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Resumen de la tesis que presenta Roilhi Frajo Ibarra Hernández como requisito parcial
para la obtención del grado de Doctor en Ciencias en Electrónica y Telecomunicaciones
con orientación en Telecomunicaciones.

Desarrollo de técnicas para el análisis y procesamiento de señales de audio
cardiaco

Resumen aprobado por:

Dr. Miguel Ángel Alonso Arévalo

Director de tesis

La auscultación cardiaca ha prevalecido como una herramienta sencilla, económica y
primaria para la inspección de enfermedades cardiovasculares. De esta técnica pro-
viene el audio cardiaco o señal de fonocardiograma, elemento central de análisis de la
tesis. Las limitaciones en el sistema auditivo humano en la banda de bajas frecuencias
y la falta de expertos en auscultación ha restado su potencial como técnica de diag-
nóstico. Sin embargo, los recientes avances en el área del procesamiento digital de
señales permiten desarrollar técnicas para fortalecer el análisis atomatizado de soni-
dos cardiacos. La presente tesis explota un modelo paramétrico de reconstrucción de
sonidos cardiacos basado en Matching Pursuit con átomos tiempo-frecuencia y Codifi-
cación Predictiva Lineal. El modelo es rigurosamente evaluado por medio de pruebas
objetivas y subjetivas con el apoyo de expertos en la salud. Los parámetros del modelo
serán considerados para el diseño de un clasificador que detecte la presencia o ausen-
cia de patologías en señales de audio cardiaco. Se comparó el desempeño de diversas
técnicas de clasificación como métodos de aprendizaje máquina. Diversos métodos de
extracción y selección de características así como de balanceo de clases fueron con-
siderados en el diseño del clasificador. El objetivo del trabajo es explorar los métodos
de aprendizaje máquina antes que implementar técnicas sofisticadas de clasificación.
Los resultados generados muestran que los métodos de extracción de características
influyen directamente en el desempeño del esquema de detección. También se reflejó
en las pruebas que los métodos de clasificación de sencilla implementación pueden
obtener resultados satisfactorios.

Palabras clave: Señales de audio cardiaco, procesamiento de señales, clasi-
ficación, modelado, evaluación, Matching Pursuit
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Abstract of the thesis presented by Roilhi Frajo Ibarra Hernández as a partial require-
ment to obtain the Doctor of Science degree in Electronics and Telecommunications
with orientation in Telecommunications.

Development of techniques for the analysis and processing of cardiac sound
signals

Abstract approved by:

Dr. Miguel Ángel Alonso Arévalo

Thesis Director

Cardiac auscultation remains as one of the primary and low-cost screening tools for
the detection of cardiovascular diseases. This technique is based on the analysis of
the heart sound signal, formerly known as phonocardiogram, which is the central ele-
ment under study of this thesis. The limitations in the human auditory system at low
frequencies and often the lack of auscultation skills of general practitioners limits the
potential and interest of the cardiac sound signal as diagnosis tool. However, recent
advances in digital signal processing allow the development of techniques for the au-
tomated analysis of heart sounds. This thesis work proposes the use of a parametric
reconstruction model for cardiac sounds based on the Matching Pursuit algorithm with
time-frequency atoms and Linear Predictive Coding. The model was rigorously eva-
luated through objective and subjective tests with the assistance of health experts.
Parameters of the model were considered for the design of a classifier for the de-
tection of pathologies in phonocardiogram signals. We compared the performance of
several classification schemes used in machine learning systems. Different methods of
features extraction and features selection as well as the use of balancing techniques
were considered for the classifier design. The obtained results show that the features
extraction methods directly affect the screening method performance. The results al-
so show that low-complexity classification schemes can achieve scores comparable to
more complicated methods.

Keywords: Heart sound signals, signal processing, classification, modeling,
evaluation, Matching Pursuit
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Chapter 1. Introduction

The human heart is the most important organ since it provides blood to all parts

of the body. It uses a pumping like method for the blood distribution. This pumping

action involves mechanical and electrical activities produced by the heart in order

to conduct the blood flow. The activity of a healthy heart is relevant for the daily

activities of human body as blood carries important nutrients to the organs. According

to the World Health Organization, cardiovascular diseases (known as CVDs) are the

first of the top 10 main causes of morbidity (WHO, 2018). Heart diseases have been

in the last years the world’s biggest killers, accounting for a combined 15.2 million

deaths in 2016. These diseases have remained the leading causes of death globally in

the last 15 years. Mexico cannot be excluded from these statistics, since obesity and

diabetes produced by bad nutrition and sedentary habits have contributed to make

heart diseases one of the main causes of morbidity in our country 1.

A number of methods have been developed for the detection and diagnosis of CVDs.

Some of these methods are highly sophisticated and provide reliable diagnosis of heart

pathological states such as the magnetic resonance imaging (MRI), echocardiography,

and cardiac catheterization. Although these methods are powerful tools for the eva-

luation of heart pathological states, they are limited in availability so their cost would

be relatively high. Even with the availability and cost that these heart screening tools

present, they require highly trained personnel for data acquisition and interpretation

(Mahnke, 2009).

On the other hand, the heart sound signal (that we will call PCG, from the acronym

of phonocardiogram) is still a powerful and popular tool to diagnose a pathological sta-

te of the heart. The signal is recorded when listening the activity in the heart valves

during the auscultation, commonly performed with a device called stethoscope. The

auscultation method remains as the first screening tool utilized by primary care pro-

viders. In fact, ECG and PCG exhibit similar features since both are highly correlated

and cyclostationary, i.e. their statistics vary but are repetitive over a period. Howe-

ver, the PCG signal offers a distinct advantage to detect murmurs, which represent

an abnormal heart condition, since it records acoustic properties of the heart valves.

1Information given by the National Institute of Geography and Statistics of Mexico (INEGI), more infor-
mation is available online at: http://www.beta.inegi.org.mx/contenidos/saladeprensa/boletines/
2018/EstSociodemo/DEFUNCIONES2017.pdf

http://www.beta.inegi.org.mx/contenidos/saladeprensa/boletines/2018/EstSociodemo/DEFUNCIONES2017.pdf
http://www.beta.inegi.org.mx/contenidos/saladeprensa/boletines/2018/EstSociodemo/DEFUNCIONES2017.pdf
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Furthermore, the PCG signal offers a low cost method for diagnosis since we only need

a stethoscope as the main device for the recording.

An accurately performed auscultation also requires trained personnel for a correct

interpretation of the sounds. Therefore, physicians require auscultation skills to ac-

curately perform the detection of a heart disease. In addition, just a fraction of the

acoustic energy generated by the heart can be accurately detected by the human

auditory system (Mahnke, 2009). Figure 1 shows the pressure levels and frequency

region of speech, heart sounds and murmurs and the audibility threshold to illustrate

the portion of energy commonly detected by the human auditory system.
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Figure 2. General spectral regions for different heart sounds, and other physiological sounds during heart 
sound recordings. Adapted from (Springer, 2015; Leatham, 1975). 
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Figure 3. Typical three steps for automated analysis of heart sound in clinical applications. 

Automated analysis of the heart sound in clinical applications usually consists of three steps shown in 
Figure 3; pre-processing, segmentation and classification. Over the past few decades, methods for 
automated segmentation and classification of heart sounds have been widely studied. Many methods have 
demonstrated potential to accurately detect pathologies in clinical applications. Unfortunately, 
comparisons between techniques have been hindered by the lack of high-quality, rigorously validated, and 
standardized databases of heart sound signals obtained from a variety of healthy and pathological 
conditions. In many cases, both experimental and clinical data are collected at considerable expense, but 

Figure 1. General frequency content of Heart sounds, murmurs and other physiological sounds (Springer
et al., 2016; Liu et al., 2016).

Given these limitations for the implementation of the auscultation technique, the

presently available computational tools for signal analysis and processing, and the

need for an inexpensive tool for the cardiac diseases detection, a number of resear-

chers started to develop methods for the automated analysis of heart sound signals,

whose applications basically consist of three steps:

Pre-processing: Comprises all methods for the signal quality assessment and

relevant features extraction, such as filtering, noise removal and modeling for

signal reconstruction.

Segmentation: It is the extraction of the time periods to delineate the start and

end points of the PCG signal main events.

Classification: This step consists in the prediction of cardiac pathological states
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from PCG recording features.

Modern stethoscopes are digital devices which contribute to the development of

automated heart sounds analysis. Since they allow the visualization of the PCG wave-

form, the signal processing and analysis methods can be applied by using the recording

samples.

The present work focus on the pre-processing and classification methods for the

analysis of heart sound signals. It exploits the sparse representation of the PCG as a

parametric model to obtain and explore a number of different signal features. Within

the use of supervised machine learning tools, it is possible to map the generated in-

put features for classifying the heart sound as normal or abnormal according to the

absence or presence of a murmur or pathological state. The classification experiments

conducted during the present work were performed using the PhysioNet/Computing

in Cardiology Challenge 2016 database (PhysioNet/CinC Challenge 2016), which is the

largest collection of heart sounds gathered by the scientific community in the world

recorded with normal and abnormal conditions under a clinical environment (Liu et al.,

2016). A number of known machine learning classifiers and data mining techniques

were rigorously evaluated.

1.1 General Objective

To develop a heart sound signal model based on sparse representation and au-

toregressive processes. Use the model parameters to detect the presence or ab-

sence of pathologies in heart sounds.

1.1.1. Specific Objectives

In order to accomplish the general objective specified above, we set the following

specific objectives.

Enhance and complete the model described in our previous work (Ibarra, 2014).

Perform objective evaluations by comparing different metrics.
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Conduct a formal subjective evaluation with the assistance of physicians and

health experts using the MUSHRA method.

Test the parameters of the model to be mapped as features for classification tasks

(features extraction step). Develop a classification benchmark using the database

provided by the Physionet/CinC 2016 Challenge.

Compare the performance of different classifiers to detect pathological states

from cardiac sound signals using the parameters of our reconstruction model.

Compare the performance when using different ML feature selection and balan-

cing methods. Compare also the efficiency of proposed method among different

sets of features using features extraction methods found in the literature.

1.2 Methods of the thesis

According to the stated objectives, the present work has been organized in different

phases. The following points make a recapitulation of the most important steps:

State of art review: We revised the literature related to PCG signals automated

analysis: reconstruction modeling, segmentation and classification of heart beats.

Collection and segmentation of PCGs: We analyzed the settings given by the

Physionet/CinC Challenge database, such as time duration, sampling frequency,

segmentation annotations, etc.

PCG signal modeling: We enhanced and completed a PCG signal modeling mo-

tivated by our previous work. Framework was basically summarized in the three

following steps:

• Sparse modeling: We compared the use of different time-frequency dictio-

naries for the sparse reconstruction of the PCG signal when using Matching

Pursuit: Wavelet packets (WP), Modified Discrete Cosine Transform (MDCT),

Gabor and Chirped Gabor atoms. We tested the Orthogonal Matching Pursuit

reconstruction of the heart sounds.

• Autorregresive modeling: We considered to reconstruct the residual part by

using the Linear Predictive Coding method.
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• Model evaluation: We tested the model using an objective evaluation by com-

paring the distortion and the plots in time, and time-frequency planes of the

original and reconstructed signals. We also conducted a subjective evalua-

tion by using the Multiple Stimuli with Hidden Reference and Anchor (MUSH-

RA) method. A number of physicians and health experts assessed the clinical

quality of the reconstructed signals.

PCG signals classification: We developed a benchmark for the classification of

cardiac sounds. The methods employed can be stated as follows:

• Features extraction: We mapped the MP and LPC parameters of the model

to features. Then, we considered two approaches in order to have the same

amount of features: averaging of the features and averaging of the heart cy-

cles samples. A set of Mel Frequency Cepstral Frequency Coefficients (MFCCS)

and wavelet parameters as features was also constructed to be compared.

• Balancing of data: Since the database Physionet/Cinc 2016 Challenge con-

tains a few number of PCG recordings labeled as abnormal compared the

recordings labeled as normal we need to equalize the amount of samples.

We conducted and compared the classification results using the Synthetic

Minority Oversampling Technique (SMOTE) to balance the data set.

• Cross validation (CV) test: This test was conducted in order to test different

features sets given by the combination of cycles averaging or time avera-

ging approaches with balanced or none balanced data cases. A number of

known classification schemes were tested: Linear Regression, Linear Discri-

minant Analysis, Naïve Bayes, Classification and Regression Tree, K-nearest

neighbors and Support Vector Machines.

• Features selection: To reduce the dimensionality or number of features in the

data sets, we tested the performance of three different approaches: feature

importance amount (given by the random forest classifier), information gain

and correlation features selection.

• Implementation of the classifier: We conducted the evaluation of all the clas-

sification settings showed above using different metrics.

• Our datasets need to be split into training (80% of the data) and testing (20%

of the data) subsets.
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• We compared the performance when combining different machine learning

methods for features selection and the inclusion of the SMOTE oversampling

technique.

1.3 Structure of the thesis

The organization of this manuscript is as follows, Chapter 2 details the methods

and techniques employed for modeling of the PCG signal. It starts with the physiology

of heart sounds and the mathematical aspects of the signal in time and frequency.

Then, it enlists a brief review of the state of the art in modeling of cardiac sound

signals. Chapter 2 also describes the methods employed in this research work for

the parametric reconstruction of the PCG. Chapter 3 depicts the mechanism for the

classification for heart sounds. It starts with a description of the techniques employed

for the Physionet/CinC 2016 challenge and the database of sounds which was used to

conduct the experiments of the thesis. We also present in this chapter a description

of the classifiers taken in consideration for our task and their tuning to be set up.

Chapter 4 reports how we conduct the features extraction procedure. It also includes

the methods for balancing the data and a justification of why it is necessary to consider

this problem. Chapter 5 reports the results of testing a number of classifiers as tools

for the detection of pathological states in heart sound signals using different metrics.

Finally, chapter 6 draws the conclusions reached after analyzing the results of the

present work. It also presents some aspects to be discussed as future work. In order

to summarize the research work reported in this thesis, Figure 2 depicts a road-map to

detail the phases, research methods and productivity derived from this research.
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Chapter 2. PCG signal modeling

This chapter describes the characterization of the heart sounds. First, we sketch the

physiological aspects concerned to the PCG signal and the procedures involved. We

explain the PCG aspects in terms of time and frequency domains as electrical signal

and how are characterized those that include murmurs or pathological states. Then,

we present a review of the state of the art in the modeling of heart sounds, focusing

on the time-frequency methods. Then, we explain the Matching Pursuit representation

using Gabor atoms as a time-frequency modeling technique of the PCG signal and

the LPC coding of the residual. This chapter also includes a review of the state of the

art for modeling of cardiac sounds pointing out which techniques have been used to

accurately represent heart sound signals.

2.1 Physiological characterization of heart sounds

The phonocardiogram or PCG signal is a vibroacoustic signal that represents the

sounds generated by the heart and recorded from the chest with a device called stet-

hoscope. The mechanical activity of the heart is then described by using this signal,

which basically consists in the opening and closure activities of the heart valves. These

components are actually gates which control the blood flow. The systematic opening of

the valves regulates the blood for traveling through veins and arteries and separates

the blood which contains oxygen from the amount of blood that does not (Abbas and

Bassam, 2009).

There are four valves located into the heart, the aortic and pulmonary valves control

the pass of blood out of the ventricles. The mitral and tricuspid valves lie between

the atria and the ventricles and they control the flow between these places. Figure 3

shows the location of the heart valves. As mentioned before, the heart sound signal

represents the mechanical activity of the heart, that means the function of the valves.

A malfunctioning of any of this gates represents a turbulent blood flow, which is called

murmur or rumble. This is in fact a pathological state.
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Figure 3. The heart anatomy. Location of heart valves and chambers.

2.2 Characterization of the PCG as an electrical signal

The morphological structure of the PCG signal consists of two main events or fun-

damental heart sounds (FHS): S1 and S2. Each FHS is directly related to the heart

movements of systole and diastole. The first FHS or S1 is a sound which describes

the opening of the aortic and pulmonary valves and the closure movements of the

mitral and tricuspid valves. This sound is directly associated with the systolic move-

ment, where the ventricles contracts to throw out the blood to the arteries. On the

other hand, the second FHS or S2 sound describes the complement of the events that

happen in S1: now the mitral and tricuspid valves are open to receive blood while the

aortic and pulmonary valves close the conducts. S2 sound has two main components:

A2 and P2 produced by the closure of the aortic and pulmonary valves respectively.

