frac{1}{2} (x - m_i)^t \Sigma_i^{-1} (x - m_i)$$
(26)

A menudo el análisis no tiene información útil sobre la $p(\omega_i)$, en tal caso se supone una situación de probabilidades a priori equivalentes. Como resultado $\ln p(\omega_i)$ puede ser removido de (**26**), ya que es el mismo para toda *i*. El factor común $\frac{1}{2}$ también puede ser removido dejando la siguiente función de discriminación:

$$g_i(x) = \ln|\Sigma_i| - (x - m_i)^t \Sigma_i^{-1} (x - m_i)$$
⁽²⁷⁾

Por lo tanto, la implementación de la regla de decisión de máxima verosimilitud implica usar, (26) o (27) en (24). Tal como se aprecia en la Figura 10.

Figura 10. Funciones discriminantes de la regla de decisión.

2.6.2.2 Umbrales de decisión

En la práctica, los umbrales son aplicados a las funciones discriminantes y no a las distribuciones de probabilidad, ya que estos últimos nunca se calculan realmente. Por lo tanto, con la incorporación de un umbral, la regla de decisión (23) se convierte en

$$x \in \omega_i$$
, si $g_i(x) > g_j(x)$ para toda $j \neq i$
y $g_i(x) > T_i$ (28)

donde T_i es el umbral considerado significativo para la clase espectral ω_i .

2.6.2.3 Número de patrones de entrenamiento

El clasificador de ML debe tener suficientes patrones de entrenamiento disponibles para cada clase espectral con la finalidad de permitir que las estimaciones de la matriz de covarianza y el vector promedio sean adecuadas. Swain & Davis (1978) recomiendan como mínimo práctico usar 10*C* pixeles de entrenamiento por clase espectral usada, e incluso si es posible hasta 100*C*, siendo *C* el número de características.

2.6.3 Perceptrón multicapa con el optimizador Adam

Una Red Neuronal Artificial es un modelo matemático inspirado en el proceso biológico del aprendizaje que se realiza mediante la interconexión de neuronas en el cerebro. Además, se define como técnica de aprendizaje de máquina que encuentra soluciones discriminantes, de manera iterativa, a través del ajuste de sus pesos que se efectúa durante su entrenamiento.

Con el objetivo de cumplir satisfactoriamente con la explicación de esta técnica de reconocimiento de patrones, se organizaron los siguientes subtemas para avanzar de lo simple a lo complejo. Primeramente, se presenta el perceptrón simple, posteriormente el perceptrón multicapa, se continúa con la explicación del procedimiento de ajuste mediante la retropropagación, y para finalizar se describe el algoritmo del optimizador Adam.

2.6.3.1 Perceptrón simple

El perceptrón es un modelo simple, de una neurona biológica, que aprende mediante el ajuste de los pesos asociados a las entradas con la finalidad de resolver problemas lineales. Es decir que, dentro de este modelo, los componentes biológicos como el soma, las dendritas y el axón son expresados de manera matemática para emular un proceso de aprendizaje lineal. En la **Figura 11** se muestra el esquema de un perceptrón simple haciendo una analogía con la neurona biológica.

Figura 11. Analogía de la neurona biológica y la neurona artificial (perceptrón)

Donde:

- $x_1, x_2, ..., x_n$: Es el conjunto de datos de entrada (señales). Por ejemplo, el vector de entrenamiento o el vector de un patrón a clasificar.
- w_1, w_2, \dots, w_n : Son los pesos correspondientes a cada entrada.
- **b**: Es el parámetro umbral (o bias). Tiene un valor de +1
- w_{n+1} : Es el peso correspondiente al bias.
- Σ: Es la función de acumulación (también denominada, función de agregación). En esta se realiza la suma de los productos de las entradas por los pesos. Más adelante, para describir esta función se utilizará la variable s
- **f**: Es la función de activación.
- y: Es la salida obtenida por el perceptrón.

Para calcular la salida y, primero se calcula la función de acumulación s:

$$s = \sum_{i=1}^{n} w_i x_i + b w_{n+1}$$
(29)

Posteriormente, en el perceptrón simple, para la función de activación se utiliza generalmente una función escalón unitario o una función signo (ver **Figura 12**).

Función escalón unitario	Función signo
$y = \begin{cases} 1 & si \ s \ge 0 \\ 0 & si \ s < 0 \end{cases} $ (30)	$y = \begin{cases} +1 \ si \ s \ge 0 \\ -1 \ si \ s < 0 \end{cases} $ (31)

Figura 12. Función signo y Función escalón unitario.

Por lo tanto, la salida y clasifica de forma binaria un vector de datos de entrada $x_1, x_2, ..., x_n$.

Entrenamiento del perceptrón simple

El entrenamiento es el proceso por el cual un perceptrón aprende a resolver un problema lineal, con el fin de discriminar entre dos clases, mediante el ajuste de pesos que se realiza de manera iterativa al comparar el resultado deseado con lo obtenido. Para este procedimiento surgen dos nuevos conceptos que a continuación se definen:

Error (e). Es el resultado de comparar la salida esperada (z) con la salida obtenida (y). En la Ecuación
 32 presenta la fórmula para obtener el error.

$$e = z - y \tag{32}$$

Tasa de aprendizaje (η). Es el factor que define la velocidad de aprendizaje de la red neuronal. Un valor muy alto puede provocar que los pesos no se ajusten correctamente, mientras que un valor muy bajo produciría que la convergencia al error mínimo global sea lenta. Este parámetro se emplea para calcular el ajuste de los pesos de las entradas y el bias, como se puede apreciar en las ecuaciones 33 y 34 respectivamente.

$$\Delta w_i = \eta \cdot e \cdot x_i, \text{ para } i = 1, 2, \dots, n \tag{33}$$

$$\Delta w_{n+1} = \eta \cdot e \tag{34}$$

Entonces con lo anterior, ya es posible presentar el algoritmo de entrenamiento del perceptrón simple:

- 1. Definir los pesos $w_1, w_2, ..., w_n$ y el bias w_{n+1} de manera aleatoria.
- Suministrar los datos de entradas x₁, x₂,.., x_n y el valor verdadero z, del vector de entrenamiento x, a la red.
- 3. Calcular la salida y.
- 4. Calcular el error con la Ecuación 32.
- Ajustar los pesos asociados a las entradas w₁, w₂, ..., w_n y al bias w_{n+1} con las Ecuaciones 33 y
 34
- 6. Repetir el proceso hasta cierto criterio de paro, ya sea un porcentaje de error o un número de iteraciones.

2.6.3.2 Perceptrón multicapa

El perceptrón multicapa es un algoritmo de aprendizaje supervisado que soluciona el mayor defecto del perceptrón simple, es decir, la incapacidad de resolver problemas no lineales. Este modelo interconecta un conjunto de neuronas organizándolas en capas. La capa de entrada está formada por el conjunto de datos de entrada, la capa de salida está constituida por las neuronas que representan la salida final de la red, y las capas ocultas están integradas por las neuronas que propagan su salida a otras neuronas (ver **Figura 14**).

Los nodos en la capa de entrada no realizan ninguna operación, simplemente representan el conjunto de datos de entrada a la red. En cambio, las neuronas que constituyen las capas ocultas y la de salida, aplican las funciones acumulativas y de activación. A estas neuronas, también se les denomina unidades o elementos de procesamiento y tienen un modelo similar al del perceptrón simple. Sin embargo, a diferencia de este la función de activación, en los nodos de la capa oculta, debe ser derivable, continua y no lineal con el fin de ajustarse al algoritmo de retropropagación.

Las funciones de activación más comunes se muestran en la **Figura 13**. Aunque se pueden utilizar diferentes funciones para los nodos del perceptrón multicapa, en la práctica se utiliza el mismo tipo de función para todas las neuronas.

	Nombre	Ecuación (a)	Rango	Derivada (b)	Gráfica
1.	ldentidad	y = x	[−∞, +∞]	<i>y'</i> = 1	
2.	Escalón	y = H(x)	{0,+1}	$y' = \begin{cases} 0 & si \ x \neq 0 \\ \infty & si \ x = b \end{cases}$	
3.	Rectificador (ReLU)	$y = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$	[0, +∞]	$y' = \begin{cases} 0 & si \ x < 0 \\ 1 & si \ x \ge 0 \end{cases}$	
4.	Sigmoidal (logística)	$y = \frac{1}{1 + e^{-x}}$	[0,+1]	y' = y(1-y)	
5.	Tangente Hiperbólica	$y = \tanh(x)$ $= \frac{2}{1 + e^{-2x}} - 1$	[-1,+1]	$y' = 1 - y^2$	

Figura 13. Funciones de activación más comunes

El número de nodos en la capa de entrada y en la de salida se define en función del número de variables del vector de entrada y el número de clases respectivamente. En la **Figura 14** se ejemplifica con colores, a las entradas, y texturas de rocas a los nodos de salida. Además, los bias se representan con un valor +1.

Figura 14. Arquitectura de un perceptrón multicapa de 1 capa oculta.

2.6.3.3 Retropropagación

El perceptrón multicapa es entrenado mediante el algoritmo de retropropagación. Este algoritmo consiste en calcular el error de la red en la capa de salida, para posteriormente propagarlo hacia atrás. Es decir, calcular la porción de error de cada nodo y transmitirla, capa por capa, desde la capa de salida hasta la primera capa oculta, con la finalidad de calcular el ajuste de los pesos y posteriormente actualizarlos.

El error en perceptrón multicapa se calcula mediante la siguiente ecuación (notación de la Figura 14):

$$e = ||z - y|| = \frac{1}{2} \sum_{k=1}^{N_k} (z_k - y_k)^2$$
(35)

donde z_k es el valor esperado para el nodo k. El $\frac{1}{2}$ se emplea para facilitar el cálculo de la derivada que se realizará más adelante.

A partir del cálculo del error en la capa de salida se inicia el procedimiento de retropropagación. El objetivo es encontrar el ajuste de los pesos para cada una de las capas, de tal manera, que se minimice el error *e*. En el método de descenso de gradiente el ajuste se define mediante la expresión

$$\Delta w_{kj} = -\eta \frac{\partial e}{\partial w_{kj}} \tag{36}$$

Entonces, se deben ajustar los pesos en proporción a la derivada parcial del error con respecto a los pesos. Para ello, se utiliza la regla de la cadena para evaluar la derivada parcial de *e* de la siguiente manera (Pajares Martinsanz & de la Cruz García, 2007),

$$\frac{\partial e}{\partial w_{kj}} = \frac{\partial e}{\partial s_k} \frac{\partial s_k}{\partial w_{kj}}$$
(37)

Con base en la función de acumulación (ya con la notación de la Figura 14)

$$s_k = \sum_{k=1}^{N_k} w_{kj} y_j,$$
 (38)

se obtiene

$$\frac{\partial s_k}{\partial w_{kj}} = \frac{\partial}{\partial w_{kj}} \sum_{j=1}^{N_j} w_{kj} y_j = y_j$$
(39)

Entonces, remplazando las ecuaciones 37 y 39 en 36 se consigue,

$$\Delta w_{kj} = -\eta \frac{\partial e}{\partial s_k} y_j \tag{40}$$

A continuación, se incluye δ_k , el cual se define como la porción de error de los nodos en la capa k.

$$\Delta w_{kj} = -\eta \frac{\partial e}{\partial s_k} y_j = \eta \delta_k y_j, \quad \text{donde } \delta_k = -\frac{\partial e}{\partial s_k}$$
(41)

Con el fin de obtener δ_k se aplica nuevamente la regla de la cadena al calcular la derivada parcial, de la dependencia de la razón de cambio, del error *e* con respecto a y_k y de y_k con relación a s_k ,

$$\delta_k = -\frac{\partial e}{\partial s_k} = -\frac{\partial e}{\partial y_k} \frac{\partial y_k}{\partial s_k}$$
(42)

Con la Ecuación 35 se infiere que de

$$\frac{\partial e}{\partial y_k} = -(z_k - y_k),\tag{43}$$

y de la función de activación

$$y_k = f(s_k) \tag{44}$$

se obtiene

$$\frac{\partial y_k}{\partial s_k} = \frac{\partial}{\partial s_k} f(s_k) = f'(s_k) \tag{45}$$

Entonces, sustituyendo (43) y (45) en (42) se obtiene

$$\delta_k = -(z_k - y_k)f'(s_k) \tag{46}$$

que es igual a la cantidad de error en el nodo k. Por último, se sustituyen las ecuaciones (39) y (46) en (36)

$$\Delta w_{kj} = -\eta \frac{\partial e}{\partial w_{kj}} = \eta \delta_k y_j = -\eta (z_k - y_k) f'(s_k) y_j \tag{47}$$

Como se mencionó anteriormente, la **Ecuación 47** representa el ajuste de los pesos que conectan las capas k (salida) y j (última capa oculta).

Después de propagar el error de la última a la penúltima capa, debemos considerar el siguiente aspecto. El ajuste de los pesos en la capa de salida no se aplica de igual manera en las capas ocultas, el término z_k carece de sentido para el cálculo de δ en las capas ocultas, ya que solo es posible conocer la respuesta de la red en la capa de salida. Por lo tanto, siguiendo con la notación de la **Figura 14**, se necesita el siguiente procedimiento para obtener δ_j .

A partir de la **Ecuación 42**, se puede reformular para la capa *j*,

$$\delta_j = -\frac{\partial e}{\partial s_i} = -\frac{\partial e}{\partial y_i} \frac{\partial y_j}{\partial s_i}$$
(48)

El término $\frac{\partial y_j}{\partial s_j}$ es conocido, y como antes, resulta

$$\frac{\partial y_j}{\partial s_j} = \frac{\partial}{\partial s_j} f(s_j) = f'(s_j) \tag{49}$$

Para el otro término, se aplica nuevamente la regla de la cadena considerando la influencia de todos los nodos en la capa k,

$$-\frac{\partial e}{\partial y_j} = -\sum_{k=1}^{N_k} \frac{\partial e}{\partial s_k} \frac{\partial s_k}{\partial y_j} = \sum_{k=1}^{N_k} \left(-\frac{\partial e}{\partial s_k} \right) \frac{\partial}{\partial y_j} \sum_{j=1}^{N_j} w_{kj} y_j = \sum_{k=1}^{N_k} \left(-\frac{\partial e}{\partial s_k} \right) w_{kj} = \sum_{k=1}^{N_k} \delta_k w_{kj}$$
(50)

Por último, se sustituyen (49) y (50) en (48) para obtener

$$\delta_j = f'(s_j) \sum_{k=1}^{N_k} \delta_k w_{kj}$$
(51)

Por lo tanto, el ajuste de los pesos que conectan las capas *i* y *j* es el siguiente:

$$\Delta w_{ji} = \eta \delta_j y_i \tag{52}$$

Posteriormente al cálculo de los ajustes en cada una de las capas (excepto la de entrada), se realiza la actualización de los pesos:

$$w_{kj}^{(actualizado)} = w_{kj} + \Delta w_{kj}, \qquad w_{ji}^{(actualizado)} = w_{ji} + \Delta w_{ji}$$
(53)

2.6.3.4 Adam

La Estimación del Momento Adaptativo (Adam: Adaptative Moment Estimation) es un método para la optimización estocástica, que calcula la tasa de aprendizaje adaptativa para cada parámetro. El método es fácil de implementar, eficiente computacionalmente, requiere poca memoria, es invariante al reajuste diagonal de los gradientes, y es muy adecuado para la resolución de problemas que son grandes en términos de datos y/o parámetros (Kingma & Ba, 2014).

El algoritmo de Adam se presenta a continuación:

Por defecto, estos son los valores de las variables de entrada: $\eta = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$

- 1. Requiere la tasa de aprendizaje η
- 2. **Requiere** las tasas de decaimiento de las estimaciones de momentos $\beta_1, \beta_2 \in [0,1)$
- 3. **Requiere** la función objetivo estocástica $f(\theta)$ con los parámetros θ
- 4. **Requiere** el vector del parámetro inicial θ_0
- 5. Inicializar el vector de primer momento $m_t = 0$
- 6. Inicializar el vector de segundo momento $v_t = 0$
- 7. Inicializar el paso de tiempo t = 0
- 8. Mientras θ_t no converja hacer

a. t = t + 1

b. Obtener los gradientes con respecto a la función objetivo estocástica en el paso de tiempo t

$$g_t = \nabla_\theta f_t(\theta_{t-1}) \tag{54}$$

c. Actualizar la estimación del vector de primer momento sesgado.

$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t \tag{55}$$

d. Actualizar la estimación del vector de segundo momento sesgado.

$$v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \tag{56}$$

e. Calcular la corrección por sesgo al vector de primer momento.

$$\widehat{m}_t = \frac{m_t}{1 - \beta_1^t} \tag{57}$$

f. Calcular la corrección por sesgo al vector de segundo momento.

$$\hat{\nu}_t = \frac{\nu_t}{1 - \beta_2^t} \tag{58}$$

g. Actualizar los parámetros.

$$\theta_t = \theta_{t-1} - \eta \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$$
(59)

- 9. Finalizar ciclo.
- 10. **Regresar** los parámetros resultantes θ_t

Kingma & Ba (2014) señalan que el algoritmo busca minimizar la función $E[f(\theta)]$ con respecto a sus parámetros θ . Con $f_1(\theta), ..., f_T(\theta)$ se denota la ejecución de la función estocástica en pasos de tiempo subsecuentes 1, ..., T. Por otro lado, La parte estocástica del método podría provenir de la evaluación en muestras aleatorias (mini lotes) de puntos de datos, o surgir del ruido de la función inherente. Con $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ se denota el gradiente, es decir, el vector de derivadas parciales de f_t con relación a θ evaluada en pasos de tiempo t.

Los vectores de primer momento m_t y segundo momento v_t , también denominados promedios móviles por el autor, son actualizados por el algoritmo mediante los parámetros β_1 y β_2 que controlan la tasa de decaimiento exponencial de estos vectores. Los promedios móviles en sí son estimaciones del primer momento (la media) y el segundo momento (varianza descentrada) del gradiente. Sin embargo, estos promedios móviles se inicializan como vectores de ceros, dando lugar a estimaciones de momento sesgadas hacia cero, especialmente en los pasos de tiempo iniciales, y cuando las tasa de decaimiento son pequeñas (es decir, β_1 y β_2 son cercanas a 1). Para solucionar este inconveniente, en el algoritmo se calculan \hat{v}_t y \hat{m}_t como correcciones a los sesgos.

Las expresiones matemáticas de las líneas **8e**, **8f** y **8g** pueden ser sustituidas, a expensas de la claridad, por las ecuaciones **60** y **61** para mejorar la eficiencia del algoritmo

$$\eta_t = \eta \, \cdot \frac{\sqrt{1 - \beta_2^t}}{1 - \beta_1^t} \tag{60}$$

$$\theta_t = \theta_{t-1} - \eta_t \cdot \frac{m_t}{\sqrt{\nu_t} + \epsilon} \tag{61}$$

La librería de Python scikit-learn utiliza este remplazo para la implementación de Adam.

2.6.4 Evaluación del desempeño de los clasificadores

La matriz de confusión es una herramienta para evaluar la precisión de la clasificación sometiendo los patrones de validación al proceso de clasificación, y posteriormente comparando los resultados obtenidos con su clase real. En la **Figura 15** se muestra un ejemplo de la matriz de confusión.

Figura 15. Ejemplo de una matriz de confusión

Con base a esta figura, se pueden definir algunas características:

 Permite visualizar la precisión de la clasificación supervisada. Los elementos en la diagonal principal indican el número de patrones que fueron correctamente clasificados. De tal manera que:

$$precisión \ global = \frac{\sum_{i=1}^{n} d_i}{N},$$
(62)

donde n es el número de clases, d_i es el i-esimo elemento en la diagonal principal, y N es el número total de patrones de validación.

- Facilita conocer si el algoritmo está confundiendo clases. Todos los elementos fuera de la diagonal principal indican errores de comisión o de omisión. Estos elementos poseen cantidades, relativamente altas, en clases que tienen una similitud a otras clases. Este hecho es una muestra de confusión entre clases.
- Permite conocer los Errores de Omisión. Este tipo de errores ocurre cuando patrones de validación, pertenecientes a una clase, son asignados a otras clases. En la matriz de confusión, estos patrones se observan en los elementos de una misma fila que no pertenecen a la diagonal principal.
- Permite conocer los Errores de Comisión. Este tipo de errores ocurre cuando patrones de validación, pertenecientes a otras clases, son asignados a una misma clase. En la matriz de confusión, estos patrones se pueden observar en los elementos de una misma columna que no pertenecen a la diagonal principal.

Este capítulo tiene como objetivo explicar cómo se desarrolló la tesis, mediante la descripción de las herramientas, procedimientos y métodos empleados, desde el preprocesamiento de datos hasta la aplicación de técnicas de reconocimiento de patrones.

3.1 Insumos

Durante el proyecto de investigación se usaron diversas herramientas para cubrir cada una de las actividades involucradas, y así lograr los objetivos trazados. En este apartado se explica brevemente cada uno de estos materiales.

3.1.1 Áreas de pruebas

El objetivo del presente trabajo de tesis consiste, básicamente, en el mapeo litológico utilizando imágenes hiperespectrales. Debido a esto se seleccionó una zona geológica, actualmente en estudio, como la isla Ángel de la Guarda para ser el área de pruebas principal. Con eso en consideración, el conocimiento previo de la zona y lo difícil que es obtener buenos resultados en el mapeo litológico, se añadió otra área de pruebas perteneciente al sur-suroeste de Tecate, Baja California. Esta área brinda un conjunto variado de tipos de cubierta de terreno, y no solamente litologías, lo que permite escalar de un problema simple a algo más complejo como el mapeo litológico.

En función de la disponibilidad de las imágenes de satélite de la zona se seleccionaron tres áreas de prueba. Dos áreas pertenecen a la Isla de Ángel de la Guarda, ubicada en el Golfo de California, y un área al sursuroeste de Tecate, Baja California. A continuación, en la **Figura 16** se muestran las zonas de prueba delimitadas en rojo.

Figura 16. Áreas de pruebas: A) Tecate, Baja California, B) Centro-Sur de la Isla Ángel de la Guarda, C) Centro de la isla Ángel de la Guarda.

El área **A**, perteneciente a Tecate, Baja California tiene un cubrimiento aproximado de 4,071,060 m^2 , mientras que las áreas **B** y **C**, ubicadas en la isla Ángel de la Guarda, poseen una cobertura de 2,801,970 m^2 y 7,948,800 m^2 respectivamente.

3.1.2 Imágenes de satélite

El servicio Geológico de Estados Unidos (USGS: United States Geological Survey) provee de un servicio de descargas de imágenes de satélite en Internet. La imagen de la isla Ángel de la Guarda, es decir, el área de pruebas C, inicialmente, se definió que sería una imagen hiperespectral, correspondiente al sensor Hyperion, con la finalidad de lograr el objetivo de este trabajo de tesis. Mientras que las áreas de pruebas A y B fueron seleccionadas con base a la disponibilidad de las imágenes Hyperion, ALI y Thematic Mapper (TM) en la base de datos del USGS. Al final se descargaron un total de 6 imágenes: 3 pertenecientes al sursuroeste de Tecate, Baja California y 3 a la isla Ángel de la Guarda.

