Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California

Maestría en Ciencias Ciencias de la Tierra con orientación en Geología

Determinación del estado de equilibrio químico fluido-roca del yacimiento geotérmico Cerro Prieto (CP-I), Baja California, a partir de la geotermometría de solutos

Tesis para cubrir parcialmente los requisitos necesarios para obtener el grado de Maestro en Ciencias

Presenta:

Annely Reyna Avilez

Ensenada, Baja California, México 2022 Tesis defendida por Annely Reyna Avilez

y aprobada por el siguiente Comité

Dr. Efraín Gómez Arias Director de tesis

Dr. Marco Antonio Pérez Flores

Dra. Anamaría Escofet Giansone[†]

Dr. Enrique Tello Hinojosa

Dr. Javier Alejandro González Ortega Coordinador del Posgrado en Ciencias de la Tierra

> **Dr. Pedro Negrete Regagnon** Director de Estudios de Posgrado

Annely Reyna Avilez © 2022 Queda prohibida la reproducción parcial o total de esta obra sin el permiso formal y explícito del autor y director de la tesis. Resumen de la tesis que presenta **Annely Reyna Avilez** como requisito parcial para la obtención del grado de Maestro en Ciencias en Ciencias de la Tierra con orientación en Geología

Determinación del estado de equilibrio fluido-roca del yacimiento geotérmico Cerro Prieto (CP-I), Baja California, a partir de la geotermometría de solutos

Resumen aprobado por:

Dr. Efraín Gómez Arias Director de tesis

El estado de equilibrio en un sistema geotérmico se puede determinar a partir de la interacción fluido-roca que se lleva a cabo en el yacimiento, donde la composición química de los fluidos (vapor y agua) dependerá del tiempo de interacción con la roca y de la temperatura, lo que resulta un cambio en la composición mineralógica de la roca (alteración mineral) del yacimiento. La temperatura del yacimiento se puede estimar a partir del uso de geotermómetros, los cuales son ecuaciones analíticas desarrolladas a partir de la composición química de fluidos y del estado de equilibrio químico que existe entre la interacción fluidoroca. Cuando hay variación en las condiciones de equilibrio la estimación de la temperatura con la geotermometría puede ser equivocada. En el presente trabajo, se realizó un análisis termodinámicoquímico del estado de equilibrio fluido-roca del campo geotérmico de Cerro Prieto (CP-I), a partir de información de la composición química de fluidos de pozos. Se desarrolló un programa (en lenguaje fortran) para el cálculo de las actividades iónicas y coeficientes de actividad para los principales constituyentes iónicos disueltos en las aguas geotérmicas (Na⁺, K⁺, Mg²⁺ y Ca²⁺) y a partir de diagramas de estabilidad mineral se observó que los fluidos geotérmicos del campo tienden al equilibrio entre los minerales microclina (feldespatos-K) y albita (plagioclasa-Na). El mineral que gobierna al Ca²⁺ en el fluido es la wairakita. Con esto se determinó que el CGCP-I se encuentra en cuasi-equilibrio en un estado metaestable a una temperatura de 280 °C. Se desarrollaron geotermómetros basados en actividades iónicas y relaciones de concentración para Na/K, cuyas estimaciones de temperatura presentan errores normalizados de ±10% con respecto a la temperatura del yacimiento, demostrando una reducción en la incertidumbre de las estimaciones en comparación con las ecuaciones clásicas. Este trabajo propone que con el desarrollo de geotermómetros basados en la composición química del campo geotérmico y las temperaturas de fondo de pozo (BHT) se tendría un mejor control y un monitoreo más eficaz en la estimación de las temperaturas del yacimiento y con ello complementar estudios para identificar nuevas áreas con potencial de producción en el campo geotérmico.

Palabras clave: Campo geotérmico, Cerro Prieto-I, equilibrio químico, interacción fluido-roca, geotermometría, temperatura.

Abstract of the thesis presented **by Annely Reyna Avilez** as a partial requirement to obtain the Master of Science degree in Earth sciences with orientation in Geology.

