
Dynamics of Atmospheres and Oceans 75 (2016) 46–57

Contents lists available at ScienceDirect

Dynamics  of  Atmospheres  and  Oceans

journal homepage: www.elsevier.com/locate/dynatmoce

Short  Communication

Free  and  forced  Rossby  normal  modes  in  a  rectangular  gulf  of
arbitrary  orientation

Federico  Graef ∗,1

Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, B.C., Mexico

a  r  t  i c  l  e  i  n  f  o

Article history:
Received 14 December 2015
Received in revised form 19 May  2016
Accepted 24 May  2016
Available online 27 May 2016

Keywords:
Planetary waves
Gulf
Modes
Solutions

a  b  s  t  r  a  c  t

A free  Rossby  normal  mode  in  a rectangular  gulf  of  arbitrary  orientation  is constructed  by
considering the  reflection  of  a Rossby  mode  in  a channel  at the  head  of the  gulf.  Therefore,
it  is  the  superposition  of  four Rossby  waves  in an otherwise  unbounded  ocean  with  the
same  frequency  and  wavenumbers  perpendicular  to the  gulf  axis  whose  difference  is  equal
to  2m!/W,  where  m  is  a positive  integer  and  W  the  gulf’s  width.  The  lower  (or  higher)
modes  with  small  m  (or  large  m)  are  oscillatory  (evanescent)  in  the  coordinate  along  the
gulf; these  are  elucidated  geometrically.  However  for  oceanographically  realistic  parameter
values, most  of the modes  are  evanescent.

When the  gulf  is  forced  at the  mouth  with  a  single  Fourier  component,  the  response  is  in
general  an  infinite  sum  of modes  that  are  needed  to match  the value  of the streamfunction
at  the  gulf’s  entrance.  The  dominant  mode  of  the  response  is  the resonant  one,  which  corre-
sponds to forcing  with  a frequency  ω  and  wavenumber  normal  to the  gulf  axis  # appropriate
to  a gulf  mode:  # =− ˇ  sin  ˛/(2ω)  ± M!/W, where  ˛ is  the angle  between  the  gulf’s  axis and
the  eastern  direction  (+ve  clockwise)  and  M  the  resonant’s  mode  number.  For  zonal  gulfs
ω  drops  out  of the  resonance  condition.

For the special  cases  #  =  0 in  which  the  free  surface  goes  up and down  at the  mouth  with  no
flow  through  it,  or a flow  with  a sinusoidal  profile,  resonant  modes  can get  excited  for  very
specific frequencies  (only  for non-zonal  gulfs  in  the  # =  0 case).  The  resonant  mode  is  around
the annual  frequency  for a wide  range  of gulf  orientations  ˛ ∈ [40◦, 130◦] or  ˛ ∈ [220◦,
310◦] and  gulf  widths  between  150 and 200  km;  these  include  the Gulf  of  California  and  the
Adriatic  Sea.  If # is imaginary,  i.e.  a flow  with  an  exponential  profile,  there  is  no  resonance.
In  general  less  modes  get  excited  if the  gulf is  zonally  oriented.

© 2016  The  Author.  Published  by  Elsevier  B.V.  This is  an open  access  article  under  the CC
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this note we study the Rossby normal modes in a mid-latitude ˇ-plane gulf of arbitrary orientation from a theoretical
point of view. Beyond the value of advancing our knowledge in GFD, this study is also motivated by the vast literature devoted
to the study of gulfs (mainly observational and numerical). Several studies (for example, Ripa, 1990, 1997) showed that the
Gulf of California is forced at the mouth by an annual baroclinic Kelvin wave. Beier (1997) studied the dynamics of this
gulf with a horizontal two-dimensional linear two-layer numerical model, mentioning that the ˇ-effect has little influence
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in the dynamics and that annual long Rossby waves do not fit in the gulf (average width of 150 km)  because they have a
zonal wavelength of ∼650 km (calculated from the long Rossby wave dispersion relation and using a value of 30 km for the
baroclinic Rossby radius); and that short Rossby waves will be subject to dissipation. Does this mean that there cannot be
Rossby modes in the Gulf of California? In this paper we will show that for a gulf with the orientation and width of the Gulf of
California, the M = 2 resonant mode is around the annual frequency for a forcing at the mouth in which the free surface just
goes up and down. In a review paper Lluch-Cota et al. (2010) discussed how the Gulf of California influences the northward
propagation of coastal trapped Kelvin waves associated with El Niño (ENSO) events, and how this signal results in an ENSO
signature inside the Gulf. An open question in the above studies is to find out what the QG response is (given in terms of
Rossby gulf modes) to this type of Kelvin wave forcing at the mouth.

As regards the Gulf of Mexico, Oey and Lee (2002) and Hamilton (2009) showed that deep eddy energy can be explained
by topographic Rossby waves. Rossby wave theory has been used to study the dynamics of the Loop Current and the shedding
of eddies (Hurlburt and Thompson, 1982) in a numerical model. These are examples that show the importance of Rossby
waves in the dynamics of this gulf.

