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Resumen de la tesis que presenta Gerardo Agustı́n López Martı́nez como requisito parcial para
la obtención del grado de Maestro en Ciencias en Ciencias de la Tierra con orientación en Sis-
mologı́a.

Solución numérica de la función de Green para sólidos anisotrópicos usando la
transformada de Radón

Resumen aprobado por:

Dr. Pratap Narayan Sahay Sahay
Director de tesis

El estudio de la anisotropı́a es de vital importancia porque las formaciones geológicas encon-
tradas en la exploración de hidrocarburos son usualmente medios estratificados o fracturados.
Para esto, la solución de una función de Green es de interés porque puede ser usada para la
construcción de soluciones más generales. El propósito de este estudio es la implementación
numérica de la solución para la función anisotrópica de Green usando la transformada de Radón
en un medio elástico. En esta metodologı́a, aplicando la transformada de Radón, las ecuaciones
que rigen el sistema de ecuaciones diferenciales parciales se reduce a un sistema de ecuaciones
diferenciales ordinarias, el cual se desacopla utilizando los eigenvalores y eigenvectores de dicho
sistema. Para regresar al dominio inicial, la transformada inversa de Radón se define como una
integral sobre una esfera cerrada que se calcula numéricamente sin complicaciones utilizando la
cuadratura gaussiana para todo tipo de simetrı́as. Los resultados del calculo numérico de esta
solución se presenta para los casos de anisotropı́a transversalmente isotrópica, ortorrómbica y
monoclı́nica. Además, se muestra el estudio de la variación de la forma de onda respecto al an-
gulo polar para el caso transversalmente isotrópico. Los resultados nos muestran que mediante
esta metodologı́a se puede estudiar la forma de onda, la separación de las ondas S y la depen-
dencia angular del movimiento de partı́cula para medios anisotrópicos de una forma eficiente.

Palabras Clave: Anisotropı́a, Función de Green, Transformada de Radón, Propagación de
ondas
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Abstract of the thesis presented by Gerardo Agustı́n López Martı́nez as a partial requirement to
obtain the Master of Science degree in Master in Earth Science with orientation in Seismology.

Numerical solution of the Green’s function for anisotropic solids using the Radon
transform

Abstract approved by:

Dr. Pratap Narayan Sahay Sahay
Thesis Director

The study of anisotropy is vital because geological formations encountered in hydrocarbon
exploration are usually stratified or fractured. For this, the solution of a Green’s function is of
interest since it can be used for constructing more general solutions. The purpose of this study
is the numerical implementation of the solution of the anisotropic elastic Green’s function using
the Radon transform approach. In this approach, by applying the Radon transform, the governing
system of a partial differential equation reduces to a system of ordinary differential equations,
which is then decoupled using the eigenvalues and eigenvectors of that system. To return to the
spatial domain the inverse Radon transform is used, which is a double integral over the unit-sphere
that is calculated numerically using Gaussian quadrature without complications for all classes of
symmetries. The results of the numerical calculation of this solution are presented for cases of
transversely isotropic, orthorhombic, and monoclinic anisotropy. Also presented is a study of the
variation of waveform with respect to polar angle for the transversely isotropic case. These results
show that through this methodology, the waveform, the separation of the S-wave, and the angular
dependence of the particle movement can be studied efficiently.

Keywords: Anisotropy, Green’s function, Radon transform, Wave propagation
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A mis compañeros del posgrado, Eleyra, Jorge, Angel, Young, Roberto, Raul, Liza, Arisai,

Halia, y demás que compartieron conmigo tanto buenos, como malos momentos.

Al personal administrativo de CICESE, por su atención y orientación.



vi

Contents
Page

Abstract in Spanish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Hyphotesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Equation of motion for anisotropic solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Foundations of linear elastodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Elastic stiffness tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Elastic anisotropy of geological rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Monoclinic symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Orthorhombic symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Transversely isotropic symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Green’s function in the k and ω domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 Closed-form solution for the anisotropic Green’s function . . . . . . . . . . . . . . . . . . . 17

3.1 The Radon transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Integration over unit sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Some properties of Radon transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Solution of 3-D Helmholtz equation using the Radon transform. . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Radon transform approach for the anisotropic Green’s function . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Numerical integration by Gaussian quadrature method . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 4 Numerical solution for the anisotropic Green’s function . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Validation with the analytical solution in isotropic medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



vii

4.2 Validation with pure direction velocities in transversely isotropic medium . . . . . . . . . . . . . 31

4.3 Numerical solution for the anisotropic Green’s function in VTI symmetry. . . . . . . . . . . . . . 34

4.4 Numerical solution for the anisotropic Green’s function in orthorhombic symmetry . . . . 35

4.5 Numerical solution for the anisotropic Green’s function in monoclinic symmetry . . . . . . 36

4.6 Point-source radiation pattern: Transversely isotropic case . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 5 Concluding remarks and future work directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Cited literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Appendix A Phase velocities in an arbitrary anisotropic medium . . . . . . . . . . . . . . . . . . . . . . . 46



viii

List of figures
Figure Page

1 Cartoon of a layered medium permeated by a tilted set of fractures that exhibits
monoclinic anisotropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Cartoon of layered medium permeated by orthogonal set of fractures to the lamina-
tion that exhibits orthorhombic anisotropy. . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Cartoons of layered media that exhibit transversely isotropic anisotropy. VTI (left),
HTI (center) and TTI (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 (Left) Illustration of vectors x, e,d and n in the fixed xi coordinates. (Right) Relation
between these vectors on the unit circle. . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Numerical integration. (a) Exact integral. (b) Approximate integral. (Adopted from
Hoffman (1992)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Comparison between analytical solution and numerical solution in isotropic medium. 30

7 Scaled displacement (by c44 parameter) measured in pure direction of VTI symmetry.
The geophones are located in 400m., 700m., 1000m. and 1300m. Source is a
Ricker pulse of amplitude 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Scaled displacement (by c44 parameter) measured in pure direction of HTI symme-
try. The geophones are located in 400m., 700m., 1000m. and 1300m. Source is a
Ricker pulse of amplitude 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 G11, G22 and G33 solutions for VTI symmetry. The color marks correspond to the
travel time of the first arrival of the wavefields. . . . . . . . . . . . . . . . . . . . . . . 34

10 G11, G22 and G33 solutions for orthorhombic symmetry. The color marks correspond
to the travel time of the first arrival of the wavefields. . . . . . . . . . . . . . . . . . . 36

11 G11, G22 and G33 solutions for monoclinic symmetry. The color marks correspond to
the travel time of the first arrival of the wavefields. . . . . . . . . . . . . . . . . . . . . 37

12 Radiation pattern of qP -wave in G11 component. The wave amplitude is normalized
by 1. The color mark corresponds to the travel time of the first arrival of the wavefield. 38

13 Radiation pattern of qP -wave in G22 component. The wave amplitude is normalized
by 1. The color mark corresponds to the travel time of the first arrival of the wavefield. 39

14 Radiation pattern of qP -wave in G33 component. The wave amplitude is normalized
by 1. The color mark corresponds to the travel time of the first arrival of the wavefield. 39

15 Radiation pattern of qSV - and qSH-waves in G11 component. The wave amplitude
is normalized by 1. The color marks corresponds to the travel time of the first arrival
of the wavefields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

16 Radiation pattern of qSV - and qSH-waves in G22 component. The wave amplitude
is normalized by 1. The color marks corresponds to the travel time of the first arrival
of the wavefields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

17 Radiation pattern of qSV - and qSH-waves in G33 component. The wave amplitude
is normalized by 1. The color marks corresponds to the travel time of the first arrival
of the wavefields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



ix

List of tables
Table Page

1 Relation between the number of elastic constants and symmetries. . . . . . . 10

2 Gaussian quadrature parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 List of parameters for isotropic case. r0 corresponds to the distance between
source and receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Comparison of velocities for isotropic case. . . . . . . . . . . . . . . . . . . . . 30

