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Esquema configurable resistente para el almacenamiento de datos en la nube 
 
 

Resumen aprobado por: 
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Dr. Andrey Chernykh 
Director de tesis  

 
 

El Sistema Numérico del Residuo (RNS) es un sistema no ponderado basado en el Teorema Chino del 
Residuo (CRT). En RNS, la información se divide en segmentos más pequeños permitiendo operaciones 
paralelas independientes entre sí. Esta propiedad es una de las principales razones para considerar RNS 
como una solución en aplicaciones donde se desea optimizar velocidades de procesamiento, bajo 
consumo de energía y mantener la privacidad e integridad de la información. El concepto importante es la 
posibilidad de recuperar los datos originales utilizando menos residuos creados inicialmente para mejorar 
la confiabilidad. Una posible área de aplicación de RNS es el almacenamiento como servicio (STaaS). STaaS 
es uno de los modelos más prácticos que se ofrecen para el almacenamiento en línea. Si bien, actualmente 
este servicio puede brindar flexibilidad, escalabilidad e incluso bajos costos de inversión, presenta 
problemas y desafíos únicos de seguridad y confiabilidad. Por lo tanto, en esta tesis, se presenta el uso de 
RNS en el diseño de un mecanismo configurable que optimiza la detección y corrección de errores para 
mejorar la confiabilidad en sistemas que empleen RNS. Nuestra solución se basa en esquemas 
configurables de Compartición de Secretos, Sistema Numérico de Residuos Redundantes (RRNS), Sistema 
Numérico de Base Mixta (MRS) y códigos de detección y corrección de errores. El modelo propuesto, 
llamado 2Lbp-RRNS, utiliza un esquema RRNS de dos niveles y mecanismos de propagación hacia atrás y 
distancia de Hamming para minimizar los riesgos de confidencialidad, integridad, disponibilidad y pérdida 
de información asociados con hardware defectuoso, software defectuoso, fallas técnicas, ataques DDoS y 
modificación no autorizada. Validamos la calidad del modelo mediante un análisis teórico, obteniendo las 
cotas superiores para la estimación del número de errores detectables y corregibles de nuestra propuesta. 
De esta manera, demostramos que 2Lbp-RRNS aumenta el número de errores detectados y corregidos en 
comparación con los modelos presentados en la literatura. Finalmente, como caso de estudio, realizamos 
una extensa evaluación experimental mediante la simulación de un sistema de almacenamiento de datos 
utilizando características y propiedades de proveedores de nube reales bajo diferentes escenarios. Para el 
análisis implementamos los siguientes esquemas de compartición de secretos: dos esquemas clásicos 
basados en CRT: Mignotte y Asmuth-Bloom, el enfoque AR-RRNS basado en el rango aproximado de RRNS, 
el código Reed-Solomon, y MRC-RRNS basado en Conversión de Base Mixta (MRC). 

 
 
 
 
 
 
 
 
Palabras clave: Sistema Numérico del Residuo, Seguridad de datos, Confiabilidad, Corrección de 
Errores, Incertidumbre 
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Abstract of the thesis presented by Vanessa Miranda López as a partial requirement to obtain the Doctor 
of Science degree in Computer Science. 
 
 

Resilient configurable scheme for data cloud storage 
 
 

Abstract approved by: 
____________________ 

Dr. Andrey Chernykh 
Thesis Director 

 
 

The Residue Number System (RNS) is a non-weighted system based on the Chinese Remainder Theorem 
(CRT). In RNS, the information is divided into smaller segments allowing parallel operations independent 
of each other. This property is one of the main reasons to consider RNS as a solution in applications where 
it is desired to optimize processing speeds, power consumption, and maintain information's privacy and 
integrity. The important concept is the possibility of recovering the original data using fewer residues 
created initially to improve reliability. A possible RNS application area is Storage as a Service (STaaS). STaaS 
is one of the most practical models offered for online storage. While this service can currently provide 
flexibility, scalability, and even low investment costs, it presents unique security and reliability issues and 
challenges. Therefore, in this thesis, RNS is used in designing a configurable mechanism that optimizes the 
detection and correction of errors to improve the reliability of the system. Our solution is based on 
configurable Secret Sharing schemes, Redundant Residue Number System (RRNS), Mixed-Radix Number 
System (MRS), and error detection and correction codes. The proposed model, called 2Lbp-RRNS, uses a 
two-level RRNS scheme, Hamming distance, and backpropagation mechanisms to minimize the risks of 
confidentiality, integrity, availability, and information loss associate with faulty hardware, faulty software, 
technical malfunctions, DDoS attacks, and unauthorized modification. We validate the model's quality 
through theoretical analysis, obtaining the upper bounds for estimating the number of detectable and 
correctable errors of our proposal. This way, we demonstrate that 2Lbp-RRNS increases the number of 
detected and corrected errors compared to the literature models. Finally, as a case study, we carried out 
an extensive experimental evaluation by simulating a data storage system using real cloud providers' 
characteristics and properties under different scenarios. For the analysis, we implemented the following 
secret sharing schemes: two classic CRT-based schemes: Mignotte and Asmuth-Bloom, the AR-RRNS 
approach based on the approximate range of RRNS, the Reed-Solomon code, and MRC-RRNS based on 
Mixed Base Conversion (MRC). 
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Basic notation 
 

 

𝐷  Original data  
Size(𝐷) Size of the original data 𝐷 
𝑆 Secret data 
𝑆𝑖 = |𝑆|𝑝𝑖   Remainder of the division 𝑆 by module 𝑝𝑖   

𝑍𝑃 Set {0,1,… , 𝑝 − 1} for 𝑝 ≥ 1, where 𝑝 is prime 
𝑢𝑗  Upload speed of the 𝑗 − 𝑡ℎ cloud provider 

𝑑𝑗  Download speed of the 𝑗 − 𝑡ℎ cloud provider  

𝑇𝐷  Total decoding time 
𝑇𝐸  Total encoding time 
𝑉𝐷 Decoding speed 
𝑉𝐸 Encoding speed 
𝑇𝑢𝑝  Upload time of encrypted data to the cloud provider 

𝑇𝑑𝑜𝑤  Download time of encrypted data from the cloud provider 
𝑉𝑠  Storing speed 
𝑉𝑒𝑥  Extraction speed 
𝑇𝑠 Storing time 
𝑇𝑒𝑥 Extraction time 
𝑅  Redundancy  

 

One-Level model 

𝑛 =∑𝑛i

m

i=1

 Number of RRNS moduli 

  

𝑘 ≤ 𝑛 Threshold value for secret sharing scheme 
(𝑛, 𝑘) RRNS access structure 
𝑟 = 𝑛 − 𝑘 Number of control (redundant) RRNS moduli 
𝑝𝑖  𝑖 − 𝑡ℎ RRNS modulus 

𝑃 =∏𝑝𝑖

𝑘

𝑖=1

 Dynamic range of RRNS 

𝑛𝑖 ≥ 1 Number of shares stored in the 𝑖 − 𝑡ℎ Cloud 
𝑃𝑟(𝑘, 𝑛) Probability of information loss 
𝑒𝑟𝑟𝑗 Probability of failure of the 𝑗 − 𝑡ℎ Cloud 
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Two-Level model 

𝑆̅
𝑅𝑅𝑁𝑆
←   𝑆 + 𝐸 Representation of 𝑆 with error 

�̃� Representation of 𝑆 with error in 2L-RRNS 
𝐼  ̅ Tuple of residues with an error 
𝐼𝐸 Subset {1, . . , 𝑛1}power is equal to ⌊

𝑘1+𝑛1

2
⌋ 

𝐼𝐷 Subset {1, . . , 𝑛1}power is equal to 𝑘1 
𝐼�̅� Tuple of residues with an error 
N𝐷
2𝐿  Number of detected errors in 2L-RRNS  

N𝐸
2𝐿  Number of corrected errors in 2L-RRNS 

N𝐷
2𝐿𝑏𝑝 

 Number of detected errors in 2Lbp-RRNS  

N𝐸
2𝐿𝑏𝑝 

 Number of corrected errors in 2Lbp-RRNS 

𝑁𝐷𝑙  Number of detected errors with knowing error localization 
𝑁𝐸𝑙   Number of corrected errors with knowing error localization  
 First Level 
𝑛1 Number of moduli on the first level 
𝑘1 ≤ 𝑛1 Threshold value on the first level for the secret sharing scheme 
𝑟1 = 𝑛1 − 𝑘1 Number of control (redundant) RRNS moduli 
𝑝1,𝑖 𝑖-th RNS moduli on the first level 

𝑃 =∏𝑝1,𝑖

𝑘1

𝑖=1

 

 
Legal dynamic range RRNS on the first level and 𝑆 ∈ [0, 𝑃) 

�̅� =∏𝑝1,𝑖

𝑛1

𝑖=1

 
 
[0, �̅� − 1] full range 

𝑆𝑖 = |𝑆|𝑝1,𝑖  Remainder of the division 𝑆 by modulo 𝑝1,𝑖 

 Second level 
𝑛2,𝑖  Number of moduli used to calculate 𝑆𝑖 for each 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅ ,  
𝑘2,𝑖 ≤ 𝑛2,𝑖 Threshold value for the secret sharing scheme used for 𝑆𝑖, 
𝑟2,𝑖 = 𝑛2,𝑖 − 𝑘2,𝑖 Number of control (redundant) RRNS moduli for 𝑆𝑖, 

𝑝2,𝑖,𝑗 RRNS modulus used in the representation 𝑆𝑖 for each 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅  and 

 j= 1, 𝑛2,𝑖̅̅ ̅̅ ̅̅ ̅, 

𝑀𝑖 =∏𝑝2,𝑖,𝑗 ≥ 𝑝1,𝑖

𝑘2,𝑖

𝑗=1

 
Dynamic range of RRNS definite moduli set and 𝑆𝑖 ∈ [0, 𝑝1,𝑖) for each 

𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅ , 

𝑆𝑖,𝑗 = |𝑆𝑖|𝑝2,𝑖,𝑗  Remainder of the division 𝑆𝑖 by modulo 𝑝2,𝑖,𝑗 for each 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅  and 

 j = 1, 𝑛2,𝑖̅̅ ̅̅ ̅̅ ̅. 
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Chapter 1.  Introduction  

Cloud computing provides many benefits in terms of low costs, data accessibility, archiving, backuping, 

data sharing, synchronizing multiple devices, and efficient performances. Users/clients can choose 

resources that fulfill their needs from available Cloud provider pools of multiple Cloud services. This type 

of provisioning according to the users' demands gives the illusion of infinite resources.  

One of these services is Storage as a Service (STaaS) (Kulkarni et al., 2012; Zhao et al., 2009) like 

Dropbox, GoogleDrive, Mozy, Box, and MEGA. They provide data outsourcing and data sharing with users 

all around the world. Recently, its popularity has increased considerably for individual users and 

organizations, eliminating local user storage infrastructures. However, storing data/information in Cloud 

Storage (CS) raises security issues. The concerns are mainly motivated by security and privacy-related 

features that require users to fully trust declared security services practices like authentication, 

confidentiality, integrity, and trust management. There is no guarantee of data privacy since Cloud 

employees can access all the stored information, and the Cloud storage could be a victim of cyber-attacks 

(Irwin, 2020). A trustworthy cloud environment is a prerequisite to winning a user's confidence to adopt 

such technology (Mishra et al., 2018). 

One of the approaches to solve these problems is the Residue Number System (RNS) (Garner, 1959), a 

number system in which integers are represented by their values modulo several pairwise coprime 

integers called the moduli. 

Multi-modular arithmetic of RNS is widely used for computation with large integers. It supports parallel, 

carry-free addition, borrow-free subtraction, and single-step multiplication without unfinished products. 

RNS is very useful for certain applications, for instance, Digital Signal Processing (speech and image 

processing) providing high-speed computations (Bajard et al., 2011; Jenkins, 1978; Jenkins & Leon, 1977; 

Johnson et al., 1986; Jyothi et al., 2020; Pontarelli et al., 2008).  

RNS is speeding up cryptosystems such as Rivest, Shamir, and Adleman (RSA) (Blakley & Borosh, 1979; 

Shieh et al., 2008; Wu et al., 2001), Elliptic Curve Cryptography (ECC) (Schinianakis et al., 2009), etc.  

RNS is also used for efficient implementation of Fully homomorphic encryption schemes (FHE) (Cheon 

et al., 2018, 2019; Gentry, 2009; Phong et al., 2018).  

https://en.wikipedia.org/wiki/Numeral_system
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Pairwise_coprime
https://en.wikipedia.org/wiki/Cryptosystem
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In communications engineering, the features of RNS are used for reducing time delay, hardware costs, 

energy consumption of sensor nodes, and enhancing wireless sensor networks reliability (Campobello et 

al., 2012; Chessa et al., 2004; Jia & Wang, 2013; Junior et al., 2011; Nazarov et al., 2018).  

One of the latest research directions of the RNS application is distributed cloud storages. It helps to 

deal with the unexpected terminations of services, data breaches, technical failures, etc. Celesti et al., 

(2016) presented the first work that introduces RNS to overcome security issues on Cloud storage. The 

main idea is to improve long-term reliability and privacy by considering different cloud storage providers 

by dividing the file into residue segments. Several solutions are proposed based on this concept, such as 

Galletta et al., (2020); Hema & Durga, (2014); Kar et al., (2016); Miranda-López et al., (2018); A. Tchernykh 

et al., (2018); A. Tchernykh et al., (2019). 

 

1.1 Related work 

Cloud services can be considered secure if they include authentication, data encryption, data recovery, 

and user protection. Many solutions propose mechanisms and schemes to solve Cloud security issues in 

distributed environments. In this section, we discuss recent approaches and related works focused on data 

security and reliability. 

 

1.1.1 Distributed storage systems 

To construct a distributed system for data storage and processing, researchers use a variety of 

approaches. They consider Cloud and grid computing paradigms to develop distributed data storages 

(Vouk, 2008). These infrastructures have common characteristics but also significant differences. To cope 

with availability, reliability, risks of data loss, and vendor lock-in, they use Information Dispersal (Rabin, 

1990) and Data Migration (Pawan et al., 2012). As well, using the cloud for data storing needs to comply 

with several properties, such as security, reliability, and scalability, under limited Internet connection 

bandwidth (Mora et al., 2012). 

To provide efficient access to distributed data and ensure a high degree of reliability, availability, and 

scalability Chang et al., (2008) proposed Bigtable system based on replicating not encrypted data without 
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providing privacy and data security. An alternative mechanism is Hadoop and MapReduce based on 

splitting the data set into independent chunks processed in parallel and reducing them (Dean & 

Ghemawat, 2008). However, as shown in Herodotou et al., (2011), its main drawback is the low efficiency. 

In 2006, Google introduced the Google File System (GFS), a well-known solution to deal with reliability in 

Google’s data centers. The basic idea is a redundant storage system (Ghemawat et al., 2003). 

Not relational databases (NoSQL) consider the heterogeneity of unstructured data (Leavitt, 2010). 

However, the two most popular NoSQL databases, Cassandra, and MongoDB, have problems with data 

security and privacy (Okman et al., 2011). 

Distributed Data Base (DDB) stores data on various computer network sites and uses logic to organize 

the set of data (Ozsu & Valduriez, 1991). There are two ways to construct DDBs. The top-down approach 

takes a database and distributes it over various sites, while the bottom-up approach unites distinct 

databases with one interface. The main field of application of DDBs is structured data storage. Therefore, 

it does not apply to arbitrary data sets, such as Big data.  

Content Delivery Network (CDN) (Dilley et al., 2002) is a set of servers or Point of Presence (PoP) whose 

purpose is to provide faster content delivery. The following principles of CDN are important: load 

balancing, bandwidth conservation, and time efficiency. However, CDNs are not widely used in practice 

because they are not flexible with added cost and complexity. 

 

1.1.2 Error correction codes 

The error correction codes are based on Hamming's idea of adding additional data to detect and correct 

errors (Hamming, 1950). Depending on the application areas, approaches to building error correction 

systems differ. The balance between reliability and data redundancy is essential for storage systems since 

data redundancy affects the data volume and costs. The most expensive mechanism for ensuring reliability 

is data replication.  

From another perspective, error correction codes and their modifications, such as erasure codes and 

regeneration codes, can provide greater reliability with lower redundancy than replication (Morelos-

Zaragoza, 2006). An important issue when choosing an error correction code is the maximum number of 
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errors that can be detected and corrected for given data redundancy (Krishna et al., 1992; J. Sun & Kirshna, 

1992). 

Watson & Hastings, (1966) present an alternative solution - modular error correction codes based on 

the Redundant Residue Number System (RRNS). The RRNS is a non-weighted system representing an 

integer as a set of residues obtained by dividing the original number by a set of coprime numbers. The 

sizes of the residues are smaller than the size of the original number. An additional advantage of RRNS for 

the design of distributed storage systems is that it is a secret sharing scheme that provides data security 

(Garner, 1959; Krishna et al., 1992). 

However, there are two main problems: the computational and memory complexity of the data 

decoding algorithms. There are two widely used methods: Projection and Syndrome. The projection 

method is a universal method to detect and correct an error with any RRNS moduli. Its disadvantage is the 

exponential computational complexity depending on the number of correctable errors (Barsi & Maestrini, 

1973; Watson & Hastings, 1966). The syndrome method reduces computational complexity to quadratic, 

but it requires storing large tables of constants in a memory (Fatt Tay & Chang, 2016; Yau & Liu, 1973).  

To reduce the required memory, researchers can rely on two approaches. The first one uses auxiliary 

functions as an error syndrome, such as the rank of a number (N. Chervyakov et al., 2019). The second 

approach involves additional restrictions on RRNS modules. Other error correction codes provide the 

reliability of individual modules' storage. 

The second problem is related to increasing the number of correctable errors with the same encoding 

parameters (Fatt Tay & Chang, 2016). There are several solutions to solve this problem. The first one is to 

unbalance RRNS moduli when one or more RRNS moduli are several times larger than the rest of the 

moduli (A. Tchernykh, Miranda-López, et al., 2019). This approach's disadvantage is related to the case 

when errors occur in the largest RRNS modulus so that the amount of incorrect data is significant and may 

exceed the threshold. 

An alternative approach is a 2L-RRNS model. This model uses the same process for each level 

recursively, increasing the security of the system. The second level uses the small residue representation 

of the first level and creates smaller residues. The same or different moduli set can be used on both levels.  

Given that the second-level modules act as independent error correction codes, this approach allows 



5 

correcting a larger number of errors than 1L-RRNS (P. Ali et al., 2014; Skavantzos & Abdallah, 1999), as 

well as reducing the computational complexity of decoding (Barati et al., 2008; Timarchi & Navi, 2007). 

 

1.1.3 Distributed storage security 

One of the main goals of Cloud technologies is to provide access to data at any time. Users get the 

opportunity to use Cloud services without involving specialists with simple and intuitive interfaces. 

Classical approaches to ensuring data integrity are based on identical or non-identical redundancy (storing 

copies or histories, respectively).  

The task of ensuring data integrity is complex. It includes integrity control, maintenance, and recovery 

if data is violated for any reason. There are various ways to solve the problem of monitoring and ensuring 

data integrity. One of them is calculating the checksums and comparing them with the reference 

checksums (Menezes et al., 2018). Other methods are based on cryptographic techniques, key and keyless 

hashing, and electronic signature (Attas & Batrafi, 2011; Lillard et al., 2010; Wang & Yu, 2005). The 

disadvantage of these methods is the inability to ensure integrity without extra data for recovery 

mechanisms. 

Redundancy is a widespread solution for ensuring data integrity. In Bhagwat et al., (2006), the authors 

claim that introducing redundancy into a storage system may improve data centers' reliability. They used 

different essential solutions, such as erasure correcting codes, failure detection, and recovery. However, 

hardware and software implementations of the Redundant Array of Independent Disks (RAID) (Chen et al., 

1994; Z. Sun et al., 2018) have the disadvantage of the inability to control data and high redundancy. 

Some methods control integrity by comparing the reference values and calculated hash codes 

(checksums) when requesting the data. However, the lack of mechanisms for data recovery does not allow 

ensuring integrity. Bowers et al., (2009) propose the HAIL system that uses so-called integrity-protected 

error-correcting codes (IP-ECC), achieving cross-server redundancy through ECC mechanisms. The authors 

also use proofs of retrievability (PoRS) to enable Cloud storage to prove that all stored data is available. 

Furthermore, if any failure is detected, the corrupted information is reallocated.  
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Abu-Libdeh et al., (2010) propose a Cloud storage proxy named RACS (Redundant Array of Cloud 

Storage). It uses RAID-like techniques. The main motivation is reducing the one-time cost of switching 

providers to prevent vendor lock-ins and better tolerate provider outages or failures.  

Bessani et al., (2013) design a system called DEPSKY from a more commercial point of view. DEPSKY 

improves availability and confidentiality provided by Cloud storage. This system relies on Cloud-of-Clouds 

combining Byzantine quorum system protocols, cryptographic secret sharing, and erasure codes.  

A recent approach named DROPS is presented by Ali et al., (2018). DROPS divides a file into several 

fragments, then replicates each fragment over the Cloud. The novelty of DROPS is to use a graph T-coloring 

technique that ensures that the pieces are stored at a certain distance to prevent an attacker from 

guessing the fragments' locations. 

An alternative way is to use RRNS, which on the one hand, is an error correction code, which allows 

restoring the result when an error occurs, and on the other hand, is a secret sharing scheme that ensures 

data security (N. Chervyakov et al., 2019). In Celesti et al., (2016), the authors propose an approach that 

uses RRNS to code and divide data. Their experiments show the relation between encoded/original file 

sizes with upload/download access speeds. A. Tchernykh et al., (2018) show how the security of stored 

data depends on the RRNS parameters. On the other hand, a 2L-RRNS model can increase the number of 

detected and correctable errors compared to 1L-RRNS (Barati et al., 2008). Therefore, 2L-RRNS can ensure 

the reliability and integrity of stored data better than 1L-RRNS. 

 

1.2 Problem statement 

Cloud storage as a service model assumes a high trust level that may not be realistic in real-world 

applications environments. For example, several potential issues can arise if users depend on a single 

Cloud storage provider. Among them, we can mention reliability, safety, quality of service, financial costs, 

information leakage, and conspiracy. Besides, if the provider is unavailable or the contract established 

between the client and provider is canceled, the client will no longer access their data. A more critical 

situation appears if the Cloud providers suddenly go out of the market. In this case, users can permanently 

lose their data. In this context, one of the biggest challenges is to provide reliable and scalable data 

management. 
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Also, non-stationarity is one of the essential factors associated with the Cloud. The occurrence of 

technical failures, data security breaches, and collusions is challenging to predict and mitigate their 

consequences (N. Chervyakov et al., 2019; A. Tchernykh, Miranda-López, et al., 2019).  

One possible direction is to rely on replication. This approach can ensure data availability, but failures 

may cause inconsistency among copies of the same information. From a business point of view, data 

leakage (Aora & Gupta, 2012; Silver-Greenberg et al., 2014; Weiss & Miller, 2015) is the primary concern 

for fully adopting Cloud services. It could lead to a negative impact on the trust of an organization.  

Figure 1 shows significant inhibitors to Cloud adoption (Rao & Selvamini, 2015). It depicts that data leak 

prevention has 88% of the critical and essential inhibitors. Data segregation and protection are with a 92% 

impact on security inhibitors. 

For example, Billing-as-a-Service is a business-to-business (B2B) cloud service that streamlines the 

billing process and offers a broad financial service scale (Carnahan, 2020). It allows users to safely manage 

their financial documents and perform different search and modification operations on the information. 

For the management of this type of service, appropriate data protection must be considered before data 

outsourcing to cloud providers. 

Cryptography ensures data confidentiality, integrity, as well as authentication of only authorized users. 

However, its significant drawback is that it does not allow data processing. Moreover, high availability, one 

of the fundamental aspects of information security, cannot be ensured through the use of cryptography. 

Besides, maintaining the encryption keys secret and updated between participants is also challenging.  

In the literature, works like DepSky (Bessani et al., 2013) and RACS (Abu-Libdeh et al., 2010) use 

distributed storage mechanisms based on secret sharing schemes and error correction codes to optimize 

the classical replication reducing the load of the transmission network.  
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Figure 1. Data Security and Privacy - Major Inhibitor to Cloud Adoption (Rao & Selvamini, 2015). 

 

RRNS is adapted to develop data storage systems (Celesti et al., 2016; N. Chervyakov et al., 2019). These 

systems perform the encoding process known as One-Level RRNS (1L-RRNS). Nevertheless, to continue 

improving the reliability, it is necessary to increase the number of moduli, which may increase the system's 

complexity and a security imbalance that may lead to information leakage. 

Barati et al., (2008) proposed an alternative approach, a Two-Level RRNS architecture (2L-RRNS). The 

idea is to perform two encoding processes, one after the other. On the first step, 1L-RRNS is applied for 

initial data. On the second step, 1L-RRNS is applied for each residue using the same or different moduli 

set. Obtained small residues can increase calculations speed, decrease power consumption, increase 

security and fault tolerance. The main advantage is possibility to select reduced moduli set. This is because 

the dynamic range of the system, its speed, as well as its hardware complexity depend both on the form 

of the selected moduli and their number. 

2L-RRNS provides favorable features for data integrity management in multi-cloud environments. 

Another importance characteristic is the mechanism to adapt its system behavior to the external 

conditions. Also it allows processing information without decoding and encoding unlike conventional 

encryption algorithms.Therefore, RRNS provides characteristics for designing configurable fault-tolerance 

storage in multi-cloud environments.  

From the above broad, general-purpose statements, we narrow the focus to specific questions to be 

answered:  
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• Which mechanisms of RRNS-based Secret Sharing Schemes can improve reliability? 

• Can the performance, reliability, and redundancy of the distributed storage be improved by 

adapting system parameters? 

• What are the limitations of data storage in cloud environments? 

 What cost comes from increased reliability? 

 

1.3 Objective of the thesis 

The general objective is to design a configurable mechanism based on a Redundant Residue Number 

System with the improved capability to detect and correct errors. 

Several specific objectives deduced from a general objective are listed as follows: 

 Design a novel 2Lbp-RRNS mechanism for error detection and correction as an extension of the 

classical 2L-RRNS based on Hamming distance and backpropagation. 

 Provide analysis of the reliability upper bounds of the traditional threshold 2L-RRNS and new 2Lbp-

RRNS solutions to estimate the number of detectable and correctable errors. 

 Analyze 1L-RRNS, WA-RRNS, AR-RRNS, 2L-RRNS and 2Lbp-RRNS architectures considering 

redundancy, storing and extraction time, coding/decoding speeds, and access speeds in different 

scenarios. 

 Evaluate and compare the behavior of state-of-the-art secret sharing schemes for data storage 

design such as Mignotte, Asmuth-Bloom, Reed-Solomon code+AES, etc. 

 Evaluate the computational cost versus reliability. 

 Design the experimental framework for a data storage system based on seven Cloud storages: 

DropBox, GoogleDrive, OneDrive, Sharefile, Box, Egnyte, and Salesforce.  
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1.4 Contribution 

As a scientific contribution, we introduce novel two-level error detection and correction mechanism 

2Lbp-RRNS (Section 3.7) based on the Residue Number System (Section 2.3.3) with improved the reliability 

of state of the art RRNS solutions (Section 2.3.3.5).  

It combines elements of the Mignotte threshold secret sharing schemes (Section 2.5), 2L-RRNS model 

(Section 3.5.2), RRNS-based error correction codes (Section 2.4), and concepts of backpropagation and 

Hamming distance (Section 2.4.1). 

