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Resumen de la tesis que presenta Guillermo Daniel Jiménez Gómez como requisito
parcial para la obtención del grado de Doctor en Ciencias en Óptica con orientación en
Óptica Física.

Generación y recombinación de parejas de fotones entrelazados en
tiempo-frecuencia

Resumen aprobado por:

Dr. Kevin Arthur O’Donnell
Director de tesis

Se presenta un estudio teórico y experimental de los procesos de generación y
recombinación de parejas de fotones en cristales no-lineales de segundo orden. El
estado de dos fotones y el estado recombinado son derivados a partir de un operador
Hamiltoniano de interacción en el régimen espontáneo considerando todos los grados
de libertad relevantes. Se derivan soluciones rigurosas cuantitativas en el régimen
espontáneo para la tasa de detección de parejas coincidentes, la tasa de detección
de fotones individuales, la potencia del campo de parejas, y la tasa de recombinación,
todas con espectros angulares y de frecuencias arbitrarios para el haz de bombeo y
considera también dominios de detección arbitrarios, todas las cuales se presentan
en escala absoluta. Tambien se muestra un estudio experimental de las parejas de
fotones producidos en cristales de KTP con inversiones periódicas de dominios, donde
se utiliza la detección coincidente para medir la emisión de los pares degenerados y
no-degenerados en una variedad de configuraciones. La dependencia de la tasa de
pares coincidentes en función de uno de los ángulos de detección y la temperatura
del cristal fue caracterizada utilizando bombeo de una y dos frecuencias utilizando
filtros de banda angosta así como deteccion de gran ancho de banda espectral. Los
resultados teóricos para la detección parejas son evaluados bajo condiciones realistas
que representan nuestras condiciones experimentales de manera precisa y son com-
paradas con nuestras observaciones. Se presentan cálculos para la recombinación de
parejas para un caso idealizado y para dos casos realistas los cuales son comparados
con resultados experimentales publicados anteriormente.

Palabras clave: SPDC, recombinación de parejas de fotones
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Abstract of the thesis presented by Guillermo Daniel Jiménez Gómez as a partial re-
quirement to obtain the Doctor of Science degree in Optics with orientation in Physical
Optics.

Generation and recombination of time-frequency entangled photon pairs

Abstract approved by:

Dr. Kevin Arthur O’Donnell
Thesis Director

A theoretical and experimental study of the processes of photon pair generation
and recombination in second-order nonlinear crystals is presented. The two-photon
and upconverted states produced in, respectively, downconversion and recombination
are derived from an interaction Hamiltonian formulation in the spontaneous regime,
accounting for all of the relevant degrees of freedom. Rigurous solutions are derived
within the spontaneous regime for the rate of coincident pair detection, the rate of
single photon detection, the downconverted power, and the recombination rate pump
fields with arbitrary frequency and angular spectra, all of which are provided on ab-
solute scales. An experimental study of the photon pairs produced using periodically-
poled KTP crystals is also shown, where coincidence detection is used to measure the
degenerate and non-degenerate emission in a wide variety of configurations. The an-
gular and temperature dependence of the coincidences is characterized using single
and two-frequency pumps, with narrowband and broadband detection. The theoretical
results for pair detection are evaluated under realistic conditions that accurately rep-
resent our experimental conditions and compared with our observations. Calculations
for photon pair recombination are shown for an idealized case as well as two realistic
cases which are compared with previously published experiments.

Keywords: SPDC, photon-pair recombination
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1

Chapter 1. Introduction

The study of the emission produced in the process of spontaneous parametric

down-conversion (SPDC) in nonlinear optical materials and its applications has been of

interest over more than 50 years (Louisell et al., 1961; Harris et al., 1967). This emis-

sion is produced in a crystal having a second-order non-linearity, where photons from a

pump laser spontaneously split into pairs of photons of lower frequency. The two mem-

bers of a pair form an entangled quantum system, with each pair having the same total

energy as the pump photon that created it. The members of the photon pair, called sig-

nal and idler, carry nonclassical correlations widely known as quantum entanglement,

which has inspired a wide range of research directed toward both fundamental studies

as well as applications (Zel’Dovich and Klyshko, 1969; Hong and Mandel, 1985; Ghosh

and Mandel, 1987; Hong et al., 1987; Strekalov et al., 1995; Hamar et al., 2010). In

general the photon pairs may be entangled in all of their degrees of freedom including

polarizations, wavelengths, and emission angles.

Although this phenomenon has attracted considerable interest, particularly since

the observation of the simultaneity of the pairs (Burnham and Weinberg, 1970), it is

perhaps surprising that fundamental theoretical and experimental aspects such as the

realistic multimodal description of the interacting fields and the issue of quantitative

scale have received relatively little attention (Byer and Harris, 1968). Another as-

pect of interest which is seldom addressed in studies of photon pairs is the accurate

theoretical description of realistic experimental situations accounting for important

characteristics such as pump beam geometry, integration angles, and detection band-

width. Indeed, the description of many well-known quantum optical experiments has

been formalized only within the framework of overtly simplified single-mode theories.

The strongest exception to this remains the groundbreaking work by Klyshko (Klyshko,

1988), with its rigurous and general develoment and its treatment of dimensionality

and scale.

More recently, the novel effects that arise in experiments using two nonlinear crys-

tals have attracted particular interest. If the two crystals are coherently pumped,

it has been shown that introducing the idler photons of the SPDC from one crystal

into another induces coherence between the signal photons of the two crystals (Wang

et al., 1991; Zou et al., 1991). Further, overlapping the SPDC cones produced by two
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crystals has been found to produce interference fringes in the detected photon pair

rates, whose phase depends on the pump phase difference between the two crystals

(Ou et al., 1989, 1990; Burlakov et al., 1997). Here, we study theoretically a different

situation in which similar effects appear. We also consider a case with two nonlinear

crystals, although only the first one is pumped to produce the photon pairs. The pump

beam is then removed and, after dispersion compensation, the SPDC emission cone is

focused in the second crystal. There, an entangled photon pair can recombine into a

single photon that, from energy conservation, has the same frequency spectrum as the

pump photon that produced the pair. These effects have been studied experimentally

(Dayan et al., 2005; Peer et al., 2005; O’Donnell and U’Ren, 2009; O’Donnell, 2011;

O’Donnell and Garces, 2015) using periodically poled crystals, which is our interest

here, as well as using nonlinear waveguides (Lukens et al., 2013, 2014; Odele et al.,

2015); however, the theoretical description of such studies have not considered the

general case in which the multimodal quantum nature of all interacting fields is fully

accounted for.

This situation is widespread in quantum optics, and has arisen partly out of a ne-

cessity to produce an understanding of existing results by workers in the field, but also

due to an apparent divide between experimentalists and theorists, as recognized by

Luks and Perinova in their seminal treatise “Quantum aspects of light propagation”

(Luks and Perinová, 2009):

Ingenious, but simple solutions are preferred to intricacies of the quantized field theory with

the hope that experimenters realize the simple proposals with appropriate means.

In this work, we present the results of a research program that intended to approach

these topics from a perspective that appears diametrically opposed to the more-common

approach, one where every attempt has been made to accurately represent the rel-

evant aspects of the experimental situation. The primary motivation for producing

such a description of the photon-pair generation process in our theoretical work has

been to apply these methods to the phenomenon of recombination, which necessi-

tates a multimodal treatment of all fields and manifests the shortcomings of existing

formulations.

The theoretical methods used to describe the two-photon amplitude produced in



3

SPDC are presented in Chapter 2. From this fundamental result, we calculate the

two-photon amplitude of the unconverted light and use it to derive expressions for

the coincident photon pair rate, the photon emission rate, and the down-converted

power under more general conditions that are usually considered including arbitrary

forms of the frequency spectra and transverse amplitude profile for weakly focused

pumps, along with exact solutions for the important case of focused Gaussian beams.

In Chapter 3, we apply our method to calculate the up-converted amplitude which is

produced by recombination of entangled photon pairs in an identical crystal as is used

to generate them. The experimental arrangement for photon pair detection shown in

Chapter 4 presents a simple, yet flexible detection method that allows measurement

of the broadband and narrowband-filtered non-collinear photon pairs. In Chapter 5,

a set of calculations corresponding to the recombination of photon pairs is presented

and discussed. These calculations include an idealized case and two realistic cases.

The conclusions and closing comments are found in Chapter 6, and a discussion of a

fundamental symmetry in the two-photon state is demonstrated in the Appendix.
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Chapter 2. Theory of entangled photon pair generation

The spatio-temporal properties of the two-photon amplitude that is generated in the

process of SPDC have been described (Rubin et al., 1994; Joobeur et al., 1994, 1996),

and the calculated relative photon pair rates have been compared favorably with ex-

perimental observations (Hamar et al., 2010; Jimenez et al., 2017). Recently, we have

briefly presented a formal quantum optical theory of this phenomenon where all inter-

acting fields, including the pump, are considered to be multi-modal quantum optical

fields (Jimenez et al., 2019). In this chapter, we present in detail this quantitative the-

ory of SPDC, and will describe the relationship between the theoretical formulation and

experimentally available parameters such as limiting apertures and frequency filters

in photon-pair detection experiments. Our development requires few simplifying as-

sumptions, applies to the cases of bulk and periodically-poled materials, and is used

to calculate pair rates assuming realistic detection conditions.

We consider the pump field as a coherent state of general spatial distribution and

spectrum, and also study the limiting cases of narrow-band and wide-beam fields.

These limits are taken in a manner that differs from the usual approach (Blow et al.,

1990; Hamar et al., 2010), but which respects the normalization of the state and is

dimensionally correct. We use first-order perturbation theory in the interaction picture

to calculate the state of down-converted light, and discuss the topic of state normaliza-

tion and its formal implications. As will be shown in Chapter 4, considering the pump

as a quantum field in the theoretical description of photon pair recombination permits

the formal calculation of the coherence function between the pump and recombined

field.

An extension of the continuum approach proposed by Blow and Loudon (Blow et al.,

1990) is employed to describe spatially multimodal fields with continuous spectra in

wave-vector space. This approach is suited naturally to the study of quantum optical

fields in open systems; it has been employed here over the more common volume

quantization approach as the results are all independent of the quantization volume

and our approach avoids an unnecessary procedure to produce the continuum limit.

From a canonical quantization procedure (Huttner and Barnett, 1992), it has been

shown that the ladder operators that appear in the electric field operators and Hamil-

tonian within dispersive media act to create and annihilate the photons as well as the
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polarization waves that are generated in the material. This quantum field theoretical

description is then said to be written in terms of these so-called ‘dressed photons’

(Luks and Perinová, 2009).

2.1 Quantum representation of the pump

The pump is defined as a multi-modal coherent state which is the solution to the

eigenvalue equation (Blow et al., 1990)

̂(kp)
�

�{ψp}
�

=
q

Npψp(kp)ep
�

�{ψp}
�

, (1)

for all kp, where kp =
npωp

c ep is the frequency-dependent wave-vector of the pump

within the nonlinear medium with internal angles θp ≥ 0 and −π < ϕp ≤ π, c is the

speed of light in the vacuum, ep = kp/
�

�kp
�

� is a unitary vector, np = n(ωp) is the refrac-

tive index at the pump frequency, ψp(kp) is the pump amplitude in k-space, p is an

arbitrary pump phase, and

Np =
∫

dkp



{ψp}
�

� ̂†(kp)̂(kp)
�

�{ψp}
�

(2)

is the mean number of pump photons in a characteristic time Δt which, for continuous

wave experiments, is considered long compared with the optical wavelength. Equa-

tions 1 and 2, along with the normalization condition



{ψp}
�

�{ψp}
�

= 1, imply that the

pump amplitude ψp(k) itself is normalized according to

∫

dkp
�

�ψp(kp)
�

�

2 = 1. (3)

We note that ̂(kp)
�

�

�

ψp
	�

, the probability amplitude of the photon number in our

coherent field, is then continuously distributed over an open subset of k-space, and

that the form of the state is dependent on Δt. Likewise,
�

�ψp(kp)
�

�

2 is the probability den-

sity function which describes the angular distribution and spectrum of a pump photon.

The total pump photon rate is then given by Rp=Np/Δt, and the photon rate over an

arbitrary detection domain Dp is simply Rp
∫

Dp
dkp

�

�ψp(kp)
�

�

2. The detection domain Dp

is defined as the set of wave-vectors which are coupled to an idealized detector. In the
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simple case of observations performed with a single-bandpass frequency filter and a

limiting aperture, it may be written in set-constructor notation as

Dp =
n

kp
�

�

� ωmin < ωp(kp) < ωmax and
�

θp(kp), ϕp(kp)
�

∈ Ωp
o

, (4)

where ωmin and ωmax are the cutoff frequencies of the bandpass and Ωp is the solid

angle that is coupled into the detector. Where necessary, one can introduce the effects

of imperfect coupling and detection efficiency as a multiplicative factor to
�

�ψp(kp)
�

�

2.

2.1.1 Frequency and angular amplitude spectrum of the pump

It will be convenient to write the amplitude ψp(kp) in terms of the frequency and

angular variables as

ψp(kp) =
A(ωp)
p

ηpkp
F(θp, ϕp|ωp), (5)

where kp =
�

�kp(ωp, θp, ϕp)
�

�, ηp = η(ωp) is the reciprocal of the group velocity at fre-

quency ωp, and the functions A(ωp) and F(θp, ϕp|ωp) define, respectively, the fre-

quency and angular distribution of the pump amplitude. The differential in Eq. 3 is

expanded exactly with

dkp = dωpdθpdϕpkpηp sinθp, (6)

so that Eq. 3 is then satisfied by requiring that

∫

dωp |A(ωp)|2 = 1 (7)

as well as the condition that, for all ωp,

∫∫

dθpdϕp sinθp |F(θp, ϕp|ωp)|2 = 1 . (8)

If the coherent field is attenuated strongly, to the point where the probability am-

plitude for finding more than one photon in time Δt can be neglected, the state may
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be written as (Glauber, 1963a)

�

�{ψp}
�

=
�

Mp ̂ + γ
q

Np

∫

dkp ψp(kp)ep ̂†(kp)
�

|vac〉 , (9)

where γ is the probability amplitude attenuation factor, with |γ|�1, and Mp =
q

1 − γ2Np

is a normalization factor. This expression for the single-photon field represents a co-

herent superposition of a vacuum state and a single photon state, where the vacuum

carries most of the probability amplitude, and will prove useful in the calculation of

certain coherence properties in Chapter 3.

2.2 The interaction Hamiltonian and electric field operators

The three-photon processes that take place in second-order nonlinear optical crys-

tals are governed by the interaction Hamiltonian (Mandel and Wolf, 1995)

Ĥint(t) = 2ε0

∫

V

drd(z)Ê(+)
p
(r, t)Ê(−)

s
(r, t)Ê(−) (r, t) + H.c. , (10)

where the term that is explicitly written is that which produces down-conversion, ε0 is

the permittivity of the vacuum, d(z) =deffekg ·r for first order periodic poling, V is the

crystal volume , and H.c. denotes the Hermitian conjugate. In our case, we consider

that the poling wave-vector kg is parallel to the z axis which conforms to the exper-

imental situation and slightly simplifies some aspects of the calculation; however, it

is entirely possible to consider the more general case of arbitrary orientations for the

poling wave-vector, as well as the bulk crystal case by taking kg = 0. The spatial inte-

gration is to be performed over the interaction volume, which is determined by L, the

crystal length along the z propagation axis, and is considered here to be unbounded

in the transverse dimensions. These conditions are applicable for the common case

where the size of the pump is significantly smaller than the transverse crystal dimen-

sions.

We consider the three-dimensional representation for the time-dependent quantum
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electric field operator within the dielectric (Blow et al., 1990; Luks and Perinová, 2009)

Ê(+)
ε
(r, t) = 

∫

dkε

√

√

√

ℏωε

16π3ε0cnεηε
̂(kε)e−(ωεt−kε ·r), (11)

where ℏ is the reduced Planck constant, ε may denote the pump (ε = p), signal (ε = s)

and idler (ε = ) fields, ̂(kε) is the photon annihilation operator for the plane wave

mode with wave-vector kε, and Ê(−)
ε
(r, t) =

�

Ê(+)
ε
(r, t)

�†
. With this, the Hamiltonian may

be written as

Ĥ(t) = −2deffε0

�

ℏ

16π3ε0c

�3/2 ∫ L/2

−L/2
dz

∫

d

∫

dy

×
∫

dkp

∫

dks

∫

dk

√

√

√

ωpωsω

npnsnηpηsη

× ̂(kp)̂†(ks)̂†(k)e−(ωp−ωs−ω)teΔk·r + H.c., (12)

where

Δk = kp − ks − k − kg (13)

is the wave-vector mismatch. In practice it has been found that (Emanueli and Arie,

2003), when using periodically-poled potassium titanyl phosphate (PPKTP), an addi-

tional wave-vector k̃, whose value is dependent on crystal temperature and the sig-

nal/idler wavelengths, and which is collinear with kp and kg, must be subtracted from

the right hand side of Eq. 13 to accurately describe the observed experimental behav-

ior; the origin of this correction term is not well understood at this time, and has not

been found to be necessary in experiments using other periodically-poled nonlinear

crystals, such as lithium niobate, in similar experiments. The operator Ĥ(t), as an

observable that determines the dynamics of the three-photon interaction, is an object

of interest in the study of the SPDC process.
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2.3 Temporal evolution and spatial integrations

In the following, we restrict our analysis to calculating the steady state solution

produced by fields that are assumed to be stationary, so that the number density is

time-independent and the characteristic time Δt may be considered long. The unitary

time evolution operator e−Ĥ(t−to)/ℏ, with t ≥ to, acts continuously on the input state

|in〉 =
�

�ψp
�

p |vac〉s, from time to to create the response at time t. If the initial time to is

far in the past, the output state is given by

|out(t)〉 = lim
to→−∞

∫ t

to

dt′e−Ĥ(t−to)/ℏ |in〉 , (14)

and the stationary state is then simply |out〉 = lim
t→∞
|out(t)〉. It is important to note that

the infinite limits of the temporal integration are to be interpreted as a useful approx-

imation and not as a formal argument. Strictly, for a pure state description to hold,

the integration domain may not be larger than a coherence time of the pump field;

for our purposes, however, this is not a significant limitation as the formal integra-

tion time only need-be significantly larger than the optical period of the pump for the

system to reach the steady state. A generalization of this method to time-dependent

fields is of interest, and should clarify the interpretation of the limits of integration and

characteristic time Δt

When the spontaneous limit applies, we may approximate Eq. 14 using only the

first order term in perturbation theory as (Ou et al., 1989; Holstein and Ashkin, 1992;

Rubin et al., 1994)

|out〉 =
�

̂ −


ℏ

∫ ∞

−∞
dtH(t)

�

�

�{ψp}
�

p |vac〉s, , (15)

where |vac〉s, is the direct product state where the two-photon modes with signal and

idler wave-vectors ks and k are simultaneously vacuum. After substituting the Hamil-

tonian of Eq. 12 into Eq. 14 and applying Eq. 1, we may factor out the pump state

immediately and reach

|out〉 =
�

�{ψp}
�

|ψSPDC〉 , (16)



10

where

|ψSPDC〉 =
�

̂ − 2

√

√

√ Npd
2
effℏ

(16π3)3ε0c3

∫ ∞

−∞
dt

∫ L/2

−L/2
dz

∫

d

∫

dy

×
∫

dkp

∫

dks

∫

dk

√

√

√

ωpωsω

npnsnηpηsη
eΔk·re−(ωp−ωs−ω)t

×
ψp(kp)

cosθo
p

ep ̂†(ks)̂†(k)
�

|vac〉s, (17)

is the downconverted state. The temporal integration is performed and yields 2πδ(ωp−

ωs−ω), while the y spatial integrations yield (2π)2δ(Δk)δ(Δk), where Δkα = Δk ·eα

for α ∈ {, y, z}. In most situations, it is customary to neglect the identity operator ̂

from Eq. 17, yet we shall keep it for completeness.

