Centro de Investigación Científica y de Educación Superior de Ensenada

DESARROLLO DE UN NUEVO MÉTODO DE EXTRACCIÓN DE LOS ELEMENTOS INTRÍNSECOS DEL CIRCUITO ELÉCTRICO EQUIVALENTE DE TRANSISTORES DE POTENCIA A BASE DE NITRURO DE GALIO UTILIZANDO LOS PUNTOS EXTREMOS DE LOS PARÁMETROS DE ADMITANCIA

TESIS

.

MAESTRIA EN CIENCIAS

JAQUELIN ESTRADA MENDOZA

Ensenada, Baja California, México, Novieinbre de 2009

TESIS DEFENDIDA POR

Jaquelin Estrada Mendoza

Y APROBADA POR EL SIGUIENTE COMITÉ

Dr. J. Apolinar Réynoso Hernández Director del Comité

Dra. María del Carmen Maya Sánchez

Miembro del Comité

M. en C. José de Jesús Ibarra Villaseñor

Miembro del Comité

Dr. Pedro Negrete Regagnon Miemoro del Comité

Dra. María del Carmen Maya Sánchez

Coordinador del programa de posgrado en Electrónica y Telecomunicaciones.

Dr. David Hilario Covarrubias Rosales Director de Estudios de Posgrado

6 de Noviembre de 2009

CENTRO DE INVESTIGACIÓN CIENTÍFICA Y DE EDUCACIÓN SUPERIOR DE ENSENADA

PROGRAMA DE POSGRADO EN CIENCIAS EN ELECTRÓNICA Y TELECOMUNICACIONES

DESARROLLO DE UN NUEVO MÉTODO DE EXTRACCIÓN DE LOS ELEMENTOS INTRÍNSECOS DEL CIRCUITO ELÉCTRICO EQUIVALENTE DE TRANSISTORES DE POTENCIA A BASE DE NITRURO DE GALIO UTILIZANDO LOS PUNTOS EXTREMOS DE LOS PARÁMETROS DE ADMITANCIA

TESIS

que para cubrir parcialmente los requisitos necesarios para obtener el grado de MAESTRO EN CIENCIAS

Presenta:

JAQUELIN ESTRADA MENDOZA

Ensenada, Baja California, México, Noviembre de 2009.

RESUMEN de la tesis de **Jaquelin Estrada Mendoza**, presentada como requisito parcial para la obtención del grado de MAESTRO EN CIENCIAS en ELECTRÓNICA Y TELECOMUNICACIONES con orientación en Electrónica de Alta Frecuencia. Ensenada, Baja California, México. Noviembre de 2009.

DESARROLLO DE UN NUEVO MÉTODO DE EXTRACCIÓN DE LOS ELEMENTOS INTRÍNSECOS DEL CIRCUITO ELÉCTRICO EQUIVALENTE DE TRANSISTORES DE POTENCIA A BASE DE NITRURO DE GALIO UTILIZANDO LOS PUNTOS EXTREMOS DE LOS PARÁMETROS DE ADMITANCIA

Resumen aprobado por:

Dr. J. Apolinár Řeynoso Hernández Director de Tesis

i

Los transistores de alta movilidad electrónica a base de Nitruro de Galio (HEMT-GaN) son el centro de una intensa investigación en los últimos tiempos y son fuertes candidatos en la fabricación de amplificadores de potencia de microondas de alta linealidad y alta eficiencia.

Un circuito eléctrico equivalente de pequeña señal proporciona un medio para describir las propiedades eléctricas del dispositivo bajo prueba (DUT) las cuales están directamente ligadas a la estructura del dispositivo. Cada uno de los elementos del circuito eléctrico equivalente se aproxima a un elemento de tipo concentrado, el cual se relaciona con algún aspecto físico del dispositivo.

El modelo lineal de circuito eléctrico equivalente de los transistores de efecto de campo es la célula básica del modelo no-lineal y del modelo de ruido. Además, es muy importante en el análisis y diseño de circuitos de microondas ya que proporcionan una relación entre los parámetros S y el proceso eléctrico ocurrido dentro del dispositivo.

Actualmente, el método más usado para obtener los elementos del circuito eléctrico equivalente es el propuesto por Berroth. El método de Berroth requiere para su implementación de encontrar el rango de frecuencias en donde el valor del elemento es independiente de la frecuencia. Usando los puntos extremos (máximos o mínimos) de los parámetros de admitancia, en este trabajo de tesis se propone un nuevo método de extracción de los elementos intrínsecos R_i, R_{gd}, C_{gs}, C_{gd} mas simple y sencillo que el de Berroth.

Palabras Clave: Circuito eléctrico equivalente de pequeña señal, elementos intrínsecos, parámetros Y, HEMT's AlGaN/GaN.

ABSTRACT of the thesis presented by **Jaquelin Estrada Mendoza** as a partial requirement to obtain the MASTER OF SCIENCE degree in ELECTRONICS AND TELECOMMUNICATIONS with orientation in High Frequency Electronics. Ensenada, Baja California, Mexico. November, 2009.

DEVELOMENT OF A NEW METHOD FOR EXTRACTING THE INTRINSIC ELEMENTS OF THE EQUIVALENT ELECTRICAL CIRCUIT GALLIUM NITRIDE BASED POWER TRANSISTORS USING THE EXTREME POINTS OF ADMITTANCE PARAMETERS

The high electron mobility transistor based on Gallium Nitride (HEMT – GaN) has been the focus of intense research in the last few years and they are promising candidates for fabrication of microwave power amplifiers with high linearity and high efficiency.

A small signal equivalent electrical circuit provides means to describe the electrical properties of the device under test (DUT) which are linked to the device structure. Each of the equivalent electrical circuit elements approximates a concentrated type element, which is related to some physical aspect of the device.

The linear model of the equivalent electrical circuit for field effect transistor is the basic cell for nonlinear and noise modeling. It is also very important in the analysis and design of microwave circuits because they provide a relationship between the S parameters and the electrical process occurred within the device.

Currently, the most used method to obtain the equivalent electrical circuit elements is that proposed by Berroth. The Berroth method requires finding the frequency range where the element value is independent of frequency. Using the extreme points (maximum or minimum) of admittance parameters, this thesis proposes a new method for extracting the intrinsic elements R_i , R_{gd} , C_{gs} , C_{gd} in a more simple way than Berroth.

Keywords: Small signal equivalent electrical circuit, intrinsic elements, Y parameters, AlGaN/GaN HEMT's.

Dedicatorias

A mis padres Margarita y Víctor A mis hermanas Carolina y Araceli Los seres que más amo en la vida Gracias por existir.

Agradecimientos

A Dios por permitirme vivir esta vida, estar conmigo en todo momento e iluminar mi camino.

A mis padres por darme la vida, por su apoyo incondicional a lo largo de toda la vida, por su amor y su confianza porque sin ellos yo no estaría en donde ahora estoy. Gracias mamá por estar siempre pendiente de mí a pesar de la distancia, gracias papá por alentarme a ser una mejor persona.

A mis hermanas Carolina y Araceli, por ser parte de ese complemento en mi vida, por su cariño, su amistad y también por su confianza, por estar conmigo en las buenas y las malas, gracias.

A mis amigos y compañeros de generación con quienes he compartido estos dos años de mi vida, porque hicieron más agradable mi estancia en Ensenada: Cecilia, Daniel Escobedo, Jesús, Daniel García, Juan Carlos, Ivan, Naihvy, Paulino, Jacobo, Israel, Eduardo, Alejandro, Adán y Miguel. De una manera especial a Naihvy por brindarme su amistad y estar conmigo en las buenas y en las malas, a Cecilia por su amistad y confianza y a Jesús por todos los momentos que hemos compartido y porque a pesar de muchas cosas eres muy especial en mi vida.

A mis amigos y compañeros que también conocí en CICESE y me brindaron amistad y apoyo cuando lo necesité: Paúl, Edgar, Leonardo y Héctor.

A mis amigos que aún en la distancia siempre estuvieron a mi lado, brindándome su apoyo, su amistad y cariño, por ese mensaje o llamada que siempre alegró mi vida a lo largo de estos dos años, gracias: Viridiana, Allan, Daniela, Claudia, Sergio Miguel, Juan Carlos Lara, Fabiola, Juanita, Aurora, Maricarmen, Salvador y Francisco.

Al CICESE y a todos mis profesores a lo largo de estos dos años por darme una oportunidad y creer en mí.

A mi director de Tesis Dr. J. Apolinar Reynoso Hernández, por su confianza, por su apoyo en este trabajo de tesis y por estar siempre disponible cuando necesitaba algo, pero sobre todo por su amistad.

Al comité de Tesis por su tiempo y sus aportaciones a este trabajo: Dra. Ma. Del Carmen Maya Sánchez, M. en C. José de Jesús Ibarra Villaseñor y Dr. Pedro Negrete Regagnon.

Al CONACYT por su apoyo económico sin el cual no habría sido posible lograr esta meta.

Finalmente a todas aquellas personas que de alguna u otra manera contribuyeron a lograr esta meta y que no tienen su nombre escrito aquí, también muchas gracias.

CONTENIDO

Página

Resumen en español	i
Resumen en inglés	ii
Dedicatorias	iii
Agradecimientos	iv
Contenido	v
Lista de Figuras	viii
Lista de Tablas	xii

Capítulo I. Introducción

I.1 Antecedentes	1
I.2 Aplicaciones de los transistores de potencia	5
I.3 Objetivo	8
I.4 Planteamiento del Problema	8
I.5 Estructura de la Tesis	9

Capítulo II. Fundamentos teóricos de los transistores basados en GaN

II.1 Introducción	10
II.2 Estructura de HEMT de AlGaN/GaN	10
II.3 Tecnología de los transistores basados en GaN	11
II.3.1 Efectos de la polarización en el HEMT de AlGaN/GaN	14
II.4 Operación básica del HEMT	17

Capítulo III. Métodos de extracción de los elementos extrínsecos e intrínsecos

III.1 Modelado del transistor activo	20
III.2 Modelado de los componentes extrínsecos	20
III.2.1 Extracción de los elementos parásitos del transistor	23
III.2.2 Cálculo de las resistencias e inductancias parásitas. Cold FET	
para bajas corrientes de DC en directo $0 < V_{gs} < V_{bi}$; $I_{gs} > 0$ y V_{ds} =	
flotante	24
III.2.3 Cálculo de las capacitancias parásitas utilizando polarización en	
inverso $V_{gs} < V_p \ y \ V_{ds} = 0$	30
III.2.3.1 Modelo de Dambrine	30
III.2.3.2 Modelo de White	30
III.2.3.3 Comparación entre los modelos de Dambrine y White	31
III.2.3.4 Modelo propuesto por Zárate de Landa usando	
polarización en inverso	32

CONTENIDO (Continuación)

Página

III.3 Procedimiento de De-embedding	33
III.4 Modelado del Transistor Intrínseco	35
III.4.1 Modelo de Pequeña Señal	35
III.5 Extracción de elementos intrínsecos del transistor a partir del método de	
Berroth	39
Capítulo IV. Nuevo método para la extracción de los elementos intrínsecos	
IV.1 Introducción	41
IV.2 Nuevo método para determinar R _i , C _{gs} , R _{gd} y C _{gd} a partir de los puntos	
extremos de los parámetros Y intrínsecos	42
IV.3 Validación del nuevo método para determinar R_i , C_{gs} , R_{gd} y C_{gd}	46
Capítulo V. Resultados experimentales	
V.1 Introducción	53
V.2 Extracción de los elementos parásitos	53
V.3 Extracción de los elementos intrínsecos	54
V.3.1 Extracción de los elementos intrínsecos del Transistor 1, con 100	
um de ancho de compuerta	57
V.3.1.1 Extracción de R _i y R _{gd}	57
V.3.1.2 Extracción de C_{gs} y C_{gd}	58
V.3.1.3 Extracción de g_m y τ	59
V.3.1.4 Extracción de g_{ds} y C_{ds}	61
V.3.2 Extracción de los elementos intrínsecos del Transistor 2, con 300	
μm de ancho de compuerta	61
V.3.2.1 Extracción de R _i y R _{gd}	61
V.3.2.2 Extracción de C_{gs} y C_{gd}	63
V.3.2.3 Extracción de g_m y τ	65
V.3.2.4 Extracción de g _{ds} y C _{ds}	66
V.3.3 Extracción de los elementos intrínsecos del Transistor 3, con 2	
mm de ancho de compuerta	67
V.3.3.1 Extracción de R _i y R _{gd}	68
V.3.3.2 Extracción de C _{gs} y C _{gd}	69
V.3.3.3 Extracción de g_m y τ	70
V.3.3.4 Extracción de g _{ds} y C _{ds}	71
V.4 Validación del método de extracción de los elementos intrínsecos	72
V.4.1 Transistor AlGaN/GaN, W=100 µm	73
V.4.2 Transistor AlGaN/GaN, W=300 µm	75
V.4.3 Transistor AlGaN/GaN, W=2mm	77

CONTENIDO (Continuación)

Página

V.5 Estudio experimental de la dependencia no-lineal del método de extracción	
de elementos intrínsecos	79
V.5.1 Transistor AlGaN/GaN, W=100µm	79
V.5.2 Transistor AlGaN/GaN, W=300µm	85
V.5.3 Transistor AlGaN/GaN, W=2mm	90
V.6 Análisis del error de datos medidos versus datos simulados con el nuevo	
método y el método de Berroth	96

Capítulo VI. Conclusiones

VI.1 Conclusiones	100
VI.2 Aportaciones.	101
VI.3 Trabajo futuro	102
Referencias	103

LISTA DE FIGURAS

Figura

1	Progreso Histórico en el crecimiento del transistor de tecnología GaN. a) Densidad de potencia de un HEMT de AlGaN/GaN versus	
	año. b) Densidad de potencia total de un HEMT de AlGaN/GaN	
	versus año	7
2	Aplicaciones para HEMTs basados en GaN	7
3	Estructura básica de un transistor HEMT de AlGaN/GaN	11
4	Estructura básica del HEMT	12
5	Estructura del cristal de polaridad – Ga o superficie – Ga del GaN	13
6	a) Diagrama de bandas, b) Polarización piezoeléctrica contra	
	constante de enrejado para el sistema (Al, Ga, In, N)	14
7	Campo eléctrico y cargas presentes en la lámina. a) Debido a la	
	polarización espontánea en los cristales de GaN y AlGaN. b) Debido	
	solamente a la polarización piezoeléctrica en la capa de AlGaN	15
8	Combinación piezoeléctrica y campo de polarización espontánea en	
	la estructura de AlGaN/GaN	16
9	Estructura del HEMT de AlGaN/GaN, mostrando la polarización	
	inducida, la superficie de estados y la carga del 2DEG	16
10	Estructura Básica del HEMT. a) Estructura simplificada del HEMT	
	de AlGaAs/GaAs. b) Diagrama de bandas correspondiente	18
11	Estructura del HEMT de AlGaN/GaN. a) Estructura simplificada del	
	HEMT de AlGaN/GaN. b) Diagrama de bandas correspondiente	19
12	Subredes simples usadas por los circuitos equivalentes extrínsecos,	
	conectados en cada puerto del transistor. a) Los capacitores	
	representan el pad de multiples capacitancias. b) Los capacitores	
	representan otras geometrias en el FET que tienen un importante	
	significado capacitivo, tales como la alimentación que cruza	22
10	fuertemente de compuerta a fuente	22
13	Circuito electrico equivalente del transistor utilizado para modelar el	24
14	HEM I	24
14	Circuito electrico equivalente del HEMT cuando esta polarizado con	
	distante	25
15	Modele de singuite equivalente de gegrañe geñel para modiciones	25
15	Nodelo de circuito equivalente de pequena senal para mediciones $V = 0$ v $V > V = 0$ Dombrino b) White	21
16	v_{ds} v_{gs} v_{gs} v_{gl} . a) Damorne. b) while	31
10	en inverso, a) Topología Π b) Topología T	22
17	Procedimiento de de embedding	32
1/	rioccumiento de de-embedding	54

LISTA DE FIGURAS (Continuación)

Figura

Página

18	Representación de parámetros Y de dos puertos. a) Circuito esquemático completamente general. b) Circuito simplificado usando	
	elementos pasivos solamente	36
19	Circuito eléctrico equivalente en pequeña señal del transistor intrínseco, derivado de las mediciones de parámetros Y	37
20	Origen físico de los componentes del modelo del circuito eléctrico	
	equivalente en un MESFET	38
21	Circuito eléctrico equivalente del transistor intrínseco, propuesto por	
	Berroth	39
22	Circuito Eléctrico Equivalente del transistor simulado con ADS	47
23	μ y v obtenidas de la simulación en ADS	47
24	Derivada de v con datos simulados a partir de la cual se extrae C_{gs}	48
25	$x_1 e y_1$ obtenidas de la simulación en ADS	48
26	Derivada de y_1 con datos simulados a partir de la cual se extrae C_{gd}	49
27	Parámetros S simulados con el método de Berroth y el nuevo método	
	propuesto	52
28	Parámetro S ₂₁ simulado con el método de Berroth y con el nuevo	
	método propuesto	52
29	Gráficas de los elementos intrínsecos a partir del método de Berroth,	
	para el transistor W=100 µm	55
30	μ y v a partir de la cual se extrae el valor de R _i en el punto máximo de v para el transistor W=100 µm	56
31	Gráficas utilizadas en extracción del valor de C y C a partir de la	50
	derivada de v v v con respecto a ω para el transistor W=100 µm	56
32	Parámetros S. Su Su VS22 Polarización: $V_{rr} = -0.5 V$ $V_{rr} = 5 V$	73
33	Parámetros S, S ₂₁ , Polarización: $V_{zz} = -0.5 V$, $V_{dz} = 5 V$	74
34	Parámetros S. S ₂₁ . Polarización: $V_{ss} = 0$ V. $V_{ts} = 40$ V.	74
35	Parámetros S, S ₂₁ , Polarización: $V_{gs} = 0 V$, $V_{ds} = 40 V$	75
36	Parámetros S, S ₂₁ , Foldrización: $V_{gs} = 0 V V_{s} = 10 V$	75
37	Parámetros S, S ₂₁ , Polarización: $V = 0 V V_1 = 10 V$	76
38	Parámetros S, S ₂₁ . Polarización: $V_{us} = 0.25 \text{ V}$, $V_{us} = 40 \text{ V}$	76
39	Parámetros S, S ₂₁ . Polarización: $V_{gs} = 0.25 V$, $V_{ds} = 40 V$	70
40	Parámetros S, S ₂₁ . Fordinzación: $V_{gs} = 0.25 \text{ V}$, $V_{ds} = 40 \text{ V}$	77
41	Parametros S, S ₁₁ , S ₁₂ y S ₂₂ , Foranzación: $V_{gs} = -1.05$ V, $V_{ds} = 5$ V	79
42	Parametros S, S ₂₁ , Foranzación: $v_{gs} = 1.05 v$, $v_{ds} = 5 v$	10
74	V	78
43	Parámetros S. S ₂₁ . Polarización: $V_{ex} = -2.15 \text{ V}$. $V_{ex} = 40 \text{ V}$	79
44	Elementos intrínsecos. R. R _{ad.} g _{de} v g _m en función de los voltaies de	17
	polarización	80
	1	00

LISTA DE FIGURAS (Continuación)

Figura

Página

	Elementos intrinsecos, C_{gs} , C_{ds} , $\gamma \tau$, en función de los voltajes de	00
16	D an función de los voltaios de nelexización nero V v V	00
40	R_i en función de los voltajes de polarización, para V_{gs} y V_{ds}	01
47	K_{gd} en función de los voltajes de polarización, para V_{gs} y V_{ds}	01
40	C_{gs} en función de los voltajes de polarización, para v_{gs} y v_{ds}	02
49	C_{gd} en función de los voltajes de polarización, para v_{gs} y v_{ds}	82
50	g_m en función de los voltajes de polarización, para v_{gs} y v_{ds}	83
51	t en función de los voltajes de polarización, para v_{gs} y v_{ds}	83
52	g_{ds} en funcion de los voltajes de polarización, para v_{gs} y v_{ds}	84
53	C_{ds} en funcion de los voltajes de polarización, para V_{gs} y V_{ds}	84
54	Elementos intrinsecos, R_i , R_{gd} , g_{ds} y g_m , en funcion de los voltajes de	0.5
	polarizacion.	85
22	Elementos intrinsecos, C_{gsi} , C_{gd} , C_{ds} , y τ , en funcion de los voltajes de	0.6
Fr		86
56	R_i en funcion de los voltajes de polarización, para V_{gs} y V_{ds}	86
57	R_{gd} en función de los voltajes de polarización, para V_{gs} y V_{ds} . C_{gs} en	0.5
50	función de los voltajes de polarización, para V_{gs} y V_{ds}	87
58	C_{gs} en función de los voltajes de polarización, para V_{gs} y V_{ds}	87
59	C_{gd} en función de los voltajes de polarización, para V_{gs} y V_{ds}	88
60	g_m en función de los voltajes de polarización, para $V_{gs} y V_{ds}$	88
61	τ en función de los voltajes de polarización, para V _{gs} y V _{ds}	89
62	g_{ds} en función de los voltajes de polarización, para V_{gs} y V_{ds}	89
63	C_{ds} en función de los voltajes de polarización, para V_{gs} y V_{ds}	90
64	Elementos intrínsecos, R _i , R _{gd} , g _{ds} y g _m , en función de los voltajes de	
	polarización	91
65	Elementos intrínsecos, C_{gs} , C_{gd} , C_{ds} , y τ , en función de los voltajes de	
	polarización	91
66	R_i en función de los voltajes de polarización, para V_{gs} y V_{ds}	92
67	R _{gd} en función de los voltajes de polarización, para V _{gs} y V _{ds}	92
68	C _{gs} en función de los voltajes de polarización, para V _{gs} y V _{ds}	93
69	C _{gd} en función de los voltajes de polarización, para V _{gs} y V _{ds}	93
70	g _m en función de los voltajes de polarización, para V _{gs} y V _{ds}	94
71	τ en función de los voltajes de polarización, para V _{gs} y V _{ds}	94
72	g_{ds} en función de los voltajes de polarización, para V_{gs} y V_{ds}	95
73	C_{ds} en función de los voltajes de polarización, para V_{gs} y	
	V _{ds}	95

LISTA DE FIGURAS (Continuación)

Figura

Parte imaginaria de los parámetros Y medidos versus simulados con el nuevo método y con el método de Berroth, para un caso del transistor de 100 μm de ancho de compuerta El subíndice s corresponde al método de Berroth y el subíndice sa corresponde al nuevo método....
Parte imaginaria de los parámetros Y medidos versus simulados con el nuevo método y con el método de Berroth, para un caso del transistor de 300 μm de ancho de compuerta. El subíndice s corresponde al

método de Berroth y el subíndice sa corresponde al nuevo método

método de Berroth y el subíndice sa corresponde al nuevo método....

