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a b s t r a c t

Trunk disease fungi are a global problem affecting many eco-
nomically important fruiting trees. The Botryosphaeriaceae are a
family of trunk disease fungi that require detailed biochemical
characterization in order to gain insight into their pathogenicity.
The application of a modified Folch extraction to protein extraction
from the Botryosphaeriaceae Lasiodiplodia theobromae generated
an unprecedented data set of protein identifications from frag-
mentation analysis and de novo peptide sequencing of its pro-
teome. This article contains data from protein identifications
obtained from a database-dependent fragmentation analysis using
three different proteomics algorithms (MSGF, Comet and X! Tan-
dem via the SearchGUI proteomics pipeline program) and de novo
peptide sequencing. Included are data sets of gene ontology
annotations using an all-Uniprot ontology database, as well as a
Saccharomyces cerevisiae-only and a Candida albicans-only ontol-
ogy database, in order to discern between those proteins involved
in common functions with S. cerevisiae and those in common with
the pathogenic yeast C. albicans. Our results reveal the proteome of
L. theobromae contains more ontological categories in common to
C. albicans, yet possesses a much wider metabolic repertoire than
any of the yeasts studied in this work. Many novel proteins of
interest were identified for further biochemical characterization
and annotation efforts, as further discussed in the article referen-
cing this article (1). Interactive Cytoscape networks of molecular
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functions of identified peptides using an all-Uniprot ontological
database are included. Data, including raw data, are available via
ProteomeXchange with identifier PXD005283.

& 2017 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Database-dependent peptide fragmentation protein identification and de novo
sequencing of peptides from filamentous fungi
ore specific
subject area
Database-dependent peptide fragmentation-based protein identifications and de
novo peptide sequencing of peptides from Lasiodiplodia theobromae
ype of data
 SearchGUI protein identification data and DeNovoGUI peptide sequencing data

ow data was
acquired
Mass spectrometry with an AB SCIEX Triple TOF mass spectrometer
ata format
 Protein identifications were analyzed and filtered with a o1% False Discovery
Rate (FDR). De novo sequencing data reports the most homologous peptides in the
Uniprot database to those from L. theobromae.
xperimental
factors
Folch Extraction of triplicate incubations of L. theobromae in Vogel's salts sup-
plemented with both 5% glucose and 5% grapeseed oil.
xperimental
features
From previous work, it was shown that under these conditions, fatty acid esters
with physiological activity in plants were detected and produced abundantly [2].
ata source
location
Ensenada, Baja California, Mexico and San Diego, California, USA.
ata accessibility
 The mass spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE [3] partner repository with the dataset
identifier PXD005283.
Value of the data

� This is the first report of peptide fragmentation and de novo sequencing analysis of Lasiodiplodia
theobromae, a pathogen of primarily economically important fruiting trees.

� Peptide fragmentation and de novo peptide sequencing analysis yielded many novel protein
identifications that may aid in understanding fungal metabolism and further advance biochemical
annotation efforts.

� The application of a Folch extraction is novel for filamentous fungi, and resulted in an extensive
data set that may makes future proteomics experiments more efficient.

� Bioinformatics of filamentous fungi requires development, and this data is a step in that direction.
Cytoscape networks are included for molecular function annotations for database-dependent
protein identifications via fragmentation analysis and de novo peptide sequencing.
1. Data

The data consists in database-dependent peptide fragmentation analysis using the SearchGUI
program [2] with the MSGF, Comet, and X!Tandem sequencing algorithms, identified with a 1% FDR.
The entire list of protein identifications is available in this article as Supplementary data. Interactive
Cytoscape networks are included, as well as full ontology reports using an all-Uniprot annotation
database, as well as Saccharomyces cerevisiae-only and Candida albicans-only annotation databases. De

PXD005283
PXD005283
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novo peptide sequencing results are included in Supplementary data, as well as complete BLASTp
protein identification results.
2. Experimental design, materials and methods

L. theobromae UCD256Ma (isolated in Madera County, California, USA) was provided by Dr. Douglas
Gubler from the University of California at Davis [3], and incubated and extracted as described in the
accompanying article [1]. Briefly, 0.5 g of the solids from the 50 mL fungal incubations (L. theobromae
incubated in 5% glucose and 5% grapeseed oil and Vogel's salts for 20 days and lyophilized) remaining
from the Folch extraction were dried under a stream of nitrogen and re-suspended in 50 mM Tris
buffer, pH 8.00. Acetonitrile was added to the sample to a final concentration of 10%. The samples
were then boiled for 5 min and cooled to room temperature. TCEP (Tris (2-carboxyethyl) phosphine)
was added to 1 mM (final concentration) and the samples were incubated at 37 °C for 30 min. Sub-
sequently, the samples were carboxymethylated with 0.5 mg/ml of iodoacetamide for 30 min at 37 °C
in dark followed by neutralization with 2 mM TCEP (final concentration). Samples were boiled for
10 min followed by protease digestion with a 1:100 ratio of trypsin: protein (Pierce™ Trypsin Pro-
tease, MS Grade Catalog number: 90057 with K, R specificity). After an overnight digestion, samples
were centrifuged on a desktop microfuge at max speed (15,000 rpm) for 10 min to remove the
insoluble fraction. The soluble fraction was adjusted to 0.2% formic acid and 5% acetonitrile and its
peptide content isolated using C-18 solid phase extraction (Thermo Scientific, PI-87782) as described
by the manufacturer.