5 List of parameters for transversely isotropic case. This parameters correspond
to a cubic ice with hexagonal symmetry. r0, ∆r and # geophones are, respec-
tively, the distance between source and first receiver, the increment of distance
between each receiver, and the number of geophones. . . . . . . . . . . . . . 31

6 Comparison of velocities for VTI medium. . . . . . . . . . . . . . . . . . . . . . 33

7 Comparison of velocities for HTI medium. . . . . . . . . . . . . . . . . . . . . . 33

8 List of parameters for VTI symmetry. The elastic constants correspond to a
Cretaceous shale taken from Ikelle & Amundsen (2018). . . . . . . . . . . . . 34

9 List of parameters for orthorhombic symmetry. The elastic constants are taken
from Ikelle & Amundsen (2018). . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10 List of parameters for monoclinic symmetry. The elastic constants are taken
from Nevitt et al. (1988). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



1

Chapter 1 Introduction

Geological formations encountered in hydrocarbon exploration are usually layered and fractured,

due to diverse processes such as deposition of sediments and tectonic forces. For a seismic wave,

a finely layered rock appears as transversely isotropic. A finely layered medium permeated by

fractures orthogonal to lamination manifests itself as orthorhombic, and for a tilted set of fractures,

it is monoclinic. In such settings, shear wave splitting, directional dependence of waves velocities

and tilting away of particle motion occur, which are the expression of seismic anisotropy (Crampin,

1985; Helbig, 1994). There has been much interest in the exploration of unconventional resources

in the past decades. These are geological formations that have very low permeability or high vis-

cosity such as tight-gas sandstone, shale gas, coalbed methane, shale oil or tar sands, heavy oil

and gas hydrates. These rocks invariably exhibit seismic anisotropy (Zee Ma & Holditch, 2016).

Therefore, the study of elastic waves in anisotropic solids is of importance in reservoir seismology.

The development of the foundations of anisotropic elasticity traces back to the 19th century, and the

principal contributors were G. R. Hamilton, G. Green, W. Thomsen (Lord Kelvin) and E.B. Christof-

fel (Helbig, 2003). Rudzki (1898) introduced anisotropic elasticity to model waves in rocks. There

is a vast literature on waves in anisotropic solids, which mostly deals with plane-wave solutions

for different classes of anisotropic symmetries. An excellent review of such problems is presented

in the book of Auld (1973), and the understanding of seismic anisotropy in reservoirs in Thomsen

(2002). However, full-wave solutions for anisotropic solids is still far from complete.

The study of anisotropic models, by a fundamental singular solution, is of interest because it

is a basic building block for the construction of more general solutions. The Fourier transform

method is the usual approach to construct such a solution. Here, the solution is at first built in the

wavenumber-frequency domain and then transformed back to space-time domain. This inverse

transformation involves infinite integrals over wavenumbers and frequency, which are tedious to

evaluate because the integration kernel has singularities and branch cuts. Early applications to

general anisotropy have focused mainly on asymptotic solutions in the far-field. These contribu-

tions are reviewed by Kraut (1963), Musgrave (1970), and Payton (1983). For the case of trans-

versely isotropic symmetry, Ben-Menahem and Sena (1990), extending the approach of Buchwald

(1959), obtained a solution in a closed-form which was further simplified by Dong & Schmitt (1994)

to make it numerically computable. However, for other classes of anisotropy, numerically comput-
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ing the Green’s function using the Fourier transform method remains a challenge.

Wang & Achenbach (1995) developed the displacement Green’s function by applying the Radon

transform in the spatial domain in conjunction with the temporal Fourier transform, which is valid

for all classes of anisotropy. In this approach, by applying the Radon transform, the governing

system of PDEs reduces to a system of ODEs, which is then decoupled using the eigenvalues and

eigenvectors of that system. The solution of decoupled ODEs, in the Radon domain, is straight

forward. The inverse Radon transformation, which takes the solution back to the spatial domain,

is an integral over a unit sphere. This solution in terms of integral over unit sphere traces back to

the works of Burridge (1967) and Willis (1980). Since this closed-form analytic solution is a finite

integral, the numerical evaluation can be made efficiently.

The subject matter of this thesis is the numerical implementation of the displacement Green’s

function for all classes of anisotropic solids obtained by using the Radon transform and compute

synthetic seismograms generated by a point source.

1.1 Hyphotesis

The numerical solution of displacement Green’s function for an anisotropic elastic solid can be

computed easily using the Radon transform approach since the closed-form solution herein is a

double integral over a finite domain.

1.2 Thesis objectives

The objective of this work is to develop a numerical solution for the anisotropic Green’s function

based on the closed-form solution obtained by the Radon transform approach. To accomplish this,

the following are the specific objectives:

1. Develop a Gaussian quadrature integration code to compute the numerical solution for the

anisotropic Green’s function in elastodynamics based on the Radon transform approach by

Wang & Achenbach (1995).
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2. Validate the numerical solution in the isotropic limit.

3. Validate the solution with pure wave velocities in transversely isotropic case.

4. Compute synthetic seismograms generated by a point source for transversely isotropic, or-

thorhombic, and monoclinic symmetries.

1.3 Outline of the thesis

An overview of the elastodynamics wave equation is presented in Chapter 2, with details of the de-

velopment of this governing equation, the inclusion of anisotropy, the relation of this anisotropy with

geological rocks, and how the construction of the anisotropic Green’s function using the Fourier

transform approach becomes tedious. The Radon transform approach to solve a partial differential

equation is presented, in Chapter 3, followed by an illustration of this methodology, the develop-

ment of the analytic solution of anisotropic Green’s function using the Radon transform, and the

procedure for the numerical evaluation of the analytic solution. The solution is in a closed-form, ex-

pressed as finite integrals, which are evaluated numerically using the Gaussian quadrature method.

The validation of the numerical solution and computation of wave fields for anisotropic cases are

presented in Chapter 4. The validation is accomplish by comparing with the exact solution for

isotropic case, and the pure directions velocities for anisotropic cases. The computed wave fields

are for vertical transverse isotropy, horizontal transverse isotropy, orthorhombic and monoclinic

symmetries. They show shear wave splitting, directional dependence of waves velocities and tilt in

polarizations. The concluding remarks and future work directions are presented in Chapter 5.
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Chapter 2 Equation of motion for anisotropic solids

The foundations of the governing equations for linear elastodynamics, symmetries of the stiffness

tensor and a description of anisotropy in rocks encountered in hydrocarbon exploration are pre-

sented in this chapter. A brief description of the governing equations of linear elastodynamics is in

§2.1. Anisotropy in elasticity theory emanates from the stiffness tensor of the constitutive equation.

The specific forms of stiffness tensor relevant for seismic anisotropy are in §2.2. §2.3 shows how

stratification and fractures in rocks relate to seismic anisotropy. Finally, in §2.4, the Green’s func-

tion is constructed in wavenumber-frequency domain by Fourier transform approach. The solution

in space-time domain is obtained by applying the inverse Fourier transformation. As will be shown,

only for the case of isotropy, one can evaluate this inverse transformation explicitly. For anisotropy

cases, it is a tedious task since it involves infinite integrals over a kernel that has singularities and

branch cuts.

2.1 Foundations of linear elastodynamics

Elasticity theory is a mathematical framework which describes mechanical deformation of materials

on a continuum scale. The continuous distribution of mass is fundamental to this framework. Here,

each material point is assigned with a mass density, ρ. The other two thermodynamic quantities

pertaining to the motion of a material point are the velocity field, vi, and the stress field, σjk1.