ALI y TM son sensores multiespectrales (véase la **Sección 2.1.2**), mientras que Hyperion, como anteriormente se mencionó, es un sensor hiperespectral. A continuación, en las **figuras 17** y **18** se muestran las imágenes de satélite adquiridas para cada una de las áreas de prueba.

Figura 17. Imágenes Hyperion (a), ALI (b) y TM (c) del área de Tecate, Baja California.

Figura 18. Imágenes Hyperion (a), ALI (b) y TM (c) de la isla Ángel de la Guarda.

Comparación entre sensores

Los sensores ALI e Hyperion operan abordo del satélite EO-1, mientras que TM operó abordo de los satélites Landsat 4 y 5. Cada sensor es particular y son creados para cumplir ciertos propósitos, por ello es importante conocer las características y las ventajas que proveen sus imágenes. En la **Tabla 4** se comparan las características más importantes que posee cada uno de los sensores empleados en el presente trabajo.

Darámatras	Sensores			
Parametros	ALI	Hyperion	тм	
Rango Espectral (μm)	0.4 – 2.4	0.4 – 2.5	0.45 – 2.35 (12.5)	
Resolución Espacial	30 m	30 m	30 m (TM-6 120m)	
Swath	36 km	7.5 km	185 km	
Total de bandas	10	242	7	
Anchura espectral	Variable	10 nm	Variable	
Cubrimiento Espectral	Discreto	Continuo	Discreto	
Pancromática	10 m	N/A	N/A	
Resolución radiométrica	12 bits	12 bits	8 bits	

 Tabla 4. Tabla comparativa de los sensores empleados en este trabajo (Pearlman et al., 2001).

En la **Figura 19** se muestran las coberturas espectrales de los tres sensores. También, se agregan las firmas espectrales de los tipos de cubierta del terreno principales en la teledetección.

Figura 19. Comparación del cubrimiento espectral de los sensores Hyperion, ALI y Thematic Mapper (TM) en relación a las firmas espectrales de los principales tipos de cubierta de terreno.

3.1.3 ENVI 5.3

Es una solución de software Geoespacial para procesar y analizar imágenes espectrales, datos SAR y LIDAR. Soporta imágenes de los más populares y recientes sensores de satélites y aeronaves. Y además, posee un gran repertorio de algoritmos de filtrado, calibración, extracción de características, corregistro, clasificación, postclasificación y muchos más procesos, comúnmente aplicados, en el ámbito de la teledetección.

En el presente trabajo, ENVI se utiliza, principalmente, para el preprocesamiento de las imágenes y la selección de las ROI.

3.1.4 Hyperion Tools

El complemento de ENVI, Hyperion Tools, está diseñado para facilitar el uso de los datos del sensor Hyperion en la aplicación. Su principal función es convertir las imágenes GeoTIFF, 1R HDF y 1G/1T HDF en archivos de formato ENVI que contengan información de longitud de onda, Anchura a Media Altura (FWHM: Full Width at Half Maximum), nombre de las bandas, entre otros metadatos pertenecientes a la imagen. Además, incluye otras opciones específicas para cada formato que ayudan a usar los datos Hyperion en la plataforma ENVI.

3.1.5 Python

Python es un lenguaje de programación de alto nivel e interpretado, que soporta el paradigma orientado a objetos, con semántica dinámica. Su sintaxis es sencilla, fácil de aprender y enfatiza la legibilidad. Además, Python soporta módulos y paquetes, lo que fomenta la modularidad y reutilización de código.

En este trabajo se utilizó Python 2.7.12.

3.1.5.1 Librerías y sus aplicaciones

Para el desarrollo e implementación de técnicas y métodos se usaron diversas librerías de Python. En la **Tabla 5** se muestra cada una de estas y se explica brevemente su uso en el desarrollo del trabajo de tesis.

Librería	Aplicación
spectral	Abrir, extraer información, manipular y desplegar imágenes con formato ENVI
numpy	Creación y manipulación de arreglos, aplicación de funciones de algebra lineal y
	funciones matemáticas básicas.
Image (PIL)	Creación imágenes desde arreglos
pyqtgraph	Creación de gráficas dinámicas y módulo de análisis de imágenes.
matplotlib	Creación de gráficas
sklearn	Perceptrón multicapa con optimizador Adam
panda	Formatos de tablas para imprimir en consola

Tabla 5. Librerías de Python y sus aplicaciones en este trabajo

3.2 Metodología

En este apartado se aborda cada uno de los procesos que se desempeñaron para la realización de este trabajo. La metodología fue diseñada con base al reconocimiento de patrones partiendo del preprocesamiento, el cual se explica en 4 procedimientos. Subsiguientemente se describe la selección y extracción de las regiones de interés para las áreas de pruebas. Después se especifica el método empleado para la extracción de características, para posteriormente, mencionar la manera en la cual se seleccionaron los conjuntos de características para la clasificación. En seguida, se especifican las métricas

de separabilidad que fueron utilizadas. Para consecutivamente, describir lo concerniente a la clasificación, los algoritmos y la evaluación el desempeño de los clasificadores, y por último se explica cómo se realizó la comparación de los clasificadores con base a sus resultados.

En la Figura 20 se muestra la metodología.

Figura 20. Metodología

3.2.1 Preprocesamiento de datos

Las imágenes de satélite adquiridas poseen niveles de procesamiento básicos, y cubren porciones extensas de la superficie terrestre. Por ello se debe aplicar una serie de procedimientos que permitan adecuar los datos a los fines de la investigación, ya sea, reduciendo la dimensionalidad espacial o espectral, o empleando otro proceso más elaborado. En este apartado se presenta el procedimiento realizado para el acondicionamiento de los datos antes de la selección de patrones de entrenamiento y validación. Cabe destacar que este procedimiento se realizó con el software ENVI. En la **Figura 21** se presenta el flujo de trabajo en esta etapa de la metodología.

Figura 21. Preprocesamiento

3.2.1.1 Reordenamiento de bandas en imágenes Hyperion

Las bandas espectrales de las imágenes L1R (ver **Apéndice A**) de Hyperion están organizadas de acuerdo al arreglo de detectores del sensor. Esta estructura no está ordenada completamente de manera ascendente según la longitud de onda del espectro electromagnético, por lo tanto, esto produce complicaciones y confusiones en la manipulación de datos. Por ello, se procedió a reordenar las bandas utilizando la herramienta denominada: Hyperion Tools instalada en el software ENVI.

3.2.1.2 Corregistro de imágenes multiespectrales

Con el objetivo de alinear el conjunto de patrones de entrenamiento para cada área de pruebas se realizó el corregistro de las imágenes multiespectrales tomando como base las imágenes Hyperion. Este proceso consiste en transformar geométricamente una imagen con base a otra, siguiendo como referencia una serie de puntos de control.

El corregistro se realizó utilizando la función "Image to image" del menú "Registration" de ENVI, y la transformación fue realizada mediante el método de transformación geométrica: Translación Escalamiento y Rotación (RST: Rotation-Scaling-Translation).

3.2.1.3 Selección y extracción de subimágenes

En este proceso se eligieron las dimensiones de las imágenes con el objetivo de cubrir las áreas de pruebas conociendo a priori las regiones de interés significativas que incluían. Y así, posteriormente se extrajeron los segmentos seleccionados de las imágenes.

3.2.1.4 Depuración de bandas

Las imágenes hiperespectrales presentan bandas que capturan ciertas longitudes de onda del espectro electromagnético donde existen efectos de dispersión y absorción atmosféricas. Además, existen bandas que no contienen información. Para corregir esto, en primera instancia se eliminaron todas aquellas bandas malas conocidas, definidas por ENVI mediante su Lista de Bandas Malas (BBL: Bad Band List) y posteriormente mediante apreciación visual se descartaron todas aquellas bandas que presentaban pixeles apagados y ruido que pudiese afectar el resultado de la clasificación.

3.2.2 Selección y extracción de las regiones de interés para entrenamiento y validación

Con el apoyo de un experto en el área de geología, se eligieron las litologías conocidas en la parte central de la isla Ángel de la Guarda, la cual corresponde al área C. En cambio, para las imágenes del área A, perteneciente a Tecate, se seleccionaron los tipos de cubierta del terreno básicos (agua, suelo, vegetación, etc.) y para el área B, correspondiente a la zona centro - sur de la isla, se prefirió conservar la mitad de las clases litológicas y agregar la clase agua con el objetivo de separar la cubierta acuática. Entonces, ya seleccionadas los campos de entrenamiento y validación en ENVI, posteriormente se desarrolló una función en Python para extraer los pixeles pertenecientes a las regiones de interés.

3.2.3 Extracción de características mediante el Análisis de Componentes Principales

Trabajar con imágenes hiperespectrales crea una serie de problemas concernientes al uso de la memoria y al tiempo de ejecución, por ello se empleó una técnica de reducción de dimensionalidad que mediante la transformación de los datos originales garantiza que la información relevante está almacenada en las primeras componentes principales de la imagen resultante. Este método se denomina, Análisis de Componentes Principales, y consiste en encontrar un nuevo sistema de coordenadas donde los datos originales no tengan correlación (véase la **Sección 2.4**).

3.2.4 Selección de características

Este procedimiento consistió en elegir varios conjuntos de atributos mediante uno o más criterios de selección. Cada criterio de selección se elaboró considerando los rasgos espectrales de las imágenes de satélite. Para las imágenes hiperespectrales se diseñaron criterios de selección, que consistían en crear subconjuntos de características, considerando ciertas condiciones de interés experimental. Mientras que para las imágenes multiespectrales se seleccionaron todos los atributos disponibles.

3.2.5 Cálculo de separabilidad entre clases

En este proceso se emplearon dos métricas de separabilidad para evaluar, la selección de los campos de entrenamiento en cada una de las áreas de prueba, y el desempeño de los conjuntos de características. Primeramente, se realizó el cálculo del ángulo entre las medias espectrales de las clases utilizando la **Ecuación 13**, y posteriormente se midió la distancia entre las distribuciones de probabilidad que producía cada clase empleando la **Ecuación 14**.

3.2.6 Mapeo de Ángulo Espectral

Este clasificador se ejecutó, para todos los conjuntos de características, en las distintas áreas de pruebas. El algoritmo para este clasificador fue el siguiente:

Entrada:

- a) Imagen espectral. Corresponde a una matriz de $N \times M \times S$, donde N es el número de filas, M el número de columnas y S el número de características.
- b) Arreglo de *K* objetos de la clase ROI. Donde *K* corresponde al número de clases de cubiertas de terreno. De esta clase se emplean 3 propiedades:
 - Color. Es un vector unidimensional de 3 elementos correspondientes al RGB definido para cada clase o ROI de entrenamiento.
 - Media. Es un vector unidimensional que corresponde al pixel promedio de la ROI y su dimensión es de tamaño *S*.

Salida:

a) Mapa temático. Es una matriz de $N \times M \times 4$. De los 4 elementos, 3 corresponden al RGB de la clase asignada al pixel ubicado en la posición (x, y), y el último elemento es el índice de la ROI asignada al pixel.

Procedimiento:

- 1. Definición de la matriz correspondiente al mapa temático.
- 2. Para cada pixel en la imagen espectral:
 - a. Para cada ROI de entrenamiento:

- i. Calcular el ángulo entre el pixel y la clase utilizando la ecuación 10, y almacenar el resultado en el vector R de tamaño K.
- b. Aplicar regla de decisión (13) utilizando el vector R
- c. Asignar color e índice de la ROI al elemento del mapa temático en la posición correspondiente al pixel de la imagen espectral.
- 3. Regresar mapa.

3.2.7 Máxima Verosimilitud

Este clasificador se ejecutó, para todos los conjuntos de características, en las distintas áreas de pruebas. El algoritmo del clasificador de ML fue el siguiente:

Entrada:

- a) Imagen espectral. Corresponde a una matriz de $N \times M \times S$, donde N es el número de filas, M el número de columnas y S el número de características.
- b) Arreglo de *K* objetos de la clase ROI. Donde *K* corresponde al número de clases de cubiertas de terreno. De esta clase se utilizan 3 propiedades:
 - Color. Es un vector unidimensional de 3 elementos, que corresponde al RGB definido para cada clase o ROI de entrenamiento.
 - Media. Es un vector unidimensional que corresponde al pixel promedio de la ROI y su dimensión es de tamaño *S*.
 - Matriz de covarianza. Es un arreglo simétrico de S × S, que corresponde a la dispersión de los pixeles en el espacio de características.

Salida:

a) Mapa temático. Es una matriz de $N \times M \times 4$. De los 4 elementos, 3 corresponden al RGB de la clase asignada al pixel ubicado en la posición (x,y), y el último elemento es el índice de la ROI asignada al pixel.

Procedimiento:

- 1. Definición de la matriz correspondiente al mapa temático.
- 2. Para cada pixel en la imagen espectral:

- 1. Para cada ROI de entrenamiento:
 - Aplicar función discriminante (23) y almacenar el resultado en el vector R de tamaño
 K.
- 2. Aplicar regla de decisión (20) utilizando el vector R
- 3. Asignar color e índice de la ROI al elemento del mapa temático en la posición correspondiente al pixel de la imagen espectral.
- 3. Regresar mapa.

3.2.8 Perceptrón Multicapa

Se utilizó la clase MLPClassifier de la librería sklearn para la construcción y ejecución del perceptrón multicapa. En la **Tabla 6**, se especifican, describen (según la documentación de sklearn) y valúan los parámetros de entrada, para la construcción del perceptrón multicapa utilizado en los experimentos definidos en este trabajo de tesis.

Parámetro	Descripción	Valor
Hidden_layer_sizes	El i-esimo elemento representa el número de neuronas en la i-esima capa oculta.	400
activation	Define la función de activación para la capa oculta	'logistic'
solver	Define el solucionador para la optimización de pesos	'adam'
batch_size	Tamaño de los minilotes	14
Alpha	Párametro de penalidad (término de regularización)	0.00001
learning_rate_init	Tasa de aprendizaje inicial. Controla el tamaño de los pasos para actualizar los pesos.	0.000065
max_iter	Número máximo de iteraciones	10000
random_state	Define la semilla usada por el generador de números random.	1
shuffle	Define si se deben mezclar muestras en cada iteración	True
beta_1	Tasa de decaimiento exponencial para las estimaciones del vector de primer momento de Adam.	0.9
beta_2	Tasa de decaimiento exponencial para las estimaciones del vector de segundo momento en Adam.	0.999
epsilon	Valor de estabilidad numérica en Adam.	1e-8

Tabla 6. Configuración del perceptrón multicapa	, MLPClassifier de sklearn,	, para el reconocimiento de patrones.
---	-----------------------------	---------------------------------------

3.2.9 Evaluación del desempeño de los clasificadores

Con las regiones de interés para validación se calculó el desempeño de los clasificadores y se evaluó la calidad de la clasificación para cada uno de los experimentos. Para este procedimiento se necesitaron dos elementos: el mapa temático y las regiones de interés para validación, los cuales permitieron la construcción de la matriz de confusión, que es de donde se obtiene el porcentaje de precisión de la clasificación.

3.2.10 Comparación del desempeño de los clasificadores.

Después de la evaluación del desempeño de los clasificadores, posteriormente se concentraron los mejores resultados en la **Tabla 72**. De esta manera, se determinaron cuáles fueron los mejores clasificadores, por experimento y por área de pruebas.

En este capítulo se describen y examinan todos aquellos productos derivados de la metodología aplicada. Primeramente, se presentan las imágenes resultantes del preprocesamiento, posteriormente se definieron las clases de cubierta de terreno y sus campos de entrenamiento y validación. Entonces, ya habiendo establecido esos dos elementos fundamentales, se procede a la elaboración del diseño experimental mediante la definición de criterios de selección de características. Para consecuentemente, realizar el análisis estadístico de los experimentos, el cálculo de métricas de separabilidad, la clasificación supervisada, y finalmente, la evaluación y comparación del desempeño de los clasificadores.

4.1 Resultados del preprocesamiento

Después de realizar el preprocesamiento de los datos, las imágenes resultantes se redujeron espacial y espectralmente. De cada imagen se extrajo su área de pruebas de la forma más precisa posible. A continuación, se muestran las imágenes por área, así como sus características más importantes.

Área de pruebas A: Tecate, Baja California

Durante el preprocesamiento se realizaron una serie de procedimientos para adecuar las imágenes a los propósitos del proceso de reconocimiento de patrones. En la **Figura 22** se muestran las imágenes de satélite correspondientes al área de Tecate, Baja California.

Figura 22. Imágenes correspondientes al área de Tecate: a) Hyperion, b) ALI y c) TM. La asignación por banda para cada imagen se denota entre paréntesis.

La **Tabla 7** contiene las bandas finales de las imágenes preprocesadas y además especifica las bandas que se descartaron en cada imagen.

Imágenes	Hyperion	ALI	ТМ	
Dimensiones	189 de ancho por 718 de largo			
Bandas descartadas	S/información: 1-7, 58-76, 225-242 BBL de ENVI: 77, 78, 80-82, 120-132, 165-182, 185- 187, 221-224 Ruido: 8-12, 79, 98, 214, 218-220	Ninguna	Banda térmica: 6	
Bandas restantes	144	9	6	

Tabla 7. Características de las imágenes del área de Tecate, Baja California

Área de pruebas B: Centro-sur de la isla Ángel de la Guarda

Se realizó el preprocesado en las imágenes del centro-sur de la Isla Ángel de la Guarda. Las imágenes resultantes se muestran en la **Figura 23**.

a) HP (RGB/31,22,14)

Figura 23. Imágenes correspondientes al área del centro-sur de la isla Ángel de la Guarda: a) Hyperion, b) ALI y c) TM. La asignación por banda para cada imagen se denota entre paréntesis.

Las dimensiones y los detalles sobre las bandas espectrales de las imágenes, de esta área, se muestran en la **Tabla 8**.

Imágenes	Hyperion	ALI	TM	
Dimensiones	191 de ancho por 489 de largo			
Bandas descartadas	 S/información: 1-7, 58-76, 225-242 BBL de ENVI: 77, 78, 80-82, 120-132, 165-182, 185-187, 221-224 Ruido: 8-11, 97, 98, 100, 119, 133, 134, 184, 214, 215, 216, 218, 219, 220 Pixeles anómalos: 56, 57, 79, 94, 99, 116-118, 135, 	Ninguna	Banda térmica: 6	
	145, 146, 153, 154, 183, 188-192, 198, 200, 202, 203			
# de Bandas restantes	115	9	6	

Tabla 8. Características de las imágenes del centro-sur de la isla Ángel de la Guarda
Área de pruebas C: Centro de la Isla Ángel de la Guarda

La imagen final se muestra en la Figura 24 y sus características están en la Tabla 9.

Dimensiones	256 de ancho por 1035 de largo				
	S/información: 1-7, 58-76, 225-242				
	BBL de ENVI: 77, 78, 80-82, 120-132, 165-182, 185-187, 221-224				
Bandas descartadas	Ruido: : 8 – 11, 97, 98, 100, 119, 133, 134, 184, 214, 215, 216, 218, 219, 220				
	Pixeles anómalos: 56, 57, 79, 94, 99, 116 – 118, 135, 145, 146, 153, 154, 158, 159, 183, 188 – 192, 198, 200, 202, 203				
# de Bandas restantes	113				

Tabla 9. Características de la imagen del Centro de la Isla Ángel de la Guarda

Figura 24. Imagen hiperespectral correspondiente al área del centro de la isla Ángel de la Guarda. Asignación por banda: RGB/29,20,12

4.2 Regiones de interés para entrenamiento y validación

Para cada área de pruebas se seleccionaron campos de entrenamiento y validación. En este apartado se presentan todas las figuras que muestran de forma temática las regiones de interés seleccionadas por área y por sensor, así como el número de pixeles seleccionados.

En las áreas B y C se utilizaron litologías, cuyos nombres son muy extensos. Por ello, se emplearon abreviaturas formadas por el tiempo de origen, la composición y el orden estratigráfico de la litología. En la **Tabla 10** se describen todas las abreviaturas utilizadas en los campos de entrenamiento de este trabajo de tesis.

Abreviatura	Significado
Qd1	Cuaternario dacítico 1
Qd2	Cuaternario dacítico 2
Qd3	Cuaternario dacítico 3
Qs1	Cuaternario sedimentario 1
Qs2	Cuaternario sedimentario 2
Qs3	Cuaternario sedimentario 3
Tmr	Terciario mioceno riolítico
Tmr2	Terciario mioceno riolítico 2
Tmd	Terciario mioceno dacítico
Tmd2	Terciario mioceno dacítico 2
Tmd3	Terciario mioceno dacítico 3
Tmsv2	Terciario mioceno sedimentario volcánico 2
Tma3	Terciario mioceno andesita 3
Tdind	Terciario dacítico indeterminado.
Pta	Pluma turbidez de agua

Tabla 10. Abreviaturas de los tipos de cubierta del terreno.

<u>Área A</u>

Las regiones de interés para entrenamiento y validación, pertenecientes a esta área, se muestran en las **Figuras 25** y **26** respectivamente.

Figura 25. Campos de entrenamiento de las Imágenes del área de Tecate. NP = Número de Pixeles

Figura 26. Campos de validación de las imágenes del área de Tecate. NP = Número de Pixeles

<u>Área B</u>

En las figuras **27** y **28** se presentan las regiones de interés para entrenamiento y validación respectivamente. Además, se especifica el número de pixeles que fueron seleccionados para cada clase.

Figura 27. Campos de entrenamiento de las imágenes del área del centro-sur de la isla Ángel de la Guarda. NP = Número de Pixeles

Figura 28. Campos de validación de las imágenes del área del centro-sur de la isla Ángel de la Guarda. NP = Número de Pixeles

<u>Área C</u>

En la **Figura 29** se presentan las regiones de interés para entrenamiento y validación, pertenecientes a esta área de pruebas. Los tipos de cubierta del terreno seleccionadas son litológicos, a excepción de las clases de cobertura acuáticas: agua y pluma turbidez de agua.

Figura 29. Campos de entrenamiento y validación en el área del centro de la isla Ángel de la Guarda. NP = Número de Pixeles

4.3 Selección de características: Diseño experimental

Se plantearon criterios de selección de características según la resolución espectral de las imágenes. Todos los experimentos consisten en el uso iterativo de características para alimentar a los algoritmos de clasificación. Por lo tanto, secuencialmente, se añade una característica por iteración, iniciando los experimentos con dos atributos para finalizar con el total de características estipuladas en su criterio de selección.

Cada criterio de selección aplicado a una imagen de satélite, arrojara un total de n - 2 experimentos, donde n es definido, ya sea por la imagen que provee los datos o por la descripción del criterio. A continuación se explica, agrupado por su denominación espectral, cada uno de estos criterios.