In a two-level encoding scenario (Figure 15 and Figure 16, Section 3.7.1), the information is encoded 

by two consecutive steps, obtaining a set of (files) segments with the data represented by their 

corresponding residues. 

The 2L-RRNS model of Barati et al., (2008) uses the Projection method as an error correction code. 

However, when the number of errors increased up to the number of control (redundant) RRNS moduli, 

the Projection method cannot detect errors and up to the half number of redundant moduli, correct errors 

even in a two-level architecture. To overcome this limitation, our solution uses the backpropagation and 

Hamming distance concepts. 

For errors that 2L-RRNS cannot correct, 2Lbp-RRNS generates several potential solutions that CRT 

cannot verify. To validate which of these final solutions is correct, 2Lbp-RRNS uses the concept of 

backpropagation. . 2Lbp-RRNS encodes each potential solution back obtaining new encoded data. Then, it 

calculate the Hamming distance of each of these new encoded data and original erroneous data. The set 

with the smallest Hamming distance is the one that has enough correct segments (residues) to recover the 

information correcting the errors. 

2Lbp-RRNS increments its detection and correction capability than 2L-RRNS or traditional 1L-RRNS 

models due to the capacity to determine which residues are correct from a potential solution. The scenario 

where 2Lbp-RRNS cannot perform correction occurs when two sets of possible solutions have the same 

minimum Hamming distance, so it cannot be determined which is the correct option. 
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1.5 Thesis outline 

Chapter 2 introduces concepts, terminology, and definitions that we will use throughout the entire 

thesis. In this chapter, we describe the main mechanisms used in data security. We give the definition, 

parameters, and schemes based on the Residue Number Systems, like the Mignotte scheme, Modular 

Projection method for error detection-correction. 

Chapter 3 provides the methodology framework used in this research work and a mathematical basis 

for the designed approaches. We describe a scheme based on a two-level RRNS to improve the system's 

reliability without compromising its security. Additionally, we explain the evaluation metrics used to assess 

the performance of the schemes. 

Chapter 4 describes the experimental results obtained from evaluating the proposed schemes and their 

comparison with classical approaches. We drew several important conclusions from the results obtained 

in this chapter. 

Finally, Chapter 5 provides general conclusions, contributions, and future work derived from this thesis. 
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Chapter 2. Background 

To better understand the analysis and evaluation performed in this thesis, it is necessary to provide the 

background regarding Cloud computing, its security and reliability issues, secret sharing schemes, and 

encryption strategies presented in the literature. 

 

2.1 Cloud Computing 

Cloud computing is a well-known concept that supports an enormous pool of shared resources and 

services. The National Institute of Standards and Technology (NIST) defines the Cloud as: “a model for 

enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing 

resources that can be rapidly provisioned and released with minimal management effort or service 

provider interaction “(US Department of Commerce 2013a). 

The Cloud provides hosted services over the Internet. Users, as and when needed, on an hourly basis, 

can use any Cloud service. This “on-demand” approach makes the Cloud flexible. Three primary scenarios 

are used:  

a) Infrastructure as a Service (IaaS). IaaS refers to on-demand provisioning of the hardware and 

software – servers, storage, networks, and operating systems.  

b) Platform as a Service (PaaS). PaaS involves offering tools and services designed to make coding, 

test, and deploy custom applications. However, there are some limitations to the interoperability, 

programming support languages, or capabilities of using current platforms.  

c) Software as a Service (SaaS). SaaS delivers special-purpose software that is remotely accessible by 

users through the Internet with a usage-based pricing model.  

Nowadays, the Cloud storage service is gaining immense popularity. It is generalized as a service named 

Storage as a Service (STaaS) (Kulkarni et al., 2012). The Cloud owner manages this service supplying the 

user with access to data storage. Initially, companies saw STaaS as a cost-efficient way for small 

organizations that lacked personnel or storage infrastructure.  



13 

These services are deployed on four different models: 

a) Private Cloud: This infrastructure is operated, and in some cases, managed by a private 

organization. 

b) Community Cloud: Many organizations share the Cloud, and it is designed for a common concern 

among a specific community. 

c) Public Cloud: This model is available to the public and is owned by an organization selling Cloud 

services, like Amazon Web Services. 

Nevertheless, as Cloud services are implemented, the Cloud owners and clients face a series of risks 

and threats. Knowledge about these treats has to be the first step to prevent them. Hence, security is the 

main concern of several companies deciding how to use clouds. 

 

2.1.1 Multi-Cloud approach 

As the Cloud becomes popular, users are more reluctant to deal with a “single” Cloud storage due to 

potential issues such as service availability failure and malicious insiders. Hence, in recent years, users are 

moving towards a multi-cloud or cloud-of-cloud paradigm (Vukoli, 2010). 

We can define multi-cloud as the services of different clouds combined into a single heterogeneous 

architecture. The services may or may not be connected or organized among themselves. We see it as the 

storage distribution across several Cloud architectures, see Figure 2. 
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Figure 2. Multi-cloud architecture  

 

There is a subtle difference with Hybrid Clouds, but there are important aspects that make multi-cloud 

the future of hybrid clouds: 

1. Multi-cloud requires more attention in terms of security and management. The complexity of this 

model is much greater than the hybrid Cloud. 

2. It involves many participants that need to be managed. 

The integration process to multi-cloud architectures brings more complexity and adds significant value 

to an organization if the right providers are chosen to meet their specific requirements. 

Today, there are many Cloud providers to choose from; see Table 1 

Table 1.  Major Cloud providers 

Service Provider Names 

IaaS Amazon EC2, Amazon S3, GoGrid 

PaaS Google App Engine, Microsoft Azure Services, Amazon Elastic Map Reduce 

SaaS Salesforce, Google Docs 

sTaaS Pure Storage, Bell Integrator, Zadara, NetApp, Dropbox, IDrive, Box 
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Currently, many Cloud storages with different characteristics are available. Each Cloud has its security 

mechanisms, reliability, and upload and download speeds. In Table 2, we listed some of the most common 

Cloud storages. 

 

2.2 Security issues in Cloud storages  

Security has been one of the most challenging problems for any IT, followed by concerns regarding 

compliance, privacy, and legal matters (Hashizume et al., 2013). In general, every Cloud storage system 

design must consider three crucial aspects: confidentiality, integrity, and availability. Several studies, 

including Sangroya et al., (2010), quote security as the primary level that confronts Cloud users.  

 

Table 2. List of 24 Cloud storages 

Cloud Storage URL 

Alibaba Cloud https://www.alibabacloud.com/ 

Amazon Drive https://www.amazon.com/gp/drive/about/ 

Box http://box.com/ 

Certain Safe https://certainsafe.com/ 

Dropbox http://dropbox.com/ 

Egnyte https://egnyte.com/ 

Elephant drive https://home.elephantdrive.com/ 

Flip Drive https://dlipdrive.com/ 

Google Drive https://www.google.com/drive/ 

Hub spot https://www.hubspot.com/ 

iCloud https://www.icloud.com/ 

IDrive https://www.idrive.com/ 

Jumpshare https://jumpshare.com/ 

JungleDisk https://www.jungledisk.com/ 

Justcloud http://www.justcloud.com/ 

MediaFire https://www.mediafire.com/ 

Mega https://mega.nz/ 

pCloud https://www.pcloud.com/ 

Rackspace https://www.rackspace.com/cloud 

Salesforce https://www.salesforce.com/ 

Spideroak https://spideroak.com/one/ 

SugarSync https://www2.sugarsync.com/ 

Windows Azure https://azure.microsoft.com/en-us/services/storage/ 

Yandex Disk https://disk.yandex.com/ 
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Classical security mechanisms like identity, authorization, and authentication are no longer enough for 

the cloud in their current form (Li & Ping, 2009). Risks of functionality and reliability also affect Cloud 

storage systems (A. Tchernykh et al., 2020). We underline some of the threads: 

 Infrastructure threats: Denial of service, privacy leakage, misuse of resources, access control 

issues, account hijacking, etc. 

 Data storage threads: Denial of service, data loss, disk errors, data modification, collusion, 

cyber-attacks, etc. 

 Environmental threats: Earthquakes, floods, fires, etc. 

 Deliberate threats: Interception, hackers attacks, etc. 

 Accidental threats: PC errors, viruses, spam, etc. 

 Unfairness: User errors, carelessness, falsification, curiosity, etc. 

An error usually stands for faulty hardware, faulty software, technical malfunctions, DDoS attacks, 

human-made errors, providers’ bankruptcy, etc. 

On the other hand, a storage system can lost security and performance. According to the Cloud Security 

Alliance (CSA, 2010), several storage companies suffer from losing sensitive data in the last few years. For 

example, in November 2014, intruders took over personally identifiable information from Sony employees. 

In April 2011, due to technical failures, the majority of Amazon EC2 customers lost their data.  

Therefore, it is essential to take special care to protect sensitive data. The immediate solution to this 

challenging situation is to use cryptographic methods, secret sharing schemes, erasure codes, and 

deduplication. 
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2.2.1 Security mechanisms 

2.2.1.1 Digital signature 

Digital signatures are based on asymmetric cryptography algorithms. They provide a layer of validation 

and security to information sent through a via that might not be secure, like, for instance, the Cloud. When 

properly implemented, a digital signature ensures that the right person sent his/her information. Digital 

signatures are equivalent to traditional handwritten signatures (R. Rivest et al., 1978). Some standard 

algorithms are RSA-based signature schemes, such as RSA-PSS (Bellare & Rogaway, 1998), Rabin signature 

algorithm (Rabin, 1979), and Pairing-based schemes such as BLS (Boneh et al., 2001). 

 

2.2.1.2 Hash functions 

Hash functions are a numeric value of a fixed length that uniquely identifies data. They represent large 

amounts of data by much smaller numeric values. It is widely used with digital signatures for verifying the 

integrity of the data sent through insecure channels. It is much easier to sign a hash value than to sign the 

original data. The mechanism is simple: the hash value of the received data is compared to the attached 

hash value to determine whether an intruder altered the data (Wang & Yu, 2005). 

 

2.2.1.3 Encryption algorithms 

Encryption algorithms are used to ensure sensitive data's privacy and confidentiality (Robling Denning, 

1982). There are two types of key-based algorithms: symmetric and asymmetric. The Symmetric Key 

algorithms use the same key for encryption and decryption; hence, the participants must keep the secret 

key. The Asymmetric Key algorithms use two different keys, one for encryption and another key for 

decryption. Another difference between algorithms is the size of the segments (shares) on which the 

algorithm operates. Block algorithms are symmetric, meaning they work on larger blocks, usually 64 bits 

in length. On the other hand, Stream algorithms are symmetric and encrypt one bit (or byte) at a time.  
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Below, we list some of the most popular encryptions algorithms: 

 Data Encryption Standard (DES) is an old (1972) symmetric block cipher that was designed by the 

NSA (National Security Agency) to serve as a standard for data encryption. The most exciting 

feature of DES is that the security is based on the key itself and not on the algorithm's secrecy. 

However, because the key size is small, brute force attacks have proven effective at cracking it. 

DES takes a fixed-length bit string of the original data and transforms it through a series of 

operations into an encrypted text bit of the same length.  Each block size is 64 bits. There are 16 

identical stages of processing, named rounds. There is an initial and final permutation. 

 The RSA is a public-key algorithm proposed by Rivest et al., (1978). The encryption/decryption of 

RSA is very simple and effective. A secret message 𝑚 is send, the receiver sends back his/her public 

key, which consists of two values, 𝑒 and 𝑛. Later, the sender sends a ciphertext 𝑐 = 𝑚𝑒 mod 𝑛. 

The receiver decodes it using his/her private key 𝑑, computing 𝑐 = 𝑚𝑑  mod 𝑛 obtaining the 

original data. The security of RSA lies on generating a very large prime number difficult to factorize. 

 The Advanced Encryption Standard (AES) is a symmetric-key algorithm based on the so-called 

Rijndael algorithm developed by Daemen & Rijmen, (2000). Specifically, AES was designed as a 

replacement for DES as its key size was too small. AES is a subset of Rijndael block cipher with 

three key lengths 128, 192, and 256 bits, and each block has a size of 128 bits.  

AES is based on a ‘substitution-permutation network.’ It performs all the computations on bytes; 

hence, it treats 128 bits of the plaintext block as 16 bytes. AES arranges the 16 bytes in a 4x4 

matrix. The round depends on the key’s size; AES uses ten rounds for a 128-bit key up to 14 rounds 

for a 256-bit key. On each round, the algorithm calculates a new 128-bit round key from the 

original AES key. 
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The following Figure 3 depicts the general diagram of AES: 

 

Figure 3. General diagram of the AES encryption algorithm 

 

Each encryption round comprises four sub-processes, except the last round that does not require 

a new permutation. Figure 4 shows the four basic steps of each round. The first process (subBytes) 

substitutes each byte of the 4x4 matrix with another byte from the S-box lookup table. Next, the 

algorithm shifts each row to the left. It does not move the first column, it shifts the elements of 

the second column on one position, the third column on two positions, and finally, it shifts the last 

column elements on three positions. The next operation is MixColumns; the operation matrix 

transforms each byte of a column into a new byte. The result is another matrix consisting of 16 

new bytes. 

 

Figure 4. Encryption process for an AES round 
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Finally, the last step takes the 16 bytes of the matrix and performs an XOR operation with the 

round key's 128 bits. If this is the final round, the result is the ciphertext. Otherwise, it uses the 

resulting 128 bits as the input of the following round. However, efficient implementation and key 

management are needed to assure AES security since using a key size too long makes the algorithm 

complex to implement. 

 

2.2.1.4 Homomorphic encryption 

Rivest & Dertouzos, (1978) proposed the Homomorphic Encryption (HE), allowing carry out 

computations on ciphers generating an encrypted result which, when decrypted, matches the result of 

operations performed on the original numbers. They are based on an exponentiation operation and RSA 

function with additive and multiplicative homomorphic ciphers, respectively. Using these ideas of Gentry, 

(2009) proposes a wide range of fully homomorphic algorithms. HE allows computing a limited number of 

operations like additions and multiplications since encrypted data is mixed with noise increasing the 

security after each homomorphic operation. Therefore, there is a specific limit where this noise becomes 

too large to allow correct decryption. 

 

2.3 Number Systems 

In computer systems, numbers (representation of the data) are the basis of any operations. Since there 

is a trade-off between the word length and type of hardware, and between propagation delay and 

accuracy, several number representations have been proposed. The most popular are the Conventional 

Radix Number System and Signed-Digit Number System from the Fixed-Point Number System (Lu, 2004) 

and residue representations from the Residue Number System (Chang et al., 2015; Garner, 1959). 

 

2.3.1 Properties of Number systems 

In this section, we cover some of the basic properties of the Number systems (Szabo & Tanaka, 1967): 
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1. Range: The interval over which the system can represent every integer without having two 

numbers with the same representation. 

2. Uniqueness: A number is unique if each number in the system has only one representation. 

3. Redundancy: A number system is redundant if it uses more symbols than absolutely necessary to 

represent the number. 

 

2.3.2 Weighted Number System 

A Number system is weighted if there exists a set of weights 𝑤𝑖 such that for any 𝑥 it can be expressed 

in the form of 𝑥 = ∑ 𝑎𝑖𝑤𝑖
𝑛
𝑖=1 , where the 𝑎𝑖’s are a set of permissible digits. If the values of 𝑤𝑖 are 

successive powers of the same number, then the number system has a fixed base or fixed radix, e.g., the 

base 10 and base 2. If the weights are not powers of the same radix, then the systems are called mixed-

radix systems (Szabo & Tanaka, 1967).  

Weighted systems have many advantages, which we summarize as follows: 

 Multiplication of division by a power of the base can be done easily by the shift operation. 

 Magnitude comparison is relatively easy. 

 Extending the number system range can be easily done by adding more digits. 

 Overflow can be detected easily. 

However, one of the weighted systems' most important limitations is the addition process's carry 

propagation problem. The Residue Number System solves this issue since the system can do additions 

100% in parallel.  
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2.3.2.1 Fixed Radix Systems 

Let us call a number fixed-radix or fixed-base system if it is a Weighted Number System (WNS) and the 

values of 𝑤𝑖 are successive powers of the same number, e.g., the decimal number can be represented as 

𝑋 = (𝑎𝑛…𝑎1) = ∑ 𝑎𝑖𝑤𝑖
𝑛
𝑖=1  where 0 ≤ 𝑎𝑖 ≤ 9 and 𝑤𝑖 = 10𝑖−1 

Binary systems can be presented as 

𝑋 = (𝑎𝑛…𝑎1) = ∑ 𝑎𝑖𝑤𝑖
𝑛
𝑖=1  where 0 ≤ 𝑎𝑖 ≤ 1 and 𝑤𝑖 = 2𝑖−1 

 

2.3.2.2 Mixed Radix Systems 

A conventional radix number 𝑁 can be represented by 𝑛 digits such as (𝑑𝑛−1𝑑𝑛−2…𝑑1𝑑0)𝑟 where 𝑟 is 

the radix, 𝑑𝑖 ≤ 𝑖 ≤ 𝑛 − 1 is a digit and each 𝑑𝑖 ∈ {0,1,… , 𝑟 − 1}. This number system is a weighted 

positional system (Parhami, 1990). The number 𝑁 can be represented by: 

𝑁 = 𝑑𝑛−1 ∙ 𝑤(𝑛−1) + 𝑑𝑛−2 ∙ 𝑤(𝑛−2) +⋯+ 𝑑0 ∙ 𝑤0 =∑ 𝑑𝑖 ∙ 𝑟
𝑖

𝑛−1

𝑖=0
 (1) 

with 𝑑𝑖  being the weight of position 𝑖. If 𝑟 is fixed, each 𝑤𝑖 = 𝑟𝑖, but if 𝑟 is not fixed, the number becomes 

a mixed-radix number. 

 

2.3.3 Residue Number System  

The Residue Number System (RNS) is based on a puzzle introduced by the Chinese mathematician Sun-

Tzu, named as Chinese Remainder Theorem (CRT). Based on CRT, Garner, (1959) invented RNS in 1959. 

RNS is a non-weighted data representation system representing an integer number as a set of smaller 

numbers. Initially, the main application area of RNS was Digital Signal Processing (DSP). In modern 

cryptosystem design, the main RNS application is related to Montgomery modular multiplication, as it is 

well-suited to RNS arithmetic, since it avoids hard divisions. 
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Some of the main properties of RNS are the following: 

 RNS handles carry-free and borrow-free operations.  

 RNS supports fast, parallel arithmetic operations. In RNS, digit by digit computations can be 

performed independently since there is no ordering significance between the digits. Hence, 

RNS supports parallel computations. These advantages are very useful when the number of 

operations is increasing. 

 RNS supports error detection and correction. An inherent property of RNS suggests that a 

Redundant RNS (RRNS) can be used for self-checking, error detection, and correction. Since 

there is no interaction between the residues, any error in a single module has a local effect, 

and errors can easily be detected and corrected. As modular arithmetic is performed in the 

residue representation, RRNS can correct arithmetical processing errors. This is a unique 

powerful capability that other correction codes do not have. 

Even though RNS has some real drawbacks that without optimization, it can reduce a system's 

performance. These difficulties are associated with magnitude comparison, sign representation, overflow 

detection, data conversion, moduli selection.The division process is complicated due to the absence of a 

multiplicative inverse for the zero element and the fact that residue division and normal division 

correspond one to one only when the resulting quotient is an integer value. RNS can be defined in terms 

of a set positive integers {𝑝𝑛, … , 𝑝2, 𝑝1} called moduli set. Each 𝑝𝑖  for 𝑖 = 1, 𝑛̅̅ ̅̅̅ are called modulus. To avoid 

ambiguity on the recover data, the moduli of an RNS must be pairwise relative prime, where for each 

GCD(𝑝𝑖, 𝑝𝑗) = 1 for 𝑖 ≠ 𝑗 with GCD means greatest common divisor.  

Each integer 𝑋, can be represented as a set of smaller integer called the residues. The residue set is 

denoted as {𝑥𝑛, … , 𝑥2, 𝑥1} where 𝑥𝑖 is the 𝑖 − 𝑡ℎ residue. 𝑥𝑖 is defined as the least positive remainder when 

𝑋 is divided by the modulus 𝑝𝑖. This relation can be written based on the congruence 𝑥𝑖 = 𝑋 mod 𝑝𝑖 also 

denoted as 𝑥𝑖 = |𝑋|𝑝𝑖. Such a representation is unique for any integer 𝑋 ∈ [0, 𝑃 − 1], where 𝑃 =

𝑝𝑛, … , 𝑝2𝑝1 is known as the dynamic range. 𝑃 is divided into two sub-ranges to represent a signed integer. 

The lower half and upper half ranges are used to represent positive and negative integers, respectively.  
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2.3.3.1 Forward conversion 

Forward conversion is the process to transform from binary or decimal representation into residue 

notation. This process consists of the computations of residues by division operation, with the moduli as 

the divisors. The forward conversion complexity relies on the number of moduli employed and the 

magnitude of each modulus (Omondi & Premkumar, 2007). Suppose we want to convert a number 𝑋 of 

𝑛-bits with respect to a modulus 𝑝, 𝑋 = ∑ 𝑥𝑗2
𝑗𝑛−1

𝑗=0 , then: 

|𝑋|𝑝 = |∑ 𝑥𝑗2
𝑗

𝑛−1

𝑗=0
|
𝑝

= |∑ 𝑥𝑗|2
𝑗|
𝑝

𝑛−1

𝑗=0
|
𝑝

 (2) 

 

2.3.3.2 Reverse conversion 

The reverse conversion is the process of transforming from residue representation back to 

conventional notation.  

Chinese Remainder Theorem (CRT) 

Given a moduli set {𝑝1, 𝑝2, … , 𝑝𝑛} consisting of pairwise relatively prime and an integer 𝑋 represented 

by its residues {𝑥1, 𝑥2, … , 𝑥𝑛}, where 𝑥𝑖 = |𝑋|𝑝𝑖, the number 𝑋 and its residues are related by: 

𝑋 = |∑ 𝑃𝑖
𝑛

𝑖=1
𝑥𝑖|𝑃𝑖

−1|
𝑝𝑖
|
𝑃

 (3) 

where 𝑛 > 1, 𝑃𝑖 =
𝑃
𝑝𝑖⁄  , and  |𝑃𝑖

−1|
𝑝𝑖

 is the multiplicative inverse of |𝑃𝑖|𝑝𝑖 defined by ||𝑃𝑖
−1|

𝑝𝑖
𝑃𝑖|

𝑝𝑖

= 1. 

If the values involved are constrained so that the final value of 𝑋 lies within the dynamic range 𝑃, then the 

modular reduction on the left-hand side can be ommited. We can rewrite 𝑋 as: 

𝑋 ≅ 〈𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5〉 =  〈𝑥1, 0,0,0,0〉 + 〈0, 𝑥2, 0,0,0〉 + 〈0,0, 𝑥3, 0,0〉 + 〈0,0,0, 𝑥4, 0〉 + 〈0,0,0,0, 𝑥5〉  

≜ 𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 + 𝑋5 



25 

Now the reverse conversion consists of finding the values 𝑋𝑖’s, which is much easy than obtaining 𝑋.  

CRT requires a binary inner product operation followed by a large modulo 𝑃 operation that is inefficient. 

Example: Consider the moduli set {3,4,5}. We want to find the decimal representation of the residue 

set {2,3,1} resulting from modulo reduction with respect to the given moduli. First, we determine 𝑃𝑖′𝑠, 

notice that 𝑃 is the dynamic range which is equal to 60: 

𝑃1 =
𝑃

𝑝1
=

3∙4∙5

3
= 20 , 𝑃2 = 15, 𝑃3 = 12 

We calculate the multiplicative inverses of each 𝑃𝑖 : 

𝑃1
−1 = |𝑃1 × 𝑃1

−1|
3
= 1, |20 × 𝑃1

−1|
3
= 1,   𝑃1

−1 = 2,  

𝑃2
−1 = |𝑃2 × 𝑃2

−1|
4
= 1, |15 × 𝑃2

−1|
4
= 1, 𝑃2

−1 = 3, 

𝑃3
−1 = |𝑃3 × 𝑃3

−1|
5
= 1, |12 × 𝑃3

−1|
5
= 1, 𝑃3

−1 = 3, 

Finally, using equation (3): 

𝑋 = |∑ 𝑃𝑖
3

𝑖=1
𝑥𝑖|𝑃𝑖

−1|
𝑝𝑖
|
𝑃

= |2 ∙ 20 ∙ 2 + 3 ∙ 15 ∙ 3 + 1 ∙ 12 ∙ 3|60 = 11 

 

2.3.3.3 Mixed Radix Conversion (MRC) 

Given a moduli set {𝑝1, 𝑝2, … , 𝑝𝑛} consisting of pairwaise relative primes and an integer 𝑋 represented 

by its residues {𝑥1, 𝑥2, … , 𝑥𝑛}, where 𝑥𝑖 = |𝑋|𝑝𝑖, the number 𝑋 and its residues can be uniquely 

represented in mixed-radix form as: 

𝑋 = 𝑎𝑛𝑝𝑛−1𝑝𝑛−2…𝑝1 +⋯+ 𝑎3𝑝2𝑝1 + 𝑎2𝑝1 + 𝑎1 (4) 

where 𝑛 > 1, 0 ≤ 𝑎𝑖 ≤ 𝑝𝑖.  
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The Mixed-Radix Conversion establishes an association between the unweighted non-positional RNS and 

a weighted positional mixed-radix system. To recover the actual value of 𝑋 is needed to obtain the Mixed-

Radix digits (MR), 𝑎𝑖  using equation (5): 

𝑎1 = 𝑥1 (5) 

𝑎2 = |(𝑥2 − 𝑎1)|𝑝1
−1|

𝑝2
|
𝑝2

  

𝑎3 = |((𝑥3 − 𝑎1)|𝑝1
−1|

𝑝3
− 𝑎2) |𝑝2

−1|
𝑝3
|
𝑝3

  

Meeting the constraint that the maximum weight contributed by the lower 𝑘 digits must never exceed 

the positional weight of the (𝑘 + 1) digits, it can ensure unique representations.  

Using the MR digits brings the next benefits: 1) the MR system is a weighted number system; therefore, 

magnitude comparison can be made easily, and 2) the MRC procedure requires operations moduli 𝑝𝑖    only. 

Its major drawback is that the MR digits' computations have been strictly sequential and are not as parallel 

as the CRT (Szabo & Tanaka, 1967). 

Example: Consider the moduli set {3,4,5}. We want to find the decimal representation of the residue 

set {2,3,1} resulting from modulo reduction with respect to the given moduli. First, we determine the 

inverses |𝑝1
−1|

𝑚2
 as follows: 

||𝑝1
−1|

𝑝2
𝑝1|

𝑝2

= 1, ||𝑝1
−1|

𝑝2
× 3|

4
= 1, |𝑝1

−1|
𝑝2
= 3, 

||(𝑝2𝑝1)
−1|𝑝3(𝑝2𝑝1)|𝑝3

= 1, ||(𝑝2𝑝1)
−1|𝑝3 × 12|

5
= 1, |(𝑝2𝑝1)

−1|𝑝3 = 3, 

Next, the mixed-radix digits are calculated as: 

𝑎1 = 𝑥1 = 2, 
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𝑎2 = ||𝑝1
−1|

𝑝2
(𝑥2 − 𝑎1)|

𝑝2

= |3 × (3 − 2)|4 = 3, 

𝑎3 = ||(𝑝2𝑝1)
−1|𝑝3(𝑥3 − (𝑎2𝑝1 + 𝑎1))|𝑝3

= |3 × (1 − (3 × 3 + 2))|5 = 0, 

Therefore, the mixed-radix representation of the number is {2,3,0}. To obtain the real value, we apply 

equation (4): 

𝑋 = 𝑎3𝑝2𝑝1 + 𝑎2𝑝1 + 𝑎1 = 0 ∙ 4 ∙ 3 + 3 ∙ 3 + 2 = 11 

 

2.3.3.4 Moduli set selection  

Choosing an appropriate scheme depends on the moduli set. The forward converters are classified 

based on the moduli set. Forward converters are based on arbitrary moduli set, or based on special or 

restricted moduli sets.  