Determination of the fluid-rock chemical equilibrium state of the Cerro Prieto (CP-I), Baja California, geothermal reservoir from the geothermometry of solutes

Abstract approved by:

Dr. Efraín Gómez Arias Thesis Director

The state of equilibrium in a geothermal system can be determined from the fluid-rock interaction that takes place in the reservoir, where the chemical composition of the fluids (steam and water) will depend on the time of interaction with the rock and the temperature, resulting in a change in the mineralogical composition of the rock (mineral alteration) of the reservoir. Reservoir temperature can be estimated from the use of geothermometers, which are analytical equations developed from the chemical composition of fluids and the state of chemical equilibrium that exists between fluid-rock interaction. When there is variation in the equilibrium conditions, the temperature estimation with geothermometry can be wrong. In the present work, a thermodynamic-chemical analysis of the fluid-rock equilibrium state of the I-section of the Cerro Prieto geothermal field was carried out, based on information of the chemical composition of well fluids. A program (in fortran language) was developed to calculate the ionic activities and activity coefficients for the main ionic constituents dissolved in the geothermal waters (Na⁺, K⁺, Mg²⁺ and Ca²⁺) and from mineral stability diagrams it was observed that the geothermal fluids of the field tend to equilibrium between the minerals microcline (feldspars-K) and albite (plagioclase-Na). The Ca²⁺ governing mineral in the fluid is wairakite. With this, it was determined that CGCP-I is in quasi-equilibrium at a temperature of 280 °C. In addition, geothermometers based on ionic activities and concentration ratios for Na/K were developed. The temperatures obtained by means of the geothermometers developed in this work present normalized errors of less than ±10% with respect to the reservoir temperature. Therefore, when comparing their performance with classical geothermometers, they show a reduction in the uncertainty of the estimates of the reservoir temperatures. This work proposes that, with the development and implementation of geothermometers based on the chemical composition of the geothermal field and bottom-hole temperatures (BHT), there would be a better control and a more effective monitoring in the estimation of reservoir temperatures and thus complement studies to identify new areas with production potential in the geothermal field.

Keywords: Geothermal field, Cerro Prieto-I, chemical equilibrium, fluid-rock interaction, geothermometry, temperature.

Dedicatoria

A mi familia, que son mi todo.

"El éxito no es para siempre y el fracaso no es el final, lo que cuenta es el valor de seguir adelante".

Agradecimientos

Al Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), en especial al cuerpo docente del departamento de Ciencias de la Tierra por aceptarme y por brindarme la oportunidad de crecer personal y académicamente.

Al CONACYT, por el apoyo económico para realizar mis estudios de maestría en CICESE.

Al personal técnico y administrativo, por su atención y tan amable trato.

Al mi asesor, el Doctor Efraín Gómez Arias, por su enorme apoyo tanto técnico como personal durante todo este tiempo. Su talento como investigador solo es superado por su enorme calidad como ser humano, ha sido una grata experiencia realizar este trabajo de investigación con usted. Gracias por tanta paciencia.

Al Doctor Enrique Tello Hinojosa por aceptar ser parte del comité sinodal de este trabajo y por la confianza, consejos y apoyo para la culminación del mismo.

A mis sinodales, la Doctora Anamaría Escofet (QEPD) y el Doctor Marco Perez por su tiempo, confianza y apoyo en la revisión de esta tesis.

A mi familia y todo aquel que estuvo conmigo durante el proceso de la creación de esta tesis, en especial a mi tío Porfirio y a mis grandes amigos Jorge y Diana, sin ustedes este trabajo no hubiera sido posible.

A mis amigos foráneos y taxqueños, gracias por tanta diversión a pesar de vivir en medio de una pandemia, ustedes saben quienes son.

A ti Pedro Daniel, te amo.