4.3.1 Imágenes multiespectrales

Para las imágenes de baja resolución espectral se definieron tres criterios de selección de características para la experimentación. Note que cada criterio de selección produce dos conjuntos de experimentos, ya que se poseen dos imágenes multiespectrales pertenecientes a los sensores ALI y TM. En los criterios, *n* se define como el número total de bandas espectrales que posee la imagen de satélite proveedora de características.

Los criterios de selección de características para las imágenes multiespectrales son los siguientes:

- Criterio I. De 2 hasta n bandas. Consiste en el uso de las bandas espectrales para caracterizar a los patrones de entrenamiento y validación.
- Criterio II. De 2 hasta n componentes principales. El conjunto de características en este criterio son los componentes principales obtenidos del ACP de todas las bandas espectrales disponibles. Para la imagen TM son 6 y para la ALI son 9.
- Criterio III. De 2 hasta n componentes principales de las regiones de interés de entrenamiento. Las características empleadas son los componentes principales calculados a partir de los datos extraídos pertenecientes a los campos de entrenamiento.

4.3.2 Imágenes hiperespectrales

Para las imágenes hiperespectrales se elaboraron criterios de selección más complejos, debido al alto número de bandas espectrales que poseen las imágenes de este tipo. Por lo tanto, para los siguientes criterios n representa el número de características, ya sean bandas o componentes principales, que se seleccionaron del conjunto total de atributos que tiene la imagen de satélite que se está evaluando.

Los criterios de selección de características para las imágenes hiperespectrales son los siguientes:

Criterio IV. De 2 hasta n bandas con las mayores cargas de las n primeras componentes principales.
 Este criterio selecciona las bandas correspondientes a las n mayores cargas de las n primeras componentes principales como conjuntos de características. Así que los índices de las bandas son

seleccionados de las mayores sumas de los productos de las cargas con su valor propio correspondiente.

Para obtener el valor de la banda *i*, se emplea la siguiente ecuación:

$$\varrho_i = \sum_{j=1}^{M} (G_{ij} \cdot \lambda_j)$$
(63)

donde *M* es el número total de valores propios, G_{ij} es el elemento de la matriz de vectores propios en la i-esima fila y en la j-esima columna, y λ_j es el valor propio de la j-esima componente principal.

Ya obtenido este valor para todas las bandas, se ordenan y se seleccionan las primeras n bandas como conjunto de características.

- Criterio V. De 2 hasta 6 bandas mapeadas de TM a Hyperion. Corresponde al conjunto de bandas de la imagen Hyperion que más se asemeja, por su longitud de onda, a las bandas del sensor TM.
- Criterio VI. De 2 hasta 9 bandas mapeadas de ALI a Hyperion. Consiste en encontrar el conjunto de bandas de la imagen Hyperion que más se asemeja, por su longitud de onda, a las bandas del sensor ALI.
- Criterio VII. De 2 hasta n componentes principales. Se realiza el ACP de la imagen completa y se seleccionan los primeros n componentes como conjunto de características.
- Criterio VIII. De 2 hasta n componentes principales de las ROI de entrenamiento. Se realiza el ACP empleando los datos extraídos de las ROI de entrenamiento, y se utilizan las n primeras componentes principales como conjunto de características.
- Criterio IX. De 2 hasta n bandas separadas espectralmente. Consiste en buscar un conjunto de características que separé en n bandas el rango espectral de la imagen Hyperion. La separación espectral no es perfecta, ya que se depuraron las imágenes, eliminándose así algunas bandas espectrales.

4.3.3 Número Máximo de Características (NMC)

Para calcular el NMC se debe considerar cada caso de pruebas por separado. Cada sensor posee sus características, y cada imagen tiene asociado su conjunto de campos de entrenamiento. En la **Tabla 11** se evalúa cada conjunto de datos y se calcula el NMC utilizando la siguiente función:

$$NMC = \left\lfloor \frac{min}{10} \right\rfloor \tag{63}$$

Donde *min* es el número de píxeles de la región de interés más pequeña con relación a un área de pruebas.

Área	Sensor	NPCMP	NMC
	TM	139	13
A	ALI	131	13
	HP	160	16
	TM	178	17
В	ALI	167	16
	HP	168	16
С	HP	159	16*

 Tabla 11. Número Máximo de Características por área y por imagen. NPCMP = Número de Pixeles de la Clase Más

 Pequeña. (*) Para HP en el área C se realizó un ajuste a 16 características.

Para la imagen HP del área C se decidió seleccionar hasta 16 características debido a que se deseaba realizar todos los experimentos de las imágenes hiperespectrales con el mismo número de características. Además, el número de pixeles de su clase más pequeña es muy cercano a 160 por ello no afecta en la búsqueda de un mejor resultado.

4.3.4 Especificación de Experimentos

Debido a los 2 sensores multiespectrales se originaron 12 experimentos a partir de los 9 criterios de selección. En la **Tabla 12** se muestra la relación entre estos criterios y los experimentos, además señala a qué áreas de prueba serán aplicados los experimentos.

Tabla 12. Definición de experimentos. La columna "Criterio" relaciona el experimento con el criterio de selección, "Características (n)" describe brevemente la fuente del conjunto de características empleado en el experimento, y la columna "Sensor" indica a qué instrumento formador de imágenes está dirigido el experimento.

No. Experimento	Criterio	Características (n)	Sensor	Áreas de aplicación	
I	I	Bandas (6)			
II	II	ACP (6)	TM		
		ACP de las ROI (6)		A D	
IV	I	Bandas (9)		А, Б	
V	П	ACP (9) ALI			
VI	III	ACP de las ROI (9)			
VII	IV	Cargas (16)			
VIII	V	TM (6)			
IX	VI	ALI (9)	סט		
Х	VII	ACP (16)		А, D, C	
XI	VIII	ACP de las ROI (16)			
XII	IX	Bandas (16)			

4.4 Estadística de los experimentos

Para cada experimento se realizó una exploración estadística con el propósito de conocer el comportamiento de los tipos de cubierta del terreno en cada una de las condiciones definidas por los criterios de selección. Se utilizaron parámetros estadísticos como las matrices de covarianza y de correlación, la media y la desviación estándar.

Como se puede apreciar en la **Tabla 12**, los experimentos del 1 al 6 solo pueden ser realizados para las áreas de prueba de Tecate (A) y la del centro-sur de la isla Ángel de la Guarda (B). Mientras que los experimentos del 7 al 12 se realizaron para todas las áreas de prueba.

4.4.1 Experimento I

Este experimento consiste en tomar de 2 hasta 6 bandas de TM como conjunto de características para la clasificación. La resolución radiométrica de TM es de 8 bits, por lo tanto, el valor de los pixeles puede variar de 0 hasta 255.

A continuación, se presenta la información estadística resultante para cada una de las áreas analizadas con este sensor.

<u>Área A</u>

En la **Figura 30** se muestran las firmas espectrales y desviaciones estándar de las clases espectrales definidas para esta área de pruebas. Un aspecto destacable, encontrado en estas gráficas, es la singularidad en la banda TM 1, ubicada en la longitud de onda de 485 nm. Su alto valor radiométrico, su baja desviación estándar y el conocimiento que se tiene del área de pruebas hacen suponer que se trata del efecto de dispersión atmósfera sobre la luz emitida por el sol.

b) Desviaciones estándar

Figura 30. Firmas espectrales (a) y desviaciones estándar (b) de la información espectral contenida en los campos de entrenamiento de la imagen TM perteneciente al área de Tecate.

A continuación, en la **Tabla 13** se presenta la matriz de covarianza de la imagen TM de esta área de pruebas. Posteriormente en la **Tabla 14** se muestra la matriz de correlación calculada a partir de los elementos de la matriz de covarianza.

	TM 1	TM 2	TM 3	TM 4	TM 5	TM 7
TM 1	76.1892	48.9973	75.1895	70.0499	155.4093	95.3069
TM 2	48.9973	34.2887	54.0445	52.0403	119.1015	72.8411
TM 3	75.1895	54.0445	89.9407	86.7611	211.0126	128.7704
TM 4	70.0499	52.0403	86.7611	95.6097	218.4711	128.11
TM 5	155.4093	119.1015	211.0126	218.4711	636.4404*	378.5955
TM 7	95.3069	72.8411	128.7704	128.11	378.5955	234.3949

Tabla 13. Matriz de covarianza de la imagen TM del área de Tecate. Las columnas y filas fueron tituladas de acuerdoa los nombres de las bandas espectrales de TM. (*) Representa la varianza máxima.

	TM 1	TM 2	TM 3	TM 4	TM 5	TM 7
TM 1	1	0.9586	0.9083	0.8207	0.7058*	0.7132
TM 2	0.9586	1	0.9732	0.9089	0.8062	0.8125
TM 3	0.9083	0.9732	1	0.9356	0.882	0.8869
TM 4	0.8207	0.9089	0.9356	1	0.8857	0.8558
TM 5	0.7058	0.8062	0.882	0.8857	1	0.9802
TM 7	0.7132	0.8125	0.8869	0.8558	0.9802	1

Tabla 14. Matriz de correlación de la imagen TM del área de Tecate. El rango de valores es de -1 a 1. (*) Representa la correlación mínima.

Con la finalidad de poder visualizar el comportamiento de las matrices de covarianza y de correlación se generaron dos imágenes a partir de estas. Para valuar los pixeles de las imágenes se realizó el estiramiento lineal del contraste utilizando los elementos de las matrices (**Sección 2.3.5**). En la **Figura 31** se muestran estas imágenes.

a) Imagen de la matriz de covarianza.
 b) Imagen de la matriz de correlación.
 Figura 31. Imágenes de las matrices de covarianza (a) y de correlación (b) de la imagen TM del área de Tecate

<u>Área B</u>

En la **Figura 32** se muestran las gráficas de las firmas espectrales y desviaciones estándar de las clases espectrales definidas para esta área. De igual manera que el área A, podemos encontrar el efecto que tiene la atmósfera sobre la radiancia percibida por el sensor.

b) Desviaciones estándar

Figura 32. Firmas espectrales (a) y desviaciones estándar (b) de la información espectral contenida en los campos de entrenamiento de la imagen TM pertenecientes al área del centro-sur de la isla Ángel de la Guarda.

Las matrices de covarianza y de correlación se presentan en las **tablas 15** y **16** respectivamente. Mientras que las imágenes generadas de estas matrices se muestran en la **Figura 33**.

 Tabla 15. Matriz de covarianza de la imagen TM del área del centro-sur de la Isla Ángel de la Guarda. (*) Representa la varianza máxima.

	TM 1	TM 2	TM 3	TM 4	TM 5	TM 7
TM 1	476.8565	348.1897	569.6857	557.8843	999.6513	557.3134
TM 2	348.1897	262.2412	433.7678	427.112	773.7575	431.4259
TM 3	569.6857	433.7678	728.4716	720.9627	1317.0132	741.6604
TM 4	557.8843	427.112	720.9627	719.2737	1322.0659	747.4892
TM 5	999.6513	773.7575	1317.0132	1322.0659	2602.8864*	1499.6212
TM 7	557.3134	431.4259	741.6604	747.4892	1499.6212	901.8824

Tabla 16	. Matriz	de c	orrelación	de la	imagen	TM d	lel área	a del	centro-su	ır de la	ı Isla	Ángel	de la	Guarda.	El ra	ango d	Je
valores e	s de -1 a	1. ('	*) Represe	nta la	correlac	ión m	iínima.										

	TM 1	TM 2	TM 3	TM 4	TM 5	TM 7
TM 1	1	0.9846	0.9666	0.9526	0.8973	0.8498*
TM 2	0.9846	1	0.9924	0.9834	0.9365	0.8871
TM 3	0.9666	0.9924	1	0.996	0.9564	0.915
TM 4	0.9526	0.9834	0.996	1	0.9662	0.9281
TM 5	0.8973	0.9365	0.9564	0.9662	1	0.9788
TM 7	0.8498	0.8871	0.915	0.9281	0.9788	1

La imagen de la **Figura 33b** muestra la alta correlación entre las bandas espectrales de esta imagen multiespectral.

- a) Imagen de la matriz de covarianza.
- b) Imagen de la matriz de correlación.

Figura 33. Imágenes de las matrices de covarianza (a) y de correlación (b) de la imagen TM del área del centro-sur de la isla Ángel de la Guarda.

4.4.2 Experimento II

Mientras que en el experimento I emplea los datos TM, tal y como se adquirieron, de la plataforma del USGS. En este experimento se utiliza esa información espectral, perteneciente a toda la imagen, como base para el procedimiento de extracción de características (ACP). Por lo tanto, en este experimento el conjunto de características son los componentes principales.

Tal y como fue definido en el proceso de ACP (véase la **Sección 2.4**), primeramente, se calculó el vector promedio para determinar la matriz de covarianza. Esa información se omitió en esta sección debido a que

ya se mostró en el experimento anterior. Para cada área se muestran los valores y vectores propios, y posteriormente los vectores promedio y desviaciones estándar asociados a cada clase espectral.

<u>Área A</u>

El ACP dio como resultado los valores propios presentados en la **Tabla 17**. Observe que el primer Componente Principal (CP1) explica el 92.90 % de los datos en la imagen TM.

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
Valor	1084.00132	61.71371	12.69416	5.5992	2.33442	0.52077
% del total	92.8987	5.2889	1.0879	0.4799	0.2001	0.0446
% acumulado	92.8987	98.1876	99.2755	99.7553	99.9554	100.00

 Tabla 17. Valores propios de la matriz de covarianza de los datos TM del área de Tecate.

La **Tabla 18** muestra los vectores propios de la matriz de covarianza de la imagen TM, y presenta los nuevos ejes en el nuevo sistema de coordenadas sin correlación.

Banda	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
TM 1	0.206970	-0.655532	0.370066	-0.457030	0.357632	-0.231765
TM 2	0.154971	-0.353092	0.070751	0.062320	-0.142916	0.906639
TM 3	0.268456	-0.399459	0.048382	0.335350	-0.731764	-0.343634
TM 4	0.273583	-0.313849	-0.774978	0.278028	0.379694	-0.067774
TM 5	0.759834	0.381896	-0.144415	-0.474046	-0.173141	0.035414
TM 7	0.457037	0.204181	0.484002	0.610541	0.376896	-0.018928

 Tabla 18. Vectores propios de la matriz de covarianza de los datos TM del área de Tecate.

Al transformar el conjunto de datos original, ya no se puede denominar a los pixeles promedio como firmas espectrales. Por lo tanto, en los experimentos que involucra el ACP se utilizará el término de vectores promedio para cada clase espectral. Tal como se muestra en la **Figura 34a**.

b) Desviaciones estándar

En la **Figura 34a** se puede apreciar el efecto que produce el ACP en los píxeles. Los vectores promedio, pertenecientes a los campos de entrenamiento, se distinguen en la CP1 y se van uniendo conforme se avanza en el eje de los componentes principales. Por otro lado, la **Figura 34b** grafica las desviaciones estándar de los campos de entrenamiento de esta área.

<u>Área B</u>

El primer valor propio indica que el CP1 representa el 96.34 % de la imagen TM (**Tabla 19**), un porcentaje muy alto con relación a lo observado en el área anterior. El funcionamiento del ACP está determinado por la correlación de los datos. Al observar lo blanco y el poco contraste de las imágenes **b**) de las **figuras 31** y **33** se puede suponer que, a más alta correlación, mayor es el porcentaje de la varianza en la CP1. **Tabla 19.** Valores propios de la matriz de covarianza de los datos TM del área del centro-sur de la isla Ángel de la Guarda.

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
Valor	5483.51282	164.77693	23.75782	16.55941	2.19289	0.81201
% del total	96.3438	2.8951	0.4174	0.2909	0.0385	0.0143
% acumulado	96.3438	99.2388	99.6563	99.9472	99.9857	100.00

En la **Tabla 20** se presentan los vectores propios calculados a partir de la matriz de covarianza de la información espectral contenida en la imagen TM perteneciente al área del centro-sur de la isla Ángel de la Guarda.

Tabla 20. Vectores propios de la matriz de covarianza de los datos TM del área del centro-sur de la isla Ángel de la Guarda.

Banda	λ1	λ_2	λ_3	λ_4	λ_5	λ_6
TM 1	0.275727	-0.545296	0.552281	0.461837	-0.279305	0.174091
TM 2	0.211317	-0.314294	0.035022	0.052133	0.489757	-0.782788
TM 3	0.357535	-0.380429	-0.152336	-0.370356	0.520981	0.543738
TM 4	0.357135	-0.279613	-0.287145	-0.497106	-0.639114	-0.237144
TM 5	0.684783	0.382483	-0.385164	0.484266	-0.004448	0.043528
TM 7	0.393719	0.484426	0.663136	-0.406445	0.047102	-0.056145

Los vectores promedio se pueden observar en la **Figura 35a**. La cual muestra el comportamiento de los tipos de cubierta del terreno a lo largo de los componentes principales. Debido a la distribución de la varianza en el ACP (**Figura 35b**), los vectores promedio se separan en las primeras componentes, mientras que en las últimas convergen en un solo punto.

b) Desviaciones estándar

Figura 35. Vectores promedio de los campos de entrenamiento pertenecientes al área del centro-sur de la isla Ángel de la Guarda

4.4.3 Experimento III

Para este experimento se usó de igual manera el ACP. Sin embargo, el conjunto de datos a transformar fue diferente, ahora se empleó solamente la información espectral contenida en los patrones de entrenamiento (regiones de interés).

A continuación, para las áreas de prueba A y B se presentan las matrices de covarianza y correlación de los datos de entrenamiento, para posteriormente mostrar los valores y vectores propios que se producen en el procedimiento de ACP.

<u>Área A</u>

TM 4

TM 5

TM 7

114.2173

231.9096

154.8034

89.8536

189.2459

123.0727

A diferencia de la matriz de covarianza (**Tabla 13**) de toda la imagen, la matriz (**Tabla 21**) obtenida en este experimento proyecta valores más grandes. Sin embargo, el crecimiento es casi proporcional en la mayoría de sus elementos. Lo que permite suponer, que es debido a que se seleccionaron todos los tipos de cubiertas del terreno más comunes en el área A. Esto se puede apreciar con mayor facilidad al mirar las **Figuras 31a** y **36a**.

TM 1 TM 2 TM 3 TM 4 TM 5 TM 7 TM 1 147.4488 99.2531 144.4165 114.2173 231.9096 154.8034 99.2531 70.4107 106.3027 TM 2 89.8536 189.2459 123.0727 TM 3 144.4165 106.3027 172.8284 139.4995 342.6953 221.6184

139.4995

342.6953

221.6184

232.0775

344.5711

185.9742

344.5711

969.2076*

583.3703

185.9742

583.3703

366.2553

Tabla 21. Matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del área de Tecate.(*) Representa la varianza máxima.

La matriz de correlación se puede apreciar en la **Tabla 22**. Las bandas TM1 y TM5 presentan la menor correlación, hallazgo similar a lo encontrado en el experimento I (**Tabla 14**). Sin embargo, la correlación en este experimento es inferior en cada uno de sus elementos. Las tonalidades oscuras en la **Figura 36b** permite percibir la baja correlación encontrada en este experimento.

Tabla 22. Matriz de correlación de los datos TM pertenecientes a los patrones de entrenamiento del área de Tecate. Los valores van de -1 a 1. (*) Representa la correlación mínima.

	TM 1	TM 2	TM 3	TM 4	TM 5	TM 7
TM 1	1	0.9741	0.9047	0.6174	0.6135*	0.6661
TM 2	0.9741	1	0.9636	0.7029	0.7244	0.7664
TM 3	0.9047	0.9636	1	0.6965	0.8373	0.8809
TM 4	0.6174	0.7029	0.6965	1	0.7265	0.6379
TM 5	0.6135	0.7244	0.8373	0.7265	1	0.9791
TM 7	0.6661	0.7664	0.8809	0.6379	0.9791	1

a) Imagen de la matriz de covarianza.

Figura 36. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos TM pertenecientes a los patrones de entrenamiento del área de Tecate

Según la **Tabla 23**, la CP1 representa el 86.89% de la información espectral contenida en los patrones de entrenamiento. Este porcentaje es relativamente bajo, sin embargo, la varianza es alta para la segunda y tercer componente principales con relación a los resultados obtenidos en los experimentos anteriores. Posiblemente debido al efecto producido de la baja correlación, que existe entre las primeras 3 bandas espectrales con las últimas 3.

Tabla 23. Valores propios de la matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del área de Tecate.

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
Valor	1701.43087	149.66633	97.9415	6.32935	2.29187	0.56833
% del total	86.8862	7.6429	5.0015	0.3232	0.117	0.029
% acumulado	86.8862	94.5292	99.5307	99.8539	99.971	100.0

En la **Tabla 24** se muestran los vectores propios calculados a partir de la matriz de covarianza de la información espectral contenida en los patrones de entrenamiento extraídos de esta área de pruebas.

Banda	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
TM 1	0.214996	-0.612811	0.323496	-0.596152	-0.136050	0.315727
TM 2	0.168331	-0.357457	0.162897	0.021895	0.077839	-0.900453
TM 3	0.290661	-0.346715	0.281486	0.675527	0.415418	0.295232
TM 4	0.286427	-0.396774	-0.837726	0.126521	-0.201742	0.045141
TM 5	0.743776	0.418256	-0.089934	-0.311833	0.407784	-0.015597
TM 7	0.453558	0.210021	0.282324	0.273019	-0.771927	-0.007601

Tabla 24. Vectores propios de la matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del área de Tecate.

En la **Figura 37** se muestran los vectores promedio y desviaciones estándar de cada uno de los tipos de cubierta de terreno definidos para esta área. Cabe destacar el comportamiento típico de los vectores promedio producido por la distribución de la varianza en el ACP.

b) Desviaciones estándar

Figura 37. Vectores promedio (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área de Tecate

<u>Área B</u>

La matriz de covarianza se muestra en la **Tabla 25** y su imagen en la **Figura 38a**. Al igual que en el área A, se encontró una gran similitud entre las imágenes de covarianza del área B. Lo cual refuerza el supuesto de que las clases seleccionadas representan los tipos de cubierta del terreno más comunes en esta área.

	TM 1	TM 2	TM 3	TM 4	TM 5	TM 7
TM 1	615.1087	444.3271	704.029	670.2113	974.013	374.4869
TM 2	444.3271	328.4753	527.4806	505.8882	774.7306	318.9872
TM 3	704.029	527.4806	863.3597	835.3539	1374.5146	613.5616
TM 4	670.2113	505.8882	835.3539	817.3046	1397.1496	649.5728
TM 5	974.013	774.7306	1374.5146	1397.1496	3321.4837*	1871.9369
TM 7	374.4869	318.9872	613.5616	649.5728	1871.9369	1229.8756

Tabla 25. Matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del área del centrosur de la isla Ángel de la Guarda. (*) Representa la varianza máxima.

En la **Tabla 26** se puede observar la matriz de correlación que resulta de la matriz de covarianza. Las bandas TM1 y TM7 son las menos correlacionadas debido a la distancia que existe entre sus longitudes de onda.