There are very few references about Rossby waves in the Adriatic Sea and they refer to topographic waves. According
to Pasarić  et al. (2000), the propagation of topographic Rossby waves within the basin, although related to small surface
displacements, could perhaps influence the adjustment at the highest frequencies they considered.

Although not strictly gulfs (they are channels), there have been some studies of Rossby waves in the South China Sea
(SCS) and in the Mozambique Channel. Shu et al. (2016) observed energetic fluctuations below 1400 m from direct current
measurements in the SCS that are attributable to topographic Rossby waves. Wu et al. (2008) observed free and forced
Rossby Waves in the western SCS inferred from Jason-1 satellite altimetry data while Yang and Liu (2003) interpreted sea
surface height anomalies in terms of forced annual Rossby waves in the northern SCS. Harlander et al. (2009) showed that
a westward-propagating signal observed in the flow through the channel could be a Mozambique channel Rossby normal
mode (a meridional channel mode independent of the N–S coordinate and thus with a velocity parallel to the channel only)
with a period of 70 days. Like in many other papers, these are examples illustrating the importance of Rossby modes to
explain observations.

Of the very few theoretical studies about Rossby normal modes in a gulf we can cite García and Graef (1998), who  analysed
the nonlinear self-interaction of one of such modes.

Questions like: How are the Rossby modes in a gulf?, What modes are excited when the gulf is forced at the mouth?,
Are there resonant modes?, What are the frequencies and wavenumbers of these modes?, And so on are the subject of this
paper. The answers to these should be of interest not only from the point of view of GFD but could also help explain the
observations and definitely serve as a tool for numerical modelling efforts.

In the next section, we compute the Rossby normal modes in an idealised gulf: a parallelepiped or a rectangular box which
allows analytical treatment. A Rossby gulf mode is constructed by considering the reflection of a channel mode at the gulf’s
head and a graphical method to find gulf modes is provided, paying careful attention to the cases when the wavenumbers
parallel to the gulf’s axis are complex or equal. A graph of the dispersion relation is also included. Then in Section 3 we
find the Rossby gulf modes that get excited when we force the gulf at the mouth with a single Fourier component of a
fixed frequency and wavenumber perpendicular to the gulf’s axis. Two  cases are distinguished: resonant and non-resonant
forcing. We  show contour maps of the resonance condition spanning a wide range of mode and physical parameters and
some examples of the forced solution. Also, three special cases of forcing wavenumbers perpendicular to the gulf’s axis are
studied that correspond to three distinctively physical mechanisms: one in which there is no flow at the mouth, a second
one in which there is a net flow through the mouth (but zero over one period) with an exponential profile resembling a
Kelvin wave and a third in which there is inflow and outflow but with zero net flow at all times. We end the paper with
discussion and conclusions.

2. Free Rossby modes in a gulf

Consider a ˇ-plane with a coordinate system (x, y, z) in which x is parallel, y perpendicular to the gulf and z vertically
upwards. The gulf has length L, width W,  a flat bottom and it is oriented such that its axis makes an angle  ̨ with the circles
of latitude (positive clockwise), see Fig. 1. To simplify matters without sacrificing the essentials, we  consider a barotropic
ocean with a free surface.

For the gulfs that we will be considering later for the numerical calculations of the analytical results like the Gulf of
California, the Adriatic Sea or the Red Sea with their north–south extension spanning several degrees of latitude (around
10, 6 and 15, respectively), the ˇ-plane would be more suitable than the f-plane. Besides this, we  need  ̌ /= 0, otherwise the
Rossby modes will be time-independent (zero frequency).

The governing equation is the linear quasigeostrophic (QG) potential vorticity equation:

∂t
(
∇2 − r−2

d

)
  + ˇ(cos  ̨∂x + sin  ̨∂y)  = 0, (1)

where ∇2 = ∂x∂x + ∂y∂y, t is time,   the QG streamfunction,  ̌ the northward gradient of the planetary vorticity and
rd = (gH)1/2/f0 the barotropic Rossby radius in which g is the acceleration of gravity, H the depth of the ocean and f0 the
Coriolis parameter.
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Fig. 1. Coordinate system and gulf geometry. The rotated coordinate system has x parallel and y perpendicular to the gulf, which has length L and width
W.  The gulf is oriented such that its axis makes an angle  ̨ with the eastern direction (positive clockwise). There is an open boundary at x = L.

The boundary conditions of no normal flow at the lateral solid walls are ∂x  = 0 at y = 0, W and ∂y  = 0 at x = 0, where the
gulf’s head is located.

There is an open boundary at the gulf’s mouth, x = L, where the normal velocity is not necessarily zero. Since the domain is
partially open, an explicit mass conservation constraint or time independent circulation is not required (Pinardi and Milliff,
1990). Thus, it suffices to simply set   = 0 at the solid walls, i.e. at the gulf’s perimeter.