This procedure is called the systole and now the auricles contracts to throw out

the blood to the ventricles. A junction in time of the two main FHS in sequential order

(S1-S2) is called cardiac cycle. Another couple of sounds called S3 and S4 can be also

present in a PCG, however, they represent a normal or healthy condition for pediatric

PCG signals, while for adults they are actually related to a pathological state.

A frequently used method for the diagnosis and detection of heart diseases is the

electrocardiogram (ECG), which can be interpreted as the polarization of all muscular

nodes included in the heart. The ECG signal is actually a quasi-periodic electrical signal

composed of three main waves: ’P’ wave, ’QRS’ complex and ’T’ wave. The FHS of the

PCG signal are related with the ECG waves since the peak in the ’R’ wave and the
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ending of ’T’ wave are associated with the starting and end time positions of a PCG

cycle. Figure 4 depicts this approximation.
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3. Brief review on heart sound segmentation methods 

The segmentation of the FHSs is a first step in the automatic analysis of heart sounds. The accurate 
localization of the FHSs is a prerequisite for the identification of the systolic or diastolic regions, allowing 
the subsequent classification of pathological situations in these regions (Liang et al., 1997b; Springer, 
2015; Springer et al., 2014). S1 is initiated by the closure of the atrioventricular valves at the beginning of 
the systole and occurs immediately after the R-peak (ventricular depolarization) of the ECG. S2 is 
initiated by the closure of the semilunar valves at the beginning of the diastole and occurs approximately 
at the end-T-wave of the ECG (the end of ventricular depolarization). The time order of these features in 
ECG and PCG is shown in Figure 4 (Springer, 2015). In clinical practice, the criteria adopted by the 
cardiologist to annotate the beginning and the ending of S1 and S2 sounds was defined as follows: the 
beginning of S1 is the start of the high frequency vibration due to mitral closure, the beginning of S2 is 
the start of the high frequency vibration due to aortic closure, and the endings of S1 and S2 are annotated 
by the end of the high frequency vibrations (Moukadem et al., 2013). 

 

Figure 4. Example of an ECG-labelled PCG, with the ECG, PCG and four states of the heart cycle (S1, 
systole, S2 and diastole) shown. The R-peak and end-T-wave are labelled as references for defining the 
approximate positions of S1 and S2 respectively. Mid-systolic clicks, typical of mitral valve prolapse, can 
be seen in the systole states. Adapted from (Springer, 2015). 

Figure 4. Relation between the ECG and PCG waveforms (Liu et al., 2016).

If a PCG contains only a S1-S2 junction is associated with a normal heart state or

a healthy patient. The interval where there is no FHS is called silence. Some authors

handle the systolic and diastolic silence intervals according to their location (after S1

or after S2). Figure 5 shows the waveform or time shape of a cardiac cycle of a PCG

signal in a normal state. When a malfunction in the heart valves is presented they
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Figure 5. The waveform of a normal cycle extracted from a PCG.

obstruct the blood flow. This effect produces a turbulence which can be seen from the

PCG as a murmur or rumble. An abrupt change in the frequency content of the signal

can be seen when this pathological state is present. Figure 6 illustrates this effect by

showing a cycle of an abnormal PCG. The S1 and S2 waves have typical features in
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Figure 6. The waveform of an abnormal cycle extracted from a PCG.

time and frequency domains. Although there is no specific time length for each FHS

a number of authors define the average time of these intervals. Each FHS has also a

specific bandwidth or frequency content, it is generally below the 150 Hz for normal

S1 and S2 sounds (Abbas and Bassam, 2009). This information is presented in Table 1.

As a complement, Figure 7 displays the time waveforms for both normal and abnormal

heart cycles and its associated spectrograms. Notice that as Table 1 indicates, the main

frequency content lies below 150 Hz for normal sounds while for abnormal sounds it

can reach approximately 500 Hz (where the murmur is situated).

Table 1. The characteristic time length and frequency content of the fundamental heart sounds.

Event Time length (s)
Frequency

content (Hz)

S1 0.1-0.12 20-150

S2 0.08-0.12 50-60

S3 0.04-0.05 20-50

S4 0.04-0.05 <25

2.3 PCG signal modeling state of the art

This section makes a review of previous research done in the area of cardiac audio

modeling, focusing on the signal representation in the TF plane. These works can be

classified according to the methods used as:

1. Pole-zero models: In order to derive frequency domain features of porcine prost-
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Figure 7. A: The plot in time of a normal cycle and its associated spectrogram, B: the waveform of a
heart cycle containing a murmur (abnormal state) and its correspondent spectrogram.

hetic heart valves, Joo (Joo et al., 1984) determine to use the heart sound by the

Steglitz-McBride pole-zero modeling method. The characteristics of heart sounds

from patients were used to determine the state of the valves as normal or patho-

logical. The use of all pole models as LPC have been used also to represent the

spectral features of cardiac sounds. Agostihno and Souza (Agostihno and Souza,

1997) took the LPC method to synthesize heart sound signals with a multi-pulse

method of filter excitation. However, the choice of the time window represented a

problem in the frequency resolution, since they fixed it as rectangular with 30ms

of time resolution. The impulse excitation and 5-th order filter were determined

as parameters to model the heart sounds. In the research work presented by Red-

larsky (Redlarski et al., 2014), a representation of the PCG sounds also by the LPC

algorithm was done. The LPC coefficients were coupled in pairs as parameters to

a Support Vector Machine classifier in order to detect different heart murmurs. A

spectral fitness comparison was done to find the appropriate filter order for the

phonocardiogram spectral representation. The research found that with a 24-th

filter order a 99.7% of spectral fitness can be reached, while with the 5-th order

that Agostihno introduces reachs only a 85.5% of spectral matching factor. The

all-pole methods presented above aim to find the most appropriate spectral re-

presentation of cardiac sounds having a lack of information about time resolution.

Although they are easy to compute, it is hard to find coherence in time to fix a
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window because of the phonocardiogram is a quasi-stationary signal.

2. Damped-sinusoidal models: The reconstruction of heart sounds produced by

prosthetic heart valves with damped sinusoids was used by Köymen (Köymen

et al., 1987). This research assumes that the rapidly increasing of the valves

can be seen as an impulsive excitation, then, a PCG can be reconstructed as a

damped-sinusoid sum. The account of the waves parameters such as the amplitu-

de and frequency information of the sinusoids was the first step. Then, dominant

peaks of the PCG spectra in the frequency band of 200-500Hz were observed.

Another interesting model of the PCG by decaying sinusoids, focusing on the se-

cond heart sound was presented by Leung (Leung et al., 1998). In this work, the

approach of the Gaussian modulation to decompose the second heart for the

diagnosis of pediatric heart diseases was done. The peaks of the short time Fou-

rier transform (STFT) determined the optimal parameters in the sinusoid to best

represent the sound. An automatic technique to measure and compare similar

patterns was performed by calculating the mean and standard deviation values

of the fixed split. The model was also used by Tang (Tang et al., 2010) to find

the quasi-stationarity of the heart sound signals and separate the components

from noise using fuzzy detection. The same author uses this model in (Tang et al.,

2016) to achieve signal compression and transmission over low data rates. A dis-

tortion percent of less than 5% (in terms of percent-root-mean-square difference)

was obtained by applying the method to a set of signals. Besides, in the calcula-

tion results the compresion ratios from 20 to 149 depending on the presence or

absence of murmurs (at heavier murmurs lower compression rates). The residue

between the chosen sinusoids and the original signal is modeled by vector quan-

tization. Although this model aims to reach a low distortion and a high level of

compression rate, the vector quantization method for the residual representation

is complex in terms of calculations and requires a previous training stage.

3. Chirp signal models: Using transient nonlinear chirp signals, Xu modeled the com-

ponents of the second heart sound s2 A2 and P2 (Xu et al., 2001a). Each member

of s2 can be modeled as a mono-component nonlinear chirp signals of short dura-

tion, in fact, the sound was considered as modulated in frequency. With this hypot-

hesis, the signal was modeled as a function of polynomial phase. The Wigner-Ville

distribution was used to depict the time frequency distribution of the synthesized
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signal. The same set of nonlinear chirp signals were used also by the same author

(Xu et al., 2001b) to extract the A2 and P2 components of the second heart sound

signal. The phonocardiograms were recorded from pigs with pulmonary hyperten-

sion. This work was resumed by Djebbari (Djebbari and Bereksi-Reguig, 2011),

who created a Valvular Component Chirp Model (VCCM) from the chirp wavelet

used by Xu as mother for the time scale analysis. Comparing with the Discrete

Meyer and the Morlet Wavelets. The cross correlation reached was 98.59% with

a polynomial order of 15. In the spectrogram comparison the VCCM model repre-

sented more than the 80% of the spectral components for both s1 and s2 sounds.

4. Sparse signal models: By using time-frequency Gabor waves, Zhang et al. (Zhang

et al., 1998) represented the normal heart sounds and murmurs. A set of gaus-

sian modulated sinusoidal waves were selected to make a compact model which

aims time-frequency analysis-synthesis of the heart sounds. The application of

the MP method to two sets of murmur signals give as a result a normalized-mean

square root error (NRMSE) of less than 2.2% while the algorithm reached bet-

ween 39 to 67 atoms per signal if normal and 125 to 536 in the presence of a

murmur or noise. These results reflect that the Matching Pursuit method is sui-

table to represent the transients and complex structures in the PCG, in this way

Nieblas et al. (Nieblas et al., 2013) also used the Matching Pursuit algorithm for

a cardiac sound segmentation in different pathological PCG signals. A time fre-

quency distribution was depicted to support the calculation of the segmentation

points of normal sounds and murmurs. Other approaches of the application of

Matching Pursuit in cardiac sounds that can be founded in literature are the au-

tomatic detection of the cardiac cycles from the PCG signals (Sava et al., 1998)

and the analysis of the first heart sound for the detection of the activity in the

mitral and tricuspid valves (Wang et al., 2004). The framework presented by Jab-

bari (Jabbari and Ghassemian, 2011) the use of the Multivariate Matching Pursuit

(MMP) was employed in order to model heart systolic murmurs. In this variation,

the best matched elementary waveforms conformed a new set of functions used

to perform again the algorithm. Thus, the combination of consecutive selected

elements enabled the model for systolic intervals. This research work concludes

that recurrent wavelets can be adapted to reconstruct pathological heart sounds

with the aid of a cycle-averaging method.
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5. Wavelet models: The research done by Martinez Alajarin (Martínez-Alajarín and

Ruiz-Merino, 2004) presents the PCG signal compression in blocks. The number of

coefficients were selected by the Wavelet Packet transform procedure. An amount

of 99.9% of the retained energy can be represented by the WP decomposition

when using a Daubechies-8 wavelet. Manikandan (Manikandan and Dandapat,

2007) also presents a compression method based on wavelets using an energy

based treshold to retain the significant coefficients. Reed et al. (Reed et al., 2004)

applied the wavelet decomposition of heart sounds to construct a prototype of

computer aided diagnosis. A neural-network classifier takes the meaningful fea-

tures of the selected wavelets which could help in heart sound analysis. The Wa-

velet packet of heart sounds was useful for Liang (Huiying et al., 1997) to perform

a segmentation of the sound. Some meaningful components were extracted to se-

parate the first and second heart sound and the systolic-diastolic periods. Normal

and abnormal sounds were used to test the algorithm. The algorithm obtained

93% of accuracy after being applied over 77 recordings that contained 1165 cy-

cles.

Although many signal processing techniques have been applied, there is a lack

of knowledge in testing the modeling of heart sound signals. Matching Pursuit was

presented in this section as a prominent method for the phonocardiogram processing

due to the adaptive decomposition of the parts of cardiac sounds. However, authors

could not ensure the use of cardiac sounds as prominent diagnostic tools. For this

reason, this work evaluates the MP-LPC modeling of PCG signals through objective

and subjective tests, considering the opinion given by clinicians and health experts as

listeners in the MUSHRA subjective analysis.

2.4 Description of the signal databases used in the research

In the past few years many methods for the automated analysis of heart sounds

demonstrated the potential to accurately perform a segmentation and detect a patho-

logical state in clinical applications. However, most researchers have used their own

PCG recordings which are not publicly available. As a consequence, there is a lack of

high-quality, standardized and rigorously validated databases. On the other hand, the

use of open databases to evaluate the automatic analysis of heart sounds allows a
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fair comparison of the algorithms in the literature. In the previous years we can find a

number of different open databases for the analysis of heart sounds, these are shown

in Table 2.

Table 2. The databases considered for this research.

Name
Number of

recordings

Normal/

abnormal

recordings

Sampling

frequency
Available from

Littmann 14
13 abnormal

1 normal
11025 Hz

http://www.litman.com/3M/en_US/

littmann-sthetoscopes/

eGeneral

medical
38

37 abnormal

1 normal

4000 and

8000 Hz

http://www.egeneralmedical.com/

listoheartmumur.html

HSCT11 206 206 normal 11025 Hz http://www.diit.unicit.it/hsct11/

PhysioNet/CinC

Challenge 2016
3153

665 abnormal

2488 normal
2000 Hz

https:www.physionet.org/challenge/

2016/

Another two open databases can be also found online, one of them provided by

the University of Michigan (MHSDB) (UMHS, n.d.), which contains a total of 23 heart

sound recordings. The number, quality and length of the recordings was a reason to

avoid this collection of sounds to conduct the experiments in this thesis. Additionally,

we have the PASCAL database (Bentley et al., 2011) provides another public database

comprising 176 recordings for heart sound segmentation. Although there is a relatively

large number of recordings they have a frequency content below 195 Hz due to the

application of a low-pass filter, which removes useful components of the heart sound

to be used for diagnosis.

In a first stage, we evaluate the diversity of pathological states, such as rumbles

or murmurs contained in the collections of signals described in Table 2. We noticed

that the Littmann database contains a limited number of recordings, although they

have a variety of abnormal sounds presented with a good signal quality. Since its

purpose is the biometrical identification of patients, the HSCT 11 sounds database

contains only heart sounds of healthy subjects. In this sense, we finally considered for

our experiments the eGeneral medical heart sounds database (eGeneral Medical, n.d.)

to test the reconstruction of heart sounds by using the proposed MP-LPC method, since

it contains a variety of murmurs and abnormal states.
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On the other hand, the Physionet/CinC Challenge 2016 (Liu et al., 2016) heart

sounds collection will be used for the PCG classification task. We will analyze this da-

taset and the best-ranked methods used for the challenge in detail in Chapter 3. The

experiments conducted in Chapter 4 and Chapter 5 will be tested using this database

recordings.

2.5 The reference model for PCGs reconstruction

We consider that the phonocardiographic signal can be represented as the sum-

mation of two components: a deterministic and a stochastic part. Let xh(t ) be the de-

terministic part and xn(t ) the stochastic part so our PCG signal x(t ) is represented as

follows:

x(t ) = xh(t )+xn(t ). (1)

In the expression (1), the xh(t ) component is related to the harmonic-like behavior of

the PCG and contains the majority of its acoustic energy. For this part, we consider

the Matching Pursuit (MP) algorithm to perform an analysis-synthesis procedure. We

represent the harmonic components of the signal as a linear combination of elemen-

tary waveforms called atoms which belong to a time-frequency dictionary. The second

part, xn(t ) also called residual, is obtained as a result of the subtraction between the

deterministic signal from the original heart sound recording. We consider that xn(t ) be

accurately represented as an autoregressive process using the Linear Predictive Co-

ding (LPC) technique. A block-diagram of the model is illustrated in Figure 8. In the

first step, x(t ) is decomposed as the linear combination of waveforms taken from a

dictionary. Then, the LPC modeling was considered to represent the residual signal. As

output, we get parameters for storage, transmission or classification purposes.

The proposed heart sounds model was evaluated by performing subjective and

objective tests. We reconstructed different PCG signals that correspond to different

pathological cardiac sounds. As an objective evaluation, we considered the metric of

percentage of Root-Mean-Square Difference to test the distortion produced by the ori-

ginal heart sound and the reconstructed signal. For the subjective test we conducted

a formal methodology for perceptual evaluation of audio quality with the assistance of

medical experts following the procedures described in the MUSHRA test (ITU-R, 2001).
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Figure 8. The proposed model for PGC signals reconstruction.

2.5.1. Reconstruction of the deterministic part using The Matching Pursuit

method.