 Tabla 26. Matriz de correlación de los datos TM pertenecientes a los patrones de entrenamiento del área del centrosur de la isla Ángel de la Guarda. Los valores van de -1 a 1. (*) Representa la correlación mínima.

	TM 1	TM 2	TM 3	TM 4	TM 5	TM 7
TM 1	1	0.9885	0.9661	0.9452	0.6814	0.4306*
TM 2	0.9885	1	0.9905	0.9764	0.7417	0.5019
TM 3	0.9661	0.9905	1	0.9944	0.8117	0.5954
TM 4	0.9452	0.9764	0.9944	1	0.848	0.6479
TM 5	0.6814	0.7417	0.8117	0.848	1	0.9262
TM 7	0.4306	0.5019	0.5954	0.6479	0.9262	1

La **Figura 38b** muestra la imagen de correlación de los patrones de entrenamiento. Cabe destacar que la distancia entre las longitudes de onda de las bandas se puede observar en la imagen con la formación de bloques, uno integrado de las primeras 4 bandas (TM 1 a TM 4) y otro de las últimas 2 bandas (TM 5 y TM 6).

Figura 38. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos TM pertenecientes a los patrones de entrenamiento del área del centro-sur de la isla Ángel de la Guarda

Los valores propios se observan en la **Tabla 27**. La CP1 presenta el 86.13% de la varianza de los patrones de entrenamiento, de tal manera que la baja correlación de las bandas, causó nuevamente que el ACP no tuviese la mejor distribución de la variabilidad de los datos.

Tabla 27. Valores propios de la matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del área del centro-sur de la isla Ángel de la Guarda.

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
Valor	6180.59797	927.41603	48.46876	15.9554	2.45735	0.7122
% del total	86.1334	12.9246	0.6755	0.2224	0.0342	0.0099
% acumulado	86.1334	99.058	99.7335	99.9558	99.9901	100.0

Los vectores propios se describen en la **Tabla 28**. La transpuesta de esta matriz se utiliza para mapear los datos originales al nuevo espacio de características sin correlación.

Tabla 28. Vectores propios de la matriz de covarianza de los datos TM pertenecientes a los patrones de entrenamiento del área del centro-sur de la isla Ángel de la Guarda.

Banda	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
TM 1	0.251193	-0.481064	0.143501	-0.764659	-0.242846	0.203001
TM 2	0.195262	-0.314317	0.086787	-0.054321	0.324236	-0.864561
TM 3	0.336918	-0.412796	0.144272	0.320411	0.621875	0.453740
TM 4	0.337262	-0.340451	0.139891	0.544986	-0.669822	-0.071458
TM 5	0.720661	0.317317	-0.610893	-0.081652	0.008169	-0.005730
TM 7	0.390081	0.531775	0.747195	-0.077493	0.020989	-0.017484

Los vectores promedio y desviaciones estándar de los tipos de cubierta del terreno se aprecian en la Figura

Figura 39. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área del centro-sur de la isla Ángel de la Guarda.

4.4.4 Experimento IV

La información espectral de las imágenes ALI es la fuente de datos para este experimento. Por lo tanto, se tienen 3 bandas espectrales más que en las imágenes TM, las cuales, pueden aportar información útil para la discriminación de cubiertas de terreno en las áreas de prueba.

En seguida se presentan parámetros estadísticos de las áreas de prueba A y B, y a diferencia del experimento I, la matriz de covarianza se omitirá por cuestiones de tamaño. Por lo tanto, solamente se mostrará su imagen en escala de grises.

<u>Área A</u>

La **Figura 40** muestra las firmas espectrales y desviaciones estándar de los tipos de cubiertas del terreno de esta área.

a) Firmas espectrales

b) Desviaciones estándar

Figura 40. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área de Tecate

La matriz de correlación es mostrada en la **Tabla 29**. Las bandas MS – 1' y MS – 5 presentan la correlación más baja.

	MS – 1'	MS – 1	MS – 2	MS – 3	MS – 4	MS – 4'	MS – 5'	MS – 5	MS – 7
MS – 1'	1.0	0.9901	0.9436	0.8908	0.8067	0.7823	0.6963	0.6706*	0.671
MS – 1	0.9901	1.0	0.9704	0.9284	0.8511	0.8281	0.7479	0.723	0.7235
MS – 2	0.9436	0.9704	1.0	0.9758	0.9178	0.8982	0.8318	0.8091	0.8106
MS – 3	0.8908	0.9284	0.9758	1.0	0.9382	0.9246	0.8882	0.8837	0.8876
MS – 4	0.8067	0.8511	0.9178	0.9382	1.0	0.9965	0.9433	0.8756	0.8455
MS – 4'	0.7823	0.8281	0.8982	0.9246	0.9965	1.0	0.9618	0.8942	0.8582
MS – 5'	0.6963	0.7479	0.8318	0.8882	0.9433	0.9618	1.0	0.9686	0.9287
MS – 5	0.6706*	0.723	0.8091	0.8837	0.8756	0.8942	0.9686	1.0	0.9842
MS – 7	0.671	0.7235	0.8106	0.8876	0.8455	0.8582	0.9287	0.9842	1.0

Tabla 29. Matriz de correlación de la imagen ALI del área de Tecate. Los valores van de -1 a 1. Los títulos de las columnas y las filas son los nombres de las bandas espectrales. (*) Representa la correlación mínima.

En la Figura 41 se exhiben las imágenes de covarianza (a) y correlación (b).

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 41. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos ALI del área de Tecate

<u>Área B</u>

Las firmas espectrales y las desviaciones estándar de los tipos de cubierta del terreno, pertenecientes a esta área, se grafican en la **Figura 42**.

Figura 42. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área del centro-sur de la Isla Ángel de la Guarda

En la **Tabla 30** se presenta la matriz de correlación de los datos ALI pertenecientes al área del centro-sur de la Isla Ángel de la Guarda. En esta matriz se puede observar que las bandas espectrales menos correlacionadas son MS-1' y MS-7.

	MS – 1'	MS – 1	MS – 2	MS – 3	MS – 4	MS – 4'	MS – 5'	MS – 5	MS – 7
MS-1'	1.0	0.9963	0.9786	0.9686	0.9536	0.9507	0.9213	0.9074	0.8581*
MS- 1	0.9963	1.0	0.9851	0.9778	0.9644	0.9607	0.9305	0.9159	0.8639
MS-2	0.9786	0.9851	1.0	0.9906	0.9845	0.9817	0.9543	0.9426	0.8921
MS-3	0.9686	0.9778	0.9906	1.0	0.9953	0.9935	0.971	0.959	0.9163
MS-4	0.9536	0.9644	0.9845	0.9953	1.0	0.9989	0.98	0.9682	0.9284
MS-4'	0.9507	0.9607	0.9817	0.9935	0.9989	1.0	0.9808	0.9692	0.9322
MS-5'	0.9213	0.9305	0.9543	0.971	0.98	0.9808	1.0	0.9958	0.9714
MS-5	0.9074	0.9159	0.9426	0.959	0.9682	0.9692	0.9958	1.0	0.9793
MS-1'	0.8581	0.8639	0.8921	0.9163	0.9284	0.9322	0.9714	0.9793	1.0

Tabla 30. Matriz de correlación de la imagen ALI del área del centro-sur de la Isla Ángel de la Guarda. Los valores van de -1 a 1. (*) Representa la correlación mínima.

Las imágenes de las matrices de covarianza y correlación se muestran en la **Figura 43**. La alta correlación en las bandas espectrales de la imagen ALI se ven representadas por una imagen (**Figura 43b**) muy blanca.

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 43. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos ALI del área del centro-sur de la Isla Ángel de la Guarda.

4.4.5 Experimento V

Este experimento usa la información espectral de las imágenes ALI para el procedimiento de ACP. Por lo tanto, para cada área disponible en ALI (A y B) se presentan los valores propios con sus porcentajes de varianza, la matriz de vectores propios, y por último, los vectores promedio y desviaciones estándar de cada tipo de cubierta del terreno en el área.

<u>Área A</u>

Los valores propios se describen en la **Tabla 31**. En esta se puede observar la radiometría (12 bits) de la imagen ALI, al encontrar valores más grandes que en la imagen TM (**Tabla 17**).

	Valor	% del total	% acumulado
λ ₁	4297511.26442	92.9723	92.9723
λ_2	250439.11101	5.418	98.3903
λ_3	56493.64442	1.2222	99.6125
λ_4	12285.07093	0.2658	99.8782
λ_5	2609.99268	0.0565	99.9347
λ_6	1670.35333	0.0361	99.9708
λ_7	742.58177	0.0161	99.9869
λ ₈	554.39019	0.012	99.9989
λ9	50.86064	0.0011	100.0

Tabla 31. Valores propios de la matriz de covarianza de los datos ALI pertenecientes al área de Tecate.

Los vectores propios, por su parte, se muestran en la Tabla 32.

Tabla 32. Vectores propios de la matriz de covarianz	anza de los datos ALI pertenecientes al área de Teca	ate.
--	--	------

Banda	λ1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ9
MS-1'	0.0289	-0.0495	0.1477	-0.1535	0.3500	0.0749	0.3347	-0.3483	0.7680
MS- 1	0.0485	-0.0737	0.2183	-0.2073	0.4459	0.0909	0.3600	-0.3962	-0.6387
MS-2	0.1167	-0.1385	0.3979	-0.2568	0.5085	0.1001	-0.5398	0.4252	0.0454
MS-3	0.2417	-0.1542	0.6446	-0.2955	-0.5344	-0.3156	0.1699	0.0297	0.0116
MS-4	0.3921	-0.5171	-0.0163	0.2568	-0.1637	0.2948	-0.4005	-0.4884	0.0053
MS-4'	0.4208	-0.4870	-0.2467	0.1611	0.1306	-0.0118	0.4759	0.5052	-0.0042
MS-5'	0.2698	-0.0337	-0.3873	-0.2732	0.1797	-0.7575	-0.2255	-0.2109	0.0021
MS-5	0.5256	0.4102	-0.2641	-0.5154	-0.1667	0.4369	0.0111	0.0359	-0.0007
MS-7	0.4949	0.5246	0.2756	0.5900	0.1747	-0.1573	0.0133	-0.0215	0.0002

En la **Figura 44** se grafican los vectores promedio y las desviaciones estándar de los campos de entrenamiento definidos para esta área.

b) Desviaciones estándar

Figura 44. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área de Tecate.

<u>Área B</u>

La **Tabla 33** describe los valores propios calculados de la matriz de covarianza de la imagen ALI. La CP1 concentra el 97.44% de la información contenida en la imagen.

Tabla 33.Valores propios de la matriz de covarianza de los datos ALI pertenecientes al área del centro-sur de la isla

 Ángel de la Guarda.

	Valor	% del total	% acumulado
λ ₁	22118028.90219	97.4439	97.4439
λ_2	474234.13388	2.0893	99.5332
λ_3	52444.29046	0.2311	99.7642
λ_4	32011.52653	0.141	99.9053
λ_5	7295.1973	0.0321	99.9374
λ_6	6602.5231	0.0291	99.9665
λ_7	4497.979	0.0198	99.9863
λ ₈	2892.24903	0.0127	99.9991
λ9	213.25627	0.0009	100.0

Los vectores propios de se presentan en la Tabla 34.

Tabla 34. Vectores propios de la matriz de covarianza de los datos ALI pertenecientes al área del centro-sur de la isla Ángel de la Guarda.

Banda	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ9
MS-1'	0.0483	-0.0708	0.0086	-0.2991	0.0685	0.2633	-0.1742	-0.4339	-0.7813
MS- 1	0.0728	-0.1096	0.0245	-0.3895	0.0301	0.3063	-0.1535	-0.5712	0.6211
MS-2	0.1632	-0.2042	0.0662	-0.5321	0.5596	0.1551	0.2969	0.4677	0.0084
MS-3	0.2974	-0.2886	-0.0524	-0.4685	-0.6061	-0.3355	-0.2566	0.2444	-0.0214
MS-4	0.4724	-0.3626	-0.1062	0.2161	-0.0867	-0.1478	0.6675	-0.3325	-0.0434
MS-4'	0.4783	-0.3333	-0.2322	0.4004	0.3217	0.1141	-0.5623	0.1094	0.0352
MS-5'	0.2937	0.1401	0.3119	0.1467	-0.4071	0.7287	0.1074	0.2589	-0.0051
MS-5	0.4533	0.3897	0.6629	-0.0158	0.1922	-0.3661	-0.1204	-0.1320	-0.0003
MS-7	0.3655	0.6662	-0.6247	-0.1656	0.0081	0.0182	0.0659	0.0057	0.0078

Las firmas espectrales y desviaciones estándar de los tipos de cubierta del terreno seleccionadas para esta área se muestran en la **Figura 45**.

b) Desviaciones estándar

Figura 45. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área del centro-sur de la Isla Ángel de la Guarda

4.4.6 Experimento VI

En este experimento se utilizó la información espectral contenida en los campos de entrenamiento para el ACP. El experimento consistió en calcular los valores y vectores propios con los datos ALI pertenecientes a los patrones de entrenamiento para mapear los pixeles a un sistema de coordenadas sin correlación.

Para cada área disponible en ALI se presentan la matriz de correlación, las imágenes de las matrices de covarianza, los valores propios, y por último, los vectores promedio y desviaciones estándar de los campos de entrenamientos.

<u>Área A</u>

En la **Tabla 35** se presenta la matriz de correlación de las bandas ALI, empleando los patrones de entrenamiento del área de Tecate, Baja California.

с (le Tecate. Lo *) Represen	os valores va ita la correla	an de -1 a 1 ación mínin	Los título na.	s de las coli	umnas y las fi	ilas son los r	iombres de	las bandas	espectrales	;. '
		MS – 1'	MS – 1	MS – 2	MS – 3	MS – 4	MS – 4'	MS – 5'	MS – 5	MS – 7	1

Tabla 35. Matriz de correlación de los datos ALI pertenecientes a los campos de entrenamientos extraídos del área

MS – 1'	1	0.9971	0.9524	0.8411	0.5791	0.5523	0.4836	0.4742*	0.5186
MS – 1	0.9971	1	0.9673	0.8691	0.6027	0.5772	0.5192	0.5165	0.56
MS – 2	0.9524	0.9673	1	0.9537	0.7303	0.7076	0.6745	0.6757	0.7068
MS – 3	0.8411	0.8691	0.9537	1	0.7333	0.7167 0.7526		0.8206	0.8589
MS – 4	0.5791	0.6027	0.7303	0.7333	1	0.9973	0.9337	0.7517	0.6662
MS – 4'	0.5523	0.5772	0.7076	0.7167	0.9973	1	0.9494	0.7668	0.6745
MS – 5'	0.4836	0.5192	0.6745	0.7526	0.9337	0.9494	1	0.9142	0.8336
MS – 5	0.4742	0.5165	0.6757	0.8206	0.7517	0.7668	0.9142	1	0.981
MS – 7	0.5186	0.56	0.7068	0.8589	0.6662	0.6745	0.8336	0.981	1

Las imágenes de las matrices de covarianza y correlación se muestran en la **Figura 46**. En la imagen de correlación se observan 3 bloques de bandas con alta correlación, el primero está constituido por las bandas TM-1', TM-1, TM-2 y TM-3. El segundo por TM-4, TM-4' y TM-5; y para el último bloque, las bandas TM-5' y TM-7.

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 46. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos ALI pertenecientes a los campos de entrenamiento del área de Tecate.

La **Tabla 36** muestra los valores propios de la matriz de covarianza producida por este experimento. La imagen de correlación (**Figura 46b**) permitió inferir el resultado de los valores propios, ya que la CP1 obtuvo un resultado, relativamente pobre, con relación a los experimentos anteriores.

	Valor	% del total	% acumulado
λ_1	7970308.5151	84.6107	84.6107
λ_2	1141201.00306	12.1147	96.7253
λ_3	282426.49933	2.9982	99.7235
λ_4	16050.51276	0.1704	99.8939
λ_5	6996.99518	0.0743	99.9682
λ_6	1860.53782	0.0198	99.9879
λ_7	630.61985	0.0067	99.9946
λ ₈	467.7771	0.005	99.9996
λ9	39.08398	0.0004	100.0

Tabla 36. Valores propios de la matriz de covarianza de los datos ALI pertenecientes a los patrones de entrenamiento del área de Tecate.

La matriz de vectores propios se describe en la Tabla 37.

Tabla 37. Vectores propios de la matriz de covarianza de los datos ALI pertenecientes a los patrones de entrenamiento del área de Tecate.

Banda	λ1	λ ₂	λ_3	λ_4	λ_5	λ_6	λ ₇	λ ₈	λ_9
MS-1'	0.0319	-0.0052	-0.2092	0.2436	-0.3058	0.0080	-0.4355	0.0363	0.7818
MS- 1	0.0508	-0.0030	-0.3068	0.3523	-0.3901	-0.0097	-0.4898	0.0375	-0.6210
MS-2	0.1194	0.0050	-0.4888	0.3150	-0.3091	0.1184	0.7304	0.0452	0.0489
MS-3	0.2390	0.1433	-0.6747	-0.1003	0.6503	-0.0467	-0.1616	-0.0752	0.0103
MS-4	0.4539	-0.4881	-0.0442	-0.3901	-0.1031	0.4676	-0.0756	0.4078	-0.0182
MS-4'	0.4794	-0.4968	0.0900	0.0703	-0.0500	-0.4218	0.0369	-0.5731	0.0113
MS-5'	0.2693	-0.0671	0.2385	0.5034	0.2981	-0.3612	0.0442	0.6256	0.0114
MS-5	0.4775	0.4174	0.3177	0.3290	0.1108	0.5429	-0.0336	-0.2835	-0.0020
MS-7	0.4343	0.5618	0.0065	-0.4342	-0.3486	-0.4024	0.0252	0.1523	-0.0022

En la **Figura 47** se grafican los vectores propios y desviaciones estándar de las regiones de interés definidos para esta área de pruebas.

b) Desviaciones estándar

Figura 47. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área de Tecate

<u>Área B</u>

La matriz de correlación se observa en la Tabla 38. Las bandas espectrales MS-1 y MS-7 presentan la menor

correlación.

Tabla 38. Matriz de correlación de los datos ALI pertenecientes a las ROI de entrenamientos extraídos del área del centro-sur de la Isla Ángel de la Guarda. Los valores van de -1 a 1. Los títulos de las columnas y las filas son los nombres de las bandas espectrales. (*) Representa la correlación mínima.

	MS – 1'	MS – 1	MS – 2	MS – 3	MS – 4	MS – 4'	MS – 5'	MS – 5	MS – 7
MS – 1'	1	0.9961	0.9787	0.9605	0.9397	0.9355	0.7664	0.6887	0.4332
MS – 1	0.9961	1	0.9869	0.9692	0.9494	0.9446	0.7637	0.6837	0.42*
MS – 2	0.9787	0.9869	1	0.9897	0.979	0.9758	0.8106	0.7381	0.4867
MS – 3	0.9605	0.9692	0.9897	1	0.9949	0.9928	0.8681	0.8048	0.5736
MS – 4	0.9397	0.9494	0.979	0.9949	1	0.999	0.8942	0.8362	0.6193
MS – 4'	0.9355	0.9446	0.9758	0.9928	0.999	1	0.8965	0.8407	0.6293
MS – 5'	0.7664	0.7637	0.8106	0.8681	0.8942	0.8965	1	0.9902	0.8705
MS – 5	0.6887	0.6837	0.7381	0.8048	0.8362	0.8407	0.9902	1	0.9205
MS – 7	0.4332	0.42	0.4867	0.5736	0.6193	0.6293	0.8705	0.9205	1

Las imágenes de las matrices de correlación y covarianza se pueden observar en la **Figura 48**. En la imagen de correlación se formaron 2 bloques de bandas. El primero integrado por MS-1', MS-1, MS-2, MS-3, MS-4 y MS-4'; y el segundo agrupado por MS-5', MS-5 y MS-7.

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 48. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos ALI del área del centro-sur de la isla Ángel de la Guarda.

En la **Tabla 39** se puede apreciar que la CP1 concentra el 87.51 % y que los primeros 3 componentes principales reúnen el 99.80 % de la varianza de los datos ALI pertenecientes a los patrones de entrenamiento.

Tabla 39. Valores propios de la matriz de covarianza de los datos ALI pertenecientes a los patrones de entrenamientodel área del centro-sur de la isla Ángel de la Guarda.

	Valor	% del total	% acumulado
λ_1	24089403.1176	87.5102	87.5102
λ_2	3221603.21731	11.7032	99.2134
λ_3	162819.54236	0.5915	99.8048
λ_4	31994.30484	0.1162	99.9211
λ_5	8403.34975	0.0305	99.9516
λ_6	7014.76763	0.0255	99.9771
λ_7	3928.15607	0.0143	99.9913
λ ₈	2162.99452	0.0079	99.9992
λ9	222.19706	0.0008	100.0

Los vectores propios para este experimento se describen en la Tabla 40.

Tabla	40.	Vectores	propios	de la	ı matriz	de	covarianza	de	los	datos	ALI	pertenecientes	а	los	patrones	de
entrer	namie	ento del ái	rea del ce	entro-	sur de la	isla	Ángel de la	Gua	rda.							

Banda	λ1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ9
MS-1'	0.0494	-0.0685	0.0050	-0.3583	0.0486	-0.3358	-0.2029	0.3667	0.7574
MS- 1	0.0744	-0.1088	0.0077	-0.4402	0.0513	-0.3480	-0.1691	0.4627	-0.6499
MS-2	0.1646	-0.2034	-0.0352	-0.4835	-0.2538	-0.3233	0.4544	-0.5666	0.0114
MS-3	0.3013	-0.2748	-0.0489	-0.4595	0.0610	0.7199	-0.2980	-0.0954	0.0201
MS-4	0.4709	-0.3512	-0.1320	0.2354	0.2682	0.0835	0.5963	0.3816	0.0446
MS-4'	0.4775	-0.3398	-0.2143	0.4040	-0.2820	-0.2921	-0.4997	-0.1791	-0.0279
MS-5'	0.3057	0.1499	0.4124	0.0099	0.7331	-0.2050	-0.1521	-0.3330	-0.0218
MS-5	0.4693	0.3990	0.5843	0.0030	-0.4810	0.0949	0.0798	0.1798	0.0103
MS-7	0.3328	0.6679	-0.6492	-0.1194	0.0815	-0.0088	0.0132	-0.0220	-0.0084

En la **Figura 49** se muestran los vectores promedio y las desviaciones estándar de las regiones de interés seleccionadas para esta área.