We can construct a Rossby mode in a gulf by considering the reflection of a channel mode at the head of the gulf, i.e. at
x = 0. A channel mode can be written as (Graef and Müller, 1996)

 m = Re

{
am exp

[
i

(
kx −  ̌ sin ˛

2ω
y − ωmt

)]
sin

(
m#y
W

)}
, m = 1, 2, 3, . . .,  (2)

where the following dispersion relation holds:
(
k +  ̌ cos ˛

2ω

)2

+ m2#2

W2 = ˇ2

4ω2 − 1
r2d
. (3)

From this we see that there are in general two  roots for k, call them k1 = k+ and k2 = k−. Geometrically, these two roots
are the k-coordinates or abscissas of the intersections of the lines parallel to the channel (in wavenumber space) given
by l1,2 =−  ̌ sin ˛/(2ω)  ± m#/W with the slowness circle ω = constant if the roots are real; four intersections for each m (see
Fig. 2). If the roots are complex (complex conjugates) it is k1 = k∗

2 with k1,2 = kr ± iki, whose real part is kr =−  ̌ cos ˛/(2ω)  and
whose imaginary part satisfies an equation of the hyperbola for ω = constant:

k2
i =

(
l +  ̌ sin ˛

2ω

)2

+ 1
r2d

− ˇ2

4ω2 . (4)

Therefore for each mode number m,  the line l1 (l2) parallel to the channel intersects the large l (small l) branch of the hyperbola
given by (4) at two points. Note that the larger the mode number m is, the farther away from the origin these intersections

would be (see Fig. 2). When k1,2 are complex, it is l <−  ̌ sin ˛/(2ω) − R or l >−  ̌ sin ˛/(2ω) + R, where R =
[
ˇ2/(4ω2) − r−2

d

]1/2

is the radius of the slowness circle. For any l in either of these open intervals, the corresponding two points on the hyperbola
(±ki, l) define an exponentially decaying (k1)–exponentially growing (k2) Rossby wave pair with respect to the gulf’s head at
x = 0. The two branches of the hyperbolae have transverse axis coinciding with the l axis and vertices at [0, −  ̌ sin ˛/(2ω)  ± R].
In Fig. 2 we show the slowness circle, the hyperbolae and the intersections of these curves with the lines l1,2 for a given ω,
gulf orientation ˛, width W and depth H that could resemble the Gulf of California and for the first five modes. The first two
m = 1, 2 have k real and the rest m > 2 have k complex.

These four intersections of l1,2 with either the circle or the hyperbola (for given ω and m) are indeed the four Rossby
waves that conform the gulf’s mode. One channel mode (the incident) has wavenumber vectors [k1, −  ̌ sin ˛/(2ω)  ± m#/W];
the other channel mode (the reflected) has wavenumber vectors [k2, −  ̌ sin ˛/(2ω) ± m#/W]. It should be noted that this is
true for all orientations of the gulf (see Graef and Magaard, 1994). If k1,2 are complex, the incident channel mode becomes an
exponentially decaying mode (in x), whereas the reflected mode becomes exponentially growing, both having an oscillatory
part ∝eikrx.
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Fig. 2. Graphical representation in wavenumber space of a Rossby normal mode in a gulf. For given frequency ω and mode number m, the four intersections
of  l1,2 =−  ̌ sin ˛/(2ω) ± m"/W (red dashed lines) with either the circle in black (for k real) or the hyperbolae in blue (for k complex) are the four Rossby
waves that conform the gulf mode. The gulf mode may also be viewed as the sum of two channel modes: the incident (with respect of the gulf’s head)
that  has wavenumber vectors [k1, −  ̌ sin ˛/(2ω) ± m"/W] and the reflected with wavenumber vectors [k2, −  ̌ sin ˛/(2ω) ± m"/W]. Shown in the graph are
the  first five gulf modes: m = 1, 2, which have k real, and m = 3, 4, 5 which have k complex; kr is also shown (dotted black line). Parameters resembling the
Gulf  of California: reference latitude = 27.5◦ N,  ̨ = 65◦ , W = 150 km,  H = 730 m,  yielding rd = 1257 km;  ω = 2"/(1 year). (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of this article.)

The solution for the gulf (i.e. a Rossby mode of a gulf) is simply the superposition of these two  channel modes such that
  = 0 at x = 0. This amounts to replace eikx in (2) by eik1x − eik2x, and after some trigonometric identities the gulf mode can be
written as

  = Re

{
am exp

[
−i ˇ

2ω
(x cos  ̨ + y sin ˛) − iωt

]
sin(ımx) sin

(
m"y
W

)}
, m = 1, 2, 3, . . .,  (5)

where

ım =
(
ˇ2

4ω2 − 1
r2d

− m2"2

W2

)1/2

, (6)

or, given m and ı, it is ωm = (ˇ/2)
(
ı2 + m2"2/W2 + r−2

d

)−1/2
. From (3) and (6) we  easily see that ım = (k1 − k2)/2. Note that

in (5) the carrier wave always propagates westward with phase speed C = 2ω2/ˇ, so there is no loss of generality by choosing
the positive frequency. The higher modes (large m)  will have ım imaginary, i.e. k1,2 complex, and consequently they will be
evanescent in x, that is ∝ sinh(|ım|x).