Parte imaginaria de los parámetros Y medidos versus simulados con el nuevo método y con el método de Berroth, para un caso del transistor de 2 mm de ancho de compuerta. El subíndice s corresponde al

76

Página

99

99

98

LISTA DE TABLAS

Tabla

Página

Ι	Propiedades eléctricas de los materiales semiconductores utilizados	
	en la Electrónica de Potencia	2
II	Parámetros intrínsecos usados para la simulación	47
III	R _i , R _{gd} , C _{gs} v C _{gd} extraídos con el nuevo método propuesto, a partir	
	de la simulación del transistor	49
IV	Elementos extraídos con las ecuaciones $37 - 41$; g _m y τ se obtuvieron	
	usando los valores de R _i v C _{re} calculados con el nuevo método	50
v	Elementos extraídos con el método de Berroth utilizando datos	00
02.012	simulados	50
VI	Comparación de los datos extraídos con el nuevo método propuesto y	20
• •	con el método de Berroth en la simulación del transistor con ADS	51
VII	Elementos parásitos usados para obtener los parámetros S del	51
* 11	transistor simulado en ADS	51
VIII	Flementos parásitos extraídos de los transistores de AlGaN/GaN	54
IX	Comparación de R, en función de los voltaies de polarización V, y	54
174	$V_{\rm s}$ Nuevo método v método de Berroth	57
x	Comparación de R, en función de los voltaies de polarización V, v	51
Λ	V_{gs} Nuevo método y método de Berroth	58
VI	C_{ds} . Nuevo metodo y metodo de Derromana de los voltajes de polarización V v	50
Л	V_{gs} V. Nuevo método y método de Berroth	58
VII	Comparación de C, en función de los voltaies de polarización V, v	50
ЛП	V. Nuevo método y método de Berroth	50
VIII	Comparación de guer función de los voltaios de polorización V	39
ЛШ	Comparación de g_m en función de los voltajes de porarización v_{gs} y	50
VIV	Comparación de a en función de los volteios de nelevización V	59
ΛIV	Comparación de t en función de los voltajes de polarización v_{gs} y	60
VV	v_{ds} includo y includo de Berroun.	00
ΛV	g_{ds} en funcion de los voltajes de polarización v_{gs} y v_{ds} . Metodo de	61
VVI	C on función de los veltaios de polorización V v V. Mátodo de	01
AVI	C_{ds} en funcion de los voltajes de polarización v_{gs} y v_{ds} . Metodo de	61
VVII 1	Comparación de P. en función de les voltaises de polorización V. y	01
Λ V 11-1	Comparación de K_i en función de los voltajes de porarización v_{gs} y	62
VVII 2	Comparación de P. en función de les voltaises de polorización V. v.	02
AV11-2	Comparación de K _i en función de los voltajes de polarización V_{gs} y	60
WWIII	V_{ds} . Nuevo metodo y metodo de Berroin	02
AVIII	Comparación de R_{gd} en función de los voltajes de polarización V_{gs} y	62
VIV 1	v_{ds} . Miciodo de Berroin.	63
AIX-1	Comparación de U_{gs} en función de los voltajes de polarización V_{gs} y	10
	v_{ds} . Metodo de Berroth	63

LISTA DE TABLAS (Continuación)

Tabla

XIX-2	Comparación de C_{gs} en función de los voltajes de polarización V_{gs} y V_{ds} . Nuevo método y método de Berroth	64
XX-1	Comparación de C_{gd} en función de los voltajes de polarización V_{gs} y V_{ds} Nuevo método y método de Berroth	64
XX-2	Comparación de C_{gd} en función de los voltajes de polarización V_{gs} y V_{ds} . Nuevo método y método de Berroth	64
XXI-1	Comparación de g_m en función de los voltajes de polarización V_{gs} y V_{ds} . Nuevo método y método de Berroth	65
XXI-2	Comparación de g_m en función de los voltajes de polarización V_{gs} y V_{ds} . Nuevo Método y método de Berroth	65
XXII-1	Comparación de τ en función de los voltajes de polarización V _{gs} y V _{ds} . Nuevo método y método de Berroth	66
XXII-2	Comparación de τ en función de los voltajes de polarización V _{gs} y V _{ds} . Nuevo método y método de Berroth	66
XXIII	g_{ds} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth	67
XXIV	C_{ds} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth	67
XXV	Comparación de R_i en función de los voltajes de polarización V_{gs} y V_{ds} . Nuevo método y método de Berroth	68
XXVI	Comparación de R_{gd} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth	69
XXVII	Comparación de C_{gs} en función de los voltajes de polarización V_{gs} y V_{ds} . Nuevo método y método de Berroth	69
XXVIII	Comparación de C_{gd} en función de los voltajes de polarización V_{gs} y V_{ds} . Nuevo método y método de Berroth	70
XXIX	Comparación de g_m en función de los voltajes de polarización V_{gs} y V_{ds} . Nuevo método y método de Berroth	71
XXX	Comparación de τ en función de los voltajes de polarización V _{gs} y V _{ds} . Nuevo método y método de Berroth	71
XXXI	g_{ds} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth	72
XXXII	C_{ds} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth	72
XXXIII	Porcentaje de error entre los parámetros S medidos y simulados con el Nuevo método y con el método de Berroth, para el transistor de 100 µm de ancho de compuerta	97

LISTA DE TABLAS (Continuación)

Tabla		Pagina
XXXIV	Porcentaje de error entre los parámetros S medidos y simulados con el nuevo método y con el método de Berroth, para el transistor de 300	
	μm de ancho de compuerta	97
XXXV	Porcentaje de error entre los parámetros S medidos y simulados con el nuevo método y con el método de Berroth, para el transistor de 2	
	mm de ancho de compuerta	97

Introducción

I.1 Antecedentes

En la actualidad el mercado de celulares, servicios de comunicaciones personales, y el acceso de banda ancha se están expandiendo y los sistemas móviles de tercera generación (3G) están llegando a ser una realidad, por lo que los sistemas de radiofrecuencia y en particular los amplificadores de potencia de microondas están empezando a ser el foco de atención. Una variedad de tecnologías de amplificadores de microondas están compitiendo por la cuota del mercado, estos transistores son: LDMOS (Lateral-Diffused- Metal-Oxide-Semiconductor Field Effect Transistor), los transistores bipolares, los transistores de efecto de campo metal-semiconductor (MESFETs) de GaAs, los transistores bipolares de heterounión de GaAs o (GaAs/InGaP), MESFETs de SiC, y transistores de alta movilidad electrónica (HEMTs) de GaN.

Las ventajas de fabricación a partir de semiconductores de banda prohibida ancha pueden verse de la comparación de las propiedades fundamentales del transporte electrónico y de las propiedades físicas del material. Un resumen de las propiedades de los materiales semiconductores más importantes en los dispositivos electrónicos son listados en la Tabla I.

Las destacadas características de los materiales ofrecen productos más significativos. La alta potencia por ancho de unidad se traduce en dispositivos más pequeños que no solamente son más fáciles de fabricar, pero también ofrecen mucha más alta impedancia. Esto los hace mucho más fáciles de acoplar a los sistemas, lo cual es frecuentemente una

tarea compleja con dispositivos convencionales de GaAs. La característica de alto voltaje elimina o al menos reduce la necesidad de conversión. La alta eficiencia que resulta de este alto voltaje de operación reduce los requerimientos de potencia y simplifica la refrigeración, una importante ventaja ya que los costos y el peso de los sistemas de refrigeración es una fracción del costo del transmisor de alta potencia de microondas [Umesh Mishra, 2002].

Material	$\mu(\frac{cm^2}{V-s})$	E _r	Eg(eV)	$\Theta(\frac{W}{{}^{o}K-cm})$	Ec(MV / cm)	T _{max} (°C)
Si	1300	11.9	1.12	1.5	0.3	300
GaAs	5000	12.5	1.43	0.54	0.4	300
3C-SiC	260	9.7	2.3	4	1.8	600
GaN	1500	9.5	3.4	1.3	2	700

Tabla I. Propiedades eléctricas de los materiales semiconductores utilizados en la Electrónica de

Actualmente existen diferentes tecnologías que compiten por el mercado de los amplificadores de potencia altamente eficientes (Clase E, Clase F) a base de transistores de efecto de campo. Estas tecnologías son:

- a) Silicio FET-LDMOS,
- b) Nitruro de Galio (GaN) FET,
- c) Carburo de Silicio (SiC) FET.

El HEMT de AlGaN/GaN es un excelente candidato como dispositivo activo para fabricar los AP (amplificadores de potencia) de las estaciones base de telefonía celular. Éste tiene una alta densidad de carga y una alta velocidad de saturación, lo cual produce altos niveles de potencia de salida. También tiene una alta movilidad electrónica, que origina una baja resistencia de encendido, y por lo tanto, se puede lograr una alta eficiencia. Como un resultado de su ancho banda prohibida, se puede alcanzar un alto nivel del voltaje de ruptura, con una alta densidad de carga, y sustancialmente con un muy alto rango de operación a temperaturas elevadas. Todos estos factores indirectamente mejoran la linealidad del AlGaN/GaN HEMT.

Por lo anterior, los transistores de efecto de campo basados en heteroestructuras de Nitruro de Galio han sido el foco de una intensa investigación en los últimos años debido al potencial que tienen en aplicaciones de alta potencia en: radiofrecuencia (RF), microondas y frecuencias de ondas milimétricas [Lu Jing, 2007]. El transistor de alta movilidad electrónica (HEMT) AlGaN/GaN es un fuerte candidato para aplicaciones de microondas debido a sus características de alta potencia y bajo ruido a tales frecuencias. Por otra parte, el diseño de amplificadores de potencia de AlGaN/GaN requiere del modelado en gran señal del dispositivo. De abajo hacia arriba en las técnicas de modelado, el modelo en gran señal está basado en modelos de pequeña señal derivados de diferentes condiciones de polarización. Además, el análisis del comportamiento de ruido también requiere del conocimiento del modelo de pequeña señal, a fin de extraer los parámetros intrínsecos de ruido [Chen Guang, 2006].

En lo que respecta al modelado de los transistores de efecto de campo (FET), el modelo de circuito eléctrico equivalente en pequeña señal (que a lo largo de este trabajo de tesis se le llamará únicamente circuito eléctrico equivalente) es una herramienta muy importante en el diseño de circuitos de microondas. Estos modelos proporcionan una relación entre los parámetros S medidos y el proceso eléctrico ocurrido en el dispositivo. Cada uno de los elementos en el circuito eléctrico equivalente se aproxima a un elemento de tipo concentrado que se relaciona con algún aspecto físico del dispositivo [Loo Yau, 2006].

En las últimas décadas el desarrollo de un modelo exacto del transistor ha probado ser un paso vital en el diseño de circuitos integrados monolíticos de microondas (MMICs). Los modelos proveen una valiosa herramienta para predecir el comportamiento en gran señal del transistor cuando es simulado con esquemas de modulación complejos tales como el de división de código de acceso múltiple de banda ancha (W-CDMA). Un circuito eléctrico equivalente es uno de dichos modelos. Este provee un medio de describir las propiedades

eléctricas del dispositivo bajo prueba (DUT) relacionando directamente los elementos del circuito eléctrico equivalente a la estructura física del dispositivo. La completa caracterización del dispositivo en gran señal garantiza una correcta evaluación de este, incluido el circuito equivalente bajo condiciones de pequeña señal [Brady, 2008].

Durante los últimos años, un gran número de artículos científicos han presentado diferentes métodos de extracción de parámetros en pequeña señal de transistores basados en tecnología de Nitruro de Galio, GaN, considerando que estos son fuertes candidatos para aplicaciones de potencia

Por otro lado, en los amplificadores de potencia altamente eficientes los elementos parásitos del transistor tienen un impacto negativo en la eficiencia debido a su contribución en la determinación de la impedancia de carga.

Para evaluar el rendimiento de los transistores de potencia axial como de los amplificadores de potencia se utilizan modelos no lineales del tipo circuito eléctrico equivalente y medida de AM-AM, de AM-PM y de dos tonos. El circuito eléctrico equivalente se puede dividir en tres partes; una parte está formada por los elementos parásitos o extrínsecos, los cuales son independientes de los voltajes de operación pero dependientes del empaquetado. La segunda parte está formada por los elementos intrínsecos, los cuales son dependientes del voltaje aplicado en las terminales del transistor y de la tecnología de fabricación; y la tercera parte está formada por una fuente de corriente I(V) no-lineal [Lo Yau, 2006]. En el departamento de electrónica y telecomunicaciones se han desarrollado métodos originales para extraer los elementos parásitos de los transistores de efecto de campo en tecnología GaAs, GaN y también se han desarrollado métodos para mejorar los modelos no-lineales de FETs a base de GaAs. Desde 2007, se ha iniciado el estudio de tecnologías emergentes de FETs de potencia a base a de Nitruro de Galio y de Carburo de Silicio. Es meta importante del proyecto estudiar los diferentes métodos desarrollados en la literatura, para determinar por medio de mediciones eléctricas los elementos intrínsecos (R_i, R_{gd}, R_{ds}, C_{gs}, C_{gd} , τ , g_{mo}) del circuito eléctrico equivalente de transistores de potencia a base Nitruro de

Galio y compáralos con el nuevo método propuesto en esta tesis. Para la evaluación de los FET GaN se requiere una topología del circuito eléctrico apropiada, con el fin de tener el mejor circuito eléctrico equivalente (ya sea lineal o no lineal). Existen varias topologías, donde la principal diferencia entre ellas, es la localización de las capacitancias parásitas, las cuales dependen de la geometría y del empaquetado del transistor. En el proceso de modelado del transistor por medio de un circuito eléctrico equivalente los elementos que se obtienen primero son los parásitos después de un proceso de de-embedding, mediante el cual se eliminan los elementos parásitos y se obtienen los elementos intrínsecos. Una buena extracción de los elementos extrínsecos del dispositivo junto con una topología adecuada conduce a valores verdaderos del transistor intrínseco y esto lleva a buenos modelos.

Por otra parte, el método más popular para determinar los elementos intrínsecos es el desarrollado por Berroth, *et, al.* Este consiste en encontrar expresiones analíticas, dependientes de los parámetros de admitancia de los elementos intrínsecos. La limitante de este método es encontrar la banda de frecuencias en donde el elemento intrínseco es independiente de la frecuencia. En esta tesis se tiene como objetivo desarrollar un nuevo método para determinar R_i, C_{gs}, C_{gd}, R_{gd}, g_{mo} y τ . El nuevo método para calcular los elementos intrínsecos del circuito eléctrico equivalente explota la información proporcionada por los puntos extremos de los parámetros de admitancia (máximos o mínimos) para calcular los elementos más difíciles de determinar, R_i, C_{gs}, C_{gd}, g_m y τ .

I.2 Aplicaciones de los transistores de potencia

Mientras que los estándares de comunicaciones inalámbricas pueden ir y venir con desarrollo en la última tecnología de codificación digital, o la liberación de un nuevo fragmento del espectro electromagnético, el común denominador entre varios sistemas de comunicación es el amplificador de potencia. En las últimas décadas, la transición de los tubos de vacío y otras formas de amplificación de dispositivos de estado sólido ha sido casi

5

completa, especialmente a niveles de potencia menores a 1 kW. Actualmente el corazón de la amplificación de potencia se encuentra en el transistor de potencia.

En el mundo las comunicaciones inalámbricas, los transmisores de las estaciones base usan casi exclusivamente transistores de alta potencia de silicio LDMOS. En suma, en los modernos sistemas celulares de comunicación, los dispositivos LDMOS son usados en un amplio rango de sistemas de comunicaciones que requieren de amplificación de potencia sistemas de comunicación en las bandas de HF, VHF, y UHF; radar, aplicaciones industriales, científicas y médicas (ISM), aviones y la más reciente en sistemas de comunicaciones WiMAX. El rango de frecuencia de estas aplicaciones es desde unos pocos Megahertz y hasta un poco más de 4 Gigahertz.

Recientes tecnologías desarrolladas de semiconductores compuestos han llevado a la introducción de dispositivos basados en Nitruro de Galio (GaN), los cuales tienen una alta densidad de potencia y dependiendo del substrato (Silicio o Nitruro de Silicio) de fabricación pueden tener también muy alta resistencia térmica, haciendo estos dispositivos adecuados para amplificadores de alta potencia. Los FETs de Nitruro de Galio tienen también alta frecuencia de transición, similar a la de algunas tecnologías de FETs de Arseniuro de Galio (GaAs) por lo que también presentan un gran potencial de aplicaciones de alta potencia sentan un gran potencial de aplicaciones de alta potencia sentan un gran potencial de aplicaciones de alta potencia mientras operan a frecuencias de microondas y ondas milimétricas [Aaen, 2007].

Los HEMT's de GaN han demostrado una mayor densidad de potencia y una mayor eficiencia alrededor de las tecnologías existentes, transistores basados en Si y GaAs, como ya se mencionó anteriormente. En consecuencia, para la misma potencia de salida una reducción de diez veces en el tamaño del dispositivo puede ser realizada usando dispositivos basados en GaN en lugar de los dispositivos convencionales. En la figura 1 se muestra este ejemplo, donde un modulo complejo puede ser potencialmente remplazado por un pequeño modulo que utiliza tecnología GaN. En este caso, teniendo mayor potencia por unidad de chip no solo debería traducirse en la disminución del precio del chip, sino

también contribuye a la reducción del costo del sistema por la reducción (eliminación) de combinadores de potencia y otros elementos.

(a)
 (b)
 Figura 1. Progreso Histórico en el crecimiento del transistor de tecnología GaN.
 a) Densidad de potencia de un HEMT de AlGaN/GaN versus año.

Figura 2. Aplicaciones para HEMTs basados en GaN.