In the first type of converter, the moduli is consisted of prime numbers chosen in sequence until the 

selected dynamic range 𝑃 is obtained. This moduli set allows us to achieve very large dynamic ranges 

without compromising the algorithm's performance. 

The second type of converter is more efficient in terms of speed and power. This type of moduli is 

usually referred to as low-cost moduli-sets. Special moduli sets are based on power-of-two related moduli, 

for example, {2𝑛 − 1,2𝑛, 2𝑛 + 1}, {2𝑛 − 1,2𝑛, 2𝑛−1 − 1}. However, some applications may need a wide 

dynamic range that cannot efficiently achieve this moduli type. 

The selection of the moduli set should follow some general rules: 

1. The modulus should be coprime and small as possible, so that modulo reduction require minimum 

computational time. 

2. To avoid overflow, the dynamic range should be large enough 
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2.3.3.5 RNS applications 

RNS is widely known as an alternative non-positional number system that allows one to perform 

addition and multiplication operations fast and in parallel. It can accelerate speed of applications where 

these operations significantly decrease system performance. Well-known applications of RNS are Digital 

Signal Processing (DSP), cryptography, memory module, networking, and cloud computing. 

In the area of Digital Signal Processing (DSP), finite impulse response (FIR) filters based on RNS were 

proposed by (Jenkins & Leon, 1977). In this type of filter, the analog input signal is converted to residues. 

The discrete convulsion operations are performed on the residues independently and later are converted 

to a binary representation. Jyothi et al., (2020) focused on increasing the FIR filter speeds for its application 

in artificial intelligence, machine language. In infinite impulse response (IIR) filters widely used in the 

control area (Bajard et al., 2011). The fault-tolerant FIR filters were proposed by Pontarelli et al., (2008). 

Their design not only responds to failures that occurred in the residues but also to possible errors in the 

process of the reverse converter avoiding the use of the trivial triple modular redundancy (TMR). 

RNS is also used in network applications to solve some issues such as determining output port in a more 

straightforward way (Jia & Wang, 2013), increasing a wireless sensor network (WSN) lifetime (Campobello 

et al., 2012), enhancing their reliability by reducing the mean energy consumption of each sensor node, 

etc. Another RNS application was proposed by Junior et al., (2011), which utilizes the modularity of RNS to 

reduce the number of dropped messages in Ad Hoc networks caused by malicious nodes, node movement, 

and collision. Nazarov et al., (2018) designed RNS-based hardware for communication systems to protect 

from decoding errors during data transmission. 

The issues of data confidentiality breach, loss of information, and unexpected termination of services 

by current cloud storage are also addressed by RNS (Celesti et al., 2016; N. Chervyakov et al., 2019; A. 

Tchernykh et al., 2018). In this case, it is used to split information on a finite number of residue segments 

and store them over different cloud providers to increase reliability. 
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2.4 Error detection and correction codes 

2.4.1 Hamming weight and Hamming distance 

Hamming code proposed by Hamming, (1950) is an error-correction code used to detect and correct 

errors that may occur when the data is moved from one point to another or stored. An important 

parameter of an error-detecting and correcting code is the minimum Hamming distance. Let suppose two 

binary 𝑛-tuples 𝑣 = (𝑣0, 𝑣1, … , 𝑣𝑛−1) and 𝑤 = (𝑤0, 𝑤1, … , 𝑤𝑛−1). On the one hand, the Hamming 

distance between 𝑣 and 𝑤, denoted by 𝑑(𝑣,𝑤), is the number of differences between the corresponding 

bits. On the other hand, the Hamming weight of 𝑣, denoted by 𝓌(𝑣), is defined as the number of nonzero 

components of 𝑣. 

The minimum distance denoted 𝑑𝑚𝑖𝑛 is defined as the smallest Hamming distance between any pair of 

possible codevectors and can be calculated by: 𝑑𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑑(𝑣, 𝑤): 𝑣, 𝑤 ∈ 𝐶, 𝑣 ≠ 𝑤}, where C is a block 

code. So, a code’s minimum distance defines how many errors bit we will be able to fix or correct. In any 

linear code, we have the notation (𝑛, 𝑘, 𝑑), where 𝑑 stands for the minimum distance achieved with the 

values of 𝑛 and 𝑘 (Lin & Costello, 1983).  

 

2.4.2 RRNS error detection and correction 

Defining an RRNS as an (𝑛, 𝑘) code. All the integers in the legitimate range [0, 𝑃𝑘) are legitimate (valid). 

All the 𝑛-tuple residue representations form an 𝑛-dimensional vector space, where the corresponding 𝑘-

dimensional code space are valid. So, all residue representation in the 𝑛-dimensional code space (Ω) is a 

codevector that consists of an information part (𝑘 first residues) and a parity (redundancy) part (the 

remaining 𝑟 residues). 

An RRNS code has a minimum distance 𝑑, if and only if the product of the redundant modulus satisfies 

the following relation: 𝑚𝑎𝑥{∏ 𝑝𝑗𝑖
𝑑−1
𝑖=1 } ≤ 𝑃𝑅 < 𝑚𝑎𝑥{∏ 𝑝𝑗𝑖

𝑑
𝑖=1 } where 1 ≤ 𝑗𝑖 ≤ 𝑘 + 𝑟. 𝑑 ≤ n − k + 1 =

r + 1, which 𝑟 is the redundant modulus. In Table 3, we can see the number of errors that can be detected 

and corrected for six different minimum distances. 
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Table 3. Number of detected and corrected errors regarding a minimum distance 

Distance 

𝒅𝒎𝒊𝒏(𝒗,𝒘) 

# errors detected # errors corrected 

1 0 0 

2 1 0 

3 2 1 

4 3 1 

5 4 2 

6 5 2 

𝒅 (𝑑 − 1) = 𝑟 
⌊
𝑑 − 1

2
⌋ = ⌊

𝑟

2
⌋ 

 

If in a codevector (residue representation), 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} the 𝑖-th residue is faulty, it will result in 

the residue 𝑦𝑖, where 𝑦𝑖 ≡ 𝑥𝑖 + 𝑒𝑖(𝑚𝑜𝑑 𝑝𝑖) 0 ≤ 𝑒𝑖 < 𝑝𝑖  and 𝑒𝑖 being the error value. If 𝑒𝑖 = 0, then there 

is not an error. Generally, the final codevector is 𝑌 = 𝑋 + 𝐸, where 𝐸 is the error vector and 𝑌 is the 

resulting one. The Hamming weight of 𝐸, 𝓌(𝐸), also denoted by 𝛼, is the number of errors in 𝑌. 

To assess the error detecting and correcting capability of an RRNS system, the redundant moduli are 

equal to 𝑟, the system can detect 𝑟 and correct ⌊
𝑟

2
⌋ errors (Chessa et al., 2004; Krishna et al., 1992; J. Sun 

& Kirshna, 1992). 

Definition 1. The error capability, 𝛾, of an RRNS code is the largest number of errors that may occur for 

which 𝑌 is not in Ω  

Lemma 1. The value of 𝛾 is 𝑑 − 1 = 𝑟. 

Proof 

For an RRNS with a minimum distance 𝑑,  no error vector 𝐸 having a weight 𝓌(𝐸) = 𝛼, 0 < 𝛼 < 𝑑, 

can change one codevector into another. For the triangular inequality if 𝑑(𝑌, 𝑋) = 𝛼, 0 < 𝛼 < 𝑑, then 

𝑑(𝑌, 𝑋𝑗) ≥ 𝑑 − 𝛼 > 0 for all, 𝑋𝑗 ∈ Ω and 𝑋𝑗 ≠ 𝑋. Therefore, 𝑌 cannot be a codevector. Also, there exist 

at least two codevectors, 𝑋1 and 𝑋2, such that 𝑑 = 𝑑(𝑋1, 𝑋2). If 𝑋1 = 𝑋, and 𝐸 = 𝑋2 − 𝑋1, then 𝑌 = 𝑋2. 

In such a case 𝑌 ∈ Ω. Therefore, not all errors vectors having 𝓌(𝐸) = 𝑑 are detectable, thus the lemma 

is proved.  
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The decoding procedure is decode 𝑌 to a codevector �̂� that differs from Y in the least number of places. 

A computationally impractical method is compare 𝑌 with every codevector in Ω . Then 𝑌 is decoded to 

that �̂� that satisfies the condition 𝑑(𝑌, �̂�) ≤ 𝑑(𝑌, 𝑍), for all 𝑍 ∈ Ω, and 𝑍 ≠ �̂�. 

Definition 2. The error correcting capability, 𝛽, of an RRNS code is the largest number of errors that 

may occur for which correct decoding (�̂� = 𝑋) takes place. 

Lemma 2. The value of 𝛽 for an RRNS is 𝛽 = ⌊
𝑑−1

2
⌋ = ⌊

𝑟

2
⌋, where ⌊𝑎⌋ denotes the largest integer less tan 

or equal to 𝑎. 

Proof 

Let 𝑋𝑗 be a codevector other than 𝑋 in Ω. The Hamming distance among 𝑋, 𝑋𝑗, and 𝑌 satisfies the 

triangular inequality 𝑑(𝑌, 𝑋) + 𝑑(𝑌, 𝑋𝑗) ≥ 𝑑(𝑋, 𝑋𝑗). Since 𝑑(𝑋, 𝑋𝑗) ≥ 𝑑 and 𝑑(𝑌, 𝑋) = 𝛼, 𝑑(𝑌, 𝑋𝑗) ≥

(𝑑 − 𝛼). 

If 𝛼 ≤ ⌊
𝑑−1

2
⌋, then 𝑑 − 𝛼 > ⌊

𝑑−1

2
⌋ ≥ 𝛼. Thus 𝑑(𝑌, 𝑋𝑗) ≥ 𝑑(𝑌, 𝑋) therefore implying that 𝑌 is closer to 

𝑋 than any other codevector in Ω. On the other hand, when 𝛼 > 𝛽, we can show that there exists at least 

one codevector 𝑋𝑗 such that 𝑑(𝑌, 𝑋𝑗) < 𝑑(𝑌, 𝑋). In this case, incorrect decoding will take place. The 

lemma is proved. 

 

2.4.2.1 Modular projection method 

The projection method is introduced by Szabo & Tanaka, (1967). For detecting 𝑟 errors, it needs 𝑟 

redundant moduli. The number of projections, in the worst-case scenario, is 𝐶𝑛
𝑘+1. 

Let 𝑋
𝑅𝑅𝑁𝑆
→   (𝑥1, 𝑥2, … , 𝑥𝑘 , … , 𝑥𝑘+𝑟) be the residue representation of an integer 𝑋 with moduli set 

{𝑝1, 𝑝2, … , 𝑝𝑘 , … , 𝑝𝑘+𝑟} satisfying the conditions that without loss of generality, the moduli are sorted in 

ascending order, and ∀𝑖 ≠ 𝑗: gcd(𝑝𝑖, 𝑝𝑗) = 1. There are two cases to consider: 1) 𝑋 has no error if 𝑋 ∈

[0, 𝑃), where 𝑃 = ∏ 𝑝𝑖
𝑘
𝑖=1 ; 2) if 𝑡 moduli are excluded, where 𝑡 ≤ 𝑟 the value of 𝑋 will not be changed if 
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represented in RRNS. Specifically, the criterion for error detection is if the recovered value of X falls out of 

the dynamic range 𝑃. 

The main idea of this method is that it leaves out a residue from the given RNS-representation. Then, 

𝑋𝑖 = |𝑋|�̅�
𝑝𝑖⁄

 where �̅� = ∏ 𝑝𝑖
𝑛
𝑖=1  is said to be the 𝑝𝑖 − 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 of 𝑋. 𝑋𝑖  can be interpreted as the 

residue representation of 𝑋 in a reduced (𝑘, 𝑛 − 1)-RRNS  with the 𝑖 − 𝑡ℎ residue 𝑥𝑖  deleted. 

Then, a 𝑋∧ − 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 of X, defined by 𝑋∧ = |𝑋|�̅�
𝑝∧⁄

, where 𝑝∧ = ∏ 𝑝𝑖𝑚
𝜆
𝑚=1 , ∧= {𝑖1, . . , 𝑖𝜆}, and 𝜆 ≤

(𝑛 − 𝑘) = 𝑟. Hence, 𝑋∧ can also be represented as a reduced residue representation of X,  since residues 

𝑥1, … , 𝑥𝜆 are deleted. So, X can be represented by a (𝑘, 𝑛 − 𝑘)-RRNS. The new legitimate range is [0, 𝑃´) 

and the illegitimate range is [𝑃´, �̅� 𝑝∧⁄ ). Therefore, the 𝑝∧ − 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 of any legitimate 𝑋 is still 

legitimate, provided that a sufficiently high dynamic range is retained in the (𝑘, 𝑛 − 𝑘)-RRNS to 

unambiguously represent 𝑋. 

Suppose that 𝑋 has an error, represented by �̃�. Also, suppose that �̃�𝑖  is a correct projection of �̃�, then 

all other projections, �̃�𝑗 𝑖 ≠ 𝑗 are faulty. Therefore, the correct value of 𝑋 is |�̃�𝑖|𝑝𝑖
. 

Example. Consider the next parameters, 𝑘 = 3 and 𝑟 = 2 a moduli set {2,3,5,7,11}. The dynamic range 

is 𝑃 = 2 ∙ 3 ∙ 5 = 30. The total RRNS range is �̅� = 𝑃 ∙ 7 ∙ 11 = 2310. Suppose that an error occurs in the 

fourth residue resulting in �̅�
𝑅𝑅𝑁𝑆
→   (1,2,2, 𝟓, 6) instead of 𝑋 = 17

𝑅𝑅𝑁𝑆
→   (1,2,2,3,6).  

To correct the error, suppose we calculate each 𝑝𝑖 − 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 removing the first moduli, then the 

second, and so on: 

𝑋1̅̅ ̅
𝑅𝑅𝑁𝑆
→   (2,2, 𝟓, 6) based on the moduli set {3,5,7,11}, then �̅�𝐼1 = ∏ 𝑝𝑖 = 11554

𝑖=1 .  

𝑋1̅̅ ̅ = |2 ∙ 385 + 2 ∙ 231 + 5 ∙ 330 + 6 ∙ 210|1155 = 677 > 30.  

𝑋2̅̅ ̅
𝑅𝑅𝑁𝑆
→   (1,2, 𝟓, 6) on the moduli set {2,5,7,11}, then �̅�𝐼1 = ∏ 𝑝𝑖 = 7704

𝑖=1 .  

𝑋2̅̅ ̅ = |1 ∙ 385 + 2 ∙ 616 + 5 ∙ 330 + 6 ∙ 210|770 = 677 > 30. 
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𝑋3̅̅ ̅
𝑅𝑅𝑁𝑆
→   (1,2, 𝟓, 6) on the moduli set {2,3,7,11}, then �̅�𝐼1 = ∏ 𝑝𝑖 = 4624

𝑖=1 .  

𝑋3̅̅ ̅ = |1 ∙ 231 + 2 ∙ 154 + 5 ∙ 330 + 6 ∙ 210|462 = 215 > 30. 

𝑋4̅̅ ̅
𝑅𝑅𝑁𝑆
→   (1,2,2,6) on the moduli set {2,3,5,11}, then �̅�𝐼1 = ∏ 𝑝𝑖 = 4624

𝑖=1 .  

𝑋4̅̅ ̅ = |1 ∙ 165 + 2 ∙ 220 + 2 ∙ 66 + 6 ∙ 210|462 = 17 < 30.  Since, 𝑋4̅̅ ̅ ∈ [0, 𝑃), meaning that the error 

was on the fourth residue on modulus 7, then the correct value is 𝑥4 = |17|7 = 3.  

 

2.4.2.2 Syndrome method 

The syndrome method is based on the Base Extension algorithm of Yau & Liu, (1973). To check the 

correctness of the result, it is necessary to compute the values 𝑥′𝑘+1, 𝑥′𝑘+2, … , 𝑥′𝑘+𝑟 from 𝑥1, 𝑥2, . . , 𝑥𝑘 by 

the base extension algorithm and compare them to the initial values 𝑥1, 𝑥2, … , 𝑥𝑘+𝑟. 

To detect an error, the following procedure is used. Let 𝑋
𝑅𝑅𝑁𝑆
→   (𝑥1, 𝑥2, … , 𝑥𝑘 , … , 𝑥𝑘+𝑟), with the moduli 

set {𝑝1, 𝑝2, … , 𝑝𝑘 , … , 𝑝𝑘+𝑟} and ∀𝑖 ≠ 𝑗: gcd(𝑝𝑖, 𝑝𝑗) = 1. Then there are two cases, 1) if an element of 𝑥𝑖 

occurs, where 𝑗 ≥ 𝑘 + 1 then the number of nonzero ∆𝑐, 𝑐 = 𝑘 + 1, 𝑘 + 2,… , 𝑘 + 𝑟, are not greater than 

⌊𝑟/2⌋ and 𝑋∗ is correct, where ∆𝑐- is a syndrome error. 2). If an element of 𝑥𝑖 occurs, where 𝑗 ≤ 𝑘, then 

the number of nonzero ∆𝑐 for all 𝑐 = 𝑘 + 1, 𝑘 + 2,… , 𝑘 + 𝑟 where ∆𝑐= |X∗ − xc|pc, 𝑋∗ = |∑ 𝑃𝑖𝑏𝑖𝑥𝑖
𝑘
𝑖=1 |

𝑝
 

and ∀𝑖 = 1, 𝑘̅̅ ̅̅̅ 𝑃𝑖 = 𝑃 𝑝𝑖⁄  where 𝑏𝑖 is the multiplicative inverse of |𝑃𝑖|𝑝𝑖. 

Using the approach of Fatt Tay & Chang, (2016), which splits the set of possible errors into three parts: 

𝐸𝐴 = (𝑒𝑎1 , 𝑒𝑎2 , … , 𝑒𝑎𝑖 , 0, … ,0),

𝐸𝐵 = (0,… ,0, 𝑒𝑏1 , 𝑒𝑏2 , … , 𝑒𝑏𝑗 , 0, … ,0)

𝐸𝐶 = (0,… ,0, 𝑒𝑐1 , 𝑒𝑐2 , … , 𝑒𝑐𝑙)

 

where 𝑖, 𝑗, 𝑙 < ⌊
𝑟

2
⌋. We compute syndromes 𝛿1, 𝛿2, 𝛿3, 𝛿1 = ||𝑋|𝑃𝐴 − 𝑋|

𝑃𝐴
, 𝛿2 = ||𝑋|𝑃𝐵 − 𝑋|

𝑃𝐵
, 𝛿3 =

||𝑋|𝑃𝐶 − 𝑋|
𝑃𝐶

, where 𝑃𝐴 = ∏ 𝑝𝑎𝑚
𝑖
𝑝=1 , 𝑃𝐵 = ∏ 𝑝𝑏𝑚

𝑗
𝑝=1  and 𝑃𝐶 = ∏ 𝑝𝑐𝑚

𝑙
𝑝=1 .  
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If 𝛿1 = 𝛿2 = 𝛿3 = 0, there are no errors, and the result is correct. If any arbitrary syndrome is not 

equal to zero; and, the number of errors is greater than 𝑟, it is impossible to recover the right result. 

 

2.4.3 Replication technique 

Data replication is generally used to manage a great deal of data by creating identical copies of it in 

geographically distributed sites called replicas (Lamehamedi & Szymanski, 2007). The advantage of data 

replication is speeding up data access, reducing access latency, and increasing data availability. It is crucial 

to guarantee the availability of the replicas and data integrity features for a distributed system. There are 

two types of data replication: static and dynamic.  

 Static replication. It follows deterministic policies. Therefore, the number of replicas and the host 

node is well defined and predetermined. Besides, these strategies are easy to implement, but they 

do not fully adapt to the Cloud environment.  

 Dynamic replication. This kind of replication automatically creates and deletes replicas according 

to changes in the user access pattern, storage capacity, and bandwidth (Wei et al., 2010).  

Nevertheless, the replication technique has some drawbacks, such as difficulty collecting run time 

information of all the data nodes in complex Cloud infrastructure and maintaining the data file consistency. 

The replica creation method finds the best time to create a new replica. An access recorder is then assigned 

to each data node, which is used to store the number of simultaneous users accesses to each file, including 

file name, several concurrent access, file size. 

 

2.4.4 Erasure codes  

The chance of a failure increases along with systems grows. Single parity used in RAID systems no longer 

are sufficient, and 𝑘-replication is too much waste of storage space. Erasure codes have been used in 

storage systems as an alternative to replication (Aguilera et al., 2005). Proper use of EC provides greater 

space efficiency and more level of protection but with higher complexity. Essentially, an EC is an error 

correction mechanism for bit erasures rather than bit errors. It transforms a message of 𝑘 symbols into a 
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longer message with 𝑛 symbols such that from a subset of the 𝑛 symbols we can recover the original data 

(Dimakis et al., 2010). EC has a code rate = 𝑘
𝑛⁄  . Since EC is not homomorphic, it is suitable for building 

reliable distributed data storage system but does not allow efficient data processing. For EC systems, a 

common practice is to generate another encoded block instead of repairing a faulty node to reconstruct 

the completely encoded data. 

 

2.4.5 Reed-Solomon codes  

Reed-Solomon (RS) is a cyclic error-correcting code invented by Reed & Solomon, (1960). RS codes' idea 

is to describe a systematic way of building codes that could detect and correct multiple symbol errors. In 

a system, there are 𝑛 disks or clouds, 𝑘 of them hold the original data, and the remaining 𝑟 hold coding 

(parity) information, which is calculated from the data. Since RS is a type of erasure code, if the erasures 

are known beforehand, RS can correct up to 𝑟 deletions.  

Basically, RS codes are MDS codes (Maximum Distance Separable), which have the property that if any 

𝑟 disks or clouds fail, RS can reconstruct the original data. On the one hand, it does not matter how many 

bits in a symbol are incorrect; RS only counts them as a single error. Reed-Solomon code is usually a poor 

choice if the data have random single-bit errors (MacWilliams & Sloane, 1977; Singh, 2013). 

The RS’s quadratic decoding time becomes unacceptable when it is used for vast data distribution over 

the internet due to data rates are of MB/s order (Forney, 2003). Reed-Solomon is an effective way to 

protect data integrity, and it is an excellent solution wherever small data blocks need to be verified, such 

as NASA standard (255;233;33) code. Moreover, RS codes are block codes; then, their implementation 

requires a previous evaluation of the transmission channel's erasure probability.  

 

2.4.5.1 Basic Reed-Solomon 

The encoder takes 𝑘 data symbols of size 𝑠-bit word, where 𝑠 must be large enough that 𝑛 ≤ 2𝑠 + 1. 𝑠 

is typically constrained so that words fall on machine word boundaries: 𝑠 ∈ {8,16,32,64}. Most 

implementations choose 𝑠 = 8, since their systems contain fewer than 256 disks or clouds, and 𝑠 = 8 

performs the best. RS treats each word as a number between 0 and 2𝑠 − 1, and operates under Galois 
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Field arithmetic (𝐺𝐹(2𝑠)). Where Galois Field is a field with finite number of elements. The number of 

elements of any finite is a power 𝑝𝑛 of a prime number 𝑝, which is the characteristic of this field. It is 

denoted by 𝐺𝐹(𝑝𝑛) or by 𝐹𝑝𝑛. 𝐺𝐹(𝑝𝑛) As with any field, a 𝐺𝐹(𝑝𝑛) is a set on which the operations of 

multiplication, addition, subtraction and division are defined and satisfy the properties of commutative, 

distributive, and associative and there exists the neutral element of addition and multiplication (Mullen & 

Panario, 2013). 

In the encoding phase, a Generator matrix or a Distribution matrix is constructed from a Vandermonde 

matrix, see Figure 5.  

 

Figure 5. Matrix vector product to describe a coding system 

 

The top 𝑘 rows of the distribution matrix compose a 𝑘 × 𝑘 identity matrix. The rest of the rows (𝑚 

rows) are called the coding matrix, creating a codeword, see Figure 6. The distribution matrix is multiplied 

by a vector that contains the data words and yields a product vector containing both the data and the 

coding symbols. Hence, to encode, RS needs to perform 𝑚 dot products of the distribution matrix with the 

data.  

When an erasure or error occurs, Reed-Solomon detects and corrects them in the following way. First, 

RS calculates a serial syndrome to check if the codeword is valid or not. If no error has occurred, the 

decoding process ends; otherwise, RS calculates the error-location polynomial and error-evaluator 

polynomial. Finally, when the values and locations of the errors are obtained using, for example, the Chien 

search and Forney algorithm, the codeword can be corrected by an XOR operation (Lin & Costello, 1983). 
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Figure 6. Example of a basic structure of Reed-Solomon codeword 

 

In 𝐺𝐹(2𝑠), addition is equivalent to bitwise exclusive-or (XOR), and multiplication is more complex, 

typically implemented with multiplication tables or discrete logarithm tables. Naturally, we can expect a 

quadratic decoding time for Reed-Solomon’s decoding process (Forney, 2003). For this reason, Reed-

Solomon codes are considered expensive. 

 

2.4.5.2 Cauchy Reed-Solomon (CRS) 

The Cauchy Reed-Solomon modifies the classic RS in two ways. The first modification creates the 

distribution matrix differently using Cauchy matrices instead of Vandermonde matrices. The second one 

eliminates expensive multiplications operations by converting them to other XOR operations. This latter 

modification can be applied to Vandermonde-based RS codes. This last modification transforms 𝐺𝑇 from 

a 𝑛 ∗ 𝑘 matrix of s-bit words to a 𝑤𝑛 ∗  𝑤𝑘 matrix of bits. Again, s must be selected so that 𝑛 ≤ 2𝑠 + 1 

(Plank et al., 2009). 

It is assumed that the disks are composed of 𝑤 packets of equal size to implement these codes. Now 

each packet is calculated to be the bitwise XOR some subset of the other packets. This process is illustrated 

in Figure 7. 
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Figure 7. Cauchy Reed-Solomon coding process 

 

2.5 Secret Sharing Schemes 

A Secret Sharing Scheme (SSS) is a method where a dealer has a secret, and from it derives individual 

shares (shadows) that are distributed to different participants. Only an authorized subset of participants 

may recover the secret. The access structure 𝒜-SSS of an SSS is a method of generating (𝑆, (𝑆1, … , 𝑆𝑛)) 

where 𝑆 is the secret and 𝑆1, … , 𝑆𝑛 will be the shares. Its elements are referred to as an authorized set and 

the unauthorized rest sets. Ito et al., (1989) remark that if a group can recover the secret, so can a larger 

group. 

Depending on the quantity of information is leaked to an unauthorized set, SSS can be classified as: 

 Perfect secret. In this scheme, any unauthorized set shares cannot give any information about 

the original data. 

 Computational-secure. In this scheme, some information can be leaked to an unauthorized set. 

However, finding the secret is intractable, meaning there is no polynomial 

deterministic/randomized algorithm for solving it.  

Researchers initially focused on these techniques on problems of secure information storage. However, 

SSS has found numerous other applications in cryptography and distributed computing. Nonetheless, the 

shares' size is exponential in the number of participants, which is a big drawback of this technique. The 

efficiency and security decrease as the quantity of the information that must be kept secret increases. 