One last detail: if the roots k1,2 are equal for a mode m = Me then R = Me"/W. The two  independent solutions are eikrx and
xeikrx, but to satisfy the boundary condition at the head of the gulf (x = 0), we need to take the second one, so that in this case
the x-dependence of the Me mode is ∝ xeikrx, i.e. the mode grows linear in x. We  will not deal specifically with this case in
the foregoing analysis but it is important because it is part of the spectrum of free gulf Rossby modes, which can be either
oscillatory in x, with an amplitude growing linearly in x or evanescent in x.

For realistic gulf dimensions (such that planetary wave motion could matter) and frequencies of Rossby wave motion,
most of the modes are evanescent in x. In Fig. 3 we  plot ı2

m versus the Rossby mode period T = 2"/ω from the dispersion
relation (6) for several mode numbers and for two different Rossby radii of deformation (barotropic and baroclinic) and two
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Fig. 3. The dispersion relation. Curves ı2
m (in km−2) versus the Rossby mode period T = 2!/ω (in years) from the dispersion relation (6) for the mode numbers

m  = 1 (blue), m = 3 (green), m = 5 (red), m = 7 (cyan) and m = 10 (magenta). The four cases shown are for two different Rossby radii of deformation (barotropic
and  baroclinic) and two  gulf widths: (a) rd = 1344 km,  W = 100 km; (b) rd = 1344 km,  W = 300 km;  (c) rd = 51 km, W = 100 km; (d) rd = 51 km,  W = 300 km.  The
ı2
m = 0 line is indicated by a thick black dotted line. Every mode above (below) this line is oscillatory or periodic (evanescent) in x. Parameters: reference

latitude = 25◦ N, ocean depth H = 700 m for the barotropic case and the equivalent depth for the baroclinic case He = 1 m.

gulf widths. Note that only the first few modes are oscillatory in x for periods less than a year or so; in fact for a barotropic
gulf 100 km wide only the first mode is oscillatory in x for the annual frequency (not shown in graph). Of course for smaller
frequencies (periods larger than one year) we get more oscillatory modes. That is, in general, for a large portion of parameter
space ı2

m < 0. In fact the sign of ı2
m, which determines whether a mode is oscillatory o evanescent, only depends on the

frequency, the ratio between the gulf’s width and the Rossby radius # = W/rd, and of course the mode number m.  This can
be seen by non-dimensionalizing (6) using ım = (1/W)ı′m and ω = ˇWω′, where prime denotes non-dimensional variables,
which yields

ı′2m = 1
4ω′2 − #2 − m2!2. (7)

3. Forcing at the mouth

A physically interesting and analytically tractable problem is when the gulf is forced at the mouth at a fixed frequency.
Since we have a linear problem, without loosing generality we may consider a single Fourier component of the forcing of
the form

  = Fei($y−ωt) at x = L, (8)

where the constant F is the amplitude of the forcing and $ is the wavenumber of the forcing.
To match the imposed forcing function at the mouth we  need to add, in general, an infinite number of gulf modes (all

having the same frequency of the forcing):

exp

[
−i ˇ

2ω
(L cos  ̨ + y sin ˛)

] ∞∑

m=1

am sin(ımL) sin
m!y
W

= Fei$y, (9)

where the mode amplitudes are obtained using the orthogonality of { sin(m!y/W)|m = 1, 2, 3, . . . }, which is a complete set
in [0, W], i.e.

am = 2 F
W sin(ımL)

exp

(
iˇL cos ˛

2ω

)∫ W

0
exp

(
i  ̌ y sin ˛

2ω
+ i$y

)
sin

m!y
W

dy, m = 1, 2, 3, . . ..  (10)
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To proceed, we need to compute the integral in (10) for the mode amplitudes. It is

I =
∫ W

0
exp

[
iˇy sin ˛

(2ω)
+ i"y

]
sin

m#y
W

dy =
(
m#
W

) 1 − ei[  ̌ sin ˛/(2ω)+"]W (−1)m

m2#2/W2 −
[

 ̌ sin ˛/(2ω) + "
]2 . (11)

Now a little detour to give an overview on how to proceed in the baroclinic case:   given by (5) is multiplied by the nth
baroclinic mode $n(z), rd is replaced by the nth mode baroclinic Rossby radius in (6) and the z-dependence of the forcing is
projected on to the vertical modes {$n(z)|n = 0, 1, 2, . . . }, which also form a complete set in [−H, 0], being the eigenfunctions
of a vertical Sturm–Liouville problem. Finally, to match the imposed forcing function at the mouth given by ei"yF(z), one
writes the solution as a double sum:

exp

[
−i ˇ

2ω
(L cos  ̨ + y sin ˛)

] ∞∑

n=0

∞∑

m=1

anm sin(ınmL) $n(z) sin
m#y
W

= ei"yF(z). (12)

3.1. Resonant forcing

First, we note that the denominator in (11) is zero if
[

 ̌ sin ˛/(2ω) + "
]2

= m2#2/W2. This could happen only for one m,
call it m = M,  because both ω and ", although free to be chosen, are fixed once they are selected. Therefore the denominator
is zero if for some m = M,

"± = −  ̌ sin ˛
2ω

± M#
W
. (13)

This is the condition for resonance.  We  are forcing at the mouth with the frequency ω and wavenumber component normal
to the gulf’s axis " appropriate to a gulf’s mode [recall that l1,2 =−  ̌ sin ˛/(2ω) ± m#/W].