Tabla de contenido

	Página
Resumen en español	ii
Resumen en inglés	iii
Dedicatoria	iv
Agradecimientos	v
Lista de figuras	ix
Lista de tablas	xii
Conítulo 1. Introducción	1
1.1 Antecedentes	1
1.2 Justificación	4
1.3 Hipótesis	4
1.4 Objetivos	5
1.4.1. Objetivo general	5
1.4.2. Objetivos específicos	5
1.5 Área de estudio	6
1.5.1 Geología regional	6
1.5.2 Litología	9
1.5.3 Yacimiento geotérmico	9
1.5.4 Alteración hidrotermal en el CGCP-I	10
Capítulo 2. Exploración geoquímica	
2.1 Clasificación de sistemas geotérmicos	13
2.1.1 Sistema geotérmico hidrotermal	14
2.1.2 Sistemas geotérmicos mejorados (SGM)	16
2.1.3 Sistemas geotérmicos marinos	16
2.1.4 Sistemas geotérmicos supercríticos	17
2.1.5 Sistemas geotérmicos magmáticos	
2.1.6 Sistemas geotérmicos de agua caliente asociado con yacimientos de petróleo y g	as17
2.1.7 Sistemas geotérmicos conductivos sedimentarios	
2.1.8 Sistemas geotérmicos geopresurizados	
2.2 Clasificación de fluidos geotérmicos	
2.3 Geoquímica de fluidos hidrotermales	20

2.3.1 Aniones	21
2.3.2 Cationes	22
2.4 Especies neutras	23
2.5 Isótopos estables: Hidrógeno (H) y Deuterio (D)	23
2.6 Gases en el yacimiento	24
2.7 Minerales de alteración hidrotermal en sistemas geotérmicos	25
2.8 Geotermómetros	26
2.8.1 Geotermómetros de cationes	27
2.8.1.2 Geotermómetros de sílice	29

Capítulo 3. Metodología32
3.1 Base de datos
3.2 Balance iónico
3.3 Clasificación de aguas geotérmicas34
3.3.1 Diagramas de clasificación de aguas geotérmicas34
3.3.1.2. Diagrama de Schoeller34
3.3.1.3 Diagrama de Pipper36
3.4 Cálculo de concentración química de fluidos a condiciones de reservorio37
3.4.1 Temperatura y presión de saturación del agua a condiciones atmosféricas
3.4.2 Cálculo de la fracción de líquido y vapor a la temperatura de saturación
3.4.3 Cálculo de la composición a descarga total y en el reservorio
3.5 Determinación de equilibrio en soluciones hidrotermales acuosas41
3.6 Relación Concentración-Actividad42
3.6.1 Cálculo actividad iónica, fuerza iónica y coeficientes de actividad42
3.6.2 Coeficientes de actividad43
3.7 Cálculo del pH45
3.8 Diagrama de equilibrio termodinámico47
3.8.1 Diagramas de relación y estabilidad catiónica Na/H+, K/H+, Ca/H+ y Mg/H+ catiónica47
3.8.2. Diagramas de estabilidad mineral y equilibrio químico48
3.8.3 Diagrama Q/K49
Capítulo 4. Resultados53
4.1 Clasificación de aguas53
4.1.1 Diagrama triangular de Cl-SO₄-HCO₃53

4.1.2 Diagrama de Pipper53
4.2 Concentraciones calculadas en condiciones a descarga total y de yacimiento55
4.2.1 Fracción de vapor y líquido a temperatura de saturación
4.2.2 Composición a descarga total y en condiciones de yacimiento
4.3 Actividad iónica y coeficientes de actividad57
4.4 pH y [aH+]
4.5 Estado de equilibrio y diagramas de equilibrio termodinámico60
4.5.1 Estado de equilibrio de cationes y diagramas de estabilidad catiónica Na/H⁺, K/H⁺, Ca/H⁺ Mg/H⁺60
4.5.2. Diagrama de estabilidad mineral y equilibrio químico62
4.5.3 Estado de saturación de minerales seleccionados (diagrama Q/K)
4.5.4 Estado de equilibrio roca-fluido69
4.6 Nuevos geotermómetros Na/K70
4.6.1 Actividad iónica y concentración70
4.6.2 Geotermómetros de concentraciones químicas75
Capítulo 5. Discusiones
5.1 Estado de equilibrio a condiciones de yacimiento79
5.1.1 Diagrama de estabilidad catiónica79
5.1.2 Diagramas de estabilidad mineral83
5.1.3 Estado de equilibrio Fluido-Roca83
5.2 Geotermómetros
Capítulo 6. Conclusiones
Literatura citada
Anexos