2.3.1 The longitudinal Quasi Phase-Matching function

The down-converted state may then be written as

|ψSPDC〉 =
�

̂ −

√

√

√Npd
2
effL

2ℏ

16π3ε0c3

∫

dkp

∫

dks

∫

dk

×

√

√

√

ωpωsω

npnsnηpηsη
δ(ωp − ωs − ω)δ(Δk)δ(Δ(ky)

× ψp(kp)s(Δkz)eϕp ̂†(ks)̂†(k)
�

|vac〉s, , (18)

where we have ignored the z dependence of the pump amplitude, as it is adequate in

the case of a weakly focused pump, to find

s(Δkz) =
1

L

∫ L/2

−L/2
dzeΔkzz

= sinc
�

ΔkzL

2

�

, (19)

which is known as the longitudinal quasi-phasematching (QPM) function.
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2.4 The quantum state of down-converted light and the two-photon ampli-

tude

The dkp differential is now expanded as in Eq. 6. With this, the frequency integra-

tion is trivial and sets

ωp = ωs + ω, (20)

which is the energy conservation condition. The pump angular integrations are per-

formed using the identity that,

∫∫

dθpdϕp sinθpƒ (θp, ϕp)δ(Δk)δ(Δky) =
ƒ (θo

p
, ϕo

p
)

k2
p
cosθo

p

, (21)

where the angles θo
p

and ϕo
p

are the solutions to Δk⊥ = 0, which are

tnϕo
p
=

ks sinθs sinϕs + k sinθ sinϕ
ks sinθs cosϕs + k sinθ cosϕ

(22)

sinθo
p
=

ks sinθs cosϕs + k sinθ cosϕ
kp cosϕop

. (23)

The conditions defined by Eqs. 20- 23 allow us to write the pump wave-vector as a

function of the signal and idler variables in the form

kp = k(ωs + ω, θ
o
p
, ϕo

p
) = k+

p
(24)

Having performed the integrations, the down-converted state from Eq. 18 is now

|ψSPDC〉 =
�

̂ −
∫

dks

∫

dkψ(ks,k)̂†(ks)̂†(k)
�

|vac〉s, , (25)

where we have introduced the two-photon amplitude, which is given by

ψ(ks,k) =

√

√

√

√

Npd
2
effL

2ℏ(ωs + ω)ωsωη+p

16π3ε0c3n+pnsnηsη
ψp(k+p )s(Δkz)e

ϕp (26)

where n+
p
= n(ωs + ω), and η+

p
= η(ωs + ω).
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For the quasi-phasematched interactions that we will focus on in this work, all fields

are linearly polarized along the same crystal axis, and we may ignore the polarization

vector in the electric field operators of Eq. 11. For the case of SPDC produced in

bulk materials, Eqs. 25 and 26 still apply as long as the relevant effective nonlinear

coefficient is considered and the simplification kg = 0 is made. In this case, s(Δkz)

is referred to as the longitudinal phasematching function. We will later consider a

correction to this solution which accounts for focusing in the pump field.

2.5 Calculation of the rates

In this section, we will derive expressions for the rate of pair detection from our two-

photon state. These will proceed from the general case into the particular, by taking

limits that approximately correspond to important experimental situations, viz. the

narrowband and wide-beam pump limit, and will culminate with a simple expression

for the rate of single photon detection and the corresponding of the down-converted

power in this final limit.

2.5.1 Photon pair rates

The time-averaged number density, in signal-idler wave-vector space, for the pho-

ton pairs in the quantum state |ψSPDC〉 of Eq. 25 is given by the fourth order coherence

function (Glauber, 1963b; Joobeur et al., 1994; Rubin et al., 1994)

G
(2)
s (ks,k) = 〈ψSPDC| ̂†(ks)̂†(k)̂(ks)̂(k) |ψSPDC〉

= 〈vac|
�

̂ −
∫

dk′′
s

∫

dk′′

ψ∗(k′′

s
,k′′


)̂(k′′

s
)̂(k′′


)
�

× ̂†(ks)̂†(k)̂(ks)̂(k)

×
�

̂ −
∫

dk′
s

∫

dk′

ψ(k′

s
,k′


)̂†(k′

s
)̂†(k′


)
�

|vac〉

= |ψ(ks,k)|2 (27)
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where we have used the commutation relation (Blow et al., 1990; Huttner and Barnett,

1992)

�

̂(k), ̂†(k′)
�

= δ(k − k′), (28)

along with the ground state property 〈vac| ̂†(k)̂(k) |vac〉 = 0. For stationary fields,

the mean photon pair rate Rπ over a pair detection domain Dπ can then be calculated

as (Jimenez et al., 2019)

Rπ =
1

Δt

∫

Dπ

dks

∫

Dπ

dk|ψ(ks,k)|2

= βc2Rp

∫

Dπ

dks

∫

Dπ

dk
ℏωpωsω

npnsnηsη

×
|A(ωp)|2

k+
p
2 cos2 θo

p

|F(θo
p
, ϕo

p
|ωp)|2 |s(Δkz)|2 , (29)

where β ==
d2effL

2

16π3ε0c5
, and where the pair detection domain Dπ is defined by the de-

tection apertures and filters of the pair of detectors. We note that, although it is

commonplace to refer to the photons that reach one of the detectors as ‘signal’ and

the photons that reach the other as ‘idler’, in the correctly formulated theory the sig-

nal and idler monikers are entirely interchangeable in all cases, including the case of

non-degenerate photon pairs. Although this notion may seem contradictory at first,

this simply means that, in every circumstance, half of the photons detected through

an arbitrary aperture are signal and the other half are idler. This has the obvious

consequence that ψ(ks,k) = ψ(k,ks), as may be verified from Eq. 26. Another con-

sequence of this signal-idler symmetry is that the pair-detection domain is the union

of the two single-photon detection domains, which appears perhaps unintuitive, and

implies that the detection domain can be divided into four parts (one with each of the

possible combinations of the two detection domains, usually only there are only two

of these that contribute to the observation, namely those in which the signal and idler

photons are emitted into opposite sides, yet there are conditions where the two other

terms will contribute cf. (O’Donnell and Garces, 2015)).

To reconcile our formulation with the usual interpretation, where one detector is

labeled ‘signal’ with detection domain Ds and the other is labeled ‘idler’ with detection

domain D, we assume the intersection Ds∩D is empty. This allows us to write the rate
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of coincident detection in the experimentally relevant form

Rπ =
2

Δt

∫

Ds

dks

∫

D

dk|ψ(ks,k)|2 (30)

and, for completeness, the mean number of photon pairs generated in time Δt is

given by Nπ = RπΔt. It is this last form of Eq. 30 that we use in the rest of the

section to derive the coincidence rate in some cases of interest. In producing Eq. 30

from Eq. 29 we have recognized that the two terms of form
∫

Dε

∫

Dε
|ψ(ks,k)|2, which

contribute to the pair rate near the optical axis in the general case, do not contribute

to the coincidence detection rate as measured using single photon detectors with non

overlapping detection domains. Although the generated pair rate of Eq. 29 and the

detected coincidence rate for non-overlapping detectors of Eq. 30 may be different

in the general case, the difference is only significant for near-axial observations (to

within a divergence angle of the pump beam). Moreover, these quantities become

exactly equal in the limit of an axial plane wave pump since all of the signal and idler

photons are emitted into opposite ends of the optical axis under this condition. In

simple terms, the main difference between Eq. 29 and 30 is that the latter will not

consider a pair if both members went through the same detector aperture, and as

such is better suited for the off-axis direct coincidence detection experiments that will

be presented in Chapter 4.

2.5.2 Gaussian beam and the focused beam correction

In the derivation of Eqs. 25 and 26, the implicit assumption is made that the pump

amplitude profile is constant along the propagation direction, which is a useful ap-

proximation but one that remains unphysical nonetheless. We shall now consider the

effects introduced in the two-photon amplitude due to focusing of the pump by assum-

ing a Gaussian beam form of the pump and keeping the explicit z spatial dependence

of the angular distribution. Then, the angular distribution of the pump amplitude is

given by

F(θp, ϕp|ωp, z) =
okp
p
2π

e−
2ok

2
p sin

2 θp
4 e−

kpz sin2 θp
2 , (31)
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which is in accordance with Eq. 8 to first order in θp. The frequency distribution is also

considered Gaussian with an amplitude distribution given by

A(ωp) =
1

p

σp(2π)1/4
e
−
(ωp−ωop)

2

4σ2p , (32)

which satisfies Eq. 7, and where σp is the width of the pump spectrum, here defined

as the standard deviation of |A(ωp)|2.

Note that the exponential with the imaginary argument in Eq. 31 is a linear function

of z, and this term will contribute to the longitudinal integration in Eq. 18. Now the

longitudinal QPM function is given by

1

L

∫ L/2

L/2
dzeΔkzze−

kp sin2 θp
2 z = sinc

¨�

Δkz −
kp sin2 θp

2

�

L

2

«

= s

�

Δkz −
kp sin2 θp

2

�

, (33)

where we have written the result in terms of the same longitudinal QPM function s

used for the weakly focused case. The correction due to pump focusing then amounts

only to a change in the argument of the longitudinal QPM function. In Eq. 26, the

argument of the s function will be evaluated at k+
p
θo
p

and ϕo
p
, and this implies that

the conditions required for perfect QPM in the plane-wave case are not changed by

this correction, as perfect QPM implies that θo
p
= 0. This focusing correction had been

obtained previously within the semi-classical approach (U’Ren et al., 2003).

2.5.3 Narrowband and wide-beam limits

The description at the quantum-state level of a narrow-band or wide-beam field for

the pump of the SPDC process presents a theoretical difficulty, given that a complete

description of the down-converted field requires a manifestly three dimensional (per

photon) multimodal approach. Within our formulation, the limiting cases of narrow-

band and wide-beam pump can be considered by use of the expression for the pair
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rate from Eq. 30. In the narrow-band pump limit we have that

lim
σp→0

|A(ωp)|2 = δ(ωp−ωop). (34)

The idler frequency integration in Eq. 30 may then be performed and Rπ becomes

Rπ = 2βc2Rpℏωop

∫

Ds

dks

∫∫

ΔΩ

dθdϕ
ωsω

npnsnηs

×
k2

sinθs

k+
p
2 cos2 θo

p

�

�

�F(θo
p
, ϕo

p
|ωo

p
)
�

�

�

2
|s(Δkz)|2 T(ω) , (35)

where ω = ωo
p
−ωs, ΔΩ is the solid angle implicit in the detection domain D, and

T(ω) is the filter transmission function for the idler photon. Since experiments are

often performed with narrow-band pump conditions, Eq. 35 is commonly useful. This

portion of our derivation differs from previous formulations (Blow et al., 1990), which

take the pump amplitude frequency distribution as A(ωp) ∝ δ(ωp−ωo
p
). Such approach

is attractive, but ultimately flawed, as these singular states are not normalizable; we

assume it is the intensity spectrum that is singular so that these limiting results follow

from analysis of finite probability amplitudes. As for the benefits of our methods, the

formal divergences in the calculation of the photon pair number operator expectation

of the form
∫

dωpδ(ωp − ωo
p
)δ(ωp − ωo

p
) for fields of finite power do not appear here,

and the dimensional analysis along with the interpretation of the quantitative scale is

simplified.

Further, in the wide-pump limit we have that

lim
o→∞

|F(θo
p
, ϕo

p
|ωo

p
)|2 = δ(ks, + k,)δ(ks,y + k,y)

= δ(k+
p
sinθo

p
cosϕo

p
)δ(k+

p
sinθo

p
sinϕo

p
), (36)

where we have used the condition Δk = 0 that was used to establish Eqs. 22-23 to

write the arguments of the delta functions in terms of signal and idler variables. We

then perform the idler angular integrations using the identity

∫∫

ΔΩ

dθdϕ sinθƒ (θ, ϕ)δ(k)δ(ky) =
ƒ (θo


, ϕo


)

k2 cosθ
o


D(θo , ϕ
o

) (37)

where D(θ, ϕ) is a binary discrimination function, which is here considered unity if
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(θ, ϕ) ∈ ΔΩ and zero otherwise, that accounts for the effect of the observation aper-

ture on the idler photon. Equation 37 follows from iterated application of δ() =

δ()/ ||. We then reach

Rπ = 2βRpℏωop

∫

dωs

ω3
s
ωns

npn
Ts(ωs)T(ω)

×
∫∫

ΔΩs

dθsdϕs
sinθs

cosθ
|s(Δkz)|2D(θ, ϕ) , (38)

where ΔΩs is the solid angle implicit in the detection domain Ds, and θ is now to be

found from the coplanar condition nω sinθ=nsωs sinθs. This condition requires the

signal and idler emission angles to be on strictly opposite sides of the optical axis,

so that they are coplanar with the pump; the pair rate and detected coincidence rate

are equal in this special case. We emphasize that Eqs. 29, 30, 35 and 38 predict the

absolute rates for given experimental conditions in dimensionally correct form.

2.5.4 Singles rate and down-converted power

We now consider the signal photon rate Rs passing through a circular aperture of

angular radius θ̃c , without bandwidth filtering and without any restrictions whatsoever

on the idler mode. For the limiting case of a narrowband, plane wave pump along the

optic axis, this follows from Eq. 38 with D(θ, ϕ)=1 and T(ω)=1. Integrating trivially

over ϕs, from −π/2 to π/2 to respect the assumption of non-overlapping signal and

idler domains, we obtain

Rs = 2πβRpℏωop

∫

dωs

ω3
s
ωns

npn

∫ Θs

0
dθs

sinθs

cosθ
|s(Δkz)|2 , (39)

where Θs = rcsin[sin θ̃c/ns]. By changing the integration variables of Eqs. 38 and

39 from ωs to ω =ωop − ωs, and from θs to its phasematched idler angle θ, expres-

sion are obtained that are identical in form, but with signal and idler variables inter-

changed. This is a consequence of the symmetry that exists between signal and idler

portions of the state and is a fundamental physical characteristic of the SPDC state. In

the Appendix, we show explicitly how these transformed expression with exchanged

signal-idler variables can be produced, and we comment on some other important con-
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sequences of this symmetry. A simple direct consequence is that R=Rs, which must be

the case from physical symmetry, and the total photon rate follows as R=Rs+R=2Rs.

In the more general case, the signal rate may be calculated from Eq. 29 by taking

Dπ = Ds for the domain of the dks integration and integrating over all wave-vector

space for the dk integration, so that

Rs =
1

Δt

∫

Ds

dks

∫

dk|ψ(ks,k)|2 (40)

The power of the signal light Ps follows from Eq. 39 after multiplying by Δt and

using the differential relationship dPs = ℏωs dNs as

Ps = 2πβPp

∫

dωs

ℏω4
s
ωns

npn

∫ Θs

0
dθs

sinθs

cosθ
|s(Δkz)|2 , (41)

where Pp = Npℏωop. The integrand of Eq. 41 differs by a factor of (4cosθ)−1 upon

comparison with a previous result (Byer and Harris, 1968); however, we note that our

(cosθ)−1 factor is essential in obtaining the correct functional symmetry discussed in

relation to Eq. 39. Finally, the total SPDC power in the aperture is given by P=Ps+P=

2Ps.

2.6 Vacuum amplitude and state normalization

The state |ψSPDC〉 that is calculated from first order perturbation theory is not properly

normalized. This is the case because, within this approximation, the time evolution

operator is no longer unitary, and thus probability is not conserved. Surprisingly, the

effect that this has on the product state |out〉 =
�

�{ψp}
�

|ψSPDC〉 is manifested as an

increase in the rate of the pump after the nonlinear interaction. This spurious increase

may be removed from the result by renormalizing the state of Eq. 25 as

|ψSPDC〉 =
�

Ms −
∫

dks

∫

dkψ(ks,k)̂†(ks)̂†(k)
�

|vac〉s,

= Ms |vac〉s, − |s, 〉s, (42)
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where |s, 〉 is the two-photon term, and

Ms =
Æ

1 − Nπ

=
Æ

1 − RπΔt (43)

is the signal-idler vacuum amplitude. Equation 43 allows us to determine an upper

bound for the maximal characteristic time, so that Δt ≤ 1/Rπ. It is interesting to note

that normalizing the result only predicts that the coherent-state pump is undepleted

by the nonlinear interaction, which is a consequence of the fact that the coherent state

is an eigenstate of the annihilation operator.