Now for this mode m = M,  we need to re-calculate the integral, since (11) is no longer valid. The result is IM =± iW/2 so
that

aM = ±i F eiˇL cos ˛/(2ω)

sin(ıML)
. (14)

For the rest of the amplitudes m /= M,  one simply substitutes (13) in (11) and gets

am =
2FmeiˇL cos ˛/(2ω)

[
1 − (−1)M+m]

# sin(ımL)
(
m2 − M2

) (m /= M). (15)

Therefore if the resonant mode M is odd (even), all the rest of the odd (even) modes vanish.
The resonant mode m = M is the dominant one because it has the largest amplitude; we have that

∣∣∣ amaM

∣∣∣ =
2 m

[
1 − (−1)M+m]

sin(ıML)

#
(
m2 − M2

)
sin(ımL)

, (16)

which is of the order of 1/m for the first oscillatory modes and of the order of 1/[m sinh(m)] for the rest of the evanescent
modes. Therefore, out of all the modes that are excited with the imposed forcing, the dominant mode, i.e. the one that
exhibits the largest response, is the resonant mode. It is physically relevant and therefore it sufficiently justifies the analysis
of these cases.

If the gulf is zonally oriented (sin  ̨ = 0) the condition for resonance reduces to "± =± M#/W,  i.e. irrespective of the
frequency of the forcing.

The resonance condition (13) can be rewritten as

"±W = −ˇWT  sin ˛
4#

± M#,  (17)

which is more suitable for plotting purposes. In Fig. 4 we  plot contour maps of the non-dimensional quantity "±W as a
function of the non-dimensional quantities ˇWT and  ̨ for three resonant mode numbers. For the chosen reference latitude
of 35◦ N, ˇWT = 59.14 for T = 1 yr and W = 100 km,  or any combination of WT  = 100 km yr. Note that for values of ˇWT < 40
the term ±M# dominates; for larger values the first term dominates except near  ̨ = 0◦, 180◦, where "±W becomes the
constant ±M#, a horizontal contour line. Graphically a resonant mode is given by the value of the contour (the value of "±W)
intersected by the vertical line ˇWT = constant (which in turn represents an infinite number of combinations of W’s  and T’s)
and the horizontal line  ̨ = constant (a value of the gulf orientation); one intersection on the left panel and one on the right
for the corresponding M.

For zonally oriented gulfs (sin  ̨ = 0) the resonant frequency could be any value, as shown by the horizontal contour lines
in Fig. 4 for  ̨ = 0◦, 180◦.

A contour plot of the solution   at 4 different times (separated one quarter of a period) is shown in Figs. 5 and 6 for
the case in which the resonant mode (M = 1) is oscillatory in x and in which the resonant mode (M = 3) is evanescent in x,
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Fig. 4. The resonance condition. Contour maps of the non-dimensional quantity !±W,  i.e. the product of the wavenumber of the resonant forcing and the
gulf’s  width, as a function of the non-dimensional quantities ˇWT and  ̨ for three resonant mode numbers as given by the resonance condition (17). (a)
!+W,  M = 1; (b) !−W,  M = 1; (c) !+W,  M = 2; (d) !−W,  M = 2; (e) !+W,  M = 5; (f) !−W,  M = 5. Reference latitude = 35◦ N. For T = 1 yr and W = 100 km,  or any
combination of WT = 100 km yr, ˇWT = 59.14.

Fig. 5.  (x, y, t) at t = 0, T/4, T/2, 3T/4 for a resonant mode M = 1 (oscillatory). Parameters of Gulf of California: reference latitude = 27.5◦ N,  ̨ = 65◦ , W = 150 km,
L  = 1125 km,  H = 730 m → rd = 1257 km. T = 1 yr.
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Fig. 6.  (x, y, t) at t = 0, T/4, T/2, 3T/4 for a resonant mode M = 3 (evanescent). Parameters of Gulf of California: reference latitude = 27.5◦ N,  ̨ = 65◦ , W = 150 km,
L  = 1125 km,  H = 730 m → rd = 1257 km.  T = 1 yr.

respectively. In both plots one can see the Gibbs effect at the end points of the gulf’s mouth when the value of   there is
not zero, i.e. the solution as a sum of gulf modes that vanish at y = 0, W can never achieve a non-zero value there and an
overshooting is evident; in the interior the solution expansion (the sum) matches perfectly the boundary condition at the
mouth. The solution for the oscillatory M = 1 resonant mode exhibits motion in the whole gulf with the same amplitude of
the forcing, whereas in the evanescent M = 3 resonant mode the motion in the gulf’s interior has an amplitude smaller than
that of the forcing. In fact if one increases M,  the motion is confined to be very near the mouth (the motion in the interior of
the gulf is insignificant).