Figura 49. Firmas espectrales (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área del centro-sur de la Isla Ángel de la Guarda.
4.4.7 Experimento VII

Para este experimento se realizó el ACP utilizando los patrones de entrenamiento extraídos de las imágenes Hyperion. Posteriormente con los valores y vectores propios se seleccionaron los 16 índices pertenecientes a las bandas con las mayores sumas de los productos de las cargas por los valores propios de las primeras 16 componentes principales. (Ver **Sección 4.3.2**)

<u>Área A</u>

Las bandas espectrales seleccionadas para este experimento se muestran en la **Tabla 41.** A continuación se describe el significado de cada una de las columnas de la tabla:

- Número de banda (subimagen). Muestra los números, en un rango de 1 a 115, de las bandas seleccionadas como característica para este experimento.
- Número de banda (Original). Almacena los números, en un rango de 1 a 242, de las bandas de la imagen Hyperion sin el preprocesamiento.
- Longitud de onda (nm). Describe la longitud de onda, en nanómetros, de las bandas seleccionadas.
- Valor. Para cada banda, representa la suma calculada siguiendo el criterio de selección de características explicado en la Sección 4.3.2

No. de banda (subimagen)	No. de banda (Original)	Longitud de onda (nm)	Valor
48	85	993.170898	4993555.71064
49	86	1003.299622	4905384.76328
50	87	1013.298279	4865113.62683
51	88	1023.397766	4814471.84959
47	84	983.082458	4784754.60397
52	89	1033.494385	4601200.42928
53	90	1043.592773	4518339.21223
54	91	1053.692261	4500039.43913
55	92	1063.791626	4336927.89943
46	83	972.993164	4251613.61004
56	93	1073.888428	4156021.89433
57	94	1083.986938	4016654.46126
58	95	1094.086914	3663217.50863
31	43	782.951416	3641358.43362
28	40	752.425354	3569374.50516
27	39	742.249939	3531545.05509

Tabla 41. Bandas Hyperion seleccionadas como características para el proceso de clasificación en el área de Tecate.

Las matrices de correlación y covarianza generaron las imágenes de la **Figura 50**. Cabe destacar los dos bloques de bandas altamente correlacionados en la imagen **b**. El primer bloque lo integran las 13 bandas iniciales (1 - 13) y el segundo bloque las últimas 3 bandas (14 - 16).

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 50. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de la información espectral contenida en las bandas seleccionadas de la imagen HP del área de Tecate.

Los vectores promedio y las desviaciones estándar de los campos de entrenamiento se presentan en la **Figura 51**.

b) Desviaciones estándar

Figura 51. Vectores promedio (a) y desviaciones estándar (b) de las clases espectrales pertenecientes al área de Tecate.

<u>Área B</u>

Las bandas espectrales que forman parte del conjunto de características, para este experimento aplicado a esta área de pruebas, se describen en la **Tabla 42**.

Tabla 42. Bandas Hyperion seleccionadas como características para el proceso de clasificación en el área del cent	ro-
sur de la isla Ángel de la Guarda.	

No. de banda (subimagen)	No. de banda (Original)	Longitud de onda (nm)	Valoración
50	88	1023.397766	16648837.9868
49	87	1013.298279	16532845.1624
47	85	993.170898	16506054.8915
48	86	1003.299622	16495429.7965
51	89	1033.494385	16362576.1979
52	90	1043.592773	16256736.9346
53	91	1053.692261	15998110.9476
54	92	1063.791626	15374647.6365
55	93	1073.888428	14979808.6959
46	84	983.082458	14035138.2957
22	33	681.198669	13411361.8304
21	32	671.022461	13336155.5058
19	30	650.672729	13018960.5064
15	26	609.971252	12978231.8017
18	29	640.497192	12852483.6573
16	27	620.146362	12847421.6273

Las imágenes de las matrices de covarianza y correlación se muestran en la **Figura 52**. En estas se formaron dos bloques. El primer bloque de las 10 bandas iniciales (1 - 10) y el segundo de las últimas 6 bandas (11- 16).

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 52. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de la información espectral contenida en las bandas seleccionadas de la imagen HP del área del centro-sur de la isla Ángel de la Guarda.

En la **Figura 53** se graficaron los vectores promedio y las desviaciones estándar de los tipos de cubierta del terreno para esta área.

Figura 53. Vectores promedio (a) y desviaciones estándar (b) de las clases espectrales pertenecientes al área del centro-sur de la isla Ángel de la Guarda.

<u>Área C</u>

La **Tabla 43** describe las bandas espectrales que forman parte del conjunto de características de este experimento aplicado a esta área de pruebas.

No. de banda (subimagen)	No. de banda (Original)	Longitud de onda (nm)	Valoración
49	87	1013.298300	19771937.1623
50	88	1023.397800	19726605.7622
48	86	1003.299600	19713790.4028
47	85	993.170900	19667962.8433
51	89	1033.494400	19405895.8617
52	90	1043.592800	19213875.1327
53	91	1053.692300	18832234.1812
54	92	1063.791600	18111122.5639
55	93	1073.888400	17546971.6832
46	84	983.082460	16623387.1718
22	33	681.198670	15343053.3695
21	32	671.022460	15196473.4508
28	39	742.249940	14707425.6282
19	30	650.672730	14623476.3373
18	29	640.497190	14452278.6778
15	26	609.971250	14403861.1275

 Tabla 43. Bandas HP seleccionadas como características para el proceso de clasificación en el área de la isla Ángel de la Guarda.

Las imágenes de correlación y covarianza se observan en la **Figura 54**. En esta área se muestran los mismos bloques de bandas que en el área anterior, sin embargo, en este caso en particular es menos notorio y no es tan uniforme. La similitud entre las matrices de covarianza y correlación es debido a que la imagen utilizada en el área B es una porción de la imagen del área C.

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 54. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de la información espectral contenida en las bandas seleccionadas de la imagen HP del área de la isla Ángel de la Guarda.

Los vectores promedio y las desviaciones estándar de los tipos de cubierta del terreno se grafican en la **Figura 55**.

b) Desviaciones estándar

Figura 55. Vectores promedio (a) y desviaciones estándar (b) de los campos de entrenamiento pertenecientes al área de la isla Ángel de la Guarda.

4.4.8 Experimento VIII

Las bandas espectrales de las imágenes TM se relacionaron espectralmente a las bandas de Hyperion, para ello, se utilizó la longitud de onda central de las bandas de TM y se buscaron las longitudes de onda más próximas a las bandas de Hyperion. Las bandas encontradas se utilizaron como conjunto de características para este experimento.

<u>Área A</u>

En la **Tabla 44** se presentan las bandas TM e Hyperion más similares, con base a su longitud de onda central. Primeramente, de lado izquierdo, se describe el conjunto de bandas de la imagen TM utilizada para esta área de pruebas. Después, de lado derecho, se describe la información más importante de las bandas de la imagen Hyperion. Las bandas del sensor Hyperion fueron seleccionadas como conjunto de características para la realización de este experimento.

Tabla 44. Mapeo de bandas TM a HP mediante la similitud de la longitud de onda central de sus bandas espectrales. Las imágenes TM e HP de referencia son del área de Tecate.

тм		Hyperion			
No. banda	Longitud de onda (nm)	Longitud de onda (nm)	No. de banda (subimagen)	No. de banda (original)	
1	485	487.867889	2	14	
2	569	569.269592	10	22	
3	660	660.847961	19	31	
4	840	844.003052	37	49	
5	1676	1679.204224	102	153	
7	2223	2224.025391	135	207	

La matriz de covarianza resultante, a partir de las bandas Hyperion similares a TM, se muestra en la **Tabla 45**. La banda 31 (TM 3) posee la mayor varianza del conjunto de características.

Tabla 45. Matriz de covarianza del subconjunto espectral de HP más similar a TM en el área de Tecate. Las columnas y filas fueron nombradas de acuerdo a los nombres de las bandas espectrales de HP. (*) Representa la varianza máxima.

	B014	B022	B031	B049	B153	B207
B014	50463.5613	72047.7462	85004.8368	69649.9044	40467.1174	13384.733
B022	72047.7462	107959.9832	130559.7064	110281.4373	65924.2465	21796.3299
B031	85004.8368	130559.7064	164326.5208*	139098.4464	89288.6418	29636.0011
B049	69649.9044	110281.4373	139098.4464	136662.169	82485.9278	26331.8408
B153	40467.1174	65924.2465	89288.6418	82485.9278	69774.0871	22788.7232
B207	13384.733	21796.3299	29636.0011	26331.8408	22788.7232	7734.7323

En la **Tabla 46** se describe la correlación que existe entre las bandas seleccionadas. Este experimento surgió con el supuesto de que se mostraría un resultado con cierta similitud al primer experimento, debido a que utiliza las bandas Hyperion más afines a las bandas TM. Sin embargo, además de sus valores, se observó una diferencia destacable en la matriz de correlación. Las bandas 14 (su similar TM 1) y 207 (TM 7) presentan la menor correlación, a diferencia del experimento I, que fueron las bandas TM 1 y TM 5.

Tabla 46. Matriz de correlación del subconjunto espectral de HP más similar a TM en el área de Tecate. Las columnas
y filas fueron nombradas de acuerdo a los nombres de las bandas espectrales de HP. (*) Representa la correlación
mínima.

	B014	B022	B031	B049	B153	B207
B014	1.0	0.9761	0.9335	0.8387	0.682	0.6775*
B022	0.9761	1.0	0.9802	0.9079	0.7596	0.7543
B031	0.9335	0.9802	1.0	0.9282	0.8339	0.8313
B049	0.8387	0.9079	0.9282	1.0	0.8447	0.8099
B153	0.682	0.7596	0.8339	0.8447	1.0	0.981
B207	0.6775	0.7543	0.8313	0.8099	0.981	1.0

Las imágenes de covarianza y correlación se presentan en la **Figura 56**. En la imagen de correlación se puede observar la similitud con los datos TM (ver **Figura 31b**). Sin embargo, en la imagen de covarianza se mostraron resultados muy distintos. Posiblemente, las diferencias fueron causadas principalmente por la resolución radiométrica de cada sensor. La resolución de TM es de 8 bits (0-255), mientras que la de Hyperion es de 12 bits (0-4095).

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 56. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) del subconjunto espectral de HP más similar a TM perteneciente al área de Tecate.

Las firmas espectrales y las desviaciones estándar de los campos de entrenamiento se grafican en la **Figura 57**. Con relación a la clase espectral perteneciente a la zona agrícola, se puede observar el efecto de dispersión atmosférica en los valores de reflectancia de la banda TM 1, que corresponden al espectro visible del azul.

b) Desviaciones estándar

Figura 57. Firmas espectrales (a) y desviaciones estándar (b), de los campos de entrenamiento, calculadas del subconjunto espectral de HP más similar a TM pertenecientes al área de Tecate.

<u>Área B</u>

En la **Tabla 47** se presentan las bandas TM e Hyperion más similares, con base a su longitud de onda central. Las bandas Hyperion se utilizan como conjunto de características para este experimento.

Tabla 47. Mapeo de bandas TM a HP mediante la similitud de la longitud de onda central de sus bandas espectrales. Las imágenes TM e HP de referencia son del área del centro-sur de la isla Ángel de la Guarda.

ТМ		Hyperion			
No. banda	Longitud de onda (nm)	Longitud de onda (nm)	No. de banda (subimagen)	No. de banda (original)	
1	485	487.867889	3	14	
2	569	569.269592	11	22	
3	660	660.847961	20	31	
4	840	844.003052	38	49	
5	1676	1699.399048	88	155	
7	2223	2224.025391	108	207	

La matriz de covarianza se muestra en la **Tabla 48**. Al igual que en el área A, la banda 31 (TM 3) posee la mayor varianza del conjunto de características.

Tabla 48. Matriz de covarianza del subconjunto espectral de HP más similar a TM en el área del centro-sur de la isla Ángel de la Guarda. Las columnas y filas fueron tituladas de acuerdo a los nombres de las bandas espectrales de HP. (*) Representa la varianza máxima.

	B014	B022	B031	B049	B155	B207
B014	406241.6571	590297.7893	684868.474	583696.8139	258791.8018	76298.9316
B022	590297.7893	872152.1015	1017935.0173	871872.9933	388429.7921	114404.4082
B031	684868.474	1017935.0173	1203977.4784*	1036274.8426	465594.3201	139099.5036
B049	583696.8139	871872.9933	1036274.8426	902142.6967	406925.4947	122542.6614
B155	258791.8018	388429.7921	465594.3201	406925.4947	203506.7564	62298.3294
B207	76298.9316	114404.4082	139099.5036	122542.6614	62298.3294	20120.9909

En la **Tabla 49** se describe la matriz de correlación, en la cual, las bandas 14 (TM 1) y 207 (TM 7) presentan la menor correlación.

Tabla 49. Matriz de correlación del subconjunto espectral de HP más similar a TM en el área del centro-sur de la isla Ángel de la Guarda. Las columnas y filas fueron tituladas de acuerdo a los nombres de las bandas espectrales de HP. (*) Representa la correlación mínima.

	B014	B022	B031	B049	B155	B207
B014	1.0	0.9917	0.9793	0.9642	0.9001	0.8439*
B022	0.9917	1.0	0.9934	0.9829	0.922	0.8636
B031	0.9793	0.9934	1.0	0.9943	0.9406	0.8937
B049	0.9642	0.9829	0.9943	1.0	0.9497	0.9095
B155	0.9001	0.922	0.9406	0.9497	1.0	0.9736
B207	0.8439	0.8636	0.8937	0.9095	0.9736	1.0

En la **Figura 58** se muestran las imágenes de covarianza y correlación. En la imagen de correlación se forman dos bloques, el primero de las 4 bandas iniciales, 14 (TM 1), 22 (TM 2), 31 (TM 3) y 49 (TM 4); y el segundo bloque de las últimas 2 bandas, 155 (TM 5) y 207 (TM 7).

Figura 58. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) del subconjunto espectral de HP más similar a TM perteneciente al área del centro-sur de la isla Ángel de la Guarda.

Las firmas espectrales y las desviaciones estándar de los tipos de cubierta del terreno, de este experimento aplicado al área del centro-sur de la Isla Ángel de la Guarda, se muestran en la **Figura 59**.

Figura 59. Firmas espectrales (a) y desviaciones estándar (b), de los campos de entrenamiento, calculadas del subconjunto espectral de HP más similar a TM pertenecientes al área del centro-sur de la isla Ángel de la Guarda.

<u>Área C</u>

Las bandas TM e Hyperion más similares, con base a su longitud de onda central, se observan en la **Tabla 50**. Este conjunto de bandas Hyperion es el conjunto de características de este experimento.

тм		Hyperion			
No. banda	Longitud de onda (nm)	Longitud de onda (nm)	No. de banda (subimagen)	No. de banda (original)	
1	485	487.867890	3	14	
2	569	569.269590	11	22	
3	660	660.847960	20	31	
4	840	844.003050	38	49	
5	1676	1699.399000	88	155	
7	2223	2224.025400	106	207	

Tabla 50. Mapeo de bandas TM a HP mediante la similitud de la longitud de onda central de sus bandas espectrales. Las imágenes TM e HP de referencia son del área del centro de la isla Ángel de la Guarda.

En la **Tabla 51** se describe la matriz de covarianza asociado a este experimento aplicado al área del centro de la Isla Ángel de la Guarda. La banda 31 (TM 3) posee la mayor varianza del conjunto de características.

Tabla 51. Matriz de covarianza del subconjunto espectral de HP más similar a TM en el área del centro de la isla Ángel de la Guarda. Las columnas y filas fueron nombradas de acuerdo a los nombres de las bandas espectrales de HP. (*) Representa la varianza máxima.

	B014	B022	B031	B049	B155	B207
B014	507301.3379	733992.7478	873793.4824	751180.1185	335469.1346	100771.8318
B022	733992.7478	1086351.5728	1304616.6437	1134308.1424	506570.465	151563.1562
B031	873793.4824	1304616.6437	1603595.2218*	1405986.3532	633847.1422	191461.0662
B049	751180.1185	1134308.1424	1405986.3532	1256922.3635	567169.9794	171679.4044
B155	335469.1346	506570.465	633847.1422	567169.9794	275261.3028	84229.1919
B207	100771.8318	151563.1562	191461.0662	171679.4044	84229.1919	26607.3945

La matriz de correlación se muestra en la **Tabla 52**, la cual revela que las bandas 14 (TM 1) y 207 (TM 7) presentan la menor correlación.

Tabla 52. Matriz de correlación del subconjunto espectral de HP más similar a TM en el área del centro de la isla Ángel de la Guarda. Las columnas y filas fueron nombradas de acuerdo a los nombres de las bandas espectrales de HP. (*) Representa la correlación mínima.

	B014	B022	B031	B049	B155	B207
B014	1.0	0.9887	0.9688	0.9407	0.8977	0.8674*
B022	0.9887	1.0	0.9884	0.9707	0.9264	0.8915
B031	0.9688	0.9884	1.0	0.9903	0.954	0.9269
B049	0.9407	0.9707	0.9903	1.0	0.9642	0.9388
B155	0.8977	0.9264	0.954	0.9642	1.0	0.9842
B207	0.8674	0.8915	0.9269	0.9388	0.9842	1.0

En la **Figura 60** se muestran las imágenes de covarianza y correlación. La apariencia blanca de la imagen de correlación exhibe la alta correlación obtenida en la matriz.

Figura 60. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) del subconjunto espectral de HP más similar a TM perteneciente al área del centro de la isla Ángel de la Guarda.

Las firmas espectrales y las desviaciones estándar de los tipos de cubierta del terreno, de este experimento aplicado al área del centro de la Isla Ángel de la Guarda, se muestran en la **Figura 61**.

b) Desviaciones estándar

Figura 61. Firmas espectrales (a) y desviaciones estándar (b), de los campos de entrenamiento, calculadas del subconjunto espectral de HP más similar a TM pertenecientes al área del centro de la isla Ángel de la Guarda.

4.4.9 Experimento IX

En este experimento, se seleccionó el conjunto de características de las bandas espectrales Hyperion con la longitud de onda central más afín a las del sensor ALI. Por último, considere que todas las imágenes Hyperion son distintas debido al proceso de depuración de bandas, así que la selección puede variar entre áreas.

<u>Área A</u>

En la **Tabla 53** se presentan las bandas ALI e Hyperion más afines, con base a su longitud de onda central. Como se puede apreciar, la longitud de onda puede llegar a diferir por 36 nanómetros debido a la depuración de bandas que se realizó sobre la imagen Hyperion de esta área.

	ALI		Hyperion	
No. banda	Longitud de onda (nm)	Longitud de onda (nm)	No. de banda (subimagen)	No. de banda (original)
1	441.626678	477.692230	1	13
2	484.786865	487.867889	2	14
3	567.170471	569.269592	10	22
4	660.043823	660.847961	19	31
5	790.009216	793.126892	32	44
6	865.587830	874.529053	40	52
7	1244.390259	1245.364380	72	110
8	1640.061157	1648.904663	99	150
9	2225.717285	2234.123047	136	208

Tabla 53. Mapeo de bandas ALI a HP mediante la similitud de la longitud de onda central de sus bandas espectrales. Las imágenes ALI e HP de referencia son del área de Tecate.

La matriz de correlación se muestra en la **Tabla 54**. En esta se puede apreciar que las bandas, 13 (MS-1') y 208 (MS-7) son las menos correlacionadas, a diferencia de lo obtenido en el experimento IV, que fueron las bandas MS-1' y MS-5.

Tabla 54. Matriz de correlación del subconjunto espectral de HP más similar a ALI en el área de Tecate. Las columnas y filas fueron nombradas de acuerdo a los nombres de las bandas espectrales de HP. (*) Representa la correlación mínima.

	B013	B014	B022	B031	B044	B052	B110	B150	B208
B013	1.0	0.9901	0.9722	0.927	0.8453	0.8209	0.7052	0.6739	0.6654*
B014	0.9901	1.0	0.9761	0.9335	0.8533	0.8296	0.7173	0.6868	0.6777
B022	0.9722	0.9761	1.0	0.9802	0.9208	0.8997	0.7934	0.7638	0.755
B031	0.927	0.9335	0.9802	1.0	0.9365	0.9224	0.8462	0.8368	0.832
B044	0.8453	0.8533	0.9208	0.9365	1.0	0.9952	0.9009	0.8356	0.7985
B052	0.8209	0.8296	0.8997	0.9224	0.9952	1.0	0.9184	0.8543	0.8124
B110	0.7052	0.7173	0.7934	0.8462	0.9009	0.9184	1.0	0.9672	0.9226
B150	0.6739	0.6868	0.7638	0.8368	0.8356	0.8543	0.9672	1.0	0.9755
B208	0.6654	0.6777	0.755	0.832	0.7985	0.8124	0.9226	0.9755	1.0

En la **Figura 62** se muestran las imágenes de covarianza y correlación. La apariencia de la imagen de correlación es parecida a la presentada en el Experimento IV, por lo tanto, cumple con el propósito del criterio de selección.

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 62. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) del subconjunto espectral de HP más similar a ALI perteneciente al área de Tecate.

Las firmas espectrales y desviaciones estándar de los campos de entrenamientos definidos para esta área de pruebas se presentan en la **Figura 63**.

a) Firmas espectrales

b) Desviaciones estándar

Figura 63. Firmas espectrales (a) y desviaciones estándar (b), de los campos de entrenamiento, calculadas del subconjunto espectral de HP más similar a ALI pertenecientes al área de Tecate.

<u>Área B</u>

En la **Tabla 55** se presentan las bandas ALI e Hyperion más similares, con base a su longitud de onda central. Las bandas Hyperion se utilizan como conjunto de características para este experimento.

	ALI	Hyperion							
No. banda	Longitud de onda (nm)	Longitud de onda (nm)	No. de banda (subimagen)	No. de banda (original)					
1	441.626678	467.517273	1	12					
2	484.786865	487.867889	3	14					
3	567.170471	569.269592	11	22					
4	660.043823	660.847961	20	31					
5	790.009216	793.126892	33	44					
6	865.587830	874.529053	41	52					
7	1244.390259	1245.364380	67	110					
8	1640.061157	1648.904663	85	150					
9	2225.717285	2234.123047	109	208					

Tabla 55. Mapeo de bandas ALI a HP mediante la similitud de la longitud de onda central de sus bandas espectrales.Las imágenes ALI e HP de referencia son del área del centro-sur de la isla Ángel de la Guarda.

La matriz de correlación se muestra en la **Tabla 56**. En esta se puede apreciar que las bandas, 12 (TM-1') y 208 (MS-7) son las menos correlacionadas, igual a lo obtenido en el experimento IV.

Tabla 56. Matriz de correlación del subconjunto espectral de HP más similar a ALI en el área del centro-sur de la isla Ángel de la Guarda. Las columnas y filas fueron nombradas de acuerdo a los nombres de las bandas espectrales de HP. (*) Representa la correlación mínima.