We will now show that, for the less idealized case of a single-photon pump, appro-

priate renormalization implies pump depletion at a rate of one pump photon lost for

each photon pair produced. For simplicity, the attenuated pump state of Eq. 9 is now

written as

�

�{ψp}
�

= Mp |vac〉p + |p〉p , (44)

where

|p〉 = γ
q

Np

∫

dkpψp(kp)ep ̂†(kp) |vac〉p (45)

is the single photon term. Considering Eqs. 42 and 44, the output state is now

|out〉 = Mp |vac〉p,s, + |p〉p |vac〉s − γ |vac〉p |s, 〉 (46)

where |vac〉p,s, = |vac〉p |vac〉s, is a direct product of pump, signal, and idler vacuum

states. It is easy to show that

∫

dkp 〈p|p〉 = γ2Np (47)

and

∫

dks

∫

dk 〈s, |s, 〉 = Nπ, (48)
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with which we see that the normalized form of Eq. 46 is given by

|out〉 = Mp |vac〉p,s, + M′s |p〉p |vac〉s − γ |vac〉p |s, 〉 , (49)

where

M′
s
=
p

1 − Rπ , (50)

and Rπ = Rπ/Rp is the pair conversion efficiency. With this, the pump rate is now

Rp − Rπ, while the pair rate remains as Rπ; if we interpret both each pump photon

and each generated biphoton as a single quantum wave-packets (Shih, 2016), then

this formulation is conservative with respect to the number of independent bosonic

quanta. An interesting aspect to note of this result is that, in this weak pump limit, we

do not find an upper bound to the characteristic time Δt, as was the case in the case

of a coherent pump. We can also use Eqs. 49 and 50 to consider the particular case of

a single-photon pump that has a negligible contribution of the vacuum amplitude by

taking Mp ≈ 0, which implies Np ≈ 1, and which represents down-conversion created

by heralded pump photons.

In the following chapter, we shall present an application of this theory to describe

the process of entangled photon pair recombination and, later in this work, we will

present calculations produced from our results and will compare them with experi-

mental observations. However, the generality of the method, and the various impor-

tant limits that are discussed, may allow for it to be applied to a broad range of in-

teresting phenomena involving entangled photon pairs, such as the Hong-Ou-Mandel

interferometer. Although existing theories have been used successfully to theoretically

address several important observations involving the SPDC state, the issue of quanti-

tative scale had remained a seldom addressed topic in the field (Byer and Harris, 1968;

Shoji et al., 1997), and a formal derivation of the results from modern quantum optical

theory had not been presented.

Among the possibilities for future work in this area, the calculation of higher orders

in the Dyson series with similar generality remains a most important issue, and could

find direct application in experiments using pulsed lasers.
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Chapter 3. Theory of time-frequency entangled photon

pair recombination

In the quantum optical process of photon pair up-conversion, the recombination of

a time-frequency entangled photon pair implies the creation of a single photon in a

mode that was initially in the vacuum state. In this chapter, we present a quantum

optical theory of the recombination of entangled photon pairs in the regime where re-

combination events produced by members of different pairs may be neglected. We use

this theory to calculate the quantum state of up-converted light generated in a non-

linear crystal of properties identical to that in which the photon pairs were generated.

The output of this process will be shown to interfere coherently, in the second-order

amplitude sense, with the original pump that generated the down-conversion.

This analysis is focused on the first-order coherence properties of the up-converted

field. The incident two-photon state is considered to be, up to a frequency-dependent

phase factor, that which was created in the down-conversion crystal, and the linear

optical system that is used to approximate this condition is discussed. In contrast to

coincidence detection experiments, the phase which the two-photon state acquires as

a consequence of material dispersion plays an important role here; this is because

efficient recombination requires that the combinations of signal-idler optical paths are

not only spatially overlapped, but also time-synchronized over the bandwidth of the

incident down-converted pairs within the recombination crystal.

The up-conversion process, as we shall see, is the time-reversed analogue to SPDC

and some of the methods used here are similar in nature to those that have been

used in Chapter 2; this derivation, however, is presented in full detail as it requires

some unique considerations. We shall employ some of the results and equations from

Chapter 2, although we will redefine, for clarity, Δk → Δkd as the wave-vector mis-

match in the down-conversion crystal, and we introduce the analogous quantity for

the up-conversion crystal as Δk. Throughout the analysis, it assumed that the refrac-

tive indices of the down-conversion and recombination crystals are identical, which

requires identical crystal temperatures. In practice, the small differences in the bulk

properties of the two crystals used to produce the down-conversion and recombination

may require that the temperatures be very slightly different to maximize the output

rate.
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3.1 The role of dispersion in photon pair recombination

The linear-optical aspect of the propagation of the photon pairs produces in gen-

eral a transformation of the two-photon state of Eq. 42 that accounts for both the

spatial and temporal effects that are produced by the optical system that is used to

manipulate the two-photon amplitude. Nevertheless, using a suitably prepared optical

system, it is possible to produce a close approximation of the state that is generated

in the down-conversion crystal within a second crystal of identical linear optical prop-

erties. To preserve the form of the two-photon input state that will be formed in the

second crystal, it is necessary to carefully consider and compensate for the temporal

dispersion that the members of a photon pair will experience in their propagation over

the full bandwidth that we wish to recombine, as has been pointed out in the literature

(Dayan et al., 2005; Peer et al., 2005; Gunther, Aimee Kirsten, 2018).

The reason dispersion analysis is important in recombination, despite the fact that

the experiments may be performed in the CW regime, is a consequence of the form

of the two-photon state of Eq. 25. Such a state represents a continuous linear super-

position of signal and idler modes, which implies that each photon pair is created in a

broadband coherent superposition of mode pairs and propagates with a broad range

of frequency pairs and combinations of emission-angles. Thus, all of the possible ways

a pair of signal and idler photons may propagate into the recombination crystal are as-

sociated with a probability amplitude that contributes coherently to the outcome. The

frequency superposition creates the time-energy entanglement that is observed as a

strict correlation in the creation time for the signal and idler members of a photon pair;

desynchronization translates to phase differences in the different components of the

two-photon amplitude which leads to negligible recombination rates due to destruc-

tive interference in the up-converted amplitude. An important factor to consider is

the dispersion produced by the propagation within the nonlinear crystals themselves;

for example, the portion of two-photon amplitude generated at the entrance face of

the crystal propagates through more of the material than the portion generated in the

center.
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3.2 The incident two-photon state

L L
CIS

Pump

NLC2

Figure 1. Dispersion-compensated imaging system (CIS) with unit magnification that couples the infrared
photon pairs produced in the non-linear crystal NLC1 into an identically-prepared crystal NLC2. The
system also removes the pump light.

Figure 1 is a depiction of a dispersion-compensated, unit-magnification optical imag-

ing system (CIS) that may be used to image the interaction volume of the downcon-

version crystal (NLC1) into the recombination crystal (NLC2). In such a system, any

paraxial optical path of a signal photon can be propagated from an arbitrary point in

the down-conversion crystal to the corresponding focal point in the up-conversion crys-

tal while traversing a length L of the crystal material, to first order in θs. This property

of the unit magnification system plays a crucial for recombination; so long as both crys-

tals are made of the same material and have the same length, the temporal dispersion

of the photon pairs produced throughout the crystal volume is constant from the point

of generation to recombination, and an efficient interaction can be achieved. Compen-

sation of the group delay dispersion, frequently the most important term to consider,

is most commonly achieved with methods such as are used to produce ultrashort laser

pulses (Dield and Rudolph, 2006).

With the previous considerations, we may take the initial state |in〉 within the NLC2

crystal as

|in〉=
�

̂−
∫

D
dks

∫

D
dkψ(ks,k)e[φ(ks)+φ(k)] ̂†(ks)̂†(k)

�

|vac〉 , (51)

where ̂ is the identity operator. The state of Eq. 51 is the direct product of the state

|vac〉p with a normalized two-photon state similar to that of Eq. 42, which includes the

phase terms φ(ks) and φ(k) that represent, respectively, the wave-vector-dependent

phase acquired by the signal and idler photons in their propagation from a source point

in the down-conversion crystal to the focal point in the recombination crystal, and we

have that the integration domain for the signal and idler variables is limited in both
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cases to the same set of wave-vectors D. The two-photon amplitude ψ(ks,k) is given

by Eq. 26.

3.3 Temporal evolution and commutation relations

To first order in perturbation theory, the quantum state of up-converted light is

given by

|out〉 =
�

̂ −


ℏ

∫ ∞

∞
dtĤint(t)

�

|in〉 , (52)

where Ĥint(t) is the interaction Hamiltonian of Eq. 10. The relevant term of the Hamil-

tonian is that which was written as a Hermitian conjugate in Eq. 10, since the term

associated with down-conversion produces the state with zero norm after evaluating

its action on our input state. Substituting the Hamiltonian of Eq. 10 and the input state

of Eq. 51 we reach the following intermediate result

|out〉 =
�

̂ −
∫

dks

∫

dk ψ(ks,k)e[φ(ks)+φ(k)] ̂†(ks)̂†(k)

+

√

√

√ 4d2effℏ

(16π3)3ε0c3

∫ ∞

−∞
dt

∫

V

dr

∫

dkp

∫

dks

∫

dk

∫

dk′
s

∫

dk′


×

√

√

√

ωpωsω

npnsnηpηsη
ψ(k′

s
,k′


)e

�

φ(k′
s
)+φ(k′


)
�

e(ωp−ωs−ω)te−Δk
 ·r

× ̂†(kp) ̂(ks) ̂†(k′s) ̂(k) ̂
†(k′


)
�

|vac〉 , (53)

where Δk = kp − ks − k − kg is the wave-vector mismatch in the up-conversion crys-

tal and V is the crystal volume. The three terms in the square brackets of Eq. 53

are, respectively, the vacuum term, the two-photon term, and the recombination term

which we will now simplify. The temporal integration in the recombination term can be

performed immediately with

∫ ∞

−∞
dt e(ωp−ωs−ω) = 2πδ(ωp − ωs − ω), (54)
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while the spatial integration is performed assuming lateral crystal dimensions are

much larger than the signal and idler spatial domains, which yields

∫ ∞

−∞
d

∫ ∞

−∞
dy

∫ L/2

−L/2
dze−Δk

 ·r = (2π)2Lδ(Δk

)δ(Δk

y
)s∗(Δk

z
), (55)

where s(Δkz) is defined by Eq. 19. We rewrite the commutation relation of Eq. 28 as

̂(ks)̂†(k′s) = δ(ks − k′s) + ̂
†(k′

s
)̂(ks) which, after being substituted into Eq. 53 along

with an identical expression for the idler variables, allows performing the integrations

on the primed variables by virtue of the delta functions that are introduced. The term

of form ̂†(k′
s
)̂(ks) (and the corresponding idler term) that is introduced by using

the commutation relation produces a null contribution to the output state, thus being

inconsequential in this case.

3.4 Quantum state of up-converted light

After removing the two-photon term from Eq. 53, which is of no further interest for

our purposes, the state |out〉 represents solely the state of up-converted light and is

now denoted by |ψ〉. This state may be written as

|ψ〉 =
�

̂ −

Æ

Npd2effL
2ℏ

16π3ε0c3

∫

dkp

∫

Ds

dks

∫

Ds

dk

� ωsω

nsnηsη

�

×
�ωp(ωs+ω)η+p

n+
p
npηp

�

1
2ψp(k+p)

cosθo
p

s(Δkd
z
)s∗(Δk

z
)δ(Δk


)δ(Δk

y
)

× δ(ωp−ωs−ω)e[φ(ks)+φ(ki)]ep ̂†(kp)
�

|vac〉 , (56)

where ΔDs is the wave-vector domain which is transmitted by the optical system

that couples the two crystals. The idler differential in Eq. 56 is now expanded using

dk=dω dθ dϕ k2 η sinθ, which allows us to perform the ω integration trivially with

the frequency delta function, setting ω=ωp−ωs . The (θ, ϕ) integrations may then be

performed using an identity analogous to Eq. 21, but where we are now required to

account for the limits of the integration domain, that for an arbitrary function ƒ (θ, ϕ),

∫∫

ΔΩs

dθdϕ sinθ ƒ (θ, ϕ)δ(Δk)δ(Δk

y
) =

ƒ (θo

, ϕo


)

k2 cosθ
o


D(θo , ϕ
o

) , (57)
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where ΔΩs is the solid angle implicit in Ds. Here, D(θo , ϕ
o

) is a discrimination function

that is unity if (θo

, ϕo


) ∈ ΔΩs , and zero otherwise, which accounts for the potential

aperture occlusion of the idler photon. The angles (θo

, ϕo


) are those that zero the

delta function arguments in Eq. 57; it is thus readily shown that they follow from

tnϕo

=

kp sinθp sinϕp − ks sinθs sinϕs
kp sinθp cosϕp − ks sinθs cosϕs

, (58)

sinθo

=
kp sinθp cosϕp − ks sinθs cosϕs

k cosϕo
. (59)

After integrating Eq. 56 over θ and ϕ in this way, the recombined pair state takes the

form

|ψ〉 =
�

̂ −
q

Np

∫

dkp E(kp)ψp(kp)ep ̂†(kp)
�

|vac〉 , (60)

with E(kp) given by

E(kp) = βc2
ℏωp

np cosθp

∫

Ds

dks

� ωsω

nsnηs

�

×
D(θo , ϕ

o

)

cosθo

�

�s(Δkz)
�

�

2
e[φ(ks)+φ(k)] , (61)

where β =
d2effL

2

16π3ε0c5
, k = kp − ks is the idler wave-vector with frequency ω and angles

(θo

, ϕo


), and where Eqs. 23-22 and Eqs. 58-59 have been used to establish that

kp=k+p , and thus Δk=Δkd≡Δk.

Equations 60 and 61 may be considered the main results of this chapter, as they can

be used to derive all of the information that is experimentally available using the up-

converted field of light. The up-converted state of Eq. 60 is the coherent superposition

of a vacuum state and a single photon state, which resembles the form of the attenu-

ated pump state presented in Eq. 9. The function E(kp) is then an attenuation factor,

which we refer to as the dimensionless amplitude transfer function, which is found to

be dependent on the properties of both the nonlinear crystals, as well as the system

which couples the photon pairs from the down-conversion crystal into the recombina-

tion crystal. Note that both the magnitude and the relative phase of the amplitude

transfer function among the k-space domain of the pump amplitude ψp(kp) are of in-

terest in Eq. 60. The form of our amplitude transfer function E(kp) of Eq. 61 resembles

the rate of pair detection Rπ of Eq. 38 yet, despite having nearly identical functional
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forms, there is a subtle difference between them which stems from the physical mean-

ing of the ΔΩs and ΔΩ domains of detection, considered to be non-overlapping, and

the ΔΩs domain of transmission which is the same for signal and idler photons and

thus overlaps. This difference manifests in the photon pairs for which both the signal

and idler wave-vectors lie on the same side of the optical axis, which do not contribute

to pair detection when the detectors used are not photon-number resolving, but con-

tribute to the up-conversion process and have been observed to cause interference

effects in experiments (O’Donnell and Garces, 2015).

It is remarkable that the complete down-conversion-up-conversion process may be

described in terms of the transfer function E(kp), which is linear in the pump amplitude.

This simple description can be readily adapted to reflect more advanced experimental

conditions beyond the elementary situation here considered. For example, introducing

a time delay between the members of a signal-idler pair requires only that we account

for the phase acquired by the delayed photon in its propagation; as we shall see,

this allows us to theoretically explore the coherence properties of the down-converted

field at the femtosecond-scale. Similarly, optical aberrations and imperfect dispersion

cancellation can be considered, as well as other experimentally-significant features

such as the effects of the limiting aperture for the photon-pair coupling system. In

the rest of this chapter, we shall first describe the fundamental coherence properties

of the up-converted field, and will later evaluate the amplitude transfer function for

some currently-relevant configurations. Additionally, we will consider that the phase

term φ(kε) is only a function of the frequency ωε = c|k|/nε and not of the angles

(θε, ϕε) (for ε ∈ {s, }), so that it will be called a chirp term and will be denoted as

φ(ωε).
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3.5 Coherence functions and the up-converted photon rate

The up-converted state of Eq. 60 provides us with a complete description for the

up-converted modes of the quantized electromagnetic field at the output of the recom-

bination crystal. All of the experimentally-available characteristics of this field may

be computed as the expectation of the relevant field-theory operators in the state

|ψ〉 (Glauber, 1963b). We will now employ this result to determine the self-coherence

function of the up-converted state |ψ〉 and the mutual coherence function of this state

with an attenuated version of the pump
�

�ψp
�

. These calculations will provide important

insights into the properties of the up-converted state, such as the fringe visibility that

may be experimentally observed by interference of the up-converted and pump fields,

as well as the up-converted photon rate.