Proteomics mass spectrometry was done at the University of California, San Diego as described in
the accompanying article [1]. The nano-spray ionization experiments were performed using a TripleTOF
5600 hybrid mass spectrometer (ABSCIEX) interfaced with a nano-scale reversed-phase UPLC (Waters
nano ACQUITY) using a 20 cm to 75 μM ID glass capillary packed with 2.5-mM C18 (130) CSH™ beads
(Waters). Peptides were eluted from the C18 column into the mass spectrometer with a linear gradient
(5–80%) of acetonitrile (ACN) at a flow rate of 250 μL/min for 90 min. The buffers used to create the ACN
gradient were Buffer A (98% H2O, 2% ACN, 0.1% formic acid and 0.005% TFA) and Buffer B (100% ACN,
0.1% formic acid, and 0.005% TFA). MS/MS data were obtained in a data-dependent manner inwhich the
MS1 data was acquired for 250 ms at m/z of 400–1250 Da and the MS/MS data was acquired from m/z
of 50 to 2000 Da. An MS1-TOF acquisition time of 250 ms was set, followed by 50 MS2 events of 48 ms
acquisition time for each event. The threshold to trigger the MS2 event was set to 150 counts, when the
ion had the charge state þ2, þ3 and þ4. The ion exclusion time was set to 4 s.
3. Protein identification

This information appears as in the accompanying article [1]. This methodology is replicated in this
article for the reader's convenience. Peak lists obtained from MS/MS spectra were identified using X!
Tandem Vengeance (2015.12.15.2) [4], MS-GFþ version Beta (v10282) [5] and either OMSSA version
2.1.9 [6] or Comet version 2016.01 rev. 2 [7]. The search was conducted using SearchGUI version 3.1.2
[2]. The data was searched against a whole Uniprot/Swissprot database search (manually annotated
and reviewed), [8] as well as a non-redundant Botryosphaeriaceae-only database downloaded from
NCBI [9]. An all-human database from Uniprot was also used for further assessing protein identifi-
cations. All identification data from each database may be found as Supplementary Data S2, S3 and S5.

The identification settings were as follows: Trypsin with a maximum of 2 missed cleavages;
60.0 ppm as MS1 and 0.8 Da as MS2 tolerances; fixed modifications: Carbamidomethylation of C
(þ57.021464 Da) and Oxidation of M (þ15.994915 Da), variable modifications: Acetylation of protein
N-term (þ42.010565 Da), Pyrolidone from E (þ18.010565 Da), Pyrolidone from Q (þ17.026549 Da)
and Pyrolidone from carbamidomethylated C (þ17.026549 Da). All algorithm- specific settings are
listed in the Certificate of Analysis available in Supplementary Data S1.

Peptides and proteins were inferred from the spectrum identification results using PeptideShaker
version 1.13.6 [10]. Peptide Spectrum Matches (PSMs), peptides and proteins were validated at a 1.0%
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False Discovery Rate (FDR) estimated using a decoy hit distribution. All validation thresholds are listed
in the Certificate of Analysis and are available in Supplementary Data S1A, S1B, and S1C and for all
databases searched. Post-translational modification localizations were scored using the D-score [11]
and the A-score [12] with a threshold of 95.0 as implemented in the compomics-utilities package [13].
An A-score above 95.0 was considered a confident localization. The mass spectrometry data along
with the identification results have been deposited to the ProteomeXchange Consortium [14] via the
PRIDE partner repository [15] with the dataset identifier PXD005283.

Gene ontology (GO) analysis of enriched proteins was done on all those hits obtained from the
Uniprot database [8]. The software Cytoscape [16] with the BiNGO plugin [17] was used for GO and
enrichment analysis using up-to-date databases, applying a hypergeometric test with a significance
level (p-value)o0.05, as well as a Benjamini and Hochberg false discovery rate (FDR) correction.
Interactive Cytoscape BiNGO networks were created with data from all algorithms, and annotated
with an all-Uniprot ontology database, available in Fig. 1 in this article. All gene ontology annotations
may be found in Supplementary Data S5 and S6 in this article.

De novo peptide sequencing was performed in order to compare results and explore peptides via
sequence homology with sequenced proteins found in the entire Uniprot database using BLAST. The
program DeNovoGUI version 1.14.5 was used for this purpose [18], and both Novor [19] and PepNovo
[20] were used for peptide sequencing. The mass allowance parameters were, for precursor mass
tolerance: 10 ppm, and a fragment mass tolerance of 0.5 Da. Post-translational modification settings
consisted in carbamidomethylation of cysteine (fixed) and oxidation of methionine (variable). All
peptides were searched against the entire Uniprot database using a standalone version of NCBI-BLAST
[21], with one peptide match per spectrum (most significant) and one BLAST match per peptide (most
significant, lowest E-value). The BLAST match data was also analyzed for gene ontology (molecular
functions) as described.
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