The velocity field, vi, associated with a material point is defined by the continuity equation, i.e., the

conservation of mass equation

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0. (1)

Clearly, v is the velocity vector with which mass of the continuum is conserved. The term ρv is the

mass flux density, which is the linear momentum (per unit volume) of the continuum, and it defines

the direction of motion of the material point. The conservation of linear momentum is described by

∂

∂t
(ρvi) =

∂σij
∂xj

(2)

1Latin indices i, j, k... and so on run over three spatial coordinate labels, taken as 1,2,3. Subscript i, j, k... indicates
a spatial component. Repeated indices indicate summation.
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that prescribes the stress field, σij , which is associated with the deformation force within a material

point. The left and right-hand sides of the above equation are, respectively, inertial and deforma-

tional forces. Therefore, it is the statement of Newton’s second law of motion for continuum matter.

However, this system is not complete because it is a set of three equations with nine variables,

namely, three components of the velocity field (vi) and six components from the stress tensor

(σjk). 2

To complete this system of equations, based on the first law of Thermodynamics, through the

concept of deformational energy potential, the stress tensor is introduced as

σij = cijkl ekl, (3)

which is a set of six independent equations, however, it also introduces additional six variables on

account of the strain field, ekl. Here cijkl is a fourth rank tensor known as the elastic stiffness tensor,

and the strain field is a second rank symmetric tensor, which is taken as the complete measure

of deformation in elasticity theory. For the framework of linear elasticity theory, the deformational

energy potential (W ) is taken as the quadratic function of the strain field,

W = cijkl eij ekl. (4)

The gradient of the deformational energy potential with respect to the strain field is the definition of

stress field

σij =
∂W

∂eij
. (5)

The definitions 4 and 5 underpin the constitutive equation 3. Although 3 is a set of nine equations,

because of the symmetries of stress and strain tensors, three of them are redundant. Likewise, the

symmetries of the stress and strain tensors, the elastic stiffness tensor has pairwise symmetry,

cijkl = cjikl = cijlk, (6)

and on account of the existence of the energy potential (4), it also has pair exchange symmetry,

cijkl = cklij . (7)

2The stress field is a second rank tensor, so it has nine components. Yet only six of those are independent, as it is
symmetric since the existence of the intrinsic rotation is ruled out in the elasticity theory.
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These symmetries reduce the number of independent coefficients of the fourth rank elastic stiff-

ness tensor from 81 to 21.

Through the definition of the strain tensor, which is the symmetrical part of the deformation gradient

tensor
(
∂uk
∂xl

)
, an additional six equations are introduced as

ekl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
. (8)

Thus, from equations (2) , (3) and (8), there are fifteen governing equations with eighteen vari-

ables, namely, three components of the velocity field (vi), six components of stress field (σij), six

components of the strain field (eij) and three components of displacement field (uj).

The closure to the system of equations is provided by linking the displacement and velocity fields

of the mass particle which rise to three additional equations. This link is stated as

vj

(
δij −

∂ui
∂xj

)
=
∂ui
∂t

, (9)

and to the first order approximation, which is valid for a linear wave propagation problem, it is

vi =
∂ui
∂t

. (10)

Substituting equations (3), (8) and (10) into equation (2), the governing equation of motion, in

terms of the displacement field, is obtained as a set of 3x3 coupled second order partial differential

equation

(
δik ρ

∂2

∂t2
− ∂

∂xj
cijkl

∂

∂xl

)
uk = 0. (11)

When this wave operator is invariant under any rotation with respect to all three coordinate axes, it

is regarded as isotropic; otherwise, it is anisotropic.

In an isotropic medium, the solution of the equation of motion in the displacement field supports

two different waves, the P-wave and S-wave. The first one, also called compressional wave, travels

along the propagation direction. The S-wave, also called transverse wave, has particle motion per-

pendicular to the direction of propagation. It is a combination of two motions that are orthogonal to

each other as well the direction of propagation, and they propagate with the same speed, hence,
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combine into single shear motion.

For an anisotropic medium, the two shear motion are no longer propagating with the same speed.

This phenomenon is known as shear wave splitting. Thus, in an anisotropic medium, there are

three distinct waves. Furthermore, the velocities of these waves are direction-dependent. More-

over, the particle motion associated with the waves is no longer perfectly aligned to the direction

propagation or orthonormal to the direction of propagation. Because of that, they are labeled: qP -,

qS1- and qS2-waves. The meaning of prefix q (quasi) is that particle motion does not have a pure

longitudinal or pure transverse polarization direction.

The study of a fundamental solution for the above, i.e., the Green’s function, is the subject matter

of this work. The equation for Green’s function takes the form

[
δik ρ

∂2

∂t2
− ∂

∂xj
cijkl

∂

∂xl

]
Gkm

(
x− x′; t− t′

)
= −δimδ

(
x− x′

)
δ
(
t− t′

)
. (12)

The structure of the elastic stiffness tensor is explored in the next section.

2.2 Elastic stiffness tensor

Elastic stiffness tensor describes how an object resists deformation in response to an applied

force. To understand its transformation under rotation, the redundancy in the constitutive equa-

tion, arising due to the symmetries of the stress and strain tensor, is eliminated by casting the

constitutive equation in a 6x6 matrix form. This is achieved by introducing Voigt notation. In

this notation, each pair of indices ij(kl) are replaced by one index I(J) using the convention

11, 22, 33, 23, 31, 12↔ 1, 2, 3, 4, 5, 6. Therefore, in this notation, stress and strain tensors are repre-

sented by a six-element column vector rather than a nine-element square matrices



σ11 = σ1

σ22 = σ2

σ33 = σ3

σ23 = σ4

σ13 = σ5

σ12 = σ6


,



e11 = e1

e22 = e2

e33 = e3

2e23 = e4

2e13 = e5

2e12 = e6


(13)
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and the elastic stiffness tensor cijkl is a 6x6 symmetric matrix

cIJ =



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66


. (14)

This matrix is the most general representation of Voigt stiffness matrix. It has 21 independent con-

stants and no rotational invariance with respect to any coordinate axis. It is regarded to possess

triclinic symmetry.

The elastic stiffness tensor has monoclinic symmetry when it is invariant under rotation of 180°

about one coordinate axis (mirror or reflexion symmetry). In this case, the number of independent

constants reduces from 21 to 13, and the stiffness matrix has the form as below

cIJ =



c11 c12 c13 0 c15 0

c12 c22 c23 0 c25 0

c13 c23 c33 0 c35 0

0 0 0 c44 0 c46

c15 c25 c35 0 c55 0

0 0 0 c46 0 c66


. (15)

For the case when reflexion symmetries exist with respect to three perpendicular axes, the stiff-

ness matrix has 9 independent constants and said to possess orthorhombic symmetry. It has the

following form

cIJ =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


. (16)
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The hexagonal symmetry, also known as transversely isotropic symmetry, is the case when the

elastic stiffness tensor has one sixfold axis of rotation, i.e., invariant under rotation of 60° about

one axis. In this case, there are only 5 independent constants in Voigt stiffness matrix as below

cIJ =



c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66


, with c12 = 2 c66 − c11. (17)

For three mutually perpendicular axes of symmetry under a rotation of 90° is the case of cubic

symmetry. In this case, there are only 3 independent constants, and the elastic stiffness matrix

has the form

cIJ =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


. (18)

When the elastic stiffness matrix is invariant under any rotation, it is the case of isotropy. It only has

2 independent constants and no preferential direction. The Voigt stiffness matrix has the following

form

cIJ =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


, with c11 = c12 + 2 c44. (19)

Lamé’s parameters λ and µ of isotropic linear elasticity are, respectively, c11 and c44.
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An excellent exposition on transformation law for elastic constants and the effect of symmetry are

in Bhatia & Singh (1986). For clarity, the interrelation between symmetry and the number of elastic

constants are listed in Table 1.

Name Number of Symmetry

elastic constants

Triclinic 21 No symmetry axis

Monoclinic 13 One symmetry axis and one

mirror plane perpendicular to this axis

Orthorhombic 9 Three symmetry axis and three

mirror planes perpendicular to each axis

Hexagonal or transversely isotropic 5 60° of rotation about one axis

Cubic 3 Three mutually perpendicular

axes of symmetry for 90° rotation

Isotropic 2 Symmetry with respect to all directions.