3.5.1 Self-coherence function, up-converted photon rate, and the normal-

ized coherence function

The association of the two-field coherence function with the first-order coherence

properties of the field modes used here is well established (Glauber, 1963b), and

has been employed for continuum fields in studies of down-conversion (Joobeur et al.,

1994). For a stationary state |ψα〉, we define the second-order self-coherence function

as

G(1)
α
(k,k′|τ) = 〈ψα| ̂†(k)̂(k′) |ψα〉e−ω

′τ, (62)

where the plane wave mode with wave-vector k′ has a time delay τ relative to the

mode with wave-vector k, and ω′ = c|k′|/nα. Evaluating Eq. 62 for the up-converted

state of Eq. 60 yields

G(1)

(k,k′|τ) = NpE∗(k)ψ∗p (k)e

−pE(k′)ψp(k′)epe−ω
′τ. (63)

When evaluated at k = k′, and τ = 0, Eq. 63 is simply the up-converted photon

number density in wave-vector space; the wave-vector integral in Eq. 63 over a finite

domain is then the expectation for the up-converted photon number. Finally, dividing
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this photon number number by the time Δt yields the up-converted rate

R =
1

Δt

∫

dkpG
(1)

(kp,kp|0)

= Rp

∫

dkp
�

�E(kp)ψp(kp)ep
�

�

2
, (64)

and the up-conversion efficiency is then R = R/Rp. In the limiting case where

E(kp) ≈ E(ko
p
) may be considered constant within the domain of the pump amplitude

ψp, the up-conversion efficiency is reduced to H =
�

�

�E(ko
p
)
�

�

�

2
. The values of G(1)


(k,k′|τ)

having nonzero τ and distinct wavevectors are also of importance; these determine the

general spatiotemporal coherence properties of the state which can be detected inter-

ferometrically through superposition of different portions of the up-converted field.

As it is most convenient to discuss coherence in normalized terms, we shall intro-

duce the normalized self-coherence function, which is defined as (Joobeur et al., 1996).

g(1)

(k,k′|τ) =

G(1)

(k,k′|τ)

Ç

G
(1)
 (k,k|0)G

(1)
 (k′,k′|τ)

. (65)

Using Eqs. 63 and 65, it is trivial to verify that
�

�g(1)

(k,k|τ)

�

� = 1, which implies that the

up-converted field has perfect spatial and spectral first-order self-coherence, so that

different wave-vector components of the up-converted state can interfere with unit

visibility when superposed.

3.5.2 Mutual coherence of the pump and up-converted light

We now consider the product state
�

�ψp⊗
�

=
�

�

�

ψp
	�

|ψ〉, where we assume the

Hilbert subspaces of the pump and up-converted states are non-overlapping. Due

to the extremely large difference in the pump and up-converted photon rates, the vis-

ibility of the interference in direct superposition of these fields would be vanishingly

small. To observe significant effects in the interference between the pump and up-

converted field, it is necessary to attenuate the pump state to a level that is similar

to that of the up-converted state. Thus, we consider the up-converted state of Eq. 60

along with the pump state of Eq. 9, with γ ∼ E(kp) for kp in the domain of ψp(kp), and
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write the product state as

�

�ψp⊗
�

=
�

̂ + p̂† + ̂†
	

|vac〉p |vac〉 , (66)

where p̂† is the second term in Eq. 9, ̂† is the second term in Eq. 60, and we have

ignored the nearly unitary normalization constant Mp along with a small term pro-

portional to ̂†p̂† corresponding to one photon in each mode. We define the mutual

coherence function for the product state as

G(1)
p
(kp,k|τ) =




ψp⊗
�

� ̂†(kp)̂(k)
�

�ψp⊗
�

e−ωτ

= eπγ∗ψ∗
p
(kp)E(k)ψp(k)e−ωτ. (67)

where τ is the a relative time delay. The normalized mutual coherence function is then

defined as

g(1)
p
(kp,k|τ) =

G(1)
p
(kp,k|τ)

r

G
(1)
p (kp,kp|0)G

(1)
 (k,k|τ)

, (68)

from which it is simple to show that, in the small-efficiency limit (viz. where γ2 << 1)

|g(1)
p
(kp,k|τ)| = 1 (69)

which implies that perfect visibility can be obtained in the interference of the up-

converted and attenuated pump states.

Our analysis here neglects the effects of losses, which are experimentally inevitable;

however, it has been established that the two-photon part of the down-converted state

retains a pure state description even when losses are introduced into the Hamiltonian

(Helt et al., 2015; Helt and Steel, 2015). With the up-converted state consequently

being the pure state, it is thus expected that the pump/up-conversion interference

fringes will be temporally stable, as has been experimentally demonstrated (Jimenez

et al., 2019). It is clear that, whenever the incident down-converted field may be de-

scribed adequately by a photon pair state of the form of Eq. 51, the up-converted light

will accept a single-photon description such as is given by 60.
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With this, we have demonstrated that the up-conversion of entangled photon-pairs

is an entirely quantum optical phenomenon that represents a detectable consequence

of the spatio-temporal entanglement of the photon pairs in the SPDC state, and which

allows the recombined photon to remain fully coherent with the original pump.

3.5.3 Single-frequency pump limit

We will now discuss in detail the up-converted rate for the limiting case of a single-

frequency pump. The up-converted rate of Eq. 64, along with the dimensionless trans-

fer function E(kp), are written in terms of the frequency and angular variables ωp, θp,

and ϕp by expanding the pump wave-vector differential using

dkp = dωpdθpdϕpk
2
p
ηp sinθp, (70)

and substituting Eq. 5 for the pump amplitude ψp(kp). Then, we take the narrowband

limit
�

�A(ωp)
�

�

2 → δ(ωp − ωo
p
) and perform the ωp integration, with the result that

R = Rp

∫∫

dθpdϕp sinθp
�

�

�Eωo
p
(θp, ϕp)F(θp, ϕp|ωo

p
)ep

�

�

�

2
, (71)

where, now with ω=ωop−ωs,

Eωo
p
(θp, ϕp) = β

ℏωo
p

np cosθp

∫

dωs

nsω3sω

n
e[φ(ωs)+φ(ω)]

×
∫∫

ΔΩs

dθsdϕs
sinθs

cosθo
D(θo , ϕ

o

)
�

�s(Δkz)
�

�

2
. (72)

From the form of Eq. 71, and through its comparison with Eq. 8, we identify Eωo
p
(θp, ϕp)

as the angular modal transfer function for a single-frequency pump. This is the transfer

function relevant to the recent CW up-conversion experiments (O’Donnell and U’Ren,

2009; O’Donnell, 2011; Jimenez et al., 2019) and may be regarded as a simplification

of E(kp) from Eq. 61. We emphasize that, in this formulation, the single-frequency

limit is taken in accordance with the normalization condition of Eq. 7 in the calculation

of the rates, as opposed to the more usual, though non-normalizable, consideration of

taking the amplitude itself as approaching a delta function, i.e. A(ωp) → δ(ωp − ωo
p
),

which results in spurious terms of the form δ2(ωp−ωo
p
) that have been a source of error



32

in the dimensions of existing formulations and can not be defined within distribution

theory. In the important case when, after exiting the first crystal, the SPDC is limited

by a circular aperture to a cone of angular radius θ̃c , Eq. 72 simplifies to

Eωo
p
(θp, ϕp) = β

ℏωo
p

np cosθp

∫

Δωs

dωsS(ωs)e[φ(ωs)+φ(ω)] , (73)

where the integration is taken over the relevant positive frequency bandwidth,

S(ωs) =
nsω3sω

n

∫ Θs

0
dθs

∫ 2π

0
dϕs

sinθs

cosθo
D(θo )

�

�s(Δkz)
�

�

2
, (74)

and Θs = rcsin[sin θ̃c/ns] is the angular limit within the crystal. Here, D(θo ) =

D(θo , ϕ
o

) represents the circular limiting aperture in idler variables which is now in-

dependent of ϕs. In particular, D(θo ) is zero if θo

> Θ ≡ rcsin[sin θ̃c/n], and unity

otherwise. It is also notable that the pump angles (θp, ϕp) are not seen in S(ωs) in Eq.

74, but they enter implicitly through (θo

, ϕo


) from Eqs. 58-59.

For a circular limiting aperture, the angular transfer function is independent of ϕp,

so we may write simply E(θp) = E(θp, ϕp). In order to easily introduce the effects of

dispersion, it can be useful to transform the integration variable in Equation 73 from

ωs to Δω = ωs − ωd, so that

Eωo
p
(θp) = β

ℏωo
p

np cosθp

∫

dΔωS(ωd + Δω)e[φ(ωs+Δω)+φ(ω−Δω)] (75)

Using arguments similar to those of the Appendix, it is possible to show that the pos-

itive and negative portions of the Δω integration domain represent an exactly equal

number of photons; this property can be useful when performing numerical and ana-

lytical computations, as the discriminator function D(θ) may be neglected within the

S(ωd + Δω) for Δω < 0.
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3.5.4 Wide-beam pump limit

Finally, we consider the further limit of a pump beam that is quite wide at the

crystal and propagates along the optical axis. This limit is properly taken in Eq. 71

as |F(θp, ϕp|ωop)|
2 → k2

p
δ(kp sinθp cosϕp)δ(kp sinθp sinϕp), and for the case of perfect

dispersion compensation yields

R=Rp |EWPωo
p

ep |2, (76)

where

EWP
ωo
p

= β
ℏωo

p

np

∫

dωs

nsω3sω

n

×
∫∫

ΔΩs

dθsdϕs
sinθs

cosθo
D(θo )

�

�s(Δkz)
�

�

2
. (77)

In Eq. 77, the idler angles are to be evaluated at θp=0, which follow from Eqs. 58-59 as

(θo

, ϕo


)=(rcsin[ nsωs

nω
sinθs], ϕs−π). Further, it is also clear that EWP

ωo
p

=Eωo
p
(θp, ϕp)

�

�

θp=0
=

E(ko
p
) , where ko

p
is the axial wave-vector with frequency ωo

p
.

At this point, upon comparing the up-converted rate of Eq. 76 and the signal rate

of Eq. 39 we see that they are both formulated using similar integrals, and both

depend in a linear manner on the pump photon rate Rp, yet we can also see two key

differences. The first of those differences is that the upconverted rate R depends

on the square of the integrals that determine the efficiency, and the second is the

presence of the idler photon angular discriminator function D(θo ) in Eq. 77. Two

consequences of this observation are that the total emitted pair rate over a circularly

symmetric aperture may be calculated as Rπ = EWP
ωo
p

, and that, under the experimental

conditions here discussed, the efficiencies of the down-conversion and up-conversion

processes are identical. This similarity, however, must not be interpreted as meaning

that coincidence pair detection and up-conversion provides identical insights of the

down-converted field; a critical difference between these two processes is that the up-

conversion process is, in general, sensitive to the phase (including the chirp) present

in the two-photon state, and can thus be used to directly probe the complex-valued

two-photon amplitude.
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3.5.5 Time-delayed up-converted rate

The simplifications afforded by taking the limit of a wide-beam pump opens the

path to a calculation method that is perfectly suited for evaluation of time-delayed

up-conversion experiments, where the spatial dependence of the up-converted state

can be ignored. The up-converted photon rate observed with a signal-idler time-delay

of τ is calculated in a manner analogue to Eq. 64 as

R(τ) =
1

Δt

∫

dkpG
(1)

(kp,kp|τ)

= Rp |Eo(τ)|2 , (78)

which follows from Eq. 71 and where we have used the amplitude transfer efficiency

EWP
ωo
p

has been renamed to Eo(τ) and is now given by

Eo(τ) = β
ℏωo

p

np

∫ ∞

0
dωsS(ωs)eωsτe[φ(ωs)+φ(ω)] , (79)

where it is understood that S(ωs) is to be evaluated with θp = 0 in Eq. (74). Thus Eo(τ)

can be nearly the Fourier transform of S(ωs), depending on the significance of the chirp

phase terms. Although the notion of arbitrarily delaying all signal photons compared to

their respective idlers may strictly appear possible only within Gedanken-experiments,

within the wide-pump limit this situation is indeed equivalent to the experimentally-

available situation where one half of the emission cone is delayed with respect to the

other; this is due to two reasons: first of all, because of the symmetry that exists

between the signal and idler variables, which is discussed in the Appendix, and more-

over because of the geometrical consequence of the wide-pump limit on the emission

angles, which guarantees that the two-photon amplitude will be non-zero only for com-

binations of signal and idler variables which are on opposite sides of the optical axis

and that they all contribute to the same axial up-converted amplitude.

Time-delayed photon pair recombination experiments can attain ultra-sharp tempo-

ral resolution, which is essentially limited only by the dispersion-compensated band-

width that is able to recombine in the second crystal, and in principle can be close the

optical period of the pump (Harris and Sensarn, 2007). Attaining larger up-conversion

efficiencies remains a challenging issue, one which may require the development of
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improved methods for dispersion compensation to increase the effective up-conversion

bandwidth.

To close this chapter we emphasize that, within this work, every possible effort has

been made to keep the theoretical approach to photon pair recombination as general

as possible and represents a complete description of the entangled photon pair up-

conversion process in the spontaneous regime. Evaluations of these expressions may

be applied to study the dependence of the recombination rates on parameters such

as pump wavelength and bandwidth, crystal temperature, and phase aberrations of

the optical system. More fundamentally, the process of entangled photon pair recom-

bination may be used to probe the phase and temporal properties of the two-photon

amplitude itself, providing information well beyond the capabilities of common tech-

niques such as coincident pair detection.
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Chapter 4. Measurements and calculations of the en-

tangled photon pairs generated in periodically-

poled KTP crystals

In this chapter, we present an experimental study of the degenerate and non-

degenerate, non-collinear down-converted light produced by SPDC in periodically-poled

KTP nonlinear crystals. A comparison of the observations with calculations from the

theory is also presented for the observations relating to the angular and crystal tem-

perature dependence of the detected photon pair rate. Two optical pump systems

were implemented and crystals with two different design periodicities were used and

characterized.

The entangled photon pairs were detected through coincidence detection using a

pair of single-photon detectors. The dependence of correlated emission on crystal

temperature is examined in detail through both narrowband and broadband observa-

tions. The dependence of the rate of coincident photon pairs as a function of detection

angle and filter frequency is also studied experimentally under a broad range of con-

ditions. The system has shown to be capable of detecting frequency degenerate and

non-degenerate photon pairs with a large dynamic range for pair rates, ranging from

under 1 pair per second to over one hundred thousand pairs per second. In addition,

we also present a set of measurements using the down-converted light which relate to

the characterization of the transverse homogeneity of our periodically-poled KTP crys-

tals which are used to generate the emission. The experimental arrangement built for

this work includes the optical system for the production and detection of the entangled

photon pairs, as well as the electronic and logical systems for the control, monitoring,

and data logging of our experiments. In addition to the experimental arrangement,

the observations also rely on practices and procedures that follow from theoretical

considerations, and an attempt is made to comment upon these aspects where it is

relevant.
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4.1 Experimental arrangements

The experimental setup is shown in Fig. 2, where it is possible to pump the PPKTP

crystal with either of two narrow-band laser systems, LS1 and LS2, with relative ease.

LS1

LS2

HWP RP

OI

OI

HWP RP

M1
M2

M3

M5

M4

CCD

BD

L1

L2

PB

RG665PPKTP

L4
AP
NBF
L5

L3

M6

OF

SPCM
SPCM

COAX

θ
Signal

detector

Idler
detector

Figure 2. Experimental diagram. The pump beam from either the LS1 or LS2 laser systems is focused by
the L1 or L2 lens, respectively, to form a waist in a PPKTP crystal mounted in an oven after passing through
an optical isolator (OI), a half-wave plate (HWP), a Rochon polarizer (RP), and a dielectric mirror (M1 or
M4). The exiting light reaches a pump block (PB) and a Schott RG665 infrared filter, and then mirror
M2 deflects the idler light downward to a collimating lens (L4), a circular limiting aperture (AP), and a
narrowband filter (NBF). Lens L5 then couples the light to a multimode fiber (OF) and detector (SPCM).
The signal side is undeflected and has analogous components; the components after its collimating lens
are mounted on a two-dimensional translation stage. Mirrors M2 and M3 reflects the light rejected from
the polarizer to a lens (L3) and diffraction grating (DG), which casts a spectrum on a CCD. The M5 mirror
is attached to a flip mount to select either pump laser system.

4.1.1 Pump laser systems

The laser system LS1 is a wavelength-stabilized laser diode (Ondax SureLock) which

produced a nearly circular Gaussian beam of nominal wavelength λp ≈ 406.1 nm with

single-mode bandwidth of Δλp ≈ 7 × 10−5 nm, and a maximum power at the entrance

of the crystal of 22 mW. During operation, the temperature and current of the diode

is controlled using a Stanford Research Systems laser diode controller (LDC501). The

user-adjustable temperature control of the diode has been found to provide a flexible

and reliable mechanism to tune the emission wavelength over a range of approxi-

mately 0.3 nm, and has also been used to us to produce observations where the laser
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is simultaneously emitting in two-frequencies. By locking the laser system into a ’ref-

erence’ emission line prior to each measurement using a CCD, specifically chosen for

its observed stability, we have produced sets of self-consistent observations over a

temporal span covering several weeks.

The LS2 laser is an actively stabilized laser diode (Toptica TopMode) which produced

a circular Gaussian Beam of nominal wavelength λp = 405 nm, a bandwidth of Δλp <

1 × 10−5 nm, and a maximum power at the entrance of the crystal of 100 mW. The

active stabilization control unit of this laser system does not admit any significant level

of user adjustment of the operation parameters and may lock into different laser lines

on separate occasions, depending on laboratory conditions.

The beams from LS1 and LS2 are focused using lenses L1 and L2 to e−1 amplitude

radii of o = 95μm and o = 110μm, respectively, at the center of the nonlinear

crystal. As the confocal parameters of the beams are 140 mm for LS1 and 183 mm for

LS2, the transverse amplitude profile of either beam may be considered as constant

along length of the crystal to a very good approximation.

Upon selection of the laser system to be used, the optical isolator (OI) and power

control (PC) systems are fitted, and the flipping mirror M5 is configured as required.

The power control system is composed of a Rochon polarizer RP and a zero-order half-

wave plate (at λ = 405 nm) HWP. The introduction of the optical isolator significantly

improved the frequency stability of both of our laser systems.