Las ventajas tecnológicas antes mencionadas resultan de la combinación del material semiconductor de amplia banda prohibida GaN y la disponibilidad de la heteroestructura AlGaN/GaN, donde se logran simultáneamente alto voltaje, alta corriente, y la baja resistencia, lo que da como resultado la operación del transistor a alta potencia y alta eficiencia.

Además de la amplia banda prohibida ofrece una tecnología fuerte y confiable capaz de operar a un alto voltaje y una alta temperatura. Esto abre muchas aplicaciones, en la industria de aviación, industria automotriz, tales como rectificadores y convertidores de potencia de alto voltaje. Algunos de los mercados comerciales y militares que pueden ser dirigidos por el GaN, se muestran en la figura 2.

I.3 Objetivo

Extraer los elementos intrínsecos del circuito eléctrico equivalente de transistores de potencia a base de Nitruro de Galio utilizando un método nuevo que utiliza los puntos extremos (máximos o mínimos) de los parámetros Y intrínsecos.

I.4 Planteamiento del Problema

El método más popular para determinar los elementos intrínsecos es el desarrollado por Berroth y consiste en encontrar expresiones analíticas dependientes de los parámetros Y, para cada elemento intrínseco. La originalidad del método de Berroth reside en el procedimiento algebraico para encontrar R_i y C_{gs} .

Conociendo R_i y C_{gs} , se pueden calcular g_m y τ , de acuerdo con las expresiones dadas por Berroth, motivo por el cual en el nuevo método propuesto se plantea encontrar τ_{gs} donde este resulta del producto de R_iC_{gs} , a partir de los puntos extremos (máximos o mínimos) de los parámetros Y.

I.5 Estructura de la Tesis

En el capítulo II se dará una breve descripción de los transistores basados en la tecnología Nitruro de Galio (GaN), algunas de las aplicaciones de los transistores de potencia, así como la operación básica del FET.

En el capítulo III se explicarán los métodos de extracción de los elementos extrínsecos e intrínsecos. Aquí se hablará sobre el modelado del transistor activo, el modelado de los elementos extrínsecos y el método de extracción de estos elementos para el caso de transistores de potencia, así como el procedimiento de de-embedding con el cual después de aplicarlo se tendrá acceso al transistor intrínseco. Finalmente se tratará sobre del modelado del transistor intrínseco (modelado en pequeña señal) y el método de extracción de elementos intrínsecos propuesto por Berroth.

En el capítulo IV se presentará el nuevo método para extraer los elementos intrínsecos del circuito eléctrico equivalente del transistor y se validará con datos simulados.

En el capítulo V se aplicará el nuevo método propuesto a datos medidos y se mostraran los resultados al extraer los elementos intrínsecos con el nuevo método propuesto y se compararan con los del método de Berroth.

Finalmente el capítulo VI se presentan las conclusiones, aportaciones del trabajo y trabajos futuros.

Fundamentos teóricos de los transistores basados en GaN

II.1 Introducción

Los transistores de alta movilidad electrónica HEMT basados en AlGaN/GaN, son excelentes candidatos para la fabricación de amplificadores de potencia utilizados en los sistemas de comunicaciones "inalámbricas". Gracias a la hetroestructura AlGaN/GaN, este transistor tiene una alta densidad de portadores y una alta velocidad de saturación de electrones, soporta altos campos eléctricos antes de la ruptura, buena conductividad térmica, estas características lo sitúan como un candidato idóneo para manejar alta potencia de salida. Además, el posible crecimiento epitaxial sobre un substrato de carburo de silicio o silicio puede dar excelentes propiedades térmicas, haciendo óptimo a este dispositivo para aplicaciones de alta potencia en RF. La figura 2 muestra la estructura básica de un transistor HEMT de AlGaN/GaN. En este capítulo se describe el funcionamiento físico del HEMT de AlGaN/GaN.

II.2 Estructura de HEMT de AlGaN/GaN

La figura 3 muestra la estructura básica de un transistor HEMT de AlGaN/GaN. Este transistor se fabrica sobre un substrato de Carburo se Silicio (SiC) o sobre un substrato de Silicio (Si) en este substrato se crecen películas delgadas de GaN y AlGaN para formar la hetrostuctura AlGaN/GaN que dará origen al efecto transistor. Al igual que los transistores de efecto de campo los HEMT de AlGaN/GaN constan de dos contactos óhmicos, que forman los electrodos de fuente y drenador, y un contacto rectifícate que hará las funciones de compuerta. Para formar los contactos óhmicos se utilizan Ti/Al/Ni/Au y para formar la compuesta se utiliza Ni/Au. La fabricación del dispositivo se termina depositando una película delgada de Nitruro de Silicio. Esta película sirve para pasivar la superficie y

eliminar los problemas de dispersión de baja frecuencia que se observa cuando se miden las curvas I-V en DC y en modo pulsado.

Figura 3. Estructura básica de un transistor HEMT de AlGaN/GaN.

II.3 Tecnología de los transistores basados en GaN

La falta de un substrato GaN necesita de heteroepitaxia compatible con sustratos de zafiro y SiC, pero el AlN, el Si y los óxidos complejos tales como el LiG pueden emerger como viables. Las capas epitaxiales pueden ser crecidas por MOCVD (Metal-Organic— Chemical-Vapor-Deposition) o sobre una película resistiva de GaN crecida por epitaxia en fase vapor, aunque este último es menos usado. La heteroepitaxia sobre substratos altamente desadaptados de la red cristalina hacen de la capa de nucleación uno de los aspectos más críticos del crecimiento de la capa epitaxial. Con un substrato como zafiro, la capa está formada por del GaN o AlN depositado a bajas temperaturas (típicamente 600°C), la cual posteriormente se calienta a la temperatura de crecimiento de la capa principal. Las capas de GaN y AlGaN son típicamente se crecen a 1000 °C, con una tasa de crecimiento

de ~1 μ m/h. La nucleación sobre SiC es típicamente realizada usando AlN crecido a 900 °C, como se muestra en la figura 4.

Figura 4. Estructura básica del HEMT.

Un efecto físico que domina el comportamiento del dispositivo y puede también determinar el defecto de densidad en la película es la naturaleza polar del GaN y el AlGaN. En la figura 5 se muestra la estructura del cristal de la polaridad – Ga o superficie – Ga del GaN. Corrientemente, la alta calidad del material es crecido con esta polaridad. El sentido de la polarización espontánea es indicado sobre el diagrama. El diagrama de bandas y constantes pizoeléctricas versus las constantes del entramado para el Al, Ga, In, N se muestra en la figura 6 [Umesh K:, 2002].

Figura 5. Estructura del cristal de polaridad – Ga o superficie – Ga del GaN.

(a)

(b)

Figura 6. a) Diagrama de bandas, b) Polarización piezoeléctrica contra constante de enrejado para el sistema (Al, Ga, In, N).

II.3.1 Efectos de la polarización en el HEMT de AlGaN/GaN

Los efectos de polarización en el HEMT de AlGaN/GaN incluyen polarización espontánea y polarización piezoeléctrica. La polarización espontánea se refiere a campo de polarización interno presente en un cristal. Este campo eléctrico existe porque la red cristalina carece de simetría inversión y el enlace entre los dos átomos no es puramente covalente. Esto resulta en un desplazamiento de la carga electrónica hacia un átomo en el enlace. En la dirección en la cual el cristal carece de simetría, la asimetría de la nube de electrones resulta en una red de carga positiva localizada sobre la superficie del cristal y la

14

red de carga negativa sobre otra superficie. El campo eléctrico y las cargas presentes en superficie – Ga del GaN y el GaAlN sobre el plano – c, esto se muestra en la figura 7.

(b)

Figura 7. Campo eléctrico y cargas presentes en la lámina.

a) Debido a la polarización espontánea en los cristales de GaN y AlGaN.

b) Debido solamente a la polarización piezoeléctrica en la capa de AlGaN.

La polarización piezoeléctrica es la presencia de un campo de polarización resultado de la distorsión de red del cristal. Debido a la gran diferencia en la constante de red entre los materiales de AlGaN y el GaN, la capa de AlGaN, crecida sobre la capa buffer es deformada. Debido al gran valor de los coeficientes piezoeléctricos de esos materiales, esta deformación resulta en la carga de la lámina en las dos superficies de la capa de AlGaN, como se observa en la figura 7b. La polarización total del campo en la capa de AlGaN depende de la orientación del cristal de GaN.

El método MOCVD es la técnica más utilizada para formar la heteroestructura AlGaN/GaN, este método produce semiconductores GaN con orientación cristalina hace que las cargas causadas por la polarización espontánea y polarizacion piezoeléctrica se añadan constructivamente. Por lo tanto el campo de polarización en la capa de AlGaN deberá ser de un valor mayor que en la capa buffer. Debido a esta discontinuidad del campo de polarización, un número muy grande de carga positiva estará presente en la interfase AlGaN/GaN como se muestra en la figura 8.

Figura 8. Combinación piezoeléctrica y campo de polarización espontánea en la estructura de AlGaN/GaN.

Figura 9. Estructura del HEMT de AlGaN/GaN, mostrando la polarización inducida, la superficie de estados y la carga del 2DEG.

Como el espesor de la capa de AlGaN/GaN aumenta durante el proceso de crecimiento, la energía en el cristal también incrementara. Más allá de un cierto espesor el campo eléctrico interno, éste llega a ser lo suficientemente alto para ionizar los estados donantes en la superficie y causar el flujo de electrones a través de la internase de AlGaN/GaN. Como los electrones se mueven de la superficie a la interface, la magnitud del campo eléctrico se reduce, de este modo actúan como un mecanismo de retroalimentación para disminuir el proceso de transferencia de electrones. Bajo esta condición de equilibrio, la carga del 2DEG en la interface deberá ser generada debido a la transferencia de electrones y una carga positiva sobre la superficie será formada por los donantes ionizados, como se observa en la figura 9.

II.4 Operación básica del HEMT

El transistor de alta movilidad electrónica (HEMT) es un transistor de efecto de campo de heteroestructura. El término HEMT se aplica a estos dispositivos porque la estructura aprovecha propiedades superiores de transporte de los electrones en un pozo de potencial de un material semiconductor ligeramente dopado. La estructura simplificada del HEMT AlGaAs/ GaAs se muestra en la figura 10a. Como se muestra en la figura, un material semiconductor de amplia banda prohibida (AlGas dopado) se deposita sobre un material de pequeña banda prohibida (GaAs no dopado). El diagrama de bandas de la estructura se muestra en la figura 10b. Debido a la diferencia en los anchos de banda prohibidos, se forma una discontinuidad en los bordes de las bandas de conducción en la interface de la heteroestructura AlGaAs. Esto da como resultado una alta concentración de portadores en la región más estrecha, llamado pozo cuántico, en la dirección drenador-fuente. La distribución de electrones en el pozo quántico es principalmente bidimensional, debido al pequeño espesor del pozo cuántico comparado con el ancho y la longitud del canal. Como consecuencia la densidad de carga llamada gas de electrones es bidimensional (2DEG) y cuantificada en términos de la densidad de portadores definida como η_s .

Figura 10. Estructura Básica del HEMT.
a) Estructura simplificada del HEMT de AlGaAs/GaAs.
b) Diagrama de bandas correspondiente.

Los HEMT de AlGaN/GaN han sido fabricados de forma similar usando una capa dopada o no dopada de AlGaN/GaN, tal como se muestra en la figura 11a. Se ha observado que el 2DEG se forma en la interfase AlGaN/GaN incluso cuando no se ha dopado intencionalmente la capa de AlGaN, también se ha observado que cuando se dopa intencionalmente la capa, la densidad de carga del 2DEG no es proporcional a la cantidad de dopado. La pregunta fundamental es, puesto que los electrones no son introducidos intencionalmente en los átomos, ¿Cuál es la fuente de los electrones qué forman el 2DEG? En los HEMT de AlGaN/GaN el mecanismo de formación del 2DEG en la heterointerface es diferente que el mecanismo de formación del la del 2DEG en HEMT de AlGaAs/GaAs. Debido a un fuerte campo de polarización a través de la heterounión de AlGaN/GaN se forma un 2DEG con una capa con densidad de portadores arriba de 10^{13} cm⁻² sin dopar el AlGaN[1]. Ibbeston, et al encontró que los estados de superficie actúan como fuente de electrones del 2DEG[2]. El campo eléctrico estático interno en la capa de AlGaN es introducido por la polarización piezoeléctrica y polarización espontánea las cuales alteran principalmente el diagrama de bandas y la distribución de electrones de la heteroestructura de AlGaN/GaN. En consecuencia un considerable número de electrones son transferidos de
los estados de superficie a la heterointerfase de AlGaN/GaN, lo que da origen a un 2DEG con alta densidad. [Jarndal, 2006]

Métodos de extracción de los elementos extrínsecos e intrínsecos

III.1 Modelado del transistor activo

La acción en el FET ocurre bajo la compuerta en el canal activo, está parte del transistor es llamada transistor intrínseco. En un dispositivo real se necesitan electrodos adicionales para conectar el transistor intrínseco al exterior. Estos electrodos adicionales son el origen de los componentes extrínsecos o frecuentemente llamados *parásitos*. La noción de parásitos puede dar la impresión de que estos elementos del transistor son indeseados. Mientras que generalmente tienden a degradar el comportamiento eléctrico, son esenciales en la estructura del dispositivo y en un diseño cuidadoso su impacto se minimiza. Esta parte de la estructura es una parte integral del transistor, pero no contribuye a la acción fundamental del transistor, por lo que es preferible usar el término extrínseco, aunque lo más común es llamarle parásitos y así se les llamará a lo largo de este trabajo. Después del de-embedding de los componentes extrínsecos, nos encontramos en el borde de la región activa del transistor. El objetivo es construir un modelo eléctrico compacto del dispositivo activo, cubriendo el comportamiento en DC, en pequeña señal o lineal, y en gran señal o comportamiento en RF no lineal. [Aaen, 2007]

III.2 Modelado de los componentes extrínsecos

Para determinar los elementos extrínsecos se utiliza el método del COLD-FET. Para determinar las resistencias e inductancias parásitas el transistor se polariza: V_{ds} = open; V_{gs} < V_{bi} >0, para determinar las capacitancias parásitas el transistor se polariza: V_{ds} = 0; V_{gs} = 0.

Normalmente, el método de extracción de los elementos extrínsecos es el comúnmente conocido como el método del COLD FET. Este fue el primer método para determinar las resistencias e inductancias parásitas a partir de un conjunto de medidas de parámetros S con $V_{ds} = 0$ V. Dambrine *et al* (1988), publicó un método de extracción para obtener los elementos parásitos. El método utiliza un conjunto de mediciones de parámetros S del FET para altas corrientes directas de DC en la compuerta ($V_{gs}>V_{bi}>0$ V) y un voltaje de drenador – fuente de cero ($V_{ds} = 0$ V). Este método requiere de una alta corriente directa de compuerta para eliminar el efecto de la resistencia diferencial del diodo Schottky. Después el método del COLD-FET de RF fue modificado cambiando la condición de polarización de $V_{ds} = 0$ V a drenador flotante, el cual venció las inconsistencias entre los métodos de DC y RF. Para MESFETs y HEMTs basados en GaAs o SiC, los métodos de DC y RF pueden ser aplicados satisfactoriamente para determinar las resistencias parásitas. Además de poder calcular las resistencias parásitas, el método del COLD-FET es también usado para determinar las inductancias de compuerta, fuente y drenador, L_g , L_s y L_d respectivamente.

Sin embargo, cuando se trata de los HEMTs de AlGaN/GaN, el diodo Schottky del transistor exhibe inherentemente un fuerte comportamiento capacitivo, el cual dificulta la medida de R_g y L_g , incluso aplicando una fuerte corriente de DC en directo a la compuerta. Por lo tanto ni los métodos clásicos de DC ni de RF, pueden ser aplicados para el cálculo de R_g y L_g [Zárate de Landa *et al*, 2009].

Los detalles de los métodos de extracción de los elementos extrínsecos dependen de la estructura no dopada para representar las redes extrínsecas. Comúnmente los arreglos adoptados para las redes extrínsecas son los mostrados en la figura 12. La elección de una red es arbitraria, y está basada en la geometría particular del FET en cuestión. Excepto cuando exista alguna característica geométrica en puerta, la red con la capacitancia extrínseca más externa como la indicada en la figura 12a, es normalmente elegida por economía de la inversión de matrices en el de-embedding del circuito externo.

Esta capacitancia extrínseca C_{px} es generalmente incluida para representar la capacitancia del pad para FET's, pequeños. Se considera que los componentes capacitivos de la red extrínseca de la compuerta y el drenador pueden ser provocados por el empaquetado dejando solamente los componentes resistivos e inductivos en serie para ser extraídos de las mediciones del COLD-FET. Como la fuente del transistor está conectada directamente a la tierra, la capacitancia de fuente está efectivamente cortocircuitada. Está suposición puede ser un reto en el modelado de transistores de potencia: la gran área del transistor contribuirá a una capacitancia extrínseca grande y las resistencias e inductancias de los contactos de fuente debido a la tierra del empaquetado, muy pequeñas pero no cero. En la representación del circuito equivalente, la fuente del transistor activo está conectada a tierra, a través de un circuito serie R-L y el capacitor en paralelo de la red, esto puede afectar la respuesta en frecuencia y potencialmente la estabilidad del transistor [Aaen, 2007].

Figura 12. Subredes simples usadas por los circuitos equivalentes extrínsecos, conectados en cada puerto del transistor.

a) Los capacitores representan el pad de múltiples capacitancias.

b) Los capacitores representan otras geometrías en el FET que tienen un importante significado capacitivo, tales como la alimentación que cruza fuertemente de compuerta a fuente.

III.2.1 Extracción de los elementos parásitos del transistor

El Circuito Eléctrico Equivalente del transistor está formado por elementos parásitos e intrínsecos como se muestra en la figura 13. Para obtener los elementos intrínsecos del transistor primero se obtienen los elementos parásitos y mediante un procedimiento de deembbeding, se obtiene la matriz de parámetros intrínsecos del transistor.

El método del COLD FET está bien establecido para dispositivos tradicionales como el GaAs, sin embargo, este método no puede ser aplicado a HEMTs de AlGaN/GaN directamente, debido a la alta resistencia de contacto y la resistencia diferencial de la compuerta. Chigaeva and Walthes sugieren que una alta polarización directa en la compuerta puede suprimir el efecto diferencial en la compuerta. Pero esto puede destruir fácilmente el diodo Schottky de la compuerta de los HEMTs de AlGaN/GaN o cambiar permanentemente las propiedades del diodo Schottky [Chen Guang *et al*, 2006]. Así, Andrés Zárate de Landa (2007) propone un método con el cual no solamente se obtienen los elementos parásitos sino también la capacitancia del diodo Schottky y la resistencia dinámica. El método requiere solamente de una sola medición de parámetros S del transistor en todo el ancho de banda para una baja corriente de DC en directo aplicada a la compuerta con el drenador flotante.

Los elementos parásitos se obtienen a partir de dos mediciones, una en directa (Cold FET) para calcular las resistencias e inductancias parásitas ($V_{gs}>V_{bi}>0$; V_{ds} = flotante) y otra en inverso para calcular las capacitancias parásitas ($V_{gs}<<V_p$; $V_{ds}=0$) [Zárate de Landa, 2007].

La figura 13 muestra el circuito eléctrico que modela el transistor.

Figura 13. Circuito eléctrico equivalente del transistor utilizado para modelar el HEMT.

III.2.2 Cálculo de las resistencias e inductancias parásitas. Cold FET para bajas corrientes de DC en directo $0 < V_{gs} < V_{bi}$; $I_{gs} > 0$ y $V_{ds} =$ flotante

En la figura 14 se muestra el circuito eléctrico equivalente del transistor cuando la compuerta está polarizada en directa, a partir del cual se hará la extracción de los elementos R_g , R_s , R_d , L_g , L_s y L_d . También se muestran los elementos R_0 y C_0 , que son la resistencia y capacitancia del diodo, donde:

$$R_g^* = R_g - \frac{R_{ch}}{6},\tag{1}$$

$$R_s^* = R_s + \frac{R_{ch}}{2},\tag{2}$$

$$R_d^* = R_d + \frac{R_{ch}}{2},\tag{3}$$

Donde R_{ch} es la resistencia del canal, la cual por ser muy pequeña se desprecia.