In the area of audio signal processing, it is assumed that this natural phenomena

commonly have signal components which vary considerably in time and frequency,

thus they are nonstationary. In the recent years, sparse representations have become

a powerful tool for the analysis and processing of non stationary signals.

A sparse method is a way to accurately approximate a signal x ∈ RN as a linear

combination of the K columns dk , called atoms, of a matrix D ∈ RN×K , where N ¿ K ,

called dictionary. The representation of x may either be exact Dα = x or approximate

Dα ≈ x. The vector α ∈ RK stores the representation coefficients of the signal x (Chen

et al., 2001; Elad, 2010).

Given that N ¿ K , the dictionary D is a full-rank, overcomplete and redundant matrix

and the representation problem has an infinite number of solutions, therefore, cons-

trains on the solution must be set. The choice of the sparsest representation, which is

actually the core of the sparse methods, resides on seeking the α vector with the fe-

west non-zero components. This problem is indeed NP-hard, and its solution can often

be found using approximation algorithms.

A sparse representation can also provide a flexible decomposition to reconstruct

the signal components whose localizations in time and frequency vary widely. In the

fields of signal processing and harmonic analysis we can find a number of applications

that use the decomposition of a signal over a family of functions. In known applications
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we found this linear representations using a single basis, for example Fourier or wave-

let basis. However, Fourier representations are not completely accurate when having

functions well localized in time and wavelet representations cannot be well adapted

to represent functions whose Fourier transforms have a narrow frequency support. Ne-

vertheless, for non stationary signals it is often necessary to use for sparse represen-

tation a dictionary of elementary waveforms called time-frequency atoms. Matching

Pursuit (MP) is a greedy-sparse method proposed in (Mallat and Zhang, 1993) for the

adaptive decomposition of nonstationary signals using time-frequency dictionaries of

atoms. MP in fact, is an approximation method which finds the number of non-zero

solutions one at a time.

The MP algorithm optimizes the adaptive approximation of a signal by choosing the

atom that best-match. In each step or iteration we select an atom by calculating the

maximal inner product between the atoms of the dictionary and a signal x. The signal

is represented as the linear combination of M selected atoms as:

x =
M∑

m=1
αm ·gγm

+RM , (2)

where x is the signal to reconstruct, gγm
is the atom which belongs to the dictionary D

where γ ∈ Γ, that is selected at the iteration m, having m = 0,1,2, · · ·M, αm is the value of

the maximal inner product at the m-th and is used for weighting, and RM is called the

residual signal produced when subtracting the linear combination of the M selected

atoms with the original signal x. The whole method is detailed in Algorithm 1.

Algorithm 1 The Matching Pursuit method
Input: x, D = {gγ,γ ∈ Γ}
Output: αm ,gγm

Initialize: R = x, αm = 0
repeat

gγm
= argmaxγ∈Γ|〈R,gγ〉|

αm = 〈R,gγ〉
R = R−αm ·gγm

until The number of M iterations or the level of energy desired in the decomposition
has been reached.

Looking at Algorithm 1, it is noticed that we may need an infinite number M of

atoms to perform an exact decomposition. In this way, the MP algorithm needs a stop

criteria. One choice for this issue can be a desired number of M iterations depending on
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the memory storage capacity. In fact, the number of atoms cannot be a parameter for

measuring the quality of the reconstruction by itself. However, it is possible to calculate

a ratio between the amount of energy of the original d0 = ‖x‖2 and the residual signal

dM = ‖RM‖2, which can also be known as energy decay 1. We can easily calculate a

percentage of energy decay P as follows:

P = dM

d0
×100. (3)

We have now determined a stop criteria to choose an adequate number of atoms by

evaluating the P percentage.

2.5.2. Selecting a dictionary for the MP decomposition

Selecting an appropriate dictionary for the decomposition of the signal under analy-

sis is a crucial step for the performance of the MP algorithm. The atoms of the dic-

tionary should best represent the PCG signal components. A set of time-frequency

waveforms can be generated by the modulation, scaling and translation of a window

function w(t ) ∈L 2(R). This window has unit energy ‖w(t )‖ = 1, is real and centered at 0.

The family of functions D = {gγ,γ ∈ Γ} is very redundant (Mallat, 1999). It will be used

to compute a sparse representation of the PCG x. According to the choice of the window

we can have different families of functions.

In this work we evaluate the performance of reconstructing heart sounds when

using as dictionaries four different mathematical functions that have been proposed

in the literature and are considered to successfully represent the characteristics of

PCG or other sound signals. Specifically, we selected the functions: Modified Discre-

te Cosine Transform (MDCT) packets (Ravelli et al., 2008; Fuchs et al., 2015),wave-

let packets using Daubechies-6 as mother wavelet (Martínez-Alajarín and Ruiz-Merino,

2004; Huiying et al., 1997), Gabor functions (Ibarra, 2014; Nieblas et al., 2013; Ibarra,

2014; Ibarra et al., 2015; Sava et al., 1998; Wang et al., 2004; Jabbari and Ghassemian,

2011) and Gaussian chirplet functions (Djebbari and Bereksi-Reguig, 2011; Xu et al.,

2001a,b). These sets of waveforms are defined by the choice of the window function

as follows:
1From Algorithm 1, since R0 = x, let d0 be the initial energy of the signal and dM the energy of the

residual at the M-th iteration.
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Gabor atoms also know as Morlet wavelet atoms, are based on a Gaussian win-

dow function:

gγ(t ) = 1p
s

w

(
t −u

s

)
e i 2πξ(t−u), (4)

where γ = (s,u,ξ) is an index of a set Γ = R+ ×R2 described by the modulation

frequency ξ, scaling s and traslation u parameters. We say that gγ(t ) is well-

concentrated because its energy is mostly concentrated at the neighborhood of u

whose size is proportional to s. Gabor functions are based on a Gaussian window

function:

w(t ) = 4
p

2e−πt 2
. (5)

Chirplet atoms: they are waves constructed when adding the parameter c as

the chirp rate to the modulated Gaussian window defined in (5).

g(s,u,ξ,c) =
1p

s
w

(
t −u

s

)
exp

[
j
(
ξ(t −u)+ c

2
(t −u)2

)]
, (6)

MDCT atoms:

gp,k (t ) = wp (t )

√
1

M
×cos

[
(t −ap )+ M +1

2

(
k + 1

2

)
π

M

]
, (7)

where the analysis is done in frames of M samples and in k = 0,1, · · · , M −1 iterations,

whilst wp (t ) is the window function defined as:

wp (t ) =−sin

[(
(t −ap )+ 1

2

)
π

2M

]
, (8)

where ap is the start of the p-th frame. This window function is complementary in

energy, it is w2
p (t )+w2

p (t +N ) = 1.

Wavelet atoms are a family of orthonormal bases of vectors well localized in time

and frequency. For a signal of N samples each vector gγ has the index γ= ( j , p,k).

A discrete window function is dilated by 2 j centered at 2 j (p +1/2) and modulated

by a sinusoid of frequency 2π2 j (k +1/2). The dictionary Dγ∈Γ contains (N +1)log2(N )

atoms. In this work we employed a dictionary based on the Daubechies-6 (DB6)

as mother wavelet.
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2.5.3. Discrete time version of MP

Since the model requires an implementation in discrete time, let us define the met-

hods for this domain. For instance, the expression given in equation 2 will turn into:

x =
M∑

m=1
αm · ĝm + r, (9)

where the signal x to be analyzed and the residual r have length N and a sampling

period Ts. The discrete time-frequency dictionaries employed are composed by the

union of J blocks: D =∪J
j=1D j for j = 1,2, · · · , J . It allows the use of J different time scales,

shifting periods and frequency modulations. Since each block has its own predefined

set of parameters, the waveform of a discrete-time Gabor atom is the following:

g j ,n,k (l ) = w j (lTs −nT j )exp

(
2iπklTs

K j

)
for 1 ≤ l ≤ L, (10)

where the time location or window shift is defined as nT j for n = 0,1, · · ·N −1, the window

length or scale L j and is modulated at a frequency k/K j , K j is a predefined number

of possible frequencies (FFT size), Ts is the sampling period and L the number of time

samples. The Matching Pursuit Toolkit (MPTK) provides a fast and flexible implemen-

tation in MATLAB for the sparse representation of audio signals using the discrete MP

algorithm (Krstulovic and Gribonval, 2006).

Fig. 9 depicts the waveform of a Gabor atom, which is actually a cosine modulated

Gaussian window. On the right side of Fig. 9 other atoms are shown in order to see the

effect of changing the modulation frequency.

m {
Figure 9. Left: time waveform of a Gabor atom and its predefined parameters. Right: Effect of varying
the modulation frequency.
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2.5.3.1. Dictionary evaluation for the MP decomposition

We considered MP for reconstruction of heart sounds because it is a method which

allows an adaptive time-frequency decomposition of a non-stationary signal with va-

riable components. In order to assess the performance of the dictionaries mentioned

before, we conducted a first test, we use the set of the signals included in the eGeneral

medical database. We computed the decay in the energy profile in decibels by using

the conversion:

PdB = 10log10
dM

d0
,

where dM and d0 have been defined in the equation (3). The PdB was calculated when

iterating the MP decomposition from 1 to 200 atoms. We first divide in cardiac cycles

each PCG recording. For each iteration, the resulting decay energy in decibels was

averaged in terms of the number of cycles. Then, the resulting PdB was averaged for

the whole number of recordings. As a result, we got four different curves shown in

Figure 10.
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Figure 10. Decay energy ratio in decibels curves using different MP dictionaries.

According to the results depicted by the curves shown in Figure 10, we can see that

the MDCT and Wavelet families of atoms exhibit a slower extraction profile, it means

that we need a higher number of atoms to extract the most possible energy from the

decomposition. In contrast, Gabor and Chirplet dictionaries show the fastest decay

profile. Nonetheless, according to the equation 6, chirp atoms require a chirp rate

parameter in frequency c, which implies the use of more computational resources. As

a conclusion of this evaluation, we decided to use Gabor dictionaries of waveforms,

since this atoms displayed a slightly better performance among the other families. A

similar evaluation is performed in the research conducted by Gribonval, who compared

the performance between the ordinary and chirplet Gabor dictionaries to perform the
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MP decomposition of voice and orchestra sounds (Gribonval, 2001).

Hence we have selected the Gabor dictionaries for the MP reconstruction, the next

step is to find an adequate of number of M atoms to represent a PCG signal. For this

purpose, we developed a second test. The parameter to evaluate was the percentage

of energy P described in the expression (3). Following the procedure conducted in the

previous test, each recording was segmented in cardiac cycles. Then, we decomposed

each of the cycles for all the recordings varying the number of atoms from 1 to 200. At

each iteration we calculate the percentage P and then it was averaged for the number

of cycles of the PCG signal. Then, the average percentage was calculated for all the

recordings included in the eGeneral set. We obtained as a result a curve that exhibits

an asymptotic behavior, which indicates that the signal is not exactly sparse but only

compressible. Figure 11 displays the results of this test.
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Figure 11. Percentage of energy retained by the MP decomposition of the eGeneral recordings.

The curve displayed in Figure 11 presents an asymptotic behavior. It is due to the

greedy nature of the MP algorithm. Fig. 11 includes a zoom box to show that the 100%

of the energy will never be attained, regardless of the number of atoms used in the

decomposition. However, we considered that when selecting M = 20 atoms in average

≈97% of the energy can be represented. This number of atoms will be considered for

the next experiments.

2.5.4. Reconstruction of the stochastic part using the LPC coding

In the last section we observed that the signal energy in the time-frequency plane

cannot be totally represented by using a finite number of iterations when using the MP
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algorithm. In fact, the remaining part or residual signal R(t ) turns into a low correlation

sequence with respect to the waveforms of the dictionary as the number of iterations

increases. We consider that R(t ) contain useful components of the signal which are still

audible. This component of the signal is xn(t ), it has a noise-like behavior due to its low

correlation with the harmonic components.

The reconstruction of xn(t ) will enhance the quality of our model, in this sense,

instead to model the time waveform we can actually represent it by the envelope of its

spectrum. This procedure can be performed when using the Linear Predictive Coding

algorithm (LPC), which has been used successfully in the processing of speech signals

(Quatieri, 2006). It is assumed that the vocal tract can be modeled as an all-pole filter

where the poles can accurately represent the spectral envelope of the signal. The basic

principle of LPC is that a sample r̂n of the residual sequence r can be predicted as the

linear combination of the past p samples as follows:

r̂n =−
p∑

k=1
hk rn−k +en , (11)

where n = 0,1, · · · , N −1 and the hk belong to a set of coefficients of a p-th order infinite

impulse response filter computed in terms of the minimum mean square error (MMSE)

criterion, en is an error sequence given by the diference between the original and

predicted sequences. In order to find the p values we need to solve the system of

equations (called Yule-Walker equations) derived when calculating the squared error of

(11). In the literature, the Levinson recursion is a commonly used procedure to find the

hk coefficients of the filter (Makhoul, 1975; Vaidyanathan, 2007; Rabiner and Schafer,

1978). Usually the method is conducted by dividing the sequence in frames and then

calculate a set of p coefficients for each slice. The reconstruction or synthesis of each

frame is performed by exciting the generated filter with a train of pulses separated

by a pitch period Tp (voiced sound case) or a white noise sequence (unvoiced sound

case).

2.5.4.1. Filter order selection

It is noticed that a finite order of p coefficients for the analysis of the residual frames

is needed. It plays an important role for the LPC reconstruction in terms of memory and

because of the whitening effect of the all-pole filter generated by the LPC coefficients.
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This effect is described as a flattening in the output spectrum when p is increased. A

measure of the spectral flatness (SFM) in the power spectral density (PSD) Sxn xn (e jω) of

xn(t ) can be computed (Jayant and Noll, 1984) as:

γ2 = exp
[ 1

2π

∫ π
−π loge Sxn xn (e jω)dω

]
1

2π

∫ π
−πSxn xn (e jω)dω

= η2
xn

σ2
xn

, (12)

where Sxn xn (e jω) is considered as a zero-mean process with variance σ2
xn

. Notice that

γ2 = 1 if Sxn xn (e jω) = σ2
xn

, denoting the PSD of a white noise process. Consider also that

0 ≤ γ2 ≤ 1, which is an important metric to describe the shape of a PSD using a single

value.

We conducted an evaluation in order to find an adequate value for the LPC filter

order by using the parameter γ2. It was calculated and then averaged for the residual

signals computed after the MP decomposition of the dataset. Figure 12 shows the value

of γ2 as a function of the filter order (from 1 to 30). We analyzed three different stages:

when the residual signal contains 1%, 5% and 10% of the original signal energy after

being decomposed by the MP algorithm. In addition, during our analysis we considered

both sample rates 4 kHz and 8 kHz. As expected, higher flatness γ2 values are obtained
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Figure 12. Average spectral flatness measure of the reconstructed residual PCG signals.

as the LPC filter order increases. However, considering that a growth in the number

of coefficients affects the dimensionality of the representation and increases the cost

in the memory storage, we considered that a filter order of p = 15 is enough. In fact,

we can observe in the Figure 12 that the flatness shows a rapid increase up to p = 15
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and then the growth is much less significant. In contrast, the signals sampled at 4 kHz

exhibit a slightly smaller flatness levels for all cases.

2.5.5. Objective evaluation of the model

2.5.5.1. Measure of distortion

For the objective assessment of the model we compared the distortion produced

when reconstructing the different pathological recordings using our MP-LPC approach.

A common used measure for the PCG signals modeling evaluation (Martínez-Alajarín

and Ruiz-Merino, 2004; Tang et al., 2016) to find the produced distortion is the percen-

tage of root-square mean difference or PRD, which can be computed as:

PRD=

√√√√√√√√√
N∑

i=1
(xi − x̂i )2

N∑
i=1

(xi −µx )2

×100, (13)

where xi and x̂i are the original and the reconstructed signals of length N samples.

Visual inspection of the original PCG and the reconstructed signal waveforms might

not present noticeable differences, resulting in a low PRD. In a visual scale at a cardiac

cycle level, usually PRD values below 5% are not easily distinguishable.