4.1.2 Frequency stability monitoring system

Throughout experiments, the stability of the laser was monitored and logged using

the pump light deflected by the Rochon polarizer. This light was reflected from the mir-

ror M2 for LS1 and M3 for LS2, then passed through the lens L3 to a diffraction grating

DG, whose second diffracted order was attenuated and focused onto a commercial

CCD device with a USB interface. A real-time monitoring and data logging system was

implemented; this extracted a line of pixels from the blue channel of the CCD camera,

which provided 8 bits of resolution in the intensity scale at 15 Hz.

The spectral resolution of our monitoring system is 50 pm, which is orders of mag-
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nitude larger than the laser line-width for either of our systems, but is adequate to

resolve the separation between adjacent laser lines and allows us to detect any sig-

nificant drift. This instrument has proved critical for obtaining self-consistent sets of

data, as well as to produce observations with LS1 operating in two-frequency modes

with varying wavelength separation. No mode hopping or drifting was observed during

the measurements to be presented here.

4.1.3 PPKTP crystals and temperature control

The crystals used in this work were periodically-poled KTP of length 5mm with a

poling period Λ=3.425μm for crystals of type A, and Λ=3.375μm for crystal of type

B, which provided quasi-phasematching to nearly axial, co-polarized, down-converted

broadband light with central wavelength 2λp . Specifically, the pump light propagates

along the ′ crystal axis, where the primed coordinates are understood to refer to the

crystal axes which coincides with the table (laboratory) axis z, the crystal axis are

such that the ′z′ crystal plane is parallel to the optical table, and all fields are linearly

polarized with the electric field along the z′ crystal axis.

In experiments, the crystal was temperature-controlled so as to adjust the quasi-

phasematching conditions through its temperature-dependent refractive index; this is

achieved by housing the crystal in an oven, with the resistive heating and feedback

being controlled using a ThorLabs TC200 temperature controller. The temperature

range of the crystal covers from 30◦C up to 180◦C. The oven is mounted in an optical

mount that allows precise control of the transverse position of the crystal, as well as

its orientation, and a dovetail mount is used for coarse adjustment of the longitudinal

position.

The poling periodicity of each of our crystals has been designed to produce SPDC

with one of our available laser systems within the available temperature range, which

is necessary due to the sensitivity of the QPM tuning curves to changes in the pump

wavelength. Crystals of type A are well suited to produce observations of SPDC using

the laser system LS1 at crystal temperatures from approximately 50◦C for the degener-

ate case and up to 100◦C for the non-degenerate case; they may also be used with the

LS2 system for degenerate and a limited range of non-degenerate observations at tem-
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peratures of 150◦ and higher. Crystal of type B are used mainly with the LS2 system

with temperature ranges from approximately 100◦C for degenerate observations and

with a broad range of non-degenerate interactions available at larger temperatures.

The QPM temperature for collinear and degenerate SPDC, TQPM, is approximately 67◦C

for crystals of type A, and 109◦C for crystals of type B. All measurements shown using

crystals of type A are performed with LS1 are and, unless otherwise noted, measure-

ments shown with crystals of type B are performed using LS2.

As will be discussed later in more detail, the output produced by crystals of type

A was found to be significantly weaker, by approximately two orders of magnitude,

than that produced by crystals of type B under comparable conditions. This increased

output power observed with our samples of type B appears to be caused by a far

better quality of the periodic poling micro-structure, which translates to a drastically

improved spatially uniformity of the effective non-linearity compared with our samples

of type, and produces a nearly ideal longitudinal QPM function, as we shall show. The

comparatively poor quality of our samples of type A precludes quantitative analysis

beyond a relative scale in the results obtained with those crystals.

We characterized empirically the correction term k̃ for the longitudinal quasi-phase

mismatch in our observation conditions as a function of crystal temperature, using ob-

servations from both single-photon detection experiments, and coincidence detection

of the entangled photon pairs. These have allowed us to produce tuning curves that

compare favorably with the observations.

4.1.4 Pair collection optical system

The nonlinear crystal is followed by a pump block PB and an infrared transmissive

filter (RG665 in 2) which transmits the SPDC while preventing the pump from propa-

gating into our pair collection system. Two collimating lenses are placed at 500 mm

from the crystal at opposite locations of the down-converted cone; a silver mirror is

used in one of the paths, from here on referred to as the idler side, due to limitations

of space. The elements that appear on both the signal and idler side are only labeled

on the idler side. The lenses are centered at angles of θs, = 2.16◦ from the optical

axis and, for simplicity, we consider that ϕs = 0, when the signal detector is configured
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in the plane of the diagram, and ϕ = π for the fixed central detection angle of the

idler detector. All of the optical components following the collimating lens in the signal

arm are mounted on a two-dimensional translation stage that allows positioning along

the transverse plane; the equivalent components on the idler side are mounted on the

optical table, detecting a fixed angle of 2.16◦.

On either detection arm, the collimated down-conversion is focused using an as-

pherical lens L5 of with a 5 mm clear aperture, which provides a maximal angular

diameter of 0.573◦ for our observations. The collected light is then coupled into multi-

mode optical fibers OF of 50μm core diameter, and is then allowed to propagate into

a pair of single photon counting modules (SPCMs). Except for the observations con-

cerning the temporal response time of the photo-detectors, all of the photon counting

measurements shown here have been produced using two Perkin-Elmer SPCM-AQR-13-

FC.

Additional components may be fitted into the signal and idler optical paths follow-

ing the collimating lens. To limit the range of integration angle and optical frequencies

incident at the detector, matching sets of limiting apertures AP and filters NBF were

used. Angular diameters of Δθ = 0.086◦ and Δθ = 0.132◦ were available using our lim-

iting apertures with which we explored, to a good approximation, the limit of negligible

angular integration; as we shall see, our pump beam geometry produces correlation

cells of angular diameter larger than these apertures in all cases. The characteristics

bandpass filters used to produce narrowband observations are found in Table 1; the

filters are arranged by pairs, as required by the energy conservation condition.

Table 1. Signal (ε = s ) and idler (ε = ) filters used for detection of three narrowband SPDC interactions,
where λε is the central transmitted wavelength, Δλε is the FWHM, and Tε is the transmittance.

Filter pair λs/λ λs Δλs Ts λ Δλs T
label [nm] [nm] [nm] [nm]

A 1 812.5 19 75% 812.5 19 75%
B 1.07 842 20 79% 782 17 85%
C 1.28 927 10 62% 722 11 36%
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4.1.5 Coincidence discrimination, real-time monitoring, and automated data

collection

During the course of this work, two different systems were used to perform the

coincidence discrimination of the electronic pulses generated by our photon counters.

For our initial experiments, such as the determination of the angular and tempera-

ture dependence of the pair rate, the coincidence discrimination was performed in

hardware using fast logic gates in NIM modules, these have been described elsewhere

(see Ref. (Jiménez, 2014)) and operate with a coincidence window of 6 ns. Later ex-

periments were performed using a time-to-digital converter (TDC, Roithner TDC8000)

which records the arrival time of each photo-detection event with a resolution of 164

ps; these time-tags are sent via gigabit ethernet to a controlling computer, which per-

forms coincidence discrimination in software using a coincidence window of approxi-

mately 1 ns that is adapted as required by detector characteristics.

A computer system was designed, constructed and programmed to perform our

measurements. This system provided us with real-time monitoring capabilities for

singles, coincidences and accidentals, as well as the logging of the data. The software

for the data collection, coincidence processing, and uninterrupted data collection, was

developed in the C programming language and runs under a real-time linux kernel.

The system can also drive and monitor the TC200 temperature controller, and assist

in manual stepping measurements through audio cues. The TDC system can produce

up to 80 MB/s of time-tag data under load, which is limited by the gigabit ethernet

connection and includes only the information of the singles; the computer system must

then be capable of capturing all of the incoming packets as well as process, store, and

display the relevant data. A fast solid state drive is used for data storage during the

experiment, the data is subsequently transferred to hard disk drive for archival and

future processing. Additionally, a usb software driver for the Ocean Optics USB2000

spectrometer was developed.
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4.2 Crystal temperature dependence of the pair rate

In this section, we consider the pair rates obtained with the two detectors at fixed

angles, while the crystal temperature was scanned using a crystal of type A. In partic-

ular, the idler detector was kept at θ = 2.16◦ and the signal detector was set to the

θs angle that produces transverse quasi-phasematching for the filter pair that is used.

The observations may be more readily understood by considering a simplified version

of Eq. 30 of form

Rπ = K
∫

Ds

dks

∫

D

dk
�

�

p

ωsωA(ωs + ω)F(Δk⊥)s(Δkz)
�

�

2
, (80)

where K is a proportionality constant; the observations will be compared with pair rate

calculations from this expression.

To introduce the discussion of our results, we first consider the geometrical con-

ditions that are required to produce a high pair rate in a simple case, for which we

assume that the detection domains Ds and D are of negligible extent in wave-vector

domain, and implies both narrowband detection and small observation angles. Under

these conditions, the pair rate is directly proportional to the integrand of Eq. 80, and

the condition for maximizing the the pair rate corresponds to those which maximize

this integrand. Assuming a narrowband pump, and if the detection bandwidths of the

signal and idler detectors are selected in accordance to Eq. 20, ωs + ω = ωp, the

pair rate is directly proportional to the product
�

�F(Δk⊥)s(Δkz)
�

�

2, where the importance

of the wave-vector mismatch Δk is immediately apparent. Under typical experimen-

tal conditions of a Gaussian beam pumping a bulk or periodically-poled crystal, both

the F(Δk⊥) and s(Δkz) attain their respective maximum when their argument reaches

zero, which correspond to the transverse and longitudinal QPM conditions Δk⊥ = 0 and

Δkz = 0. When the detection occurs in a plane parallel to the optical table such that

ϕs = 0 and ϕ = π, it follows from Δk⊥ = 0 that

λs

λ
=
sinθ′

s

sinθ′
, (81)

where the external signal angle θ′
s

is given by Snell’s law, sinθ′
s
= ns(ωs, T) sinθs, with

a symmetric condition for θ′

.
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Critically, under our conditions, Eq. 81 is independent of crystal temperature, which

is a very useful property for experimental design, as it represents a geometrical con-

dition written in terms of the experimentally available parameters, viz. the signal

external angle of detection and the signal and idler detection frequencies. There are

conditions, however, in which Eq. 81 does not hold, such as when the nonlinear crystal

is tilted so that the poling wave-vector kg has a projection along the  table axis, or if

kg is not normal to the faces of the crystal by design; in these cases, the observation

angles that produce perfect transverse quasi-phasematching are temperature depen-

dent, and thus one must numerically solve the vector QPM condition for experimental

design.

4.2.1 Detection geometry and integration domain effects: Degenerate SPDC

The condition that follows from Eq. 81, which guarantees the transverse QPM con-

dition in our experimental configuration for the frequency-degenerate case ωs = ω =

ωp/2, is θ′
s
= θ′


= 2.16◦. Figure 3(a) shows the experimental observation produced

with our Δθ = 0.086◦ and filter pair A, which is our best approximation to the case

where the angle and frequency integration domains are negligible; a comparable the-

oretical calculation, produced with integration parameters matching our experimental

conditions, is shown in Fig. 4(a). In this case, the theory clearly predicts that the pair

rate detected using narrowband filters is proportional to
�

�s(Δkz)
�

�

2 =
�

�sinc(Δkz)
�

�

2 with

negligible integration effects.
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Figure 3. Measured rate of pair detection Rπ as a function of crystal temperature T with central observa-
tion angles θs = θ = 2.16◦ using a crystal of type A. Accidentals are shown as dashed lines.
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Figure 4. Calculated rate of pair detection Rπ as a function of crystal temperature T with central obser-
vation angles θs = θ = 2.16◦.

As the dependence of Δkz on crystal temperature variations is approximately lin-

ear the rate of pair detection as a function of crystal temperature may be used to

study
�

�s(Δkz)
�

� (see Ref. (Jiménez, 2014)), which is expected to be a squared sinc in the

case of an ideal poling micro-structure. The experimental result, however, produces

an observation with a notably different functional form compared to the theoretical

calculation. The main distinctive features of the observation include a narrower and

sharper distribution around the principal maxima, along with secondary features that

are significantly stronger than those expected in the ideal case. The photon pair rates

produced by these irregular secondary features remain non-negligible within the de-

tectable temperature range and produces deep minima in between the nodes. The

effect of increasing the detected solid angles and bandwidths are shown in experi-

ments in Fig. 3(b-d) and in Fig. 4(b-d) for the corresponding calculations; we see that

the narrowband results remain symmetric, while increasing the detection bandwidth

produces non-symmetric observations. Comparing the theoretical results with the ob-

servations we see a generally good agreement in all cases, beyond the differences we

have noted.
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4.2.2 Tuning curves and correction terms

To understand the origin of the features observed in the results shown in Figs. 3 and

4, it is instructive to consider the so-called temperature and angular tuning curves,

which are defined as the loci for which Δkz = 0, assuming Δk⊥ = 0 is met (so that

sinθs/ sinθ = λs/λ). As has been reported in studies using PPKTP, there is a large dis-

crepancy in the calculated values of the tuning curves which may be compensated by

use of an empirically-determined, temperature-dependent correction term (Emanueli

and Arie, 2003). The tuning curves for crystal type A are calculated using a correction

term of form k̃ = 2π[790 − 12(T − 65)]m−1, derived from an extensive series of ex-

periments using our SPCMs and narrowband filters; feature-extracted data from these

measurements is shown along with the tuning curves in the figures below.

Figure 5 shows the tuning curve for the crystal temperature, T, as a function of

the signal emission wavelength λs, for external observation angles of θ′ = 2.16◦ and

θ′ = 2.74◦ in a crystal of type A.
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Figure 5. Tuning curve and experimental data for the crystal temperature T as a function of signal
wavelength λs for the external observation angles θ′

s
= 2.16◦C (solid points and line in red) and θ′

s
=

2.74◦C (open points and dashed line in blue).
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The temperature tuning curve of Fig. 5 presents a quasi-parabolic form, typical

of type-0 QPM produced with periodically poled crystals, and attains its minimum

in the vicinity of the degenerate wavelength λp/2 = 812.2 nm, while emission at

non-degenerate wavelengths are quasi phase-matched at higher crystal temperature.

More consequences of the form of this tuning curve may be seen in our results: for

example, the observed increase in the temperature at which the maximal rate of pair

detection appears in Figs. 3 and 4 as the integration parameters are made larger

is a direct consequence of the concave shape and the location of the minima of the

temperature tuning curves seen on Fig. 5.

For angular tuning curves, we fix the signal to idler ratio and subsequently plot the

external signal emission angle θ′
s

as a function of the crystal temperature for which

Δkz(T) = 0 holds. Figure 6 shows a set of tuning curves for the external emission angle

θ′
s

as a function of crystal temperature for crystal A.
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Figure 6. Tuning curve and experimental data for the external signal angle θ′
s

as a function of crystal
temperature T for degenerate emission with λs = λ = 812 nm (solid line and points in green), and the
non-degenerate emission with λs = 722 nm (red dashed line and points) and λ = 927 nm (blue dashed
line and points) for crystals of type A.
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In all of the cases, as the temperature of the crystal is increased from room temper-

ature the external emission angle θ′
s

decreases tuning curves show a steep decrease

in emission angle as the temperature reaches their respective collinear QPM temper-

ature. The degenerate emission is described by a single curve, while non-degenerate

pairs produce a pair of curves, describing the emission angle of the signal and idler

wavelengths, and which coincide in the collinear case.

From Figs. 5 and 6 it is it is clear that the collinear QPM temperature for the non-

degenerate emission is higher, for both the shorter and longer emission wavelengths,

than that required for degenerate and near-degenerate pairs, and this remains the

case for any other observation angle. This, along with the broad minima seen in Fig.

5 is reason that our observation for the temperature dependence of the photon pair

rates in the degenerate case using filters, which may be considered of a relatively

large bandpass width, produce essentially perfectly symmetric observations. As a con-

sequence of this, the degenerate and near-degenerate emission is produced with es-

sentially no broadening due to detection bandwidth and producing comparable results

using non-degenerate pairs would require filters with significantly narrower bandpass

widths.

In the broadband detection cases, the situation is significantly different, and detec-

tion aperture plays a much more important role. In contrast with the more simple and

symmetric case of degenerate emission, the broadband detection observations are

asymmetric and increasing the detection aperture greatly increases this asymmetry

as it allows more significantly non-degenerate photon pairs to be coupled into both of

the detectors at higher temperatures. In the detection geometry used for Figs. 4(d)

and 3(d), for example, photon pairs with a signal-idler wavelength ratio of up to 1.33

may attain QPM at the opposite edges of the two detection apertures, which corre-

sponds to wavelengths of approximately 711 nm and 945 nm.

The tuning curves of the type B crystals are of broadly similar form to those seen

in crystals of type B. However, due to the large increase in down-converted power,

we have been able to more accurately characterize the emission produced in the type

B crystals. First, we have characterized the external signal emission angle θ′
s

of the

degenerate down-conversion in the plane parallel to the optical table as a function of

crystal temperature, as shown in Fig. 6. This was done by implementing an ellipse-
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fitting algorithm to a series of pictures of the narrowband-filtered degenerate down-

conversion ring, taken at different crystal temperatures, which relies on the known

separation between adjacent picture elements in the CCD sensor to be used. Then, we

have measured the pair rate as a function of the crystal temperature using a crystal

of type B, as shown in Fig. 7. From this observation, it is possible to infer the value of

the longitudinal quasi phase mismatch Δkz by identifying the location of the extrema

with the values which are appropriate in the ideal case according to our theory. The

result is shown on Fig. 8 where the observation is compared with three tuning curves:

one calculated with no correction term, another calculated with the correction term

produced using crystal type A, and one final curve representing a quadratic fit for

the quasi-phase mismatch of form Δkz(T)L/2 = −34.09 + 0.2887T + 6.71810−4T2,

with the temperature in degrees Celsius. The description of the quasi-phase mismatch

that been derived form this set of experimental data remains accurate throughout the

available temperature and angular range for the degenerate emission in both of our

crystals of type B.
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Figure 7. Measured rate of pair detection Rπ as a function of crystal temperature T for θs = θ = 2.165◦

and filter pair A using a crystal of type B with signal and idler detection angles of Δθ = 0.086◦.
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Figure 8. Measured reduced longitudinal quasi-phase mismatch ΔkzL/2 as a function of crystal tem-
perature T for frequency degenerate down-conversion, ωs = ω = ωp/2, with the detection geometry
θs = θ = 2.165◦ (red circles). Also shown is a quadratic fit to the data (solid black line), along with
the curves calculated using our correction term k̂ (blue dashed line) (Jimenez et al., 2017) and theory
calculated using no correction (dot-dashed green line).