Therefore, it is important for an SSS the size of the shares.  
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The entropy is used for analyzing the amount of information in a secret sharing. The entropy 𝐻(𝒳) can 

be interpreted as the average number of bits required for representing an element of 𝒳 concerning some 

probability distribution (Gray, 2011). Hence, 𝐻(𝑆) can be viewed as the size of the secret and 𝐻(𝑆𝑖) as the 

size of the 𝑖 −share. For a perfect threshold SSS, the relation 𝐻(𝑆) ≤ 𝐻(𝑆𝑖) holds true for all 1 ≤ 𝑖 ≤ 𝑛 

(Karnin et al., 1983).  

In the first threshold secret sharing scheme, only the number of participants in the recovery phase was 

essential for recovering the information. Let 𝑛 ≥ 2, 2 ≤ 𝑘 ≤ 𝑛. The access structure 𝒜 = {𝐴 ∈

𝒫({1,2, … , 𝑛})| |𝐴| ≥ 𝑘} is referred to as (𝑘, 𝑛)-threshold access structure. 

The formal definition of a threshold-SSS introduced independently by Shamir, (1979) and Blakley, 

(1979) is a (𝑘, 𝑛)-secret sharing scheme is used to distribute a secret 𝑑 among 𝑛 participants such that any 

coalition of size 𝑘 or more can construct 𝑑 but smaller coalitions cannot.  

The scheme of Shamir, (1979) is based on polynomial interpolation. Given any 𝑘 pairs 

(𝑥1, 𝑦1), … , (𝑥𝑘, 𝑦𝑘) with 𝑥𝑖 ≠ 𝑥𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, there is one and only one polynomial 𝑃(𝑥) of 

degree 𝑘 − 1 such that 𝑃(𝑥𝑖) = 𝑦𝑖  for all 1 ≤ 𝑖 ≤ 𝑘. To obtain a (𝑘, 𝑛)-SSS, a random polynomial 𝑃(𝑥) =

𝑎𝑘−1𝑥
𝑘−1 + 𝑎𝑘−2𝑥

𝑘−2 +⋯+ 𝑎0 is generated over ℤ𝑝[𝑥], where 𝑝 is a prime number 𝑎0 = 𝑑 is the secret. 

The secret can be recover using Lagrange interpolation if 𝑘 or more participants join by 𝑆 =

∑ (𝐼𝑖 ∙ ∏
𝑥𝑗

𝑥𝑗−𝑥𝑖
𝑗∈𝐴\{𝑖} )𝑖∈𝐴 .  This scheme is ideal, since the size of the share does not exceed the size of the 

secret. 

The secret sharing proposed by Blakley, (1979) uses hyperplanes theory to encrypt/decrypt the secret. 

The shares are any 𝑛 distinct (𝑘 − 1)-dimensional hyperplanes that contain the secret, where and (𝑘 − 1)-

dimensional hyperplane is a set of form {(𝑥1, … , 𝑥𝑘) ∈ GF𝑞
𝑘|𝛼1 ∙ 𝑥1 +⋯+ 𝛼𝑘 ∙ 𝑥𝑘 = 𝛽} where 𝛼1, … , 𝛼𝑘, 

𝛽 are arbitrary elements of the field GF𝑞. The secret can be obtained by intersecting any 𝑘 shares. 

Two other secret sharing schemes fundamentally different are Asmuth-Bloom and Mignotte (Asmuth 

& Bloom, 1983; Mignotte, 1983). Both use CRT to recover the original secret. 
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.5.1 Mignotte Secret Sharing Scheme 

Mignotte (𝑘, 𝑛)-threshold SSS uses a sequence of pairwise coprime integers 𝑝1, 𝑝2, … , 𝑝𝑛 as parameters 

satisfying the equation (6): 

∏ 𝑝𝑖
𝑘

𝑖=1
>∏ 𝑝𝑛−𝑘+1+𝑖

𝑘−1

𝑖=1
 (6) 

That is, the product of the smallest 𝑘 numbers is larger than the product of the largest 𝑘 − 1 numbers. 

Where = ∏ 𝑝𝑖
𝑘
𝑖=1  , 𝑃0 = ∏ 𝑝𝑛−𝑘+1+𝑖

𝑘−1
𝑖=1 . The secret 𝑠 is selected so that 𝑃 > 𝑠 > 𝑃𝑜. Each participant 𝑝𝑖  

holds a share 𝑠𝑖, where 𝑠𝑖 = |𝑆|𝑝𝑖. Since each element 𝑝𝑖  are coprime, we can get a unique value 𝑆, where 

0 ≤ 𝑆 < ∏ 𝑝𝑖
𝑘
𝑖=1 . One big drawback of the Mignotte scheme is that it is not perfect, but can obtain small 

shares and can be used in applications in which the compactness of the shares is a major factor. 

 

2.5.2 Asmuth-Bloom Secret Sharing Scheme 

The Asmuth-Bloom (𝑘, 𝑛)-threshold SSS uses special increasing sequences of pairwise coprime integers 

𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑛 satisfying the equation (7):  

∏ 𝑝𝑖
𝑘

𝑖=1
> 𝑝0 ∙∏ 𝑝𝑛−𝑘+1+𝑖

𝑘−1

𝑖=1
 (7) 

In this scheme, the original secret 𝑠𝑜is selected from ℤ𝑝. The shared secret 𝑠0
′  is calculated as 𝑠0

′ = 𝑠0 +

𝛼𝑝, where  is a randomly chosen integer such that 0 ≤ 𝑠0
′ < 𝑃. To recover the secret 𝑠0 a coalition of at 

least 𝑘 shares can be used to calculating 𝑠0 = |𝑠0
′ |𝑝, where 𝑠0

′  is calculated by the CRT. 
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2.5.3 AR-RRNS Secret Sharing Scheme 

AR-RRNS is a residue-to-binary conversion method based on N. Chervyakov et al., (2017), where the 

authors propose an improved approximate CRT. Considering a number 𝑋 in RRNS, if it is divided by the 

dynamic range 𝑃, the following variant of the CRT can be obtained: 

�̃� =
𝑋

𝑃
= |∑

|𝑃𝑖
−1|

𝑝𝑖

𝑝𝑖

𝑛

𝑖=1
𝑥𝑖|

1

= |∑ 𝑘𝑖𝑥𝑖
𝑛

𝑖=1
|
1

 

 

(8) 

where 𝑘𝑖 =
|𝑃𝑖

−1|
𝑝𝑖

𝑝𝑖
, 𝑖 = 1,2, . . 𝑛. Then, the value of each sum of (8) is in the range of [0,1), which provides 

sufficient information to assess the sign and magnitude of the RRNS number. Therefore, the approximate 

CRT substitutes the number by its fraction, adjusting the representation accuracy based on available 

resources. The value �̃� can be considered as a positional characteristic of 𝑋, where: 

𝑋 = �̃�𝑃 (9) 

Based on this approximate CRT, the approach may reduce the number of calculated projections of the 

number and replaces the computationally complex operation of long integers' division by taking the least 

significant bits. Based on equations (8) and (9), the rank of the number is computed by equation (10) : 

𝑋 =∑ 𝑃𝑖|𝑃𝑖
−1|

𝑝𝑖
𝑥𝑖

𝑛

𝑖=1
− 𝑅𝑥 ∙ 𝑃 (10) 

where 𝑟𝑥 = ⌊∑
|𝑃𝑖

−1|
𝑝𝑖

𝑝𝑖

𝑛
𝑖=1 𝑥𝑖⌋ and 𝑃 = ∏ 𝑝𝑖

𝑛
𝑖=1 , 𝑃𝑖 =

𝑃

𝑝𝑖
. For all 𝑖 = 1, 𝑛̅̅ ̅̅̅, and 𝑟𝑥 is a positive integer 

representing the rank of 𝑋, showing how many times the dynamic range of the RRNS can be increased. 

The integer 𝑋 can be recover unequivocally if 𝑁 = ⌈log2 𝜌⌉, then 𝑟𝑥 = 𝑅𝑥 or 𝑟𝑥 = 𝑅𝑥 − 1, where 𝑅𝑥 =

⌊∑
𝑘𝑖𝑥𝑖

2𝑁
𝑛
𝑖=1 ⌋,  𝑘𝑖 = ⌈

|𝑃𝑖
−1|

𝑝𝑖
2𝑁

𝑝𝑖
⌉, and 𝜌 = ∑ 𝑝𝑖 − 𝑛𝑛

𝑖=1 . 
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Example: Let RRNS moduli set be {2,3,5}, the dynamic range is 𝑃 = 2 ∙ 3 ∙ 5 = 30. Suppose two 

intenger 𝑋 = 8
𝑅𝑅𝑁𝑆
→   (0,2,3), and 𝑌 = 29

𝑅𝑅𝑁𝑆
→   (1,2,4). Next, it is calculated the required parameters: 

𝑃𝑖 =
𝑃

𝑝𝑖
,   𝑃1 = 15,   𝑃2 = 10,   𝑃3 = 6;            𝛽𝑖 = |𝑃𝑖

−1|
𝑖
𝑃𝑖,   𝛽1 = 15,   𝛽2 = 10,   𝛽3 = 6; 

𝜌 = −3 + 2 + 3 + 5 = 7, 𝑁 = ⌈log2 7⌉ = 3;      𝑘𝑖 = ⌈|𝑃𝑖
−1|

𝑖

2𝑁

𝑝𝑖
⌉,   𝑘1 = 4, 𝑘2 = 3, 𝑘3 = 2; 

The values of 𝑋 and 𝑌 are calculated: 

∑ 𝑘𝑖𝑥𝑖 = 4 ∙ 0 + 3 ∙ 2 + 2 ∙ 3 = 123
𝑖=1 ,                  ∑ 𝑘𝑖𝑦𝑖 = 4 ∙ 1 + 3 ∙ 2 + 2 ∙ 4 = 183

𝑖=1 ; 

𝑅𝑋 = ⌊
∑ 𝑘𝑖𝑥𝑖
3
𝑖=1

2𝑁
⌋ = 1, 𝑅𝑌 = ⌊

∑ 𝑘𝑖𝑦𝑖
3
𝑖=1

2𝑁
⌋ = 2 ; 

Finally, 𝑋 = ∑ 𝑃𝑖|𝑃𝑖
−1|

𝑝𝑖
𝑥𝑖

3
𝑖=1 − 𝑅𝑋 ∙ 𝑃 = (15 ∙ 0 + 10 ∙ 2 + 6 ∙ 3) − (1 ∙ 30) = 8 

𝑌∗ =∑ 𝑃𝑖|𝑃𝑖
−1|

𝑝𝑖
𝑦𝑖

3

𝑖=1
− 𝑅𝑌 ∙ 𝑃 = (15 ∙ 1 + 10 ∙ 2 + 6 ∙ 4) − (2 ∙ 30) = −1 

Since 𝑌∗ < 0, then 𝑌 = 𝑌∗ + 𝑃 = −1 + 30 = 29 

Therefore, if the approximate rank 𝑅𝑋 of 𝑋 equals to 𝑟𝑋 + 1, then the value is less than zero. In this case, 

the dynamic range is added to the negative value and obtains the real 𝑋. 

Since AR-RRNS is based on RRNS, it has error detection and correction capability. The error correction 

method based on the approximate CRT is named AR-ECC. This method is derived from equation (10) where 

∑ 𝑘𝑖𝑥𝑖
𝑛
𝑖=1  can be represented by the equation: 

∑ 𝑘𝑖𝑥𝑖 = 𝑋 + 𝑟𝑥𝑃
𝑛

𝑖=1
 (11) 

The idea of error-correcting is the next, assuming that an error 𝐸
𝑅𝑅𝑁𝑆
→   (𝑒1, 𝑒2, … , 𝑒𝑛) occurred resulting 

in a value 𝑋∗ = 𝑋 + 𝐸 instead of 𝑋. Then by equation (12): 
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∑ 𝑘𝑖(𝑥𝑖 + 𝑒𝑖) = 𝑋 + 𝐸 + 𝑟𝑥𝑃 + 𝑟𝐸𝑃
𝑛

𝑖=1
 (12) 

Since 𝑋 < ∏ 𝑝𝑖 = 𝑅𝑘
𝑖=1 . The value of ⌊𝐸 𝑅⁄ ⌋ is ⌊

(𝑋+𝐸)

𝑅
⌋ or ⌊

(𝑋+𝐸)

𝑅
⌋ − 1. If ⌊

(𝑋+𝐸)

𝑅
⌋ = 0, then there is no 

error, and 𝑋 is recovered correctly. Therefore, the value of ⌊
(𝑋+𝐸)

𝑅
⌋ = 0 can be used as a syndrome, which 

determines if the results are correct. 
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Chapter 3.  Methodology  

This section introduces the methodology we use to design and evaluate the 2Lbp-RRNS model. 

 

3.1 Research methodology  

Here, we provide the main phases of an investigation and specific approaches used to identify, process, 

and analyze information about a topic: 

 Study of the state-of-the-art solutions. The addressed problem requires understanding the 

state-of-the-art approaches to identify existed mechanisms, techniques, and open problems in 

the literature. We present the related works in Section 1.1. We describe the secret sharing 

schemes and error detection-correction codes in Chapter 2. 

 Experimental evaluation. It consists of evaluating the performance of the state-of-the-art 

schemes and mechanisms by means of experimentation, adapting them to a data storage 

system in a multi-cloud environment using characteristics of real Cloud storage providers. We 

detail the experimentation in Chapter 4. 

 Design of 2Lbp-RRNS model. The main objective is to develop a reliable data storage system. 

For this purpose, we design a two-level RRNS model with backpropagation and Hamming 

distance mechanisms that allows to improve reliability, redundancy, and reduce the overhead 

of data storage. 

 

3.2 Multi-cloud environment approach 

We consider a multi-cloud environment composed of a set of independent Cloud storage providers. 

Each of them stores a share without knowing of the other Cloud storages. On the one hand, since data are 

not stored on a single Cloud, it leads to the increased confidentiality. On the other hand, due to the 

redundancy property of RRNS, the system can recover the user information even if several storages are 



45 

temporarily unavailable, corrupted, or lost. We use 11 providers from Table 1 of Section 2.1.1 based on 

their main characteristics and accessibility to implement the simulation framework.  

To obtain the upload/download speeds, we perform a statistical analysis of Cloud storage access. We 

use file sizes from 10MB to 200MB to determine the data access rate. The shares are 

uploaded/downloaded to providers every hour during three days (Lopez-Falcon et al., 2019). In Table 4, 

we show the measurements for corresponding speeds.  

We perform the experiments on an Intel® Xeon® CPU E5-1607 v3, with 16GB of memory. 64-bit OS, 

x64-based processor, and Chrome browser version 80.0.3987.149 with an Ethernet connection. The 

operating system is Windows 10. 

Table 4. Speed access for seven Cloud storage providers 

ID Provider 
Upload speed (MB/s) Download speed (MB/s) 

Min Max Ave Min Max Ave 

𝑪𝟏 Google Drive 1.79 3.21 2.98 2.15 3.26 3.06 

𝑪𝟐 OneDrive 0.91 1.70 1.46 1.21 2.41 2.18 

𝑪𝟑 Dropbox 2.59 3.05 2.93 3.07 3.32 3.25 

𝑪𝟒 Box 1.91 3.26 2.55 2.01 3.20 2.62 

𝑪𝟓 Egnyte 1.24 1.93 1.70 2.17 2.36 2.30 

𝑪𝟔 ShareFile 0.11 0.65 0.51 0.72 0.76 0.75 

𝑪𝟕 SalesForce 0.52 0.73 0.64 0.68 0.72 0.71 

𝑪𝟖 Alibaba Cloud 2.32 3.14 2.73 2.54 3.18 2.86 

𝑪𝟗 Amazon Cloud Drive 0.70 1.86 1.28 2.49 3.09 2.79 

𝑪𝟏𝟎 Apple iCloud 2.05 3.45 2.75 2.01 2.98 2.49 

𝑪𝟏𝟏 Azure Storage 1.31 3.17 2.24 2.30 3.12 2.71 

 

To evaluate the probability of the Cloud provider errors, we use the data from an analysis of downtime 

at IaaS public Cloud providers by CloudHarmony, (2015). It does not provide a holistic view of Cloud 

availability and complete picture of Cloud downtime statistics due to limited monitoring all Cloud provider 

services, all availability zones across multiple regions, etc. However, it serves as a valuable point of 

reliability analysis. 

We use the definition of geometric probability to calculate the probability of failure for each Cloud. We 

use these results as the maximum probability of failure of each CSP. We assume that the minimum 
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probabilities of failure is twice less. For example, OneDrive reported 11hrs 34 mins or 0.482 days of 

downtime, resulting in a maximum probability of failure of 0.00132043.  

 shows the results for eleven CS. 

Table 5. Probability of failure for eleven Cloud storage providers 

ID Provider 
Probability of failure 

Min Max Ave 

𝑪𝟏 Google Drive 0.00072679 0.00145361 0.00109019 

𝑪𝟐 OneDrive 0.00066020 0.00132043 0.00099030 

𝑪𝟑 Dropbox 0.00097032 0.00194065 0.00145548 

𝑪𝟒 Box 0.00179699 0.00359402 0.00269549 

𝑪𝟓 Egnyte 0.00073249 0.00146503 0.00109874 

𝑪𝟔 ShareFile 0.00014269 0.00028542 0.00021404 

𝑪𝟕 SalesForce 0.00061739 0.00123480 0.00092609 

𝑪𝟖 Alibaba Cloud 0.00079897 0.00138793 0.00109345 

𝑪𝟗 Amazon Cloud Drive 0.00018227 0.00098241 0.00058234 

𝑪𝟏𝟎 Apple iCloud 0.00015664 0.00097632 0.00076648 

𝑪𝟏𝟏 Azure Storage 0.00039977 0.0087241 0.00063609 

 

3.2.1 Allocation strategies to select Cloud storages 

This section describes five allocations strategies proposed by Lopez-Falcon et al., (2019) to select the 

set of possible Cloud storages available or suitable to hold shares based on the system’s requirements. 

 Random: This strategy selects the first 𝑛 Cloud storage accessible, arbitrary 

 BestUpload: This strategy selects the first 𝑛 available Cloud storage with the best upload speed 

access 

 BestDownload: This strategy selects the first 𝑛 available Cloud storage with the best download 

speed access 

 BestSecurity: This strategy selects the first 𝑛 available Cloud storage with the lowest probability of 

failure 
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 AdaptiveSpeed: Let 𝑆𝑢(𝑛) the set of 𝑛 Cloud storage available with the best upload speed and 𝑆𝑑(𝑛) 

the set of download speed access. AdaptiveSpeed selects first the Cloud storage of 𝑆𝑢(𝑛), later the 

shares in 𝑐 ∈ (𝑆𝑢(𝑛)\𝑆𝑑(𝑛)) are transferred to the set of Cloud storage 𝑑 ∈ (𝑆𝑑(𝑛)\𝑆𝑢(𝑛)) 

 AdaptiveSecurity: Let 𝑆𝑢(𝑛) be the set of 𝑛 available Cloud storage with the best upload speed and 

let 𝑆𝑝𝑟(𝑛) be the set of Cloud storage with a lower probability of failure. First, AdaptiveSecurity 

selects the Cloud storage belonging to 𝑆𝑢(𝑛), later the shares in 𝑐 ∈ (𝑆𝑢(𝑛)\𝑆𝑝𝑟(𝑛)) are transferred 

to 𝑑 ∈ (𝑆𝑝𝑟(𝑛)\𝑆𝑢(𝑛)) 

 

3.3 Formal definition of the problem 

Our objective is to develop a reliable distributed data storage system. For this purpose, we consider a 

set 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚}. of 𝑚 clouds. Each Cloud storage is described as a tuple 𝑐𝑗 = {𝑢𝑗, 𝑑𝑗 , 𝑒𝑟𝑟𝑗}, where 

𝑢𝑗 is the upload speed, 𝑑𝑗 download speed, and 𝑒𝑟𝑟𝑗 the probability of failure, for  ∀𝑗= {1,… ,𝑚}. 

There are three necessary restrictions to our model: 

 There must be at least two available Cloud storages (𝑛 ≥2). 

 To recover the data, we need at least two shares (𝑘≥2). 

 The number of shares needed to retrieve the information must be less or equal to the total number 

of available Cloud storages (𝑘≤𝑛). 

Figure 8 and Figure 9 show the basic model for data storage in a multi-cloud fashion.  
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Figure 8. Encoding phase for a basic data storage model in a multi-cloud environment 

 

Let assume a system with five storages and a (𝑘, 𝑛)-threshold SSS with an access structure (3,5). In this 

scenario, we divide the original data 𝐷 into five (𝑛 = 5) encoded shares (𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5). Each share 𝑠𝑖 is 

allocated to the Cloud selected from a pool of eight available clouds taking into account one of the 

allocation strategies listed in Section 3.2.1, see Figure 8. 

 

Figure 9. Decoding phase for a basic data storage model in a multi-cloud environment 

 

To reconstruct 𝐷, we select three (𝑘 = 3) shares from the five storages. The selection of the 𝑘 Clouds 

will depend on their availability at the moment. Figure 9 depicts that shares two and five are not used or 

unavailable. Finally, we obtain the original information using CRT or MRC methods. 
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3.4 Performance metrics 

We consider several metrics to assess the quality of the strategies and the storage system: the number 

of detected and corrected errors, encoding/decoding and storing/extraction speeds, and data redundancy.  

The number of detected and corrected errors are described in Section 3.5-3.7. 

Redundancy (R) measures the ratio between the size of the original data (𝐷) and the final size of the 

encrypted data (𝐷𝐸). R is the extra information added in the coding phase due to the redundant moduli to 

ensure error detection and correction capability and is computed by:  

𝑅 =
𝑠𝑖𝑧𝑒(𝐷𝐸)

𝑠𝑖𝑧𝑒(𝐷)
 (13) 

Encoding speed (𝑉𝐸) is the ratio between the original data size (𝐷) and the total time that the algorithm 

takes to encode (encrypt) the shares. Where the encoding time (𝑇𝐸) depends on the number of shares 

created. 

𝑉𝐸 =
𝑠𝑖𝑧𝑒(𝐷)

𝑇𝐸
 (14) 

Decoding speed (𝑉𝐷) is the ratio between the original data size (𝐷) and the total time that the algorithm 

takes to decode (decrypt) the encoded data. Where the decoding time (𝑇𝐷) depends on the number of 

shares that will be used to retrieve the data. 

𝑉𝐷 =
𝑠𝑖𝑧𝑒(𝐷)

𝑇𝐷
 (15) 

Storing speed (𝑉𝑠) is the ratio between the original data size (𝐷) and the sum of storing time 

(𝑇𝑠 = 𝑇𝐸 + 𝑇𝑢𝑝, where 𝑇𝑢𝑝 = ∑
𝑠𝑖

𝑢𝑖

𝑛
𝑖=1 ). 𝑉𝑠 represents how fast information is divided, encrypted, and 

stored in the clouds.   
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𝑉𝑠 =
𝑠𝑖𝑧𝑒(𝐷)

𝑇𝑠
 (16) 

Extraction speed (𝑉𝑒𝑥) calculates how fast the 𝑘 shares are downloaded and decoded to recover the 

original data. 𝑉𝑒𝑥 is computed as the ratio between original data length and the extraction time (𝑇𝑒𝑥 =

𝑇𝐷 + 𝑇𝑑𝑜𝑤) which is the summation of decoding and downloading times, where 𝑇𝑑𝑜𝑤 = ∑
𝑠𝑖

𝑑𝑖

𝑘
𝑖=1 : 

𝑉𝑒𝑥 =
𝑠𝑖𝑧𝑒(𝐷)

𝑇𝑒𝑥
 (17) 

We conducted a study with the average performance degradation proposed by Tsafrir et al., (2007) to 

choose the best strategy. First, we evaluate the performance degradation of each strategy under an 

arbitrary metric. We take the best value found for the strategy with the best performance as a reference. 

The equation for the performance degradation is: 

(𝛾 − 1) ∗ 100 where 𝛾 =
𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 𝑣𝑎𝑙𝑢𝑒

𝑏𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑢𝑛𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑒𝑡𝑟𝑖𝑐
 (18) 

After this step, we rank the strategies based on the average values of the performance degradations. 

The approach with the minimum average value of the performance degradation is ranking in the first 

position. It is worth notice that we are trying to identify strategies that work reliably well in different 

settings; that is, we are trying to find a compromise that considers all of our test cases. The best strategy 

may not be the same for all scenarios. 

 

3.5 RRNS Systems architectures 

This section presents a detailed description of the RRNS architectures implemented and evaluated in 

the thesis.  
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3.5.1 One-Level RRNS (1L-RRNS) 

This architecture splits the input file/data into a set of encoded (encrypted) shares with a smaller size. 

Then, we allocate a single share to each available Cloud storage. To reconstruct the original file, we need 

a specific number of shares or all of them.  Figure 10 shows the basic design of a 1L-RRNS using three Cloud 

storage. 

 

Figure 10. 1L-RRNS architecture 

 

A 1L-RRNS model can improve resource sharing, improve performance reliability, and scalability. On 

the other hand, it may have lower security depending on the encoding/decoding mechanisms. It has 

multiple points of failure, significant complexity, unpredictability, and possible collusion of participants. 

 

3.5.1.1 Basic process for encoding and decoding based on RRNS 

In the following, we explain the basic process for encoding and decoding the data based on CRT. First, 

we select an access structure (𝑘, 𝑛) and a set of available storages using a configurable algorithm proposed 

by García-Hernández et al., (2020). Then, we calculate the dynamic range 𝑃 = ∏ 𝑝𝑖
𝑘
𝑖=1 . The input file is 

read by blocks of bytes, calculated using the dynamic range (𝐿𝑒𝑛𝐵𝑙𝑜𝑐𝑘(𝑃)).  

We represent each read block by its residue representation by |𝑏𝑙𝑜𝑐𝑘1|𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Next, we store 

the residue representation in an output file; after this, we read the next block, and we do the same process 

until we encode the whole data in 𝑛 shares. Figure 11 depicts the encoding process. 
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For recovery, we download 𝑘 shares from the available Cloud storage. We read from each share, blocks 

of size 𝐿𝑒𝑛𝐵𝑙𝑜𝑐𝑘(𝑃), and recover the original information applying CRT.  

 

Figure 11. The encoding process for an RRNS system 

Example: 

Coding and decoding using (𝑘, 𝑛)-Mignotte threshold scheme: 

Suppose an access structure (2,4), and input data 𝐷 = 405610 = 1111110110002. Suppose the RRNS 

moduli set 𝑝1 = 1110 = 10112, 𝑝2 = 1310 = 11012, 𝑝3 = 1710 = 100012, and 𝑝4 = 1910 = 100112,  

where 17 and 19 are the redundant moduli. 

Encoding 

1. We need to determine the block length based on the dynamic range 𝑃 = 11 ∗ 13 = 14310 

We calculate the number of bits to represent 𝑃, since 19 < 27 < 143, hence we divide 𝐷 into 

blocks of 7 bits. 

𝐷 = 405610 = 111112⏟    
𝑏𝑙𝑜𝑐𝑘2

10110002⏟      
𝑏𝑙𝑜𝑐𝑘1

 

2. We obtain the residue representation of each block. 

𝑏𝑙𝑜𝑐𝑘1 = 8810 = 1011002
𝑅𝑅𝑁𝑆
→   (010, 1010, 310, 1210)  

𝑏𝑙𝑜𝑐𝑘2 = 3110 = 111112
𝑅𝑅𝑁𝑆
→   (910, 510, 1410, 1210) 
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3. We create the 𝑛 shares. 