Table 3 presents the PRD values calculation when applying the proposed MP+LPC

model to the set of signals of the eGeneral database. The average number of atoms

per cardiac cycle required to reach 99%, 95% and 90% of the energy of the PCG du-

ring the MP decomposition is also shown. It can be noticed that the majority of the

recordings required less than 200 atoms per cycle for the reconstruction when using

the 99% energy criterion. The first 11 recordings correspond to cardiac sounds with

the presence of a murmur during the diastolic phase. In this subset, we can see that

recording number 7 corresponding to mitral stenosis has the highest level of distortion

with a PRD = 7.31%. Nonetheless, the PCG recording which requires the highest avera-

ge number of atoms per cycle was the aortic stenosis for the three criteria. For the

normal heart sound case (with no pathological events), the reconstruction presents

a distortion of 5.49% and requires an average of 19 atoms per cardiac cycle for the

99% energy criterion. The average PRD for the entire set of reconstructed PCG signals
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is 5.00% and the average number of atoms per cardiac cycle is 42.76 for the 99%

energy criterion.

2.5.5.2. Graphical quality assessment of the model

We analyze the performance of the model by visual inspection. To see graphically

the effects of reconstructing a heart cycle by using the proposed model, we generated

the plots of the waveform, the power spectral density and the spectrograms for the

original PCG x(t ), the residual signal RM (t ) and the reconstructed signal x̂(t ). The tunning

parameters of the model were a number of M = 15 atoms to represent the 99% of the

signal represented in two cycles and an order of p = 15 filter coefficients for the LPC

representation of the residual signal.

All plots were joined in Figure 13, were we observe that the adaptive time-frequency

representation given by the proposed model copes with the transitory components of

the signal, making it a robust method for modeling abrupt changes in frequency of

the murmurs. In detail, Figure 13 A shows a similar shape in the time waveforms of

the original and reconstructed signals when using the model. In addition, Figure 13 B

shows a similar morphology between the frequency spectra. Spectrograms shown in

13 C and 13 D from the original and reconstructed signal are also similar in shape.

2.5.6. Subjective evaluation of the model

The audio distortion measurements like the PRD do not necessarily correlate well

with the perceived audio quality of the reconstructed signal. For this reason, we deci-

ded to use a methodology for the subjective evaluation of cardiac audio quality. In the

present work the subjective sound quality of the reconstructed PCG signal was eva-

luated by following the ITU-R BS.1534-3 recommendation, better known as MUSHRA

(MUltiple Stimuli with Hidden Reference and Anchor) (ITU-R, 2001). This methodology

has been populary considered and suitable to assess audio quality since it gives accu-

rate and reliable results (Mason, 2002).

The MUSHRA evaluation consists of the following steps: first, the subject is presen-

ted with all different processed versions (stimuli) of a single PCG audio (item) at the

same time, that is, the stimuli are all simultaneously available (Mason, 2002). Then,
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Table 3. PRD results using the proposed MP+LPC reconstruction model on the eGeneral PCG signals
dataset.

No. Name of
PCG recording

99%-1%
energy

95%-5%
energy

90%-10%
energy

atoms/
cycle PRD

atoms/
cycle PRD

atoms/
cycle PRD

1 Atrial Septal Defect 105 6.39 44 12.66 29 17.06
2 Aortic Regurgitation 177 6.98 77 10.98 48 14.58
3 Aortic Stenosis 2 74 3.61 36 7.56 23 11.06
4 Atrial Gallop 22 8.08 11 16.00 7 22.05
5 Fixed S2 Split 13 3.33 7 10.70 7 14.68
6 Fixed S2 Split 2 20 5.75 10 11.96 7 17.79
7 Mitral Stenosis 153 7.31 54 13.24 36 18.00
8 Physiologic S2 Split 30 3.68 11 8.49 8 13.30
9 Physiologic S2 Split 2 12 3.30 7 10.72 7 14.69

10 S3 Gallop 31 4.39 14 10.20 9 14.41
11 S4 Gallop 35 2.88 12 8.68 8 14.08
12 Summation Gallop 16 4.62 8 10.04 7 14.27
13 Summation Gallop 2 28 6.36 11 14.19 7 21.22
14 Ventricular Gallop S3 24 5.85 13 12.11 9 17.39
15 DiastolicWideS2Split 31 3.70 11 7.82 7 12.83
16 EarlyAorticStenosis 26 4.91 10 10.44 7 14.99
17 Ejection Murmur 75 4.08 30 9.54 19 13.22
18 Ejection Murmur 2 35 3.33 11 7.37 7 10.68
19 Systolic Aortic Stenosis 30 5.00 12 10.70 7 15.74
20 Mild Aortic Stenosis 47 4.54 19 10.05 12 13.35
21 Normal Heart Sound 19 5.49 9 11.87 7 15.79
22 Pericardial Friction Rub 2 31 6.41 13 11.91 8 16.09
23 Systolic Aortic Stenosis 3 90 5.89 38 11.82 25 16.24
24 Systolic Mitral Prolapse 37 5.30 17 11.67 11 15.94
25 Systolic Mitral Prolapse 3 72 5.33 33 11.91 21 16.54
26 Systolic Mitral Regurgitation 57 4.79 19 9.78 8 13.49
27 Pulmonary Stenosis 2 46 3.72 14 8.31 7 13.40
28 Systolic Split S1-S3 14 4.17 8 9.59 7 14.83
29 Diastolic Rumble 41 4.97 20 10.47 13 14.97
30 Ejection Clic 20 5.16 10 10.53 7 15.79
31 Early Systolic Murmur 26 4.56 11 9.74 7 14.97
32 Late Systolic Murmur 31 4.89 12 10.48 8 15.10
33 Opening Snap 23 5.43 12 12.15 8 17.09
34 S3 25 5.41 13 11.67 9 16.73
35 S4 23 5.52 11 11.75 8 16.90
36 Pansystolic Murmur 46 4.09 14 8.59 8 14.02
37 Normal Split S1 19 5.39 9 11.71 7 15.67
38 Normal Split S2 21 5.64 11 12.15 8 16.97

Average 42.76 5.00 17.94 10.77 11.78 15.41
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Figure 13. Plots of the waveforms (A), the frequency spectrums (B), and the spectrograms (C,D) of the
original and reconstructed signals respectively.

the subject listens to each audio and is required to assign a grade to each stimuli in

order to indicate its perceptual quality. The evaluation is performed considering a nu-

merical scale from 0 to 100 with descriptive marks associated with the intervals as

indicated in Figure 14. The purpose of using intervals is to have no restrictions about

the numerical values assigned, any integer value can be used. A version of the origi-

nal audio signal is presented as a reference and other codified version as an anchor to

ensure that the full range of the scale is used, no matter the quality of the PCG mo-

del variant under the test. For broadband audio signals the anchor is a stimuli which

corresponds to a low-pass filtered version of the original signal. However, since PCG

signal frequency content is predominant in the lower bands (<1 kHz) we decided to

use as anchor a noisy version of the original PCG signal. Specifically, white Gaussian

noise with a signal to noise ratio of 30 dB was added to the original PCG signal.

Expert listeners are preferred for subjective tests, in our case we require partici-

pants with medical background and ample experience in cardiac auscultation. For this

research work, a group of faculty members of the School of Medicine at the Xochical-

co University in Ensenada, Mexico kindly volunteered to participate in the subjective

evaluation of the proposed PCG model, they did not receive any economical compen-

sation for their contribution. The MUSHRA evaluation procedure was explained to all

participants and then they signed an informed consent agreement according to the

ethical guidelines and principles of the International Declaration of Helsinki. A group
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Figure 14. The numerical scale with descriptive terms associated to score the quality of the signals in
the MUSHRA test.

of fifteen physicians were selected to participate in the test, 7 female and 8 male. The

participants age lies in the interval from 27 to 59 years with an average of 44.53 years

with standard deviation of ±13.6 years. All the participants have at least five years of

professional practicing experience and eight of them are medical specialists in various

fields.

During the evaluation, the MUSHRA recommendation advises to present to the par-

ticipants a number of audio items of approximately 1.5 times the number of stimuli

under test (ITU-R, 2001). In our case, we decided to evaluate four additional stimuli

besides the reference and the anchor. The four stimuli evaluated per audio item are

the following variants of our MP-LPC based PCG model: three signals sampled at 8 kHz

where xh(t ) contains 99%, 95% and 90% of the energy in the original signal respec-

tively. Finally, the fourth stimuli corresponds to a signal sampled at 4 kHz where xh(t )

contains 99% of the energy of the original signal, in all cases the remaining energy is

modeled using LPC.

Following the aforementioned advice, during the MUSHRA evaluation we presented

ten different audio items to the participants. The PCG audio items selected are the fo-

llowing: 1) aortic regurgitation, 2) fixed S2 Split, 3) ventricular gallop S3, 4) pansystolic

murmur, 5) late systolic murmur, 6) early systolic murmur, 7) S3, 8) S4, 9) systolic pul-

monary stenosis and 10) normal heart sound. We developed a graphical user interface

(GUI) to conduct the MUSHRA evaluation as shown in Figure 15.

The hardware used to reproduce the sounds were professional monitor headphones
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Audio-Technica ATH-M50x connected to a MacBook Pro retina display notebook. The

evaluation took place in an office room in a quiet environment. In order to allow the

participants to familiarize with the GUI and the test, a training stage of two additional

audio items was provided. The whole test took in average 17.94 minutes with standard

deviation of ±7.97 minutes.

Figure 15. The designed GUI for the MUSHRA test(left). A listener performing the evaluation (right).

During the subjective test the audio items order is fixed, however, the position of

the six different stimuli was random. Each listener was asked to score in a scale from 1

to 100 the quality of the reproductions (comparing each one with the reference). The

subjects were also asked if the sound quality was adequate for diagnostic purposes,

the only available answers to this question were “yes”, “no” and “not sure”. The par-

ticipant was allowed to reproduce the reference signal as many times as desired until

she/he felt confident with the score. A post-screening stage examining all the results

was conducted after the test, since some participants can bias the results when they

fail to adequately grade the hidden reference with the top score and do not grade

the noisy version with the lowest note. In that case, the results of that participant are

not considered in the statistical analysis. Under the above mentioned conditions, the

results from three participants were not taken into account in the statistical analysis.

The obtained averaged scores of the subjective evaluation are shown in Figure 16,

where we follow the statistical analysis methodology proposed in the MUSHRA recom-

mendation. The first step in this procedure is to calculate the mean score for each of

the presentations (stimuli) ū j k as follows:

ū j k = 1

N

N∑
i=1

ui j k , (14)

where ui represents the score of each i participant for a given test condition j and

audio sequence k. N is the number of participants. For the presentation of the results
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all the mean scores should have an associated confidence interval, derived from the

standard deviation and size of each sample [ū j k +δ j k , ū j k −δ j k ], where the value δ j k =
t0.05(S j k /

p
N ) is obtained from the t value of 0.05, t0.05 and the standard deviation S j k

given by:

S j k =
√√√√ N∑

i=1

(ū j k −ui j k )

(N −1)
. (15)
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Figure 16. Average MUSHRA scores and error bars associated with the 95% of confidence interval.

For the 10 audio items evaluated, the 95% confidence interval error bars of the

reference signal overlap with the error bars of at least one of the variants of the propo-

sed model. In some cases, the score assigned by the participants to the reconstructed

PCG signals is practically identical to the score of the reference heart sounds. Among

the model variants, the results suggest a better performance for the stimulus recons-

tructed by 99% of the energy in MP and a sampling rate of 8 kHz. This result reinforces

the outcomes of the subjective test since, the mentioned variant also has the lowest

PRD. The preference of this variant was in a way expected, since it uses more data

to approximate heart sound signals. Nevertheless, it was not expected that for the

normal heart sound the listeners would prefer the 4 kHz sampled version with the

99% criterion. After the evaluation we asked every participant their opinion about the

reconstructed sounds and in general they found them very realistic. The participants

mentioned that when listening carefully to the reconstructed versions sometimes they
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perceived artifacts which do not correspond to real sounds produced by the human

body. Nevertheless, they also mentioned that the quality of reconstructed heart sounds

was adequate for diagnosing purposes.

We have presented in this Chapter a reconstruction model for PCG signals repre-

sentation based on MP sparse and LPC autoregresive modeling. The model was tested

in a PCG recording database which contains a variety of abnormal states. It was rigo-

rously evaluated by conducting subjective and objective tests to examine the quality

of signals reconstruction. We are not aware of any other work in the field of PCG signal

processing conducted such as the one presented in this thesis.
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Chapter 3. Classification of heart sound signals

This chapter gives a general view of the classification of heart sounds to detect

abnormalities which may lead to the presence of a pathological state. We start by

defining the principal aspects of machine learning as a tool for data analysis to then

enclose the concept of classifier. A number of common methods for the classification

task are enlisted. Since the methods tested in the next chapters use as training data

the Physionet/CinC 2016 sounds database we describe in detail the purposes of this

challenge and some interesting results obtained by the participants. We contrast the

methods of features extraction and classifiers used to then build our scheme for heart

sounds screening.

3.1 Machine Learning and classification

Machine Learning (ML) arises as an intersection of the statistics, artificial intelligen-

ce and computer science disciplines. ML is simply about extracting knowledge from

data to find patterns to easily take automatic decisions (Müller et al., 2016). In recent

years, ML methods have become ubiquitous in everyday life: the automatic recom-

mendations of which movies to watch, to what food to order or which products to

buy, personalize our music playlists and the face recognition of our friends or another

subjects in different online pictures and the automatic detection of spam e-mails are

examples of applications which apply ML methods.

Apart from the commercial applications mentioned before, ML has a huge influence

on the way data is managed by researchers today. A number of ML tools have been

applied to diverse scientific issues such as understanding stars (Ball et al., 2006), find

distant planets, analyze DNA sequences (DePristo et al., 2011) and provide personal

treatments for cancer (Kourou et al., 2015; Cruz and Wishart, 2006), apnea (Xie and

Minn, 2012) and other medical applications (Polat et al., 2008; Shipp et al., 2002; Drei-

seitl et al., 2001).

In the field of ML, we have basically two main types of tasks: supervised and unsu-

pervised. The main difference between both types reside that in supervised learning

we have prior knowledge of what the output values should be according to the input

samples. On the other hand, the unsupervised learning has no labeled outputs, so the
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point is to infer the patterns present within a set of points. Supervised learning is one

of the most commonly used and successful type of machine learning, its main goal is

to make predictions to new, never-before seen data after a training stage.

One of the main types of supervised learning is classification. It has as goal to

predict a class label from a predefined set of possibilities. Thus, we can see the classi-

fication task as a discrete supervised learning method. In our research, we look for the

screening of abnormal states from heart sounds. We considered a binary classification

task, whose labels will be normal or abnormal according to the absence or presence of

murmurs or anomalies in the PCG signal.

Input data for classification is commonly presented as a matrix X whose target va-

lues or class labels are stored in a vector y. The columns of X are called instances and

the rows features or attributes. Dimensionality is given by the number of features N f

presented. In fact, we desire to classify an instance with the aid of some parameters

that characterize it. The most common used example as the hello world of classifica-

tion is the iris dataset (Fisher, 1936). The instances are different kinds of flowers whose

attributes are the petal length, petal width, sepal length and sepal width (numerical

values). As class labels we have the specie which each flower belongs to: iris-setosa,

iris-virginica or iris-versicolor. The classification procedure mainly consists of the follo-

wing stages:

Split the dataset in train and test subsets. The train subset will feed a classi-

fication algorithm while the test set will be used to make predictions. Consider

that train subset contains class labels while test subset do not. Some common

applications divide 70%-30% or 80%-20% of the data for the train and test sets

respectively.

Train a classifier method. In this stage, a prediction model will be constructed

when finding relationships between the parameters of the input and the class

label assigned.

Test the created model when feeding it with the test subset parameters. This

model will predict a class label for any input of this new data.

The model assessment is performed when comparing the output predicted values ŷi
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with the original class labels yi of the test set. In binary classification, we have four

possible outcomes:

True positive T P: It happens when the model predicts correctly the positive class.

In our case, it will be the right prediction of an abnormal state.

True negative T N : This outcome happens when the model predicts correctly the

negative class. For our research, it will happen when the normal condition is co-

rrectly predicted. The accuracy and capacity to predict a murmur will be directly

affected when this amount is large.

False positive F P: It happens when the positive class is incorrectly predicted by the

model. In our benchmark, it will happen as an incorrect prediction of an abnormal

state, as a consequence, this amount has a negative repercussion in the accuracy

and performance of our model.