4.2.3 Temperature dependence using two-frequency pump

We now consider the consequences of pumping the crystal with the laser running in

two spectral lines of nearly equal power, with line separation much greater than either

line-width. With care, the pump laser could be stabilized in this condition for certain

laser operation temperatures, which were found to vary session-to-session, perhaps

due to variations in room temperature. The individual line-widths were unresolved

by the spectrometer, but they were presumably similar to the single-line bandwidth

quoted earlier.

The measured dependence of the pair rate Rπ and the signal and idler rates of

single photon detection, Rs and R, as a function of crystal temperature, using a two-

frequency pump is shown in Fig. 9. The measurement is performed under the same

pump and detection geometry conditions as Figs. 4(a). The two emission wavelengths

of the pump laser are approximately 0.082 nm apart, with the more intense line corre-
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Figure 9. (a) Measured rate of pair detection Rπ and (b) rates of single photon detection for the signal
(red open circles and continuous line) and idler (blue open squares and continuous line) detectors, as a
function of crystal temperature T for θs = θ = 2.16◦ and filter pair A with a two-frequency pump spectrum
with a line separation of approximately 0.082 nm and Δθ = 0.086◦ detection apertures.

sponding to the reference λp ≈ 406.118 nm along with a weaker line at λp ≈ 406.036

nm. Also shown in Fig. 9 is the measured rate of signal and idler photons Rs and R.

That the signals observed in the two single-photon detectors are almost entirely iden-

tical is a consequence of the measurements having been performed in the degenerate

QPM configuration such that, to a very high accuracy, θ′
s
= θ′


= 2.165◦. We note that,

compared with the single-photon observations, the pair detection measurement shows

significantly less integration effects with a more clearly defined minima between the

two distinct structures; in addition to this, the pair detection observation is devoid of

the uncorrelated, polarization dependent, background that is characteristic of KTP.

An additional set of measurements of the rate of pair detection Rπ observed with

two different two-frequency pump spectra is shown in Fig. 10 with θs = θ = 2.165◦.

The measurements of this figure were performed with a pump beam with an e−1 am-

plitude radius of approximately 400 μm and a diverging radius of curvature of 760

mm at the crystal center, although these changes are of little consequence in the

results presented. In addition, for comparison purposes, a measurement produced
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Figure 10. Measured rate of pair detection Rπ as a function of crystal temperature T for θs = θ = 2.165◦

and filter pair A. Results are shown for a single frequency pump at 406.118 nm (black dashed line), for
pump lines at 406.09 and 406.16 nm (red open circles and continuous line), and for pump lines at 406.07
and 406.16 nm (blue open squares and dashed line).

with the reference wavelength in single-frequency mode is also shown in the figure.

The single frequency result shows a single peak at T ≈ 53◦C, while the two-frequency

result with two lines at 406.09 and 406.16 nm shows a considerably broadened pair

rate distribution and, finally, the two-frequency result with two lines at 406.07 and

406.16 nm shows two distinct peaks separated by approximately 3.5◦C. In this final

result, theoretical calculations show that the peak in the left is produced the shorter

pump wavelength, and the peak on the right is produced by the longer one. Further,

the calculations imply that, as a function of pump wavelength, the peak position in a

single-line temperature scan is displaced at a rate of 44◦C/nm, which is consistent with

the peak separation observed here.

The theoretical results corresponding to these two-frequency conditions are calcu-

lated as the sum of the pair rates produced by each laser line. More generally, the

two-photon amplitude ψ(ks,k) in our pair rate expressions should be taken as the

sum of that produced by each pump line. Upon substituting ψ(ks) to calculate the pair

rate, significant interference terms arise at the beat frequency in the region of overlap
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between the two single-frequency distributions. However, this beat frequency is so

high here (even with our closest available laser lines it is ≈ 100 GHz) that interference

is washed out by detector temporal resolution, and it is then appropriate to sum the

pair rates of each line.

4.2.4 Non-degenerate SPDC

For observation of non-degenerate photon pairs, we may use filter pair B with signal

observation angles set to θs = 2.32◦, or filter pair C with idler observation angle set

to 2.76◦, with the shorter wavelength reserved for the idler detector that is fixed at

θs = 2.165◦. The measured rate of pair detection Rπ for the narrow-band filtered, non-

degenerate photon pairs as a function of crystal temperature T is shown in Fig. 11 for

a crystal of type A. The observation aperture used with filter pair C has increased to

account for the reduced pair efficiency of the filters to a good approximation.
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Figure 11. Measured rate of pair detection Rπ as a function of crystal temperature T for a crystal of type
A with (a) θs = 2.32◦ using filter pair B with Δθ = 0.086◦ detection apertures and (b) θs = 2.76◦ using
filter pair C with Δθ = 0.15◦ detection apertures.



54

The cited increase in the integration angles for the observations with filter pair C

produces negligible effects in the observations due to the comparatively larger signif-

icance of detection bandwidth in this highly non-degenerate regime.

Calculations produced with comparable conditions are shown in Fig. 12; here, the

detection angle has been kept constant for the case corresponding to filter pair C

without considering the reduced transmission, we have shown a similar comparison

in (Jimenez et al., 2017) where the transmission is modeled and the aperture effect

is introduced. Good agreement is seen in these results upon comparing the general

shape, and height of the curves; however, as observed in the degenerate case, the

secondary structures which surround the principal mode of the distribution are signifi-

cantly stronger in the experiment than what is shown in the calculations.
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Figure 12. Normalized rate of pair detection Rπ as a function of crystal temperature T as calculated for (b)
θs = 2.32◦ using the pair detection bandwidth of filter pair B and detection apertures of Δθ = 0.086◦ and
(c) θs = 2.76◦ using the pair detection bandwidth of filter pair C and detection apertures of Δθ = 0.086◦.

Another difference that can be noted is the increased width of the experimental

result corresponding to filter pair C compared to the numerical result. This may be a

consequence of the relatively soft edges which these bandpass filters present in their

transmission spectrum; effectively, this can cause an increase in the detection band-
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width of the experiment which translates to a larger temperature range over which the

main peak of the signal is detected. Ultimately, it is also a manifestation of the more

significant role of angular dispersion for the non-degenerate emission.

4.3 Angular dependence of the pair rate

In this section, we study the pair rate Rπ as a function of the signal detection angles

θs and ϕs. The effects of frequency and angle integration are explored, an interesting

effect on the shape of the so-called coherence cell due to the longitudinal QPM func-

tion is highlighted, and a result with a two-frequency pump is also shown. For each

measurement, the crystal temperature was carefully selected to tune the fixed idler

detector to the desired detection modes, the temperature was then kept constant, and

the spectrum of the pump was monitored for stability.

4.3.1 Narrowband detection

To maximize the efficiency of the detection of narrowband-filtered coincident pho-

ton pairs, under conditions of Gaussian pump beam with small detection angles, it is

necessary to configure the experiment according to Eq. 81 and to set the crystal tem-

perature to that at which the longitudinal QPM condition is attained. We can produce

this temperature with the QPM relation and our correction terms only approximately,

as this must be known to ≈ 0.1◦C, and depends strongly on pump wavelength which

may itself vary slightly with day-to-day room temperature variations. Variation of the

observation angle from the prescription of Eq. 81 allows the characterization of the

shape and size of the coherence cell.

Figures 13 and 14 show the pair rate Rπ as a function of θs and ϕs, at the tempera-

ture that was observed to produce the longitudinal QPM condition in each case. For the

series of filter pairs A, B, and C, the results show decreasing rates with approximately

Gaussian distributions. The pair rate reaches nearly 350 s−1 for filter pair A while,

for the lowest curve with filter pair C, with the detection apertures slightly larger to

compensate for the reduced transmission of the filters, the peak is near 60 s−1. In the
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case of the θs dependence they are centered on increasing θs and they are approxi-

mately 0.2◦C wide with increasing width. To observe the ϕs dependence, we first set

the θs angle to the value for which the maximum of the distribution observed in Fig.

14 occurs, and then we proceed to vary the ϕs angle. The ϕs distributions are seen to

present marginally decreasing widths in the non-degenerate observations compared

to the degenerate case, with the case of filter pair C showing a somewhat narrower

result than the previous two cases.

The theoretical results for the θs and ϕs dependence of the pair rate Rπ are shown

in Figs. 15 and 16, respectively. These are seen to compare favorably with the ob-

servations, showing the broadly Gaussian-like shapes that produce decreasing rates

at the peak as they are made more non-degenerate along with the increased width of

the results for the non-degenerate observations. The ϕs dependence also shows de-

creasing widths with the more non-degenerate cases, as was seen in the experiment,

yet the widths seen here are generally broader by a small amount.

With this, we have explored the condition of maximal efficiency in the detection of

the narrowband-filtered photon pairs. Now, we will show a result where the experiment

is intentionally detuned from this condition to produce an effect that appears to be

novel.

4.3.2 Effects of the longitudinal QPM function in the angular dependence of

the degenerate photon pair emission

When the longitudinal QPM s(Δkz) is approximately constant, the angle scan of the

pair rate is solely determined by the shape of the spatial mode of the pump beam, as

can be seen in Eq. 80. However, near the temperatures for which |s(Δkz)|2 reaches

zero, this zero order approximation is no longer appropriate, and the pair rate Rπ may

show significant consequences due to this.

In Fig. 17 we see the result of an angle scan of the narrowband-filtered pair rate

Rπ similar to the degenerate result of Fig. 13, performed using a crystal of type B and

the laser system LS1 at T = 132.2◦C, which is the QPM temperature for this interaction

with this laser system and which maximizes the pair rate. As expected from the lower
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Figure 13. Measured rate of pair detection Rπ as a function of the signal central detection angle θs using
a crystal of type A (a) filter pair A (open red circles and continuous line) at T = 53.2◦C with Δθ = 0.086◦

detection angles, (b) filter pair B (open blue squares and dashed line) at T = 56.0◦C with Δθ = 0.086◦

detection angles, and (c) filter pair C (open green diamonds and dot-dashed line) at T = 97◦C with
Δθ = 0.15◦ detection angles.

 0

 100

 200

 300

-10 -5 0 5 10

FWHM=4.97°

FWHM=4.96°

FWHM=4.72°

R
P
 [
s

-1
]

φs [degrees]

Figure 14. Measured rate of pair detection Rπ as a function of the signal central detection angle ϕs
using a crystal of type A with (a) filter pair A (open red circles and continuous line) at T = 53.2◦C with
Δθ = 0.086◦ detection angles, (b) filter pair B (open blue squares and dashed line) at T = 56.0◦C with
Δθ = 0.086◦ detection angles, and (c) filter pair C (open green diamonds and dot-dashed line) at T = 97◦C
with Δθ = 0.15◦ detection angles.
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Figure 15. Calculated pair rate Rπ as a function of the signal central detection angle θs using observation
angles of Δθs = 0.086◦ with the pair detection bandwidth of filter pairs (a) A at T = 53.0◦C, (b) B at
T = 56.2◦C, and (c) C at T = 97.0◦C.

power of LS1 compared to the LS2 system that was used for the result of Fig. 7, the

rates here are comparably smaller, yet far larger than observed with the crystals of
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Figure 16. Calculated pair rate Rπ as a function of the signal central detection angle ϕs using observation
angles of Δθs = 0.086◦ with the pair detection bandwidth of filter pairs (a) A at T = 53.0◦C, (b) B at
T = 56.2◦C, and (c) C at T = 97.0◦C.
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type A. The width of this result is Δθs = 0.19◦ and remains approximately equal to that

observed with the previous crystal, as expected.

Figure 18 shows the pair rate and the rate of single photon detection for an angle

scan performed under conditions similar to Fig. 17 but with T = 134.7◦C. It is seen

that, upon increasing the crystal temperature by just 2.5◦C the pair rates detected by

the system decreased sharply to under 900 s−1. In addition, the distribution of the

pair rate is now observed to be bimodal, with the left and right modes being produced

by the primary and secondary rings of the degenerate SPDC emission, as observed by

comparing the features with the single-photon detection rates which are also shown

in the figure. The origin of the bimodal shape is clearly the monotonic behavior of the

s(Δkz) function around the angle at which it attains a value of π.

Figure 19 shows a calculation of the pair rate under comparable conditions to those

of Fig. 18 and the corresponding values of Δkz/2, the normalized argument of the

longitudinal QPM function. For this calculation, the crystal temperature has been in-

creased by a similar 2.0◦C from the longitudinal QPM temperature, and the bandwidth

has been matched to that of filter pair A. It is clear that the bimodal structure is also

represented in this result, and that the location of the minimum very nearly coincides

with the point at which ΔkzL/2 = π. The depth of the minimum depends on integration

angle and frequency to similar extents, and also on the actual complex longitudinal

QPM function which the crystal presents as it may not produce a real zero crossing in

crystals with low poling quality such as our samples of type A.

By carefully tuning the temperature of the crystal, it is possible to produce any

desired ratio between the two lobes that are detected in this condition. The two

lobes present a two-photon phase difference of approximately 180◦, although this is

not demonstrated here as the coincident detection arrangement we have constructed

only detects the two photon intensity and not the phase. An experimental charac-

terization of this phase difference may yield an interesting picture of the longitudinal

homogeneity of the crystal, as well as serve as a method to characterize the complex

two-photon amplitude itself. This structured coherence cell that we have presented

here appears to be, in the case where the two lobes have the same amplitude, indis-

tinguishable from that generated by a first-order Hermite Gaussian pump beam in the

phasematched configuration.
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Figure 17. Measured rate of pair detection Rπ as a function of the signal central detection angle θs using
a crystal of type B at T = 132.2◦C with Δθ = 0.086◦ detection angles using laser system LS1.
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Rs (dashed red curve) as a function of the signal central detection angle θs using a crystal of type B at
T = 134.7◦C with Δθ = 0.086◦ detection angles using laser system LS1.
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Figure 19. Calculation of the pair rate Rπ (solid line, left axis) with conditions comparable to Fig. 18.
The value of the normalized longitudinal QPM is shown (blue dashed line, right axis) along with reference
horizontal line (black, right axis). The idler detector is located at θ = 2.165◦, and T = 133.5◦C.

4.3.3 Observations of the angular dependence of the pair rate with a two-

frequency pump

The observation of angular effects in the coincident pair rate produced by the in-

troduction of a two-frequency pump into the down-conversion crystal require a sig-

nificantly more meticulous approach to preparation of the experimental conditions,

compared to the observation of similar effects in the temperature dependence. This

may be understood by considering that the emission produced by each of the two fre-

quencies present in the pump occurs with a difference in the emission angle which is

significantly larger than the angular width of each of the degenerate cones. Thus, for

the observations performed with negligible integration angles for narrowband-filtered

degenerate SPDC, only one of the emission cones can be coupled into the fixed idler

detector. In this case, the presence of the second down-conversion ring does not pro-

duce significant coincidences in the detection.
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To observe the desired effects, we have increased the integration angle in the fixed

idler detector to Δθ = 0.57◦, so that a large range of angles can be coupled. The

integration angle of the signal detector is kept at a Δθs = 0.086◦, and the position of

the detector is varied while the crystal is kept constant. Figure 20 shows the result

of two such measurements, performed at T = 53.2◦C and T = 55.0◦C with identical

pump spectra composed of two lines at 406.09 nm and 406.30 nm. The corresponding

theoretical results are shown in Fig. 21.
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Figure 20. Measured rate of pair detection Rπ as a function of the signal detection angle θs with two
simultaneous pump lines at 406.09 and 406.30 nm, with θ = 2.16◦ and detector aperture diameters
Δθs = 0.086◦ and Δθ = 0.57◦. Filter pair A is installed. The vertical dashed lines indicate the angular
limits of the coupling for the idler detection angle θ.

With the crystal at 53.2◦C in Fig. 20(a), a distinct peak appears in the pair rates at

θs ≈ 2.1◦. This high peak arises because a QPM condition occurs near the center of

the idler aperture, due to the 406.09 nm pump line. The peak is somewhat analogous

to the similar degenerate case of Fig. 13, but the larger idler aperture now relaxes the

pair detection condition and the peak is slightly wider in Fig. 20(a). Good agreement

is apparent in the calculation shown in Fig. 21(a); here we have found the high peak

is produced solely by the 406.09 nm pump line, while both lines contribute equally to

the low levels seen for θs > 2.3◦.
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Figure 21. Calculation of the pair rate Rπ as a function of the signal detection angle θs with conditions as
in Fig. 20 for (a) T = 53.0◦C and (b) T = 55.0◦C.

By increasing T to 55.0◦C, the experimental peak of Fig. 20(a) modes to the left and

appears at θs ≈ 2.0◦ in Fig. 20(b), and a second peak is now seen near θs ≈ 2.4◦. The

second peak arises from a QPM condition produced with the other 406.30 nm pump

line, which had fallen just outside the idler aperture in Fig. 20(a). In particular, in Fig.