The URL site https://drive.google.com/drive/folders/0B7EmwKPi9NK6THo2M3h6TjZ1Xzg contains several animations
(movies) of the solution for different cases; the reader is invited to consult them. In these movies the westward propagation
is evident. Even in the case of a zonal gulf with a western mouth (i.e.  ̨ = 180◦) that is being forced there, one can see how
the solution has a clear westward propagation towards the mouth!

3.2. Non-resonant forcing

In the non-resonant case (11) is valid and the mode amplitudes are:

am =
2Fm!eiˇL cos ˛/(2ω)

{
1 − ei[  ̌ sin ˛/(2ω)+#]W (−1)m

}

W2 sin(ımL)
{
m2!2/W2 −

[
 ̌ sin ˛/(2ω) + #

]2
} . (18)

It is worth noting that in this non-resonant forcing case, all modes get excited. The higher the mode number is, the less
it contributes to the solution, since am is O(1/m)  or O([m sinh(m)]−1). However, the main contribution to the sum of the
solution could come from those amplitudes near resonance. That is, for given ω and #, am would attain maximum values
when m equals the nearest integer to the value ±[  ̌ sin ˛/(2ω)  + #]W/!.

3.3. Special cases: prescribing # or the y dependence of the forcing

The previous analysis is general in the sense that the Fourier component of the forcing is not specified a priori, i.e. ω and
# are free parameters, which are only linked in the resonant case through (13). To study special cases, one could prescribe
the y dependence of the forcing or # from the beginning at the cost of loosing one degree of freedom in the forcing. Next, we
discuss some special cases.

3.3.1. # = 0
There is no y dependence on the forcing, which physically means that the water goes up and down at the mouth

with no flow through it. The resonance condition (13) is fulfilled for a couple of very particular frequencies that satisfy
 ̌ sin ˛/(2ω) =± M!/W,  which is possible only in a non-zonal gulf.
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If the gulf is zonally oriented (sin  ̨ = 0), then from (18) we see that only the odd modes are excited, i.e. am = 0 for m
even. This is the well known result that only the odd modes contribute when expanding a constant function in terms of the
complete set { sin(my)|m = 1, 2, 3, . . . } in [0, !].

An animation of the solution for the non-resonant case with the parameters resembling the Gulf of California is contained
in the file NRFT1FconstGCH0.4.avi in the web site mentioned above.

3.3.2. " =− i/rd and F is multiplied by the constant exp(−W/rd)
The y-dependence of the forcing is exp [(y − W)/rd] so the flow at the mouth has an exponential profile. There is a net

transport through it, with more fluid entering (or leaving) the gulf on the y = W side wall (northernmost for  ̨ < !/2) than on
the y = 0 side wall. In this case the amplitudes are

am = 2Fm!eiˇL cos ˛/(2ω)

W2 sin(ımL)

[
e−W/rd − eiˇW sin ˛/(2ω)(−1)m

]
×

[
m2!2/W2 + 1/r2d − ˇ2sin2˛/(4ω2) − i  ̌ sin ˛/(ωrd)

]

×
{[
m2!2/W2 + 1/r2d − ˇ2sin2˛/(4ω2)

]2
+ ˇ2sin2˛/(ω2r2d )

}−1
. (19)

Note that the denominator can never vanish. This could be anticipated since " must be real to satisfy the resonance condition.
In other words, there cannot be resonance because the y-dependence of the forcing is different from that of a gulf mode.

If the gulf is zonal, the amplitudes are

am =
2Fm!e±iˇL/(2ω)

[
e−W/rd − (−1)m

]

W2 sin(ımL)
(
m2!2/W2 + 1/r2d

) , (20)

where the plus sign is for  ̨ = 0 and the minus sign is for  ̨ = 180◦, which corresponds to an eastern and western gulf’s mouth,
respectively.

An animation of the solution for the non-resonant case with parameters resembling the Gulf of California is contained in
the file NRFT1FKelGCH0.4.avi at the web site mentioned above. Interestingly enough, the amplitude of   in the interior can
reach 4–5 times that of the forcing at the mouth because several of the first modes that contribute to the solution interfere
constructively.

3.3.3.   = F sin(Mf!y/W) e−iωt at x = L, F = constant, Mf > 0 integer
To avoid the Gibbs effect, we now apply a forcing at the mouth that vanishes at y = 0, W at all times. This forcing could

be recast in the form Fei("y−ωt) by writing sin(Mf!y/W) in terms of exponentials so it would be the sum of two Fourier
components with " given. However, we prefer the expression without the exponentials because the analysis is more clear
in this case.