False negative F N : This outcome happens when the negative class is incorrectly

predicted. This can be traduced as an incorrect prediction of a normal state and

will not affect the performance in our application, since the person is healthy.

A common way to report the last mentioned outcome results is the confusion matrix,

which allows the visulalization of the performance of the algorithm. The rows of the

matrix represent the instances in a predicted class while each column represents the

instances in an actual class (or viceversa). The confusion matrix for classification in a

binary case is displayed in Table 4.

Table 4. Confusion matrix for a binary classification.

Positive
condition

Negative
condition

Predicted
condition
positive

TP FP

Predicted
condition
negative

FN TN

The values of the confusion matrix help to obtain the metrics which describe the

model assessment. Most of this evaluation quantities can be described as percentages
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or as a values between 0 and 1. The performance metrics that we will use during this

research work will be the following:

Accuracy: ACC is the precision of the model to correctly detect the positive or

negative conditions. The model will be accurate if the actual and predicted va-

lues are close to each other. The mathematical expression for accuracy is the

following:

ACC = T P +T N

T P +F N +T N +F P
. (16)

Sensitivity: SE which is also called the true positive rate, is the measure of the

proportion of actual positives which are correctly identified. Mathematically, SE is

defined as:

SE = T P

T P +F N
×100. (17)

Specificity: SP or true negative rate, measures the proportion of actual samples

in negative condition which are correctly identified. It is defined by the following

expression:

SP = T N

T N +F P
×100. (18)

Matthews Correlation Coefficient: MCC acts like the Pearson Correlation Coef-

ficient to measure the quality in binary classification schemes. It can be interpre-

ted as perfect prediction (if MCC = 1), no better than positive prediction (if MCC = 0)

or a total disagreement between the two classes (when MCC =−1). It is computed

as follows:

MCC = T P ×T N −F P ×F Np
(T P +F P )(T N +F P )(T P +F N )(T N +F P )

. (19)

3.2 Classification Methods

Classification is a supervised learning problem, it predicts the category or class

which a new observation belongs. A classifier needs to know how to characterize and

evaluate unlabeled data to perform the predictions, it has a specific set of dynamic

rules, which includes an interpretation procedure to handle vague or unknown values,

all tailored to the type of inputs being examined during the training phase.
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Hence a wide variety of methods have been proposed in the literature for the clas-

sification task in supervised learning, the appropriate selection of the classifier tech-

nique is an important step in terms of getting the best performance. For this issue,

the present work considers to take in account the Occam’s razor principle. This criteria

helped us to select the first group of algorithms to execute the classification of heart

sound signals.

The Occam’s razor states that given more than one suitable algorithm with compa-

rable trade-offs, the one that is least complex to deploy and easiest to interpret should

be used. According to this principle, we will only enlist those methods considered as

less complex in terms of the training stage. Classification algorithms enlisted in the

next sections try to find separable patterns in the data, especially linear discriminators

and classification trees.

In the classification methods of Machine Learning a common presented issue is the

problem of overfitting. It happens when the classifier has been over-trained and the

generated model starts to make incorrect predictions.

3.2.1. Naive Bayes (NB)

The Naive Bayes classifier assumes independence among predictors. It means that

the presence of a particular feature in a class is unrelated to the presence of any

other feature (Chan et al., 1982). This model is easy to build, especially in very large

datasets. The Bayes theorem provides a way to calculate the posterior probability

P (c|x) of a class label or target c given a predictor x, given by:

P (c|x) = P (x|c)P (c)

P (x)
,

where P (c) is the prior probability of the class, P (x|c) is the likelihood or the probability

of the predictor x given the class c and P (x) is the prior probability of the predictor.

3.2.2. K-nearest neighbors (KNN)

KNN is one of the simplest algorithms for classification. It is based on similarity mea-

sures, given by a distance function. The measure function is commonly the Euclidean
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distance

Ei =‖xi −x0‖.

The training step consists of storing the feature vectors and class labels of the trai-

ning samples. The classification phase consists in analyzing the closest k number of

instances after being saved and then return the most common class as the prediction

(Weinberger and Saul, 2009; Cover and Hart, 1967).

3.2.3. Linear discriminant analysis (LDA)

LDA is an algorithm which attempts to express one dependent variable as a linear

combination of other features or measurements (Friedman et al., 2001). Considering

a set of attributes X, and for each sample a related known class y. Assume that the

k classes have a common covariance matrix Σk =Σ∀k. Having these assumptions, the

procedure of comparing two classes k and l leads to a linear decision surface, which

can be seen by comparing the log-probability rations log[P (y = k|X)/P (y = l |X)]:

log

(
P (y = k|X)

P (y = l |X)

)
= log

(
P (X|y = k)P (y = k)

P (X|y = l )P (y = l )

)
= 0.

Then, the linear discriminant function is defined as:

(µk −µl )TΣ−1X = 1

2
(µT

k Σ
−1µk −µT

l Σ
−1µl )− log

P (y = k)

P (y = l )
,

where µk and µl correspond to the mean values of the k and l classes.

3.2.4. Logistic regression (LR)

Despite its name, LR is a linear model for classification rather than regression. In

this method, the probabilities describing the possible outcomes of a single trial are

modeled using a logistic function (Schmidt et al., 2017). This model arises an L 2 opti-

mization problem1 for binary classes, when the cost function:

mı́n
w,c

1

2
wT w+C

n∑
i=1

log(exp(−yi (XT
i w+ c))+1),

1Also known as least-absolute deviations, it basically consists in minimizing the absolute differences
between the true yi and predicted ŷi values.
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is minimized. In this function, w ∈Rp is a vector of weights as used in linear regression

tasks.

3.2.5. Classification and regression tree (CART)

A decision tree or classification tree is a tree-like diagram in which each internal

node is labeled with an input feature. A tree can be learned by splitting the source

set into subsets on an attribute value test. This procedure is repeated on each deri-

ved subset in a recursive manner called recursive partitioning (Breiman, 2017). The

process is completed when the subset at a node has all the same value of the target

variable, or when splitting no longer adds value to the predictions. In CART method,

the Gini impurity measures how often a randomly chosen element from the set would

be incorrectly labeled if it was randomly labeled accordig to the distribution of labels in

the subset. The Gini impurity for a set of items with J classes is calculated as follows:

IG (p) =
J∑

i=1
pi

∑
k 6=i

pk = 1−
J∑

i=1
p2

i ,

where i ∈ {1,2, , · · · J }, and let pi be the fraction of items labeled with the class i in the set

and
∑

k 6=i pk = 1−pi the probability of a mistake when categorizing that item.

3.2.6. Random Forests (RF)

A Random Forest can be easily defined as a combination of tree predictors. Each

tree depends on the values of a random vector Θ sampled independently and with the

same distribution for all trees in the forest (Breiman, 2001). The RF classifier consists

of a collection of tree structured classifiers {h(x,Θk ,k = 1, · · · )}. Each tree casts a unit vote

for the most popular class at input x. In RF, it is possible to determine the importance of

each feature after splitting an instance. This metric can be used for feature selection.

3.2.7. Support Vector Machines (SVM)

In the SVM method a given set of data (binary labelled) is separated with an hyper-

plane, which is maximally distant from them (Cortes and Vapnik, 1995). An input space

of N data points {(xi , yi )}N
i=1, where xi ∈ X can be separated by a hyperplane H : w∗X−b = 0.
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This H hyperplane is placed by determining two parallell hyperplanes H1,H2 that have

maximum margin 2/‖w‖ and establishing the condition that there are no data points

between them. SVM can use a kernel trick to enable the operation in a high dimen-

sional feature space when the inner products between of all the given pairs of data are

known. The following functions are commonly used in SVM:

Gaussian radial basis function: f (xi , x j ) = e−‖xi ,x j ‖2/2σ2

Polynomial kernel: f (xi , x j ) = (xi · x j +m)p .

3.3 The Physionet/CinC 2016 challenge

The Physionet research group in collaboration with the Computing in Cardiology

2016 conference (CinC 2016) encouraged researchers for the development of algo-

rithms to classify heart sound recordings. They collected the largest open database of

heart sound signals from a variety of clinical and nonclinical environments (Liu et al.,

2016). This data was used for the challenge and consists of recordings from eight in-

dependent databases sourced from seven different contributing research groups. This

subsets are divided by the following groups:

The Massachusetts Institute of Technology heart sounds database (United States),

which comprises 409 recordings from 121 subjects. The recording lengths vary

from 9 to 37 seconds.

The Aalborg University heart sounds database (Denmark), composed by 695 re-

cordings. A total of 151 subjects participated as volunteers. The average length

of the recordings is 8 seconds.

The Aristotle University of Thessaloniki heart sounds database (Greece), which

was recorded from 45 subjects. It includes 45 recordings with recording lengths

varying from 10 to 122 seconds.

The K. N. Toosi University of Technology (Iran) heart sounds database, including

174 PCG recordings from 28 healthy subjects and 16 with a diagnosed heart di-

sease. Each recording has an exact length of 15 seconds.
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The University of Haute Alsace heart sounds database (France), composed by 79

recordings: 39 in normal state and 40 in abnormal. The recording length varies

from 7 to 17 seconds.

The Dalian University of Technology heart sounds database (Australia), which in-

cludes 338 recordings from 174 healthy volunteers and 335 diagnosed with a

CVD. The record length varies from 3 to 98 seconds.

The Shiraz University heart sounds database (South Korea). It comprises 114 re-

cordings from 79 healthy subjects and 33 healthy/unhealthy patients. The recor-

ding length vary from 30 to 60 seconds approximately.

The Skejby Sygehus Hospital heart sounds database (Denmark), which consists

of 35 recordings taken from 12 normal subjects and 23 pathological patients with

heart valve defect. The recording length varies approximately from 15 to 69 se-

conds.

The Shiraz University fetal heart sounds database (South Korea), which was cons-

tructed using 119 recordings made from 109 pregnant women. The data includes

individual recordings from 99 subjects, two recordings from three subjects and

seven cases of twins that were recorded individually. The average duration of

each record was about 90 seconds. Since the challenge was focused on adult

heart sound signals, this database was not included. However, it is available in

the online Physionet dataset.

As described in Table 2, the distribution of recordings is 665 labeled as abnormal and

2488 as normal2, since it was taken from unhealthy and healthy patients. Thus, data-

set is unbalanced. A blind dataset was not released to the public to help the sponsors

testing the submitted methods. Another thing to consider is that some recordings are

under noisy conditions, which provides authenticity to the challenge. Participants were

encouraged to submit their algorithms to the Physionet dataset and then present their

research works in the Computing in Cardiology 2016 (CinC) conference. The sponsors

of the challenge included a benckmark of heart sounds classification based on features

extracted from the segmentation method proposed by Springer (Springer et al., 2016).

2Originally, 4430 recordings were registered in the database (as described in (Clifford et al., 2016)).
However, during the challenge, sponsors suggested to remove some recordings under high noisy condi-
tions. After taking out this audios we conserved the 3,153 employed by this study.
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The output annotations from the time delineation of heart sounds using the Springer

method were uploaded. After the challenge took place, sponsors uploaded a hand-

corrected annotations of the signals segmentation. Participants of the Physionet/CinC

2016 Challenge were encouraged in 2017 to improve their classification methods in

order to be published in the Physiological Measurement journal special issue. The sco-

ring procedure was based on the number of recordings classified as normal, abnormal

or unsure and the quality of the signals as noisy or clean. Table 5 shows the possible

outcomes.

Table 5. Physionet/CinC 2016 challenge metrics, where A: Abnormal, U: unsure, N: normal.

Reference

label
Weights

Entry’s output

A(1) U(0) N(-1)

A, clean w a1 Aa1 Aq1 An1

A, noisy w a2 Aa2 Aq2 An2

N, clean wn1 N a1 N q1 N n1

N, noisy wn2 N a2 N q2 N n2

According to these values, it was defined a modified sensitivity Se ′ and specificity

Sp ′, defined as:

Se ′ = w a1 · Aa1

Aa1 + Aq1 + An1
+ w a2 · (Aa2 + Aq2)

Aa2 + Aq2 + An2

Sp ′ = wn1 ·N n1

N a1 +N q1 +N n1
+ wn2 · (N n2 +N q2)

N a2 +N q2 +N n2
,

where w a1 and w a2, also described in Table 5, represent the percentages of good signal

quality and poor signal quality recordings in all abnormal recordings, respectively. As

a complement, wn1 and wn2 are the percentages of good and poor signal quality in all

normal recordings. The global metric for ranking the classification benchmarks is the

overall score or MAcc, which is defined as:

M Acc = Se ′+Sp ′

2
.

A total of 348 entries were submitted in the challenge by 48 teams. Results from the

conference and the scientific journal publication will be discussed in the next section.
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3.4 Literature review of cardiac sounds classification

The top scored ranked by MAcc entries of the Physionet/CinC 2016 challenge will be

discussed in this section. We will put forward also the highest scored methods of the

journal Physiological Measurement according to the Recent Advances in Heart Sounds

Analysis special issue.

The entry proposed by Potes et al (Potes et al., 2016), obtained the highest overall

score M Acc = 86.02 having also the highest sensitivity Se ′ = 96.33. Nonetheless, the obtai-

ned specificity was relatively low Sp ′ = 77.81 The conducted methodology was based on

the use of a voting scheme between an AdaBoost classifier and a convolutional neural

network (CNN). A total of 124 features in time and frequency domains were extrac-

ted, including Mel-Frequency Cepstral Coefficients (MFCC), diastolic and systolic time

lengths from segmentation, and ratios of the amplitudes. The median power of nine

frequency bands was also used as input feature.

Zabihi et al (Zabihi et al., 2016), obtained the second place in the challenge ran-

king with a M Acc = 85.90, Se ′ = 86.91 and Sp ′ = 84.90. A set of 40 features in the time, fre-

quency and time-frequency domain were extracted, including LPC coefficients, MFCC

coefficients, entropy and wavelet (Daubechies 4) based features. Then, a subset of

18 features was selected by using a wrapper-based feature selection scheme. For the

classification task, an ensemble of 20 feedforward Artificial Neural Networks (ANNs)

with two hidden layers in each, and 25 hidden neurons at each layer were used.

The third ranked method was developed in (Kay and Agarwal, 2016), and obtained

scores of M Acc = 85.2, Se ′ = 87.43 Sp ′ = 82.97. The features extracted were the MFCCs, Mor-

let wavelet based features, and signal complexity (spectral entropy of time lengths of

beats and cycles). Dimensionality was then reduced to 70 features by using a student-t

statistical test followed by a Principal Component Analysis (PCA) reduction. The classi-

fication was performed via a fully connected two-hidden-layer neural network trained

by error back-propagation. The authors included an updated version of their algorithm

in the special issue (Kay and Agarwal, 2017). They excluded the “training-e” set for

training since the recording sensor type for training-e set is different from others. Not-

withstanding, they obtained a significantly worse score of M Acc = 58.0. A reason of this

decrease is because 69% of recordings in the test set are from dataset-e. It indicates
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that the algorithm is sensitive to the recording type and struggles to generalize from

one dataset to another.

On the other hand, in (Abdollahpur et al., 2016) it is proposed a cycle-quality as-

sesment method to examine the quality of the input PCG signals. The features were

extracted only in the cycles with higher signal quality and reliable segmentation3. A

feature set of 90 elements was obtained. Among the features extracted we find the

mean values of the energy, the mean and standard deviation values of the cycles

and beat lengths, wavelet entropy and wavelet decomposition based features (using

a Daubechies 2 mother wavelet) and the mean values of the MFCC coefficients. The

method selected for classification is based in a voting scheme of tree neural network

classifiers. The method obtained scores of Se ′ = 81, Sp ′ = 87 and M Acc = 84. The authors

submitted an updated version of the algorithm (Abdollahpur et al., 2017) obtaining a

scores of Se ′ = 76.96, Sp ′ = 88.31 and M Acc = 82.60.

The Physionet/CinC challenge provided a global open assessment of heart sound

algorithms for classification. It gives to the research community the potential benefits

of well-characterized heart sound and comparing their methods for PCG signals au-

tomated analysis. However, when analyzing the results between the open and blind

datasets the scores were not as high as in the open datasets.

Among the observations made by the sponsor researchers (Clifford et al., 2017), the

classifiers performance is proportional to the recording sources and requires improve-

ment. It was shown that there is not a best high-quality classifier, since among the top

six entrants a 2% of variation is presented in the scores. The features extraction stage

is crucial for the classification improvement in the scores. Among the most relevant

features extracted in the submitted algorithms we find the MFCC coefficients, wavelet-

based and time- frequency parameters. They also indicated in these work that it is

more important to focus on the labelling and features extraction preprocessing than

on the classifier.