Table 1: Relation between the number of elastic constants and symmetries.

In the next section, the importance of these symmetries on account of layering and fractures in

geological settings is discussed.

2.3 Elastic anisotropy of geological rocks

For a geological material, the arrangements of grains, fractures or bedding in rock formations give

rise to anisotropy in the stress and strain relation. Rock formations were created over several mil-

lions of years of deposition and diagenesis under the action of tectonic forces. In the subsurface,

the settling of sediments, grains and minerals are not random, which results in an ordered distribu-

tion.

When rock formation has some symmetry in the arrangements of grains and/or discontinuities,

it reduces the number of independent stiffness constants. Based on geological knowledge, one

may deduce whether the seismic wave response of a rock formation is likely to be isotropic, trans-

versely isotropic, orthorhombic, or monoclinic, but it will rarely be triclinic. Below the elastic stiffness
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tensor corresponding to each symmetry is described and their connection to the arrangements of

small-scale heterogeneities is presented.

2.3.1 Monoclinic symmetry

The lowest-symmetry model identified from seismic measurements is monoclinic (Musgrave, 1970;

Helbig, 1994). A finely layered medium permeated by a tilted set of fractures manifests itself as

monoclinic (Helbig, 2003). This model is important because there is abundant geological evidence

of tilted vertical fracture sets.

Figure 1: Cartoon of a layered medium permeated by a tilted set of fractures that exhibits monoclinic
anisotropy.

2.3.2 Orthorhombic symmetry

This symmetry is characterized by three mirror planes of symmetry and 9 independent elastic

constants. Orthorhombic symmetry usually originates from sedimentary basins that are permeated

by a set of parallel vertical fractures with vertical transverse isotropy (VTI) in the medium (Ikelle &

Amundsen, 2018).
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Figure 2: Cartoon of layered medium permeated by orthogonal set of fractures to the lamination that exhibits
orthorhombic anisotropy.

2.3.3 Transversely isotropic symmetry

The simplest anisotropic symmetry encountered in hydrocarbon exploration is transverse isotropy

or TI. This symmetry implies that the velocities and polarization directions of seismic waves in a

given direction vary only with the angle between the direction and the symmetry axis. Typically,

this is associated with gravity or regional stress. TI seen by a seismic wave is due to the existence

of unidirectional small scale heterogeneities. Typically, that could be because of fine layering of

sediments. A finely layered medium permeated by a fracture set that is parallel to the lamination is

also TI. A set of parallel fractures in a homogeneous medium also manifest as TI.

If gravity is the principal factor, then the resulting symmetry will be transverse isotropy with a

vertical symmetry axis (VTI). On the other hand, if the principal factor are regional stresses then

the symmetry axis can be horizontal, resulting in a transverse isotropy with a horizontal symmetry

axis (HTI). Also, the symmetry axis can be tilted, resulting in a transverse isotropy with a tilted

symmetry axis (TTI). An example of these kinds of mediums are in Figure 3.
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Figure 3: Cartoons of layered media that exhibit transversely isotropic anisotropy. VTI (left), HTI (center)
and TTI (right).

A VTI medium can be represented as a layered medium where the physical properties are uniform

horizontally but vary vertically and the elastic stiffness matrix cIJ is as equation 17.

A medium with vertical fine layering or fractures manifest HTI anisotropy. For this case, the cIJ

stiffness matrix is

cIJ =



c11 c13 c13 0 0 0

c13 c33 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c66 0

0 0 0 0 0 c66


(20)

where c23 = (c33 − 2c44). This symmetry is described with 5 independent constants and 1 depen-

dent constant.

For the cases of dipping transversely isotropic layers, the rock formation has transversely isotropic

symmetry with a tilted symmetry axis (TTI) with respect to the surface. To obtain the elastic pa-

rameters for this media, matrix 17 or 20 must be rotated in accordance with the orientation of the

symmetry axis with respect to vertical azis, i.e., the tilt angle. The elastic stiffness matrix cIJ for
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this kind of anisotropy (Ikelle & Amundsen, 2018) is

cIJ =



c′11 c′12 c′13 0 c′15 0

c′12 c′22 c′23 0 c′25 0

c′13 c′23 c′33 0 c′35 0

0 0 0 c′44 0 c′46

c′15 c′25 c′35 0 c′55 0

0 0 0 c′46 0 c′66


(21)

where

c′11 = c11 cos4 θ + 2c13 cos2 θ sin2 θ + c33 sin4 θ + 4c44 sin2 θ cos2 θ

c′12 = c12 cos2 θ + c23 sin2 θ

c′13 = (c11 + c33 − 4c44) sin2 θ cos2 θ + c13(cos4 θ + sin4 θ)

c′15 = (c13 − c33 + 2c44) cos3 θ sin θ + (c33 − c13 − 2c44) cos θ sin3 θ

c′22 = c22

c′23 = c12 sin2 θ + c23 cos2 θ

c′25 = (c23 − c12) sin θ cos θ

c′33 = c11 sin4 θ + c33 cos4 θ + 2(c13 + 2c44) cos2 θ sin2 θ

c′35 = (c13 + 2c44 − c11) cos θ sin3 θ + (c33 − c13 − 2c44) cos3 θ sin θ

c′44 = c44 cos2 θ + c66 sin2 θ

c′46 = c44 cos θ sin θ − c66 cos θ sin θ

c′55 = (c11 + c33 − 2c13 − 2c44) cos2 θ sin2 θ + c44(cos4 θ + sin4 θ)

c′66 = c66 cos2 θ + c44 sin2 θ

This symmetry is described by 7 independent elastic parameters and a tilt angle θ of the axis of

symmetry. This reduces to VTI when θ = 0 and to HTI when θ = 90.

2.4 Green’s function in the k and ω domain

The Fourier transform method is the conventional approach to obtain the Green’s function for elas-

todynamics. Equation 12 is invariant under space and time translations so introducing the nota-
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tions, x− x′ = r and t− t′ = τ , it is

[
δip ρ

∂2

∂t2
− ∂

∂xj
cijpq

∂

∂xq

]
Gpm (r; τ) = δimδ (r) δ (τ) . (22)

Setting the operator

δip ρ
∂2

∂t2
− ∂

∂xj
cijpq

∂

∂xq
≡ Lip(∂), (23)

the equation of motion (22), in a compact form, is

Lip Gpm (r; τ) = δimδ (r) δ (τ) . (24)

Using Fourier transformation Gpm, δ(r) and δ(τ) are

Gpm(r, τ) =
1

2π

∫ ∞
−∞

dω
1

(2π)3

∫ ∞
−∞

d3k G̃pm(k;ω) ei(k·r−ωτ), (25)

δ(r) =
1

(2π)3

∫ ∞
−∞

d3k e−i k·r, (26)

δ(τ) =
1

2π

∫ ∞
−∞

dω e−iωτ . (27)

Substituting equations (25), (26) and (27) in equation (22) one obtains an algebraic equation

(
cijpqkjkq − δipρω2

)︸ ︷︷ ︸
L̃ip

G̃pm = δim. (28)

L̃ip is known as the Green’s Christoffel matrix. From equation (28) it is apparent that L̃ip is the

inverse of G̃ip. Therefore, the Green’s function in wave-number frequency domain is

G̃pm = L̃ −1
pm =

L̃ †
pm

∆L
(29)

where L̃ †
pm is the cofactor transpose and ∆L is the determinant of the Green’s Christoffel matrix

L̃pm. To return to a spatial-temporal domain the inverse Fourier transformation (25) is applied,

which yields

Gpm(r, τ) =
1

2π

∫ ∞
−∞

dω
1

(2π)3

∫ ∞
−∞

d3k
L̃ †
pm

∆L
ei(k·r−ωτ). (30)
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This inverse transformation involves infinite integrals over wave-numbers and frequency, which are

tedious to evaluate because the integration kernel has singularities and branch cuts, except for the

isotropic case.