Lista de figuras

Figura 1.	Campos geotérmicos en México. Cerro Prieto (CCP), Las Tres Vírgenes (CLTV), Los Humeros (CLH), Los Azufres (CLA). Sistemas geotérmicos con potencial: Cerritos Colorados (CCC) y Acoculco (CA) (tomado de Gómez-Arias y Gómez-Ávila, 2017)
Figura 2.	Mapa de localización del campo geotérmico de Cerro Prieto (CGCP)7
Figura 3.	Maga geológico regional para el campo geotérmico de Cerro Prieto (CGCP) (tomado de Macías- Vazquez y Rocha-López, 2013)
Figura 4.	Mapa geológico y fallas relacionadas directamente con el campo geotérmico de Cerro Prieto (CGCP)
Figura 5.	Perfil litológico para el yacimiento del campo geotérmico de Cerro Prieto (CGCP) (tomado de Lira- Herrera, 2005)10
Figura 6.	Representación de la alteración hidrotermal en algunos pozos del campo geotérmico de Cerro Prieto (CGCP), (Tomado de Cobo y Bermejo, 1982)12
Figura 7.	Modelo conceptual de un sistema geotérmicos hidrotermal (tomado y modificado de Dickson y Fanelli, 2005)14
Figura 8.	Diagrama donde se muestra la Línea de Agua Meteórica Global (GMWL, Global Meteoric Water Line) y los diferentes tipos de agua con respecto a la composición isotópica de δ^{18} O y δ D (modificado y tomado de Güleç, 2013)24
Figura 9.	Rangos de temperatura para minerales típicos de alteración hidrotermal. Las barras sólidas y discontinuas indican los rangos de temperatura de ocurrencia más y menos frecuentes, respectivamente (Henley y Ellis, 1983)26
Figura 1	 Metodología geoquímica integral de estudios relacionados con la interacción fluido-roca (modificado de Libbey y Williams-Jones, 2016).
Figura 11	L. Diagrama de Cl-SO₄-HCO₃ desarrollado por Giggenbach 1988, donde se visualizan las muestras de los pozos del campo geotérmico Las Tres Vírgenes (tomado de Tello-Hinojosa, 2005)36
Figura 12	 Ejemplo de diagrama Schoeller con datos de manifestaciones y pozos domésticos del campo geotérmico Las Tres Vírgenes (modificado de Verma et al., 2006)
Figura 13	3. Diagrama de Pipper
Figura 1	4. Relaciones de actividad calculadas combinadas de K^+/H^+ y Ca^{+2}/H^+ en comparación con las

relaciones de equilibrio inferidas y calculadas con aluminosilicatos del sistema K-Na-Ca (Truesdell y Henley 1982). Las áreas cerradas muestran las condiciones bajo las cuales los minerales son

- Figura 16. Contenido relativo de Cl, SO₄ y HCO₃ de pozos del campo geotérmico CGCP-I (diagrama propuesto por Giggenbach, 1991)......54

- Figura 22. Comportamiento de los fluidos del campo geotérmico de Cerro Prieto (CGCP-I) para el sistema CaO-Al₂O₃-SiO₂-K₂O-H₂O+/-CO₂ que incluye minerales cálcicos y potásicos a 300 °C.67

- Figura 26. Diagrama ternario Na-K-Mg para evaluar las temperaturas a las cuáles se está efectuando el equilibrio roca- fluido para el campo geotérmico de CP-I (Giggenbach, 1988).70
- Figura **27.** Gráfico que muestra los errores normalizados entre las temperaturas estimadas con los geotermómetros Log *ai* y Log *C* vs. Temperaturas de fondo de pozo (BHT). La nomenclatura 718 Log *C* y 718 Log *ai* hace referencia al geotermómetro desarrollado con las concentraciones

químicas y las actividades iónica de las 718 muestras de los fluidos geotérmicos del CGCP-I a condiciones de yacimiento......73

- Figura 28. Clasificación de los grupos A, B y C con base en la relación Logn aNa⁺/aK⁺ vs 1/TK (el inverso de la temperatura en K) en las 718 muestras de aguas de fluidos geotérmicos a condiciones de yacimiento del CGCP-I. El grupo A corresponde a valores del logn aNa⁺/aK⁺ entre 1.6 a 2.0; el grupo B valores de logn aNa⁺/aK⁺ > 2.0 y el grupo C con valores de logn aNa⁺/aK⁺ < 1.6.......74</p>