In the research conducted by (Ismail et al., 2018), a wide revision of methods for

heart beat localization and classification is described. The paper concludes that the

most challenging scenario is the analysis of noisy signals, where time-frequency, and

3The none corrected by hand Springer annotations
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wavelet methods have been popular choices for researchers. Another challenge pro-

blem will be the real time implementation of practical applications of heart sound

screening methods, this issue remarks the importance of having computationally effi-

cient procedures for the screening of heart sounds. It is also mentioned that the Morlet

(also known as Gabor) wavelet has been widely investigated for the modeling of PGC

signals.

The methodology adopted in this thesis led to more consideration given to the

evaluation of features extraction, feature selection and classification methods for heart

sounds screening rather than to the design of a sophisticated classification benchmark

of a good performance. We also consider to assess the use of methods to equalize the

classes of the data.
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Chapter 4. Development of a heart sounds classification

benchmark

This Chapter contrasts the methods for features selection and balancing stages of

the classification of heart sounds. Two main approaches will be considered for features

extraction: feature averaging and cycle averaging. On the other hand, we will analyze

the use of the Synthetic Minority Oversampling Technique (SMOTE) to equalize the

number of elements of normal and abnormal classes when creating synthetic samples

(Chawla et al., 2002). The features sets will be constructed using the model described

in Chapter 2 and for the assessment a 10-fold cross validation stratified test will be

conducted. The performance of classification will be evaluated using the classifiers

defined in Chapter 3.

4.1 Features settings

According to the model presented in Chapter 2, the MP decomposition of a PCG

cycle can be accurately represented by Gabor atoms. Since these waveforms are mo-

dulated cosines by a Gaussian window, they have the following parameters:

Amplitude

Modulation frequency

Time shifting or position

Window length or time scale

Phase of the cosine waveform

We found from the proposed model that, in order to represent more than 90% of

the signal energy, it requires at least 15 atoms. In this way we start having 15× 5 =
75 parameters to represent a cycle by using this approach. On the other hand, we

analyzed from Figure 12, that a number of p = 15 LPC coefficients is enough to reach

a reasonable level of flatness in the spectrum. In such a way, adding the MP and LPC

parameters we have 90 features to represent each cycle of the signal.



49

The recording lengths in the Physionet/CinC challenge database vary with a spread

of more than 10 seconds, as a consequence, the number of cycles is also variable.

However, in the classification task, we defined X as the input matrix with a number of

columns equal to the number of instances (in this case, PCG recordings) and a number

of rows equal to the number of features or attributes (extracted parameters from each

PCG cycle). Thus, the number of features for all the instances must be the same.

To establish an equal number of features for each PCG recording instance, we pro-

pose two approaches: feature averaging and cycles averaging. Let A and B be the

features sets which came out from each one of this approaches. Both methods share

the following stages:

Cycle segmentation: It is basically the time delineation of cycles from each

heart sound. For this purpose we took the corrected annotations from the Phy-

sionet/CinC challenge database. Original annotations came as an output from

Springer’s method (Springer et al., 2016) and then, they were hand-corrected by

the sponsors.

Matching pursuit (MP) decomposition: It performs the time-frequency repre-

sentation of a cycle or a FHS (Mallat and Zhang, 1993). Features from MP are

given by the parameters of the selected atoms from MP algorithm when using a

Gabor dictionary.

Linear predictive coding (LPC): Since the MP reconstruction did not provided

us a perfect reconstruction of the PCG signal, we considered to model the residual

between the MP reconstructed signal and the original PCG, called the residual. LPC

models this residual in a compact form.

Fig. 17 describes the dataset A using the feature averaging approach. The output

feature set A is actually obtained from the mean value of the MP and LPC parameters

for the N segmented PCG cycles, getting a total of 90 features for representing each

recording.

All the revised classification benchmarks for the Physionet/CinC challenge used this

method. Mean and standard deviation values of time, frequency and time-frequency

features were considered as inputs for the classifier. A main difference between the



50

conducted methodology and the Physionet challenge entries is that we are not con-

sidering the diastolic states, which are the segments of time after the S2 sound and

before the next S1 when there is an absence of a FHS. However, the systolic state

between S1 and S2 is considered within the heart cycle division 1.

S1

F1, F2

S2

F1, F2
Set
A

...

...

...

Cycle
segmentation

Cycle 1 Cycle 2 Cycle N

MP MP MP

LPC LPC

Residual Residual

MP
Parameters

MP
ParametersAveraging

Cycle
segmentation

Cycle 1, ... , Cycle N

Averaging

Averaged cycle

S1-S2
segmentation

MP MP

LPC LPC

Residual Residual

Set
B

Figure 17. Methodology to obtain the feature averaging set A.

On the other hand, Figure 18 depicts the diagram of the method which uses a cycle

averaging approach. MP and LPC parameters are extracted from an averaged cycle.

By contrast with the first method (in which parameters are directly extracted from the

whole cycle), in this second method, the averaged cycle is split into the two FHS. MP

is then applied on each FHS separately, and two frequency parameters F 1 and F 2 are

kept for each of them. This feature set arises by conducting a previous methodology

described in (Wang et al., 2001, 2004).

4.1.1. Pre-processing of signals

The PCG recordings were filtered by using a band-pass Butterworth sixth-order filter

with cut-off frequencies of 25 Hz and 600 Hz. This filtering stage was executed in

order to remove non informative frequencies from the input PCG recording. The original

sampling rate of 2 kHz of the recordings was preserved. Figure 19 depicts the plot for

the band-pass filter frequenct response.

1According to the segmentation section in the Phyisionet database paper (Liu et al., 2016) four states
are considered: S1, systole, S2 and diastole.
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Figure 18. Methodology to obtain the feature averaging set B.

Figure 19. Frequency response of the Butterworth band-pass filter for the PCG signals pre-processing.

4.1.2. MP settings

The MP decomposition of PCG signals was configured by using the Matching Pursuit

Toolkit library (MPTK) designed for MATLAB (Krstulovic and Gribonval, 2006). We used

a Gabor dictionary of J = 5 blocks, each block corresponding to a common atom (or

window) lengths L j of 32, 64, 128, 256 and 512 samples. The selected number of

atoms was M = 15 in order to reach almost a 99% of the energy to reconstruct a PCG
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cycle (Ibarra, 2014). The atom parameters of frequency, amplitude, length, position

(shift) and phase were extracted to be considered as features in features set A, while

in features set B just two atom frequencies were considered, as in Wang’s methodology

(Wang et al., 2001, 2004).

4.1.3. LPC settings

For the LPC representation of the residual signal output by MP, we used the MATLAB

code from UCLA available on-line (Ozun et al., 2017). The selected order of the filter

was p = 15. Processing was performed in frames of 32 ms.

4.1.4. Number of features

Both feature sets A and B do not have the same number of samples. Combining

the MP and LPC methods, features set A consists of N f eatur es = 90 resulting from 75

parameters from MP (15 atoms with 5 parameters each one) and 15 from LPC. This

choice is based on our previous work (Ibarra et al., 2015). On the other hand, features

set B contains N f eatur es = 19, among which 4 are provided by MP (frequencies of the

first two selected atoms for each FHS). This setting, in addition to the rest of set B

extraction scheme (FHS segmentation and feature averaging), is in line with state-of-

the-art (Wang et al., 2001, 2004). Thus, set B acts as a comparison baseline for set A,

whose performance in heart sound classification has not been assessed so far.

4.2 Classifiers settings

We tested the classification state of our proposed pipeline using seven different

methods. Table 6 presents a brief description of each one by its name, acronym and

the main parameters employed. Classifiers were configured according to the settings

depicted in Table 6. Each one of these methods was implemented by using the scikit-

learn toolbox of Python (Pedregosa et al., 2011). In addition, feature sets were nor-

malized to have zero mean and unit variance when using SVM. For the RF method we

changed the number of estimators to 100 as some authors recommend in the presence

of unbalanced problems (Vercio et al., 2017; Mellor et al., 2015).
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Table 6. Brief description of the tested classifiers in this work and its parameters tuning.

Acronym Full name Main parameters Value of parameters

CART
Classification
and regression
tree

Criterion to measure the
quality of each split,
spitter, strategy to
choose the split
at each node

Gini criterion,
best split between
trees.

KNN
K-nearest
neighbors

Number of neighbors,
weight function used
in prediction,
metric of distance to
use for the tree

5 neighbors,
uniform weight,
Minkowski’s distance.

LDA
Linear
discriminant
analysis

Name of solver to reduce
data dimensions, tolerance
value threshold for
rank estimation
in the solver

Solver: SVD,
tolerance of
0.0001

LR
Logistic
regression

Penalty norm,
number of iterations

L2 norm penalty,
100 iterations

NB Naive Bayes
Prior probabilities
in the classes to
adjust the data

No prior
probabilities
value

RF
Random
forest

Number of estimators,
criterion to measure the
quality of the split,
use or not bootstrap to build
trees.

100 estimators,
Gini criterion,
bootstrap: true

SVM
Support
vector
machines

Penalty parameter C of the
error term, kernel
function used in the
algorithm, kernel
coefficient gamma

C = 2.37 for
unbalanced data
and C = 1 for
balanced, radial
basis function as
kernel with
automatic gamma
parameter

4.3 Noisy recordings settings

A number of the recordings included in the Physionet/CinC database do not contain

any annotation file to perform segmentation, due to their noise level2. To handle these

files, we performed the processing of the signals in frames of length of 900 ms (with

respect to the approximate duration of a cycle) and 200 ms (according to the typical

length of a FHS).

4.4 The SMOTE balancing method

A number of clinical-real-world applications imply the use of highly unbalanced da-

tasets. In our case, we have an unbalanced dataset where normal and abnormal ca-
2These were found as low quality, actually.
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tegories are not equally represented. The abnormal samples are the minority class,

covering only 21.09% of the total of recordings in the features set. The works sub-

mitted during the Physionet/CinC challenge dealed with this constrain by selecting a

random subset from the majority class which has an equal amount of elements as the

number of abnormal labeled recordings.

The SMOTE method (Chawla et al., 2002) proposes an approach to the construction

of classifiers from imbalanced datasets. This method reported a better classification

performance when over-sampling the minority class (testing the ROC space). SMOTE

proposes to randomly create synthetic minority class examples under the features

space.

Depending upon the amount of over-sampling required, the k nearest neighbors are

randomly chosen. Then, the creation of the synthetic samples is performed by taking

the difference between an input features vector of the minority class and its nearest

neighbor. This difference is multiplied by a random number between 0 and 1 and then

added to the feature vector under consideration.

4.5 10-fold cross validation test

We compared the classifiers and features sets performance using a cross validation

test. The procedure of this method is to make random partitions of data (folds) into

complementary subsets (test and train). The classification step is executed, then, the

SE , SP , ACC and MCC metrics are the resulting outputs used to evaluate the prediction

at each fold. We used 10 folds in our approach. Figure 20 depicts a diagram of the

10-Fold cross validation scheme to evaluate the heart sound classification schemes.

4.6 Numerical tests

4.6.1. Features sets testing without balancing

The 10-Fold CV test was performed under scikit-learn. For the first test, data is not

balanced. Table 7 shows the SE , SP , ACC and MCC average and standard deviation

output metrics after evaluating each one of the enlisted classifiers combined with a

features extraction set approach. The higher values of the obtained metrics are high-

lighted in bold-type fonts.
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Figure 20. The 10 fold cross validation scheme to assess the quality of heart sounds classification
schemes.

In terms of SP , the SVM method reached the highest score of 92.29% when using

features set A. However, the SE score reached by this combination is the lowest, even

the MCC is not the highest presented. The RF method reached the highest values for

the remaining metrics when using features set A: SE = 75.80, MCC = 0.55 and ACC = 0.86.

Results from Table 7 present also greater standard deviation values for SE . We observe

that for all feature sets and all classifiers, SP is considerably higher than SP .

Table 7. Performance metrics resulting for the heart sounds cross validation test without balancing.

Model Average performance

Classifier Features set SE SP ACC MCC

CART A 50.19 ± 6.33 87.30 ± 1.91 0.79 ± 0.03 0.38 ± 0.08

KNN A 48.26 ± 4.85 86.36 ± 1.21 0.78 ± 0.02 0.35 ± 0.06

LDA A 58.32 ± 6.23 83.36 ± 0.86 0.81 ± 0.01 0.31 ± 0.05

LR A 58.44 ± 6.97 83.36 ± 0.95 0.81 ± 0.02 0.32 ± 0.06

NB A 49.56 ± 10.41 80.84 ± 0.68 0.79 ± 0.02 0.18 ± 0.06

RF A 75.80 ± 5.32 88.03 ± 1.32 0.86 ± 0.02 0.55 ± 0.06

SVM A 46.41 ± 1.99 92.29 ± 0.76 0.76 ± 0.02 0.45 ± 0.03

CART B 42.70 ± 3.75 84.76 ± 1.02 0.76 ± 0.02 0.28 ± 0.05

KNN B 60.63 ± 3.82 84.54 ± 0.85 0.82 ± 0.01 0.36 ± 0.04

LDA B 48.11 ± 10.78 80.65 ± 0.76 0.79 ± 0.01 0.17 ± 0.07

LR B 54.31 ± 12.73 80.43 ± 0.88 0.79 ± 0.01 0.17 ± 0.08

NB B 58.59 ± 12.43 80.93 ± 0.68 0.80 ± 0.01 0.21 ± 0.07

RF B 72.74 ± 8.88 83.17 ± 1.11 0.82 ± 0.02 0.36 ± 0.08

SVM B 34.95 ± 4.69 81.91 ± 0.90 0.73 ± 0.02 0.16 ± 0.05
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4.6.2. Features sets testing using SMOTE balancing

In a second test, we performed a balancing applying the SMOTE technique when

oversampling the minority class. The SMOTE library included in the imbalanced-learn

toolbox of Python (Lemaître et al., 2017) was used for this purpose. Then, we conduc-

ted again the stratified 10-fold CV test to evaluate the classifiers performance. Table 8

shows the outcome average metrics of this experiment. Higher scores are highlighted

in bold-type fonts. Compared to the metrics obtained without applying SMOTE, the

Table 8. Performance metrics resulting for our heart sounds cross validation test when using SMOTE
balancing.

Model Average performance

Classifier Features set SE SP ACC MCC

CART A 82.61 ± 1.60 84.98 ± 1.85 0.84 ± 0.02 0.68 ± 0.03

KNN A 70.74 ± 1.39 97.10 ± 1.63 0.79 ± 0.02 0.62 ± 0.03

LDA A 76.95 ± 1.27 82.37 ± 2.14 0.79 ± 0.01 0.59 ± 0.03

LR A 78.60 ± 1.60 82.38 ± 2.50 0.80 ± 0.02 0.61 ± 0.04

NB A 84.54 ± 4.58 53.29 ± 0.63 0.56 ± 0.01 0.21 ± 0.03

RF A 91.60 ± 1.77 92.10 ± 1.70 0.92 ± 0.01 0.84 ± 0.03

SVM A 77.20 ± 1.09 78.77 ± 1.99 0.78 ± 0.01 0.56 ± 0.03

CART B 80.71 ± 2.43 82.91 ± 1.82 0.82 ± 0.02 0.64 ± 0.03

KNN B 79.24 ± 1.56 95.87 ± 0.79 0.86 ± 0.01 0.73 ± 0.02

LDA B 70.55 ± 1.52 70.89 ± 2.44 0.71 ± 0.02 0.41 ± 0.04

LR B 69.90 ± 1.79 67.97 ± 1.94 0.69 ± 0.02 0.38 ± 0.04

NB B 82.80 ± 5.09 52.78 ± 0.66 0.55 ± 0.01 0.19 ± 0.03

RF B 89.10 ± 1.46 91.55 ± 1.40 0.90 ± 0.01 0.81 ± 0.02

SVM B 67.18 ± 4.03 53.41 ± 0.96 0.56 ± 0.02 0.15 ± 0.04

SE values showed an increment for all tested classifiers and feature sets. The highest

sensitivity SE = 91.60% value was reached for the combination of the features set A and

the RF method. This approach also reached the highest accuracy ACC = 92% and Matt-

hews Correlation Coefficient MCC = 0.84. Although KNN classifier with the features set

B presented the highest SP , the remaining scores were not the highest values. Figure

21 plots all the ACC scores obtained. An increase in the mean values is shown, except

for the NB method and SVM when using as input the features set B.