20(b) the 406.30 nm line produces a QPM condition near the edge of the idler aperture

at θ+Δθ/2, while the other pump line has its own QPM condition near θ−Δθ/2. Thus,

idler photons produced by both pump lines are obviously detected throughout the scan

of Fig. 20(b), but the peaks of Fig 20(b) only appear for θs where the signal detector

encounters the pair members produced by one of the pump lines. This interpretation

is supported by the theoretical result of Fig. 21(b) under similar conditions, and we find

that the peak on the right is produced by the 406.30 nm pump line, the peak on the left

is produced by the 406.09 nm pump line, and the low region halfway between these

peaks has roughly equal contributions from both lines. It is a delicate issue to create

this condition, and consequently the theoretical conditions differ just slightly in the

temperature from those of the experiment, but the theoretical curve closely resembles

the experimental result. Thus, it has been demonstrated here that a two-line pump can

split the measured angular pair rate distribution between two corresponding peaks.
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Further, our exact calculations that take proper account of angular integration effects

have been essential in drawing this conclusion.

4.3.4 Broadband detection

Figure 22(a) shows pair data taken with open detector filters at T = 53◦C, which

is approximately the QPM temperature for the degenerate emission with θs = θ =

2.16◦. Unlike the observations made with the narrowband filters of Fig. 13, which are

symmetric, the distribution of the pair rate observed here is observed to be skewed

towards the larger angles. It is clear that this skew is caused by the non-degenerate

emission, which is coupled with reduced efficiency compared to the degenerate pairs

due to the collection geometry and the small observation angles.

 0

 500

 1000

(a)
FWHM=0.23° T=53.0°C

 0

 200
(b)
FWHM=0.184°

T=58.0°C
FWHM=0.256°

R
P
 [

s
-1

]

 0

 200

1.6 1.8 2 2.2 2.4 2.6 2.8

(c)
FWHM=0.19°

T=63.0°C
FWHM=0.259°

θs [degrees]

Figure 22. Measured pair rate Rπ as a function of the signal detection angle θs with crystal temperatures
T of (a) 53.0◦C, (b) 58.0◦C, and (c) 63.0◦C with signal and idler integration angles of Δθ = 0.086◦. See
the text for further details.
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Figure 22(b) and (c) shows the observations made at T = 58◦C and T = 63◦C, where

two peaks are clearly observed which lie at opposite sides of the idler observation an-

gle θ = 2.16◦; this indicates that the two lobes are composed of photon pairs with

different spectrum, one for which the idler detector collects the shorter wavelength,

with the signal detector at θs > θ, and vice-versa. The increasing separation of the

two lobes as the temperature is increased indicates that the photon pairs coupled into

the fixed idler detector become increasingly non-degenerate at these higher tempera-

tures. To demonstrate this, we performed a measurement under identical conditions,

but using an edge filter over the signal detector which steeply rises from negligible to

nearly perfect transmission at 800 nm. Having removed the shorter wavelengths, we

then measured the pair distribution in θs. Then, this same filter was instead placed

over the idler detector, and a θs scan was again done. As far as the pair rate is con-

cerned, the second case is equivalent to removing the longer wavelengths from the

signal detector. The small shift of 800 nm from the degenerate wavelength 812.24 nm

has little effects on the results, since few photons fall near degeneracy in the cases

presented. The black open circles show the results of the measurements without any

filters in front of the detectors, while blue open squares and red open rhombs are mea-

sured with an long-pass filter in front of the idler and signal detectors, respectively.

The calculations corresponding to the observations of Fig. 22 are shown in Fig. 23.

In general, we see that the features of the observation are well represented, including

the width and separation of the lobes.

We have presented here both experimental and theoretical results for the photon

pair rates of the SPDC produced by a periodically poled crystal. In particular, the pair

rates have been studied as a function of emission angle and of crystal temperature

through a comparison of the results of experiments with exact numerical calculations

using two different laser systems and crystals with different design of the periodic

poling structure. Further results have been presented using a pump laser having two

distinct emission lines. Our experimental conditions have allowed us to perform mea-

surements with negligible integration effects at detected pair rates well above 105

s−1. These statements may be put into perspective by comparing with previous exper-

iments (Joobeur et al., 1996; Malygin et al., 1985; Grayson and Barbosa, 1994; Monken

et al., 1998; Walborn et al., 2004; da Costa Moura et al., 2010; Molina-Terriza et al.,
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Figure 23. Calculation of the pair rate Rπ as a function of the signal detection angle θs for detection
conditions as in Fig. 22 at (a) T = 53.0◦C and (b) T = 55.0◦C.

2005), where pair rates were of the order of 10−1-101 s−1. The importance of our high

pair rates and well-controlled experimental conditions is that they have allowed us to

measure low-noise, reproducible data under a wide range of conditions and signal lev-

els, thus allowing a more complete study of effects. We observed the down-converted

power produced by our crystal samples varies by a significant amount spanning more

than two orders of magnitude.

The theoretical methods developed here have played a similarly important role,

since previous theoretical techniques do not generally produce accurate results un-

der our experimental conditions. Our numerically exact results have been essential in

obtaining general agreement with the experimental observations, as well as in under-

standing the physical origins of features seen in the data.

One possible application of our work is in the characterization of periodically poled

crystals. The process of SPDC produces photon pairs through all possible second-order

interactions of vacuum fluctuations with the pump beam, so that it can provide a

means to study the possible QPM processes supported by a given crystal. For example,

for the crystals of type A employed here, we have been able to conclude that its
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longitudinal QPM function deviates significantly from the ideal form consistent with

perfect poling, while our crystals of type B appear much closer to the ideal. On the

other hand, our work also points towards a means of optimizing the photon pair rate

under whatever conditions are desired, or toward further basic studies of the fourth-

order coherence function of SPDC, while exactly quantifying the integration effects

that inevitably occur.
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Chapter 5. Calculations of the recombination of the en-

tangled photon pairs

In this chapter, we evaluate the theoretical expressions obtained in Chapter 3 re-

lated to the recombination of entangled photon pairs. Numerical results are presented

under a variety of conditions, which include results for an ideal optical system, as

well as for realistic optical systems in which temporal dispersion of the photon pairs

produces observable effects. Significantly, some of the results presented here have

been published elsewhere (Jimenez et al., 2019), where agreement with experimental

results was generally reported. Other numerical results shown in this chapter, when

possible, are compared with other experimental results as described below.

In order to make the experimental comparisons, the parameters assumed here

are different from those of Chapter 4. Throughout this chapter, we assume the pump

wavelength to be λp=532nm. We also assume that the nonlinear crystals are periodically-

poled, MgO-doped lithium niobate of length 5mm. The extraordinary refractive index

used here follows from a Sellmeier equation Jundt (1997), while its temperature depen-

dence is a quadratic fit to data that have been reported elsewhere Shen et al. (1992).

To be close to the experimental situation, we assume that Δk= 0 for axial, degener-

ate SPDC at crystal temperature T◦ = 50◦C, and calculate the poling wave vector kg

that satisfies this condition. This is done since kg is not known in the experimental

works; the procedure described determines the poling period to be 2π/kg=6.951μm.

In the calculations, we generally assume a circular limiting aperture of free-space ra-

dius θ̃c = 1.5◦, 2.3◦, or 4.0◦, with the middle case corresponding to the experimental

results. As will be noted in many results presented here, the crystal temperature will

be dropped to a lower temperature T◦ − ΔT that depends on θ̃c; we use ΔT = 1◦C for

θ̃c = 1.5◦, ΔT = 1.5◦C for θ̃c = 2.3◦, and ΔT = 2◦C for θ̃c = 4◦. This reduced tempera-

ture slightly opens the SPDC cone, thus improving the pair rate within the particular

aperture radius. Finally, we take deff as 1.5×10−11m/V.
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5.1 Ideal optical systems

5.1.1 Linear transfer functions

An ideal optical system is taken as one for which dispersion compensation is perfect

so that φs(ω) = φ(ω) = 0. We start with evaluations of the linear transfer function of

Eq. 74 that describes the effect of pair recombination on the spatial mode of the up-

converted light. For our case of a circular aperture the results are independent of ϕp,

and we take the transfer function here as simply Eωo
p
(θp).

Figure 24 shows Eωo
p
(θp) for several aperture radii θ̃c. The curves there are purely

real and are scaled to unit height; actual heights are 3.5×10−8 for θ̃c=1.5◦, to 5.9×10−8

for θ̃c = 2.3◦, and 1.1× 10−7 for θ̃c = 4.0◦. It is seen that all curves monotonically

decrease in θp, and reach zero when the external pump angle θ̃p is essentially θ̃c. This

cut-off angle may be understood as follows. As the angle of a plane wave pump in

the crystal is increased, the SPDC cone increases similarly in angle. Up-conversion

requires intact photon pairs, which fall on opposing points with respect to the SPDC

cone center; thus intact pairs no longer pass through the aperture when the center

of the SPDC cone reaches the edge of the limiting aperture. This condition occurs for

θ̃p= θ̃c, and up-conversion ceases.
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Figure 24. Normalized angular transfer function as a function of external angle θp for idealized photon pair
recombination assuming 5mm lithium niobate crystals and an external cutoff angle θ̃c of 1.5◦ (continuous
red line), 2.3◦ (dashed blue line), and 4.0◦ (dot-dashed green line), with ΔT as specified in the text.
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The transfer function Eωo
p
(θp) may be considered an angular amplitude spectrum; it

follows that its corresponding transverse spatial distribution in the up-conversion crys-

tal may be found from its two-dimensional inverse Fourier transform (Ref. Goodman

(2005), Sect. 3.10.1). With Eωo
p
(θp) being ϕp-invariant, the inverse transform simplifies

to the Fourier-Bessel integral (Goodman (2005), Sect. 2.1.5) which, in unitary form,

may be written here as

h(r) =
1

kp

∫ ∞

0
dk⊥k⊥ Eωo

p
(k⊥/kp)J0(k⊥r) , (82)

where k⊥=kpθp in a paraxial approximation, and r is the radial coordinate in the waist

plane. It is notable that h(r) represents the point spread function of the up-conversion

system; i.e., multiplying the pump angular spectrum F(θp, ϕp|ωop) by the transfer func-

tion Eωo
p
(θp) is equivalent to convolving the original transverse pump amplitude with

h(r) in the waist plane in the up-conversion crystal (Goodman (2005), Sect. 2.3.2).

Figure 25 shows h(r) for the same 3 cases of Fig. 24, with Eq. (82) being integrated

numerically. The case for θ̃c = 1.5◦ exhibits a Gaussian-like distribution of width (e−1

radius) 12.5μm, with faint secondary rings. The case for θ̃c=4.0◦ presents a distribu-

tion of width only 4.2μm, with secondary rings having higher contrast, while the case

for θ̃c=2.3◦ (width 7.7μm) shows intermediate behavior.
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Figure 25. Normalized point-spread functions h(r) as a function of radial coordinate, obtained from
Fourier-Bessel transform of the results of Fig. 24.
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5.1.2 Delayed recombination

We now provide ideal-case calculations for the time-delayed up-conversion rate

from Eqs. 77-78, in which the signal photons are delayed by τ. These calculations

are shown in Fig. 26 for the three cases of θ̃c described in Section 5.1.1. It is seen

that the curves are symmetric and have clear secondary maxima, accompanied by

faint higher-order maxima. The widths (full width at half maximum) of the principal

peaks at τ = 0 are 33 fs for θ̃c = 1.5◦, 22 fs for θ̃c = 2.3◦, and 13 fs for θ̃c = 4.0◦.

It is thus clear that the pairs must be quite closely synchronized in order to obtain

recombination, and that the synchronization requirement becomes more strict as the

limiting aperture is opened. This effect is a consequence of the form of Eq. 78 which,

in the absence of frequency-dependent phase, is the Fourier transform of S(ω). As the

system aperture size is increased, the bandwidth of S(ω) may be shown to increase in

a nearly linear fashion, while the width of the curves of Fig. 26 decrease as the inverse

of the bandwidth.
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Figure 26. Normalized recombination rate as a function of time delay τ in the ideal case assuming 5 mm
long lithium niobate crystals and an external cutoff angle θ̃c of 1.5◦ (continuous red line), 2.3◦ (dashed
blue line), and 4.0◦ (dot-dashed green line), with ΔT as specified in the text.
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Figure 27. Normalized recombination rate as a function of the temperature of the down-conversion and
up-conversion crystals T in the ideal case assuming 5 mm long lithium niobate crystals and an external
cutoff angle θ̃c of 1.5◦ (continuous red line), 2.3◦ (dashed blue line), and 4.0◦ (dot-dashed green line).

5.1.3 Recombination rate dependence on temperature and pump wavelength

In the narrowband and wide pump beam limit, Eq. 75 allows evaluation of the re-

combination rate as a function of any parameter of interest. One such parameter is the

crystal temperature, for which results are shown in Fig. 27 for aperture radii θ̃c=1.5◦,

2.3◦, and 4.0◦. For the case θ̃c=1.5◦, the curve remains at low levels for small T. This

occurs since for T <40◦ there is quasi-phasematching to light only for angles greater

than the aperture radius. As T is increased, the phasematched angles decrease and

reach the aperture edge for T ≈ 40◦ C as the curve of Fig. 27 rises rapidly while the

degenerate ring of SPDC approaches the collinear condition. The curve reaches a

maximum for T just under the axial degenerate phasematching temperature of 50◦ C.

Phasematching of collinear degenerate down-conversion vanishes for T>50◦, and the

curve decays with temperature, with the non-degenerate emission now attaining the

collinear phasematching condition. The cases for wider apertures shown in Fig. 27

exhibit analogous shapes but have broader features, as is reasonable for their larger

angular integration effects which increases the number of modes through which the

non-degenerate pairs may up-convert beyond the near-collinear contribution. Further,

the peak of curves fall slightly farther to the left as θ̃c increases. Another useful result

may be obtained from Eq. 75 by holding crystal temperature at T◦=50◦C, and instead
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considering the recombination rate as a function of pump wavelength. Such curves

are shown in Fig. 28 for the same values of θ̃c as in Fig. 28, where the shape roughly

appears as the reverse of Fig. 28. The reasons for the shapes obtained are much as

in Fig. 28; for λp somewhat greater than 532 nm, the phasematching occurs for large

angles that can lie outside of the aperture domain, while λp < 532nm, phase matching

no longer occurs and the curve decays as phase mismatch increases. It is also seen

that the peak of each curve lies slightly to the right of 532 nm.
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Figure 28. Normalized recombination rate as a function of the pump wavelength λp in the ideal case
assuming 5 mm long lithium niobate crystals and an external cutoff angle θ̃c of 1.5◦ (continuous red
line), 2.3◦ (dashed blue line), and 4.0◦ (dot-dashed green line), with ΔT as specified in the text.

5.2 Realistic optical systems

We now consider numerical results for the case of a nonideal optical system pro-

ducing frequency-dependent phase in the pair state. With experimental care, these

effects are often reduced to a small but still clearly observable level. Including these

effects will often lead to a good degree of agreement between theory and experiment,

as will become apparent in the results that follow.

The modal phase φε(ω) is here taken as the series expansion about degenerate
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frequency ωd = ωp/2 as

φε(ω) =
∞
∑

n=2

φ(n)
ε

Δωn

n!
, (83)

where φ(n)
ε

denotes ∂nφε(ω)
∂ωn

�

�

ωd
, Δω = ω−ωd, and the series begins in the second order so

as to include only broadening effects; the second-order term represents group delay

dispersion. In cases presented here, we take only the first three terms of Eq. 83, which

provide an adequate approximation of φε(ω) over the SPDC bandwidth. Further, the

total phase of the pair state has the form (Δω) = φs(ωd + Δω) + φ(ωd − Δω), which

has a series like that of Eq. (83), but with term coefficients (n) given by

(n) = φ(n)
s
+ (−1)nφ(n) . (84)

To compare with experimental data, one must determine φε(ω) for the particular ex-

perimental system by computing the frequency-dependence of the phase accumulated

along the optical path between the center of the first crystal and the center of the sec-

ond crystal. This relies on the frequency-dependence of paths through prism compres-

sors, and of the refractive indices of all media encountered. It may be computed by

numerically tracing rays through the system to obtain φε(ω), and then obtaining the

coefficients φ(n)
ε

of Eq. 83 numerically. Such a task is beyond the scope of this thesis,

although these calculations have been performed elsewhere Jimenez et al. (2019) for

the experimental comparisons to be made here.

5.2.1 Linear transfer functions

We now consider an experimental case described elsewhere O’Donnell (2011), with

a sequence of four prisms providing dispersion compensation, with both signal and

idler photons following this single path. It then follows that the signal and idler phases

must be identical. In Ref. Jimenez et al. (2019) it was found that, with ε∈{s, }, φ(2)
ε
=

33.0 fs2 and φ(4)
ε
= 2.54× 104 fs4, with φ(3)

ε
being immaterial since the terms cancel in

the total phase term (3) from Eq. 84. The transfer function Eωo
p
(θp) of Eq. 74 is then

computed using a Monte Carlo integration approach, producing the results for θ̃c=1.5◦

and 2.3◦ shown in Fig. 29. It is seen that, unlike in Fig. 24, Eωo
p
(θp) is now complex and

has a small imaginary part. It is notable that temporal dispersion thus manifests itself
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Figure 29. Real (continuous lines) and imaginary (dashed lines) parts of the angular transfer function
calculated assuming 5 mm lithium niobate crystals with realistic dispersion parameters (for a single-path
recombination experiment) and an external cutoff angle θ̃c of 1.5◦ (red lines), and 2.3◦ (blue lines) with
ΔT as specified in the text.

here as spatial phase in the up-converted state. Both cases have |Eωo
p
(θp)| within 1%

of the phase-free cases of Fig. 24, so that the effects of dispersion are fairly weak. The

value of φ(2)
ε

can be readily adjusted in the experiments, and it here provides a good

balancing of the quartic dispersion due to φ(4)
ε

. Taking the Fourier-Bessel transform of

Eωo
p
(θp), we similarly find that h(r) has a small imaginary part, although the width and

modulus of h(r) are within 1% of the analogous dispersion-free case from Fig. 25; thus

we do not show this result here.