With this forcing, there is no net transport of mass into or out of the gulf at the mouth, no matter if Mf is even or odd

because the mass transport is T =
∫ W

0 u dy = −
∫ W

0 ∂y  dy = − |W0 = 0.
In the non-resonant case the amplitudes are:

am =
2FMfm!2i  ̌ sin ˛eiˇL cos ˛/(2ω)

[
eiˇW sin ˛/(2ω)(−1)Mf+m − 1

]

W3ω sin(ımL)

{[
(m2 + M2

f )!2/W2 − ˇ2sin2˛/(4ω2)
]2

− 4M2
f m

2!4/W4

} . (21)

In principle all modes get excited, even though we are forcing with the y-structure of one of the modes (m = Mf). The term
responsible for this multi-mode excitation is exp [iˇy sin ˛/(2ω)] in the integral for the mode amplitudes, which is the
non-zonality of the gulf.

An animation of the solution for Mf = 2 and for the non-resonant case with parameters resembling the Gulf of California
is in the file NRFT1Fsin2GCH0.4.avi at the web site mentioned above. One can observe the absence of the Gibbs effect at the
mouth.

Resonance would occur if for some m = M,  (M2 + M2
f )!2/W2 − ˇ2sin2˛/(4ω2) = ±2MfM!2/W2 and the frequency is cal-

culated from |M ∓ Mf|!/W = ˇ| sin ˛|/(2ω). The amplitude for the resonant mode is aM = FeiˇLcos˛/(2ω)/sin(ıML) and for m /= M
they are

am =
4FMfmi  sign(sin ˛) |M ∓ Mf | eiˇL cos ˛/(2ω)

[
(−1)M+Mf+m − 1

]

! sin(ımL)

{[
m2 + M2

f − (M ∓ Mf )
2
]2

− 4M2
f m

2

} . (22)

If the gulf is zonal, we are forcing with exactly the y-structure of one of the modes, i.e. we have resonance and it is am = 0
for m /= Mf and aMf = Fe±iˇL/(2ω)/ sin(ıMf L), i.e. only the mode m = Mf of the forcing gets excited. The plus (minus) sign is for

 ̨ = 0 (  ̨ = 180◦), an eastern (western) gulf’s mouth.
In Fig. 7 we show two contour maps of the resonant period T of the forcing obtained from ˇ| sin ˛|/(2ω) = M!/W as a

function of the gulf orientation  ̨ and width W,  for M = 2 and M = 1. This applies to the special cases 1 and 3; for example
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Fig. 7. Contour maps of the resonant period T (in years) of the forcing in the cases ! = 0 and sin(Mf"y/W) as a function of the gulf orientation  ̨ (in ◦) and
width W (in km) and for (a) M = 2; (b) M = 1. Reference latitude = 30◦ N.

M = 2 serves in case 3 for any M and Mf such that |M ∓ Mf| = 2, etc. For most orientations and widths of the gulf between 50
and 1000 km the period of the resonant mode could range between 0.1 and 2 years or so. It is interesting to note that for gulf
orientations between 40◦ and 130◦ and between 220◦ and 310◦ and for gulf widths between 150 and 200 km,  the resonant
mode is around the annual frequency for M = 2 (for M = 1 the gulf width should be less than 100 km). Two gulfs that come to
mind having orientations and widths within these ranges of values are the Gulf of California and the Adriatic Sea. It is only
near the values of  ̨ = 0◦, 180◦, i.e. for nearly zonally oriented gulfs, that the periods of the resonant modes are larger than 2
years (more than 10 years for narrow gulfs less than 100 km wide). This is true regardless of the size of the Rossby radius of
deformation or the gulf’s length. If the resonant mode number M is increased, then the range of the resonant periods moves
towards larger values.

4. Discussion and conclusions

In this note we find free and forced solutions of the QG linear potential vorticity equation in an idealised geometry: a
rectangular gulf with a flat bottom whose orientation on the ˇ-plane is arbitrary.

The free solutions are the Rossby normal modes in the gulf. A normal mode is constructed by reflecting a Rossby mode
in a channel at the head of the gulf. So it can be viewed as the superposition of two  Rossby channel modes: an incident and
a reflected mode with respect to the wall at the head. Or it is also the superposition of four Rossby waves in an otherwise
unbounded ocean arranged in such a way as to satisfy the boundary conditions of no normal flow at the three solid walls
of the gulf. We  show this construction geometrically, explaining that the two  channel modes can have wavenumbers along
the gulf axis that are either real and different, equal or complex conjugates. Depending on this, the gulf mode is oscillatory,
grows linear or grows exponentially in x, the coordinate along the axis of the gulf, respectively. When the wavenumbers are
complex conjugates, the slowness curve ω = constant in wavenumber space is a hyperbola (instead of the familiar circle for
real wavenumbers).

The evanescent gulf modes that grow exponentially in x have values of   near the mouth that are several orders of
magnitude larger than in the interior. If one puts a reasonable amplitude [say in terms of the horizontal velocity of O(1 m/s)],
then the whole interior is motionless and the motion occurs only very near the mouth. On the contrary, the values of the
oscillatory modes are of the same order everywhere in the domain of the motion. With this in mind it makes sense to
study what the response of the gulf is (in terms of these free modes) when it is being forced at the mouth. To this end,
we considered a single Fourier component of the forcing at the mouth x = L of the form   = Fei(!y−ωt), i.e. we  forced the gulf
at a fixed frequency ω and with a wavenumber normal to the gulf axis !. It is physically an interesting problem and also
analytically tractable. Note that this choice of forcing is not restrictive because having a linear problem, more general forcing



56 F. Graef / Dynamics of Atmospheres and Oceans 75 (2016) 46–57

functions can be considered by adding many Fourier components and the solutions for each component summed to get the
total solution.