For the isotropic case, the stiffness tensor is defined as

cijpq = λδijδpq + µ (δipδjq + δiqδjp) , (31)

with which

G̃pm(k, ω) =
1

(µk2 − ρω2)

[
δpm −

(λ+ µ) kpkm
(λ+ 2µ) k2 − ρω2

]
. (32)

Introducing velocities

α =

√
λ+ 2µ

ρ
, β =

√
µ

ρ
, (33)

where α is the velocity of the P-wave or compressional wave and β is the velocity of the S-wave or

shear wave, equation (32) becomes

G̃pm(k, ω) =
1

ρ(β2k2 − ω2)

[
δpm −

(
α2 − β2

)
kpkm

α2k2 − ω2

]
. (34)

Applying inverse Fourier transform to go to a physical domain x and t domain, the Green’s function

for isotropic case is

Gpm(r, τ) =
1

4πρα2

δ(τ − tα)

r
γp γl +

1

4πρβ2

δ(τ − tβ)

r

(
δpm − γp γl

)
+

1

4πρ

3γpγl − δpl
r3

τ (Θ (τ − tα)−Θ (τ − tβ)) (35)

where tα = r
α , tβ = r

β are, respectively, the travel time for P - and S-waves and γj =
rj
|r| are the

direction cosines of the line from source to point of observation.
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Chapter 3 Closed-form solution for the anisotropic Green’s

function

This chapter develops the closed-form solution for the anisotropic Green’s function using the Radon

transform approach as in Wang & Achenbach (1995). This solution is the integration over a unit

sphere of a kernel that is composed of the eigenvalues and eigenvectors of the Kelvin-Christoffel

matrix of the anisotropic elasticity. First, in §3.1, a brief introduction of the Radon transform is pre-

sented. The solution to the 3-D Helmholtz equation is developed in §3.2, to illustrate this method-

ology. The closed-form solution for general anisotropic wave equation using the Radon transform

is presented in §3.3. Gaussian quadrature is used to evaluate this integral, which is implemented

in MatLab. The details of this numerical evaluation are in §3.4.

3.1 The Radon transform

3.1.1 Preliminaries

The Radon transform is the projection of a function to a hyperplane. A hyperplane is a subspace

which reduces one dimension of its ambient space. For 3-dimensional space, its hyperplanes are

2-dimensional planes. Likewise, for 2-dimensional space, its hyperplanes are 1-dimensional lines.

This transformation is extensively used for reconstructing images in X-ray computed tomography.

An interesting feature of the Radon transform is that it reduces a 3-D partial differential equation to

a 1-D differential equation. This property of Radon transform is utilized for solving the anisotropic

Green function problem.

Let x = (x1, x2, x3) be the coordinates of a point in the space R3 and consider some function

f(x) defined in R3. The Radon transform of f(x) is defined as

f̂(s,n) = R[f(x)] =

∫
f(x)δ(s− n · x)dx. (36)
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Thus, the Radon transform is an integration of f(x) over all planes defined by n · x = s, where n is

the unit normal vector to the plane. The inverse Radon transformation is carried out in two steps.

First, one needs to obtain the second derivative of the function in s domain

f(s,n) = ∂2
s f̂(s,n), (37)

and the next step is the integration over the unit sphere

f(x) = − 1

8π2

∫
|n|=1

f(n · x,n)dS(n). (38)

The inverse Radon transform is expressed in terms of an integral over the unit sphere (in 3 dimen-

sions) or a line integral over a unit circle (in 2 dimensions). The procedure for integrating over unit

sphere is presented in the next section.

3.1.2 Integration over unit sphere

Let e be the unit vector in the direction of the point of observation x (see Figure 4), i.e. it is the

direction of the radius vector. Thus for |x| = r,

x = re. (39)

Figure 4: (Left) Illustration of vectors x, e,d and n in the fixed xi coordinates. (Right) Relation between
these vectors on the unit circle.

Let there be a unit vector d normal to the direction of x. Thus,

d · e = 0 (40)
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Then a unit vector n is defining the plane

n = ad + be, (41)

where a =
√

1− b2. From equations 40 and 41, we have

n · x = (ad + be) · re = rb. (42)

From Figure 4 we can define function d as a function of φ given by

d(φ) = cosφp + sinφq (43)

where p and q are a set of orthonormal vectors in the plane normal to e (see Figure 4).

Using the coordinate system (e, p, q), we can determine the values of the normal vector n in terms

of the b and θ plane where the components of the n vector can be defined as

n1 = b ,

n2 =
√

1− b2 cos θ,

n3 =
√

1− b2 sin θ.

Then a unit vector n defining the plane of integration over unit sphere with respect to b and θ, from

Figure 4, yields

f(x) = − 1

8π2

∫ 2π

0

∫ 1

−1
f [rb,n(b,d(φ))]dbdφ (44)

3.1.3 Some properties of Radon transform

The following properties of f̂ are inmediate consequences of the definition given in equation (36)

homogeneity: f̂(αs, αn) = |α|−1f̂(x,n) (45)

linearity: R(c1f + c2g) = c1f̂ + c2ĝ (46)
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transform of derivatives: R(∂if(x)) = ni∂sf̂(s,n) (47)

3.2 Solution of 3-D Helmholtz equation using the Radon transform

As an exercise in using the Radon transform the Green’s function for the 3-D scalar wave equation

is constructed. Taking the Fourier transform with respect to time of the wave equation, the 3-D

Helmholtz equation is obtained as

[K(∂2
1 + ∂2

2 + ∂2
3) + ρω2]G(x;ω) = −δ(x) (48)

where K, G(x;ω) and δ(x) are a positive constant, the Green Function and the force term, respec-

tively.

Applying the Radon transformation, the above equation reduces to

[K∂2
s + ρω2]Ĝ(s) = −δ(s). (49)

This equation shows how Radon transform reduces the 3-D Helmholtz equation to a 1-D Helmholtz

equation.

The outgoing wave solution in the s coordinate, generated by the source δ(s), is in the form

Ĝ =
i

2ρc2k
eik|s|, (50)

where c and k are the phase velocity and the wave number given by

c =

√
K

ρ
, and k =

ω

c
. (51)

The second derivative of the Green’s Function in Radon domain is

G(s,n) = ∂2
s Ĝ =

i

2ρc2k
∂2
se
ik|s| =

−1

2ρc2
[2δ(s) + ikeik|s|] (52)
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Therefore we may write

G(n · x,n) = − ik

2ρc2
eik|n·x| − 1

ρc2
δ(n · x) (53)

where the first term is the regular part GR of the function and the second term is the singular part

GS . Using the inverse Radon formula (38) we have,

G(x, ω) = − 1

8π2

∫
|n|=1

(
− ik

2ρc2
eik|n·x| − 1

ρc2
δ(n · x)

)
dS(n), . (54)

Where the regular part and singular part of this integral are

GR(x, ω) =
ik

16π2ρc2

∫ 2π

0
dφ

∫ 1

−1
eikr|b|db (55)

and

GS(x) =
1

8π2ρc2

∫ 2π

0
dφ

∫ 1

−1
δ(rb)db, (56)

respectively. Evaluating the integrals 55 and 56 yields

GR(x, ω) =
1

4πρc2

eikr − 1

r
(57)

and

GS(x) =
1

4πρc2

1

r
. (58)

The final solution is

G(x, ω) = GS +GR =
1

4πρc2

eikr

r
. (59)

Note that GR(x) is a regular function and GR(x)→ 0 when ω → 0. GS(x) correspond to the static

Green’s function which is not frequency dependent.
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3.3 Radon transform approach for the anisotropic Green’s function

From expression (12) , the Green’s function for the equation of motion in frequency domain is

[
δip ρω

2 +
∂

∂xj
cijpq

∂

∂xq

]
Gpm (x;ω) = −δimδ (x) .