𝑆1 = 0000⏟  
𝑏𝑙𝑜𝑐𝑘1,1

1001⏟  
𝑏𝑙𝑜𝑐𝑘2,1

= 910   

𝑆2 = 1010⏟  
𝑏𝑙𝑜𝑐𝑘1,2

0101⏟  
𝑏𝑙𝑜𝑐𝑘2,2

= 16510 

𝑆3 = 0011⏟  
𝑏𝑙𝑜𝑐𝑘1,3

1110⏟  
𝑏𝑙𝑜𝑐𝑘2,3

= 6210 

𝑆4 = 1100⏟  
𝑏𝑙𝑜𝑐𝑘1,4

1100⏟  
𝑏𝑙𝑜𝑐𝑘2,4

= 20410 

4. We send each share 𝑆𝑖 to 𝑛 = 4 available Cloud storages taking into account their characteristics. 

Decoding 

1. We retrieve 𝑘 = 2 shares (𝑆𝑖) from the Clouds. Suppose that Cloud 2 and Cloud 3 are not available, 

so we only have shares from Cloud 1 and Cloud 4. 

𝑆1 = 0000⏟  
𝑏𝑙𝑜𝑐𝑘1,1

1001⏟  
𝑏𝑙𝑜𝑐𝑘2,1

= 910 and 𝑆4 = 1100⏟  
𝑏𝑙𝑜𝑐𝑘1,4

1100⏟  
𝑏𝑙𝑜𝑐𝑘2,4

= 20410 

2. The moduli we need are 𝑝1 = 1110 = 10112 and 𝑝4 = 1910 = 100112. 

3. We use classic CRT to recover 𝐷.  

𝑃 = 11 ∗ 19 = 20910, 𝑃1 =
209

11
= 19, 𝑃4 =

209

19
= 11 

The multiplicative inverses are |𝑃1
−1|

𝑝1
= |19−1|11 = 7, |𝑃4

−1|𝑝4 = |11−1|19 = 7 

𝐶𝑅𝑇1 = |𝑏𝑙𝑜𝑐𝑘1,1 ∙ |𝑃1
−1|

𝑝1
∙ 𝑃1 + 𝑙𝑜𝑐𝑘1,4 ∙ |𝑃4

−1|𝑝4 ∙ 𝑃4|
𝑃
= |0 ∙ 7 ∙ 19 + 12 ∙ 7 ∙ 11|209 = 8810

= 10110002 

𝐶𝑅𝑇2 = |𝑏𝑙𝑜𝑐𝑘2,1 ∙ |𝑃1
−1|

𝑝1
∙ 𝑃1 + 𝑙𝑜𝑐𝑘2,4 ∙ |𝑃4

−1|𝑝4 ∙ 𝑃4|
𝑃
= |9 ∙ 7 ∙ 19 + 12 ∙ 7 ∙ 11|209 = 3110

= 111112 
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4. We reconstruct 𝐷 = 11111⏟  
𝐶𝑅𝑇2

1011000⏟      
𝐶𝑅𝑇1

= 111111011002 = 405610 

If more than two shares were unavailable, the system could not recover the data since there are not 

enough redundant moduli.  

 

3.5.2 Two-Level RRNS (2L-RRNS) 

This architecture divides the input file into smaller encoded (encrypted) shares as in 1L-RRNS. Then, we 

take each share, and we split it again, creating smaller ones. Finally, we distribute each smaller share 

according to the available Cloud storage characteristics. To recover the data, we first reconstruct the set 

of 𝑘2 shares for the second level, and from these, we recover 𝑘1 shares of the first level, and reconstruct 

the original data, see Figure 12. 

 

Figure 12. 2L-RRNS architecture 

 

In a 1L-RRNS architecture, to increase the reliability, it is necessary to use a large number of small 

moduli. For small moduli, converting numbers from RRNS to a binary system may be more complex. On 

the other hand, large moduli may lead to security imbalance since the data may not be encoded, revealing 

partial information of the original data. One of the significant advantages of a 2L-RRNS model is the simple 
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selection of moduli set to guarantee the required dynamic range. Besides, this model improves 

coding/decoding performance, computational security, reliability reducing data loss risks. 

 

3.6 Data storage systems models 

We evaluate the different schemes using two models: Equal-Share and Short-Share. The first one is the 

most basic system model used in most of the related works. In the second model, each Cloud storage holds 

more than one short share.  

 

3.6.1 Equal-Share (ES-RRNS) 

Equal-Share (ES-RRNS) is the basic model depicted in Figure 13. In ES-RRNS, the shares have the same 

length. The number of shares is equal to the number of Cloud storages established by the (𝑘, 𝑛) parameters 

of the system. 

 

Figure 13. Equal-Share (ES-RRNS) system model 

 

3.6.2 Short-Share (SS-WA-RRNS) 

Short-Share (SS-WA-RRNS) model is depicted in Figure 14. WA-RRNS is a weighted-RRNS scheme. We 

use two versions: WA-RRNS based on CRT (Tchernykh et al., 2018) and WA-MRC-RRNS based on MRC (A. 
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Tchernykh et al., 2020). WA-RRNS splits the secret into a set of short encoded shares. This approach 

reduces the probability of information loss at the expense of reduced coding and decoding speeds. 

The weighted threshold access scheme WA-RRNS is noted as (𝑛𝑣 , 𝑘, 𝑁) where 𝑁 is the total number of 

clouds (𝑁 ≥ 2). 𝑛𝑣 = (𝑛1, 𝑛2, … , 𝑛𝑁) is a sequence of positive integers, where 𝑛𝑣 defines the number of 

shares sent to each Cloud. And, 𝑘 is a positive integer such that 2 ≤ 𝑘 ≤ ∑ 𝑛𝑖
𝑁
𝑖=1 . The parameters 

𝑛1, 𝑛2, … , 𝑛𝑁 will be referred to as the weights. If 𝑛𝑖  ≥  𝑘 exists, then 𝑖-th cloud can restore the encoded 

data and violate the confidentiality rules. A weighted system where 𝑛𝑣 = (𝑘 − 1, 𝑘 − 1,… , 𝑘 − 1) 

provides the maximum reliability considering the limitation 𝑛𝑖 < 𝑘. 

 

Figure 14. Short-Share (SS-WA-RRNS) system model 

 

3.7 2Lbp-RRNS: Two-Levels RRNS with Backpropagation and Hamming distance 

mechanisms 

In this thesis, we focus on 2L-RRNS architecture. We present an algorithm capable of improving the 

system's reliability. We do not use a special type of moduli set to enhance the reliability of the system. 

This model uses a backpropagation mechanism and Hamming Distance techniques to detect and correct 

errors. 

3.7.1 2L-RRNS formal definition 

We describe the RRNS parameters for a two-level RRNS architecture using the notation presented at 

the beginning of this document (see, Basic Notation). We give the RRNS parameters that describe the first 

level; then, the RRNS parameters involve the second level. 
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For the first level, we have a pairwise coprime moduli set {𝑝1,1, … , 𝑝1,2, 𝑝1,𝑛1}, where 𝑛1 = 𝑘1 + 𝑟1. We 

define the legal (dynamic) range by 𝑃 = ∏ 𝑝1,𝑖
𝑘1
𝑖=1 . A data 𝑆 represented in the Binary-Weighted Number 

System (BNS) has a residue representation by the tuple 𝑆
𝑅𝑁𝑆
→  (𝑆1, 𝑆2, … , 𝑆𝑛) where 𝑆 ∈ [0, 𝑃), and 𝑆𝑖 =

|𝑆|𝑝1,𝑖  𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅ . A 1L-RRNS with an access structure (𝑘1, 𝑛1) with 𝑟1 redundant (control) moduli, then, 

according to 1L-RRNS properties, the system can detect 𝑟1 = 𝑛1 − 𝑘1 and correct ⌊𝑟1/2⌋ errors. 2L-RRNS 

uses the Projection method (see, Section 2.4.2.1) as an error correction code like a classical 1L-RRNS, 

where the number of calculated projections grows exponentially depending on 𝑟1, hence 2L-RRNS’s 

capability of correction has the same limitations and restrictions. 

For the second level, we have the moduli set {𝑝2,𝑖,1, … , 𝑝2,𝑖,2, 𝑝2,𝑖,𝑛2,𝑖}, where 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅ . Thus, each 𝑆𝑖 of 

the first level, is transformed into the set of residuals by 𝑆𝑖,𝑗 = |𝑆𝑖|𝑝2,𝑖,𝑗, see Figure 15. The dynamic range 

of the second level is given by 𝑀𝑖 = ∏ 𝑝2,𝑖,𝑗 ≥ 𝑝1,𝑖
𝑘2,𝑖
𝑗=1 . 𝑆𝑖 satisfies the condition 𝑆𝑖 < 𝑝1,𝑖, for all 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅ . 

 

Figure 15. 2L RRNS encoding 

 

From the CRT, it follows that for a one-to-one mapping between 𝑆𝑖 ∈ [0,  𝑝1,𝑖) and 𝑆�̃� =

(𝑆𝑖,1, 𝑆𝑖,2, … , 𝑆𝑖,𝑛2,𝑖), it is necessary and sufficient that 𝑀𝑖 ≥ 𝑝1,𝑖 for each 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅ . 

Multi-Operand Modulo Addition (MOMA) is an algorithmic primitive that accepts 𝑛1 operands 

𝑆1, 𝑆2, … , 𝑆𝑛1, with 0 ≤ 𝑆𝑖 < 𝑝1,𝑖 for each 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅  and computes the residue of their sum taken modulo 

𝑃. That is, it calculates original data 𝑆, as 𝑆 = |𝑤𝑖𝑆1 +𝑤2𝑆2 +⋯+𝑤𝑛1𝑆𝑛1|𝑃
, where 𝑤𝑖 = 𝑃𝑖 ⋅ |𝑃𝑖

−1|
𝑝1,𝑖

 

and 𝑃𝑖 = 𝑃/𝑝1,𝑖, for all 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅  (Piestrak, 1994). 
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Figure 16. 2L-RRNS decoding 

We design 2Lbp-RRNS as an extension of the classical 2L-RRNS. We discuss how the reliability and 

performance of the system depend on the de access structure (𝑘, 𝑛) on each level. In the following 

sections, we present error correction details by showing the idea behind the state-of-the-art 2L-RRNS 

algorithm proposed by Barati et al., (2008) and our 2Lbp-RRNS solution. 

 

3.7.2 2L-RRNS error corrections  

Let’s recall that a 2L-RRNS is an architecture in which the shares of one level are the next level's entries, 

obtaining a final set of shares with smaller sizes than a 1L-RRNS approach, see Figure 12. Suppose we have 

a set of 𝑛1 shares (𝑆1, 𝑆2, … , 𝑆𝑛1) in 2L-RRNS, we can calculate the value of each 𝑆𝑖, if and only if, the 

number of errors is less than or equal to ⌊
𝑟2,𝑖

2
⌋. In all other cases, we can say that 𝑆𝑖 is incorrect (similar to 

1L-RRNS) but we cannot recover it. 

Algorithm 1, named “2L-RRNS error correction,” applies the general Projection method (see, Section 

2.4.2.1) of the 1L-RRNS on each level. We do not use the syndrome method (see, Section 2.4.2.2). The 

amount of memory required by the syndrome method in 1L-RRNS increases exponentially, depending on 

the number of errors to be corrected (N. Chervyakov et al., 2019). Thus, to store in memory a table of 

constants for the second level requires increasing the memory by 𝑛1 times, which is not reasonable.  

The function CRTtoBin converts numbers from RRNS to a BNS using CRT. The ProRRNS function 

calculates the projection value in RRNS; this function allows the system's error correction capability. 

Barati et al., (2008) show the next Theorem 2, to demonstrate the number of detected N𝐷
2𝐿  and 

corrected N𝐸
2𝐿  errors of 2L-RRNS.  
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Algorithm 1. 2L-RRNS error correction 

Input: (𝑘1, 𝑛1), (𝑘2,1, 𝑛2,1), …, (𝑘2,𝑛1 , 𝑛2,𝑛1) 

𝑆1
𝑅𝑁𝑆
→  (𝑆1,1, 𝑆1,2, … , 𝑆1,𝑛2,1  ),  

𝑆2
𝑅𝑁𝑆
→  (𝑆2,1, 𝑆2,2, … , 𝑆2,𝑛2,2 ), 

… ,  

𝑆𝑛1
𝑅𝑁𝑆
→  (𝑆𝑛1,1, 𝑆𝑛1,2, … , 𝑆𝑛1,,𝑛2,𝑛1  ), 

(𝑝1,1, … , 𝑝1,𝑛1), (𝑝2,1,1, … , 𝑝2,1,𝑛2,1) , … , (𝑝2,𝑛1,1, … , 𝑝2,𝑛1,𝑛2,𝑛1). 

Output: 𝑆, 𝑓𝑙𝑎𝑔, (𝑆1, 𝑆2, … , 𝑆𝑛1).  

𝑓𝑙𝑎𝑔 = 0, if there are no errors, 𝑓𝑙𝑎𝑔 = 1 if errors are detected and corrected, 𝑓𝑙𝑎𝑔 = −1, if errors are 
detected but not corrected. 

Begin 
1. 𝑓𝑙𝑎𝑔 = 0 
2. For 𝑖 = 1 to 𝑛1 do: 

2.1. 𝑆𝑖
′ = 𝐶𝑅𝑇𝑡𝑜𝐵𝑖𝑛((𝑆𝑖,1, 𝑆𝑖,2, … , 𝑆𝑖,𝑛2,𝑖 )) 

2.2. If 𝑆𝑖
′ ≥ 𝑃2,𝑖  then: 

2.2.1. 𝑡𝑒𝑚𝑝 = 𝑃𝑟𝑜𝑅𝑅𝑁𝑆 (𝑆𝑖
′, (𝑝2,𝑖,1, 𝑝2,𝑖,2, … , 𝑝2,𝑖,𝑛2,𝑖), 𝑘2,𝑖, 𝑣𝑎𝑙) 

2.2.2. 𝑓𝑙𝑎𝑔 = 𝑓𝑙𝑎𝑔 + 𝑡𝑒𝑚𝑝; 
2.2.3. If 𝑡𝑒𝑚𝑝 == 0 then 𝑆𝑖 = 𝑣𝑎𝑙 else 𝑆𝑖 = −1 

3. If 𝑓𝑙𝑎𝑔 == 0 then: 
3.1. 𝑆 = 𝐶𝑅𝑇𝑡𝑜𝐵𝑖𝑛((𝑆1, 𝑆2, … , 𝑆𝑛1)) 

4. else 

4.1 If 𝑓𝑙𝑎𝑔 ≤ ⌊
𝑛1−𝑘1

2
⌋ then: 

4.1.1 𝑓𝑙𝑎𝑔 = 1 
4.1.2. 𝑆 = 𝐶𝑅𝑇𝑡𝑜𝐵𝑖𝑛((𝑆1, 𝑆2, … , 𝑆𝑛1)) 

4.2. else 𝑓𝑙𝑎𝑔 =  −1 
5. return 𝑆, 𝑓𝑙𝑎𝑔, (𝑆1, 𝑆2, … , 𝑆𝑛1) 

End 

 

Theorem 1. 2L-RRNS can detect 𝑁𝐷
2𝐿  errors and correct 𝑁𝐸

2𝐿  errors, where 

N𝐷
2𝐿 =∑(𝑛2,𝑖 − 𝑘2,𝑖)

𝑛1

𝑖=1

,                     N𝐸
2𝐿 =∑⌊

𝑛2,𝑖 − 𝑘2,𝑖
2

 ⌋

𝑛1

𝑖=1

 (19) 

Proof  

Since the amount of minimum Hamming distance in a multi-level redundant residue system, is equal 

to ∑ (𝑟𝑖 + 1)
𝑛1
𝑖=1 , so: 
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If in each second level representation of 𝑆𝑗 which is assumed for the first level of 𝑖 − 𝑡ℎ moduli (𝑖 ∈

1, 𝑛1̅̅ ̅̅ ̅̅ ), up to maximum of (𝑛2,𝑖, 𝑘2,𝑖) errors occur, then the 2L-RRNS system can detect N𝐷
2𝐿 =

∑ (𝑛2,𝑖 − 𝑘2,𝑖)
𝑛1
𝑖=1  errors. 

If in each second level representation of 𝑆𝑗 which is assumed for the first level of 𝑖 − 𝑡ℎ moduli (𝑖 ∈

1, 𝑛1̅̅ ̅̅ ̅̅ ), up to maximum of ⌊
(𝑛2,𝑖,𝑘2,𝑖)

2
⌋ errors occur, then the 2L-RRNS system can correct N𝐸

2𝐿 =

∑ ⌊
𝑛2,𝑖−𝑘2,𝑖

2
 ⌋

𝑛1
𝑖=1  errors.The theorem is proved. 

To better understand the 2Lbp-RRNS properties, let us first consider special cases of 1L-RRNS and 2L-

RRNS when we know the localization of errors. We use special subscripts for detection 𝐷𝑙 and correction 

𝐸𝑙 cases with error localization. 

Lemma 2. For (𝑘1, 𝑛1) 1L-RRNS, if we know the localization of 𝑘1 correct 𝑆𝑖. 1L-RRNS can restore 𝑆. 

Proof  

Without loss of generality, let the correct values be 𝑆𝑖1 , 𝑆𝑖2 , … , 𝑆𝑖𝑘1
, then using the CRT, 1L-RRNS can 

restore 𝑆 using the formula: 𝑆 = |𝑤1𝑆𝑖1 +𝑤2𝑆𝑖2 +⋯+𝑤𝑘1𝑆 𝑖𝑘1
|
𝑃𝐼

, where 𝑃𝐼 = ∏ 𝑝𝑖𝑗
𝑘1
𝑗  and 𝑤𝑗 =

𝑃𝐼

𝑝𝑖𝑗
⋅

|
𝑝𝑖𝑗

𝑃𝐼
|
𝑝𝑖𝑗

The lemma is proved. 

Corollary 1. For (𝑘1, 𝑛1) 1L-RRNS, if we know the localization of 𝑘1 correct 𝑆𝑖, 1L-RRNS can correct 

N𝐸𝑙
1𝐿 ≤ 𝑟1 = 𝑛1 − 𝑘1 errors. 

Proof  

a) When we know 𝑆𝑖1 , 𝑆𝑖2 , … , 𝑆𝑖𝑘1  with no errors, then the condition of Lemma 2 is satisfied. 

Therefore, we can restore the result by correcting 𝑟1 = 𝑛1 − 𝑘1 errors. 

b) When there exist 𝑘1 − 1 values with no errors, given that (𝑘1, 𝑛1) is an access structure of a 

threshold-SSS. Hence, we cannot restore the actual value of 𝑆. 
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Therefore, if there is an algorithm that can determine which of 𝑆𝑖 is correct, we can correct no more 

than 𝑟1 = 𝑛1 − 𝑘1 errors. The corollary is proved. 

Lemma 3. If there is an algorithm that can determine which of 𝑆𝑖,𝑗 is true, then the 2L-RRNS can correct 

N𝐸𝑙
2𝐿 ≤ ∑ 𝑛2,𝑖

𝑛1
𝑖=1 − ∑ 𝑘2,𝑖

𝑘1
𝑖=1  errors. 

Proof  

Without loss of generality, we assume that 𝑘2,1 ≤ 𝑘2,2 ≤ ⋯ ≤ 𝑘2,𝑛1. Two cases may take place: 

Case 1. Let us assume that 𝑟2,𝑖 errors happened in the representation of 𝑆 in 2L-RRNS, 𝑆 �̃� for all 𝑖 ∈

1, 𝑘1̅̅ ̅̅ ̅̅  , for a total number of errors ∑ 𝑟2,𝑖
𝑘1
𝑖=1 = ∑ (𝑛2,𝑖 − 𝑘2,𝑖)

𝑘1
𝑖=1 , and 𝑛2,𝑖 errors for all 𝑖 ∈ 𝑘1 + 1, 𝑛1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, with 

total errors equal to ∑ 𝑛2,𝑖
𝑛1
𝑖=𝑘1+1

. Following Lemma 2, we can restore the actual value of 𝑆𝑖 for all 𝑖 ∈ 1, 𝑘1̅̅ ̅̅ ̅̅ . 

Therefore, the condition of Lemma 2 is satisfied, and it is possible to restore the true value of 𝑆 correcting 

N𝐸𝑙
2𝐿 errors. 

N𝐸𝑙
2𝐿 ≤∑(𝑛2,𝑖 − 𝑘2,𝑖)

𝑘1

𝑖=1

+ ∑ 𝑛2,𝑖

𝑛1

𝑖=𝑘1+1

= ∑𝑛2,𝑖 −

𝑘1

𝑖=1

∑𝑘2,𝑖

𝑘1

𝑖=1

+ ∑ 𝑛2,𝑖

𝑛1

𝑖=𝑘1+1

=∑𝑛2,𝑖

𝑛1

𝑖=1

−∑𝑘2,𝑖

𝑘1

𝑖=1

 (20) 

Case 2. If we add one error more to 𝑆 �̃� (without loss of generality, we will consider that the error is 

added to 𝑆𝑗 representations), for 𝑖 ∈ 1, 𝑘1̅̅ ̅̅ ̅̅  , then, according to Corollary 1, we cannot restore the actual 

value of 𝑆𝑖 for all 𝑖 ∈ {𝑘1 + 1, 𝑘1 + 2,… , 𝑛1} ∪ {𝑗}, and according to Lemma 2, we can restore the true 

value of 𝑆𝑖  for all 𝑖 ∈ {1,2,… , 𝑘1}\{𝑗}, therefore, we cannot restore the real value of 𝑆. 

From the first and second cases, it follows that the number of errors that 2L-RRNS can correct is: 

N𝐸𝑙
2𝐿 ≤∑𝑛2,𝑖

𝑛1

𝑖=1

−∑𝑘2,𝑖

𝑘1

𝑖=1

 (21) 

Lemma 3 is proved. 
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3.7.3 Algorithm 2Lbp-RRNS with backpropagation and Hamming distance  

Next, we describe the algorithm to implement our 2Lbp-RRNS; we also provide the number of detected 

and corrected errors of 2Lbp-RRNS, using the backpropagation and Hamming distance mechanisms. Let us 

discuss Algorithm 2.  

Let us consider the example when the access structure (2,3) is on the first and the second level. Thus, 

𝑘1 = 𝑘2,1 = 𝑘2,2 = 𝑘2,3 = 2, 𝑛1 = 𝑛2,1 = 𝑛2,2 = 𝑛2,3 = 3.  

On the first level, we have a tuple with three elements (𝑆1, 𝑆2, 𝑆3). On the second level, we have three 

tuples, each with three elements (𝑆1,1, 𝑆1,2, 𝑆1,3), (𝑆2,1, 𝑆2,2, 𝑆2,3), and (𝑆3,1, 𝑆3,2, 𝑆3,3). We suppose errors 

in 𝑆1,3, 𝑆2,3, 𝑆3,3. In this case, traditional 2L-RRNS detects errors but cannot correct them because it does 

not know the position of errors.  

Following the Algorithm2, in the first step, 2Lbp-RRNS applies Algorithm 1. Based on the resulting 

shares 𝑆1,1, 𝑆1,2… . 𝑆𝑛1,,𝑛2,𝑛1 , the algorithm choose a subset of 𝑘2,𝑖  shares for each 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅  . Next, we calculate 

three possible tuples 𝑆𝑖
1, 𝑆𝑖

2, and 𝑆𝑖
3 to recover each 𝑆𝑖.  

So to recover 𝑆1 𝑤e have tuples 𝑆1
1, 𝑆1

2, and 𝑆1
3 

 𝑆1
1
𝑅𝑁𝑆
←  𝑆1

1̃ = (𝑆1,1, 𝑆1,2), 𝑆1
2
𝑅𝑁𝑆
←  𝑆1

2̃ = (𝑆1,1, 𝑆1,3), and 𝑆1
3
𝑅𝑁𝑆
←  𝑆1

3̃ = (𝑆1,2, 𝑆1,3).  

We do the same for 𝑆2 denoting possible tuples as: 

  𝑆2
1
𝑅𝑁𝑆
←  𝑆2

1̃ = (𝑆2,1, 𝑆2,2), 𝑆2
2
𝑅𝑁𝑆
←  𝑆2

2̃ = (𝑆2,1, 𝑆2,3), and 𝑆2
3
𝑅𝑁𝑆
←  𝑆2

3̃ = (𝑆2,2, 𝑆2,3). 

Then, Algorithm 2 tries to recover 𝑆, we analyze nine possible tuples of the first level denoted as: 

 𝑆1
𝑅𝑁𝑆
←  𝑆1̃ = (𝑆1

1, 𝑆2
1), 𝑆2

𝑅𝑁𝑆
←  𝑆2̃ = (𝑆1

1, 𝑆2
2), 𝑆3

𝑅𝑁𝑆
←  𝑆3̃ = (𝑆1

1, 𝑆2
3), 

 𝑆4
𝑅𝑁𝑆
←  𝑆4̃ = (𝑆1

2, 𝑆2
1), 𝑆5

𝑅𝑁𝑆
←  𝑆5̃ = (𝑆1

2, 𝑆2
2), 𝑆6

𝑅𝑁𝑆
←  𝑆6̃ = (𝑆1

2, 𝑆2
3),  

𝑆7
𝑅𝑁𝑆
←  𝑆7̃ = (𝑆1

3, 𝑆2
1), 𝑆8

𝑅𝑁𝑆
←  𝑆8̃ = (𝑆1

3, 𝑆2
2), 𝑆9

𝑅𝑁𝑆
←  𝑆9̃ = (𝑆1

3, 𝑆2
3).  
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Based on the backpropagation concept, we represent each of nine 𝑆𝑗 values back to 2L-RRNS 

representation denoting 𝑆�̃�. 

Algorithm 2. 2Lbp-RRNS error corrections 

Input: (𝑘1, 𝑛1), (𝑘2,1, 𝑛2,1), …, (𝑘2,𝑛1 , 𝑛2,𝑛1) 

𝑆1
𝑅𝑁𝑆
→  (𝑆1,1, 𝑆1,2, … , 𝑆1,𝑛2,1 ),  

𝑆2
𝑅𝑁𝑆
→  (𝑆2,1, 𝑆2,2, … , 𝑆2,𝑛2,2  ), 

… ,  

𝑆𝑛1
𝑅𝑁𝑆
→  (𝑆𝑛1,1, 𝑆𝑛1,2, … , 𝑆𝑛1,,𝑛2,𝑛1  ), 

(𝑝1,1, … , 𝑝1,𝑛1), (𝑝2,1,1, … , 𝑝2,1,𝑛2,1) , … , (𝑝2,𝑛1,1, … , 𝑝2,𝑛1,𝑛2,𝑛1). 

Output: 𝑆, 𝑓𝑙𝑎𝑔 
Begin 
Step 1. 2L-RRNS calculates S and flag. If flag≠-1,  S is recovered, otherwise S is not recovered. 
Step 2. Based on 𝑆1,1, 𝑆1,2… . 𝑆𝑛1,,𝑛2,𝑛1 , choosing an (unordered) subset of 𝑘2,𝑖  elements from a fixed set of 𝑛2,𝑖 

elements, we calculate possible values 𝑆𝑖
𝑙 for each of 𝑆𝑖. 

Step 3. Choosing an (unordered) subset of 𝑘1 elements 𝑆𝑖
𝑙 from a fixed set of 𝑛1 elements, we calculate possible 

values 𝑆𝑖
𝑙 and restore 𝑆𝑗  by the function CRTtoBin. 

Step 4. Using the backpropagation concept, we encode each 𝑆𝑗  to 2L-RRNS representation 𝑆�̃� and compute the 

HD between 𝑆�̃� and 𝑆̅. 