The experiments conducted in this Chapter compared the classification performan-

ce when using two different sets of features according to the use of feature averaging

or cycle averaging techniques. Seven different classification methods were also eva-
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Figure 21. Accuracy scores for the conducted experiments.

luated by using the SE , SP , MCC and ACC scoring metrics. The use of the SMOTE balan-

cing method when oversampling the minority class was also considered to be part of

the classification benchmark since there was an improvement in the results obtained.

Based on the results reported in this Chapter, the feature averaging technique out-

performed in terms of the resulting SE and MCC . For the classification schemes, the RF

approach obtained the highest SE , ACC and MCC values. Considering the use of this

classifier and the features extraction method, and the balancing of classes we will add

the features selection step to the classification benchmark.



58

Chapter 5. Feature selection methods for the heart sounds

classification benchmark

This Chapter adds the feature selection stage to the design of the heart sound

signal classification benchmark. The screening tool is designed in terms of the model

previously defined in Chapter 2 and the features extraction, classification scheme and

balancing techniques which obtained the best evaluation results for the experiments

conducted in Chapter 4. A couple of methods for features selection are compared to

be added for the classification scheme. An evaluation of the complete benchmark is

performed when using different sets of features. The feature extraction methods for

testing the benchmark are constructed when combining the calculation of the MFCC

coefficients with the parameters of the proposed reconstruction model.

5.1 Methods for features selection

A feature selection method in Machine Learning is the process of choosing a subset

of relevant attributes which are the most appropriate to use for making decisions. This

process makes a reduction in the number of attributes and basically gives the next

advantages:

Simplifies the model so it is easier to interpret for researchers and other users

Training times become shorter

Avoids the curse of dimensionality

Reduces the overfitting

The main objective of features selection is to remove features which are either redun-

dant or relevant without incurring much in loss of information. Two principal techniques

for features selection are the correlation feature selection and information gain.

5.1.1. Correlation Features Selection (CFS)

The Correlation Features Selection method arises from the hypothesis that “good

feature subsets contain features highly correlated with the classification, yet uncorre-

lated to each other” (Hall, 1999). Thus, the highly correlated features between them
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are removed selecting a subset in the following way:

C F S = max
sk

 rc f1 + rc f 2 +·· ·+ rc fk√
k +2(r f1 f2 +·· ·+ r fi fi +·· ·+ r fk f1 )

 ,

where s is the selected subset of k features which have rc f correlation with the classi-

fication and r f f correlation between other features. These values are not necessarily

calculated using the Pearson or Spearman correlation coefficients, the minimum des-

criptor length and symmetrical uncertainity methods have been also used.

5.1.2. Information Gain (IG)

The Information Gain based method relies on the calculation of mutual information

between features, defined by two continuous random variables X and Y as:

I (X ;Y ) = ∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
,

where p(x, y) is the joint probability and p(x), p(y) the marginal probability distribution

of the variables X and Y respectively. The following steps are commonly made in the

IG method:

Calculation of the mutual information as the score between all the features fi ∈ F

with a target class c.

Select the feature with the largest score argmax fi∈F (I ( fi ,c))

The features of the set are ranked in descending order according to the mutual infor-

mation score obtained.

5.2 Construction of the benchmark

With a classification method defined, the benchmark design will be evaluated with

the combination of CFS and IG features selection methods. For the IG implementation,

features with a mutual information equal to zero were removed.
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The designed setup is depicted in Figure 22, where the train-test split was propo-

sed to be a 80%-20% percentages of the data to be used for this subsets. The RF

classification method was chosen with the parameters settings described in Table 6.

Features
set

Train/test
split 

SMOTE

Subsampling

RF

RF
Performance

metrics

Trainning set

Trainning set

Test set

Test set

Trainning set
resampled

Trainning set
resampled

Figure 22. Classification setup diagram.

Scoring metrics for the evaluation of the selected classifier will be also the SE , SP ,

ACC and MCC . The scheme will be implemented in the scikit-learn (Pedregosa et al.,

2011) toolbox of Python and the Weka software (Hall et al., 2009). For balancing the

dataset the SMOTE oversampling strategy will be considered. An under sampling ap-

proach will be also tested by selecting a random subset which equalize the class sam-

ples. Both strategies were implemented using the the imbalanced learn library of Pyt-

hon (Lemaître et al., 2017).

5.2.1. Construction of features sets

Table 9 shows the sets of features to be compared during the developed experi-

ments in this Chapter when including the features selection methods. For the features

extraction method we take both strategies considered in Chapter 4, feature averaging

(set A) and cycle averaging (set B).

Three new feature sets: C, D and E are included for the benchmark assessment.

These sets of attributes were constructed when combining the MP and LPC parame-

ters with the MCC coefficients as feature extraction methods. In set C, we include

the MP-LPC for feature extraction including MFCC coefficients of the heart cycles. On

the other hand, features set D includes only the calculation of MFCC parameters whi-
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Table 9. Combination of feature extraction and feature selection methods to be evaluated.

Label Feature extraction methods
Feature

selection
methods

Number
of features

A MP and LPC, feature averaging IG and CFS 90
B MP and LPC, cycle averaging 19
C MP, LPC and MFCC, feature averaging

CFS
146

D MFCC feature averaging 56
E MP and MFCC feature averaging 131

le set E was constructed as the fusion of the MP and MFCC values. Table 9 details

this information. Diverse researchers have used MCC coefficients to efficiently extract

the heart sound cycles features reporting promising results (Wang et al., 2007; Potes

et al., 2016; Abdollahpur et al., 2017). The MFCC Cn coefficients are calculated as in

the following equation:

Cn =
M∑

m=1
Dm cos

(
m −0.5

M

)
πn, (20)

where Dm is the output of the k-th filter bank channel, M is the number of filter bank

channels and m = 1,2, · · ·M. The filter bank used is triangular and the bandwidth of each

channel is defined in a Mel-scale, which is constructed using the following conversion:

mel( f ) = 2595 · log10

(
1+ f

700

)
. (21)

The parameters used in this work were a number of M =14 filters, low and high frequen-

cies of flow =20 Hz and fhi g h =900 Hz respectively. Each heart sound event (considering

S1, systole, S2 and diastole as events) was divided into frames of 20 ms with and

overlap of 5 ms. To compute the MFCCs, we used the same settings/parameters as

proposed in (Abdollahpur et al., 2017) in order to compare the performance of these

coefficients with respect to the model attributes obtained in this work for the PCG sig-

nals classification task. Figure 23 illustrates the resulting triangular filter bank for the

MFCC calculation.

5.3 Numerical results

In this section we implemented the classification scheme described in Figure 22

using the features extraction approaches described in Table 9. According to including

or not the feature selection stage, the next section describes the different scenarios.
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Figure 23. Triangular Mel-scale filter bank to calculate the MFCC coefficients.

5.3.1. Implementation with no feature selection stage

In a first experiment, we implemented the classification designed scheme in scikit-

learn to compare the performance metrics of feature sets A, B, C and D. In this case

the feature selection approach is not considered. Table 10 details the outcome results.

Table 10. Performance evaluation of the classification benchmark without using a feature selection stage.

Features
set Resampling SE SP ACC MCC

A over 71.07 94.07 88.28 0.68
B over 27.05 95.56 78.29 0.33
C over 81.14 95.98 92.24 0.80
D over 77.99 92.59 88.91 0.71
E over 79.25 95.56 91.45 0.77
A under 88.06 79.03 81.30 0.61
B under 74.22 70.13 71.16 0.40
C under 93.72 83.27 85.90 0.70
D under 91.20 82.00 84.32 0.67
E under 94.34 84.12 86.69 0.72

The graphical representation of the results given in Table 10 for the undersampling

case is shown in Figure 24.

On the other hand, Figure 25 illustrates the bar chart from the results in Table 10

when the SMOTE oversampling method was applied. Since only one value was repre-

sented for each metric the error bars cannot be included in all the charts presented in

this section.
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Figure 24. Bar chart of the output metrics for the classification test when no feature selection stage was
implemented. Undersampling was applied.
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Figure 25. Bar chart of the output metrics for the classification test when no feature selection stage was
implemented. The oversampling technique was applied.

From the results shown in Table 10, Figure 24 and Figure 25 we observe that the

highest Sensitivity SE =94.34 was obtained when using random under sampling in the

features set E. The highest Specificity SP =95.88 and proportionally the highest Ac-

curacy ACC =92.24 were obtained by features set C when using SMOTE. The use of
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this oversampling method also improves the MCC score, in fact, features set C also

obtained the highest value of MCC =0.80.

5.3.2. Implementation including the feature selection stage

A second experiment was conducted when including the IG and CFS features se-

lection methods to the classification benchmark. The feature selection methods were

implemented in Weka. On the other hand the classification scheme was applied in

scikit-learn. Results are shown in Table 11.

Table 11. Performance evaluation of the classification benchmark using a features selection stage.

Features
Set

Features
selection Resampling SE SP ACC MCC

A CFS over 71.07 89.83 85.10 0.61
B CFS over 12.58 97.88 76.39 0.21
A IG over 67.92 93.64 87.16 0.65
B IG over 32.70 93.01 77.81 0.33
A CFS under 88.05 78.60 80.98 0.60
B CFS under 70.44 66.74 67.67 0.33
A IG under 86.79 79.02 80.98 0.59
B IG under 75.47 71.82 72.74 0.41

Figure 26 illustrates the output metrics of Table 11 when applying the undersam-

pling technique as balancing method.
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Figure 26. Bar chart showing the output metrics of the classification test applying CFS and IG. The
undersampling was applied for balancing.

For the oversampling case, Figure 27 illustrates the output metrics of Table 11 when

applying SMOTE to equalize the classes.
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Figure 27. Bar chart showing the output metrics of the classification test applying CFS and IG. SMOTE
was applied for balancing.

The outcome results of this experiment showed that the features set A obtained

the highest SE = 88.05 value when using IG and undersampling as balancing method.

The rest of the scores were higher when using the SMOTE oversampling. In terms of

specificity SE = 97.88 was the highest score obtained by features set B when using CFS.

The higest ACC = 87.16 and MCC = 0.65 scores correspond to the features set A when

using the IG technique. In addition, features set A was reduced from 90 to 22 features

when using CFS and from 90 to 66 when using IG. On the other hand, features set

B presented the following reductions: in case of CFS it was reduced from 19 to 18

features while for IG none of the features was eliminated, preserving the whole set of

features (19).

5.3.3. Implementation including the feature selection stage for the MFCC-

based feature sets

A last experiment was conducted to assess the classification of PCG signals com-

paring the feature sets C, D and E, which contain the MFCC’s calculation as feature

extraction method. Hence when applying the CFS method higher scores where obtai-

ned, it was implemented to select the most relevant features of the sets. CFS method

also produced a higher reduction in the number of features N f eatur es. Table 12 presents

the original and reduced number of features for the MFCC-based feature sets when

implementing the CFS feature selection method in Weka.
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Table 12. Original and reduced number of attributes for the MFCC-based features sets.

Features

set

Original

N f eatur es

Reduced N f eatur es

applying CFS

C 146 30

D 56 12

E 132 23

The CFS reduction effect in the number of features that displays Table 12 preserves

among 15% to 30% of the original number of attributes. Set E obtained the highest

reduction, conserving just 17% of the features as relevant.

The compressed sets of attributes were tested for classification of PCGs in Weka

and scikit-learn. Table 13 displays the obtained results for the implementation in We-

ka. Figure 28 provides a radar plot of the outcomes depicted in Table 13. The highest

Table 13. Results from Weka for the classification PCGs using the MFCC-based feature sets including
feature selection.

Dataset Balancing Feature selection SE SP ACC MCC

C under CFS 90.20 80.50 82.60 0.61

D under CFS 89.70 79.00 81.30 0.59

E under CFS 90.60 80.90 83.00 0.62

C over CFS 82.90 90.50 88.80 0.70

D over CFS 82.50 85.80 85.10 0.62

E over CFS 85.00 89.50 88.50 0.70

SE=90.60 was obtained by set E using undersampling. It can be seen that the resulting

SP is directly related with the output ACC and the highest scores of this metrics were

obtained when using SMOTE and the feature extraction provided by C. The MCC ob-

tained better results when using SMOTE, and the highest score was obtained for both

C and E sets. In this implementation, features set D did not obtain any higher score,

showing that better performance is presented when adding any other features to the

MFCC approach. The classification benchmark was also conducted in scikit-learn using

as input attributes the features given by sets C, D and E. Results are shown in Table

14.
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Figure 28. Radar plot of the results from the scikit-learn implementation using the MFCC-based feature
sets and CFS.

Table 14. Results for the classification of PCGs using the MFCC-based feature sets including feature
selection under scikit-learn.

Dataset Balancing Se Sp Acc MCC

C under 91.83 82.63 84.95 0.68

D under 88.68 82.84 84.32 0.66

E under 89.31 83.27 84.79 0.67

C over 80.51 92.59 89.55 0.73

D over 76.11 89.62 86.22 0.65

E over 82.39 91.11 88.91 0.72

Figure 29 provides a visual representation in radar plot for the results depicted in

Table 14. In this implementation, set E obtained the highest SE=91.83, using under-

sampling for balancing. The rest of the metrics obtained the best results when applying

feature sets C. Outcomes obtained from both implementations are related because SP

and ACC are highly associated too, they are improved when using SMOTE and MCC is

also higher when using this oversampling approach. The features set D did not obtain
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any high score, showing also that the inclusion of MP and LPC features improves the

classification results.
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Figure 29. Radar plot of the results from the Weka implementation using the MFCC-based feature sets
and CFS.

This Chapter introduced the concept of features selection to avoid the use of re-

levant features. We analyzed the effects of adding a features extraction step to the

design of a classification of heart sounds benchmark. For this step, the Information

Gain and Correlation Feature Selection methods were evaluated. The CFS method out-

performs when it was applied to feature sets A (feature averaging) and B (cycle ave-

raging) in terms of SE , SP , ACC and MCC metrics.

The conducted experiments also considered the inclusion of a random under sam-

pling approach for balancing. We contrast the classification performance results when

using or not this method compared to oversampling the minority class with SMOTE.

The Chapter includes also an evaluation of the performance of the PCG signals

classification including the calculation of the MFCC coefficients as a method for fea-

ture extraction. Tree new sets of features C, D and E were created when combining

the obtained LPC and MP based attributes with the MFCC parameters. The complete
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benchmark was evaluated under Weka and scikit-learn platforms.

Outcomes of the test showed a better performance of feature sets C and E in terms

of SE when using the under sampling method. However, the SP , ACC and MCC obtained

the highest values with the application of SMOTE. It was presented a high relationship

between the SP and ACC values for the different scenarios.

The random undersampling method has been an efficient method for class imba-

lanced learning. It has been used among the participants of the Physionet/CinC cha-

llenge. However, since many majority class samples are ignored, the training set may

potentially neglect useful information (for instance, the quality of the signal) (Liu et al.,

2009).
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Chapter 6. Conclusions

We presented in this work a methodology for the automated analysis of cardiac

sound signals focusing on the modeling (feature extraction) and classification stages.

The main goal was to evaluate different methods for feature extraction, classification

and selection of the most important signal attributes to design a screening tool for

the automated detection of heart diseases from cardiac sound signals. This Chapter

highlights the main contributions of the research work produced by this thesis.

6.1 Heart sounds reconstruction model

To reconstruct the PCG, a model was designed under the hypothesis that it is a

signal composed by the addition of a deterministic plus a stochastic part given by the

expression x(t ) = xh(t )+ xn(t ). The deterministic part xh(t ) was modeled by using a Mat-

ching Pursuit decomposition with Gabor atoms. These are waveforms that represent

the time-frequency components of the signal. Since when using the MP algorithm it is

not possible to represent the 100% of the energy contained in the signal, we attain an

energy amount close to 90%. The numerical tests conducted showed that it is possible

to attain this percentage when using an average number of M = 15 atoms per cardiac

cycle. For the stochastic part of the model xn(t ), we consider to represent the residual

signal, which is actually the subtraction between the MP representation and the origi-

nal signal. This residual signal has low correlation with the set of time-frequency atoms

selected by MP to represent xh(t ). As a result, we opted for the LPC coding technique

to represent the residual as an autoregressive process.