Introducing the notation ∂
∂xj

cijpq
∂
∂xq
≡ Γip, the above is written as

[
Γ(∂) + ρω2δip

]
G̃pm(x, ω) = −δimδ(x). (60)

Γip is known as Kelvin-Christoffel operator. Using Voigt notation for stiffness tensor, cijpq, the

operator Γip is

Γ(∂) = E cIJ E T , (61)

where E is the operator

E (∂) =



∂1 0 0

0 ∂2 0

0 0 ∂3

0 ∂3 ∂2

∂3 0 ∂1

∂2 ∂1 0


. (62)

The Radon transformation of operator E reads as

Ê (s,n) =



n1 0 0

0 n2 0

0 0 n3

0 n3 n2

n3 0 n1

n2 n1 0


︸ ︷︷ ︸

P

∂s (63)
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The Kelvin-Christoffel operator transforms into the Radon domain as

R[Γ] ≡ P cIJ PT︸ ︷︷ ︸
Γ̂

∂2
s , (64)

thereby, the Green’s function (60) transforms in Radon domain to

[
Γ̂ip(n)∂2

s + ρω2δip

]
Ĝpk = −δikδ(s). (65)

The above is a system of three coupled 1-D Helmholtz equations. In order to uncoupled this system

of equations, Γip(n) is decomposed in terms of its eigenvalues λm and eigenvectors Eim as

Γip(n)Epm = λmEim (66)

where the eigenvectors have real orthonormal bases and the eigenvalues are all real numbers due

to the symmetry of the Kelvin-Christoffel operator. The summation convention does not apply to

the suffix, m, whenever λm, or later on, in other two values (cm and km). The transformation of the

Green’s function to this new basis are given by

Ĝ′mk = EpmĜpk, (67)

and the inverse transformation is

Ĝpk = EpnĜ′nk. (68)

The transformation of equation (60), by operating the eigenvectors Eim on both sides of the equa-

tion and using the transformation for the Green’s function, follows

[
EimΓ̂ip(n)Epn∂

2
s + ρω2EimδipEpn

]
Ĝ′nk = −Eimδikδ(s). (69)

Denoting that

EimΓ̂ip(n)Epn = EimλnEin = λnEimEin = λmδmn, (70)

and

EimδipEpn = EimEin = δmn, (71)
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equation (69) corresponds to the following set of three uncoupled equations

[
λm∂

2
s + ρω2

]
Ĝ′mk = −Ekmδ(s). (72)

The solution corresponding to an outgoing wave is given by

Ĝ′mk =
iEkm

2ρc2
mkm

eikm|s|, (73)

where cm and km are, respectively, the phase velocities and the wavenumber defined by

cm =

√
λm
ρ
, (74)

and

km =
ω

cm
. (75)

Applying the transformation to revert to Ĝpk in (73) yields

Ĝpk =
3∑

m=1

iEpmEkm
2ρc2

mkm
eikm|s|. (76)

To use the inverse Radon transform, the second derivative is

Ḡpk(s,n) = ∂2
s Ĝpk =

3∑
m=1

−EpmEkm
2ρc2

m

(
2δ(s) + ikme

ikm|s|
)
. (77)

Applying the inverse Radon transform to equation (76) we have Green’s function in frequency

domain

Gpk(x, ω) = − 1

8π2

∫
|n|=1

Ḡpk(s,n)dS(n). (78)

Gpk(x, ω) has a regular part GRpk(x, ω) and a singular part GSpk(x, ω) as

Gpk(x, ω) = GRpk(x, ω) +GSpk(x, ω). (79)
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The regular part is

GRpk(x, ω) =
i

8π2

∫
|n|=1

3∑
m=1

kmEpmEkm
2ρc2

m

eikm|n·x|dS(n) (80)

and the singular part is

GSpk(x, ω) =
1

8π2

∫
|n|=1

3∑
m=1

EpmEkm
ρc2
m

δ(n · x)dS(n). (81)

Hence, summing these two equations, yields the Green function in frequency domain as

Gpk(x, ω) =
i

8π2

∫
|n|=1

3∑
m=1

kmEpmEkm
2ρc2

m

eikm|n·x|dS(n) +
1

8π2

∫
|n|=1

3∑
m=1

EpmEkm
ρc2
m

δ(n · x)dS(n) (82)

For the isotropic case, the integrals can be analytically integrated. However, for anisotropy, these

integrals need to be numerically evaluated.

3.3.1 Numerical integration by Gaussian quadrature method

The closed-form solution (82) requires numerical integration over a unit sphere. For this purpose,

the numerical evaluation of integrals is carried out using the Gaussian quadrature method.

Numerical integration formulas are developed by fitting approximating functions to discrete data

and integrating an approximation function

I =

∫ b

a
f(x)dx ∼=

∫ b

a
Pn(x)dx. (83)

The above representation is illustrated in Figure 5
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Figure 5: Numerical integration. (a) Exact integral. (b) Approximate integral. (Adopted from Hoffman
(1992)).

Gaussian quadrature method is an approximate method of calculating an integral

I =

∫ b

a
f(x)dx =

n∑
i=1

Cif(xi), (84)

by choosing the values of xi and Ci in (84) so that the integral of the polynomial is exact. xi are

the locations at which the integrand function f(x) is known and Ci are weighting factors. Above

equation can be transformed from x space to t space by the transformation

x = mt+ c, (85)

where

m =
b− a

2
, and c =

b+ a

2
, (86)

Thus, integral (84) becomes

I =

∫ b

a
f(x) dx =

∫ 1

−1
f(x(t)) dt =

∫ 1

−1
f(mt+ c) m dt. (87)

Substituting expression(86) into 87 yields

I =
b− a

2

∫ 1

−1
F (t)dt (88)

where F (t) = f(mt+ c).
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For higher-order formulas the expression is the following

∫ b

a
f(x)dx ≈ b− a

2

n∑
i=1

CiF (ti) (89)

n Values of ti Values of Ci Order

2 −1√
3

1 3
1√
3

1

3 −
√

0.6 5
9 5

0 8
9

√
0.6 5

9

4 −0.8611363116 0.3478548451 7

−0.3399810436 0.6521451549

0.3399810436 0.6521451549

0.861136311 0.347854845

Table 2: Gaussian quadrature parameters.

Table 2 presents ti and Ci for n = 2, 3 and 4. Other higher-order results are presented by

Abramowitz & Stegun (1964).

Equation (82) requires the use of a double Gaussian quadrature to obtain the numerical result

of a double integral. To implement this integration method, the following pseudo-code is presented

where input C represents the parameters of the stiffness matrix and the density of the medium. ω

is the value of the frequency.

This program solves in each section all the contribution of inner integral and then evaluates in

each part of the outer integral. The final result is the addition of every section of the regular and

singular part of the closed-form solution(82).
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Algorithm 1 Gaussian Quadrature algorithm for anisotropic solids.
1: function GAUSSIANQUADRATURE(input C, ω)

2: GIVE NUMBER OF SECTIONS FOR EACH INTEGRAL

3: GIVE VALUES FOR GAUSSIAN QUADRATURE

4: for sections1← 1, k do

5: integralresult2 = 0

6: for sections2← 1, h do

7: integralresult3 = 0

8: for sections3← 1, n do

9: integralresult4 = 0

10: for sections4← 1, i do

11: theta = mt(n) ∗ tint(i) + dtheta(n)

12: b = mb(k) ∗ tint(h) + db(k)

13: KC=SET UP THE KELVIN-CHRISTOFFEL MATRIX

14: [EV,EG] =OBTAIN EIGENVALUES AND EIGENVECTORS OF KC

15: F=ELABORATE THE FUNCTION INTEGRALS USING [EV,EG]