Step 5. We choose S j̃ for which the HD is minimal. If minimal HD between 𝑆�̃� and 𝑆̅ is more than 𝑁𝐸
2𝐿𝑏𝑝

=

∑ 𝑛2,𝑖
𝑛1
𝑖=1 − ∑ 𝑘2,𝑖

𝑘1
𝑖=1 − 1, then return 𝑓𝑙𝑎𝑔 = −1; otherwise, 𝑆 = 𝑆𝑗  and  flag = 1. 

End 

 

For each resulting 𝑆�̃�, we calculate the Hamming distance between 𝑆̅ and 𝑆�̃�, for all 𝑗 = 1,9̅̅ ̅̅ . In our 

example, the Hamming Distance equals three for all 𝑗 = 2,9̅̅ ̅̅ , and equals to two between 𝑆̅  and 𝑆1̃. We 

note that 𝑘=2, hence, 𝑆 =  𝑆1 . We can restore the data. 

 

3.7.3.1 2Lbp-RRNS error correction 

Now, let us calculate the number of errors detected and corrected by 2Lbp-RRNS in the general case. 

This method's basic idea is in the backpropagation of the restored variant that the algorithm cannot prove 

as correct or incorrect. This restored variant is encoded, so the algorithm moves the data in the direction 

reverse to restoring. This new encoded variant 𝑆�̃� is compared with the initially encoded value 𝑆 by 

calculating the HD. If HD is less than a given threshold, 𝑆�̃� is considered as a correct restored 𝑆. Thus, the 

error correction of 2Lbp-RRNS includes two additional processes: 2L-RRNS encoding and HD calculation. 
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The number of possible variants 𝑆�̃� depends on the number of errors in 𝑆. Due to a large number of 

possible combinations, the time can grow significantly. On the one hand, backpropagation increases the 

error detection and correction algorithm's computational complexity, similar to the base extension 

(Watson & Hastings, 1966). On the other hand, it allows us to identify and recover more errors. 

 First, we discuss the HD properties for the error localization in 2L-RRNS in more detail. Let we have two 

2L-RRNS representations of 𝑆: without errors �̃� and with errors 𝑆̅. We can establish the following property 

1: 

Property 1. If 𝐻𝐷(�̃�, 𝑆̅) = 0 then 𝑆̅ does not contain errors, i.e. �̃� = 𝑆̅. 

Proof  

Evidence from the contrary. Assume that 𝑆̅ contains errors and 𝐻𝐷(�̃�, 𝑆̅) = 0. Since 𝑆̅ contains errors, 

there exists a representation 𝑆̅
2𝐿−𝑅𝑅𝑁𝑆
←       𝑆 + 𝐸, where  0 < 𝐸 < 𝑃, therefore: 

𝑆̅ = ((𝑆1,1
′ , … , 𝑆1,𝑛2,1

′ ),… , ((𝑆𝑛1,1
′ , … , 𝑆𝑛1,𝑛2,𝑛1

′ ))), 

�̅� = ((𝐸1,1
′ , … , 𝐸1,𝑛2,1

′ ),… , ((𝐸𝑛1,1
′ , … , 𝐸𝑛1,𝑛2,𝑛1

′ ))), 

 �̃� = ((𝑆1,1, … , 𝑆1,𝑛2,1),… , ((𝑆𝑛1,1, … , 𝑆𝑛1,𝑛2,𝑛1))), 

where for all 𝑖, 𝑗: 𝑆𝑖,𝑗
′ = 𝑆𝑖,𝑗 + 𝐸𝑖,𝑗. 

Considering that 0 < 𝐸 < 𝑃 then there exists at least one pair (𝑖, 𝑗), such that 𝐸𝑖,𝑗 ≠ 0, therefore there 

is at least one value 𝑆𝑖,𝑗 ≠ 𝑆𝑖,𝑗
′ , then 𝐻𝐷(�̃�, 𝑆̅) > 0. Thus, we have a contradiction. Therefore, if  

𝐻𝐷(�̃�, 𝑆̅) = 0 then 𝑆̅ does not contain errors. The property is proved. 

Corollary 2. The number of errors that has 2L-RRNS representation of 𝑆̅ is equal to 𝐻𝐷(�̃�, 𝑆̅). 
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Property 2. Let 𝑆1 ≠ 𝑆2 ≠ ⋯ ≠ 𝑆𝑡, for which 𝐻𝐷(𝑆1 ,̃ 𝑆̅) = 𝐻𝐷(𝑆2̃, 𝑆̅) = ⋯ = 𝐻𝐷(𝑆�̃�, 𝑆̅), then the 

number of errors in each of the representations 𝑆�̃� is equal. 

Proof  

Since the number of errors in the 2L-RRNS representation of 𝑆𝑗 by the Corollary 2 is determined by 

𝐻𝐷(𝑆�̃�, 𝑆̅), from the condition 𝐻𝐷(𝑆1 ,̃ 𝑆̅) = 𝐻𝐷(𝑆2̃, 𝑆̅) = ⋯ = 𝐻𝐷(𝑆�̃�, 𝑆̅), it follows that the number of 

errors in each 𝑆�̃� is equal, for all 𝑗 = 1, 𝑡̅̅ ̅̅ . The property is proved. 

Corollary 3. Let 𝑆1 ≠ 𝑆2 ≠ ⋯ ≠ 𝑆𝑡, for which 𝐻𝐷(𝑆1̃, 𝑆̅) < 𝐻𝐷(𝑆2̃, 𝑆̅) < ⋯ < 𝐻𝐷(𝑆�̃�, 𝑆̅), then the 𝑆1 

representation in 2L-RRNS contains the least errors. 

It follows from Corollary 3 and Property 2. If there are at least two 𝑆𝑗 values such that  𝑆1 ≠ 𝑆2, 

𝐻𝐷(𝑆1̃, 𝑆̅) = 𝐻𝐷(𝑆2̃, 𝑆̅) = 𝑑 and 𝑑 ≤ 𝐻𝐷(𝑆�̃�, 𝑆̅) for all 𝑗 = 1, 𝑡̅̅ ̅̅ , then it is impossible to correct 𝑆 since we 

cannot determine which value from two 𝑆1, 𝑆2 is true. 

Theorem 2. 2Lbp-RRNS can detect 𝑁𝐷
2𝐿𝑏𝑝 

 errors and correct 𝑁𝐸
2𝐿𝑏𝑝 

 errors, where  

N𝐷
2𝐿𝑏𝑝 

=∑𝑛2,𝑖

𝑛1

𝑖=1

−∑𝑘2,𝑖

𝑘1

𝑖=1

, 

N𝐸
2𝐿𝑏𝑝 

≤∑𝑛2,𝑖

𝑛1

𝑖=1

−∑𝑘2,𝑖 − 1

𝑘1

𝑖=1

 

(22) 

Proof  

From Corollary 2, it follows that the maximum number of errors that we can determine using Hamming 

Distance is equal to the maximum number of errors that can be corrected if we know them, therefore 
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N𝐷
2𝐿𝑏𝑝 

=∑𝑛2,𝑖

𝑛1

𝑖=1

−∑𝑘2,𝑖

𝑘1

𝑖=1

. (23) 

To estimate the number of correctable errors of 2Lbp-RRNS, we consider their upper bound. As in 

traditional threshold 2L-RRNS, no more than ⌊𝑟2,𝑖/2⌋ errors are localized in each 𝑆 �̃�. Hence, there are 𝑘1 +

⌈𝑟2,𝑖/2⌉ values of 𝑆𝑖, the correctness of which can be confirmed. Hence, we can correct the actual value. 

Without loss of generality, we assume that in each of the representations in 1L-RRNS 𝑆𝑖𝑞 ∈

{𝑆𝑖1 , 𝑆𝑖2 , … , 𝑆𝑖𝑙} contains no more than 𝑟2,𝑖𝑞  errors, where 𝑙 ≥ 𝑘1. We denote 𝐼 = {𝑖1, … , 𝑖𝑙} and there 

exists 𝑢 ∉ 𝐼 for which the representation in 1L-RRNS 𝑆𝑢 contains less than 𝑛2,𝑢 errors, then using Corollary 

3, we can restore 𝑆 based on the backpropagation mechanism. Backpropagation encodes each 𝑆𝑗 

candidate of 𝑆 back to RRNS representation denoting 𝑆�̃� . 

Consider the number of errors that the upper bound case can correct. The maximum number of errors 

is less than or equal to 

N𝐸
2𝐿𝑏𝑝 

≤∑(𝑛2,𝑖 − 𝑘2,𝑖)

𝑘1

𝑖=1

+ ∑ 𝑛2,𝑖

𝑛1

𝑖=𝑘1+1

− 1 =∑𝑛2,𝑖

𝑛1

𝑖=1

−∑𝑘2,𝑖

𝑘1

𝑖=1

− 1. (24) 

The theorem is proved. 

We use Theorem 2 and Theorem 3 to calculate the capability of the 2LRRNS and 2Lbp-RRNS 

respectively. We use the access structures described in   
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Table 6 to explore all possible scenarios. Where (𝑘1, 𝑛1) = (𝑘2,𝑖, 𝑛2,𝑖), each Cloud storage has the same 

number of shares with the same threshold. 

Figure 17 and Figure 18 show the number of detected and corrected errors. We observe that 2Lbp-

RRNS can detect and correct more errors than 2L-RRNS for all test cases. For the give results, 2Lbp-RRNS 

can detect 1.58x and correct 3.37x times more errors than 2L-RRNS, on average. 
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Table 6. Scheme settings for evaluation of error detection and correction 

𝒊𝒅 𝒌𝟏 𝒏𝟏 (𝒌𝟐,𝟏, 𝒏𝟐,𝟏) − ⋯− (𝒌𝟐,𝒏𝟏 , 𝒏𝟐,𝒏𝟏) 

1 2 4 (2,4)-(2,4)-(2,4)-(2,4) 

2 3 4 (3,4)-(3,4)-(3,4)-(3,4) 

3 4 4 (4,4)-(4,4)-(4,4)-(4,4) 

4 2 5 (2,5)-(2,5)-(2,5)-(2,5)-(2,5) 

5 3 5 (3,5)-(3,5)-(3,5)-(3,5)-(3,5) 

6 4 5 (4,5)-(4,5)-(4,5)-(4,5)-(4,5) 

7 5 5 (5,5)-(5,5)-(5,5)-(5,5)-(5,5) 

8 2 6 (2,6)-(2,6)-(2,6)-(2,6)-(2,6)-(2,6) 

9 3 6 (3,6)-(3,6)-(3,6)-(3,6)-(3,6)-(3,6) 

10 4 6 (4,6)-(4,6)-(4,6)-(4,6)-(4,6)-(4,6) 

11 5 6 (5,6)-(5,6)-(5,6)-(5,6)-(5,6)-(5,6) 

12 6 6 (6,6)-(6,6)-(6,6)-(6,6)-(6,6)-(6,6) 

13 2 7 (2,7)-(2,7)-(2,7)-(2,7)-(2,7)-(2,7)-(2,7) 

14 3 7 (3,7)-(3,7)-(3,7)-(3,7)-(3,7)-(3,7)-(3,7) 

15 4 7 (4,7)-(4,7)-(4,7)-(4,7)-(4,7)-(4,7)-(4,7) 

16 5 7 (5,7)-(5,7)-(5,7)-(5,7)-(5,7)-(5,7)-(5,7) 

17 6 7 (6,7)-(6,7)-(6,7)-(6,7)-(6,7)-(6,7)-(6,7) 

18 7 7 (7,7)-(7,7)-(7,7)-(7,7)-(7,7)-(7,7)-(7,7) 

19 2 8 (2,8)-(2,8)-(2,8)-(2,8)-(2,8)-(2,8)-(2,8)-(2,8) 

20 3 8 (3,8)-(3,8)-(3,8)-(3,8)-(3,8)-(3,8)-(3,8)-(3,8) 

21 4 8 (4,8)-(4,8)-(4,8)-(4,8)-(4,8)-(4,8)-(4,8)-(4,8) 

22 5 8 (5,8)-(5,8)-(5,8)-(5,8)-(5,8)-(5,8)-(5,8)-(5,8) 

23 6 8 (6,8)-(6,8)-(6,8)-(6,8)-(6,8)-(6,8)-(6,8)-(6,8) 

24 7 8 (7,8)-(7,8)-(7,8)-(7,8)-(7,8)-(7,8)-(7,8)-(7,8) 

25 8 8 (8,8)-(8,8)-(8,8)-(8,8)-(8,8)-(8,8)-(8,8)-(8,8) 

 

 

Figure 17. Error detection in 2L-RRNS and 2Lbp-RRNS 
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Figure 18. Error correction in 2L-RRNS and 2Lbp-RRNS 

 

3.8 Implementation of MRC-RRNS algorithm for a 2L-RRNS  

MRC-RRNS algorithms are based on the Mixed-Radix Systems (MRS) - a non-standard positional 

numeral system in which the numerical base varies from position to position (Huang, 1983). The basic 

implementations for forwarding conversion are based on a neural-like network architecture named Finite 

Ring Neuronal Network (FRNN) presented in Zhang et al., (1990). 

Figure 19 shows the general interpretation of this architecture: a parallel, interconnected network of 

simple elements. It consists of two important components: 1) the neuronal processing elements capable 

of performing basic operations and 2) weights, representing the knowledge of the system. All finite ring 

arithmetic like addition, multiplication, and their combination can be reduced to this architecture. 

 
Figure 19. FRNN architecture (a) and its symbolic mapping (b) 
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The simple FRNN architecture is based on the Pascal method of finding the division remainder and the 

window method. Original data 𝑆 is represented as 𝑆 = 𝑠𝑙|𝑠𝑙−1|. . |𝑠0, where “|” is 𝐿-bits string 

concatenation of 𝑠𝑖. 𝐿 defines the window size 𝐿 ∈ {8,16}. 𝑤𝑖,𝑗 = |2𝐿⋅𝑗|
𝑝1,𝑖

 are synaptic weights.  

FRNN consists of two layers: the first one is the prefabricated layer on which the product 𝑠𝑖 is calculated 

by the synaptic weight 𝑤𝑖,𝑗. On the second computational layer, the sum of the values and remainder of 

the division is calculated by modulo 𝑝1,𝑖. Thus, FRNN can be described using the following formula (25): 

𝑆𝑖 = |∑𝑠𝑗 ⋅ 𝑤𝑖,𝑗

𝑙

𝑗=0

|

𝑝1,𝑖

 (25) 

The literature widely uses various algorithms to recover the original data: CRT (Szabo & Tanaka, 1967), 

Wang method (Yuke Wang, 2000), MRS (Huang, 1983), and Approximate method (N. I. Chervyakov et al., 

2014).  

CRT uses the computationally complex operation of finding the remainder of the division by the RRNS 

range to convert numbers. On the one hand, an approximate method reduces its complexity. The 

approximate method is based on replacing absolute values by relative values and replacing the operation 

of the division with the remainder of the general form by trial division. However, to obtain the correct 

value in the approximate method, it is necessary to increase the size of the coefficients from ⌈log2 𝑃⌉ to 

⌈log2(𝑃 ⋅ 𝜌)⌉, where 𝜌 = −𝑛1 + ∑ 𝑝1,𝑖
𝑛1
𝑖 , which eliminates the resulting gain. On the other hand, the 

recursive doubling Wang method also reduces CRT computational complexity. The Wang method reduces 

the size of the divisor from 𝑃 to √𝑃. But at the same time, the number of reminders of the division is 

increased from one to ⌈log2 𝑛1⌉. 

Alternative solutions for converting from RRNS to binary are MRS-based algorithms. The decoding 

phase using the MRC-RRNS algorithm consists of two-stages. The number is converted from RRNS to MRS 

in the first stage, then from MRS to binary. 

To reduce the computational complexity of the first stage, we propose a modification of the transfer 

algorithm from RRNS to BNS based on CRT and the FRNN. The second stage of the transition from MRS to 

binary is implemented using the Convolutional Neural Network (CNN). 
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Figure 20, shows a Decoding Neural Network (DNN) architecture for conversion from 1L-RRNS to binary 

consisting of two layers: FRNN and CNN. 

 

Figure 20. DNN architecture for decoding from 1L-RRNS to binary 

 

The RRNS residues can be converted to MRS and then to binary 𝑆
𝑀𝑅𝑆
←  �̂� = [�̂�1, … , �̂�𝑛1] by: 

S =∑ �̂�𝑖ŵ1,𝑖

𝑛1

𝑖=1
 (26) 

where ŵ1,𝑖 are the radices and �̂�1,𝑖 are the MRS digits, where 0 ≤ �̂�1,𝑖 < 𝑝1,𝑖 and ŵ1,𝑖 = ∏ 𝑝1,𝑗
𝑖−1
𝑗=1 .  

To recover S, the classic MRC is formulated as follows:  

𝑆 = �̂�1 + �̂�2𝑝1,1 + �̂�3𝑝1,1𝑝1,2 +⋯+ �̂�𝑛𝑝1,1𝑝1,2…𝑝1,𝑛1−1 

The MRC digits can be computed as: 

�̂�1 = 𝑆1 

�̂�2 = |(𝑆2 − �̂�1)|𝑝1,1
−1|

𝑝1,2
|
𝑝1,2
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�̂�3 = |((𝑆3 − �̂�1)|𝑝1,1
−1|

𝑝1,3
− �̂�2) |𝑝1,2

−1|
𝑝1,3

|
𝑝1,3

 

�̂�𝑛 = |((. . (𝑆𝑛 − �̂�1)|𝑝1,1
−1|

𝑝1,𝑛1
− �̂�2) |𝑝1,2

−1|
𝑝1,𝑛

−⋯− �̂�1,𝑛1−1)|𝑝1,𝑛1−1
−1 |

𝑝1,𝑛1
|
𝑝1,𝑛1

 

Then, a positive number in the interval [0, 𝑃 − 1] can be uniquely represented.  

MRS reduces the computational complexity of 1L-RRNS to BNS conversion by eliminating the operation 

of finding the remainder of division by 𝑃, by calculating �̂�𝑖. The computational complexity of the �̂�𝑖 is 

quadratic of 𝑛1. The simultaneous use of MRS and CRT ideas to translate from 1L-RRNS to the BNS allows 

speeding up the algorithm.  

Let 𝐵𝑖 = |𝑃𝑖
−1|

𝑝1,𝑖
⋅ 𝑃𝑖 is orthogonal basis 1L-RRNS, where for all 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅ : 𝑃𝑖 = 𝑃/𝑝1,𝑖. For any 𝑖 = 1, 𝑛1̅̅ ̅̅ ̅̅ : 

𝐵𝑖  is represented in the MRS as 𝐵𝑖
𝑀𝑅𝑆
←  �̂�𝑖 = [�̂�𝑖,1, … , �̂�𝑖,𝑛1], 𝑇𝑖 = (�̂�1,𝑖, … , �̂�𝑖,𝑖) is a tuple of coefficients in 

MRS representation, 𝐴𝑖 = (𝑆𝑖, 𝑆𝑖, … , 𝑆𝑖⏟      
𝑖 𝑡𝑖𝑚𝑒𝑠

) and 𝜎𝑖 = ⌊
1

𝑝1,𝑖
⋅ ∑ 𝑆𝑗 ⋅ 𝑏𝑗,𝑖

𝑖
𝑗=1 ⌋ is the bias. 
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Chapter 4. Experimental analysis and results  

This chapter introduces the results from the experimental evaluation of the Mignotte, Asmuth-Bloom, 

AR-RRNS, and WA-RNSS described in Chapter 2, and a two level model (2L-RRNS and 2Lbp-RRNS) described 

in Chapter 3. We assess the schemes' performance based on their encoding and decoding speeds, storing 

and extraction speeds, and redundancy. 

 

4.1 Experimental setup 

To evaluate the algorithms, we consider a data storage system in a multi-cloud environment as our 

simulation scenario. To analyze the behavior of the system, we use zip files compose of images, PDF files, 

text files, and photos, with a size of 100MB. We consider the characteristics of the Cloud storage providers 

of those presented in Section 3.2. 

We perform the experiments on the server Express x3650 M4, with two Xeon IvyBridge processors E5-

2650v2, a default clock speed of 2.6GHz. Each processor has eight Cores and two threads per core (16 with 

hyperthreading), level 1 memory of 32kB, level 2 of 256kB, level 3 of 20MB. Two NUMA domains of 32 GB 

each, with a total memory of 64GB.  

The server operating system is CentOS Linux release 7.1.1503. We developed the system using the Java 

(JDK 12.0.1) programming language. 

 

4.2 Analysis of 1L-RRNS  

4.2.1 Evaluation of input sizes variation 

To understand if the size of the input file influences the speed-related criteria, we run several 

experiments using four files with sizes of 10MB, 50MB, 100MB, and 200MB. We study a 1L-RRNS 

architecture consisting of eight Cloud storage and the schemes Mignotte, AR-RRNS, and Asmuth-Bloom. 

We consider several scenarios according to different access structures.  
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Figure 21 and Figure 22 summarize the time required for encoding. We observe that the overall 

behavior of the system is the same for the encoding process independently of the input size. Mignotte and 

AR-RRNS follow the same encoding process, while Asmuth-Bloom have the extra step where it adds 

“noise” into the input data.  If we focus on a fixed number of clouds, for example, 𝑛 = 6, we can see that 

the encoding time decreases as 𝑘 increases. These results are due to the schemes creates more share but 

of smaller size. Mignotte and AR-RRNS reach 72.80 sec for a 200MB file and only 3.63 sec for a 10MB file 

for the access structure (2,6).  

Conversely, Asmuth-Bloom reaches its highest values at the access structure (6,6) with 191.03 sec for 

200MB and 9.435 sec for 10MB. Contrary to the other two schemes, the shares in Asmuth-Bloom do not 

decrease as 𝑘 increases, since they do not depend on 𝑘. 

 

Figure 21.  Encoding speeds of Mignotte and AR-RRNS for files size 10MB, 50MB, 100MB, and 200MB 

 

Figure 22. Encoding speeds of Asmuth-Bloom for files size 10MB, 50MB, 100MB, and 200MB 
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In the decoding phase, we can observe a significant difference in the behavior of AR-RRNS and 

Mignotte; see Figure 23 and Figure 24. AR-RRNS presents a more balanced performance with an average 

time of 2.45 sec for 10MB file and 48.88 sec for the 200MB file. On the other hand, Mignotte and Asmuth-

Bloom use classic CRT to recover the data; in Figure 25, we show that as we move into a bigger value of 𝑘, 

the decoding time should increase. For an access structure (6,6), Mignotte reaches a maximum value of 

61.317 sec for a 200MB file and 3.095 sec for the 10MB file, while Asmuth-Bloom 316.174 sec for a 200MB 

file and 15.311 sec for a file of 10MB. 

Finally, based on the experiment results, the input file size does not affect the schemes' behavior. 

Besides, we calculate at which factor the time increases depending on the size of a file. For example, we 

calculate the growth factor taking the results of the 100MB file and the results of 200MB; that is, the 

encoding and decoding times for a 200MB file are 2x slower regarding a 100MB file. For this reason, for 

the rest of the experiments, we use a 100MB file to test the system since we can extrapolate its results for 

other input sizes. 

 

Figure 23. Decoding speeds of AR-RRNS for files size 10MB, 50MB, 100MB, and 200MB 
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Figure 24. Decoding speeds of Mignotte for files size 10MB, 50MB, 100MB, and 200MB 

 

Figure 25. Decoding speeds of Asmuth-Bloom for files size 10MB, 50MB, and 100MB 

 

4.2.2 Speed evaluation of Asmuth-Bloom, Mignotte, and AR-RRNS 

We demonstrate the performance of the system in terms of speeds. Figure 26 depicts the encoding 

rates for Asmuth-Bloom, Mignotte, and AR-RRNS. As we establish before, Mignotte and AR-RRNS have the 

same encoding phase; both schemes read the input file with a calculated byte-block size from the dynamic 

range based on 𝑘, as described in the section 3.5.1.1. While Asmuth-Bloom calculates the byte-block size 

based on the value of 𝑝0.  

From Figure 26, we can observe that for access structure (2,7), Mignotte and AR-RRNS have a rate of 

2.5 MB/s and Asmuth-Bloom of 1.08 MB/s. Moreover, for (7,7), Mignotte and AR-RRNS have a speed of 
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5.8 MB/s and 0.917 MB/s for Asmuth-Bloom. Asmuth-Bloom has more computational overhead because 

it adds the “noise” factor to increase the system's security causing slower encoding. Mignotte and AR-

RRNS are, on average, 4x faster than Asmuth-Bloom.  

 

Figure 26. Encoding speeds of Asmuth-Bloom, Mignotte, and AR-RRNS 

 

We already see that when 𝑘 reaches 𝑛, the share sizes decrease for Mignotte and AR-RRNS schemes 

requiring less encoding time. For example, in (2,8)-Mignotte, the share's size is 104857606 MB, while for 

an (8,8)-Mignotte is 26214406 MB.  For every 𝑘 we have the same share size. Therefore, in Table 7, we 

only listed the access structure when 𝑛 = 8. In contrast, the shares of Asmuth-Bloom do not change with 

𝑘, since they depend solely on the value 𝑝0. 

As described in Section 2.3.3, RRNS’s reliability capability depends on the redundancy of the system. 

So, according to different redundancy degrees 𝑟 introduces overhead in terms of file size. We can use the 

redundancy as a metric to assess a scheme's practicability, especially in real Cloud environments, since we 

may be dealing with storage fees, transmissions delays, etc. 
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Table 7. Size of shares of Mignotte, AR-RRNS, and Asmuth-Bloom considering an input file of 104857600 bytes 
(Bytes) 

Access structure 
Sizes of shares 

Mignotte Asmuth-Bloom 

(2,8) 104857606 209715206 

(3,8) 69905072 209715206 

(4,8) 52428806 209715206 

(5,8) 41943046 209715206 

(6,8) 34952538 209715206 

(7,8) 29959320 209715206 

(8,8) 26214406 209715206 

 

Figure 27 depicts the redundancy of the system. Mignotte and AR-RRNS have the same redundancy; 

their higher values are when 𝑘 = 2, since the share sizes are almost the same size as the original data. 

Meanwhile, when 𝑘 = 𝑛 the output file sizes are the smallest with a minimum redundancy of two. For 

Asmuth-Bloom, the shares are of the same size for all the access structure. Hence, for access structures 

with 𝑛 = 8, the redundancy of Asmuth-Bloom is 16, which is 8x bigger than Mignotte and AR-RRNS.  

The redundancy of Asmuth-Bloom has a significant impact if we consider memory space (storage space 

payed to a Cloud provider); as we can see in Figure 36, it is a substantial difference between the final 

output size versus the original input size. 

 

Figure 27. Redundancy of Asmuth-Bloom, Mignotte, and AR-RRNS 
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The three evaluated schemes are CRT-based; their decoding performance is shown in Figure 28. We 

can see that AR-RRNS has a smaller and more balanced range of speeds than Mignotte. Its values go from 

4.02MB/s to 4.52MB/s, while Mignotte’s ranges are 3.02MB/s to 6.22MB/s. So, AR-RRNS may not reach 

values higher than Mignotte; but its performance is more stable.  

For Asmuth-Bloom, the “noise” factor also impacts the decoding phase, reaching lower values than the 

two other schemes. The highest values for Asmuth-Bloom are in access structures where 𝑘 = 2. For 

decoding, Mignotte outperformed on average 3x Asmuth-Bloom, and AR-RRNS tops it 4.2x. 