De la figura 14 se obtienen los parámetros Z del transistor, cuando se polariza la compuerta en directa, los cuales se expresan como:

$$Z_{11} = R_g + R_s + \frac{R_0}{1 + \omega^2 C_0^2 R_0^2} + j\omega \left[L_g + L_s - \frac{C_0 R_0}{1 + \omega^2 C_0^2 R_0^2} \right],$$
(4)

$$Z_{12} = Z_{21} = R_S + j\omega L_S, (5)$$

$$Z_{22} = R_d + R_s + j\omega(L_d + L_s).$$
(6)

Figura 14. Circuito eléctrico equivalente del HEMT cuando está polarizado con una baja corriente de compuerta de DC en directa y con drenador flotante.

Se puede observar de las expresiones de los parámetros Z, ecuaciones 5 y 6, que L_s y L_d se pueden obtener directamente de la parte imaginaria de Z_{12} y Z_{22} respectivamente, como sigue:

$$L_S = \frac{Im(Z_{12})}{\omega},\tag{7}$$

$$L_d = \frac{Im(Z_{22}) - Im(Z_{12})}{\omega}.$$
(8)

 L_g se puede calcular de la parte imaginaria de Z_{11} , siempre que L_s , R_0 y C_0 sean conocidos. La parte imaginaria de Z_{11} puede ser expresada como:

$$Im(Z_{11}) = \omega \left(L_g + L_S \right) - \frac{\omega}{c_0} * \frac{1}{\omega_0^2 + \omega^2}.$$
(9)

Donde:

$$\omega_0 = \frac{1}{R_0 C_0}.$$
 (10)

 ω_0 es un parámetro importante en el cálculo de los elementos parásitos y depende de los valores de R₀ y C₀ los cuales dependen del valor de la corriente de la polarización directa de la compuerta. Cuando la polarización aumenta R₀ decrece y C₀ aumenta.

Así, bajo la hipótesis de que $\omega >> \omega_0$ la ecuación 9 se reduce a:

$$Im(Z_{11}) = \omega \left(L_g + L_s \right) - \frac{1}{\omega C_0}.$$
(11)

Reordenando términos y multiplicando ambos lados por ω se tiene:

$$\omega Im[Z_{11}] = \omega^2 (L_g + L_s) - \frac{1}{c_0}.$$
(12)

 L_g y C_0 se pueden obtener mediante regresión lineal de la ecuación 12 contra ω^2 , puesto que L_g+L_s es la pendiente de la recta y $\frac{1}{c_0}$ es la ordenada que intercepta a $\omega Im[Z_{11}]$ en $\omega^2 = 0$. Una vez que se determina $L_g + L_s$, L_g puede ser calculada conociendo L_s .

Como se mencionó anteriormente ω_0 es un parámetro importante en el cálculo de los elementos parásitos por tanto es de vital interés determinar la frecuencia ω_0 porque a partir de este valor podemos conocer el rango en frecuencia en el que es válido el método, para ello se usa el siguiente procedimiento propuesto por Reynoso Hernández (2008).

El método para calcular ω_0 puede ser derivado usando la parte real o la parte imaginaria de Z_{11} . El procedimiento para el cálculo de ω_0 consiste en determinar un punto extremo (mínimo local o máximo local) ω_m observado en la primera derivada, de la parte real e

26

imaginaria de Z₁₁ con respecto a ω . Se puede mostrar que ω_m está directamente relacionada a ω_0 .

De la primera derivada de Z₁₁ se obtiene ω_0 para encontrar el rango de frecuencia en el cual se cumple la condición $\omega >> \omega_0$.

Escribiendo la ecuación 4 como:

$$Z_{11} = x + y,$$
 (13)

Donde:

$$x = a + \frac{b}{1 + \omega^2 \tau_0^2},$$
(14)

$$y = \omega L - b \frac{\omega \tau_0^2}{1 + \omega^2 \tau_0^2}.$$
 (15)

Las variables a, b, L, x, y τ_0 se definen como:

$$a = R_g^* + R_s^*,$$

$$b = R_0,$$

$$L = L_g + L_s,$$

$$\tau_0 = R_0 C_0,$$

$$x = Re(Z_{11}),$$

$$y = Im(Z_{11}).$$

(15a)

Calculando la primera derivada de la parte imaginaria de Z_{11} con respecto a ω se tiene:

$$\frac{dy}{d\omega} = L - b\tau_0^2 \frac{(1 - \omega^2 \tau_0^2)}{(1 + \omega^2 \tau_0^2)^2} \,. \tag{16}$$

Para saber si la primera derivada de la parte imaginaria de Z_{11} con respecto a ω tiene un punto extremo en frecuencia ω_{max} se usa el criterio de la segunda derivada el cual dice que la segunda derivada de Im (Z_{11}) con respecto a ω evaluada en ω_{max} es cero.

$$\left[\frac{d^2 Im(Z_{11})}{d\omega^2}\right]_{\omega_{max}} = 0.$$
⁽¹⁷⁾

El punto en frecuencia ω_{max} calculado de la expresión anterior está dado por:

$$\omega_{max} = \sqrt{3}\omega_0. \tag{18}$$

Por otra parte, utilizando la parte real de Z_{11} y siguiendo el mismo procedimiento, pero en este caso se tiene un punto extremo a la frecuencia mínima ω_{min} .

Calculando la primera derivada de la parte real de Z_{11} con respecto a ω se tiene que:

$$\frac{dx}{d\omega} = -2b \frac{\omega \tau_0^2}{\left(1 + \omega^2 \tau_0^2\right)^2} \,. \tag{19}$$

Para investigar si la primera derivada de la parte real de Z_{11} tiene un punto mínimo para el punto en frecuencia ω_{min} se usa el criterio de la segunda derivada, el cual dice que la segunda derivada de Re(Z_{11}) con respecto a ω evaluada en ω_{min} es cero.

$$\left[\frac{d^2 Re(Z_{11})}{d\omega^2}\right]_{\omega_{min}} = 0.$$
⁽²⁰⁾

La expresión derivada de la ecuación anterior está dada por:

$$\omega_{min} = \frac{\omega_0}{\sqrt{3}}.$$

De las expresiones anteriores se puede obtener ω_0 , pero ω_{min} ocurre a frecuencias más bajas que ω_{max} la elección depende de la capacidad del VNA [Reynoso Hernández, 2008].

Para calcular R_g, se asume que para las mediciones en frecuencia $\omega >> \omega_0$, la parte real de Z₁₁ dada en la ecuación 4, puede escribirse como:

$$Re(Z_{11}) = R_g^* + R_s^* + \frac{\omega_0^2 R_0}{\omega^2}.$$
(22)

El término de $R_g^* + R_s^*$ puede ser determinado aplicando una regresión lineal a la ecuación (22) ya que cuando se grafica $Re[Z_{11}]$ contra $\frac{1}{\omega^2}$ predice una línea recta en la cual la pendiente es igual a $\omega_0^2 R_0$, y la intercepción del eje $Re[Z_{11}]$ es $R_g^* + R_s^*$. Con el conocimiento de R_s , se puede obtener R_g . Está manera de obtener R_g es muy simple, la dificultad consiste en encontrar el rango de frecuencia en el cual se cumple la hipótesis $\omega >> \omega_0$.

Finalmente, se puede observar que R_s y R_d se pueden obtener directamente de las expresiones, de la parte real de Z_{12} y Z_{22} , como se observa en las siguientes expresiones:

$$R_{S} = Re[Z_{12}],$$

$$R_{d} = Re[Z_{22}] - R_{S}.$$
(23)
(24)

III.2.3 Cálculo de las capacitancias parásitas utilizando polarización en inverso $V_{gs} < V_p y V_{ds} = 0$

El método para determinar las capacitancias parásitas se basa en el cálculo de los parámetros Y. Los parámetros Y son calculados a partir de datos experimentales de parámetros S medidos en el punto de polarización $V_{ds} = 0$ y $V_{gs} > |V_p|$, V_p es el voltaje de oclusión del transistor.

Debido a que cuando los electrodos de drenador y fuente están al mismo potencial, la zona de deserción bajo la compuerta es uniforme y simétrica. De acuerdo a esta hipótesis, dos modelos Dambrine y White se han desarrollado para determinar C_{pg} y C_{pd} .

III.2.3.1 Modelo de Dambrine

Estos autores asumen que bajo condiciones de pinch off con $V_{ds} = 0$, la zona de deserción debajo de la compuerta puede ser modelada por dos capacitores C_b localizados a ambos lados de la compuerta. El modelo de circuito eléctrico equivalente correspondiente se muestra en la figura 15a. Si la influencia de las resistencias e inductancias parásitas sobre $Im(Y_{ij})$ son despreciadas (f < 10 GHz), C_{pg} y C_{pd} son calculadas como sigue:

$$C_{pg} = \frac{Im(Y_{11}) + Im(Y_{12})}{\omega} , \qquad (25)$$

$$C_{pd} = \frac{Im(Y_{22}) + Im(Y_{12})}{\omega} .$$
(26)

III.2.3.2 Modelo de White

En el orden de que la simetría del FET sea preservada cuando se polariza con $V_{ds} = 0$ y $V_{gs} > |V_p|$, White sugiere que la zona de deserción bajo la compuerta sea modelada por tres

capacitores (C_b) iguales, conectados a los electrodos de la compuerta, drenador y fuente. El circuito eléctrico equivalente resultante de este modelo es mostrado en la figura 15b. Si la influencia de las resistencias e inductancias parásitas sobre $Im(Y_{ij})$ es ignorada (f < 10 GHz), C_{pg} y C_{pd} son dados por:

$$C_{pg} = \frac{Im(Y_{11}) + Im(Y_{12})}{\omega} , \qquad (27)$$

$$C_{pd} = \frac{Im(Y_{22}) + Im(Y_{12})}{\omega} .$$
(28)

III.2.3.3 Comparación entre los modelos de Dambrine y White

De las ecuaciones 25 y 27 se puede notar que ambos modelos dan el mismo valor para la capacitancia parásita de entrada C_{pg} . En cuanto a la capacitancia parásita de la salida C_{pd} los valores para el modelo de Dambrine son mayores que para el modelo de White.

En otro orden, cuando los valores obtenidos son similares para los parámetros Y_{11} y Y_{12} , el modelo de White también predice valores similares para las capacitancias C_{pg} y C_{pd} . Por el contrario, de acuerdo con el modelo de Dambrine si $Y_{11} \cong Y_{22}$ entonces $C_{pd} > C_{pg}$.

Figura 15. Modelo de circuito equivalente de pequeña señal para mediciones V_{ds}=0 y V_{gs}>|V_p|.
a) Dambrine.
b) White.

III.2.3.4 Modelo propuesto por Zárate de Landa usando polarización en inverso

Al igual que Dambrine, las capacitancias parásitas se obtienen polarizando al transistor $V_{ds} = 0$, $V_{gs} > |V_p|$ y utilizando la topología del circuito eléctrico equivalente del transistor, mostrado en la figura 16a.

Para simplificar el cálculo de los parámetros Y se transforma el circuito anterior con topología Π a topología T (figura 16).

Figura 16. Circuito eléctrico equivalente del transistor cuando está polarizado en inverso.

a) Topología П

b) Topología T.

El método propuesto por Zárate de Landa considera el efecto de la capacitancia del diodo Schottky C_0 , la cual se calcula en la sección anterior y C_b es la capacitancia de (fringing).

Después del de-embedding de las inductancias y de despreciar las resistencias parásitas se obtiene la matriz de parámetros Y del circuito y las capacitancias parásitas se obtienen como:

$$C_{pg} = \frac{Im(Y_{11}) - 2Im(Y_{12})}{\omega},\tag{29}$$

$$C_{pd} = \frac{Im(Y_{22}) - Im(Y_{12})}{\omega} - \frac{C_b}{C_0} * \frac{Im(Y_{12})}{\omega}.$$
(30)

Donde:

$$C_b = \frac{-C_0 Im[Y_{12}]}{\omega C_0 + 2Im[Y_{12}]}.$$
(31)

Una vez obtenidas las capacitancias parásitas se hace la extracción de estas utilizando el procedimiento de de-embedding y finalmente se obtienen los parámetros Y del circuito eléctrico equivalente del transistor intrínseco.

III.3 Procedimiento de de-embedding

Dambrine *et al.* (1988) explican que una vez que los elementos parásitos son obtenidos, se realiza un procedimiento de de-embedding a los parámetros S medidos a diferentes polarizaciones para conocer los elementos intrínsecos (C_{gs} , C_{gd} , C_{ds} , R_i , R_{ds} , g_m y τ).

El procedimiento de de-embedding se explica a continuación:

- a) Medición de los parámetros S del dispositivo.
- b) Transformación de los parámetros S a parámetros de impedancia (Z) con el fin de substraer los efectos de L_g y L_d que son elementos en serie y que afectan directamente los parámetros Z₁₁ y Z₂₂.

- c) Transformación de parámetros Z a parámetros de admitancia (Y) con el fin de substraer los efectos de C_{pg} y C_{pd} que están en paralelo y afectan a los parámetros Y₁₁ y Y₂₂.
- d) Transformación de parámetros Y a parámetros Z con el fin de substraer los efectos de los elementos restantes R_g, R_s, R_d, L_s y que afectan directamente a los cuatro parámetros Z.
- e) Transformación de parámetros Z a parámetros Y que corresponden a la matriz de parámetros Y deseada. [Dambrine, 1988]

Figura 17. Procedimiento de de-embedding.

III.4 Modelado del transistor intrínseco

Aquí se obtiene el núcleo del modelo del transistor: el propio dispositivo activo. La derivación del modelo se basa en la medición de parámetros S hechas alrededor de un espacio alcanzable de polarización V_{gs} - V_{ds} del transistor. Las mediciones incluirán polarizaciones de compuerta en inverso, V_{gs} negativo. Los parámetros S se miden en un rango de frecuencias de RF, limitado por el analizador de redes vectorial (VNA).

Se debe suponer que a las mediciones de los datos que se van utilizar ya se le ha aplicado el procedimiento de de-embedding y que son isotérmicas. Esto significa que los efectos eléctricos de los componentes extrínsecos han sido removidos y los planos de referencia de las mediciones ahora se encuentran en el plano de referencia del dispositivo intrínseco. [Aaen, 2007]

III.4.1 Modelo de pequeña señal

Los parámetros S representan la respuesta en pequeña señal de un transistor para polarizaciones V_{gs} , V_{ds} y frecuencia ω , específicas. Esta es una simple medición y obtención de datos (y de-embedding), los cuales pueden ser almacenados en una tabla de tres dimensiones, indexados para los voltajes de polarización y la frecuencia.

Un enfoque más compacto es convertir la medición de parámetros S a parámetros Y, usando las reglas estándar para la conversión de una matriz de dos puertos. Una red genérica de dos puertos puede representarse como en la figura 18a, la cual para una red pasiva puede ser simplificada para una red Π como en la figura 18b donde:

$$y_{11} = Y_A + Y_B$$

$$y_{12} = -Y_B = y_{21}$$

$$y_{22} = Y_C + Y_B$$
(32)

La figura 19 muestra el circuito eléctrico equivalente del transistor intrínseco. Las conductancias y capacitancias deben ser independientes de la frecuencia. Si los parámetros del circuito eléctrico equivalente no son independientes de la frecuencia, puede indicar un problema con el de-embedding eléctrico, o tal vez que los componentes no son independientes de la polarización, lo cual puede ocurrir físicamente en transistores de potencia, o que algunos fenómenos dinámicos asociados con los efectos de dispersión de la frecuencia no hayan sido correctamente manejados en la medición. La independencia en frecuencia de los parámetros del modelo nos permite determinar sus valores a partir de las mediciones hechas en un solo punto en frecuencia.

Comúnmente, para modelos de FET operando en el régimen activo, esto es, arriba del voltaje de umbral y voltaje positivo drenador-fuente (para dispositivos de canal N), se añade la fuente de corriente controlada definida en y_{21} representada en la red pasiva como una transadmitancia. Esto proporciona el modelo de circuito equivalente mostrado en la figura 19, donde Y_{gs} corresponde a Y_A, Y_{gd} corresponde a Y_B, Y_{ds} corresponde a Y_C y la transadmitancia a Y_m. La región de compuerta-fuente y compuerta-drenador son representadas generalmente como una red en serie RC, los elementos del circuito están frecuentemente ligados a una representación física, como se muestra en la figura 20; las resistencias en serie, elementos mencionados arriba son frecuentemente descritos como la ruta de carga dentro del dispositivo para la capacitancia asociada. Se debe ser capaz de

extraer los elementos del modelo de circuito eléctrico equivalente para cada punto de polarización $\{V_{gs}, V_{ds}\}$. Esto es un modelo lineal del FET dependiente de la polarización, para uso en pequeña señal AC o simulaciones de parámetros S. Se debe ser capaz de desarrollar un análisis en pequeña señal, sabiendo ya las condiciones de polarización de drenador y compuerta.

Figura 19. Modelo del Circuito eléctrico equivalente en Pequeña Señal del transistor intrínseco, derivado de las mediciones de parámetros Y.

Para implementar el modelo en un simulador, se pueden almacenar los valores para { C_{gs} , R_{gs} , C_{gd} , R_{gd} (si está presente), g_m , τ , C_{ds} , R_{ds} } en una tabla. Los puntos de polarización son frecuentemente referenciados a las terminales externas del transistor, esto es donde los voltajes de polarización son medidos en la práctica y son etiquetados en el simulador.

Se puede crear un modelo lineal para ajustar las funciones a dos dimensiones para todos los valores del circuito equivalente alrededor del espacio de mediciones $\{V_{gs}, V_{ds}\}$, para obtener variables continuas de los parámetros del modelo con polarización.

Figura 20. Origen físico de los componentes del modelo del circuito eléctrico equivalente en un MESFET.

Finalmente una cautelosa nota acerca del elemento tiempo de retardo, τ , en el modelo de pequeña señal. Este parámetro es usado para modelar el tiempo de retraso observado entre una señal aplicada a la compuerta, y la respuesta en corriente en el drenador. Esto es debido al tiempo finito tomado por la carga que se mueve a lo largo del canal desde la compuerta hasta el drenador: el tiempo de transito. Esto es interpretado como un efecto distribuido, ya que no todas las cargas se mueven a la misma velocidad. En el modelo se puede ver que el retraso es implementado como el término $e^{-j\omega\tau}$ [Aaen, 2007].

III.5 Extracción de elementos intrínsecos del transistor a partir del método de Berroth

El método que Berroth propone para la extracción de los elementos intrínsecos del transistor, consiste en obtener los parámetros Y del circuito eléctrico equivalente de la figura 21 y a partir de ellos extraer los elementos, R_i, C_{gs}, C_{gd}, R_{gd}, g_m, g_{ds}, C_{ds}.

Los elementos intrínsecos del transistor dependen del punto de polarización, por lo tanto van a ser distintos para cada V_{gs} y V_{ds} aplicados al transistor.

Figura 21. Circuito eléctrico equivalente del transistor intrínseco, propuesto por Berroth.