	B012	B014	B022	B031	B044	B052	B110	B150	B208
B012	1.0	0.9977	0.9892	0.9762	0.9622	0.9595	0.9131	0.8982	0.8421*
B014	0.9977	1.0	0.9917	0.9793	0.966	0.9633	0.917	0.9019	0.8457
B022	0.9892	0.9917	1.0	0.9934	0.9851	0.9822	0.9353	0.9238	0.8658
B031	0.9762	0.9793	0.9934	1.0	0.9956	0.9936	0.9528	0.9422	0.8956
B044	0.9622	0.966	0.9851	0.9956	1.0	0.9993	0.9604	0.9508	0.9076
B052	0.9595	0.9633	0.9822	0.9936	0.9993	1.0	0.961	0.9515	0.9105
B110	0.9131	0.917	0.9353	0.9528	0.9604	0.961	1.0	0.996	0.9665
B150	0.8982	0.9019	0.9238	0.9422	0.9508	0.9515	0.996	1.0	0.9737
B208	0.8421	0.8457	0.8658	0.8956	0.9076	0.9105	0.9665	0.9737	1.0

En la **Figura 64** se muestran las imágenes de covarianza y correlación. En la imagen de correlación se forman dos bloques, el primero de las 6 bandas iniciales, 12 (MS-1'), 14 (MS-1), 22 (MS-2), 31 (MS-3), 44 (MS-4) y 52 (MS-4'); y el segundo bloque de las últimas 3 bandas, 110 (TM 5'), 150 (TM-5) y 207 (TM 7). Con base a esto, la matriz de correlación de los datos ALI (**Experimento IV - B**) es distinta a la obtenida en este experimento.

a) Imagen de la matriz de covarianza.

Figura 64. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) del subconjunto espectral de HP más similar a ALI perteneciente al área del centro-sur de la isla Ángel de la Guarda.

Las firmas espectrales y las desviaciones estándar de los campos de entrenamiento se grafican en la Figura

65.

Figura 65. Firmas espectrales (a) y desviaciones estándar (b), de los campos de entrenamiento, calculadas del subconjunto espectral de HP más similar a ALI pertenecientes al área del centro-sur de la isla Ángel de la Guarda.

<u>Área C</u>

Las bandas ALI e Hyperion más similares, con base a su longitud de onda central, se observan en la Tabla

57. Estas bandas de Hyperion son el conjunto de características de este experimento.

	ALI		Hyperion	
No. banda	Longitud de onda (nm)	Longitud de onda (nm)	No. de banda (subimagen)	No. de banda (original)
1	441.626678	467.517270	1	12
2	484.786865	487.867890	3	14
3	567.170471	569.269590	11	22
4	660.043823	660.847960	20	31
5	790.009216	793.126890	33	44
6	865.587830	874.529050	41	52
7	1244.390259	1245.364400	67	110
8	1640.061157	1648.904700	85	150
9	2225.717285	2234.123000	107	208

Tabla 57. Mapeo de bandas ALI a HP mediante la similitud de la longitud de onda central de sus bandas espectrales.Las imágenes ALI e HP de referencia son del área de la isla Ángel de la Guarda.

La matriz de correlación se observa en la **Tabla 58**. Las bandas espectrales 12 (MS-1') y 208 (MS-7) presentan la menor correlación.

Tabla 58. Matriz de correlación del subconjunto espectral de HP más similar a ALI en el área de la isla Ángel de la Guarda. Las columnas y filas fueron nombradas de acuerdo a los nombres de las bandas espectrales de HP. (*) Representa la correlación mínima.

	B012	B014	B022	B031	B044	B052	B110	B150	B208
B012	1.0	0.9974	0.9822	0.9616	0.9319	0.9304	0.8985	0.89	0.8597*
B014	0.9974	1.0	0.9887	0.9688	0.9423	0.9406	0.9081	0.899	0.8671
B022	0.9822	0.9887	1.0	0.9884	0.9723	0.9701	0.9356	0.9274	0.8912
B031	0.9616	0.9688	0.9884	1.0	0.9913	0.99	0.9623	0.955	0.9266
B044	0.9319	0.9423	0.9723	0.9913	1.0	0.9995	0.9724	0.9647	0.9365
B052	0.9304	0.9406	0.9701	0.99	0.9995	1.0	0.9736	0.9662	0.9394
B110	0.8985	0.9081	0.9356	0.9623	0.9724	0.9736	1.0	0.9967	0.9775
B150	0.89	0.899	0.9274	0.955	0.9647	0.9662	0.9967	1.0	0.9842
B208	0.8597	0.8671	0.8912	0.9266	0.9365	0.9394	0.9775	0.9842	1.0

En la Figura 66 se muestran las imágenes de covarianza (a) y correlación (b).

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 66. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) del subconjunto espectral de HP más similar a ALI perteneciente al área de la isla Ángel de la Guarda.

Las firmas espectrales y las desviaciones estándar de los tipos de cubierta del terreno, de este experimento aplicado al área del centro de la Isla Ángel de la Guarda, se muestran en la **Figura 67**.

Figura 67. Firmas espectrales (a) y desviaciones estándar (b), de los campos de entrenamiento, calculadas del subconjunto espectral de HP más similar a ALI pertenecientes al área de la isla Ángel de la Guarda.

4.4.10 Experimento X

En este experimento se utilizan los primeros 16 componentes principales para caracterizar cada pixel. Estos se originan del proceso del ACP de los datos Hyperion. Las imágenes Hyperion resultantes del preprocesamiento poseen más de 100 bandas espectrales, debido a esta cantidad, las matrices de covarianza y correlación de los datos espectrales únicamente se muestran en imágenes, así como se puede apreciar en la **Figura 68**. Los vectores propios se omitieron en cada una de las áreas debido al tamaño de la matriz. Sin embargo, el subconjunto de valores propios más significativo fue incluido en la **Tabla 59**.

<u>Área A</u>

En la **Figura 68** se muestran las imágenes de covarianza y correlación. La banda de mayor varianza es la 48, mientras que las bandas 1 y 115 presentan la menor correlación (0.6615).

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 68. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de la imagen HP perteneciente al área de Tecate.

Los primeros 16 valores propios de los datos Hyperion se describen en la **Tabla 59**. Este conjunto de componentes principales utiliza el 99.69% de la información espectral contenida en la imagen Hyperion perteneciente a esta área.

	Valor	% del total	% acumulado		Valor	% del total	% acumulado
λ ₁	13490044.2931	91.477	91.477	λ9	6757.30557	0.0458	99.4872
λ_2	769606.3269	5.2188	96.6957	λ ₁₀	5888.10272	0.0399	99.5272
λ_3	279975.1094	1.8985	98.5943	λ ₁₁	4990.00087	0.0338	99.561
λ_4	71821.73338	0.487	99.0813	λ ₁₂	4425.57036	0.03	99.591
λ_5	21048.80985	0.1427	99.224	λ ₁₃	4314.79402	0.0293	99.6203
λ_6	12697.89692	0.0861	99.3101	λ ₁₄	3759.5807	0.0255	99.6458
λ_7	10818.4316	0.0734	99.3835	λ_{15}	3615.50266	0.0245	99.6703
λ ₈	8543.49552	0.0579	99.4414	λ ₁₆	2398.1353	0.0163	99.6865

Tabla 59. Los primeros 16 valores propios de la matriz de covarianza de los datos Hyperion pertenecientes al área de Tecate.

Las firmas espectrales de las clases espectrales se grafican con mucho detalle, debido a la gran cantidad de bandas espectrales, en la **Figura 69a**. Al igual a lo observado en experimentos anteriores, se puede percibir el efecto de la dispersión atmosférica en las firmas espectrales de la imagen, principalmente por la clase espectral de la zona agrícola. Este tipo de cubierta de terreno es la representación pura de la vegetación más vigorosa, y como tal, es conocido que sus zonas de absorción son principalmente el azul (400-500 *nm*) y el rojo (600-700 *nm*), emite en el verde (500-600 *nm*) y en gran medida en el límite del rojo/infrarrojo cercano (750 *nm*).

En la **Figura 69**, también se observan los vectores promedio (**b**) y las desviaciones estándar (**c**) de las clases de cubierta del terreno utilizando los 16 primeros componentes principales como conjunto de características para este experimento.

Figura 69. Firmas espectrales de los campos de entrenamiento utilizando la imagen Hyperion (a), y vectores promedio (b) y desviaciones estándar (c), de las regiones de interés, calculados de los CPS pertenecientes a la imagen HP de Tecate.

<u>Área B</u>

En la **Figura 70** se muestran las imágenes de covarianza y correlación. La banda de mayor varianza es la 47, mientras que las bandas 1 y 115 presentan la menor correlación (0.82).

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 70. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de la imagen HP perteneciente al área del centro-sur de la isla Ángel de la Guarda.

La **Tabla 60** describe los primeros 16 valores propios de la matriz de covarianza calculada a partir de los datos de este experimento. La alta correlación observada en la **Figura 70b** se reflejó en la varianza de los componentes principales. La CP1 concentra el 97.41% de la información espectral de la imagen Hyperion, perteneciente a esta área.

	Valor	% del total	% acumulado		Valor	% del total	% acumulado
λ ₁	79480560.892	97.4086	97.4086	λ9	11252.0378	0.0138	99.8986
λ_2	1574895.6475	1.9301	99.3388	λ ₁₀	8383.32586	0.0103	99.9088
λ_3	195617.39603	0.2397	99.5785	λ ₁₁	7449.55427	0.0091	99.918
λ_4	152206.64975	0.1865	99.7651	λ ₁₂	6502.06541	0.008	99.9259
λ_5	35105.76222	0.043	99.8081	λ ₁₃	5391.98225	0.0066	99.9326
λ_6	23514.57144	0.0288	99.8369	λ ₁₄	3464.13802	0.0042	99.9368
λ_7	21815.03385	0.0267	99.8636	λ_{15}	2922.43268	0.0036	99.9404
λ ₈	17258.72879	0.0212	99.8848	λ ₁₆	2830.22162	0.0035	99.9439

Tabla 60. Los primeros 16 valores propios de la matriz de covarianza de los datos HP pertenecientes al área del centro-sur de la isla Ángel de la Guarda.

La **Figura 71a** grafica las firmas espectrales de los tipos de cubierta del terreno utilizando la información espectral de la imagen Hyperion. Sin embargo, este no es el conjunto de características para este experimento. Estas firmas espectrales se transforman mediante el ACP, de tal manera, que bastan los primeros 16 componentes principales para igualar en un 99.94% la información vista en estas firmas. Por lo tanto, los vectores promedio (**Figura 71b**) son las firmas espectrales en el nuevo espacio reducido de características sin correlación. Asimismo, en la **Figura 71c** se grafican las desviaciones estándar de las clases espectrales utilizando el conjunto de características compuesto por los 16 primeros componentes principales.

c) Desviaciones estándar

Figura 71. Firmas espectrales de los campos de entrenamiento utilizando la imagen Hyperion (a), y vectores promedio (b) y desviaciones estándar (c), de las regiones de interés, calculados de los CP pertenecientes a la imagen HP del centro-sur de la isla Ángel de la Guarda.

<u>Área C</u>

En la **Figura 72** se muestran las imágenes de covarianza y correlación. La banda de mayor varianza es la 47, mientras que las bandas 1 y 113 presentan la menor correlación (0.8445).

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 72. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de la imagen HP perteneciente al área de la isla Ángel de la Guarda.

Los primeros 16 valores propios se muestran en la **Tabla 61**. Con base a lo descrito en la tabla, el conjunto de características concentra el 99.95% de la información espectral de la imagen Hyperion perteneciente a esta área de pruebas.

	Valor	% del total	% acumulado		Valor	% del total	% acumulado
λ1	107337850.504	97.774	97.774	λ9	14674.2435	0.0134	99.9141
λ_2	1691255.06086	1.5406	99.3146	λ ₁₀	8745.82134	0.008	99.9221
λ_3	385698.39889	0.3513	99.6659	λ ₁₁	8027.93682	0.0073	99.9294
λ_4	129005.00022	0.1175	99.7834	λ ₁₂	7668.32207	0.007	99.9364
λ_5	60417.63148	0.055	99.8385	λ ₁₃	5694.43098	0.0052	99.9416
λ ₆	29477.08196	0.0269	99.8653	λ ₁₄	5611.46182	0.0051	99.9467
λ ₇	22593.26861	0.0206	99.8859	λ ₁₅	3971.54612	0.0036	99.9503
λ ₈	16327.87436	0.0149	99.9008	λ ₁₆	3109.87012	0.0028	99.9532

Tabla 61. Los primeros 16 valores propios de la matriz de covarianza de los datos HP pertenecientes al área de la isla Ángel de la Guarda.

Los datos Hyperion permiten graficar las firmas espectrales (**Figura 73a**) de los tipos de cubierta del terreno de esta área. Con el conjunto de características para realizar este experimento, los vectores propios (**b**) y las desviaciones estándar (**c**) de las regiones de interés para entrenamiento se muestran en la **Figura 73**.

b) Vectores promedio

Desviaciones estándar c)

Figura 73. Firmas espectrales de los campos de entrenamiento utilizando la imagen Hyperion (a), y vectores promedio (b) y desviaciones estándar (c), de las regiones de interés, calculados de los CP pertenecientes a la imagen HP de la isla Ángel de la Guarda.

4.4.11 Experimento XI

El siguiente experimento presenta la misma información que el anterior, sin embargo, los datos a transformar mediante el ACP son distintos. El conjunto de datos para este experimento son exclusivamente los patrones de entrenamiento. Primeramente, se presenta para cada experimento las imágenes de las matrices de covarianza y correlación que producen los patrones de entrenamiento. Posteriormente y después de realizar el ACP, se describen los primeros 16 valores propios y los porcentajes de la varianza que representa cada componente principal. Por último, se grafican los vectores promedio y desviaciones estándar de cada tipo de cubierta del terreno según el área de pruebas.

<u>Área A</u>

En la **Figura 74** se muestran las imágenes de covarianza y correlación. La banda de mayor varianza es la 48, mientras que las bandas 2 y 60 presentan la menor correlación (0.4777). En la matriz de correlación se formaron 3 bloques de bandas, el primero con las 23 bandas iniciales, el segundo integrado de las bandas 24 a 81, y el último bloque de las bandas 82 a 144.

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 74. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos HP pertenecientes a campos de entrenamiento del área de Tecate.

La forma de la imagen de correlación (**Figura 74b**) manifiesta, así como en experimentos anteriores, que la distribución de la varianza no será tan grande para la CP1. En la **Tabla 62** se describen los primeros 16 valores propios, en la cual, la CP1 representa el 85.37% de la varianza de los patrones de entrenamiento,

un valor bajo con relación a los experimentos anteriores. Además, la tabla señala que los primeros 16 componentes principales concentran el 99.85% de la información espectral de los patrones de entrenamiento.

Tabla 62. Primeros 16 valores propios de la matriz de covarianza de los datos HP pertenecientes a los patrones de

	Valor	% del total	% acumulado	
λ ₁	26530537.05	85.3718	85.3718	
λ_2	3003893.14259	9.6661	95.0379	
λ_3	1295849.34393	4.1699	99.2078	
λ_4	90294.36053	0.2906	99.4983	
λ_5	37828.97067	0.1217	99.6201	
λ ₆	19777.32003	0.0636	99.6837	
λ ₇	12426.18842	0.04	99.7237	
λ ₈	7352.37105	0.0237	99.7474	

entrenamiento del área de Tecate.

Valor % del total % acumulado λg 6033.82417 0.0194 99.7668 λ₁₀ 0.0164 99.7832 5104.32152 4766.87843 0.0153 99.7985 λ_{11} λ_{12} 4564.9665 0.0147 99.8132 λ_{13} 3778.61309 0.0122 99.8254 λ₁₄ 3035.33745 0.0098 99.8352 2799.77398 0.009 99.8442 λ_{15} λ_{16} 2714.70693 0.0087 99.8529

Los vectores promedio y las desviaciones estándar de los tipos de cubierta del terreno se grafican en la **Figura 75**.

Figura 75. Vectores promedio (a) y desviaciones estándar (b) los campos de entrenamiento calculados con los primeros 16 CPS, siguiendo el criterio de este experimento, en área de Tecate.

<u>Área B</u>

En la **Figura 76** se muestran las imágenes de covarianza y correlación. La banda de mayor varianza es la 47, mientras que las bandas 3 y 106 presentan la menor correlación (0.3478).

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 76. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos HP pertenecientes a los campos de entrenamiento del área del centro-sur de la isla Ángel de la Guarda.

Los primeros 16 valores propios se describen en la **Tabla 63**. La CP1 concentra el 94% de la variabilidad de los datos pertenecientes a los patrones de entrenamiento, y las 16 características seleccionadas representan el 99.94%.

	Valor	% del total	% acumulado		Valor	% del total	% acumulado
λ ₁	96392288.8247	94.0014	94.0014	λ9	10170.14635	0.0099	99.9058
λ_2	5600015.81278	5.4611	99.4625	λ ₁₀	9644.93115	0.0094	99.9152
λ_3	223985.8178	0.2184	99.6809	λ ₁₁	7675.18945	0.0075	99.9227
λ_4	85808.74865	0.0837	99.7646	λ ₁₂	6906.3692	0.0067	99.9294
λ_5	52651.29454	0.0513	99.8159	λ ₁₃	6035.10614	0.0059	99.9353
λ_6	34731.77174	0.0339	99.8498	λ ₁₄	4646.71206	0.0045	99.9399
λ_7	31371.89498	0.0306	99.8804	λ_{15}	3750.59533	0.0037	99.9435
λ ₈	15902.32029	0.0155	99.8959	λ ₁₆	3515.83454	0.0034	99.947

Tabla 63. Primeros 16 valores propios de la matriz de covarianza de los datos HP pertenecientes a los patrones de entrenamiento del área del centro-sur de la isla Ángel de la Guarda.

Los vectores promedio y las desviaciones estándar de las clases espectrales se grafican en la Figura 77.

Figura 77. Vectores promedio (a) y desviaciones estándar (b), de los campos de entrenamiento, calculados con los primeros 16 CP, siguiendo el criterio de este experimento, en área del centro-sur de la isla Ángel de la Guarda.

<u>Área C</u>

En la **Figura 78** se muestran las imágenes de covarianza y correlación. La banda de mayor varianza es la 49, mientras que las bandas 3 y 113 presentan la menor correlación (0.6067).

a) Imagen de la matriz de covarianza. Los valores tienen un intervalo de [min, max]

b) Imagen de la matriz de correlación. Los valores son absolutos y tienen un intervalo de [0, 1]

Figura 78. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de los datos HP pertenecientes a los campos de entrenamiento del área de la isla Ángel de la Guarda.

En la **Tabla 64** se presentan los primeros 16 valores propios calculados en el ACP. La CP1 concentra el 95.96% de la variabilidad de los datos pertenecientes a los patrones de entrenamiento, mientras que las 16 componentes principales alcanzan un 99.95%.

	Valor	% del total	% acumulado		Valor	% del total	% acumulado
λ ₁	111777491.408	95.9595	95.9595	λ9	14229.53741	0.0122	99.9148
λ_2	3753389.79108	3.2222	99.1817	λ_{10}	8896.20811	0.0076	99.9224
λ_3	605814.15345	0.5201	99.7018	λ ₁₁	8693.43468	0.0075	99.9299
λ_4	98912.41074	0.0849	99.7867	λ_{12}	7384.67588	0.0063	99.9362
λ_5	56589.7056	0.0486	99.8353	λ_{13}	6318.54555	0.0054	99.9417
λ_6	33696.70586	0.0289	99.8642	λ_{14}	3849.49858	0.0033	99.945
λ_7	26019.3016	0.0223	99.8866	λ_{15}	3788.47515	0.0033	99.9482
λ ₈	18646.88917	0.016	99.9026	λ ₁₆	3582.98891	0.0031	99.9513

Tabla 64. Primeros 16 valores propios de la matriz de covarianza de los datos HP pertenecientes a los patrones de entrenamiento del área de la isla Ángel de la Guarda.

Los vectores promedio y las desviaciones estándar de los tipos de cubierta del terreno se grafican en la **Figura 79**.

Figura 79. Vectores promedio (a) y desviaciones estándar (b) de los campos de entrenamiento calculados con los primeros 16 CPS, siguiendo el criterio de este experimento, en área de la isla Ángel de la Guarda.

4.4.12 Experimento XII

El objetivo de este experimento es comprobar el beneficio que ofrece un conjunto de bandas separado espectralmente. Se buscó que las longitudes de onda de las bandas espectrales estuviesen distanciadas lo más uniformemente posible.

Para cada área de pruebas se muestran las bandas seleccionadas y sus longitudes de onda, las imágenes de covarianza y de correlación que producen, y por último las firmas espectrales y desviaciones estándar de las clases espectrales definidas para cada área.

<u>Área A</u>

En la **Tabla 65** se describen las bandas seleccionadas, por su longitud de onda, para ser el conjunto de características para este experimento aplicado a esta área. Debido a la depuración de bandas, que se realizó en el preprocesado de los datos, existen algunos casos donde la distancia es muy grande.

No. de banda (subimagen)	No. de banda (Original)	Longitud de onda (<i>nm</i>)	Distancia (<i>nm</i>)
1	13	477.692230	N.A.
11	23	579.445496	101.753266
21	33	681.198669	101.753173
31	43	782.951416	101.752747
41	53	884.704407	101.752991
49	86	1003.299622	118.595215
59	96	1104.186035	100.886413
69	107	1215.168457	110.982422
79	117	1316.054932	100.886475
82	133	1477.431152	161.37622
92	143	1578.316895	100.885743
102	153	1679.204224	100.887329
112	163	1780.086670	100.882446
114	183	1981.860474	201.773804
123	195	2102.940430	121.079956
144	217	2324.910400	221.96997

 Tabla 65. 16 Bandas HP seleccionadas para el experimento XII en el área de Tecate.

Las imágenes de covarianza y correlación se muestran en la **Figura 80**. La banda de mayor varianza es la 49, mientras que las bandas 1 y 114 presentan la menor correlación (0.6671).

Figura 80. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de las bandas HP seleccionadas para el experimento XII en el área de Tecate.

Las firmas espectrales y desviaciones estándar de los tipos de cubierta del terreno se grafican en la **Figura 81**.

Figura 81. Vectores promedio (a) y desviaciones estándar (b), de los campos de entrenamiento, calculados de las bandas HP seleccionadas para el experimento XII en el área de Tecate.

<u>Área B</u>

70

73

81

89

97

98

115

Las bandas espectrales seleccionadas, para ser el conjunto de características, se describe en la Tabla 66

	I	I	Γ
No. de banda (subimagen)	No. de banda (Original)	Longitud de onda (nm)	Separación espectral (nm)
1	12	467.517273	N.A.
9	20	548.919373	81.4021
17	28	630.321960	81.402587
25	36	711.723938	81.401978
33	44	793.126892	81.402954
41	52	874.529053	81.402161
47	85	993.170898	118.641845
55	93	1073.888428	80.71753
62	105	1194.972412	121.083984

1275.661011

1507.727783

1588.415649

1709.498657

1790.187744

2082.745361

2324.910400

113

136

144

156

164

193

217

 Tabla 66. 16 Bandas Hyperion seleccionadas para el experimento XII en el área del centro-sur de la isla Ángel de la Guarda.

En la **Figura 82** se muestran las imágenes de covarianza y correlación. La banda de mayor varianza es la 47, mientras que las bandas 1 y 115 presentan la menor correlación (0.8204).

80.688599

232.066772

80.687866

121.083008

80.689087

292.557617

242.165039

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 82. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de las bandas HP seleccionadas para el experimento XII en el área del centro-sur de la isla Ángel de la Guarda.