Lista de tablas

Tabla 1. Capacidad instalada en campos geotérmicos de México (Romo-Jones et al., 2019).
Tabla 2. Valores composicionales representativo de las aguas (Lillo, 2012)2
Tabla 3. Composición cationica representativa de las aguas (Lillo, 2012)2
Tabla 4. Características de los gases mayoritarios presentes en sistemas geotérmicos hidrotermales2
Tabla 5. Ecuaciones de los geotermómetros de Na-K (Verma et al., 2008).
Tabla 6. Ecuaciones de los geotermómetros de SiO2 (Verma et al., 2008; Nicholson, 1993)3
Tabla 7. Composición química de muestras de agua de descarga de pozos del campo geotérmico Cerr Prieto- I.
Tabla 8. Ecuaciones desarrolladas para cálculo de coeficientes de actividad (Misra, 2013). 4.
Tabla 9. Valores de la carga iónica (zi) y diámetro del ión (ai) para especies más comunes en fluido geotérmicos (tomados de Henley et al., 1984).4
Tabla 10. Datos termodinámicos y funciones de temperatura de la constante de equilibrio par disociación, solubilidad de gases y reducción de oxidación en solución acuosa (Árnorsson et al 1982)4
Tabla 11. Valores de constante de disociación en ácidos débiles adaptada de Glove, 1982 (tomado d Henley et al., 1984)4
Tabla 12. Ecuaciones de funciones que describen la relación entre la temperatura de moléculas disueltay la razón catión/protón de especies acuosas (Arnórsson et al., 1983)4
Tabla 13. Constantes de equilibrio para algunas reacciones agua-roca (Arnorsson et al., 1983)
Tabla 14. Fracciones de vapor y líquido presentes en fluidos de pozos del campo geotérmico de CerrPrieto-I (CGCP-I) a temperatura de saturación y a condiciones de yacimiento
Tabla 15. Concentración (mg/l) a condiciones de yacimiento (Yi) de cationes disueltos en muestreos dagua de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I)
Tabla 16. Actividades iónicas calculadas para los cationes Na ⁺ , K ⁺ , Ca ²⁺ y Mg ²⁺ en 32 (de 787) muestreos d pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) con sus respectivos valores log5

Tabla 17.	Resultados del pH y H ⁺ en 30 (de 787) muestras del campo geotérmico de Cerro Prieto-I (CGCP- I)60
Tabla 18.	Valores estimados de razones Na ⁺ , K ⁺ , Ca ⁺² , Mg ⁺² / aH ⁺ , a temperatura de yacimiento para cada muestra en los pozos del CGCP61
Tabla 19.	Ecuaciones del geotermómetro Na/K desarrollados a partir de las actividades iónicas y de las concentraciones de sus componentes catiónicos74
Tabla 20.	Relaciones de razones logarítmicas para los cationes aNa ⁺ /aH ⁺ , aK ⁺ /aH ⁺ , aCa ⁺² /aH ⁺ y Mg ⁺² /aH ⁺
Tabla 21	 Temperaturas estimadas por cada geotermómetro implementado por los autores antes mencionados, y los valores de las temperaturas estimadas en el presente estudio con sus respectivos porcentajes de error normalizado
Tabla 22	. Composición química de muestras de agua de descarga de pozos reportadas del campo geotérmico Cerro Prieto-I
Tabla 23.	Fracción de vapor líquidio presentes en fluidos de pozos del CGCP-I a temperatura de saturación
Tabla 24.	Concentración (mg/l) a condiciones de yacimiento (Yi) de cationes disueltos en muestreos de agua de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I)
Tabla 25.	Actividades iónicas calculadas para los cationes y aniones en 787 muestreos de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) con sus respectivos valores log
Tabla 26.	Resultados de la estimación de pH y actividad de potón H ⁺ y su relación con las actividades de los cationens Na, K, Ca y Mgrn muestras de pozos del CGCP-I
Tabla 27.	Relaciones de razones logarítmicas para los cationes aNa ⁺ /aH ⁺ , aK ⁺ /aH ⁺ , aCa ⁺² /aH ⁺ y Mg ⁺² /aH ⁺ .