El circuito eléctrico equivalente del transistor intrínseco de la figura 21, se obtuvo después del de-embedding de los elementos parásitos. A continuación se escriben los parámetros Y del circuito de la figura 21.

$$Y_{11} = \omega^2 \left[\frac{R_i C_{gs}^2}{1 + \omega^2 R_i^2 C_{gs}^2} + \frac{R_{gd} C_{gd}^2}{1 + \omega^2 R_{gd}^2 C_{gd}^2} \right] + j\omega \left[\frac{C_{gs}}{1 + \omega^2 R_i^2 C_{gs}^2} + \frac{C_{gd}}{1 + \omega^2 R_{gd}^2 C_{gd}^2} \right],$$
(33)

$$Y_{12} = -\omega^2 \left[\frac{R_{gd} C_{gd}^2}{1 + \omega^2 R_{gd}^2 C_{gd}^2} \right] - j\omega \left[\frac{C_{gd}}{1 + \omega^2 R_{gd}^2 C_{gd}^2} \right],$$
(34)

$$Y_{21} = \frac{g_m e^{-j\omega\tau}}{1+\omega^2 R_l^2 C_{gs}^2} - \omega^2 \frac{C_{gd}^2 R_{gd}}{1+\omega^2 R_{gd}^2 C_{gd}^2} - j\omega \left[\frac{C_{gd}}{1+\omega^2 R_{gd}^2 C_{gd}^2} + \frac{e^{-j\omega\tau} R_l C_{gs}}{1+\omega^2 R_l^2 C_{gs}^2}\right],\tag{35}$$

$$Y_{22} = g_{ds} + \omega^2 \frac{C_{gd}^2 R_{gd}}{1 + \omega^2 R_{gd}^2 C_{gd}^2} + j\omega \left[C_{ds} + \frac{C_{gd}}{1 + \omega^2 R_{gd}^2 C_{gd}^2} \right].$$
(36)

A partir de las ecuaciones (33 a 36) se calculan los elementos del transistor intrínseco como sigue:

$$g_{ds} = Re(Y_{22}) + Re(Y_{12}), \tag{37}$$

$$C_{ds} = \frac{Im(Y_{22}) + Im(Y_{12})}{\omega} , \qquad (38)$$

$$R_{i} = \frac{Re(Y_{11}) + Re(Y_{12})}{[Im(Y_{11}) + Im(Y_{12})]^{2} + [Re(Y_{11}) + Re(Y_{12})]^{2}},$$
(39)

$$C_{gd} = -\frac{Im(Y_{12})}{\omega} \left\{ 1 + \left[\frac{Re(Y_{12})}{Im(Y_{12})} \right]^2 \right\},\tag{40}$$

$$C_{gs} = \frac{1}{\omega} \frac{[Im(Y_{11}) + Im(Y_{12})]^2 + [Re(Y_{11}) + Re(Y_{12})]^2}{Im(Y_{11}) + Im(Y_{12})},$$
(41)

$$R_{gd} = \frac{Re(Y_{12})}{[Re(Y_{12})]^2 + [Im(Y_{12})]^2},$$
(42)

$$g_m = \sqrt{\{[Re(Y_{21}) - Re(Y_{12})]^2 + [Im(Y_{21}) - Im(Y_{12})]^2\} * \{1 + \omega^2 R_i^2 C_{gs}^2\}},$$
(43)

$$\tau = -\frac{1}{\omega} \tan^{-1} \left(\frac{y + x \omega R_i C_{gs}}{x - y \omega R_i C_{gs}} \right), \tag{44}$$

Donde:

$$x = Re(Y_{21}) - Re(Y_{12}), (45)$$

$$y = Im(Y_{21}) - Im(Y_{12}), (46)$$

De las expresiones anteriores se pueden obtener los elementos intrínsecos del transistor, pero debe hacerse mención que estos deben ser extraídos en donde son independientes de la frecuencia.

Capítulo IV

Nuevo método para la extracción de los elementos intrínsecos

IV.1 Introducción

En este capítulo se presentará un nuevo método para extraer los elementos intrínsecos del circuito eléctrico equivalente del transistor, para transistores basados en GaN.

De acuerdo con el método de extracción propuesto por Berroth, en el cual se puede observar que los elementos g_m y τ (ecuaciones 43 y 44) dependen de los valores de R_i y C_{gs} , y considerando el mismo circuito eléctrico equivalente del transistor, se propone un nuevo método para extraer los elementos, R_i , C_{gs} y C_{gd} .

 R_i se obtiene de una manera directa, obteniéndose un único valor, sin necesidad de considerar el rango en frecuencia en donde el valor de R_i es independiente de la frecuencia como ocurre con el método propuesto por Berroth. Los valores de C_{gs} y C_{gd} se calculan a partir de una derivada, donde ésta tiene un comportamiento independiente de la frecuencia.

Una vez calculados los elementos R_i , C_{gs} , C_{gd} ; luego entonces g_m y τ pueden calcularse con las expresiones 43 y 44, usando una expresión que es el producto de R_i por C_{gs} . Los elementos C_{ds} y g_{ds} , se calculan de la misma manera que con el método de Berroth.

IV.2 Nuevo método para determinar R_i, C_{gs}, R_{gd} y C_{gd} a partir de los puntos extremos de los parámetros Y intrínsecos

A partir del circuito eléctrico equivalente de la figura 21 y del previo conocimiento de los parámetros Y, representados en las ecuaciones 33 a 36 se definen dos nuevos parámetros μ y *v* a partir de los cuales se podrán calcular los valores de R_i y C_{gs}.

Se define μ como la suma de las partes reales de Y₁₁ y Y₁₂, y ν como la suma de las partes imaginarias de Y₁₁ y Y₁₂.

$$\mu = Re(Y_{11}) + Re(Y_{12}) = \frac{1}{R_i} \frac{\omega^2 R_i^2 C_{gs}^2}{1 + \omega^2 R_i^2 C_{gs}^2},$$
(47)

$$\nu = Im(Y_{11}) + Im(Y_{12}) = \frac{1}{R_i} \frac{\omega R_i C_{gs}}{1 + \omega^2 R_i^2 C_{gs}^2}.$$
(48)

Y también definiendo una nueva variable τ_{gs} como:

$$\tau_{gs} = R_i C_{gs} = \frac{1}{\omega_{gs}}.$$
(49)

Los parámetros μ y ν se pueden escribir de la siguiente manera:

$$\mu = \frac{1}{R_i} \frac{\omega^2 \tau_{gs}^2}{1 + \omega^2 \tau_{gs}^2} , \qquad (50)$$

$$\nu = \frac{\sigma}{R_i} \frac{\sigma}{1 + \omega^2 \tau_{gs}^2} \,. \tag{51}$$

Dividiendo $\frac{\mu}{\nu}$ se tiene que:

$$\frac{\mu}{\nu} = \omega \tau_{gs}.$$
(52)

Considerando μ y ν en función de ω , cuando $\frac{\mu}{\nu} = 1$, es decir cuando $\mu = \nu$: $\omega = \omega_{gs} = \frac{1}{\tau_{gs}}$.
(53)

Por otra parte, derivando v de la ecuación 51 se tiene que:

$$\frac{dv}{d\omega} = C_{gs} \frac{(1 - \omega^2 \tau_{gs}^2)}{(1 + \omega^2 \tau_{gs}^2)^2} \,. \tag{54}$$

Como se puede observar de la ecuación 54 que cuando $\omega \tau_{gs} \ll 1$ el valor de C_{gs} se puede obtener directamente y también se puede notar que ν tiene aquí un valor extremo. Este valor extremo se calcula como:

$$\frac{dv}{d\omega} = 0 . ag{55}$$

De donde se obtiene que $\omega \tau_{gs} = 1$, y de (53), considerando que esto ocurre cuando $\omega = \omega_{gs}$:

$$\tau_{gs} = \frac{1}{\omega_{gs}} \,. \tag{56}$$

 R_i se puede obtener de la ecuación 50 cuando $\omega^2 \tau_{gs}^2 = 1$, condición que se cumple cuando $\frac{\mu}{\nu} = 1$, punto en el que μ corta a ν en su punto máximo. Cuando esto sucede R_i se obtiene como:

$$R_i = \frac{1}{2\mu} \tag{57}$$

R_i también puede calcularse despejando la ecuación 53, de la siguiente manera:

$$R_i = \frac{1}{\omega_{gs} c_{gs}}$$

Nótese que el cálculo de R_i con la ecuación (58) requiere del previo conocimiento de C_{gs}.

Del mismo modo si se calcula primero el valor de R_i , C_{gs} se puede obtener a partir de la ecuación 53 como:

$$C_{gs} = \frac{1}{\omega_{gs}R_i}.$$
(59)

Por otra parte, utilizando la parte real e imaginaria de Y_{12} y definiendo dos nuevos parámetros x_1 e y_1 , donde el primero es la parte real de Y_{12} y el segundo es la parte imaginaria de Y_{12} .

$$x_1 = -\frac{1}{R_{gd}} \frac{\omega^2 R_{gd}^2 C_{gd}^2}{1 + \omega^2 R_{gd}^2 C_{gd}^2},\tag{60}$$

$$y_1 = -\frac{1}{R_{gd}} \frac{\omega R_{gd} C_{gd}}{1 + \omega^2 R_{gd}^2 C_{gd}^2},$$
(61)

Definiendo una nueva variable τ_{gd} :

0 0

 $\tau_{gd} = R_{gd}C_{gd} = \frac{1}{\omega_{gd}}.$ (62)

Se tiene que x_1 e y_1 se pueden expresar como:

$$x_1 = -\frac{1}{R_{gd}} \frac{\omega^2 \tau_{gd}^2}{1 + \omega^2 \tau_{gd}^2},$$
(63)

$$y_1 = -\frac{1}{R_{gd}} \frac{\omega \tau_{gd}}{1 + \omega^2 \tau_{gd}^2} \,. \tag{64}$$

(58)

Calculando la relación $\frac{x_1}{y_1}$ se tiene que:

(65)
$$\frac{x_1}{y_1} = \omega \tau_{gd}.$$

Considerando x_1 e y_1 en función de ω , cuando se cumple la condición $\frac{x_1}{y_1} = 1$, es decir cuando $x_1 = y_1$:

$$\omega = \omega_{gd} = \frac{1}{\tau_{gd}}.$$
(66)

El valor de C_{gd} se obtiene de la siguiente expresión:

$$\frac{dy_1}{d\omega} = -C_{gd} \left[\frac{1 - \omega^2 \tau_{gd}^2}{\left(1 + \omega^2 \tau_{gd}^2\right)} \right]. \tag{67}$$

De la ecuación 67, cuando $\omega^2 \tau_{gd}^2 \ll 1$ se obtiene directamente el valor de C_{gd}. Esta condición se cumple en baja frecuencia donde tiene un comportamiento casi constante.

De la ecuación 67 se puede observar que se tiene un valor extremo el cual se determina como:

$$\frac{\partial y_1}{\partial \omega} = 0 . ag{68}$$

De donde se obtiene que $\omega \tau_{gd} = 1$ y de (66), considerando que esto ocurre cuando $\omega = \omega_{gd}$:

$$\tau_{gd} = \frac{1}{\omega_{gd}}.$$
(69)

 R_{gd} puede ser calculada de la ecuación 63 cuando $\omega^2 \tau_{gd}^2 = 1$ lo cual ocurre cuando $x_1 = y_1$, que es el punto donde x_l corta a y_l en su punto mínimo. Por lo tanto R_{gd} se obtiene como:

$$R_{gd} = -\frac{1}{2x_1}.$$
(70)

O si se obtiene primero el valor de C_{gd} de la ecuación 67, R_{gd} se puede calcular a partir de la ecuación 66 como:

$$R_{gd} = \frac{1}{\omega C_{gd}} \,. \tag{71}$$

Y de igual modo si se obtiene primero el valor de R_{gd} ; C_{gd} puede calcularse también de la ecuación 66 como:

$$C_{gd} = \frac{1}{\omega R_{gd}} \,. \tag{72}$$

IV.3 Validación del nuevo método para determinar R_i , C_{gs} , R_{gd} y C_{gd}

Para validar el nuevo método para determinar R_i, C_{gs}, R_{gd} y C_{gd} se simuló en ADS (Advanced Design System) el transistor intrínseco mostrado en la figura 22. Los valores de los elementos fueron datos extraídos a partir de un transistor real, un HEMT de 300 μ m, usando el Método de Berroth. Los datos se obtuvieron con una polarización alta, $V_{gs=}0V$ y $V_{ds} = 21V$.

Se implementó en ADS el nuevo método propuesto; y también se hizo la extracción con el método de Berroth. Se compararon los resultados calculados con ambos métodos, y se obtuvieron los mismos resultados.

Los valores de los elementos intrínsecos que se utilizaron para la simulación del transistor fueron los siguientes:

$R_i = 4.69 \Omega$	$R_{ds} = 636.94\Omega$	$C_{gd} = 47.80 fF$	$g_m = 82.67mS$
$R_{gd} = 35.82 \Omega$	$C_{gs} = 802.25 fF$	$C_{ds} = 16.38 fF$	$\tau = 2.91 pS$

Tabla II. Parámetros intrínsecos usados para la simulación.

El circuito que se utilizó para la simulación en ADS es el siguiente:

Figura 22. Circuito Eléctrico Equivalente del transistor simulado con ADS.

Se aplicó el nuevo método propuesto y se comprobó que μ corta ν en su punto máximo. De acuerdo con la teoría antes presentada R_i se calculó de acuerdo a la ecuación 57.

Figura 23. µ y v obtenidas de la simulación en ADS.

La extracción de C_{gs} se hizo de la derivada de v en baja frecuencia, de acuerdo con la ecuación 54.

Figura 24. Derivada de v con datos simulados a partir de la cual se extrae Cgs.

Para el caso de R_{gd} , se tiene que x_1 corta a y_1 en su punto mínimo y R_{gd} se puede calcular de acuerdo a la ecuación 70.

 C_{gs} también se calculó a partir de la ecuación 59, para demostrar que puede ser extraído de esta ecuación conociendo el valor de R_i , y es igual al valor obtenido de la derivada de v respecto a ω .

 C_{gd} se obtuvo en baja frecuencia de la ecuación 67, a partir de la derivada de y_1 .

Figura 26. Derivada de y_1 con datos simulados a partir de la cual se extrae C_{gd} .

 C_{gd} también se calculó a partir de la ecuación 72, para demostrar que puede ser extraído de esta ecuación conociendo el valor de R_{gd} y es igual al valor obtenido de la derivada de y_1 respecto a ω .

La siguiente tabla muestra los valores obtenidos.

Tabla III. R_i, R_{gd}, C_{gs} y C_{gd} extraídos con el nuevo método propuesto, a partir de la simulación del transistor.

transistor.		
De la ecuación 58	De la ecuación 54	De la ecuación 59
$R_i = 4.68\Omega$	$C_{gs} = 801.75 fF$	$C_{gs} = 801.48 fF$
De la ecuación 71	De la ecuación 67	De la ecuación 72
$R_{gd} = 35.82\Omega$	$C_{gd} = 47.78 fF$	$C_{gd} = 47.76 fF$
	De la ecuación 58 $R_i = 4.68\Omega$ De la ecuación 71 $R_{gd} = 35.82\Omega$	De la ecuación 58De la ecuación 54 $R_i = 4.68\Omega$ $C_{gs} = 801.75 fF$ De la ecuación 71De la ecuación 67 $R_{gd} = 35.82\Omega$ $C_{gd} = 47.78 fF$

El resto de los elementos, g_{ds} , C_{ds} , fueron calculados de acuerdo con las ecuaciones deducidas de los parámetros Y intrínsecos del circuito eléctrico equivalente de la figura 21.

Los elementos $g_m y \tau$ se obtuvieron de las expresiones deducidas de los parámetros Y intrínsecos, del mismo modo como lo calcula Berroth pero utilizando los valores de los elementos R_i , $C_{gs} y R_{gd} y C_{gd}$ extraídos con el nuevo método.

Los resultados obtenidos de estas ecuaciones se muestran a continuación:

Tabla IV. Elementos extraídos con las ecuaciones 37 - 41; $g_m y \tau$ se obtuvieron usando los valores de R_i y C_{gs} calculados con el nuevo método.

$g_m = 82.67mS$	au = 2.91 pS	$C_{ds} = 16.39 fF$	$R_{ds} = 636.94 \Omega$
1		L	

Usando el método propuesto por Berroth se simuló en ADS (Advanced Design System) un transistor con la topología de la figura 19, usando los mismos datos de la tabla 2.

Los resultados para la extracción con el método de Berroth fueron los siguientes:

$R_i = 4.68 \Omega$	$g_{ds} = 1.57 \Omega$	$C_{gd} = 47.80 fF$	$g_m = 81.34mS$
$R_{gd} = 35.82 \Omega$	$C_{gs} = 802.25 fF$	$C_{ds} = 16.39 fF$	$\tau = 2.91 pS$

Tabla V. Elementos extraídos con el método de Berroth utilizando datos simulados.

En la tabla 5, se representan los valores de los elementos intrínsecos calculados con ambos métodos; el propuesto en esta tesis y el clásico de Berroth. Es importante mencionar que ambos métodos arrojan los mismos resultados, lo que valida al nuevo método.

	Nuevo Método Propuesto	Método de M. Berroth.
Ri	4.69 Ohms	4.69 Ohms
C _{gs}	801.75 fF	802.25 Ff
R _{gd}	35.82 Ohms	35.82 Ohms
C _{gd}	47.78 fF	47.80 fF
C _{ds}	16.39 fF	16.39 fF
gds	1.57 mS	1.57 mS
g _{m0}	81.33 mS	81.34 mS
τ	2.91 ps	2.91 ps

Tabla VI. Comparación de los datos extraídos con el nuevo método propuesto y con el método de Berroth en la simulación del transistor con ADS.

Posteriormente se realizó el procedimiento de embedding, usando los elementos parásitos de la tabla 7 y se simularon los parámetros S del transistor.

Los elementos parásitos que se usaron para la simulación fueron los que se muestran en la siguiente tabla.

Tabla VII. Elementos parásitos usados para obtener los parámetros S del transistor simulado en ADS.

$L_g = 59.19 \ pH$	$R_s = 2.34 \Omega$	
$L_s = 0.99 \ pH$	$R_d = 4.95 \Omega$	
$L_d = 62.26 pH$	$C_{pg} = 4.11 fF$	
$R_g = 1.72 \Omega$	$C_{pd} = 30.92 fF$	

En las siguientes figuras se muestran los parámetros S simulados con el método de Berroth y el nuevo método propuesto.

Como se puede ver ambos métodos tienen un buen ajuste de Parámetros S. Con esto se puede confirmar la validez del nuevo método.

Figura 27. Parámetros S simulados con el método de Berroth y el nuevo método propuesto.

Resultados experimentales

V.1 Introducción

En este capítulo se presentarán los resultados experimentales obtenidos de los elementos intrínsecos del circuito eléctrico equivalente, de transistores basados en GaN, determinados utilizando el nuevo método propuesto.

Se midieron tres transistores HEMT de AlGaN/GaN fabricados en un substrato de Si de la compañía Nitronix Corporation, de longitud de compuerta LG= $0.7 \mu m$ y diferentes anchos de compuerta (W). El primer transistor de W= $100 \mu m$ se midió en un rango de frecuencia de 0.045 a 50 GHz, el segundo de W= $300 \mu m$ en el rango de frecuencia de 0.045 a 48 GHz y el tercero de W=2 mm en un rango de frecuencia de 0.045 a 30 GHz.

Las mediciones se hicieron usando el Analizador de Redes Vectorial HP8510 calibrado con la técnica de calibración LRM mejorada [Zúñiga-Suárez, 2004] usando los estándares de calibración de CS-5 de industrias GGB, también se utilizaron las puntas de prueba modelo 50A- GSG-100P y la máquina de puntas SUMMIT 9000 para estructuras coplanares.

V.2 Extracción de los elementos parásitos

La extracción de los elementos parásitos se hizo de acuerdo al método presentado en el capítulo III, las resistencias e inductancias parásitas se calcularon como se explica en la sección III.2.2 y las capacitancias extrínsecas de acuerdo a como se explica en la sección III.2.3.4.

A continuación se muestra en la tabla VIII los valores de los elementos parásitos para los tres transistores estudiados.

Elemento	100 μm, transistor 1	300 µm, transistor 2	2 mm, transistor 3
$R_{g}(\Omega)$	0.541	2.411	0.69
$R_{s}(\Omega)$	7.659	2.199	0.42
$R_{d}(\Omega)$	14.33	5.206	0.75
L _g (pH)	43.90	67.95	46.36
$L_{s}(pH)$	5.95	0.175	1.86
L _d (pH)	4.848	76.74	92.29
C_{pg} (fF)	29.14	11.15	42.33
C _{pd} (fF)	1.34	28.02	205.09

Tabla VIII. Elementos parásitos extraídos de los transistores de AlGaN/GaN.

V.3 Extracción de los elementos intrínsecos

En la extracción de los elementos intrínsecos se utilizó el nuevo método propuesto tal y como se explica en la sección IV.2 y el método clásico propuesto por Berroth, *et al.* Como se explica en la sección IV.1. La extracción de los elementos intrínsecos usando el método de Berroth consiste en encontrar el valor del elemento intrínseco donde este es independiente de la frecuencia. Como ejemplo en la figura 29 se muestran gráficamente, los elementos R_i, C_{gs}, R_{gd}, C_{gd}, g_m y τ para el transistor de W=100 µm, en función de la frecuencia, calculados usando el método de Berroth, en las cuales se puede observar que es difícil encontrar el valor del elemento en donde este es independiente de la frecuencia.