En la **Figura 83** se grafican las firmas espectrales y desviaciones estándar de las clases espectrales pertenecientes a esta área de pruebas.

Figura 83. Vectores promedio (a) y desviaciones estándar (b), de los campos de entrenamiento, calculados de las bandas HP seleccionadas para el experimento XII en el área del centro-sur de la isla Ángel de la Guarda.

<u>Área C</u>

En la **Tabla 67** se describen las bandas seleccionadas, por su longitud de onda, para ser el conjunto de características.

No. de banda (subimagen)	No. de banda (Original)	Longitud de onda (nm)	Separación espectral (nm)
1	12	467.517270	N.A.
9	20	548.919370	81.4021
17	28	630.321960	81.40259
25	36	711.723940	81.40198
33	44	793.126890	81.40295
41	52	874.529050	81.40216
47	85	993.170900	118.64185
55	93	1073.888400	80.7175
62	105	1194.972400	121.084
70	113	1275.661000	80.6886
73	136	1507.727800	232.0668
81	144	1588.415600	80.6878
89	156	1709.498700	121.0831
96	193	2082.745400	373.2467
104	205	2203.829100	121.0837
113	217	2324.910400	121.0813

 Tabla 67. 16 Bandas HP seleccionadas para el experimento XII en el área de la isla Ángel de la Guarda.

Las imágenes de covarianza y correlación se muestran en la **Figura 84**. La banda de mayor varianza es la 47, mientras que las bandas 1 y 113 presentan la menor correlación (0.8445).

a) Imagen de la matriz de covarianza.

b) Imagen de la matriz de correlación.

Figura 84. Imágenes generadas de las matrices de covarianza (a) y de correlación (b) de las bandas HP seleccionadas para el experimento XII en el área de la isla Ángel de la Guarda.

Las firmas espectrales y desviaciones estándar de los tipos de cubierta del terreno se grafican en la **Figura 85**.

Figura 85. Vectores promedio (a) y desviaciones estándar (b), de los campos de entrenamiento, calculados de las bandas HP seleccionadas para el experimento XII en el área de la isla Ángel de la Guarda.

4.5 Separabilidad entre las regiones de interés para entrenamiento

En esta sección se presentan los resultados obtenidos del cálculo de las métricas de separabilidad, Ángulo Espectral (AE) y la distancia de Jeffries-Matusita (JM) de las clases espectrales de cada área de pruebas. Para mostrar los resultados se estructuraron tablas con los datos más relevantes, obtenidos durante el procedimiento de medición.

Los resultados para cada área están organizados en las **tablas 69, 70** y **71** que contienen las siguientes columnas:

- **Sensor.** Especifica el instrumento formador de imágenes del cual se extrajeron las características que definen a las clases espectrales.
- **Rasgos (n).** Describe el conjunto de características empleado para el cálculo de las métricas de separabilidad. Este campo está ordenado de acuerdo a los 12 experimentos definidos previamente.
- Las métricas: AE y JM. Se efectuaron para cada experimento, y comprenden de las siguientes columnas:
 - Media. Es el promedio de separabilidad entre las clases.
 - Máxima. Especifica la combinación de clases de cubierta de terreno con la mayor separabilidad.
 - Mínima. Especifica la combinación de tipos de cubierta de terreno con la menor separabilidad.

También, acompañada de la tabla de resultados, se presenta una figura que comprende un conjunto de gráficas que muestran el comportamiento de las métricas de separabilidad en cada uno de los de experimentos. Cada gráfica traza en líneas las medidas del promedio, de la combinación de clases más similar y de la combinación más distinta, a lo largo de diferentes números de características correspondientes al experimento.

Los resultados de esta área se encuentran en la **Tabla 69**, la cual presenta, de forma resumida, la separación entre las clases de cubiertas de terreno definidas en el área de Tecate. En la **Tabla 68** se muestran las clases y sus abreviaciones para simplificar la tabla de resultados.

Nombre	Abreviatura
Agua	Ag
Zona agrícola	Za
Arroyo	Ar
Vegetación	Vg
Suelo desnudo 1	Sd1
Suelo desnudo 2	Sd2
Suelo desnudo 3	Sd3

Tabla 68. Abreviaturas de las clases de cubiertas de terreno del área de Tecate.

El tipo de cubierta de terreno con más separabilidad es el agua. Como se puede apreciar en la **Tabla 69**, la clase agua fue parte de la combinación de clases con la mayor medida de separación en cada uno de los experimentos. Además, este resultado solo comprueba lo que se había observado en la estadística de los experimentos.

Otro aspecto a destacar de los resultados fue la combinación de clases con la medida más grande de separación. El agua y el suelo desnudo 2 fueron la pareja de clases con la máxima distancia de JM en todos los experimentos, mientras que el agua y la vegetación formaron el ángulo espectral más amplio en la mayoría de ellos. Por otro lado, la combinación de clases de cubiertas de terreno más similares, es decir, de mínima separabilidad fue la zona agrícola y la vegetación

El AE y la distancia de JM son útiles para conocer previamente lo que sucederá con los clasificadores SAM y ML. Debido al conocimiento de los intervalos de resultados que pueden devolver estas métricas de separabilidad, al observar la **Tabla 69**, se puede deducir que el clasificar SAM obtendrá resultados relativamente bajos a comparación de ML.

Sensor	Rasgos (n)	Ángulo espectral				Jeffries – Mat	usita
		Media	Máxima	Mínima	Media	Máxima	Mínima
-	Bandas (6)			Sd - Sd2			Za - Vg
IM	CPs (6)	0.3428	Ag - Sd2 (0.8660)	(0.0749)	1.9673	Ag - Sd2 (2.0)	(1.4682)
	CPs ROI (6)						
	Bandas (9)			7a - Vg			7a - Vg
ALI	CPs (9)	0.3509	Ag - Za (0.8191)	(0.051)	1.9902	Ag - Sd2 (2.0)	(1.7388)
	CPs ROI (9)			(01001)			(11000)
	Cargas (16)	0 1957	Vg - Sd2 (0 6325)	Za - Zu	1 9002	$\Delta \sigma = Sd2(2,0)$	Za - Sd
	(0.0208) (0.0208)	1.5002	Ag 302 (2.0)	(1.2758)			
	TM (6)	0 2052	$\Lambda_{\rm T}$ $T_{\rm T}$ (0.7027)	Sd - Sd2	1 0954	Ag Sd2 (2.0)	Za - Vg
	1101 (0)	0.2952	Ag - 2a (0.7027)	(0.0788)	1.9054	Ag - 302 (2.0)	(1.7774)
		0 2127	$A_{0} = 72 (0.8166)$	Sd - Sd2	1 0902	Ag 5d2 (2 0)	Za - Vg
ЦП	ALI (9)	0.5157	Ag - 28 (0.8100)	(0.0721)	1.9695	Ag - 302 (2.0)	(1.7984)
ПР	CDc (1c)	0.2666	$A_{7} = 7_{2} (1, 0)$	Za - Vg	1 007		7_{2} $\sqrt{\pi}$ (1.022)
	CPS (10)	0.3000	Ag - 2d (1.0)	(0.051)	1.997	Ag - Suz (2.0)	Za - Vg (1.933)
	CPs ROI	0.2665	$A_{7} = 7_{2} (1, 0)$	Za - Vg	1.0056		7_{2} $\sqrt{\pi}$ (1.80.4)
	(16)	0.3005	Ag - 2d (1.0)	(0.049)	1.9920	Ag - Suz (2.0)	2a - Vg (1.894)
	Pandas (16)	0 2702	$A_{0} = 72 (1.0111)$	Za - Vg	1 0015		Za - Vg
	D911092 (10)	0.3702	Ag - Za (1.0111)	(0.0735)	1.9912	Ag - Suz (2.0)	(1.8107)

Tabla 69. Resultados de Jeffries-Matusita y Ángulo Espectral: media de separabilidad, combinación de clases de separabilidad máxima y combinación de separabilidad mínima para cada experimento en el área de Tecate.

En la **Figura 86** se muestran las gráficas del comportamiento de las métricas de separabilidad en cada uno de los de experimentos. Estas gráficas permiten observar el beneficio del ACP. Por ejemplo, observe la gráfica j, las primeras dos CP permitieron una distancia promedio mayor del 1.75 y una distancia mínima, entre clases, de 1.25 aproximadamente. A diferencia de otras gráficas donde no se usa el ACP, las métricas de separabilidad iniciaron con valores comparativamente altos.

Figura 86. Gráficas de resultados de métricas de separabilidad para cada uno de los experimentos realizados en el área de Tecate.

Figura 86. Gráficas de resultados de métricas de separabilidad para cada uno de los experimentos realizados en el área de Tecate.

La **Tabla 70** concentra, en forma de resumen, los resultados obtenidos del cálculo de métricas de separabilidad para el área del centro-sur de la isla Ángel de la Guarda. En esta tabla se observa que Qd2 y Tma3 son los tipos de cubiertas de terreno más cercanas, según la distancia de JM, en la mayoría de los experimentos realizados. Mientras que el agua y Qd2 son las clases que presentaron la mayor distancia de JM en la mayor parte de los experimentos. En lo que respecta al AE, en la mayoría de experimentos se presentan dos constantes: las clases más separadas son el agua y Tma3, y las clases más similares son Qs1 y Tmr.

La clase Qd2 se repitió, en todos los experimentos, como parte de la combinación de menor distancia de JM. Las clases que formaron parte de su combinación fueron Tmr2 y Tma3, por lo cual, se puede prever que el clasificador de ML se confundirá al asignar las tres clases, principalmente Qd2.

Tabla 70. Resultados de Jeffries-Matusita y Ángulo Espectral: media de separabilidad, combinación de clases de separabilidad máxima y combinación de separabilidad mínima para cada experimento en el área del centro-sur de la isla Ángel de la Guarda.

Sensor	Rasgos (n)	Ángulo espectral		Jeffries – Matusita		atusita	
		Media	Máxima	Mínima	Media	Máxima	Mínima
TM	Bandas (6)						
	CPs (6)	0.337	Ag - 1ma3	Qd2 - 1mr2 (0.0283)	1.9643	Qd2 - Ag (2.0)	Qd2 - 1mr2 (1 5134)
	CPs ROI (6)		(0.5514)	(0.0283)			(1.5154)
ALI	Bandas (9)		Ag - Tma2	Oc1 - Tmr		$\Delta q = Tm s v^2$	Od2 - Tmr2
	CPs (9)	0.3527	Ag - 11103 QSI - 1107 (0.0247) (0.0282) 1.		1.993	Ag - 1113VZ	(1 9062)
	CPs ROI (9)		(0.9247)	(0.0283)		(2.0)	(1.9002)
HP	Cargas (16)	0.2686	Ag - Tma3	Qs2 - Tmsv2	1 922/	Od2 = Ag(2,0)	Qd2 - Tma3
		0.2080	(0.9356)	(0.0)	1.9224	Quz - Ag (2.0)	(1.3559)
	TM (6)	0 2225	Ag - Tmsv2	Qs1 - Tmr	1 07/17	Od2 = Ag(2,0)	Qd2 - Tma3
		0.2355	(0.661)	(0.0283)	1.5747	Quz - Ag (2.0)	(1.6442)
	ALI (9)	0 2889	Ag - Tma3	Qs1 - Tmr	1 978	Qd2 - Ag (2.0)	Qd2 - Tmr2
		0.2005	(0.8108)	(0.0283)	1.570		(1.6477)
	CPs (16)	0 3353	Ag - Tma3	Qs1 - Tmr	1 9956	Qd2 - Qs1	Qd2 - Tma3
		0.5555	(1.0202)	(0.0316)	1.5550	(2.0)	(1.8777)
	CPs ROI	0 3356	Ag - Tma3	Qs1 - Tmr	1 9955	Qd2 - Qs1	Qd2 - Tma3
	(16)	0.0000	(1.0207)	(0.0316)	1.5555	(2.0)	(1.8745)
	Bandas	0 3399	Ag - Tma3	Qs1 - Tmr	1 9953	$Od2 - \Delta \sigma (2 0)$	Qd2 - Tma3
	(16)	0.5555	(1.0365)	(0.0283)	1.5555	Quz - Ag (2.0)	(1.8917)

En la Figura **87** se muestran las gráficas con las medidas promedio, máximas y mínimas de separabilidad en esta área de pruebas.

Figura 87. Gráficas de resultados de métricas de separabilidad para cada uno de los experimentos realizados en el área del centro-sur de la isla Ángel de la Guarda.

Figura 87. Gráficas de resultados de métricas de separabilidad para cada uno de los experimentos realizados en el área del centro-sur de la isla Ángel de la Guarda.

Los resultados más importantes de esta área se pueden encontrar en la **Tabla 71**. Para esta área se definieron 16 tipos de cubiertas de terreno, donde se incluían: el agua y la pluma de turbidez de agua (pta). Sin embargo, al no ser litologías se descartaron para el cálculo de las métricas de separabilidad y para la clasificación. Por ello, hay que tener en consideración que la tabla contiene los resultados de las distancias de JM y AE de las 14 clases restantes.

El cálculo del AE dio como resultado medias muy bajas en todos los experimentos, lo cual permitió prever que el clasificador SAM no produciría buenos resultados. Sin embargo, en lo que respecta a la distancia de JM se destacaron dos experimentos: X y XI, estos superaron el umbral de la media de 1.99. Con base a los mejores experimentos de la distancia de JM, se observó que las clases Qd2 y Tmd son las más distintas, y que Qs1 y Tmsv2 son las más similares, aunque la métrica de separabilidad de esta última combinación es relativamente positiva.

Passas (n)	Ángulo espectral			Jeffries – Matusita		
Rasgus (II)	Media	Máxima	Mínima	Media	Máxima	Mínima
Cargas (16)	0.0693	Qd1 - Tma3 (0.2053)	Qs1 - Qs3 (0.0)	1.8209	Qd1 - Qs2 (2.0)	Qs1 - Qs3 (0.5113)
TM (6)	0.1001	Qd1 - Tdind (0.2492)	Qd3 - Qs1 (0.0141)	1.8928	Qd1 - Qs2 (2.0)	Qd3 - Qs3 (1.3387)
ALI (9)	0.1342	Qd1 - Tma3 (0.3338)	Qd3 - Qs1 (0.02)	1.9096	Qd1 - Qs2 (2.0)	Qd1 - Tmr (1.3497)
CP (16)	0.1272	Tmd2 - Tma3 (0.3372)	Qs2 - Tmd (0.0245)	1.993	Qd2 – Tmd (2.0)	Qs1 – Tmsv2 (1.8916)
CP ROI (16)	0.1275	Tmd2 - Tma3 (0.3372)	Qs2 - Tmd (0.0245)	1.9935	Qd2 – Tmd (2.0)	Qs1 – Tmsv2 (1.9105)
Bandas (16)	0.1309	Qd1 - Tma3 (0.3326)	Qs1 - Tmr (0.0245)	1.9685	Qd1 - Qs2 (2.0)	Qs2 - Tmd (1.7)

Tabla 71. Resultados de Jeffries-Matusita y Ángulo Espectral: media de separabilidad, combinación de separabilidad máxima y combinación de separabilidad mínima para cada experimento en el área de la isla Ángel de la Guarda.

En la **Figura 88** se muestran las gráficas con las medidas promedio, máximas y mínimas de separabilidad para cada métrica en cada uno de los experimentos realizados en esta área de pruebas. Las gráficas exponen explícitamente la pobre separabilidad que se produce al calcular el AE entre los tipos de cubiertas definidas en esta zona de pruebas. Por otro lado, en la distancia de JM se ve el crecimiento de la separabilidad conforme al número de características en cada uno de los experimentos. Principalmente en los experimentos de CPS, donde los valores mínimos y máximos de separabilidad convergen para producir

el mejor resultado en esta área.

Figura 88. Gráficas de resultados de métricas de separabilidad para cada uno de los experimentos realizados en el área de la isla Ángel de la Guarda.

Experimento XI. Ángulo espectral i)

Figura 88. Gráficas de resultados de métricas de separabilidad para cada uno de los experimentos realizados en el área de la isla Ángel de la Guarda.

4.6 Clasificación supervisada

Se realizó la clasificación de las imágenes en cada una de las áreas de prueba. En este apartado se muestran los mapas temáticos de los mejores resultados de cada clasificador por área.

4.6.1 Área A

Las redes neuronales tienen gran capacidad de generalización y son tolerantes a ruido. En **Figura 89** se puede observar que los mejores resultados pertenecen al algoritmo de ML. Sin embargo, los mapas temáticos generados por esta técnica presentan líneas de píxeles, de una misma clase, provocado por el ruido en los últimos componentes principales utilizados como conjuntos de características en los experimentos (X y XI). MLP, por su parte, se ve nítida.

	Agua		Vegetaci	ón
	Zona agrícola		Suelo des	snudo 1
	Arroyo		Suelo des	snudo 2
	Zona urbana		Suelo des	snudo 3
	Zona urbana		Suelo des Suelo des	snudo 2 snudo 3
SAN	/I: 92.63 % - VIII (6)	IVIL: 97.99% - X (16)	MIL: 97.99% - XI (16)	MLP: 97.43% - X (10)

Figura 89. Mapas temáticos de los mejores resultados por clasificador para el área de Tecate.

4.6.2 Área B

En esta área también se puede apreciar la diferencia entre los tres clasificadores. El mapa correspondiente a ML, a diferencia de SAM y MLP, presenta una línea de pixeles anómalos (clasificados para la clase Tma3 y Qd2). Por su parte, SAM visualmente delimita las clases espectrales muy bien, aunque su resultado de precisión es bajo. Y por último, MLP realiza un excelente desempeño; su precisión fue alta y no solo eso, lo demuestra visualmente (**Figura 90**).

Qd2
Agua
Qs1
Qs2

Tmsv2
Tmr
Tmr2
Tma3

Figura 90. Mapas temáticos de los mejores resultados por clasificador para el área del centro-sur de la isla Ángel de la Guarda.

4.6.3 Área C

Esta área extiende a la anterior, se puede percibir el mismo comportamiento de los clasificadores para producir el mapa temático. Sin embargo, en este caso, ML obtuvo un mejor resultado que MLP (Ver **Figura**

91).

Qd1
Qd2
Qd3
Qs1
Qs2
Qs3
Tmr
 Tmr2

Tmd
Tmd2
Tmd3
Tmsv2
Tma3
Tdind
Agua
Pta

Figura 91. Mapas temáticos de los mejores resultados de los clasificadores para el área de la isla Ángel de la Guarda.

4.7 Evaluación del desempeño de los clasificadores

Se construyeron las matrices de confusión para cada experimento al comparar los pixeles clasificados con sus clases verdaderas definidas en los patrones de validación. En la **Tabla 72** se concentran los porcentajes de precisión más altos, obtenidos de los experimentos en cada una de las áreas de prueba. Para señalar los mejores resultados por experimento, por área y por clasificador, se utilizaron acotaciones, que son explicadas debajo de la tabla.

De las métricas de separabilidad, en general, el Ángulo Espectral consiguió los resultados más pobres. Este hecho se reflejó en la clasificación, SAM fue la técnica de reconocimiento de patrones con los porcentajes de precisión más bajos de los tres. Sus máximos fueron: 92.63 % en el área A, 80.30 % en el área B y 61 % en el área C. Por otro lado, el clasificador de ML obtuvo los mejores resultados en las áreas A y C, con los porcentajes de precisión: 97.99 y 85.23 respectivamente. Además, obtuvo el mejor resultado en 23 de 30 experimentos realizados.

Los mejores resultados de clasificación fueron obtenidos con los datos Hyperion, más específicamente, utilizando el ACP para comprimir la información en las primeras características.

Sensor	Rasgos (n)	A (Tecate)			B (Centro-sur de la isla Ángel de la Guarda)			C (Centro de la Isla Ángel de la Guarda)			
		SAM	ML	Adam	SAM	ML	Adam	SAM	ML	Adam	
тм	Bandas (6)	87.53 (4)	97.17 (6)*	96.48 (6)	71.47 (6)	90.49 (6)*	77.91 (6)	N/A			
	CPS (6)	85.03 (5,6)	97.17 (6)*	96.71 (5,6)	71.47 (6)	90.49 (6)*	82.92 (6)				
	CPS ROI (6)	85.03 (6)	97.28 (5)*	96.94 (5)	71.47 (6)	90.49 (6)*	84.87 (6)				
ALI	Bandas (9)	90.35 (7)	96.21 (8)*	92.67 (9)	80.30 (9)~	85.52 (8)	88.18 (8)*		N/A		
	CPS (9)	84.00 (8,9)	96.34 (8)*	94.38 (6)	80.30 (9)~	89.95 (3)	92.02 (9)*				
	CPS ROI (9)	84.00 (8,9)	96.34 (8)*	94.38 (9)	80.30 (9)~	90.54 (3)	91.53 (9)*				
НР	Cargas (16)	53.46 (16)	88.62 (16)*	69.98 (16)	57.95 (11)	83.16 (15)*	57.43 (11)	35.20 (16)	73.85 (16)*	45.01 (14)	
	TM (6)	92.63 (6)	97.10 (6)*	96.76 (5,6)	72.49 (5)	86.09 (6)*	75.10 (6)	54.87 (6)	73.67 (6)*	65.50 (6)	
	ALI (9)	91.29 (7)	97.32 (9)*	95.31 (8)	72.28 (9)	83.89 (9)	85.04 (9)*	56.28 (9)	74.84 (9)*	68.47 (8)	
	CPS (16)	89.28 (13-16)	97.99 (16)^	97.43 (10)~	69.97 (16)	92.88 (12)	94.56 (14)*	60.77 (13,14)	81.44 (7)	84.00 (16)*~	
	CPS ROI 16)	89.28 (15,16)	97.99 (16)^	97.10 (15)	70.29 (14-16)	92.36 (15,16)	95.82 (14)^	61.00 (11)~	82.78 (7)*	81.67 (15)	
	Bandas (16)	91.63 (16)~	97.77 (16)*	96.87 (12)	70.82 (4,16)	92.99 (16)*~	86.30 (14)	59.02 (16)	85.23 (16)^	77.35 (15)	

Tabla 72. Mejores porcentajes de precisión por experimento, clasificador y área.

Símbolos:

- (n) En la columna "Rasgos" indica el número máximo de características empleado para la clasificación
- (#) Los números entre paréntesis, en los resultados de precisión, indican la característica donde se alcanzó el mejor resultado.
 En los clasificadores indica, el número de característica donde se consiguió la mejor clasificación.
- * Mejor resultado para un experimento determinado en un área de pruebas determinado.
- ~ Mejor resultado para un clasificador determinado en un área de pruebas determinado.
- ^ Mejor resultado obtenido para un área de pruebas determinada. Este incluye el significado de los dos símbolos anteriores.

En la **Figura 92** se puede observar, para cada experimento, el desempeño de los clasificadores en relación al número de características, en el área de Tecate. El efecto del ACP en el desempeño de precisión se puede notar en las gráficas de los experimentos II, III, V, VI, X, XI. En estos se aprecia, que solamente con 2 características se alcanzan niveles de precisión más altos que los que utilizan la información espectral original en el mismo número de características.