1.1 Antecedentes

Existen diversas maneras de generar energía eléctrica a partir de energías renovables y la geotermia es una de ellas. En particular, la energía geotérmica es la energía térmica almacenada dentro de la corteza terrestre. La fuente de calor de estos sistemas naturales está ligada principalmenete a cámaras magmáticas, y su origen está asociado con la estructura interna de nuestro planeta y de los procesos de fusión que suceden dentro. La geoquímica y geología son ciencias de la tierra que se aplican en el estudio de la geotermia para entender el origen y desarrollo del calor interno de la tierra ligado a fuentes magmáticas (cámaras magmáticas de volcanes). Por esta razón, la geotermia es considerada como energía renovable, prácticamente inagotable, cuyo objetivo principal es el aprovechamiento de esta energía calorífica extraída en forma de vapor para producir energía eléctrica y ser utilizada en el bienestar humano. Este recurso geotérmicos e encuentra almacenado en una amplia variedad de ambientes geológicos y cada uno de ellos representa diferentes tipos de sistemas geotérmicos con características distintas, en particular en los sistemas hidrotermales es de gran interés identificar el origen y composición química de los fluidos geotérmicos. Actualmente se ha establecido a los sistemas hidrotermales como el modelo convencional y predominante en campos geotérmicos en explotación, además de ser comercialmente más rentable, debido a la relativa facilidad para obtener el recurso.

En la exploración geotérmica se requiere del uso de métodos geológicos, geofísicos y geoquímicos que permitan caracterizar un yacimiento geotérmico, es decir, identificar las principales estructuras geológicas a profundidad (como fallas y fracturas), la fuente de calor, tipos de fluidos, permeabilidad y la energía disponible (calor, entalpía o la temperatura del yacimiento geotérmico). Desde el punto de vista geoquímico, la implementación de diversos métodos durante las etapas de exploración y explotación de un yacimiento geotérmico se realiza con el objetivo de conocer y/o monitorear la composición química de los fluidos, así como estimar la temperatura del sistema geotérmico. En particular, la geotermometría es un método geoquímico de bajo costo utilizado para estimar temperaturas, a través de geotermómetros de solutos y de sílice (también se han reportado geotermómetros isotópicos), los cuales son ecuaciones analíticas desarrolladas a partir de la composición química de los fluidos y su interacción fluido-roca (mineral) en condiciones de equilibrio químico y termodinámico. Sin embargo, pese a los avances en las técnicas geotermométricas y las mejoras logradas en los últimos años, aún siguen existiendo problemas en el correcto uso y aplicación de estos, lo que podría llevar al usuario a obtener resultados erróneos en la estimación de temperaturas y por consecuencia en la estimación de la entalpía del sistema geotérmico.

La geotermia es una tecnología relativamente madura, la capacidad total instalada en la actualidad es de 12,729 MW, lo cual representa apenas el 0.5% del consumo energético en el mundo, con una producción de 73,689 GWh (Gómez-Arias y González-Fernández, 2017).

Dentro de este escenario, México ocupa el sexto lugar en el mundo en producción de energía eléctrica a partir de sistemas geotérmicos hidrotermales (después de EE.UU. con 3,700 MW; Indonesia con 2,289 MW; Filipinas con 1,918 MW; Turquía con 1,549 MW y Kenia con 1,193 MW) con una capacidad instalada de 1,105 MW (Huttrer, 2020).

En México, se inauguró la primera planta geotérmica en Pathé, Hidalgo, en el año 1959, ubicado al centro del Cinturón Volcánico Transmexicano, proyecto experimental, que permitiría posteriormente el desarrollo de uno de los campos geotérmicos más importantes del país, el campo de Cerro Prieto, en Baja California. Puesto que el país cuenta con amplia experiencia en la generación geotermoeléctrica actualmente operan cinco campos geotérmicos a cargo de la Comisión Federal de Electricidad Generación VI (CFE VI): Cerro Prieto (Mexicali, BC) con 570 MW; Los Humeros (Puebla) con 119.8 MW; Los Azufres (Michoacán) con 270.5 MW; Las Tres Vírgenes (BCS) con 10 MW. El quinto campo llamado Domo san Pedro (Nayarit) con 35.3 MW es operado por el Grupo Dragón (Tabla 1, Figura 1) (Bertani, 2016; Romo-Jones *et al.,* 2019).