Figura 29. Gráficas de los elementos intrínsecos a partir del método de Berroth, para el transistor W=100 μm.

Con en el objetivo de mitigar los problemas presentados en la extracción de R_i, C_{gs}, R_{gd}, C_{gd}, g_m y τ utilizando el método de Berroth, se presentan resultados experimentales de la extracción de estos elementos utilizando el nuevo método. Utilizando el nuevo método R_i puede ser extraída a partir de la ecuación 58 donde μ corta a ν en su punto máximo, C_{gs} y C_{gd} se obtienen evaluando la derivada de ν e y_1 con respecto a la frecuencia angular ω (ecuaciones 54 y 67) respectivamente. A continuación se muestran en las figuras 30 y 31 la dependencia experimental de μ , $\nu \frac{d\nu}{d\omega}, \frac{dy_1}{d\omega}$ con respecto a ω utilizadas para calcular de R_i, C_{gs} y C_{gd}, con el nuevo método.

Figura 30. μ y v a partir de la cual se extrae el valor de R_i en el punto máximo de v para el transistor W=100 μm.

(b) C_{gd}

Figura 31. Gráficas utilizadas en extracción del valor de C_{gs} y C_{gd} a partir de la derivada de v y y₁ con respecto a ω , para el transistor W=100 µm.

V.3.1 Extracción de los elementos intrínsecos del Transistor 1, con ancho de compuerta de 100 μm

En esta sección se presentaran los resultados experimentales obtenidos de la caracterización del transistor de ancho de compuerta Z=100 μ m utilizando ambos métodos el propuesto en esta tesis y el clásico propuesto por M. Berroth.

V.3.1.1 Extracción de R_i y R_{gd}

En la tabla IX y X se muestran los valores de los elementos intrínsecos R_i y R_{gd} respectivamente calculados con el nuevo método, y se comparan con los obtenidos con el método de Berroth, en función de diferentes polarizaciones en V_{ds} y V_{gs} . Para el transistor de ancho de compuerta Z=100 µm, los resultados son los siguientes:

R _i (Ω)	N.M	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V _{ds} /V _{gs}		2 V	-1.5 V		-1 V		-0.5 V		0 V	
5 V	8.97	9.98	6.38	7.16	6.87	7.76	7.98	8.76	10.82	11.38
10 V	8.02	8.89	7.64	8.37	9.13	9.47	10.75	11.21	12.81	13.28
15 V	9.19	9.65	9.29	9.38	10.13	10.59	11.87	12.25	14.08	14.35
20 V	9.87	10.26	9.78	10.16	12.67	11.39	11.23	13.07	15.31	15.65
25 V	10.25	10.64	10.56	10.84	11.64	12.6	13.78	14.12	16.51	16.89
30 V	10.84	11.15	11.12	11.41	12.42	12.77	14.91	15.18	17.64	18.06
35 V	11.37	11.58	11.49	11.76	13.34	13.6	15.96	16.26	19.27	19.62
40 V	11.65	11.93	12.1	12.32	14.17	14.41	16.98	17.29	21.37	21.57

Tabla IX. Comparación de Ri en función de los voltajes de polarización Vgs y Vds. y método de Berroth.

$R_{gd}(\Omega)$	N.M	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V _{ds} /V _{gs}	-2	2 V	-1.5 V		-1 V		-0.5 V		0 V	
5 V	36.83	36.83	34.67	34.67	37.98	37.98	42.44	42.44	47.4	47.36
10 V	58.57	58.57	69.12	63.3	70.38	65.63	75.21	70.69	80.41	74.89
15 V	107.59	107.59	106.71	98.48	118.43	104.75	113.48	104.13	111.29	101.93
20 V	161.87	154.83	159.34	149.35	159.81	143.38	142.81	128.2	119.13	119.33
25 V	194.6	187.14	195.37	185.72	184.09	162.08	173.95	147.35	128.38	128.38
30 V	216.95	215.7	222.88	207.78	207.42	186.53	159.55	159.55	134.5	134.5
35 V	236.04	236.04	238.81	227.3	224.53	201.55	162.85	162.84	146.52	146.52
40 V	250.45	246.91	258.64	248.2	236.96	212.69	180.9	180.9	161.17	161.17

Tabla X. Comparación de R_{gd} en función de los voltajes de polarización V_{gs} y V_{ds} . y método de Berroth.

En las tablas IX y X se observa que hay una buena correlación entre ambos métodos.

V.3.1.2 Extracción de Cgs y Cgd

En la tabla XI y XII se muestran los valores de los elementos C_{gs} y C_{gd} respectivamente determinados con el nuevo método y se comparan con los valores de los elementos intrínsecos extraídos con el método de Berroth.

				DUITOL	11.				
N.M	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
	2 V	-1.5 V		-1 V		-0.5 V		0 V	
203	207	260	263	264	268	264	268	266	273
255	272	271	276	270	276	266	275	261	272
269	276	276	283	274	281	267	276	250	268
276	285	284	291	274	272	261	284	247	260
279	288	285	292	270	280	255	266	238	252
278	289	280	291	267	277	249	262	231	245
278	288	279	289	262	275	245	258	225	240
279	214	277	299	261	285	242	269	290	251
	N.M 203 255 269 276 279 278 278 278	N.M Berroth -2V 203 207 255 272 269 276 276 285 279 288 278 289 279 288 278 288 279 214	N.M Berroth N.M. -2 V -2 203 207 260 255 272 271 269 276 276 269 276 284 279 288 285 278 289 280 279 214 277	N.M Berroth N.M. Berroth -2V -1.5V 203 207 260 263 255 272 271 276 269 276 276 283 276 285 284 291 279 288 285 292 278 288 279 289 279 214 277 299	N.M Berroth N.M. Berroth N.M. -2V -1.5V 263 264 203 207 260 263 264 255 272 271 276 270 269 276 276 283 274 276 285 284 291 270 278 289 280 291 267 278 288 279 289 262 279 214 277 299 261	N.M Berroth N.M. Berroth N.M. Berroth -2V -1.5V -1V 203 207 260 263 264 268 255 272 271 276 270 276 269 276 276 283 274 281 276 285 284 291 274 272 279 288 285 292 270 280 278 289 280 291 267 277 278 288 279 289 262 275 279 214 277 299 261 285	N.MBerrothN.M.BerrothN.M.BerrothN.M. $-2 \vee$ $-1.5 \vee$ $-1 \vee$ -1 -1 -1 203207260263264268264255272271276270276266269276276283274281267276285284291274272261279288285292270280255278289280291267277249279214277299261285242	N.MBerrothN.M.BerrothN.M.BerrothN.M.Berroth $-2 \vee$ $-1 \vee$ $-1 \vee$ $-0 \vee$ 203207260263264268264268255272271276270276266275269276276283274281267276276285284291274272261284279288285292270280255266278289280291267277249262279214277299261285242269	N.MBerrothN.M.BerrothN.M.BerrothN.M.BerrothN.M. $-2 \vee$ $-1 \vee$ $-1 \vee$ $-0 \vee$ 0 203207260263264268264268266255272271276270276266275261269276276283274281267276250276285284291274272261284247279288285292270280255266238278289280291267275245258225279214277299261285242269290

Tabla XI. Comparación de C_{gs} en función de los voltajes de polarización V_{gs} y V_{ds} . y método de Berroth

En la tabla XI se puede notar que los valores obtenidos con el nuevo método para C_{gs} son muy parecidos a los calculados con el método de Berroth en todos los puntos V_{ds}/V_{gs} .

C _{gd} (fF)	N.M	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V _{ds} /V _{gs}	/ _{ds} /V _{gs} -2 V		-1.5 V		-1 V		-0.5 V		0 V	
5 V	35.7	36.1	38.4	38.9	39.8	40.4	40.6	41.1	38.3	44.8
10 V	26.2	27.2	26.9	27.4	27.3	28.0	28,3	28.9	29.6	30.5
15 V	19.0	19.6	20.3	20.7	20.1	20.7	20.6	21.2	21.8	22.5
20 V	15.6	16.2	16.2	16.9	16.5	17.0	17.1	17.5	17.9	18.4
25 V	13.9	14.6	14.2	14.9	14.7	15.1	15.4	15.6	16.1	16.2
30 V	13.0	13.7	13.1	13.8	13.6	14.1	14.2	14.4	14.9	14.9
35 V	12.4	13.1	12.6	13.2	12.9	13.3	13.4	13.6	13.8	14.1
40 V	12.0	12.6	12.7	12.6	12.3	12.6	12.7	12.9	13.2	13.2

Tabla XII. Comparación de C_{gd} en función de los voltajes de polarización V_{gs} y V_{ds}. nuevo método y método de Berroth.

En la tabla XII se observa que los valores de C_{gd} son semejantes entre el nuevo método y los obtenidos con el método de Berroth.

V.3.1.3 Extracción de $g_m y \tau$

En las tablas XIII y XIV se presentan los resultados obtenidos de la extracción de los elementos g_m y τ , utilizando R_i y C_{gs} , calculados con el nuevo método, y también se comparan con los resultados obtenidos con el método de Berroth.

Berroth. g_m (mS) N.M Berroth N.M. N.M. Berroth N.M. Berroth N.M. Berroth Berroth -1.5 V -1 V -0.5 V 0 V V_{ds}/V_{gs} -2 V 5 V 10 V 15 V 20 V 25 V 30 V 35 V 40 V

Tabla XIII. Comparación de g_m en función de los voltajes de polarización V_{gs} y V_{ds} . y método de

τ (pS)	N.M	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V_{ds}/V_{gs}		2 V	-1.5 V		-1 V		-0	.5 V	0 V	
5 V	3.61	2.29	1.90	1.78	2.08	1.91	2.21	2.04	2.25	2.25
10 V	2.53	2.31	2.31	2.08	2.21	2.26	2.40	1.80	2.58	2.48
15 V	2.78	2.72	2.42	2.44	2.00	2.57	2.5	2.67	2.81	2.83
20 V	3.57	3.05	2.81	2.76	2.16	2.79	2.77	2.75	3.01	2.89
25 V	3.39	3.43	3.12	3.16	3.00	3.08	3.09	3.06	3.27	3.21
30 V	3.57	3.49	3.32	3.24	3.06	3.13	3.31	3.18	3.51	3.27
35 V	3.75	3.83	3.49	3.51	3.47	3.44	3.31	3.51	3.77	3.67
40 V	4.00	4.00	3.68	3.60	3.67	3.60	3.89	3.60	4.19	3.69

Tabla XIV. Comparación de τ en función de los voltajes de polarización V_{gs} y V_{ds} . y método de Berroth.

La tabla XIV muestra que los valores de τ calculados con el nuevo método y también son muy semejantes a los calculados con el método de Berroth. Sin embargo, es importante hacer notar que a bajos valores de alimentación de V_{ds} y cerca la oclusión del canal los métodos no coinciden.

V.3.1.4 Extracción de g_{ds} y C_{ds}

Las tablas XV y XVI se muestran los valores de g_{ds} y C_{gd} , calculados de acuerdo a las ecuaciones 37 y 38 respectivamente

CARANA MANARAMAN AND AND AND AND AND AND AND AND AND A		Bas (,	uyata Mananca ana ana ana ana ang sana ang	релионалистичности
V _{ds} /V _{gs}	-2	-1.5	-1	-0.5	0
5	0.88	1.28	1.46	1.57	1.63
10	0.70	0.9	0.92	0.94	0.99
15	0.62	0.7	0.71	0. 73	0.72
20	0.54	0.6	0.61	0.59	0.59
25	0.50	0.56	0.55	0. 54	0.53
30	0.50	0.54	0.53	0. 53	0.47
35	0.51	0. 52	0.52	0.49	0.49
40	0.46	0.49	0.51	0.48	0.49

Tabla XV. g_{ds} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth.

V _{ds} /V _{gs}	-2 V	-1.5 V	-1 V	-0.5 V	0 V
5 V	28.3	27.0	26.6	25.3	22.7
10 V	26.3	27.6	27.6	27.5	22.3
15 V	24.1	23.7	23.9	23.2	22.3
20 V	23.3	23.6	23.1	22.2	26.0
25 V	22.7	23.0	21.8	21.9	21.3
30 V	22.4	22.3	22.1	21.5	20.7
35 V	22.2	22.2	21.7	20.5	20.5
40 V	21.4	21.9	21.1	20.7	20.0

Tabla XVI. C_{ds} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth.

V.3.2 Extracción de los elementos intrínsecos del Transistor 2, con ancho de compuerta de 300 μm

En esta sección se presentaran los resultados obtenidos para el transistor de ancho de compuerta de 300 µm y se compararan con los extraídos con el método de Berroth.

V.3.2.1 Extracción de R_i y R_{gd}

En las tablas XVII-1 y XVII-2 se muestran los elementos R_i y R_{gd} calculados con el nuevo método y se comparan con los obtenidos con el método de Berroth, en función de diferentes polarizaciones en V_{ds} y V_{gs} .

Para el transistor de ancho de compuerta de 300 µm, los resultados son los siguientes:

R _i (Ω)	N.M.	Berroth								
Vds/Vgs	•	-2 V		-1.75 V		-1.5 V		.25 V	-1 V	
5	2.85	1.48	2.78	1.45	2.81	1.53	2.92	1.69	3.15	1.91
10	2.98	1.87	2.98	1.92	3.35	2.26	3.59	2.54	3.88	2.87
15	3.2	2.19	3.4	2.41	3.51	2.66	3.95	3.01	4.11	3.25
20	3.4	2.49	3.68	2.78	3.9	3.01	4.21	3.34	4.55	3.72
25	3.69	2.79	3.79	2.97	4.17	3.32	4.47	3.66	4.95	4.17
30	3.89	3.026	4.07	3.23	4.33	3.55	4.79	4.04	5.29	4.56
35	3.94	3.14	4.26	3.44	4.58	3.8	5.14	4.38	5.62	4.94
40	4.14	3.32	4.34	3.58	4.81	4.04	5.29	4.63	6.07	5.38

Tabla XVII-1. Comparación de R_i en función de los voltajes de polarización V_{gs} y V_{ds}. Nuevo método y método de Berroth.

Tabla XVII-2. Comparación de R_i en función de los voltajes de polarización V_{gs} y V_{ds}. Nuevo método y método de Berroth

-0	75 V		lennen en e	 Contraction of the second secon			
	-0.75 V		-0.5 V		-0.25 V		οv
3.46	2.25	3.63	2.52	4.05	3.04	4.59	3.66
4	3.1	4.42	3.5	4.86	3.98	5.33	4.53
4.54	3.66	4.97	4.13	5.37	4.62	5.91	5.18
5	4.19	5.39	4.64	5.95	5.24	6.59	5.88
5.39	4.66	5.95	5.24	6.59	5.9	7.29	6.57
5.82	5.13	6.52	5.81	7.22	6.51	7.87	7.2
6.3	5.64	7.07	6.36	7.71	7.05	8.55	7.85
6.84	6.13	7.55	6.86	8.44	7.73	9.33	8.63
	3.46 4 4.54 5 5.39 5.82 6.3 6.84	3.46 2.25 4 3.1 4.54 3.66 5 4.19 5.39 4.66 5.82 5.13 6.3 5.64 6.84 6.13	3.46 2.25 3.63 4 3.1 4.42 4.54 3.66 4.97 5 4.19 5.39 5.39 4.66 5.95 5.82 5.13 6.52 6.3 5.64 7.07 6.84 6.13 7.55	3.46 2.25 3.63 2.52 4 3.1 4.42 3.5 4.54 3.66 4.97 4.13 5 4.19 5.39 4.64 5.39 4.66 5.95 5.24 5.82 5.13 6.52 5.81 6.3 5.64 7.07 6.36 6.84 6.13 7.55 6.86	3.46 2.25 3.63 2.52 4.05 4 3.1 4.42 3.5 4.86 4.54 3.66 4.97 4.13 5.37 5 4.19 5.39 4.66 5.95 5.24 6.59 5.82 5.13 6.52 5.81 7.22 6.3 5.64 7.07 6.36 8.44	3.46 2.25 3.63 2.52 4.05 3.04 4 3.1 4.42 3.5 4.86 3.98 4.54 3.66 4.97 4.13 5.37 4.62 5 4.19 5.39 4.64 5.95 5.24 5.39 4.66 5.95 5.24 6.59 5.9 5.82 5.13 6.52 5.81 7.22 6.51 6.3 5.64 7.07 6.36 7.71 7.05 6.84 6.13 7.55 6.86 8.44 7.73	3.46 2.25 3.63 2.52 4.05 3.04 4.59 4 3.1 4.42 3.5 4.86 3.98 5.33 4.54 3.66 4.97 4.13 5.37 4.62 5.91 5 4.19 5.39 4.64 5.95 5.24 6.59 5.39 4.66 5.95 5.24 6.59 7.29 5.82 5.13 6.52 5.81 7.22 6.51 7.87 6.3 5.64 7.07 6.36 7.71 7.05 8.55 6.84 6.13 7.55 6.86 8.44 7.73 9.33

En las tablas XVII-1 y XVII-2 se observa que con el nuevo método el valor de R_i tiende a ser un poco mayor que el calculado con Berroth, sin embargo el ajuste de parámetros S con el nuevo método es muy bueno como se mostrará más adelante.

En la tabla XVIII muestra los resultados obtenidos para R_{gd} , los cuales se obtuvieron usando Berroth porque no se observo gráficamente un cruce de las curvas $x_1 e y_1$.

				R _{gd} (Ω) Berroth				
V _{ds} /V _{gs}	-2 V	-1.75 V	-1.5 V	-1.25 V	-1 V	-0.75 V	-0.5 V	-0.25 V	0 V
5	5.07	5.03	5.7	5.98	7.03	7.84	9.23	12.38	13.89
10	9.96	11.95	13.87	15.42	17.3	18.37	20.83	25	26.92
15	15.5	20.21	20.64	23.78	24.63	27.36	29.67	31.52	34.85
20	24.77	28.51	29.88	29.95	32.65	35.21	35.68	38.27	40.71
25	33.19	33.56	37.26	37.91	39.87	38.27	42.01	43.91	45.48
30	38.75	41.18	38	41.87	41.23	43.58	45.49	46.47	47.41
35	46.24	46.57	46.72	48.43	47.88	48.36	48.9	48.57	51.51
40	53.51	5095	53.36	52.32	53.45	52.33	53.49	54.13	56.99
	かゆう いうかいかかんき かいゆう おとうへんがくりつ かがえ かいしんくく		Chevelor Box Contains a Jack Street Street Street Street	CONTRACTOR DE LA CONTRACTÓRIA DE LA CONTRAC	A STREAM OF CONTRACT A REPORT OF A CONTRACT OF A STREAM	CONSTRAINT 114 SPREADING WITH DUCKET WITH A REPORT OF 22		THE REPORT OF A REPORT OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO	

Tabla XVIII. Comparación de R_{gd} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth

V.3.2.2 Extracción de Cgs y Cgd

En las tablas XIX-1, XIX-2, XX-1 y XX-2 se mostraran los resultados obtenidos de la extracción de C_{gs} y C_{gd} utilizando el nuevo método, a partir de las ecuaciones 54 y 67 respectivamente y se compararon con el método de Berroth, se observa que hay una muy buena correspondencia entre los resultados obtenidos con ambos métodos.

C _{gs} (fF)	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V _{ds} /V _{gs}	/ _{ds} /V _{gs} -2 V		-1.75 V		-1.5 V		-1.25 V			-1 V
5	754	747	779	773	787	781	785	784	790	756
10	782	784	806	804	805	808	801	805	794	800
15	809	810	827	830	825	827	819	822	807	815
20	832	834	846	849	839	845	825	844	812	8.20
25	842	848	853	857	846	851	828	837	805	818
30	853	859	853	862	840	851	823	834	797	811
35	853	861	851	860	837	848	813	827	786	803
40	855	860	847	858	830	844	802	820	772	794

Tabla XIX-1. Comparación de C_{gs} en función de los voltajes de polarización V_{gs} y V_{ds}. Nuevo método y método de Berroth.