Figura 92. Gráficas por experimento de la precisión general de la clasificación en el área de Tecate.

Figura 92. Gráficas por experimento de la precisión general de la clasificación en el área de Tecate.

A diferencia de lo sucedido en el área de Tecate, en el centro-sur de la Isla Ángel de la Guarda, los clasificadores inician con un desempeño relativamente mejor para las 2 primeras características (Ver **Figura 93**). Sin embargo, conforme se emplean más características la precisión global no logra escalar lo suficiente para llegar a ser tan alta como en el área A. Posiblemente sea provocado, primeramente por el efecto de la inclusión de la clase Agua en un conjunto de clases espectrales litológicas. Segundo, mientras el área A trabaja con tipos de cubiertas comunes, que conforme más rasgos se adjuntan más se resaltan las diferencias; el área B son clases muy similares, las cuales en el proceso de adición de características puede provocar confusiones o leves diferencias, que empeoraran o ayudaran levemente al resultado de la clasificación.

Figura 93. Gráficas por experimento de la precisión general de la clasificación en el área del centro-sur de la isla Ángel de la Guarda.

k) Experimento XI. CP de ROI de entrenamiento (HP)

I) Experimento XII. Separación espectral

Figura 93. Gráficas por experimento de la precisión general de la clasificación en el área del centro-sur de la isla Ángel de la Guarda.

En la **Figura 94** se presentan las gráficas del comportamiento de los clasificadores respecto al número de características, para cada experimento aplicado al área del centro de la Isla Ángel de la Guarda (Área C).

Figura 94. Gráficas por experimento de la precisión general de la clasificación en el área de la isla Ángel de la Guarda.

5.1 Conclusiones

Después de evaluar los resultados obtenidos en esta investigación, a continuación, se presentan las conclusiones derivadas:

- Las firmas espectrales y las desviaciones estándar de las clases de cubierta de terreno definen el resultado de la clasificación. Las clases con firmas espectrales con gran similitud en el proceso de clasificación se ven afectadas por errores de omisión y comisión. Por otro lado, las desviaciones estándar grandes amplían el tamaño de la distribución de probabilidad, y así como sucede en las firmas espectrales similares, los algoritmos de clasificación se tornan más susceptibles a provocar errores de asignación. En resumen, seleccionar patrones con firmas espectrales distintivas y con desviaciones estándar estrechas pueden brindar mejores resultados.
- El ACP es más efectivo cuando la correlación de las bandas espectrales en la imagen es alta. La distribución de la varianza fue más grande en las primeras componentes principales de las imágenes donde la correlación era más alta.
- El clasificador de ML presentó mejor precisión en la mayoría de los experimentos. En total se realizaron 30 conjuntos de experimentos, de los cuales, en 22 el clasificador de ML obtuvo el mejor resultado; además su precisión nunca fue menor de 73 % en comparación a SAM y Adam.
- El clasificador de ML es muy susceptible al ruido, principalmente en las imágenes hiperespectrales.
 El ruido se puede apreciar en los mapas temáticos, precisamente en aquellos pixeles que pertenecen a clases bien conocidas, que están mal clasificados y que además, siguen un patrón de error.
- Cuando se incrementa el número de bandas espectrales para la clasificación, la precisión tiende a aumentar. Sin embargo, se observó en las representaciones gráficas de la precisión que llega un límite en el número de características que puede producir un decaimiento en el resultado.

5.1.1 Aportaciones

El presente trabajo contribuye de la siguiente manera:

- Se propone una metodología y un diseño experimental referente a la clasificación supervisada de tipos de cubiertas de terreno, comunes y litológicas, utilizando los sensores TM, ALI e Hyperion.
- Se presenta la descripción y comparación de tres sensores, Hyperion, ALI y TM. Se contrastan aspectos técnicos en la formación de imágenes como, su resolución radiométrica y espectral, el número de bandas, el ancho de cobertura espacial, el rango de longitud de onda, además de esquematizar, con relación al espectro electromagnético, el cubrimiento espectral.
- Se desarrollaron procedimientos en Python necesarios para el trabajo, que pueden ser utilizados para otro proyecto. A continuación, se mencionan los procesos:
 - Cálculos de métricas de separabilidad:
 - Distancia de Jeffries-Matusita
 - Ángulo Espectral
 - Estiramiento lineal del contraste
 - Cálculo de parámetros estadísticos:
 - Media
 - Matriz de covarianza
 - Correlación
 - Construcción y despliegue de la matriz de confusión.
 - o Formación de imágenes para análisis a partir de una matriz
 - o Importación de las regiones de interés de ENVI
 - Clasificadores:
 - Mapeo de Ángulo Espectral
 - Máxima verosimilitud
 - Perceptrón multicapa implementando descenso de gradiente Adam (Con la librería scikit-learn)
 - Cálculo de precisión general de los clasificadores supervisados

5.1.2 Limitaciones

Este trabajo de tesis presenta las siguientes limitaciones:

- El reconocimiento de patrones es espectral, cada vez existen más trabajos de investigación que emplean información espacial para obtener mejores resultados en la clasificación de cubiertas del terreno. Los patrones espaciales están relacionados a aspectos como textura, color (atributo percibido en el espectro visible), contexto, sombras, altura, inclinación, etc.
- La USGS solo dispone de dos imágenes Hyperion pertenecientes a la Isla Ángel de la Guarda. La zona más conocida de la Isla no estaba disponible en la plataforma de descargas, lo cual impidió trabajar con un mayor número de patrones de entrenamiento y validación de un número más grande de litologías.

5.2 Trabajo futuro

La presente tesis abre las posibilidades para los siguientes trabajos futuros:

- Hacer el reconocimiento de patrones más completo, al utilizar la información espacial y espectral para la clasificación de tipos de cubierta del terreno.
- Experimentar con otros sensores hiperespectrales, ya sean espaciales o aerotransportados.
- Aplicar otras técnicas de extracción de características como el Análisis de Componentes Principales
 no lineales, Análisis discriminante lineal, Análisis de Componentes independientes, Fracción
 Mínima de Ruido, Transformada Discreta de Wavelets, o incluso variaciones del ACP.
- Utilizar las redes neuronales convolucionales para el mapeo litológico. En la actualidad, este tipo de algoritmos se aplica muy poco en imágenes de teledetección. Debido a esto, existe un amplio campo libre de aplicación para la contribución de conocimiento a esta área de investigación.

- Bioucas-Dias, J. M., Plaza, A., Camps-valls, G., Scheunders, P., Nasrabadi, N. M., & Chanussot, J. (2013).
 Hyperspectral Remote Sensing Data Analysis and Future Challenges. *IEEE Geoscience and Remote Sensing Magazine*, (June), 6–36. http://doi.org/10.1109/MGRS.2013.2244672
- Buckingham, R., & Staenz, K. (2008). Review of current and planned civilian space hyperspectral sensors for EO. *Canadian Journal of Remote Sensing*, *34*(June), S187–S197. http://doi.org/10.5589/m08-002
- Ghamisi, P., Benediktsson, J. A., & Ulfarsson, M. O. (2014). Spectral-Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields. *IEEE Transactions on Geoscience and Remote Sensing*, 52(5), 2565–2574. http://doi.org/10.1109/TGRS.2013.2263282
- Gomarasca, M. A. (2009). *Basics of geomatics*. *Basics of Geomatics*. Dordrecht: Springer Netherlands. http://doi.org/10.1007/978-1-4020-9014-1
- Gutiérrez, S., Tardaguila, J., Fernández-Novales, J., & Diago, M. P. (2015). Support vector machine and artificial neural network models for the classification of grapevine varieties using a portable NIR spectrophotometer. *PLoS ONE*, *10*(11), 1–15. http://doi.org/10.1371/journal.pone.0143197
- Kang, X., Li, S., Fang, L., Li, M., & Benediktsson, J. A. (2015). Extended random walker-based classification of hyperspectral images. *IEEE Transactions on Geoscience and Remote Sensing*, 53(1), 144–153. http://doi.org/10.1109/TGRS.2014.2319373
- Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. In 3rd International Conference for Learning Representations, San Diego, 2015 (pp. 1–15). http://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
- Leverington, D. W., & Schindler, M. (2016). Detection and mapping of black rock coatings using hyperion images: Sudbury, Ontario, Canada, *8*(4). http://doi.org/10.3390/rs8040301
- Pajares Martinsanz, G., & de la Cruz García, J. M. (2007). *Ejercicios resultos de visión por computador* (Primera Ed). México, D.F.: Alfaomega.
- Pearlman, J., Carman, S., Segal, C., Jarecke, P., Clancy, P., & Browne, W. (2001). Overview of the Hyperion Imaging Spectrometer for the NASA EO-1 mission. *IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)*, 7(C), 1–3. http://doi.org/10.1109/IGARSS.2001.978246
- Pour, A. B., & Hashim, M. (2015). Evaluation of Earth Observing-1 (EO1) Data for Lithological and Hydrothermal Alteration Mapping: A Case Study from Urumieh-Dokhtar Volcanic Belt, SE Iran. *Journal of the Indian Society of Remote Sensing*, 43(3), 583–597. http://doi.org/10.1007/s12524-014-0444-y
- Rajadell, O., & Pla, F. (2013). Spectral–Spatial Pixel Characterization Using Gabor Filters for Hyperspectral Image Classification. *IEEE Geoscience and Remote Sensing Letters*, 10(4), 860–864.
- Richards, J. a, & Jia, X. (2006). *Remote Sensing Digital Image Analysis: An Introduction. New York*. Springer. http://doi.org/10.1007/978-3-642-30062-2

Schowengerdt, R. A. (2007). Remote Sensing: Models and Methods for Image Processing (3rd ed.). San

Diego, California: Elsevier. Retrieved from http://www.cabdirect.org/abstracts/19790652875.html%5Cnhttp://www.ncbi.nlm.nih.gov/pubme d/22115514

Swain, P. H., & Davis, S. M. (1978). Remote Sensing The Quantitative Approach. N.Y.: McGraw-Hill.

Zhang, X., & Li, P. (2014). Lithological mapping from hyperspectral data by improved use of spectral angle mapper. *International Journal of Applied Earth Observation and Geoinformation*, *31*(1), 95–109. http://doi.org/10.1016/j.jag.2014.03.007
Apéndice A

Diccionario de Datos EO-1: Niveles de procesamiento

El nivel de procesamiento indica el tipo de corrección que ha sido aplicado a la escena.

Nivel 1R (L1R). Correcciones radiométricas para compensar las variaciones debidas a la sensibilidad del sensor. Este nivel de procesamiento solo está disponible para datos de Hyperion. Los productos L1R se proporcionan en formato HDF.

Nivel 1Gst (L1Gst). Las correcciones geométricas sistemáticas y radiométricas derivadas de los datos de ephemeris de la nave espacial se han aplicado al emplear un Modelo de Elevación Digital (DEM) de 90 metros para la precisión topográfica. Las escenas L1Gst se proporcionan en formato GeoTIFF.

Nivel 1T (L1T). Correcciones geométricas sistemáticas y radiométricas que incorporan puntos de control de tierra se han aplicado mientras se emplea un Modelo de Elevación Digital (DEM) de 90 metros para la precisión topográfica. La precisión geodésica del producto depende de la precisión de los puntos de control en tierra y se espera que esté dentro de los 2 píxeles. Las escenas que no tienen un control de tierra adecuado se procesarán al mejor nivel de corrección (L1Gst). Las escenas L1T se proporcionan en formato GeoTIFF.

Referencia: https://lta.cr.usgs.gov/EO1.html

Apéndice B

Cobertura espectral de los sensores utilizados en este trabajo de tesis

Thematic Mapper (TM)

Banda	Longitud de onda (<i>nm</i>)
TM – 1	450 – 520
TM – 2	520 - 600
TM – 3	630 – 690
TM – 4	770 – 900
TM – 5	1550 – 1750
TM – 6	10400 - 12500
TM – 7	2090 – 2350
Pancromática	520 – 900

Hyperion y ALI

Comparació	Comparación de bandas ALI				
MS	Pancromática (<i>nm</i>) 480 – 690 (X)	Bandas Hyperion	Longitud de onda promedio (<i>nm</i>)	FWHM (<i>nm</i>)	No calibrada (X)
		B1	355.5900	11.3871	х
		B2	365.7600	11.3871	Х
		В3	375.9400	11.3871	Х
		B4	386.1100	11.3871	Х
		B5	386.1100	11.3871	Х
		B6	406.4600	11.3871	Х
		B7	416.6400	11.3871	Х
		B8	426.8200	11.3871	
MS-1		B9	436.9900	11.3871	
MS-1		B10	447.1700	11.3871	
MS-1'		B11	457.3400	11.3871	
MS-1'		B12	467.5200	11.3871	
MS-1'		B13	477.6900	11.3871	
MS-1'	Х	B14	487.8700	11.3784	
MS-1'	Х	B15	498.0400	11.3538	
MS-1'	Х	B16	508.2200	11.3133	
	Х	B17	518.3900	11.2580	
MS-2	Х	B18	528.5700	11.1907	
MS-2	Х	B19	538.7400	11.1119	
MS-2	Х	B20	548.9200	11.0245	
MS-2	Х	B21	559.0900	10.9321	
MS-2	Х	B22	569.2700	10.8368	
MS-2	Х	B23	579.4500	10.7407	
MS-2	Х	B24	589.6200	10.6482	

MS-2	Х	B25	599.8000	10.5607	
	Х	B26	609.9700	10.4823	
	X	B27	620.1500	10.4147	
MS-3	X	B28	630.3200	10.3595	
MS-3	X	B29	640.5000	10.3188	
MS-3	Х	B30	650.6700	10.2942	
MS-3	Х	B31	660.8500	10.2856	
MS-3	Х	B32	671.0200	10.2980	
MS-3	Х	B33	681.2000	10.3349	
		B34	691.3700	10.3909	
		B35	701.5500	10.4592	
		B36	711.7200	10.5322	
		B37	721.9000	10.6004	
		B38	732.0700	10.6562	
		B39	742.2500	10.6933	
		B40	752.4300	10.7058	
		B41	762.6000	10.7276	
MS-4		B42	772.7800	10.7907	
MS-4		B43	782.9500	10.8833	
MS-4		B44	793.1300	10.9938	
MS-4		B45	803.3000	11.1044	
		B46	813.4800	11.1980	
		B47	823.6500	11.2600	
		B48	833.8300	11.2824	
MS-4'		B49	844.0000	11.2822	
MS-4'		B71	851.9200	11.0457	Х
MS-4'		B50	854.1800	11.2816	
MS-4'		B72	862.0100	11.0457	Х
MS-4'		B51	864.3500	11.2809	
MS-4'		B73	872.1000	11.0457	Х
MS-4'		B52	874.5300	11.2797	
MS-4'		B74	882.1900	11.0457	Х
MS-4'		B53	884.7000	11.2782	
		B75	892.2800	11.0457	Х
		B54	894.8800	11.2771	
		B76	902.3600	11.0457	Х
		B55	905.0500	11.2765	
		B77	912.4500	11.0457	
		B56	915.2300	11.2756	
		B78	922.5400	11.0457	
		B57	925.4100	11.2754	
		B79	932.6400	11.0457	
		B58	935.5800	11.2754	Х
		B80	942.7300	11.0457	
		B59	945.7600	11.2754	Х
		B81	952.8200	11.0457	

		B60	955.9300	11.2754	Х
		B82	962.9100	11.0457	
		B61	966.1100	11.2754	Х
		B83	972.9900	11.0457	
		B62	976.2800	11.2754	Х
		B84	983.0800	11.0457	
		B63	986.4600	11.2754	X
		B85	993.1700	11.0457	
		B64	996.6300	11.2754	X
		B86	1003.3000	11.0457	
		B65	1006.8100	11.2754	X
		B87	1013.3000	11.0457	
		B66	1016.9800	11.2754	X
		B88	1023.4000	11.0451	
		B67	1027.1600	11.2754	Х
		B89	1033.4900	11.0423	
		B68	1037.3300	11.2754	Х
		B90	1043.5900	11.0372	
		B69	1047.5100	11.2754	Х
		B91	1053.6900	11.0302	
		B70	1057.6800	11.2754	Х
		B92	1063.7900	11.0218	
		B93	1073.8900	11.0122	
		B94	1083.9900	11.0013	
		B95	1094.0900	10.9871	
		B96	1104.1900	10.9732	
		B97	1114.1900	10.9572	
		B98	1124.2800	10.9418	
		B99	1134.3800	10.9248	
		B100	1144.4800	10.9065	
		B101	1154.5800	10.8884	
		B102	1164.6800	10.8696	
		B103	1174.7700	10.8513	
		B104	1184.8700	10.8335	
		B105	1194.9700	10.8154	
MS-5'		B106	1205.0700	10.7979	
MS-5'		B107	1215.1700	10.7822	
MS-5'		B108	1225.1700	10.7663	
MS-5'		B109	1235.2700	10.7520	
MS-5'		B110	1245.3600	10.7385	
MS-5'		B111	1255.4600	10.7270	
MS-5'		B112	1265.5600	10.7174	
MS-5'		B113	1275.6600	10.7091	
MS-5'		B114	1285.7600	10.7022	
MS-5'		B115	1295.8600	10.6970	
		B116	1305.9600	10.6946	
	1	1	1	1	1

	B11	17	1316.0500	10.6937	
	B11	18	1326.0500	10.6949	
	B11	19	1336.1500	10.6996	
	B12	20	1346.2500	10.7058	
	B12	21	1356.3500	10.7163	
	B12	22	1366.4500	10.7283	
	B12	23	1376.5500	10.7437	
	B12	24	1386.6500	10.7612	
	B12	25	1396.7400	10.7807	
	B12	26	1406.8400	10.8034	
	B12	27	1416.9400	10.8267	
	B12	28	1426.9400	10.8534	
	B12	29	1437.0400	10.8818	
	B13	30	1447.1400	10.9110	
	B13	31	1457.2300	10.9422	
	B13	32	1467.3300	10.9743	
	B13	33	1477.4300	11.0074	
	B13	34	1487.5300	11.0414	
	B13	35	1497.6300	11.0759	
	B13	36	1507.7300	11.1108	
	B13	37	1517.8300	11.1461	
	B13	38	1527.9200	11.1811	
	B13	39	1537.9200	11.2156	
	B14	40	1548.0200	11.2496	
MS-5	B14	41	1558.1200	11.2826	
MS-5	B14	12	1568.2200	11.3146	
MS-5	B14	13	1578.3200	11.3460	
MS-5	B14	14	1588.4200	11.3753	
MS-5	B14	45	1598.5100	11.4037	
MS-5	B14	16	1608.6100	11.4302	
MS-5	B14	17	1618.7100	11.4538	
MS-5	B14	18	1628.8100	11.4760	
MS-5	B14	19	1638.8100	11.4958	
MS-5	B15	50	1648.9000	11.5133	
MS-5	B15	51	1659.0000	11.5286	
MS-5	B15	52	1669.1000	11.5404	
MS-5	B15	53	1679.2000	11.5505	
MS-5	B15	54	1689.3000	11.5580	
MS-5	B15	55	1699.4000	11.5621	
MS-5	B15	56	1709.5000	11.5634	
MS-5	B15	57	1719.6000	11.5617	
MS-5	B15	58	1729.7000	11.5563	
MS-5	B15	59	1739.7000	11.5477	
MS-5	B16	50	1749.7900	11.5346	
	B16	51	1759.8900	11.5193	
	B16	52	1769.9900	11.5002	

	B163	1780.0900	11.4789	
	B164	1790.1900	11.4548	
	B165	1800.2900	11.4279	
	B166	1810.3800	11.3994	
	B167	1820.4800	11.3688	
	B168	1830.5800	11.3366	
	B169	1840.5800	11.3036	
	B170	1850.6800	11.2696	
	B171	1860.7800	11.2363	
	B172	1870.8700	11.2007	
	B173	1880.9800	11.1666	
	B174	1891.0700	11.1333	
	B175	1901.1700	11.1018	
	B176	1911.2700	11.0714	
	B177	1921.3700	11.0424	
	B178	1931.4700	11.0155	
	B179	1941.5700	10.9912	
	B180	1951.5700	10.9698	
	B181	1961.6600	10.9508	
	B182	1971.7600	10.9355	
	B183	1981.8600	10.9230	
	B184	1991.9600	10.9139	
	B185	2002.0600	10.9083	
	B186	2012.1500	10.9069	
	B187	2022.2500	10.9057	
	B188	2032.3500	10.9013	
	B189	2042.4500	10.8951	
	B190	2052.4500	10.885	
	B191	2062.5500	10.8740	
	B192	2072.6500	10.8591	
MS-7	B193	2082.7500	10.8429	
MS-7	B194	2092.8400	10.8242	
MS-7	B195	2102.9400	10.8039	
MS-7	B196	2113.0400	10.7820	
MS-7	B197	2123.1400	10.7592	
MS-7	B198	2133.2400	10.7342	
MS-7	B199	2143.3400	10.7092	
MS-7	B200	2153.3400	10.6834	
MS-7	B201	2163.4300	10.6572	
MS-7	B202	2173.5300	10.6312	
MS-7	B203	2183.6300	10.6052	
MS-7	B204	2193.7300	10.5803	
MS-7	B205	2203.8300	10.5560	
MS-7	B206	2213.9300	10.5328	
MS-7	B207	2224.0300	10.5101	
MS-7	B208	2234.1200	10.4904	

MS-7	B209	2244.2200	10.4722	
MS-7	B210	2254.2200	10.4552	
MS-7	B211	2264.3200	10.4408	
MS-7	B212	2274.4200	10.4285	
MS-7	B213	2284.5200	10.4197	
MS-7	B214	2294.6100	10.4129	
MS-7	B215	2304.7100	10.4088	
MS-7	B216	2314.8100	10.4077	
MS-7	B217	2324.9100	10.4077	
MS-7	B218	2335.0100	10.4077	
MS-7	B219	2345.1100	10.4077	
	B220	2355.2100	10.4077	
	B221	2365.2000	10.4077	
	B222	2375.3000	10.4077	
	B223	2385.4000	10.4077	
	B224	2395.5000	10.4077	
	B225	2405.6000	10.4077	Х
	B226	2415.7000	10.4077	Х
	B227	2425.8000	10.4077	Х
	B228	2435.8900	10.4077	Х
	B229	2445.9900	10.4077	Х
	B230	2456.0900	10.4077	Х
	B231	2466.0900	10.4077	Х
	B232	2476.1900	10.4077	Х
	B233	2486.2900	10.4077	Х
	B234	2496.3900	10.4077	Х
	B235	2506.4800	10.4077	Х
	B236	2516.5900	10.4077	Х
	B237	2526.6800	10.4077	Х
	B238	2536.7800	10.4077	Х
	B239	2546.8800	10.4077	Х
	B240	2556.9800	10.4077	X
	 B241	2566.9800	10.4077	Х
	B242	2577.0800	10.4077	Х

Referencia: https://eo1.usgs.gov/sensors/hyperioncoverage