16: integralresult4 = integralresult4 + coeff(i) ∗ F

17: end for

18: integralresult3 = integralresult3 +mt(n) ∗ integralresult4

19: end for

20: integralresult2 = integralresult2 + coeff(h) ∗ integralresult3

21: end for

22: integralresult1 = integralresult1 +mb(k) ∗ integralresult2

23: end for

24: FINAL RESULT= integralresult1

The MatLab code generated in this work allows to obtain the Green’s function for all classes of

anisotropy only changing the elastic constants of KC.
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Chapter 4 Numerical solution for the anisotropic Green’s

function

In this chapter, the numerical solution for isotropic, transversely isotropic, orthorhombic and mon-

oclinic symmetry are obtained using the Radon transform approach. The symmetry axis is taken

always along x3 axis. The validation of this approach is accomplish by comparing the exact solution

with the numerical solution in the isotropic symmetry in §4.1. The comparison of the pure direction

velocities, i.e., the direction which the wave solutions become pure transverse or pure longitudinal

(Auld, 1973), and the numerical solution is other validation presented in §4.2. The receiver loca-

tions are along x1 axis. From §4.3 to §4.5, numerical solution for different anisotropic symmetries

are presented. In §4.6, the radiation patterns for TI case in (x1, x3) plane is shown. They show

the shear wave splitting and the directional dependence of waves velocities. The computation of

wave-fields in time domain is carried out by band limiting the source pulse as a Ricker wavelet, so

that a fast Fourier transform scheme is applicable.

4.1 Validation with the analytical solution in isotropic medium

For the validation of this methodology, the comparison of the analytical solution with the numerical

solution for isotropic case is presented here. The results of computing expression (82) to applying

a force in the origin and measuring waves in G11 for this symmetry are computed here using

Gaussian quadrature. Parameters of the medium are in Table 3.

Parameters Values

c11 6.3667 GPa

c44 2.3000 GPa

c12 1.7667 GPa

ρ 2650 kg/m3

r0 1000 m

Table 3: List of parameters for isotropic case. r0 corresponds to the distance between source and receiver.
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Figure 6: Comparison between analytical solution and numerical solution in isotropic medium.

Figure 6 shows similarity between the analytical and the numerical solution. The P- and S-waves

are clearly observed, for which analytical formulas are

vp =

√
c11

ρ
and vs =

√
c44

ρ
.

Observed velocities are compared with the analytical velocities in Table 4.

Velocity Analytical solution Numerical solution

vp 4.90× 103 m/s2 4.89× 103 m/s2

vs 2.94× 103 m/s2 2.93× 103 m/s2

Table 4: Comparison of velocities for isotropic case.

From this experiment, it can be concluded that the comparison of the velocities and waveforms for

P- and S-waves in isotropic medium are acceptable.
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4.2 Validation with pure direction velocities in transversely isotropic

medium

Another validation for this methodology is comparing the pure direction velocities in VTI and HTI

symmetries. Next results present the numerical solution for these symmetries applying a force in

the origin and measuring waves in G11 .The parameters of the medium are given in Table 5.

Parameters Values Parameters Values

c11 13.8 GPa c33 15.0 GPa

c44 3.20 GPa c12 7.10 GPa

c13 5.80 GPa ρ 916.8 kg/m3

r0 400 m ∆r 300 m

# geophones 4

Table 5: List of parameters for transversely isotropic case. This parameters correspond to a cubic ice with
hexagonal symmetry. r0, ∆r and # geophones are, respectively, the distance between source and first
receiver, the increment of distance between each receiver, and the number of geophones.

Figure 7: Scaled displacement (by c44 parameter) measured in pure direction of VTI symmetry. The geo-
phones are located in 400m., 700m., 1000m. and 1300m. Source is a Ricker pulse of amplitude 1.
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Figure 8: Scaled displacement (by c44 parameter) measured in pure direction of HTI symmetry. The geo-
phones are located in 400m., 700m., 1000m. and 1300m. Source is a Ricker pulse of amplitude 1.

In Figures 7 and 11, we can observe the behavior of qP -, qSV - and qSH-waves with respect to

distance using the parameters of Table 5. The velocities can be compared with

v2
qP

=
1

2ρ
[c33 + c44 + (c11 − c33) sin2 θ +D(θ)]

v2
qSV

=
1

2ρ
[c33 + c44 + (c11 − c33) sin2 θ −D(θ)] (90)

v2
qSH

=
1

ρ
[c66 sin2 θ + c44 cos2 θ]

where

D(θ) = [(c33 − c44)2 + 2[(c13 + c44)2 − (c33 − c44)(c11 + c33 − 2c44)] sin2 θ

+ [(c11 + c33 − 2c44)2 − 4(c13 + c44)2] sin4 θ]
1
2 (91)

given in Thomsen (2002). This formulas predicts the velocities of these three waves. The pure
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velocities is obtained by setting θ = 0 and θ = 90 degrees in the above formulas, which yields

vqP (0°) =

√
c33

ρ

vqSV (0°) =

√
c44

ρ
(92)

vqSH (0°) =

√
c44

ρ

and

vqP (90°) =

√
c11

ρ

vqSV (90°) =

√
c44

ρ
(93)

vqSH (90°) =

√
c66

ρ
.

From this analytical solutions, is easy to derive that in 0 degrees only two wavefronts are observed.

The first wavefront includes the qP -wave and the second wavefront includes qSV - and qSH-waves.

For 90 degrees, it can be observed the splitting of S-wave corresponding to a HTI symmetry. These

phenomena can be observed in Figures 7 and 11. Numerical values compared with analytical

velocities in Table 6 for VTI and in Table 7 for HTI.

Velocity Analytical Numerical

qP 4.04× 103 m/s2 4.02× 103 m/s2

qSV 1.86× 103 m/s2 1.84× 103 m/s2

qSH 1.86× 103 m/s2 1.84× 103 m/s2

Table 6: Comparison of velocities for VTI medium.

Velocity Analytical Numerical

qP 3.87× 103 m/s2 3.84× 103 m/s2

qSV 1.86× 103 m/s2 1.84× 103 m/s2

qSH 1.89× 103 m/s2 1.88× 103 m/s2

Table 7: Comparison of velocities for HTI medium.

These results show the effectiveness of this methodology and a validation for the MatLab code

developed in this thesis.
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4.3 Numerical solution for the anisotropic Green’s function in VTI

symmetry

The results of evaluating 82 by applying a force in the origin and measuring waves in G11, G22

and G33 for VTI symmetry are computed here using Gaussian Quadrature. The parameters of the

medium are given in Table 8.

Parameters Values Parameters Values

c11 34.3 GPa c12 13.1 GPa

c13 10.7 GPa c33 22.7 GPa

c44 5.40 GPa c66 10.6 GPa

r0 900 m ρ 2060.8 kg/m3

Table 8: List of parameters for VTI symmetry. The elastic constants correspond to a Cretaceous shale taken
from Ikelle & Amundsen (2018).

Figure 9: G11, G22 and G33 solutions for VTI symmetry. The color marks correspond to the travel time of
the first arrival of the wavefields.
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The analytical travel time shows the existence of two anisotropic waves, qP and qSV , and the

numerical solution agrees with this solution. The comparison of analytical travel time and numerical

first arrival of anisotropic waves is acceptable.

4.4 Numerical solution for the anisotropic Green’s function in or-

thorhombic symmetry

The results of computing expression (82) applying a force in the origin and measuring waves in

G11, G22 and G33 for orthorhombic symmetry are here. The parameters of the medium are given

in Table 9.

Parameters Values Parameters Values

c11 50.6 GPa c22 46.2 GPa

c33 40.0 GPa c44 11.0 GPa

c55 13.2 GPa c66 15.6 GPa

c23 27.9 GPa c13 21.5 GPa

c12 24.4 GPa ρ 2750 kg/m3

r0 1300 m

Table 9: List of parameters for orthorhombic symmetry. The elastic constants are taken from Ikelle &
Amundsen (2018).
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Figure 10: G11, G22 and G33 solutions for orthorhombic symmetry. The color marks correspond to the travel
time of the first arrival of the wavefields.