C _{gs} (fF)	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V _{ds} /V _{gs}	-0	.75 V	-0).5 V	-0.25 V		0 V	
5	783	782	767	773	799	804	784	794
10	789	794	781	790	783	794	766	782
15	795	805	784	795	771	789	755	773
20	792	803	769	785	750	768	725	745
25	781	796	757	774	730	752	703	727
30	771	788	740	764	712	739	683	710
35	758	778	730	753	698	725	666	699
40	747	769	755	743	687	718	632	691

Tabla XIX-2. Comparación de C_{gs} en función de los voltajes de polarización V_{gs} y V_{ds}. Nuevo método y método de Berroth.

Tabla XX-1. Comparación de C_{gd} en función de los voltajes de polarización V_{gs} y V_{ds}. Nuevo método y método de Berroth.

$C_{gd}(fF)$	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V_{ds}/V_{gs}	-	2 V	-1.75 V		-:	1.5 V	-1	.25 V	-1 V	
5	94.6	96	97.7	97.5	101	100	103	100	107	107
10	67.4	67.5	67.5	67.4	67.9	68.2	69.1	69.2	70.1	70.2
15	48.8	49.1	47.8	48.0	47.3	47.8	47.5	47.9	48.0	48.3
20	36.5	36.8	35.5	35.9	36.0	36.1	36.3	36.5	36.8	37.2
25	30.2	30.5	29.9	30.1	29.9	30.4	30.5	30.9	31.4	31.8
30	26.6	26.7	26.2	26.0	26.8	27.0	27.4	27.6	28.0	28.3
35	24.1	24.4	24.6	24.5	24.7	24.9	25.2	25.5	25.9	26.1
40	22.5	22.9	22.7	23.0	23.6	23.8	24.0	24.1	24.4	24.6

Tabla XX-2. Comparación de C_{gd} en función de los voltajes de polarización V_{gs} y V_{ds}. Nuevo método y método de Berroth.

C _{gd} (fF)	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V_{ds}/V_{gs}	-0.	75 V	-0	.5 V	-0.	25 V	() V
5	111	111	118	118	120	145	153	134
10	70.8	71.3	72.4	72.9	78.3	759	76.6	80.0
15	49.1	49.3	50.2	50.9	52.6	53.3	55.3	56.1
20	37.9	38.3	39.7	39.8	41.1	41.5	43.3	43.5
25	32.6	32.6	33.4	33.8	35.0	35.1	36.5	36.7
30	28.9	29.1	29.9	30.1	30.9	31.2	32.1	32.6
35	26.6	26.8	27.4	27.6	28.3	28.6	29.8	29.7
40	24.9	25.2	25.5	25.9	26.5	26.8	27.5	28.2

V.3.2.3 Extracción de g_m y τ

Las tablas XXI-1, XXI-2, XXII-1 y XXII-2 muestran los resultados obtenidos para g_m y τ usando R_i y C_{gs} calculados con el nuevo método, cuando se comparan con los valores obtenidos con el método de Berroth. Se observa un comportamiento similar al del transistor de longitud de compuerta de 100um. Es decir, se obtiene una buena correlación de los valores obtenidos.

Tabla XXI-1. Comparación de g_m en función de los voltajes de polarización V_{gs} y V_{ds}. Nuevo método y método de Berroth.

g _m (mS)	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V _{ds} /V _{gs}		-2 V	-1	75 V	-1.5 V		-1.25 V		-	1 V
5	100	100	112	111	114	114	113	112	110	109
10	98	98	104	104	104	104	102	102	98	98
15	93	93	96	96	95	96	93	93	90	90
20	88	88	90	90	89	89	87	87	84	84
25	83	83	85	84	83	83	81	81	78	78
30	79	79	80	80	80	79	76	76	73	73
35	75	75	76	76	75	75	72	72	69	69
40	72	72	73	73	72	72	69	69	65	65

Tabla XXI-2. Comparación de g_m en función de los voltajes de polarización V_{gs} y V_{ds} . y método de

				Berrotn.				
g _m (mS)	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V_{ds}/V_{gs}	-0.	.75 V	-().5 V	-0	.25 V		0 V
5	105	105	99	100	91	92	84	84
10	94	94	90	90	85	85	78	80
15	87	87	83	83	78	78	74	74
20	80	80	77	77	73	73	69	69
25	75	75	71	71	67	67	64	64
30	70	70	66	66	63	63	59	59
35	66	66	62	62	58	58	55	55
40	62	62	58	58	55	55	51	50
CONTRACTOR OF A DESCRIPTION OF A DESCRIP		NAMES OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.	1000000000000000000000000000000000000		Managers Territ Science (1995)	an a Carbana response contraction and a provide a second	1.19 domas Pri 1. 100 1.1 anni 1.1 an	

(0)				1					T	1
τ(ps)	N.W.	Berroth	N.IVI.	Berroth	N.W.	Berroth	N.W.	Berroth	N.W.	Berroth
V_{ds}/V_{gs}		-2 V	-1	.75 V	-1	l.5 V	-1	25 V	-	1 V
5	2.04	2.05	1.87	1.88	1.77	1.87	1.85	1.85	1.86	1.85
10	2.37	2.4	2.37	2.4	2.42	2.43	2.48	2.48	2.55	2.54
15	2.81	2.84	2.85	2.87	2.87	2.88	2.92	2.92	2.97	2.95
20	3.24	3.26	3.29	3.3	3.29	3.29	3.32	3.29	3.33	3.64
25	3.64	3.64	3.64	3.63	3.62	3.6	3.63	3.6	3.69	3.65
30	3.99	3.95	3.93	3.93	3.92	3.9	3.93	3.91	4.02	3.95
35	4.26	4.28	4.19	4.18	4.17	4.15	4.22	4.19	4.30	4.25
40	4.52	4.46	4.44	4.38	4.38	4.35	4.49	4.45	4.62	4.52
in the second		and the second se						8	1	

Tabla XXII-1. Comparación de τ en función de los voltajes de polarización V_{gs} y V_{ds} . y método de Berroth.

Tabla XXII-2. Comparación de τ en función de los voltajes de polarización V_{gs} y V_{ds} . y método de Berroth.

				Derroun				
τ(pS)	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V _{ds} /V _{gs}	-0.	75 V	-(0.5 V	-0	.25 V		o v
5	1.92	1.92	2.02	2.01	2.33	2.33	2.44	2.42
10	2.61	2.6	2.91	2.69	2.90	2.85	3.04	2.96
15	3.09	3.02	3.15	3.12	3.33	3.27	3.46	3.37
20	3.30	3.38	3.41	3.46	3.60	3.57	3.75	3.55
25	3.77	3.71	3.86	3.79	3.99	3.9	4.08	3.96
30	4.09	4.03	4.23	4.11	4.34	4.2	4.42	4.27
35	4.43	4.36	4.56	4.45	4.66	4.51	4.79	4.59
40	4.75	4.63	4.74	4.75	5.05	4.86	4.87	4.95
	1. (1. (3. (3. (3. (3. (3. (3. (3. (3. (3. (3	TO BE AND A CARD OF THE DAMAGE AND ADDIDATED AND ADDIDATED AND ADDIDATED	1004000(7971800(89) (ADU0113) (DT0434)	PERSONAL PRODUCTS AND AND ADDRESS OF THE PROPERTY AND ADDRESS AND ADDRESS ADDRE	CONTRACTOR AND A CONTRACTOR AND A DESCRIPTION OF A DESCRI	B. AD THE CONTRACTOR DATE AND A DESCRIPTION OF A DESCR	A state of the second secon	The second state and and second se

V.3.2.4 Extracción de g_{ds} y C_{ds}

Finalmente en las tablas XXII-1, XXIII-2, XXIII-1 y XXIII-2 se presenta los valores de la extracción de g_{ds} y C_{ds} hecha con el método de Berroth. Usando las ecuaciones 37 y 38 respectivamente.

				g _{ds} (mS)	Berroth	1			
V _{ds} /V _{gs}	-2 V	-1.75 V	-1.5 V	-1.25 V	-1 V	-0.75 V	-0.5 V	-0.25 V	0 V
5	2.95	3.38	3.65	3.88	4.12	4.37	4.63	4.67	5.21
10	2.27	2.36	2.43	2.46	2.48	2.50	2.56	2.62	2.64
15	1.77	1.81	1.82	1.85	1.84	1.85	1.85	1.85	1.86
20	1.5	1.52	1.53	1.53	1.52	1.51	1.47	1.47	1.48
25	1.31	1.31	1.33	1.32	1.30	1.27	1.26	1.25	1.26
30	1.19	1.20	1.20	1.19	1.16	1.14	1.14	1.13	1.12
35	1.14	1.17	1.16	1.14	1.10	1.09	1.07	1.04	0.99
40	1.15	1.15	1.16	1.11	1.09	1.08	1.03	1.02	0.95

Tabla XXIII. g_{ds} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth.

Tabla XXIV C_{ds} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth.

				C _{ds} (fF) Beri	oth				
Vds/Vgs	-2 V	-1.75 V	-1.5 V	-1.25 V	-1 V	-0.75 V	-0.5 V	-0.25 V	0 V
5	2.38	2.34	2.31	2.16	2.15	2.02	1.76	1.45	1.00
10	2.35	2.27	2.28	2.23	2.19	2.10	2.06	1.96	1.83
15	2.11	2.17	2.12	2.16	2.09	2.06	2.04	1.92	1.92
20	2.04	2.03	2.06	1.98	2.01	1.98	1.91	1.92	1.89
25	1.96	1.91	1.94	1.92	1.90	1.81	1.85	1.83	1.82
30	1.77	1.79	1.78	1.81	1.74	1.78	1.78	1.77	1.72
35	1.72	1.72	1.73	1.71	1.69	1.67	1.62E	1.61	1.61
40	1.67	1.61	1.68E	1.63	1.62	1.60	1.58	1.58	1.68

V.3.3 Extracción de los elementos intrínsecos del Transistor 3, ancho de compuerta de 2 mm

En esta sección se presentaran los resultados experimentales obtenidos de elementos intrínsecos calculados con el nuevo método para el transistor de ancho de compuerta de 2 mm y se compararan con los valores extraídos con el método de Berroth.

V.3.3.1 Extracción de R_i y R_{gd}

En las tablas XXV y XXVI se muestran los valores de los elementos $R_i y R_{gd}$. R_i se calcula con el nuevo método y se comparan con los obtenidos con el método de Berroth, en función de diferentes polarizaciones en $V_{ds} y V_{gs}$. R_{gd} se calcula con el método de Berroth de acuerdo a la ecuación 42. Es importante mencionar que no se observó ningún máximo ni cruce de las graficas de $x_1 e y_1$ que permitieran determinar R_{gd} .

Para el transistor de ancho de compuerta de 2 mm, los resultados son los siguientes:

R _i (Ω)	N.M.	Berroth								
V_{ds}/V_{gs}	-2	.15 V	-1	L.9 V	-1	.65 V	-1	L.4 V	-1	.15 V
5	1.57	1.19	1.15	0.49	1.19	0.52	1.24	0.59	1.31	0.73
10	1.2	0.60	1.19	0.57	1.28	0.66	1.38	0.73	1.26	0.69
15	1.24	0.67	1.25	0.68	1.25	0.67	1.44	0.81	1.17	0.61
20	1.27	0.73	1.3	0.73	1.35	0.75	1.51	0.9	1.2	0.66
25	1.29	0.73	1.3	0.74	1.45	0.86	1.62	1.02	1.2	0.68
30	1.33	0.79	1.38	0.82	1.54	0.95	1.73	1.13	1.19	0.68
35	1.39	0.84	1.45	0.88	1.62	1.03	1.79	1.2	1.14	0.6
40	1.43	0.88	1.48	0.89	1.64	1.06	1.9	1.34	1.18	0.64

Tabla XXV. Comparación de R_i en función de los voltajes de polarización V_{gs} y V_{ds} . y método de Berroth.

De la tabla XXV se observa que los valores obtenidos con el nuevo método son un poco mayores a los obtenidos con el método de Berroth, como sucedió con el transistor de ancho de compuerta de 300 µm.

		Rgd(Ω)	Berroth		
V _{ds} /V _{gs}	-2.15 V	-1.9 V	-1.65 V	-1.4 V	-1.15 V
5	3.29	1.15	1.24	1.44	1.8
10	2	2.57	3.2	3.76	1.14
15	3.61	4.75	3.57	5.19	0.65
20	5.67	6.6	6.2	7.32	0.96
25	5.22	7.18	8.61	9.45	1.05
30	7.21	9.06	10.24	11.07	0.93
35	8.53	10.3	11.9	11.05	0.78
40	10.06	10.1	11.83	14.78	0.91
and a few station of a state of a	COLUMN TRANSPORTATION OF THE DESCRIPTION OF THE OWNER.	and the second se		the large transfer to the state of the state	Contract of the second of the second s

Tabla XXVI. Comparación de R_{gd} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth.

V.3.3.2 Extracción de C_{gs} y C_{gd}

En esta sección se presentan los resultados obtenidos para las capacitancias intrínsecas C_{gs} y C_{gd} y se comparan con los obtenidos con el método de Berroth.

				and the second se	Derrot		water and the second			
C _{gs} (pF)	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V _{ds} /V _{gs}	-2.	.15 V	-1	L.9 V	-1	.65 V	-1	4 V	-1	15 V
5	3.69	3.76	5.02	4.96	5.23	5.17	5.28	5.24	5.51	5.24
10	4.89	4.9	5.23	5.22	5.24	5.26	5.16	5.24	5.72	5.24
15	5.01	5.04	5.26	5.28	5.01	5.04	5.06	5.16	5.74	5.16
20	5.11	5.12	5.27	5.31	5.16	5.24	4.95	5.08	5.78	5.08
25	5.08	5.12	5.22	5.28	5.07	5.18	4.82	5	5.77	5
30	5.04	5.1	5.13	5.24	4.99	5.13	4.71	4.93	5.86	4.93
35	5.02	5.08	5.10	5.2	4.90	5.08	4.58	4.84	5.82	4.84
40	4.98	5.59	5.00	5.85	4.81	5.017	4.45	4.79	5.89	4.79

Tabla XXVII. Comparación de C_{gs} en función de los voltajes de polarización V_{gs} y V_{ds} . y método de Berroth.

de los vo	N.M. Berroth S. 604 609 693 693 720 724 10 466 467 472 474 4800 10 466 465 467 472 474 480 15 328 332 339 344 328 332 20 242 244 250 254 256 261					Berroth	Tabla XXVIII. Comparación de C en función .					
C _{gd} (fF)	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth		
V_{ds}/V_{gs}	-2.	15 V	-1	L.9 V	-1	.65 V	-1	4 V	-1	.15 V		
5	604	609	693	693	720	724	720	739	789	735		
10	466	465	467	472	474	480	477	492	850	930		
15	328	332	339	344	328	332	345	354	887	934		
20	242	244	250	254	256	261	263	271	882	925		
25	203	205	208	213	215	221	224	233	901	926		
30	187	187	185	191	192	198	198	207	903	944		
35	175	174	173	177	175	183	181	192	919	944		
40	163	166	162	166	165	171	168	180	911	957		

En las tablas XXVII y XXVIII se muestran los valores obtenidos para C_{gs} y C_{gd} con el nuevo método y se comparan con el método de Berroth, se puede observar que los valores obtenidos tienen muy poca variación en ambos casos, lo que indica una buena extracción.

V.3.3.3 Extracción de g_m y τ

En esta sección se presentan los resultados obtenidos para $g_m y \tau$ usando los valores de $R_i y$ C_{gs} calculados con el nuevo método. Se puede notar, de esta comparación, que los valores de los elementos calculados con el nuevo método coinciden con los valores calculados con el método de Berroth.

g _m (mS)	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
V _{ds} /V _{gs}	-2.15 V		-1.9 V		-1.65 V		-1.4 V		-1.15 V	
5	294	293	586	586	664	666	684	688	649	653
10	444	444	564	565	601	602	601	603	641	647
15	425	400	513	514	424	424	525	527	643	648
20	400	400	469	470	479	480	470	474	643	648
25	376	377	433	434	439	441	427	430	644	649
30	358	359	403	405	409	409	393	395	646	652
35	341	342	379	380	380	382	362	365	648	653
40	326	327	359	360	358	359	335	339	651	655

Tabla XXIX. Comparación de g_m en función de los voltajes de polarización V_{gs} y V_{ds} . Nuevo método y método de Berroth.

Tabla XXX. Comparación de τ en función de los voltajes de polarización V_{gs} y V_{ds} . y método de Berroth.

Derrota.										
τ(pS)	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth	N.M.	Berroth
Vds/Vgs	-2.15		-1.9		-1.65		-1.4		-1.15	
5	4.04	3.8	1.88	2.1	1.20	1.58	1.38	1.22	0.915	0.904
10	3.57	3.39	2.88	2.7	2.53	2.38	2.18	2.19	0.633	0.683
15	4.07	3.92	3.44	3.32	3.84	3.92	2.63	2.87	0.616	0.652
20	3.53	4.37	3.86	3.77	3.36	3.52	3.14	3.42	0.534	0.5
25	4.74	4.7	4.17	4.15	3.70	3.91	3.53	3.86	0.534	0.498
30	5.12	4.98	4.42	4.48	4.00	4.28	3.92	4.3	0.570	0.557
35	5.33	5.31	4.61	4.77	4.33	4.65	4.25	4.68	0.532	4.96
40	5.55	5.57	4.79	5.02	4.64	4.95	4.73	5.1	0.607	0.622
	-0100 FBI 907 EALERD Y 974 Y 10 Y 10 K 14	Exception and an exception of the second se second second sec	- 10 10 1 10 0 10 0 10 1 10 0 10 10 10 10	State and all the second	De rumanación construction en entre	and the second state of th		A PRIMA PROPERTY AND A PRIMA PROVIDED AND A PRIMA PROVIDA	COURT AND IN THE ADDRESS AND IN THE ADDRESS	Sectors of \$100 and \$100 and an and all all all all all all all all all al

V.3.3.4 Extracción de g_{ds} y C_{ds}

En esta sección se muestran los valores obtenidos para g_{ds} y C_{ds} usando el método de Berroth, de acuerdo a las ecuaciones 37 y 38.

		Eds (III)	/ Denotin		
V_{ds}/V_{gs}	-2.15 V	-1.9 V	-1.65 V	-1.4 V	-1.15 V
5	13.69	16.98	20.00	23.38	34.29
10	8.94	11.15	12.32	3.06	36.53
15	7.35	8.57	7.34	9.54	37.46
20	6.43	7.15	7.67	7.53	37.91
25	5.82	6.37	6.74	6.34	8.18
30	5.25	5.79	6.12	6.11	38.5
35	4.81	5.23	5.78	5.99	38.09
40	5.02	5.45	5.71	5.99	39.55

Tabla XXXI. g_{ds} en función de los voltajes de polarización V_{gs} y V_{ds}. Método de Berroth.

Tabla XXXII C_{ds} en función de los voltajes de polarización V_{gs} y V_{ds} . Método de Berroth.

Cds (fF) Berroth							
V _{ds} /V _{gs}	-2.15 V	-1.9 V	-1.65 V	-1.4 V	-1.15 V		
5	198	123	124	137	125		
10	95.7	107	120	131	64.5		
15	87.6	99.0	87.6	107	34.5		
20	76.7	86.6	86.1	93.4	92.5		
25	63.9	74.7	80.3	85.3	57.1		
30	70.8	68.5	73.6	78.2	94.4		
35	57.1	63.9	69.3	69.6	58.9		
40	56.0	58.5	62.8	68.8	56.3		
	A CONTRACTOR OF STREAM AND	A MARKET AND A PROVIDED AND A REPORT OF A	The Advantage of the State of t	「「「いっいくなる」であるとするとなったのであるというです。 しょうしんどう しょう	LOW REAL PROPERTY OF THE PROPE		

Las tablas XXX y XXXI presentan los valores obtenidos para los elementos g_{ds} y C_{ds} , con el método de Berroth.

V.4 Validación del método de extracción de los elementos intrínsecos

Para validar el método de extracción de los elementos parásitos y de los elementos intrínsecos se efectúa un proceso inverso al de "de-embedding", se une el transistor intrínseco con los elementos del transistor extrínseco y se comparan los parámetros de

dispersión medidos con los valores de los parámetros de dispersión calculados con el circuito eléctrico equivalente. Para hacer esta validación se escogieron valores del punto de polarización entre drenador – fuente extremos, es decir a un valor bajo y uno alto de V_{ds} .