The forced solution is in general an infinite sum of gulf modes (all having the same frequency of the forcing), necessary
to match the imposed forcing function at the mouth. The form of the mode amplitudes of the solution immediately calls to
distinguish two cases: (a) resonant forcing, in which we  force with the frequency ω and wavenumber component normal to
the gulf’s axis " exactly that of a gulf’s mode, and thus frequency and wavenumber are linked through the resonance condition
(13); and (b) non-resonant forcing, in which ω and " are not linked at all. The resonant forcing is physically important: out of
all the modes that are excited with the imposed forcing, the dominant mode, i.e. the one that exhibits the largest response,
is the resonant mode. For the given ω and mode number M,  there are two  wavenumbers ("±) that are resonant (for given

 ̨ and W).  Or for the given " and M there are two resonant frequencies. It is also worth noting that all mode amplitudes am
have sin(ımL) in the denominator, which in the case of the evanescent modes keeps the term sin(ımx)/sin(ımL) below 1 in
the flow domain x ≤ L; this is not the case for the free evanescent modes.

The solution in the form of an expansion of gulf modes exhibits the Gibbs effect. Because all gulf modes vanish at y = 0, W,
if the imposed forcing function at the mouth does not vanish there, the expansion cannot match the forcing and overshoots
it. In general, except for the third of the special cases, the forcing (resonant or not) does not vanish at the end points of the
mouth.

A reviewer questioned whether the applied forcing at the mouth of the gulf includes the common tidal forcing as a
contribution in Physical Oceanography. In principle, we may  put any frequency in the analytical solution and in fact we
calculated the solution for an M = 1 resonant forcing with a period of 1 day (a diurnal tide). With such frequency, all modes
are evanescent and the response is confined to only a few km from the mouth, the rest of the gulf is motionless. Definitively,
to consider tidal forcing other dynamics should be used, like the SWE  that have the two gravitational modes.

Three special cases of forcing functions at the mouth were studied: (1) " = 0, which means that the water goes up and
down at the gulf’s mouth and there is no fluid entering or leaving the gulf; (2) " =− i/rd with the constant F redefined so that
the y-dependence of the forcing is exp

[
(y − W)/rd

]
, which is a flow with an exponential profile resembling a Kelvin wave

that has a net transport through it (but zero transport over one period); and (3) a flow with a sinusoidal profile ∼ sin(Mf#y/W),
where Mf is a positive integer, whose net transport is zero at all times.

Resonance occurs in cases (1) and (3) but only for very specific frequencies. In fact for case (1) resonance is possible
only in non-zonal gulfs. Resonance is not possible in case (2) and the dominant modes will be simply the first modes, since
am ∼ O(1/m) for the oscillatory modes and am ∼ O(1/[m sinh(m)] for the rest of the evanescent modes. Therefore, the QG
response in a gulf (given in terms of Rossby gulf modes) for a Kelvin wave type of forcing is never resonant. In case 3, the
applied forcing vanishes at both ends of the gulf’s mouth and the solution expansion does not exhibit the Gibbs effect, which
implies that   and the velocity field are continuous everywhere; also if the gulf is zonal, the forcing is resonant and only the
forcing mode m = Mf gets excited.

As a potential application of our results to the physical oceanography of gulfs in the world’s oceans, the M = 1 reso-
nant period for the forcing in cases " = 0 and ∼ sin(Mf#y/W) with Mf such that |M ∓ Mf| = 1 is: 0.45 years for the Gulf of
California (reference latitude = 27.5◦ N,  ̨ = 65◦, W = 150 km); 0.77 years for the Adriatic Sea (reference latitude = 42.5◦ N,

 ̨ = 40◦, W = 150 km)  and 0.24 years for the Red Sea (reference latitude = 20.1◦ N,  ̨ = 59.4◦, W = 280 km). Since T is linear in M,
the periods for larger M are just multiples of these M = 1 periods. Of course, keep in mind that our gulf is idealised and that
bottom topography, irregular coastlines, and so on might change these values.

For the forcing functions that we have studied, there is a qualitative difference in the response if the gulf is zonally
oriented or not. In general, less modes get excited if the gulf is zonally oriented. This comes from the fact that (at least for
the forcing functions that have fluid entering or leaving the gulf) in the non-zonal gulf we  are forcing water to cross lines of
ambient potential vorticity, thereby activating the ˇ-effect responsible for planetary wave motion and thus exciting many
more modes.

In spite of our gulf being idealised, the analytical results presented here could provide a dynamical basis to help explain
observations. And for sure, the analytical solutions could be a very useful tool to test numerical models of gulfs. Beyond
these benefits, we have contributed to the advancement of knowledge in GFD.
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