 

4.2.2.1 Comparison with algorithm MRC-RRNS 

As mentioned in Section 2.3, there are two main methods to recover the original data from its residual 

representation: CRT and MRC. In the previous sections, we analyze the behavior of three SSS based on 

CRT: Asmuth-Bloom, Mignotte, and AR-RRNS. In this section, we analyze the algorithm MRC-RRNS; we give 

its detailed description in Section 3.8. MRC-RRNS is an algorithm based on MRS using MRC as a recovery 

method. We evaluate two versions named MRC8-RRNS, which uses an 8-bit word, and MRC16-RRNS, 

which uses a 16-bit word. 

In Table 8, we present the encoding and decoding speeds of MRC[8,16]-RRNS. We can see that MRC16-

RRNS reaches speeds up to 43 MB/s for encoding and 36 MB/s for decoding. The version of the MRC is 

optimize based on the notion of FRNN and CNN, and we observe that this implementation improves the 

encoding and decoding speeds compared to classic CRT-schemes. 

 

Figure 28. Decoding speeds of Asmuth-Bloom, Mignotte, and AR-RRNS 
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To highlight that MRC-RRNS outperforms the other schemes, we calculate the average performance 

degradation with the proposal of Tsafrir et al., (2007), see Section 3.4. We calculate the average of all the 

measurements of each algorithm and the best-found value for each access structure. Finally, we determine 

which algorithm has the best performance in terms of storing and extraction speeds.  

Table 8. Encoding and decoding speeds of MRC[8,16]-RRNS 

Access 

structure 

Encoding Decoding 

MRC8 MRC16 MRC8 MRC16 

(2,4) 18.68461 21.63099 24.27775 32.42544 

(3,4) 28.29656 32.89475 21.94909 33.88683 

(4,4) 38.36515 41.70144 21.41329 33.7838 

(2,5) 15.80029 18.16531 24.60631 33.70409 

(3,5) 23.29374 33.12357 21.85793 34.10643 

(4,5) 33.69274 36.58984 20.78571 34.14136 

(5,5) 41.78857 47.80117 17.8859 34.28181 

(2,6) 13.34223 14.11234 24.36055 33.84096 

(3,6) 22.52761 23.58492 22.48202 30.89282 

(4,6) 27.2777 29.03602 19.89259 34.12971 

(5,6) 31.35781 35.24852 17.16739 31.64558 

(6,6) 38.16922 40.40406 17.17624 30.65605 

(2,7) 11.39991 15.01277 27.1887 36.12718 

(3,7) 19.14243 20.91614 22.49214 35.21128 

(4,7) 25.60413 26.09605 20.93803 35.16176 

(5,7) 28.17696 34.59012 18.01478 33.85242 

(6,7) 35.00177 37.57987 17.80628 31.22074 

(7,7) 33.85242 43.0849 17.58088 29.47246 

(2,8) 9.665576 10.51525 26.41311 36.1011 

(3,8) 14.18843 17.70226 22.40144 33.48963 

(4,8) 21.34017 22.86238 19.84916 34.50657 

(5,8) 26.50412 28.94357 16.9119 32.89475 

(6,8) 32.15436 32.52034 17.24436 31.51593 

(7,8) 32.0513 37.29953 16.25224 29.39449 

(8,8) 40.48048 42.12302 15.16991 26.92516 

 

 



81 

 

Figure 29. Average degradation of encoding speeds of each scheme using a 100MB input file 

 

As expected, in Figure 29 and Figure 30, we observe that the best algorithm is MRC16-RRNS, with the 

best coding and decoding performance. On the other hand, Mignotte and AR-RRNS are the best algorithms 

based on CRT.  

 

 

Figure 30. Average degradation of decoding speeds of each scheme using a 100MB input file 

 

4.2.2.2 Uploading and downloading performance 

Here, we analyze the performance of the schemes in terms of storing/extraction speeds in a multi-

cloud scenario. In Table 4 of Section 3.2, we show measured upload and download speed (MB/s) of cloud 

providers. 
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We calculate the maximum and minimum values that can be achieved based on the worst and best 

upload and download access speeds. For these cases, we assume that all clouds have the same speed, 

either best or worst. It can give us the range of speeds that we can expect so that any behavior will be 

within these values. 

When the uploading time is taking into account, we calculate the Storing speed (𝑉𝑠) using equation 

(16), 𝑉𝑠 =
𝑠𝑖𝑧𝑒(𝐷)

𝑇𝑠
. In this case we assigned to all the clouds the best access speed of 3.45 MB/s and the 

worst access speed of 0.11 MB/s. For the Extraction speed, we use the equation 𝑉𝑒𝑥 using equation (17), 

𝑉𝑒𝑥 =
𝑠𝑖𝑠𝑒(𝐷)

𝑇𝑒𝑥
, here the best access speed was 3.32 MB/s and the worst of 0.68 MB/s. Table 9 and Table 10, 

show the worst and best times for uploading and downloading from the cloud providers, for Mignotte, 

Asmuth-Bloom, and MRC16-RRNS. For example, for Mignotte the download times are in 0.2941 sec or the 

worst case and 0.602 sec for the best case, while the decoding times are in the 16.056 sec and 33.062 sec 

range. 

The upload and download times are conditioned by the access speeds and the size of the shares 

depending each of the schemes. Besides, to calculate the downloading time, we assume that only k shares 

are used. From Figure 31 to Figure 33, we can observe that the extraction speeds (Vex) demonstrate similar 

values. This is because the decoding time has a greater impact than the access times.  

 

Figure 31. Best and Worst storing and extraction speeds for Mignotte 
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Table 9. Best and worst uploading times for Mignotte, Asmuth-Bloom and MRC16-RRNS  

Access 

structure 

Best uploading time (sec)  Worst uploading time (sec) 

Mignotte Asmuth-Bloom MRC16 Mignotte Asmuth-Bloom MRC16 

(2,4) 0.115942 0.231884 0.077295 3.636364 7.272727 2.424243 

(3,4) 0.077295 0.231884 0.046377 2.424243 7.272727 1.454546 

(4,4) 0.057971 0.231884 0.033126 1.818182 7.272727 1.038961 

(2,5) 0.144928 0.289855 0.096618 4.545455 9.090909 3.030303 

(3,5) 0.096618 0.289855 0.057971 3.030303 9.090909 1.818182 

(4,5) 0.072464 0.289855 0.041408 2.272728 9.090909 1.298701 

(5,5) 0.057971 0.289855 0.032206 1.818182 9.090909 1.010101 

(2,6) 0.173913 0.347826 0.115942 5.454546 10.90909 3.636364 

(3,6) 0.115942 0.347826 0.069565 3.636364 10.90909 2.181818 

(4,6) 0.086957 0.347826 0.049689 2.727273 10.90909 1.558442 

(5,6) 0.069565 0.347826 0.038647 2.181818 10.90909 1.212121 

(6,6) 0.057971 0.347826 0.031621 1.818182 10.90909 0.991736 

(2,7) 0.202899 0.405797 0.135266 6.363637 12.72727 4.242424 

(3,7) 0.135266 0.405797 0.081159 4.242425 12.72727 2.545455 

(4,7) 0.101449 0.405797 0.057971 3.181819 12.72727 1.818182 

(5,7) 0.081159 0.405797 0.045089 2.545455 12.72727 1.414142 

(6,7) 0.067633 0.405797 0.036891 2.121212 12.72727 1.157025 

(7,7) 0.057971 0.405797 0.031215 1.818182 12.72727 0.979021 

(2,8) 0.231884 0.463768 0.154589 7.272728 14.54545 4.848485 

(3,8) 0.154589 0.463768 0.092754 4.848485 14.54545 2.909091 

(4,8) 0.115942 0.463768 0.066253 3.636364 14.54545 2.077922 

(5,8) 0.092754 0.463768 0.05153 2.909091 14.54545 1.616162 

(6,8) 0.077295 0.463768 0.042161 2.424243 14.54545 1.322314 

(7,8) 0.066253 0.463768 0.035674 2.077922 14.54545 1.118881 

(8,8) 0.057971 0.463768 0.030918 1.818182 14.54545 0.969697 

 

From Figure 32, we can observe that MRC16-RRNS has a gap of almost 12 MB/s for access structures 

where 𝑘 = 𝑛 − 2, 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  
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Table 10. Best and worst uploading times for Mignotte, Asmuth-Bloom and MRC16-RRNS 

Access 

structure 

Best downloading time (sec)  Worst downloading time (sec) 

Mignotte Asmuth-Bloom MRC16 Mignotte Asmuth-Bloom MRC16 

(2,4) 0.060241 0.120482 0.040161 0.294118 0.588235 0.196078 

(3,4) 0.060241 0.180723 0.036145 0.294118 0.882353 0.176471 

(4,4) 0.060241 0.240964 0.034423 0.294118 1.176471 0.168067 

(2,5) 0.060241 0.120482 0.040161 0.294118 0.588235 0.196078 

(3,5) 0.060241 0.180723 0.036145 0.294118 0.882353 0.176471 

(4,5) 0.060241 0.240964 0.034423 0.294118 1.176471 0.168067 

(5,5) 0.060241 0.301205 0.033467 0.294118 1.470588 0.163399 

(2,6) 0.060241 0.120482 0.040161 0.294118 0.588235 0.196078 

(3,6) 0.060241 0.180723 0.036145 0.294118 0.882353 0.176471 

(4,6) 0.060241 0.240964 0.034423 0.294118 1.176471 0.168067 

(5,6) 0.060241 0.301205 0.033467 0.294118 1.470588 0.163399 

(6,6) 0.060241 0.361446 0.032859 0.294118 1.764706 0.160428 

(2,7) 0.060241 0.120482 0.040161 0.294118 0.588235 0.196078 

(3,7) 0.060241 0.180723 0.036145 0.294118 0.882353 0.176471 

(4,7) 0.060241 0.240964 0.034423 0.294118 1.176471 0.168067 

(5,7) 0.060241 0.301205 0.033467 0.294118 1.470588 0.163399 

(6,7) 0.060241 0.361446 0.032859 0.294118 1.764706 0.160428 

(7,7) 0.060241 0.421687 0.032437 0.294118 2.058824 0.158371 

(2,8) 0.060241 0.120482 0.040161 0.294118 0.588235 0.196078 

(3,8) 0.060241 0.180723 0.036145 0.294118 0.882353 0.176471 

(4,8) 0.060241 0.240964 0.034423 0.294118 1.176471 0.168067 

(5,8) 0.060241 0.301205 0.033467 0.294118 1.470588 0.163399 

(6,8) 0.060241 0.361446 0.032859 0.294118 1.764706 0.160428 

(7,8) 0.060241 0.421687 0.032437 0.294118 2.058824 0.158371 

(8,8) 0.060241 0.481928 0.032129 0.294118 2.352941 0.156863 

 

Figure 32. Best and Worst storing and extraction speeds for MRC16-RRNS 
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Figure 33. Best and Worst storing and extraction speeds for Asmuth-Bloom 

 

4.2.2.3 Comparison with Reed-Solomon and AES encryption system 

For comparison proposes, we implement a system named RS+AES consisting of a Reed-Solomon error-

correction code (RS) and a phase of encryption using the AES algorithm to ensure the data's security (see 

Section 2.4.5). In this implementation, we used the public library Jerasure (Plank et al., 2007). Jerasure is 

a C library released in 2007 that supports the classic Reed-Solomon, but also Cauchy-RS, and Minimal 

Density RAID-6 coding. We took the C version and implemented a JAVA language version. For the 

implementation of the AES algorithm, we use the embedded Java Library on the JDK 12.0.1.  

We take the input data 𝐷; we encrypt it using the AES algorithm to provide the confidentiality capability 

to the system since RS leaves the original data intact. Next, we use (𝑛,𝑚)-Reed-Solomon algorithm, where 

𝑛 is the number of total segments (shares in our case), 𝑚 is the number of parity segments. Then, RS 

divides 𝐷 into 𝑛 −𝑚 parts. 
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Figure 34. Encoding speeds of RS+AES vs. MRC16-RRNS, MRC8-RRNS, Mignotte and Asmuth-Bloom 

 

 We need to emphasize that RS does not have all the characteristics of a secret sharing scheme. It does 

not encode the input data, and it does not have the capability of performed calculations on the encrypted 

data as SSS CRT-based schemes do.  

RS has the constraint that the minimum number of parity shares is two, 𝑚 ≥ 2. Therefore, in the 

experiments, we omit comparisons with access structures that violated this restriction. For example, when 

we are evaluating four Clouds storages, e.g. (2,4), (3,4), and (4,4), we create four shares in total. For RS's 

case, we need to calculate how many symbols (shares) will be data and parity.  

In the case of (3,4), we create four shares, three of them are needed to restore the data, and one is a 

redundant share. For RS, we need to divide the data into three shares and create one parity share to 

maintain a total of four shares. However, for implementation purposes, we need a minimum of two parity 

shares for RS to works. The case of (4,4) is trivial since we do not have any parity symbol to recover the 

data in case of erasure or errors. 
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Figure 35. Decoding speeds of RS+AES vs. MRC16-RRNS, MRC8-RRNS, Mignotte and Asmuth-Bloom 

 

In Figure 34 and Figure 35, we observe that RS+AES outperforms all the schemes. RS+AES reaches an 

encoding speed of 65.96 MB/s in the setting (5,7), while MRC16-RRNS is the closes scheme with a speed 

of 34.59 MB/s for the same configuration. For decoding, we consider that no error occurs, so RS does not 

have to try to recover the data; it just merely retrieve the data symbols (shares) and reconstruct the 

original file. This is why the decoding speed of RS+AES can reach a value of 72.41 MB/s.  

In Table 11, we show the average performance degradation for all the algorithms. We observed that 

RS+AES is the best algorithm for encoding and decoding speeds, while Asmuth-Bloom is the worst.  Even 

though there are access structures that are not suitable for a multi-cloud, for example, those where the 

number of data symbols less than 2. 

Table 11. Average performance degradation (%) in terms of encoding/decoding speeds 

 RS+AES MRC16-RRNS MRC8-RRNS Mignotte Asmuth-Bloom 

Encoding 0 51.8 56.79 91.768 97.505 

Decoding 0 38.147 59.627 90.733 96.468 

 

The redundancy is related to the total encoded output file length and the original input length (in 

bytes). We refer to the total length of the encoded output file as the sum of all shares sizes for each access 

structure; see Figure 36. The comparison of all the schemes' redundancy shows that RS+AES has a higher 
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redundancy for access structures with more parity symbols since the symbols are bigger. Again, we see 

that Asmuth-Bloom is unpractical if used with files on the MB order, see Figure 37. 

 

Figure 36. The length of the original file and the file encoded by Mignotte, Asmuth-Bloom, RS+AES, and MRC16-RRNS 

 

 

Figure 37. Redundancy of Mignotte, Asmuth-Bloom, MRC-RRNS, and RS+AES 

4.2.3 Error detection-correction capability 

We present the analysis of three state-of-the-art error correction codes: Modular Projection, 

Syndrome, and AR-ECC method based on RRNS. All of the three RRNS-based codes are explained in Section 

2.4. 
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If we add error detection and correction code in the decoding phase, it will increase the performance 

of the system in terms of decoding speed, and therefore, the extraction speed. The number of 

combinations needed to detect which residue is erroneous and recover the original value can be 

significant. The error correction method could try all possible combinations.  Since we can only detect a 

number of errors equal to the redundant moduli 𝑟, we do not consider access structures that violate this 

constraint.   

To analyze the worst-case scenario, we assume without loss of generality that faulty share corresponds 

to the first modulus and that all remaining shares are correct. As mentioned before, in this work, we 

consider an error caused by faulty hardware, faulty software, technical malfunctions, DDoS attacks, 

human-made errors, providers’ bankruptcy. 

Table 12. Number of combinations in the worst-case scenario 

Access structure 
Number of combinations 

Projection Syndrome AR-ECC 

(2,4) 4 4 4 

(2,5) 7 5 7 

(2,6) 11 6 11 

(2,7) 16 7 16 

(2,8) 22 8 22 

(3,5) 5 7 5 

(3,6) 11 11 11 

(3,7) 21 16 21 

(3,8) 36 22 36 

(4,6) 6 11 6 

(4,7) 16 21 16 

(4,8) 36 36 36 

(5,7) 7 16 7 

(5,8) 22 36 22 

(6,8) 8 22 8 

 

Table 12 shows the number of combinations performed by each CRT-based method to detect and 

recover the actual value. As we can see, the number of combinations grows while 𝑛 increases affecting 

the computational overhead of the system. 
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Figure 38. Decoding speeds of Mignotte with error correction in the worst-case scenario 

 

Figure 38 and Figure 39 show the decoding speeds of Asmuth-Bloom and Mignotte in the worst case. 

In Figure 38, we see that for access structures (3,5), (4,6), (5,7), and (6,8), AR-ECC calculates fewer decoding 

combinations than Syndrome and obtains maximum values. For (6,8), Syndrome calculates more 

combinations than AR-ECC and Projection, resulting in a low decoding speed with a value of 0.0894MB/s. 

Figure 39 shows the decoding speeds of Asmuth-Bloom. The minimum number of combinations 

performed by Syndrome is on settings (2,4), (2,5), (2,6), (2,7), and (2,8). Therefore, it obtains maximum 

values in a range from 2.92MB/s for (2,4) to 0.196MB/s for (2,8). On the other hand, AR-ECC has an average 

speed of 1.46MB/s for all settings. 

 

Figure 39. Decoding speeds of Asmuth-Bloom with error correction for the worst-case scenario 
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Overall, AR-ECC outperforms 2.33 times to Syndrome and three times to Projection when Mignotte is 

used. For Asmuth-Bloom, AR-ECC is 1.89 times faster than Syndrome and 2.84 times faster than Projection. 

To better evaluate the performance between strategies, we calculate the performance degradation 

between the three error codes. Table 13 shows the performance degradation for each error correction 

method. 

The best approach with the lowest average performance degradation has rank one. The results show 

that AR-ECC has the lowest degradation in all access structure settings. As established before, AR-ECC 

outperforms the Projection method by 68% and Syndrome by 52%, on average. 

 

4.2.4 Performance of WA-RRNS 

In this section, we evaluate the SS-WA-RRNS model (Section 3.6.2) regarding encoding/decoding 

speeds. First, we apply WA-RRNS into two secret sharing schemes: Mignotte and Asmuth-Bloom. Next, we 

apply WA-RRNS using the MRC-RRNS algorithms. Finally, we compare their behavior of all the algorithms 

with the results of the traditional model ES-RRNS. For the rest of the section, we will be calling the 

traditional model as (𝑘, 𝑛)-System.  

Table 13. Performance degradation of Mignotte and Asmuth-Bloom 

Access structure 
Mignotte Asmuth-Bloom 

Projection Syndrome AR-ECC Projection Syndrome AR-ECC 

(2,4) 44.16508 8.109143 0 44.15230 8.381715 0 

(2,5) 56.99461 8.668675 0 54.97917 10.746390 0 

(3,5) 53.12364 53.099270 0 52.52202 54.821010 0 

(2,6) 61.45456 8.497880 0 61.64284 12.926620 0 

(3,6) 67.60974 60.409690 0 67.71830 60.625530 0 

(4,6) 58.99375 70.529140 0 58.93272 71.285490 0 

(2,7) 67.57795 16.020970 0 66.23730 12.964840 0 

(3,7) 76.33753 63.318500 0 76.91897 63.130000 0 

(4,7) 78.02230 77.571460 0 77.98095 78.640890 0 

(5,7) 64.76221 79.293850 0 67.84001 81.111540 0 

(2,8) 70.63810 11.845980 0 73.65310 13.856010 0 

(3,8) 82.53511 67.070930 0 82.70025 66.062311 0 

(4,8) 86.10788 83.270700 0 86.16210 83.313020 0 

(5,8) 84.01901 88.147230 0 83.99376 88.367320 0 

(6,8) 71.37274 86.487450 0 70.11148 86.713600 0 
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Table 14 presents all the parameters for the access structures of each model. The number of Cloud 

storage available, the number of shares needed to recover the data, and the total number of shares 

encoded for the traditional (𝑘, 𝑛)-System. It also shows the number of short shares sends to each Cloud 

for (𝑛𝑣 , 𝑘, 𝑁) WA-RRNS. This table applies to both versions of WA-RRNS.   

In (𝑛𝑣 , 𝑘, 𝑁) -WA-RRNS, more than one short-share, is sent to each Cloud. Hence, the number of shares 

obtained after the encoding phase is more than in the (𝑘, 𝑛) System with a total of 56 short-shares for an 

access structure of (8,8), while (𝑘, 𝑛)-System creates only eight shares for the same equivalent access 

structure.  

 

4.2.4.1 Speed evaluation of WA-RRNS with Mignotte and Asmuth-Bloom 

In an access structure (8,8), (𝑘, 𝑛)-System only encodes eight shares with an encoding speed of 

4.27MB/s for Mignotte and 0.6MB/s for Asmuth-Bloom. In contrast, (𝑛𝑣, 𝑘, 𝑁)-WA-RRNS encodes 56 

short-shares resulting in encoding speeds of 1.008MB/s for WA-Mignotte. Due to the intrinsic complexity 

of Asmuth-Bloom, the system crashed for access schemes when we need to create a large number of 

shares.  As can be expected, the redundancy of (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS, especially of Asmuth-Bloom, is much 

higher than of the (𝑘, 𝑛)-System, see Figure 41. When 𝑁 = 8, the redundancy of Asmuth-Bloom goes from 

8 to 64, which for (6,8) is an increment of 8x. Besides, the share’s sizes do not change, resulting in a very 

high memory cost, i.e., access structures (7,8) and (8,8).  

 

Figure 40. Encoding speeds of (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS and (𝑘, 𝑛)-System 
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Table 14. Number of shares in traditional (𝑘, 𝑛) system and (𝑛𝑣 , 𝑘, 𝑁) WA-RRNS 

 (𝒌, 𝒏) System (𝒏𝒗, 𝒌, 𝑵) WA-RRNS 

Number of 

Cloud storages 

Number of 

shares for 

recovering 

Total 

number of 

shares 

Number of 

shares in 

each CSP 

Number of 

shares for 

recovering 

Total 

number of 

shares 

4 

2 4 1 2 4 

3 4 2 4 8 

4 4 3 6 12 

5 

2 5 1 2 5 

3 5 2 4 10 

4 5 3 6 15 

5 5 4 8 20 

6 

2 6 1 2 6 

3 6 2 4 12 

4 6 3 6 18 

5 6 4 8 24 

6 6 5 10 30 

7 

2 7 1 2 7 

3 7 2 4 14 

4 7 3 6 21 

5 7 4 8 28 

6 7 5 10 35 

7 7 6 12 42 

8 

2 8 1 2 8 

3 8 2 4 16 

4 8 3 6 24 

5 8 4 8 32 

6 8 5 10 40 

7 8 6 12 48 

8 8 7 14 56 

 

 

On the other hand, the sizes of the short-shares in (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS decrease while 𝑘 is increased, 

see Table 15. We can observe that while the number of clouds increases, the encoding speeds of (𝑛𝑣 , 𝑘, 𝑁)-

WA-RRNS decrease, reaching its lowest value when N =  8, see Figure 40. For the overall behavior, WA-

Mignotte encoding speed is, on average, almost 2x less than Mignotte, while for Asmuth-Bloom is nearly 

3x slower.  
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Table 15. Sizes of shares of traditional system and WA-RRNS (Bytes) 

Access 

structure 

(𝒌, 𝒏) 

system 

Sizes of shares 
Access 

structure 

WA-RRNS 

Sizes of shares 

Mignotte Asmuth-Bloom Mignotte Asmuth-Bloom 

(2,8) 104857606 209715206 (1,2,8) 104857606 209715206 

(3,8) 69905072 209715206 (2,4,16) 52428806 209715206 

(4,8) 52428806 209715206 (3,6,24) 34952538 209715206 

(5,8) 41943046 209715206 (4,8,32) 26214406 209715206 

(6,8) 34952538 209715206 (5,10,40) 20971526 209715206 

(7,8) 29959320 209715206 (6,12,48) 17476272  

(8,8) 26214406 209715206 (7,14,56) 14979662  

 

Thus, using an SS-WA-RRNS model for schemes like Asmuth-Bloom results impractical because the 

amount of information that needs to be store will lead to higher costs and difficulties in uploading and 

downloading from the Clouds. In the case of Mignotte, the increment of the redundancy is only 6x regards 

(𝑘, 𝑛)-System. 

 

Figure 41. Redundancy of (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS and (𝑘, 𝑛)-System 

 

For the decoding phase, the (𝑘, 𝑛)-System outperforms (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS almost 2x, on average, see 

Figure 42. Even though the shares' size is smaller for some access structures in (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS, it 

needs more short-shares to recover the data causing lower decoding speeds. In access structures where 

𝑘 = 2, (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS uses the same number of shares and the same size.  
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Nonetheless, as 𝑘 reaches 𝑛 the decoding speeds of (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS for Mignotte go from 

4.23MB/s to 2.65 MB/s, reducing the performance by a factor of 0.89 on average. 

 

Figure 42. Decoding speeds of (𝑛𝑣, 𝑘, 𝑁)-WA-RRNS and (𝑘, 𝑛)-System 

 

4.2.4.2 Uploading and downloading performance of WA-RRNS with Mignotte and Asmuth-Bloom 

In this section, we calculate the storing and extraction speeds for WA-RRNS. Using the Cloud 

characteristics of Table 4 of Section 3.2, we obtain the storing speed of (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS and (𝑘, 𝑛)-

Systems shown in Figure 43. Comparing the encoding and storing speeds, we see that the performance of 

Mignotte and Asmuth-Bloom degrades almost twice as depicted in Figure 43. For (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS, the 

storing speed 𝑉𝑠 is decreased while 𝑘 and 𝑛 reaches eight clouds. This is expected, since (𝑛𝑣 , 𝑘, 𝑁)-WA-

RRNS has to send more shares. We can see that the Clouds' access speeds have a significant impact on the 

system's overall performance. In these experiments, we assume that under the conditions of limited 

Internet bandwidth, the shares are uploaded/downloaded from the clouds sequentially. On average, the 

decoding speeds are 2x faster than the storing speeds of both schemes. 
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Figure 43. Storing speed of (𝑛𝑣, 𝑘, 𝑁)-WA-RRNS and (𝑘, 𝑛)-Systems 

 

In Figure 44, we show the Extraction speeds (𝑉𝑒𝑥). Once again there is a decrement on the speeds, when 

we retrieve the shares from the clouds. We can see that for access structures, where 𝑘 = 2, the shares 

have the same sizes in (𝑛𝑣, 𝑘, 𝑁)-WA-RRNS and (𝑘, 𝑛)-System, obtaining almost the same speeds. 

 

Figure 44. Extraction speed of WA-RRNS and (𝑘, 𝑛) systems 

 

When 𝑘 increases (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS needs more shares to recover the data. Hence, when we 

compare decoding speeds and extraction speeds, we can see that on average, decoding speeds are 4x 
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faster than the extraction speeds. When we consider communication to the clouds, the performance 

degradation, especially for (𝑛𝑣 , 𝑘, 𝑁)-WA-RRNS cannot be negligible. 

 

4.2.4.3 Encoding and decoding performance of WA-RRNS with algorithm MRC-RRNS 

In this section, we evaluate WA-RRNS applying the MRC-RRNS algorithm, named WA-MRC-RRNS. Figure 

45 and Figure 46 depict the encoding and decoding speeds, respectively. We observe that MRC-RRNS 

outperforms WA-MRC-RRNS on both rates.  

As expected, the encoding speed shows the same behavior as in the previous section.  WA-MRC-RRNS 

system's encoding speed decreases while 𝑁 increases. For example, Figure 45 shows that in setting (4,6), 

WA-MRC-RRNS is 9x faster than WA-Mignotte, almost 4x faster than Mignotte, and 0.472x slower than 

MRC-RRNS. WA-MRC-RRNS reaches a speed of 13.70 MB/s, MRC-RRNS has a rate of 29.03 MB/s, the speed 

of WA-Mignotte is nearly 1.52 MB/s while Mignotte is 3.523 MB/s; see Table 16. 