V.4.1 Transistor AlGaN/GaN, W=100 µm

En este caso se escogieron los puntos de polarización de $V_{ds}=5$ V, $V_{gs}=-0.5$ V y $V_{ds}=40$ V, $V_{gs}=0$ V. En las figuras 32, 33, 34 y 35 se reportan los resultados obtenidos. Es importante observar la buena correlación que existe entre los parámetros S_{ij} simulados con los parámetros S_{ij} medidos. Esta buena correlación valida el nuevo método de extracción de los parámetros intrínsecos y muestra la utilidad del nuevo método para el modelado de transistores HEMTs a base de AlGaN/GaN.

Figura 32. Parámetros S, S₁₁, S₁₂ y S₂₂. Polarización: $V_{gs} = -0.5 V$, $V_{ds} = 5 V$.

Figura 33. Parámetros S, S₂₁. Polarización: $V_{gs} = -0.5 V$, $V_{ds} = 5 V$.

Figura 34. Parámetros S, S₂₁. Polarización: $V_{gs} = 0 V$, $V_{ds} = 40 V$.

Figura 35. Parámetros S, S₂₁. Polarización: $V_{gs} = 0 V$, $V_{ds} = 40 V$.

V.4.2 Transistor AlGaN/GaN, W=300 µm

En las figuras 36, 37, 38 y 39 se reportan los resultados obtenidos para las polarizaciones $V_{ds}=10 V$, $V_{gs}=0 V$, $V_{ds}=40 V y V_{gs}=0 V$, se puede observar la buena predicción de los parámetros S_{ij} de los datos medidos simulados con el circuito eléctrico equivalente calculado con el nuevo método y con el método de Berroth.

Figura 36. Parámetros S, S₁₁. S₁₂ y S₂₂. Polarización: $V_{gs} = 0$ V, $V_{ds} = 10$ V.

Figura 38. Parámetros S, S₂₁. Polarización: V_{gs} =- 0.25 V, V_{ds} = 40 V.

Figura 39. Parámetros S, S₂₁. Polarización: $V_{gs} = -0.25 V$, $V_{ds} = 40 V$.

V.4.3 Transistor AlGaN/GaN, W=2 mm

En las figuras 40, 41, 42 y 43 se muestran los parámetros S calculados con el nuevo método y con el método de Berroth, y se comparan con los parámetros S_{ij} medidos para dos diferentes polarizaciones. Se puede observar que existe un buen ajuste de parámetros medidos contra simulados.

freq (45.00MHz to 30.00GHz)

Figura 41. Parámetros S, S₂₁. Polarización: $V_{gs} = -1.65 V$, $V_{ds} = 5 V$.

freq (45.00MHz to 30.00GHz)

Figura 42. Parámetros S, S₁₁. S₁₂ y S₂₂. Polarización: V_{gs} = -2.15 V, V_{ds} = 40 V.

Figura 43. Parámetros S, S₂₁. Polarización: $V_{gs} = -2.15$ V, $V_{ds} = 40$ V.

V.5 Estudio experimental de la dependencia no-lineal con V_{gs} y V_{ds} de los elementos intrínsecos

V.5.1 Transistor AlGaN/GaN, W=100 µm

En las figuras 44 y 45 se reporta la evolución de los elementos intrínsecos en función de los voltajes de alimentación V_{gs} y V_{ds} para los puntos de polarización mostrados en las tablas de la sección V.3.1. Es importante observar de estas graficas la dependencia no lineal de los elementos intrínsecos con los valores de voltajes de alimentación V_{gs} y V_{ds} .

Figura 44. Elementos intrínsecos, R_i , R_{gd} , g_{ds} y g_m , en función de los voltajes de polarización.

Figura 45. Elementos intrínsecos, C_{gs} , C_{gd} , C_{ds} , y τ , en función de los voltajes de polarización.

Figura 46. R_i en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 47. R_{gd} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 48. C_{gs} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 49. $C_{\rm gd}$ en función de los voltajes de polarización, para $V_{\rm gs}$ y $V_{\rm ds}$

Figura 50. gm en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 52. g_{ds} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 53. C_{ds} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Las figuras anteriores muestran el comportamiento de los elementos intrínsecos calculados en función de V_{gs} para un V_{ds} constante y en función de V_{ds} para un V_{gs} constante. Las gráficas de R_i y R_{gd} muestran que ambas resistencias crecen conforme aumenta la polarización en V_{ds} pero R_i crece cuando V_{gs} se vuelve más positivo, mientras que R_{gd} disminuye. Los elementos capacitivos C_{gs} y C_{gd} disminuyen su valor cuando aumenta la polarización en V_{ds} y conforme V_{gs} se vuelve más positivo, lo mismo ocurre para C_{ds}. g_m disminuye cuando aumenta la polarización en V_{ds} y conforme V_{gs} se vuelve positivo. En el caso de τ su valor crece cuando aumenta la polarización en V_{ds}, y V_{gs} se vuelve más positivo. Finalmente g_{ds} disminuye conforme aumenta la polarización en V_{ds} y aumenta cuando V_{gs} se vuelve más positivo.

V.5.2 Transistor AlGaN/GaN, W=300 µm

En las figuras 54 y 55 se observa el comportamiento de los elementos intrínsecos en función de los voltajes de polarización V_{gs} y V_{ds} , para los puntos de polarización mostrados en las tablas V.3.2. Se observa la dependencia no lineal de los elementos intrínsecos con los voltajes de polarización V_{gs} y V_{ds} .

Figura 54. Elementos intrínsecos, Ri, Rgd, gds y gm, en función de los voltajes de polarización.

Figura 55. Elementos intrínsecos, C_{gsi} , C_{gd} , C_{ds} , y τ , en función de los voltajes de polarización.

Figura 56. \mathbf{R}_i en función de los voltajes de polarización, para \mathbf{V}_{gs} y $\mathbf{V}_{ds}.$

86

Figura 57. R_{gd} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 58. C_{gs} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 59. C_{gd} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 60. g_m en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 61. τ en función de los voltajes de polarización, para V_{gs} y $V_{ds}.$

Figura 62. g_{ds} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 63. Cds en función de los voltajes de polarización, para Vgs y Vds.

En las figuras 56 a 63 se muestra el comportamiento de los elementos intrínsecos calculados en función de V_{gs} para un V_{ds} constante y en función de V_{ds} para un V_{gs} constante.

Al igual que para el transistor de ancho de compuerta igual a 100 μ m, los elementos intrínsecos obtenidos para el transistor de 300 μ m de ancho de compuerta, R_i, R_{gd}, C_{gs}, C_{gd}, g_m, τ , C_{ds} y g_{ds} tienen el mismo comportamiento en función de los voltajes de polarización.

V.5.3 Transistor AlGaN/GaN, W=2 mm

En las figuras 64 y 65 se presenta el comportamiento de los elementos intrínsecos en función de los voltajes de polarización V_{gs} y V_{ds} , mostrados en las tablas de la sección V.3.3, al igual que para los transistores de ancho de compuerta igual a 100 y 300 μ m, se puede ver el comportamiento no lineal de los elementos intrínsecos.

Figura 64. Elementos intrínsecos, R_i , R_{gd} , g_{ds} y g_m , en función de los voltajes de polarización.

Figura 65. Elementos intrínsecos, C_{gsi} , C_{gd} , C_{ds} , y τ , en función de los voltajes de polarización.

Figura 66. R_i en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 67. $R_{\rm gd}$ en función de los voltajes de polarización, para $V_{\rm gs}$ y $V_{\rm ds}.$

Figura 68. C_{gs} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 69. $C_{\rm gd}$ en función de los voltajes de polarización, para $V_{\rm gs}$ y $V_{\rm ds}.$

Figura 70. g_m en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 71. τ en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 72. g_{ds} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Figura 73. C_{ds} en función de los voltajes de polarización, para V_{gs} y V_{ds} .

Las gráficas anteriores muestran el comportamiento de los elementos intrínsecos para el transistor de 2 mm de ancho de compuerta.

Se observa que R_i tiende a crecer cuando V_{gs} se vuelve menos negativo hasta cierto punto y luego empieza a decrecer, mientras que al aumentar V_{ds} R_i tiende a crecer. En el caso de R_{gd} tiene el mismo comportamiento que R_i. C_{gs} tiende a disminuir cuando V_{gs} se vuelve más positivo hasta cierto punto y luego empieza a crecer. C_{gd} se mantiene más o menos constante cuando V_{gs} se vuelve más positivo hasta un punto en el que empieza a crecer, mientras que disminuye cuando aumenta la polarización con V_{ds}. g_m crece cuando V_{gs} se vuelve más positivo y disminuye al aumentar V_{ds}. τ tiende a disminuir conforme V_{gs} se vuelve positivo y crece su valor cuando aumenta V_{ds}. g_{ds} crece al volverse más positivo V_{gs} pero disminuye su valor cuando aumenta el valor de V_{ds}. C_{ds} crece hasta cierto punto cuando V_{gs} se vuelve más positivo y disminuye su valor al aumentar V_{ds}. Es importante mencionar que para la polarización en V_{gs}=1.15 V el comportamiento de los elementos intrínsecos es diferente al resto de las polarizaciones.

V.6 Análisis del error de los datos medidos versus datos simulados con el nuevo método y el método de Berroth

A continuación se mostraran tres tablas con los porcentajes de error de los datos medidos contra simulados con el nuevo método y con el método de Berroth. Los porcentajes de error solamente se muestran para las polarizaciones mostradas en las figuras 32 - 35 para el transistor de ancho de compuerta de 100 µm, en las figuras 36 - 39 para el transistor de ancho de de 300 µm compuerta y en las figuras 40 - 43 para el transistor de ancho de compuerta de 1 mencionar que el error disminuyó en los datos simulados contra medidos con el nuevo método para los tres transistores en todas las polarizaciones de V_{gs} y V_{ds} presentadas en este trabajo de Tesis.

El error entre los datos medidos y simulados se obtuvo usando la siguiente función de error:

$$\varepsilon_{ij} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{S_{ij_med} - S_{ij_sim}}{S_{ij_med}} \right|$$

Transistor	T1 - 100 μm					
Polarización	V _{gs} = -0.5 V	V _{ds} =5 V	V _{gs} =0 V	V _{ds} = 40 V		
Parámetro	N.M.	Berroth	N.M.	Berroth		
S ₁₁	4.60%	4.50%	2.8%	2.7 %		
S ₁₂	1%	1%	3.9 %	4.2 %		
S ₂₁	2.10%	3%	0.7 %	2.2 %		
S ₂₂	1%	1%	1.12 %	1.14 %		

Tabla XXXIII. Porcentaje de error entre los parámetros S medidos y simulados con el nuevo método y con el método de Berroth, para el transistor de 100 µm de longitud de compuerta.

Tabla XXXIV. Porcentaje de error entre los parámetros S medidos y simulados con el nuevo método y con el método de Berroth, para el transistor de 300 µm de ancho de compuerta.

Transistor	T2 - 300 μm				
Polarización	V _{gs} =0 V	V _{ds} =10 V	V _{gs} =-0.25 V	V _{ds} =40 V	
Parámetro	N.M.	Berroth	N.M.	Berroth	
S ₁₁	0.42%	0.56%	0.79 %	0.75%	
S ₁₂	2.1 %	1.7 %	3.9 %	3.60%	
S ₂₁	0.73%	0.74 %	1.39 %	1.41%	
S ₂₂	2.05 %	2.35%	1.64 %	1.84%	

Tabla XXXV. Porcentaje de error entre los parámetros S medidos y simulados con el nuevo método y con el método de Berroth, para el transistor de 2 mm de ancho de compuerta.

Transistor Polarización	T3 - 2 mm				
	V _{gs} =-1.65 V	V _{ds} =5 V	V _{gs} =-2.15 V	V _{ds} =40 V	
Parámetro	N.M.	Berroth	N.M.	Berroth	
S ₁₁	4.30%	4.90%	3.30%	4.30%	
S ₁₂	5.20%	3.70%	9.60%	8.30%	
S ₂₁	3.60%	5.30%	1.40%	2%	
S ₂₂	2.17%	2.29%	2.40%	2.50%	

97

(73)

También es importante mencionar que cuando se simularon los parámetros Y intrínsecos calculados con el nuevo método y con el método de Berroth y al hacer la comparación con los parámetros Y intrínsecos obtenidos a partir de los datos medidos después del procedimiento de de-embedding, el nuevo método predice mejor los parámetros Y intrínsecos. Es importante señalar en el caso especial de la parte imaginaria de Y_{11} en la cual se nota que imag (Y_{11}) simulado con el nuevo método predice mucho mejor el comportamiento de imag (Y_{11}) calculada de los datos medidos. A continuación se muestra en las figuras 74, 75 y 76, el comportamiento de los parámetros Y, una para cada uno de los transistores estudiados en este trabajo de tesis.

Figura 74. Parte imaginaria de los parámetros Y medidos versus simulados con el nuevo método y con el método de Berroth, para un caso del transistor de 100 µm de ancho de compuerta.

Figura 75. Parte imaginaria de los parámetros Y medidos versus simulados con el nuevo método y con el método de Berroth, para un caso del transistor de 300 µm de ancho de compuerta.

Figura 76. Parte imaginaria de los parámetros Y medidos versus simulados con el nuevo método y con el método de Berroth, para un caso del transistor de 2 mm de ancho de compuerta.

Conclusiones

VI.1 Conclusiones

En este trabajo de tesis se presentó un nuevo método de extracción de los elementos del circuito eléctrico equivalente para transistores de potencia basados en la tecnología Nitruro de Galio (GaN) usando los puntos extremos de los parámetros de admitancia (o parámetros Y). El nuevo método permite calcular R_i y C_{gs} de una manera más sencilla y confiable que el método de Berroth. La buena correlación entre los parámetros S, medidos y calculados con el circuito equivalente (extraído con el nuevo método) demuestra la utilidad del nuevo método. El nuevo método también permite calcular R_{gd} y C_{gd} de una manera más simple y confiable que el método de Berroth, como se mostró en el capítulo V, aunque en el caso de R_{gd}, no siempre existe cruce de $x_1 e y_1$. Las nuevas expresiones para calcular C_{gs} y C_{gd} a partir de la derivada de $v e y_1$ respecto a ω son mucho más fáciles y sencillas que las propuestas por Berroth. Además, la rápida y sencilla manera de calcular R_i y C_{gs}, facilita el cálculo de g_m y τ . La correlación entre los datos medidos y los simulados con el circuito eléctrico equivalente mejora cuando los elementos del circuito eléctrico equivalente son calculados con el nuevo método.

Como se mostró en la sección V.6 el porcentaje de error de los parámetros S medidos versus los simulados con el nuevo método es mucho menor que respecto a los simulados con el método de Berroth. El comportamiento es similar para los tres transistores analizados: el de 100 μ m, el de 300 μ m el de 2 mm de ancho de compuerta.

Además, en el caso de los parámetros Y intrínsecos simulados con el nuevo método también se observó una notable mejoría cuando se comparó con los parámetros Y intrínsecos obtenidos a partir de las mediciones, se observa que los parámetros Y intrínsecos simulados con el nuevo método siguen más el comportamiento de los obtenidos a partir de las mediciones lo cual no sucede con el método de Berroth.

VI.2 Aportaciones

Las aportaciones de este trabajo de tesis, en el modelado del circuito eléctrico equivalente de pequeña señal de transistores de potencia basados en tecnología GaN, es el de haber desarrollado un método simple y sencillo para calcular R_i, C_{gs}, R_{gd} y C_{gd}.

La filosofía del método es la siguiente: a partir de los parámetros Y del circuito eléctrico equivalente del transistor se propusieron dos nuevas variables μ y v para el cálculo de los elementos R_i y C_{gs} y dos variables más x_1 e y_1 para el cálculo de R_{gd} y C_{gd}. Las resistencias se obtienen de los puntos extremos (máximos o mínimos) donde la variable μ corta a v y donde x_1 corta a y_1 . Para el caso de las capacitancias, se obtienen fácilmente a partir de las derivadas de v e y_1 .

VI.3 Trabajo futuro

Investigar el comportamiento de x_1 e y_1 y en el punto de cruce para obtener directamente R_{gd}.

Investigar la influencia de los métodos de calibración en la precisión del cálculo de la constante R_iC_{gs} y de la constante $R_{gd}C_{gd}$.

Estudiar el comportamiento no lineal de los elementos intrínsecos R_i , C_{gs} , R_{gd} y C_{gd} y desarrollar el modelo no lineal del transistor.

Validar el nuevo método presentado en este trabajo de tesis utilizando transistores GaN encapsulados.

Referencias.

Aaen P., Pla J. and Wood J. 2007. "Modeling and Characterization of RF and Microwave Power FET's". Cambridge University Press. 362 pp.

Berroth M. and Bosh R. 1990, "Broad-band determination of the FET small-signal equivalent circuit." *IEEE Trans. Microwave Theory and Tech*, 38(7): 891-895 p.

Burm J., Schaff W. J., Eastman Lester F., Amano H. and Akasaki I. 1997, "An Improved Small-Signal Equivalent Circuit Model for III-V Nitride MODFET's with Large Contact Resistances" *IEEE Transactions on Electron Devices*, 44(5): 906-907 p.

Brandy G. R. 2007, "An Improved Small-Signal Parameter-Extraction Algorithm for GaN HEMT Devices", *IEEE Transacctions on Microwave Theory and Techniques*, 56(7): 1545-1545 p.

Chen G., Kumar V., Schwindt R. S. and Adesida I. 2006, "A Low Gate Bias Model Extraction Technique for AlGaN/GaN HEMTs", IEEE *Transactions on Microwave Theory* and *Techniques*, 54(7): 2949-2953 p.

Dambrine G., Cappy A., Heliodore F. and Playez E. 1998, "A New Method for Determining the FET Small-Signal Equivalent Circuit". *IEEE Transactions on Microwave Theory and Techniques*, 36(7): 1151-1159 p.

Hasan J. A. 2006, "Large Signal Modeling of GaN Device for High Power Amplifier Desing", Tesis de Doctorado, University of Kassel, 10-45 p.

Jarndal A. and Kompa G. 2007, "Large Signal Model for AlGaN/GaN HEMTs Accurately Predicts Trapping – and Self-Heating-Induced Dispersion and Intermodulation Distortion", *IEEE Transactions on Electron Devices*, 54(11). 2830-2836 p.

Loo Y. J. R. 2001. "Desarrollo de modelos no lineales de transistores GaAs para el diseño de Amplificadores de Potencia de Alta Eficiencia" *Tesis de Doctorado en Ciencias, Centro de Investigación Científica y de Educación de Superior de Ensenada*. 37-59 p.

Lu J., Yang W., Long M., Zhiping Y. 2007, "A new small-signal modeling and extraction method in AlGaN/Ga N HEMTs" *Institute of Microelectronics of Tsinghua University*, *Beijing, China*. 115-120 p.

Mishra U. K., Parikh P. and Wu Y. F. 2002, "AlGaN/GaN HEMTs-An Overview of Device Operation and Applications" *Proceedings of the IEEE*, 90(6): 1022-1031 p.

Reynoso-Hernández J. A., Ramírez Durán B., Ibarra Villaseñor J. and Perdomo J. 1997 "*Reliable RF Techniques for extracting parasitic elements in microwaves FET'S*" International IEEE Workshop on Experimentally Based FET Device Modeling & Related no lineal Circuit Design. 1.1, 1.8 p.

Reynoso-Hernández J.A., Zúñiga-Juárez J. E., Zárate-de Landa A.2008, "A New method for determining the gate resistance and inductance of GaN HEMTs based on the extrema points of Z11 curves," *presented at the IEEE MTT-s Int. Microwave Syp, Atlanta, Georgia, USA.*

Trew R. J., Bilbro G. L., Kuang W., Liu Y., and Yin H. 2005, "Microwave AlGaN/GaN HFETs", *IEEE Microwave Magazine*, 6(1): 56-66 p.

Zárate de Landa A. 2007, "Modelado de transistores de potencia a base de GaN. Tesis de Maestría en Ciencias" CICESE, Ensenada, B. C. 73-114 p.

Zárate de Landa A., Zúñiga Juárez J. E., Loo Yau J. R., Reynoso Hernández J. A., Maya Sánchez M. C. and Del Valle Padilla J. L. 2009, "Advances in Linear Modeling of Microwave Transistors, Application Notes", *IEEE Microwave Magazine*, 100-111 p.