Effectiveness of the proposed reconstruction model was evaluated under objective

and subjective tests. For the objective test, we evaluate the percentage of root-mean

distortion PRD to examine the quality of the representation. A set of 38 different PCG

signals containing different murmurs and pathological states were evaluated (eGene-

ral Medical, n.d.). Numerical results displayed an average PRD =5% when using a 99%

of the energy to represent the deterministic part and the remaining 1% for the resi-

dual. For the subjective test, we asked health experts to participate in a MUSHRA test

(ITU-R, 2001; Mason, 2002). Participants were required to evaluate the quality of 10

reconstructed PCG signals using our proposed model. It is important to highlight that

the physicians who took the test considered that the PCG reconstructed signals can



71

be used to diagnose an unhealthy cardiac state. We are not aware of any other model

for heart sounds representation rigorously evaluated such as the one considered in

this thesis. As a conclusion, numerical results from the subjective and objective tests

reveal that our representation model provides an accurate reconstruction of diverse

pathological heart sounds.

6.2 Heart sounds classification benchmark

Motivated by the results of the model evaluation, we designed a benchmark for the

classification of heart sounds. The Physionet/CinC 2016 database was used to evaluate

the performance of the algorithms. Two sets of time-frequency features were extracted

from each heart sound, based on the designed reconstruction model (Ibarra et al.,

2015; Ibarra-Hernández et al., 2017). Feature sets considered are based on the feature

averaging (called features set A) and cardiac cycle averaging (called features set B)

approaches. A number of different methods for binary classifications were evaluated

when conducting a 10-fold cross validation test. Among all conducted experiments,

the Random Forest (RF) classifier combined with SMOTE technique outperformed all

other configurations, reaching a competitive score for accuracy (92%), with a good

sensitivity-specificity trade-off. Detailed insights from the experiments also validate

the newest of the two used feature sets in the considered classification task.

It must be noted that metrics used in the Physionet/Challenge are slightly different

from ours, so direct comparisons and interpretations should be considered with atten-

tion. Specifically, we did not weight SP and SE according to the data labels as indicated

in the challenge. However, we consider that only little discrepancies can be expected

from this difference in the evaluation criteria. On the other hand, the average M Acc is

different from the ACC criterion, which puts more importance on the SE/SP trade-off,

and they cannot be directly compared. The highest ranked system (Potes et al., 2016),

based on a convolutional neural network, reached a mean accuracy of M Acc = 86.02%

with Se ′ = 94.24% and Sp ′ = 77.81%. Although we obtained a SE score which is not as high

as the best ranked method in the Physionet/Challenge, our research evaluates the

feature extraction, classification and balancing methods performance before selecting

any of these settings for the screening task.

The calculated features sets, reported scoring results tables and graphic charts are



72

available at https://github.com/roilhi/PaperSIPAIM.

6.3 Classification setup

The final stage of this research is the evaluation of the PCG signals classification

scheme when adding the use of a features selection method. For this purpose, we

evaluated the performance of the Correlation Feature Selection (CFS) and Information

Gain methods. The CFS method obtained better performance than IG method since the

highest SE , SP , ACC scores were obtained when using this feature selection method.

Numerical test showed also that the number of relevant features selected was less

when using CF than IG, giving as a result that only 17% of the original attributes can

be considered as relevant to be used effectively for the classification task.

Calculation of the MFCC coefficients has been a frequently selected method to deri-

ve PCG signal features because they exhibit acceptable results to efficiently represent

the relevant aspects of the signal (Wang et al., 2007). In this research we compa-

red the use of MFCC coefficients as feature selection method by creating datasets

when combining this set of coefficients with the MP and LPC parameters of the pro-

posed reconstruction model. Numerical tests displayed that the classification results

improved when feature extraction methods are associated. As a matter of fact, fea-

ture set C created as junction of all feature extraction methods, outperforms in terms

of SE=94.34, SP=95.98%, ACC=92.24% and MCC=0.80% when not using a feature

selection stage and scores of SE=91.83, SP=92.59%, ACC=89.55% and MCC=0.73%

scores when using CFS (keeping just a 17% of the attributes). The features set D,

provided by only the MFCC coefficients as features did not get any high score.

Considering a special processing for noisy recordings represents a challenge. Hen-

ce, PCG signals recorded in noisy environments significantly affected the classification

results. The segmentation step is also affected if the signal has been recorded with

low quality. However, the proposed research work in this thesis worth on the use of

simplest classifiers and the evaluation of the classification performance alternative

feature extraction and features selection methods. The results obtained can lead to a

future exploration of different time-frequency approaches for noisy recordings.

https://github.com/roilhi/PaperSIPAIM
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6.4 Contributions

From the present research arises a rigorous evaluation of methods for the auto-

mated evaluation of heart sounds, focusing on the feature selection and classification

methods. The contributions of this work according to the different stages formulated

are stated in the following points:

We compared the performance of different well-known state-of-the-art classifica-

tion methods to detect the presence or absence of pathologies in heart sounds.

They were then tested in a 10 fold stratified cross validation technique.

An oversampling technique, SMOTE, was also added in order to compensate for

unbalanced classes (less recordings with an abnormal condition, which is typical

in biological data), and its impact on classifiers performance was assessed. Per-

formance was measured through sensitivity, specificity, accuracy and Matthews

correlation coefficient. The MCC measure has not been considered for the classi-

fication of the Physionet database recordings assessment.

Two alternative strategies for feature extraction were tested, feature averaging

and cycle averaging. The problem of having an equal number of features is solved

for all instances since we have a variable duration in the recordings.

A couple of commonly used feature selection methods were tested, in order to

know the effects of reducing the dimensionality of the dataset and reducing the

time consumption for the training stage.

The performance of the classification algorithm was tested when using different

sets of features based on the MP and LPC parameters of the model and the MFCC

coefficients, which have been widely used for PCG signals classification.

6.4.1. Future work

As the identified scheme shows promising results for detecting abnormal condi-

tions in PCG signals, future work will target performance and computational efficiency

improvements through a refined preprocessing (denoising) and Principal Component

Analysis (PCA) methods for dimensionality reduction. It is important to remark the cha-

llenging task of classifying recordings under noisy environments (Ismail et al., 2018).
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The thesis focused on the simplest classification methods that do not require large

amounts of training data. This approach motivates for the design of computationally

effective solutions in real time of PCG signals murmurs detection based on the pre-

sented scheme. The execution times and computational resources used for the thesis

were reasonably low. The implemented algorithms do not consume more than 10 se-

conds when executed over a Mac-book pro 2014 Intel Core i5 2.6 GHz processor over

the Jupyter notebook of Python.

Although excluded from our benchmark due to their high training data require-

ments, neural network based classifiers cannot be ignored nowadays and should also

be tested against the proposed feature set. However, the correct performance of these

classification methods relies on the use of features sets of high dimensionality, using

large sets of labeled data to learn features directly from data instead of extracting

them manually.

The use of deep learning techniques to extract and train features can be also con-

sidered for the heart sounds classification task, however, it requires a large number of

labeled samples for the training stage (millions of sounds or images, generally) (LeCun

et al., 2015). In addition, there is still a lack of information concerning to the heart

sound pathological states since data available online does not cover the complete va-

riety of pathologies that can be presented in clinical scenarios (Ismail et al., 2018).

Nevertheless, the Physionet sounds database is nowadays the only set of heart sound

recordings that allows the comparison of screening tools for researchers.

One solution for the lack of information would be a multi-modal classification task.

This scheme consists of adding different cardiac signals for diseases detection, such as

the ECG, MRI and echocardiography. The classification might be stregthened for each

patient, and could also be not binary for the detection of a specific pathology.

6.5 Productivity

The findings of this study produced the following publications. One journal publica-

tion and four conference papers were published.
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Journals

Ibarra-Hernández, R. F., Alonso-Arévalo, M. A., Cruz-Gutiérrez, A., Licona-Chávez,

A. L., and Villarreal-Reyes, S. (2017). Design and evaluation of a parametric model

for cardiac sounds. Computers in biology and medicine, 89, 170-180.

Conference proceedings

Ibarra-Hernández, R. F., Alonso, M. A., Villarreal, S., and Nieblas, C. I. (2015, No-

vember). A parametric model for heart sounds. In Signals, Systems and Compu-

ters, 2015 49th Asilomar Conference on (pp. 765-769). IEEE.

Ibarra-Hernández, R. F., Bertin, N., Alonso-Arévalo, M. A., and Guillén-Ramírez, H.

A. (2018, December). A benchmark of heart sound classification systems based on

sparse decompositions. In 14th International Symposium on Medical Information

Processing and Analysis (Vol. 10975, p. 1097505). International Society for Optics

and Photonics (SPIE).

Ibarra-Hernández, R. F., Alonso-Arévalo, M. A., Cruz-Gutiérrez, Villarreal-Reyes S.

and Conte R. (2015, October). Desarrollo de un Codificador para audio cardiaco.

In Congreso Nacional de Ingeniería Biomédica (CNIB) (pp. 157-160). Sociedad

Mexicana de Ingeniería Biomédica (SOMIB).

Ibarra-Hernández, R. F., Alonso-Arévalo, M. A., Cruz-Gutiérrez, Villarreal-Reyes S.

and Conte R. (2015, September). Reconstrucción de señales de audio cardiaco

mediante Matching Pursuit. In Mexican Conference on Computer Science. Socie-

dad Mexicana de Ciencias de la Computación (SMCC).
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Fuchs, G., Helmrich, C. R., Marković, G., Neusinger, M., Ravelli, E., and Moriya, T. (2015).
Low delay lpc and mdct-based audio coding in the evs codec. En: Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference on. IEEE, pp.
5723–5727.

Gribonval, R. (2001). Fast matching pursuit with a multiscale dictionary of Gaussian
chirps. IEEE Transactions on Signal Processing, 49(5): 994–1001.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009).
The weka data mining software: an update. ACM SIGKDD explorations newsletter,
11(1): 10–18.

Hall, M. A. (1999). Correlation-based feature selection for machine learning. Tesis de
doctorado, Department of Computer Science University of Waikato Hamilton.

Huiying, L., Sakari, L., Iiro, H., and Processing, T. S. (1997). A Heart Sound Segmenta-
tion Algorithm Using Wavelet Decomposition and Reconstruction. En: Proceedings -
19th international Conference - IEEE/EMBS Oct. 30 - Nov. 2, 1997 Chicago, IL. USA,
Chicago, IL. USA. Vol. 1630, pp. 1630–1633.

Ibarra, R. (2014). Desarrollo de un códec para la transmisión de audio cardiaco sobre
redes de bajas tasas de datos. Tesis de maestría, Centro de Investigación Científica
y de Educación Superior de Ensenada (CICESE).

Ibarra, R. F., Alonso, M. A., Villarreal, S., and Nieblas, C. I. (2015). A parametric model for
heart sounds. En: Signals, Systems and Computers, 2015 49th Asilomar Conference
on. IEEE, pp. 765–769.

http://www.egeneralmedical.com/listohearmur.html


78

Ibarra-Hernández, R. F., Alonso-Arévalo, M. A., Cruz-Gutiérrez, A., Licona-Chávez, A. L.,
and Villarreal-Reyes, S. (2017). Design and evaluation of a parametric model for
cardiac sounds. Computers in biology and medicine, 89: 170–180.

Institute, O. U. H. (2019). Heart valve viseases. Ottawa University Heart Institute:
https://www.ottawaheart.ca/heart-condition/heart-valve-disease. Acces-
sed 2018-06-04.

Ismail, S., Siddiqi, I., and Akram, U. (2018). Localization and classification of heart
beats in phonocardiography signals—a comprehensive review. EURASIP Journal on
Advances in Signal Processing, 2018: 1–27.

ITU-R (2001). Bs. 1534-1. method for the subjective assessment of intermediate sound
quality (mushra). International Telecommunications Union, Geneva.

Jabbari, S. and Ghassemian, H. (2011). Modeling of heart systolic murmurs based
on multivariate matching pursuit for diagnosis of valvular disorders. Computers in
Biology and Medicine, 41(9): 802–811.

Jayant, N. S. and Noll, P. (1984). Digital coding of waveforms: principles and applica-
tions to speech and video. Englewood Cliffs, NJ, pp. 115–251.

Joo, T. H., McClellan, J. H., Foale, R. A., Myers, G. S., and Lees, R. S. (1984). Pole-Zero
Modeling and Classification of Phonocardiograms. IEEE Transactions on Biomedical
Engineering, BME-31(6): 473–474.

Kay, E. and Agarwal, A. (2016). Dropconnected neural network trained with diver-
se features for classifying heart sounds. En: Computing in Cardiology Conference
(CinC), 2016. IEEE, pp. 617–620.

Kay, E. and Agarwal, A. (2017). Dropconnected neural networks trained on time-
frequency and inter-beat features for classifying heart sounds. Physiological mea-
surement, 38(8): 1645.

Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., and Fotiadis, D. I. (2015).
Machine learning applications in cancer prognosis and prediction. Computational
and structural biotechnology journal, 13: 8–17.

Köymen, H., Altay, B. K., and Ziya, I. Y. (1987). A Study of Prosthetic Heart Valve
Sounds. Biomedical Engineering, IEEE Transactions on, BME-43(11): 853–863.

Krstulovic, S. and Gribonval, R. (2006). MPTK: Matching pursuit made tractable. En:
Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on. IEEE, Vol. 3, pp. III–III.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553): 436.

Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn: A Python toolbox
to tackle the curse of imbalanced datasets in machine learning. Journal of Machine
Learning Research, 18(17): 1–5.

Leung, T., White, P., Cook, J., Collis, W., Brown, E., and Salmon, A. (1998). Analysis of
the second heart sound for diagnosis of paediatric heart disease. IEE Proceedings-
Science, measurement and technology, 145(6): 285–290.

https://www.ottawaheart.ca/heart-condition/heart-valve-disease.


79

Liu, C., Springer, D., Li, Q., Moody, B., Juan, R. A., Chorro, F. J., Castells, F., Roig, J. M.,
Silva, I., Johnson, A. E., et al. (2016). An open access database for the evaluation of
heart sound algorithms. Physiological Measurement, 37(12): 2181.

Liu, X.-Y., Wu, J., and Zhou, Z.-H. (2009). Exploratory undersampling for class-imbalance
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
39(2): 539–550.

Mahnke, C. B. (2009). Automated heartsound analysis/computer-aided auscultation: A
cardiologist’s perspective and suggestions for future development. En: Engineering
in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference
of the IEEE. IEEE, pp. 3115–3118.

Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE, 63(4):
561–580.

Mallat, S. (1999). A wavelet tour of signal processing. Elsevier.

Mallat, S. and Zhang, Z. (1993). Matching Pursuits With Time-Frequency Dictionaries.
IEEE Transactions on Signal Processing, 41(12): 3415–3997.

Manikandan, M. S. and Dandapat, S. (2007). Wavelet energy based compression of
phonocardiogram (PCG) signal for telecardiology. IET Seminar Digest, 2007(2): 650–
654.

Martínez-Alajarín, J. and Ruiz-Merino, R. (2004). Wavelet and wavelet packet compres-
sion of phonocardiograms. Electronics Letters, 40(17): 1040–1041.

Mason, A. (2002). The MUSHRA audio subjective test method. BBC R&D White Paper
WHP, 38.

Mellor, A., Boukir, S., Haywood, A., and Jones, S. (2015). Exploring issues of training
data imbalance and mislabelling on random forest performance for large area land
cover classification using the ensemble margin. ISPRS Journal of Photogrammetry
and Remote Sensing, 105: 155–168.

Müller, A. C., Guido, S., et al. (2016). Introduction to machine learning with Python: a
guide for data scientists. .O’Reilly Media, Inc.".

Nieblas, C. I., Alonso, M. a., Conte, R., and Villarreal, S. (2013). High performance heart
sound segmentation algorithm based on Matching Pursuit. 2013 IEEE Digital Signal
Processing and Signal Processing Education Meeting (DSP/SPE), pp. 96–100.

Ozun, O., Steurer, P., and Thell, D. (2017). Wideband speech coding with linear pre-
dictive coding (lpc). UCLA Electrical Engineering Digital Speech Processing: http:
//www.seas.ucla.edu/spapl/projects/ee214aW2002/1/report.html. Accessed:
2018-05-17.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12: 2825–2830.
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