However, we emphasize that the dispersion compensation is essential in providing

clear and observable signals, since stronger dispersive effects rapidly lead to much

more attenuation, accompanied by changes to the shape of Eωo
p
(θp). An example of

a case having some attenuation may be obtained simply increasing θ̃c, even with the

dispersion constants used in Fig. 29. The wider aperture increases the bandwidth in

a proportional manner, and these same dispersion coefficients now produce stronger

phase within the broader bandwidth. The case of θ̃c=4.0◦ is shown in Fig. 30, where

it is seen that Eωo
p
(θp) now has a significant negative imaginary part, and that |Eωo

p
(0)|

has fallen by 15% in comparison to the phase-free case. Figures 31-32 show the phase

of Eωo
p
(θp) for the cases of Figs. 29-30, where it is seen that this phase takes on a

variety of shapes that are subtly related to the parameters of the calculations. For
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θ̃c=1.5◦ and 2.3◦ (Fig. 31), this phase is weak and is at most around 2◦, while θ̃c=4◦

(Fig. 32), the phase ranges from −14◦ to 2◦.
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Figure 30. Real part (green dot-dashed line), imaginary part (green dashed line) and modulus (green solid
curve) of the angular transfer function calculated assuming 5 mm lithium niobate crystals with realistic
dispersion parameters (for a single-path compensated recombination experiment) and an external cutoff
angle θ̃c of 4.0◦, with ΔT as specified in the text.
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Figure 31. Phase of the angular transfer function calculated for the amplitudes of Fig. 29 with external
cutoff angles of θ̃c of 1.5◦ (continuous red line), and 2.3◦ (dashed blue line).
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Figure 32. Phase of the angular transfer function calculated for the amplitude of Fig. 30 with external
cutoff angle of θ̃c of 4.0◦.

Depending on the width of the pump mode, it is thus clear that temporal dispersion

of the pair state can affect the amplitude and phase of the reconstructed light, making

it significantly different from the original pump mode.

5.2.2 Delayed recombination: comparison with experiments

Here we present comparison with a prior experimental work O’Donnell (2011) on

Franson dispersion cancellation. The main point of this reference is that, since the pair

state phase is the sum of the signal and idler phases, from Eq. 84 its series coefficient

(2) = φ(2)
s
+ φ

(2)
 obviously vanishes if φ(2)

s
= −φ(2) . The effect is known as Franson

dispersion cancellation. Since (2) often dominates the dispersive effects in practice,

this cancellation effect is found to be quite clear in the observations of Ref. O’Donnell

(2011). In particular, it is shown there that the time-delayed recombination rate has

the same temporal width for a wide range of φ(2)
s

and φ
(2)
 , as long as (2) is held

constant at a small value. In addition, it is experimentally demonstrated that violating

this Franson cancellation condition with large |(2)| greatly broadens the time-delayed

recombination rate.

Thus, for the first time, we here provide comparisons of fully rigorous calculations
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with these experimental results, both for dispersion cases having Franson cancella-

tion, and for cases that do not. To achieve this, we need only apply the theory for the

time-delayed up-conversion rate with dispersion parameters consistent with the exper-

imental conditions. Before recombination, the signal and idler modes are separated

and propagate through two different 4-prism compressors. The experiment changes

the modal dispersion by varying the amount of insertion of the prisms in the com-

pressors; more insertion increases modal propagation length within dispersive prism

glass.

Estimates of the dispersion parameters are available from the ray-tracing methods

described earlier Jimenez et al. (2019). The base modal dispersions are thus found to

be

~φs = {φ(2)s
, φ(3)

s
, φ(4)

s
} = {31.4 fs2,−4430 fs3,−23800 fs4} (85)

and

~φ = {φ
(2)
 , φ

(3)
 , φ

(4)
 } = {14.7 fs2,−3090 fs3,−16900 fs4}, (86)

which is the experimental case shown in Figs 2 or 3 of Ref. O’Donnell (2011) having

minimal signal and idler dispersion. The other dispersion cases of Ref. O’Donnell (2011)

are done by changing prism insertion so as to change prism glass path by multiples of

3.5 mm. Increasing glass path by 3.5 mm is found to change compressor dispersion

by

~Δ = {Δ(2),Δ(3),Δ(4)} = {367 fs2,363 fs3,−60 fs4}. (87)

To observe Franson cancellation, the experiment removes glass path from the signal

mode while inserting equal glass path in the idler mode, in multiples of 3.5 mm. The

dispersion parameters then follow as ~φs − n~Δ and ~φ + n~Δ with n = 0,1,2,nd3 for the

four cases shown in Fig. 3 of Ref O’Donnell (2011). Of course, under such a proce-

dure, Eq. 84 implies that (2) remains fixed at a nominal value (46.1 fs2) which allows

Franson cancellation to be observed, although (3) and (4) change slightly in the four

cases.

Figure 33 shows these four cases, all of which present a constant width of 22 fs and

thus clearly demonstrate Franson dispersion cancellation. As n increases, however,

the resulting cubic dispersion parameter (3) becomes more negative; this series of

results consequently exhibit increasing right-skewness and increasing shift from the
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origin, and also have slightly decreasing height. These are modest but clear effects,

and the constant temporal width, the increasing right-skewness, and the decrease in

height are all consistent with the experimental data in Fig. 3 of Ref. O’Donnell (2011).
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Figure 33. Normalized recombination rate as a function of time delay τ with realistic dispersion param-
eters of four-prism compensated, two-path configurations assuming 5 mm long lithium niobate crystals
and an external cutoff angle θ̃c of 2.3◦. The curves are calculated in conditions comparable to the ex-
perimental results of Fig. 3 of Ref. O’Donnell (2011), with excess signal/idler second-order dispersions
at {0,0} shown in red (continuous), {−Δ,Δ} in blue (dashed), {−2Δ,2Δ} in green (long-dashed), and
{3Δ,3Δ} in black (dashed), where Δ = 367 fs2. Curves are normalized with respect to the height of the
undispersed case.

Figure 34 shows the phase of the up-converted amplitude of the four cases of

Fig. 33, which are of interest but are not available in the existing experimental data.

It is seen there that the phase is near zero throughout the central lobe of the distri-

bution of Fig. 33, and that the secondary lobes are nearly 180◦ out of phase. The four

cases show some mild variation in phase for the four dispersion cases. In Fig. 35 an-

other result shows the time-delayed recombination rate for the n = 0 dispersion case,

but with the limiting aperture opened to θ̃c = 4.0◦. The larger aperture increases the

bandwidth, with the consequence that the cubic term plays a far more important role.

It is seen that the curve is strongly right-skewed, and that its height has decreased

significantly from the dispersion-free case. Still, the temporal width is quite narrow (16

fs) and is only slightly wider than the corresponding dispersion-free case of Fig. 26 (13

fs). There is no experimental data available for θ̃c = 4.0◦ due to aperture limitations

in Ref. O’Donnell (2011), although future experiments could thus conceivably provide
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Figure 34. Phase of the delayed transfer efficiency as a function of the time delay τ corresponding to the
cases shown in Fig 33.
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Figure 35. Normalized recombination rate as a function of the time delay τ with dispersion parameters
as in Fig. 3(a) in Ref. O’Donnell (2011) and an external cutoff angle θ̃c of 4.0◦. Normalization is to unit
height in the phase-free case.
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significantly narrower temporal widths. Further, Fig. 36 shows the phase of the ampli-

tude associated with Fig. 35. It is seen that the curve bears little resemblance to the

essentially constant-phase regions that were present in Fig. 34, and that the curve con-

tinuously drifts apart from the phase jumps associated with the principal value range

that is plotted. This unusual form of the phase is largely due to (3), although (2) and

(4) also play lesser roles here.
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Figure 36. Phase of the delayed transfer efficiency as a function of the time delay τ corresponding to the
case shown in Fig 35.

We now consider cases without Franson cancellation, for which large |(2)| pro-

duce broadening effects that have been experimentally observed in Ref. O’Donnell

(2011). Numerical results for such cases are shown in Fig. 37 with dispersion pa-

rameters ~φs − n~Δ and ~φ, and in Fig. 38 with dispersion parameters ~φs and ~φ + n~Δ,

which correspond to, respectively, removing glass path from only the signal mode,

or adding glass path to only the idler mode. Such a procedure will introduce strong

effects in the resulting cases, which have highly nonzero (2) in the pair state. The

cases for n = 1 in Figs. 37-38 are significantly reduced to just under half the height

of the undispersed case, with cases for n = 2 and 3 becoming increasingly broader

and lower. The three cases shown appear almost identical when comparing Figs. 37

and 38. This is a consequence of (2) dominating the appearance of the curves, al-

though close examination reveals that the figures have small differences. However,

this is to be somewhat contrasted with the experiments of Ref. O’Donnell (2011), for
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Figure 37. Normalized recombination rate as a function of the time delay τ with realistic dispersion
parameters of three non-compensated, two-path configurations assuming 5 mm lithium niobate crystals
and an external cutoff angle of θ̃c of 2.3◦. The curves are calculated in conditions comparable to the
experimental results of Fig. 2(b-d) in Ref. O’Donnell (2011), with {−Δ,0} shown in red (continuous),
{−2Δ,0} in blue (dashed), and {−3Δ,0} in green (dot-dashed), where Δ = 367 fs2. Normalization is to
unit height in the phase-free case.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-100 -50  0  50  100

R
u
(τ

)/
R

u
(0

)

τ [fs]

Figure 38. Normalized recombination rate as a function of the time delay τ with realistic dispersion
parameters of three non-compensated, two-path configurations assuming 5 mm lithium niobate crystals
and an external cutoff angle of θ̃c of 2.3◦. The curves are calculated in conditions comparable to the
experimental results of Fig. 2(e-g) in Ref. O’Donnell (2011), with {0,Δ} shown in red (continuous), {0,2Δ}
in blue (dashed), and {0,3Δ} in green (dot-dashed), where Δ = 367 fs2. Normalization is to unit height
in the phase-free case.
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which the analogous plots (see its Fig. 2) show more significant differences comparing

similar cases having positive and negative (2). The probable conclusion is that the

experimental data have contributions from effects not included in the theory as it is

evaluated here. One possibility is that other frequency-dependent phase effects are

occurring over the wide experimental bandwidth; for example, the SPDC collimating

lenses employed are plano-convex singlets that would have some variation in focal

length due to the frequency-dependent refractive index of their glass. While the gen-

eral formulation developed in this thesis is capable of fully accounting for such effects,

their numerical evaluation is beyond the scope of the comparisons presented in this

chapter.

In summary, the results presented here show that recombination of entangled pho-

ton pairs can, under suitably prepared conditions, reproduce all features of pump beam

in the up-converted field coherently. The interference between the attenuated pump

and up-converted amplitude at the single-photon level, then, can be used to study

the amplitude and phase of the two-photon state, for example by selectively allowing

only a certain portion of the two-photon field to couple into the recombination crystal.

Should the important and difficult task of dispersion compensation be surmounted for

adequately broad bandwdiths, the recombination of photon pairs through the mecha-

nisms described here should be possible near the single-cycle biphoton condition with

a correspondingly higher efficiency. Additionally, preselection of the wave-vector do-

main of the photon pairs which are allowed to recombine allows other up-converted

fields to be similarly prepared; for example, allowing only the portion of the down-

conversion that produces the bimodal coherence cell in Fig. 18 would produce an

up-converted state that closely resembles a first order Hermite Gaussian beam.
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Chapter 6. Conclusions

We have presented a theoretical and experimental study of the generation and

recombination of time-frequency entangled photon pairs. This work is intended to pro-

vide a foundation over which more elaborate experiments may be designed and per-

formed, while establishing a means to compare with rigorous theoretical calculations.

It is our expectation that, by addressing these foundational topics, other researchers

in the field will be enabled to advance further in both the theory and the experiments

with a clearer understanding on the correspondence between the two.

Despite the apparent success of the simplified theoretical methods that are often

employed in the study and teaching of quantum optics, it is expected that, as the

field continues to progress, the more elaborate theoretical methods such as provided

here will prove valuable. Our theoretical results concerning the two-photon amplitude

produced in SPDC and the up-converted amplitude produced by photon pair recom-

bination have been employed to produce calculations that accurately represent our

experimental conditions in the case of SPDC as well as previously published work in

the case of recombination. In particular, we believe the metrological applications of

this work can be significant and may be used to verify the correspondence between the

nonlinear susceptibilities used in classical non-linear optics and that which is present

in the interaction Hamiltonian within our quantum optical theory.

Two research papers were published as a result of the development of this project:

• Angular and temperature dependence of photon pair rates in spontaneous para-

metric down-conversion from a periodicallypoled crystal, Physical Review A, 96,

023828 (2017). G. Daniel Jimenez, Veneranda G. Garces, and Kevin A. O’Donnell.

• Coherent reconstruction of pump beams through recombination of entangled

photon pairs, Physical Review A, 99, 023853 (2019). G. Daniel Jimenez, Veneranda

G. Garces, and Kevin A. O’Donnell.

Additionally, the following presentations were made:

• How to time a photon. Poster presented at CICESE’s regional congress of optics

(CReO, 2016). G. Daniel Jimenez, Veneranda G. Garces, and Kevin A. O’Donnell.
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• Single-Photon Detectors: Their Characterization and Use with Entangled Photon

Pairs. Poster presented at the mexican national congress of physics (2018). Tra-

bajo M1G016. G. Daniel Jimenez, Veneranda G. Garces, and Kevin A. O’Donnell.

• A simple model of a one dimensional, randomly rough, non-Gaussian Surface,

Proc. SPIE 9961, Reflection, Scattering, and Diffraction from Surfaces V, 99610D

(September 26, 2016). E. R. Méndez, G. D. Jiménez, A. A. Maradudin.
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Appendix: Invariance of the down-converted rates under

exchange of the signal and idler variables

The photon pair rate Rπ and signal photon rate Rs from Eqs. 38 and 39, respectively,

can be used to produce a set of dual expressions which are identical in form, but for

which the signal and idler variables are exactly interchanged. This is a necessary

condition for a correct theoretical description of the photon pair generation process,

and responds to the natural symmetry that exists between the signal and idler portions

of the down-converted state. We start from the pair rate of Eq. 38, and consider for

simplicity the case of a circular aperture

Rπ = βRp
ℏωo

p

np

∫

dωsTs(ωs)T(ω)Sπ(ωs) (88)

where we have dropped the assumption of non-overlapping wave-vector domains,

which causes the factor of two to no longer appear in the coefficients on the right-

hand side, and

S(ωs) = ω3
s
ω

∫ Θs

0
dθs

∫ 2π

0
dϕs

ns sinθs

n cosθ
|s(Δkz)|2D(θ) (89)

where sinΘs = sin θ̃c/ns is the (temperature and frequency dependent) angular limit

within the crystal, and the limits of the ϕs integration are consistent with the assump-

tion that Ds = D. The ϕs integration is trivial since the integrand is circularly sym-

metric; the case of an arbitrary aperture may be demonstrated using similar methods

similarly, but requires a more careful treatment using the general two-variable dis-

crimination function D(θ, ϕ) and will not be considered here. It is clear that Eq. 88 is

invariant with respect to signal-idler variable exchange if and only if Eq. 89 is invariant

as well.

Thus, we use the QPM conditions, which are derived from Eqs. 22 and 23 and in the

axial wide pump limit read

sinθs =
nω

nsωs
sinθ (90)

ϕ = ϕs − π (91)

from which we can derive the differential relationship dϕs = dϕ and, through implicit
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differentiation,

dθs

dθ
=

nω cosθ

nsωs cosθs
. (92)

These two expressions may then be used to exchange the θs and ϕs integration vari-

ables for θ and ϕ, yielding

S(ωs) = ω2sω
2


∫ Θ

0
dθ

∫ π

−π
dϕ

sinθs

cosθs
|s(Δkz)|2D(θ) (93)

where sinΘ =
nsωs

nω
sinΘs. We may then use Eq. 90 to substitute the sinθs term in the

integrand of Eq. 93 to produce

S(ωs) = ω3 ωs

∫ Θ

0
dθ

∫ 2π

0
dϕ

n sinθ

ns cosθs
|s(Δkz)|2D(θ) (94)

where we have changed the integration domain of the ϕ angle to cover the positive

angles without affecting the integral. Equation 94 has nearly the desired form and now

requires consideration of the D(θ) discriminator function. We have that D(θ) = 1 if

θ ≤ Θ, and is zero in any other case; within the monotonic domain of the sine function,

this implies that sinθ ≤ sinΘ =
ωs sin θ̃c
nω

, so that the condition sinθs ≤ sinθc/ns = sinΘs

holds when D(θ) = 1, and we can write

S(ωs) = ω3

ωs

∫ Θ

0
dθ

∫ 2π

0
dϕ

n sinθ

ns cosθs
|s(Δkz)|2Ds(θs) (95)

where Ds(θs) = 1 if θs ≤ Θs and zero in any other case, and we can finally determine

that S(ωs) = S(ω), with ω + ωs = ωp. This concludes the proof.

We note that the signal-idler symmetry here demonstrated in the down-converted

rates also appears the up-conversion rate, as it is described by the same down-conversion

spectrum S(ωs) (cf. Eq. 74). While we have assume in this appendix to consider over-

lapping signal-idler domains, the only consequences of this choice in the case here

considered are the limits of the ϕs and ϕ integrations in S(ωs) and S(ω), which are

taken along the complete 2π range of the circular aperture, and the presence or ab-

sence of the factor of 2 in the expression for the rate, and thus the conclusions are

valid under both assumptions. Additionally, it is possible to exploit this result by sep-

arating Eq. 88 as two integrations from 0 to ωd ≡ ωp/2, and another from ωd to ωp,
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which are trivially shown to be identical, which allows us to write

Rπ = 2βRp
ℏωo

p

np

∫ ωd

0
dωsTs(ωs)T(ω)S(ωs) (96)

which is useful in computations as the integration only has to be performed over only

one half of the total bandwidth of the photon pairs and it avoids evaluation of the

discrimination function D(θ), for it is simple to prove that ωs ≤ ωd is a sufficient

condition for θs ≥ θ, and there are no rejected idler photons to account for in this

case.
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