 

Figure 45. Encoding speeds of WA-MRC-RRNS and MRC-RRNS vs WA-Mignotte and Mignotte 

 

Figure 46 shows the results of the decoding phase. On average, we can see that WA-MRC-RRNS is 

almost 10x faster than WA-Mignotte, and 0.879 slower than MRC-RRNS. For access structure (4,6), WA-

MRC-RRNS reaches a speed of 29.54 MB/s, MRC-RRNS has a rate of 34.13 MB/s, the speed of WA-Mignotte 

is nearly 2.74 MB/s while Mignotte is 3.020 MB/s, see Table 17. 
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Figure 46. Decoding speeds of WA-MRC-RRNS and MRC-RRNS vs WA-Mignotte and Mignotte 

 
Table 16. Encoding speed of Mignotte, MRC-RRNS, WA-Mignotte, and WA-MRC-RRNS 

(𝑲,𝑵) 
Encoding speed (MB/s) 

(𝒏𝒗, 𝑲, 𝑵) 𝒏 
Encoding speed (MB/s) 

Mignotte MRC-RRNS WA-Mignotte WA-MRC-RRNS 

(2,4) 2.745970289 21.6309 (1,2,4) 4 2.583311806 21.3903 

(3,4) 3.886664853 32.8947 (2,4,4) 8 2.881595251 21.7865 

(4,4) 5.193995741 41.7014 (3,6,4) 12 2.250680831 21.3265 

(2,5) 2.33018758 18.1653 (1,2,5) 5 2.268293789 17.8858 

(3,5) 3.424422985 33.1235 (2,4,5) 10 2.359659265 17.7336 

(4,5) 4.35502134 36.5898 (3,6,5) 15 1.876348626 16.7954 

(5,5) 4.396763982 47.8011 (4,8,5) 20 1.890609343 15.5836 

(2,6) 1.903637852 14.1123 (1,2,6) 6 1.876031817 13.8638 

(3,6) 2.773002052 23.5849 (2,4,6) 12 1.893043067 14.3472 

(4,6) 3.523484021 29.0360 (3,6,6) 18 1.522070015 13.7099 

(5,6) 3.877922984 35.2485 (4,8,6) 24 1.534683855 12.6214 

(6,6) 4.350852767 40.4040 (5,10,6) 30 1.393767074 12.2384 

(2,7) 1.696583082 15.0127 (1,2,7) 7 1.686596617 14.7929 

(3,7) 2.48188226 20.9161 (2,4,7) 14 1.688048616 12.7860 

(4,7) 3.238866397 26.0960 (3,6,7) 21 1.359748718 12.0091 

(5,7) 3.365870077 34.5901 (4,8,7) 28 1.323889588 10.4975 

(6,7) 3.741254817 37.5798 (5,10,7) 35 1.240294694 10.5630 

(7,7) 4.181126395 43.0848 (6,12,7) 42 1.194129659 10.4482 

(2,8) 1.430144588 10.5152 (1,2,8) 8 1.411113933 10.4231 

(3,8) 2.152667155 17.7022 (2,4,8) 16 1.432336427 11.1296 

(4,8) 2.884670859 22.8623 (3,6,8) 24 1.145908534 10.3659 

(5,8) 3.004175804 28.9435 (4,8,8) 32 1.160523628 9.4126 

(6,8) 3.358183894 32.5203 (5,10,8) 40 1.058413861 9.0358 

(7,8) 3.824238021 37.2995 (6,12,8) 48 1.076229323 8.6772 

(8,8) 4.273504274 42.1230 (7,14,8) 56 1.008125491 7.7724 
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4.3 Performance analysis of a two level model (2L-RRNS and 2Lbp-RRNS) 

In all previous sections, we analyzed the performance of the algorithms in a 1L-RRNS architecture. In 

this section, we will analyze their behavior on a two-level model (2L-RRNS and 2Lbp-RRNS). We do not 

evaluate the ability to detect and correct errors since there is no exact knowledge of the environment's 

variations to have a real representation of it and the performance of the schemes and models. As far as 

we know, this is the first work to evaluate the behavior of schemes based on RRNS in a two-level model in 

an experimental way. More so, in a dynamic environment like the Cloud. We evaluate the 2Lbp-RRNS 

performance in terms of encoding/decoding speeds using three algorithms: Mignotte, MRC8-RRNS, and 

MRC16-RRNS.  We do not use a model with special moduli set for the experiments. 

Therefore, let us recall that on a 2L-RRNS model, on the first level, we have 𝑛1 moduli 𝑝1,1, 𝑝1,2, … , 𝑝1,𝑛1 

which are used to calculate shares 𝑆1, 𝑆2, … , 𝑆𝑛1. On the second level, each 𝑆𝑖 is transformed into the set 

of residuals 𝑆𝑖,𝑗 = |𝑆𝑖|𝑝2,𝑖,𝑗 by its own moduli set 𝑝2,𝑖,1, 𝑝2,𝑖,2, … , 𝑝2,𝑖,𝑛2,𝑖, see Section 3.7.3 for more details. 

 

4.3.1 Speed analysis of 2Lbp-RRNS  

In the experiments, we studied the performance of a serial and parallel execution of 2L-RRNS. To draw 

all aspects of the proposed system, we run all settings (𝑘1, 𝑛1) of Level 1 and all settings (𝑘2,𝑖, 𝑛2,𝑖) of Level 

2, where 1 ≤ 𝑖 ≤ 𝑛1. For a better understanding, we will exemplify the results based only on the access 

structure (3,4) of Level 1.  

Figure 47 and Figure 48 show examples of the encoding/decoding speeds, respectively, for up to eight 

clouds. On the first level, the access structure is limited to (𝑘1, 𝑛1)= (3,4). On the second level, we consider 

27 variants of (𝑘2,𝑖, 𝑛2,𝑖) from 𝑛2,𝑖 = 3 to 𝑛2,𝑖 = 8.  

Due to the share size is decreasing while 𝑘2 is increasing, the highest encoding speeds are obtained 

when 𝑘2  =  𝑛2. On the other hand, the lowest decoding speeds are obtained for 𝑘2  =  𝑛2 because it is 

necessary to decode all 𝑛2 shares to recover the original data. 
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Table 17. Decoding speed of Mignotte, MRC-RRNS, WA-Mignotte, and WA-MRC-RRNS 

(𝑲,𝑵) 
Decoding speed (MB/s) 

(𝒏𝒗, 𝑲, 𝑵) 𝒏 
Decoding speed(MB/s) 

Mignotte MRC-RRNS WA-Mignotte WA-MRC-RRNS 

(2,4) 4.534530449 32.42543637 (1,2,4) 4 4.389622931 33.00331544 

(3,4) 4.596433168 33.88683354 (2,4,4) 8 2.747630169 32.99242685 

(4,4) 2.95945546 33.78379925 (3,6,4) 12 2.848921683 28.6861864 

(2,5) 4.736867036 33.70409362 (1,2,5) 5 4.691972036 33.8983206 

(3,5) 4.933399112 34.10642762 (2,4,5) 10 3.067390571 35.01402163 

(4,5) 3.132145206 34.1413608 (3,6,5) 15 2.892179547 30.58105375 

(5,5) 2.993295019 34.28181206 (4,8,5) 20 2.363730913 26.50412027 

(2,6) 4.456923831 33.84096304 (1,2,6) 6 4.30292599 33.55706234 

(3,6) 4.728355951 30.89281612 (2,4,6) 12 2.854125639 30.87374059 

(4,6) 3.020782987 34.12970846 (3,6,6) 18 2.744990393 29.54211101 

(5,6) 2.964544053 31.64558411 (4,8,6) 24 2.539424566 26.03489867 

(6,6) 2.925345191 30.65605327 (5,10,6) 30 2.752243078 23.92345593 

(2,7) 4.664831833 36.12718417 (1,2,7) 7 4.605323754 35.89377092 

(3,7) 5.10960094 35.21128372 (2,4,7) 14 3.049431281 34.54233015 

(4,7) 3.135779241 35.16176012 (3,6,7) 21 2.910276185 30.55302346 

(5,7) 2.984985523 33.85241902 (4,8,7) 28 2.826535515 26.91791273 

(6,7) 3.031589159 31.22074486 (5,10,7) 35 2.834306445 23.2991719 

(7,7) 3.058852319 29.47245676 (6,12,7) 42 2.678021478 20.99958962 

(2,8) 4.469273743 36.10109956 (1,2,8) 8 4.233521019 34.11806407 

(3,8) 4.792026069 33.48963355 (2,4,8) 16 2.758164166 34.9162171 

(4,8) 3.056047919 34.50657204 (3,6,8) 24 2.772002772 31.22074486 

(5,8) 3.080524921 32.8947519 (4,8,8) 32 2.565615619 27.27026064 

(6,8) 3.056234719 31.51592996 (5,10,8) 40 2.819442878 23.41373116 

(7,8) 3.045437934 29.39448729 (6,12,8) 48 2.582978174 21.04821001 

(8,8) 2.904443799 26.92516041 (7,14,8) 56 2.653434871 19.02950443 

 

We observe that Mignotte is the slowest of the considered algorithms, with speeds no higher than 1.23 

MB/s for encoding and 1.3 MB/s for decoding. MRC8-RRNS has a maximum decoding speed of 10.02 MB/s 

in (2.5) of Level 2 and an encoding speed of 3 MB/s for settings where 𝑘2  =  𝑛2 of Level 2. 
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Figure 47. Encoding speeds for setting (3,4) on Level 1 

 

We can see that MRC16-RRNS outperforms the two algorithms in all the experiments. For example, 

MRC16-RRNS achieves a maximum encoding speed of 6.68 MB/s for a setting (3,4) in Level 1 and (6,6) in 

Level 2. Finally, MRC16-RRNS is 2.53 times faster than MRC8-RRNS and 4.83 times faster than Mignotte 

for the encoding phase. In the decoding phase, MRC16-RRNS is 1.78 times faster than MRC8-RRNS and 

11.43 times faster than Mignotte. 

 

Figure 48. Decoding speeds for setting (3,4) on Level 1 
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Figure 49 and Figure 50 show boxplots for encoding/decoding speed, respectively. For each setting of 

Level 1, from 𝑛1 = 3 to 𝑛1 = 8, we execute all combinations of Level 2 settings. For statistical analysis, we 

run the experiments 30 times.  

 

Figure 49. Boxplot encoding speeds for all combinations of settings 

From the boxplot shown in Figure 49, we can draw the following conclusions about the encoding rate. 

MRC8-RRNS algorithm has outliers that show that there is a large gap between the minimum and 

maximum speeds. Most of the values are in the vicinity of the low-speed highlands.  

 

Figure 50. Boxplot decoding speeds for all combinations of settings 

 

MRC16-RRNS algorithm is more balanced, and it is faster than MRC8-RRNS and Mignotte reaching a 

maximum speed higher than 30 MB/s for parallel execution. On the other hand, the decoding speed of 

MRC16-RRNS is higher than MRC8-RRNS and Mignotte (Figure 50). MRC16-RRNS and MRC8-RRNS have no 
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outliers. Therefore, we can conclude that there are no speeds that stand out from the general sample. 

Mignotte has outliers, i.e., values that exceed the total sample's possible values, given that they are more 

than the median.  

Overall, MRC16-RRNS shows the best performance for all combinations of settings of the 2L-RRNS. 

 

4.3.1.1 Uploading and downloading performance for 2Lbp-RRNS 

We want to know the behavior of the systems in a multi-cloud environment with a dynamic nature 

where parameters change over time and are difficult to predict and anticipate in advance. These types of 

non-stationarity are one of the main issues in the design of efficient algorithms capable of mitigating their 

consequences. So, we also realize a study of how a two level model will be affected by communications 

with the Cloud storage.  

 

(a) 



105 

 

(b) 

 

(c) 

Figure 51. Storing speed for Level 1 setting (3,4). (a) MRC16-RRNS, (b) MRC8-RRNS, (c) Mignotte 

 

To determine the proposed scheme's practical applicability and study its properties, we consider the 

best and worst scenarios. In the best one, we select clouds with the best access speeds for data storage. 

In the worst one, we select the slowest clouds. Once again, for a better understanding, we will exemplify 

the results based only on the access structure (3,4) of Level 1 and (5,5) for Level 2 and the access speeds 

of  Section 3.2. 

Figure 51 shows the similar behavior of the three algorithms: (a) MRC16-RRNS, (b) MRC8-RRNS, (c) 

Mignotte. MRC16-RRNS has the storing speed 𝑉𝑢=0.837 MB/s, in the best case, and 𝑉𝑢 = 0.406 MB/s, in 

the worst-case. MRC8-RRNS has storing speed 𝑉𝑢=0.558 MB/s, in the best case, and 𝑉𝑢 = 0.280 MB/s, in 
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the worst case. In the case of Mignotte, it has the storing speed 𝑉𝑢=0.257 MB/s, in the best case, and 𝑉𝑢 =

0.130MB/s, in the worst case. For the storing speed, an average best scenario is 1.8x faster than the worst 

one for the three algorithms. 

Figure 52 shows the extraction speeds of three algorithms: (a) MRC16-RRNS, (b) MRC8-RRNS, (c) 

Mignotte. It shows that MRC16-RRNS has the extraction speed 𝑉𝑑=1.093 MB/s, in the best case, and 𝑉𝑑 =

0.540MB/s, in the worst case. MRC8-RRNS's best extraction speed is 0.760 MB/s, and its worst speed is 

0.380 MB/s. Mignotte has 𝑉𝑑 = 0.292MB/s, in the best case and 𝑉𝑑 = 0.160MB/s, in the worst case. For 

the extraction speeds, an average best scenario is 3x faster than the worst one of the three algorithms. 

 

(a) 

 

(b) 
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(c) 

Figure 52. Extraction speeds for Level 1 setting (3,4). (a) MRC16-RRNS, (b) MRC8-RRNS, (c) Mignotte 
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Chapter 5. Conclusions and future work 

5.1 Conclusions 

 The thesis studies the Residue Number System by exploring its property to detect and correct 

errors.  

 The main contributions are the following: 

 We propose a two-level 2Lbp-RRNS scheme based on a Redundant Residue Number System 

with a backpropagation and Hamming distance mechanisms to increase reliability. 

 We prove the upper bounds of the traditional threshold 2L-RRNS and our solution to estimate 

the number of detectable and correctable errors.  

 We evaluate the performance of the secret sharing schemes based on 1L-RRNS, WA-RRNS, 2L-

RRNS, and 2Lbp-RRNS architectures in a multi-cloud environment varying data access 

structures on the first and second levels. 

 To validate the practical applicability of the proposed scheme and study its properties in the 

real environment, we design the experimental framework based on eleven Cloud storages: 

Google Drive, OneDrive, Dropbox, Box, Egnyte, ShareFile, SalesForce, Alibaba Cloud, Amazon 

Cloud Drive, Apple iCloud, and Azure Storage. 

 We evaluate properties of Mignotte, Asmuth-Bloom, AR-RRNS, Reed-Solomon, WA-RRNS, 

MRC8, and MRC16 based on the Mixed-Radix system, Finite Ring Neuronal Network, and signed 

binary window method, considering redundancy, storing/extraction speeds, coding/decoding 

speeds, for the best and worst scenarios.  

We proved that the 2Lbp-RRNS model increases the number detected and corrected of errors using 

fewer segments available than state-of-the-art approaches. The detection and correction capacity of 2Lbp-

RRNS comes with the cost of increasing complexity. It creates several possible solutions that Chinese 

Remainder Theorem cannot verify, encodes them, and evaluate Hamming distance of new encoded data 
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with erroneous one. Knowing the Hamming distance, we can detect a sufficient number of correct 

segments allowing recovery of the original information. 

To validate 2Lbp-RRNS, we carried out a theoretical analysis of the upper bounds of the number of 

detectable and correctable errors of 2L-RRNS and 2Lbp-RRNS models. We show that 2Lbp-RRNS could 

detect up to 1.58x more errors and correct up to 3.37x than a traditional 2L-RRNS model. 

As a case study, we considered a data storage system in a cloud environment. We focused on the 

evaluation of (k, n) RRNS schemes with different parameters. For the experiments, we implemented two 

classical schemes based on the Chinese Remainder Theorem: Mignotte, Asmuth-Bloom, AR-RRNS 

approach based on the approximate range of RRNS, and MRC-RRNS based on the Mixed Base Conversion. 

We evaluated the scheme performance based on the encoding and decoding speeds, saving and extraction 

speeds, and redundancy. 

We compared our solution with the Reed-Solomon error correction code with an AES encryption layer. 

Based on the average performance degradation results, RS + AES is 51.8% faster than the MRC-RRNS 

implementation for encoding and 38.14% faster for decoding.  

When we evaluated the WA-RRNS scheme, we observed that its speeds were very low compared to 

traditional RRNS models, such as Mignotte. From the redundancy point of view, Asmuth-Bloom presented 

the worst results, being impractical. However, WA-RRNS can be a good option in scenarios where the 

handled information is not large.  

 

5.2 Future work 

In this section, we present the future considerations to continue improving our solution. 

 Evaluate the 2Lbp-RRNs model with dynamic variations of the Cloud’s characteristics, system 

failures, and possible attacks to study how a configurable approach can mitigate the non-

stationary uncertainty and provide a good compromise over the criteria.  

 Provide a multi-objective comparison with state-of-the-art approaches based on erasure 

codes, regeneration codes for our 2Lbp-RRNS scheme. 
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 Evaluate the system when the number of shares and their distribution on the second level can 

be dynamically adjusted to cope with the situation in each storage and different user 

requirements. 
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Appendix 
We describe the algorithms used for the analysis of a 2L-RRNS model of Section 3.7.3. For simplicity, in 

the algorithms, the variable �̃� represents an array with all the shares of level 2. 

2L-RRNS Encoding 

Input: settings = (𝑘1, 𝑛1), (𝑘2,1, 𝑛2,1),⋯ , (𝑘2,𝑛1 , 𝑛2,𝑛1) 

 S –Input data;  

�̂� = (𝑝1,1, … , 𝑝1,𝑛1), (𝑝2,1,1, … , 𝑝2,1,𝑛2,1),⋯, 

(𝑝2,𝑛1,1, … , 𝑝2,𝑛1,𝑛2,𝑛1). 𝑊1,𝑖 = (𝑤1,𝑖,0, … , 𝑤1,𝑖,𝑙) and 𝑊2,𝑖,𝑗 = (𝑤2,𝑖,𝑗,0, … , 𝑤2,𝑖,𝑗,𝑙) is synaptic weights FRNN, algo – Mignotte, 

MRC8, MRC16 

Output: �̃� 
1. Case algo == Mignotte:  

    1.1�̃� =  𝑀𝑖𝑔𝑛𝑜𝑡𝑡𝑒(settings, 𝑆, �̂�, encoding)  
2. Case algo == MRC8: 

    2.1�̃� = 𝑀𝑅𝐶8(settings, 𝑆, �̂�,𝑊1,𝑖 ,𝑊2,𝑖,𝑗 , encoding) 

3. Case algo == MRC16:  

    3.1�̃� = 𝑀𝑅𝐶16(settings, 𝑆, �̂�,𝑊1,𝑖 ,𝑊2,𝑖,𝑗 , encoding) 

4. return S̃ 

 

2L-RRNS decoding 

Input: settings = (𝑘1, 𝑛1), (𝑘2,1, 𝑛2,1),⋯ , (𝑘2,𝑛1 , 𝑛2,𝑛1) 

S̃–Representation of 𝑆 in 2L-RRNS; 

�̂� = (𝑝1,1, … , 𝑝1,𝑛1), (𝑝2,1,1, … , 𝑝2,1,𝑛2,1),…, 

(𝑝2,𝑛1,1, … , 𝑝2,𝑛1,𝑛2,𝑛1) 

; 𝐼𝐷; �̂�1 = (�̅̂�1,1, … , �̂�1,𝑛1) and �̂�2,𝑖 = (�̂�2,𝑖,1, … , �̂�2,𝑖,𝑛2,𝑖) is synaptic weights DNN; algo – Mignotte, MRC8, MRC16 

Output:  S  
1 Case algo == Mignotte: 

    1.1𝑆 = 𝑀𝑖𝑔𝑛𝑜𝑡𝑡𝑒(settings, 𝐼𝐷, �̃�, �̂�, decoding  ) 

2 Case algo == MRC8: 

    2.1 𝑆 = 𝑀𝑅𝐶8(settings, 𝐼𝐷, �̃�, �̂�, �̂�1, �̂�2,𝑖 , decoding  ) 

3 Case algo == MRC16: 

   3.1 𝑆 = 𝑀𝑅𝐶16(settings, 𝐼𝐷, �̃�, �̂�, �̂�1, �̂�2,𝑖 , decoding  ) 

4. return 𝑆 

 

Algorithms Mignotte Encoding, MRC Encoding, and the functions of algorithm 2L-RRNS encoding obtain 

the total shares �̃� from input data 𝑆. The three algorithms first convert 𝑆 into 𝑛1 shares, next take each 

share 𝑆𝑖  at a time and convert it into 𝑛2,𝑖 shares for each combination of settings of Level 2. 

Mignotte Encoding 

Input: settings = (𝑘1, 𝑛1), (𝑘2,1, 𝑛2,1),⋯ , (𝑘2,𝑛1 , 𝑛2,𝑛1) 

 S –Input data;  

�̂� = (𝑝1,1, … , 𝑝1,𝑛1), (𝑝2,1,1, … , 𝑝2,1,𝑛2,1),⋯, 

(𝑝2,𝑛1,1, … , 𝑝2,𝑛1,𝑛2,𝑛1). 

Output:  𝑆𝑖,𝑗 - RNS encoded shares 

1. For  i = 1 to 𝑛1 do: 
    1.1 𝑆𝑖 = |𝑆|𝑝1,𝑖  

2. For 𝑖 = 1 to n1 do: 
    2.1 For  j = 1 to 𝑛2,𝑖 do: 

          2.1.2 𝑆2 = |𝑆𝑖|𝑝2,𝑖,𝑗 

3. return �̃� 

 



122 

Mignotte Encoding uses mod operation 𝑆𝑖 = |𝑆|𝑝𝑖 to convert each input. MRC [8,16] Encoding represents 

the input into a residue representation, lines 1.1, and 2.1.2 using FRNN. To recover 𝑆, we use the 2L-RRNS 

Decoding algorithm and functions Mignotte Decoding that uses classic CRT, and MRC Decoding that uses 

classic MRC decoding conversion (Huang, 1983) and FRNN modification based on FRNN (Zhang et al., 

1990). The three functions use 𝑘2,𝑖 shares of Level 2 to retrieve the 𝑆𝑖 shares of Level 1 for each 

combination of settings of Level 2. Next, we take 𝑘1shares 𝑆𝑖and, finally, retrieve 𝑆. 

 

Mignotte Decoding 

Input: settings = (𝑘1, 𝑛1), (𝑘2,1, 𝑛2,1),⋯ , (𝑘2,𝑛1 , 𝑛2,𝑛1) 

S̃– Representation of S in 2L-RRNS;  

�̂� = (𝑝1,1, … , 𝑝1,𝑛1), (𝑝2,1,1, … , 𝑝2,1,𝑛2,1),⋯, 

(𝑝2,𝑛1,1, … , 𝑝2,𝑛1,𝑛2,𝑛1). 

Output: 𝑆  
1. 𝑆𝑙𝑖𝑠𝑡 = []; 𝑝𝑙𝑖𝑠𝑡 = []; // auxiliary lists 
2. For 𝑖 = 1 to k1 do: 
    2.1. 𝑗 = 𝐼𝐷[𝑖]; 
     2.2. 𝑆𝑗 = 𝐶𝑅𝑇𝑡𝑜𝐵𝑖𝑛((𝑆𝑗,1, … , 𝑆𝑗,𝑛2,𝑖), (𝑝2,𝑗,1, … , 𝑝2,𝑗,𝑛2,𝑖)); 

      2.3. 𝑆𝑙𝑖𝑠𝑡. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑆𝑗); 𝑝𝑙𝑖𝑠𝑡. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑝1,𝑗); 

3. 𝑆 = 𝐶𝑅𝑇𝑡𝑜𝐵𝑖𝑛(𝑆𝑙𝑖𝑠𝑡, 𝑝𝑙𝑖𝑠𝑡) 
4. return 𝑆 

 

MRC Encoding  

Input: settings = (𝑘1, 𝑛1), (𝑘2,1, 𝑛2,1),⋯ , (𝑘2,𝑛1 , 𝑛2,𝑛1) 

 S –Input data;  

�̂� = (𝑝1,1, … , 𝑝1,𝑛1), (𝑝2,1,1, … , 𝑝2,1,𝑛2,1),…, 

(𝑝2,𝑛1,1, … , 𝑝2,𝑛1,𝑛2,𝑛1) 

𝑊1,𝑖 = (𝑤1,𝑖,0, … ,𝑤1,𝑖,𝑙) and 𝑊2,𝑖,𝑗 = (𝑤2,𝑖,𝑗,0, … , 𝑤2,𝑖,𝑗,𝑙)is synaptic weights FRNN, 

Output:  𝑆𝑖,𝑗  

1. For 𝑖 = 1 to n1 do: 
    1.1 𝑆𝑖 = 𝐹𝑅𝑁𝑁(𝑆, 𝑝1,𝑖 ,𝑊1,𝑖)  

2. For  i = 1 to n1 do: 
    2.1 For  j = 1 to 𝑛2,𝑖 do: 

          2.1.2 𝑆𝑖,𝑗 = 𝐹𝑅𝑁𝑁(𝑆𝑖 , 𝑝2,𝑖,𝑗 ,𝑊2,𝑖,𝑗) 

3. return  𝑆𝑖,𝑗 

 

MRC Decoding  

Input: settings = (𝑘1, 𝑛1), (𝑘2,1, 𝑛2,1),⋯ , (𝑘2,𝑛1 , 𝑛2,𝑛1) 

�̃� - Representation of 𝑆 in 2L-RRNS;  

�̂� = (𝑝1,1, … , 𝑝1,𝑛1), (𝑝2,1,1, … , 𝑝2,1,𝑛2,1),…, 

(𝑝2,𝑛1,1, … , 𝑝2,𝑛1,𝑛2,𝑛1); 𝐼𝐷; �̂�1 = (�̅̂�1,1, … , �̂�1,𝑛1) and �̂�2,𝑖 = (�̂�2,𝑖,1, … , �̂�2,𝑖,𝑛2,𝑖) is synaptic weights DNN, 

Output: 𝑆  
1. 𝑆𝑙𝑖𝑠𝑡 = []; 𝑝𝑙𝑖𝑠𝑡 = []; / auxiliary lists 
2. For  i = 1 to 𝑘1 do: 

    2.1. 𝑐 = 𝐷𝑁𝑁(𝑆𝑖,𝑗 , 𝑝2,𝐼𝐷[𝑖],𝑗 , �̂�2,𝐼𝐷[𝑖]) 

    2.2. 𝑆𝑙𝑖𝑠𝑡. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑆𝑖); 𝑝𝑙𝑖𝑠𝑡. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑝1,𝐼𝐷) 

3. 𝑆 = 𝐷𝑁𝑁(𝑆𝑙𝑖𝑠𝑡, 𝑝𝑙𝑖𝑠𝑡, �̂�1) 
4. return 𝑆  

 

For MRC Decoding, we use a DNN. First, we calculate the coefficients (weights) of the neuronal 

architecture in lines from 2.1 to 3. Then, we perform the calculation of each part of the 𝑆𝑖 for an FRNN. 