The comparison of analytical travel time and numerical first arrival of qP -, qS1- and qS2-waves are

acceptable.

4.5 Numerical solution for the anisotropic Green’s function in mon-

oclinic symmetry

The seismograms obtained by applying a force in the origin and measuring waves in G11, G22 and

G33 for monoclinic symmetry are here. Parameters of the medium are given in Table 10.
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Parameters Values Parameters Values

c11 35.8 GPa c22 42.6 GPa

c33 24.0 GPa c44 9.90 GPa

c55 7.80 GPa c66 13.0 GPa

c12 14.4 GPa c13 6.70 GPa

c15 2.50 GPa c23 12.7 GPa

c25 3.80 GPa c35 2.30 GPa

c46 0.38 GPa ρ 2216 kg/m3

r0 1300 m

Table 10: List of parameters for monoclinic symmetry. The elastic constants are taken from Nevitt et al.
(1988).

Figure 11: G11, G22 and G33 solutions for monoclinic symmetry. The color marks correspond to the travel
time of the first arrival of the wavefields.
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4.6 Point-source radiation pattern: Transversely isotropic case

The radiation pattern in transversely isotropic symmetry for G11, G22 and G33 is computed here.

This experiment illustrates how the waveform changes with respect to polar angle. The wave

amplitude is normalized to 1. For the study of qP -wave, a π
18 degree rotation is presented, and for

qSV - and qSH-waves a π
8 rotation is used. The parameters of the medium are given in Table 5.

Figure 12: Radiation pattern of qP -wave in G11 component. The wave amplitude is normalized by 1. The
color mark corresponds to the travel time of the first arrival of the wavefield.
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Figure 13: Radiation pattern of qP -wave in G22 component. The wave amplitude is normalized by 1. The
color mark corresponds to the travel time of the first arrival of the wavefield.

Figure 14: Radiation pattern of qP -wave in G33 component. The wave amplitude is normalized by 1. The
color mark corresponds to the travel time of the first arrival of the wavefield.
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Figure 15: Radiation pattern of qSV - and qSH-waves in G11 component. The wave amplitude is normalized
by 1. The color marks corresponds to the travel time of the first arrival of the wavefields.

Figure 16: Radiation pattern of qSV - and qSH-waves in G22 component. The wave amplitude is normalized
by 1. The color marks corresponds to the travel time of the first arrival of the wavefields.
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Figure 17: Radiation pattern of qSV - and qSH-waves in G33 component. The wave amplitude is normalized
by 1. The color marks corresponds to the travel time of the first arrival of the wavefields.

From Figures 12, 13 and 14 we can observe the radiation pattern of qP -wave, by a point source

applied in x1 direction at the origin, in G11, G22 and G33 components. In Figure 12 the qP -wave

generated in G11 component shows the dependence of velocities on polar angle. The first arrival

of qP -wave agrees with the numerical phase velocities(see Appendix A). From G22 component

of Figure 13 we can observe how the qP -wave amplitude decreases compared with the other

components. In G11 component from Figure 14 shows the same solution of G33 component from

Figure 12 rotated by 90 degrees as it is expected for this kind of symmetry.

Figures 15, 16 and 17 show the radiation pattern in G11, G22 and G33 components for the other

two waves, qSV and qSH. In the three figures the change of the waveform, velocity and qSV - and

qSH-waves decoupling in certain angle can be observed. In Figures 15 and 17 we can observe

how the propagation direction affects the velocity of the qSV - and qSH-waves. The eigenvectors

of the Kelvin-Christoffel matrix allow us to interpretation of which is the qSV - and qSH-waves.

From G22 component plotted in Figure 16 we can observe how the qP -wave amplitude is smaller

compared with the other component measurements.
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Chapter 5 Concluding remarks and future work direc-

tions

Based on the presented work, the conclusions are as follows:

• The Radon transform is a simple and efficient alternative to obtain the anisotropic Green’s

function in elastodynamics because it avoids the complications found in the Fourier domain.

• The comparison of the analytical solution for the isotropic case with the numerical solution

obtained in this work shows that the MatLab code to obtain the anisotropic Green’s function

works correctly.

• The numerical solutions generated in this work in TI and orthorhombic symmetries agree with

the ones described in Helbig (1994).

• The study of TI symmetries by the radiation pattern helps to understand the nature of wave

propagation from a different perspective.

• The understanding of the behaviors of the phenomena observed in anisotropic cases, i.e., the

waveform and splitting of the S-wave, is useful.It can provide information about the orientation

of the medium.

For future work, the extension of this program to obtain the Green’s function for an anisotropic

poroelastic model would be interesting. The poroelastic anisotropic model is an extended version

of the elastic anisotropic model. The equations of both models have the same structure. The

only difference is the size of some matrices, however, this doesn’t change the functionality of the

program.
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Appendix A Phase velocities in an arbitrary anisotropic

medium

The phase velocity for any kind of anisotropy can be obtained in the wavenumber-frequency do-

main by decomposing the Kelvin-Christoffel matrix in terms of their eigenvalues and eigenvectors.

Starting from equation (28)

L̃ip = cijpqkjkq − δipρω2 = 0. (94)

Introducing spherical coordinate system for the wavenumber vector k, such that k3 is align to the

x3 direction, and taking θ and φ as polar and azimuth angles, respectively,

k = k̂i, (95)

î = (sinφ cos θ, sinφ sin θ, cosφ) , (96)

and the phase velocity denoted as

ω

k
≡ v (97)

equation (94) is

Γ− ρv2I = 0, (98)

where I is a 3× 3 identity matrix and Γ is the Kelvin-Christoffel matrix,

Γ =


Γ11 Γ12 Γ13

Γ12 Γ22 Γ23

Γ13 Γ23 Γ33
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where

Γ11 = c11i
2
1 + c66i

2
2 + c55i

2
3 + 2c56i2i3 + 2c15i1i3 + 2c16i1i2,

Γ22 = c66i
2
1 + c22i

2
2 + c44i

2
3 + 2c24i2i3 + 2c46i1i3 + 2c26i1i2,

Γ33 = c55i
2
1 + c44i

2
2 + c33i

2
3 + 2c34i2i3 + 2c35i1i3 + 2c45i1i2,

Γ12 = c16i
2
1 + c26i

2
2 + c45i

2
3 + (c25 + c46) i2i3 + (c14 + c56) i1i3 + (c12 + c66) i1i2,

Γ13 = c15i
2
1 + c46i

2
2 + c35i

2
3 + (c36 + c45) i2i3 + (c13 + c55) i1i3 + (c14 + c46) i1i2,

Γ23 = c56i
2
1 + c24i

2
2 + c34i

2
3 + (c23 + c44) i2i3 + (c36 + c45) i1i3 + (c25 + c46) i1i2.

The determinant of the Kelvin-Christoffel matrix(94) is a 3rd order polynomial in ρv2(≡ X),

X3 + a2X
2 + a1X + a0 = 0 (99)

where

a2 = −(Γ11 + Γ22 + Γ33), (100)

a1 = Γ11Γ22 + Γ11Γ33 + Γ22Γ33 − Γ2
12 − Γ2

13 − Γ2
23, (101)

a0 = Γ11Γ2
23 + Γ22Γ2

13 + Γ33Γ2
12 − Γ11Γ22Γ33 − 2Γ12Γ13Γ23. (102)

The algebraic manipulation has been carried out in Mathematica. The roots of this 3rd order

polynomial are obtained by the companion matrix technique (Golub & Van Loan (1996), §7.4.6).

This method solves for the roots of a polynomial by constructing a (companion) matrix with the

characteristic equation that is the same as the polynomial in question. In this manner, solving for

the characteristic equation is reduced to solving an eigenvalue problem. The companion matrix for

this case is

C =


0 0 −a0

1 0 −a1

0 1 −a2

 . (103)

The square root of the three roots obtained here divided by density (ρ) correspond to the three

phase-velocities qP , qS1 and qS2.
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