	Сарас	idad (MW)		Pozos en	operación
Campo geotérmico			Propietario/		
	Instalada	En operación	operador	Productores	Inyectores
Cerro Prieto, BC.	570	570		142	28
Los Azufres, Mich.	270.5	247.5	CFE (Generación VI)	48	6
Los Humeros, Pue.	119.8	94.8		28	3
Las Tres Vírgenes, BCS.	10	10		3	1
Domo San Pedro, Nay.	35.5	25.5	Grupo Dragón	4	3
Total	1005.8	947.8		225	41

Tabla 1. Capacidad instalada en campos geotérmicos de México (Romo-Jones et al., 2019).

Figura 1. Campos geotérmicos en México. Cerro Prieto (CCP), Las Tres Vírgenes (CLTV), Los Humeros (CLH), Los Azufres (CLA). Sistemas geotérmicos con potencial: Cerritos Colorados (CCC) y Acoculco (CA) (tomado de Gómez-Arias y Gómez-Ávila, 2017).

El análisis desarrollado en la presente tesis tiene como objetivo principal describir el estado de equilibrio termodinámico-químico fluido-roca del yacimiento geotérmico Cerro Prieto-I, así como mejorar la predicción de su estado térmico a partir de nuevos geotermómetros de solutos (Na-K) empleados a partir de la composición química de los fluidos a condiciones de yacimiento; del estado de equilibrio fluido-roca y de los registros de temperatura de varios pozos del campo geotérmico. Los geotermómetros de soluto se fundamentan en los principios termodinámicos de equilibrio químico de las reacciones resultantes de la interacción fluido-roca, ocasionadas por la circulación de fluidos a elevadas temperaturas en el yacimiento (Truesdell y Jones, 1974; Giggenbach, 1988; Arnorsson, 2000). Sin embargo, debido a esta interacción (durante un largo periodo) ocurren cambios en la composición química de los fluidos, originados a partir de la disolución de mineralogía primaria (composición original) de la roca almacenadora

(permeable) del yacimiento, dando paso a una mineralogía secundaria (conocida también como alteración mineral hidrotermal). La identificación del grado de saturación de minerales en el fluido del reservorio, las condiciones en las que sucede la precipitación de minerales secundarios y las reacciones químicas que se presentan entre el fluido y la roca, pueden ayudar a establecer el estado de equilibrio termodinámico del yacimiento geotérmico.

1.2 Justificación

Las áreas que mayor atención reciben en la exploración geotérmica son las relacionadas con la presencia de fumarolas y manifestaciones termales, ello conduce a que cualquier exploración geotérmica se plantee como primer objetivo el establecer el origen de los fluidos hidrotermales y estimar la temperatura del reservorio geotérmico. Lo cual requiere del uso de métodos geoquímicos y geotermométricos. Durante las dos últimas décadas, la exploración geoquímica en la geotermia ha empleado el uso extensivo de geotermómetros químicos a partir de la química de aguas (que incluye los isótopos estables ¹⁸O y D), vapor y gases. Estos geotermómetros químicos son básicamente ecuaciones empíricas, las cuales se basan principalmente en la composición química del fluido y en la suposición teórica de que existe un equilibrio entre la roca encajonante del yacimiento geotérmico y el fluido hidrotermal. Las condiciones de equilibrio están asociadas con el tipo roca implicada en el reservorio y la aplicación generalizada de estas ecuaciones a cualquier tipo de sistema podría arrojar resultados inconsistentes en la estimación de temperaturas. En la actualidad se cuenta con un extenso número de geotermómetros químicos desarrollados por diferentes autores, aplicados a la estimación de temperaturas en zonas hidrotermales de diversas partes del mundo, lo que ha llevado a realizar esfuerzos científicos para mejorar el conocimiento de los complejos mecanismos de reacción en la interacción fluido-roca. A través de varias investigaciones, se ha identificado que el problema radica en la dificultad para representar con precisión las fases mineralógicas que controlan la composición química de los fluidos descargados por los pozos, las temperaturas del reservorio, así como el estado de equilibrio y/o desequilibrio en el que se encuentra un yacimiento geotérmico.

1.3 Hipótesis

Los geotermómetros geoquímicos de solutos se basan en un equilibrio termodinámico. Cuando éste pudiera no existir o que el sistema se encuentre expuesto a procesos de re-equilibrio por lo que las

estimaciones de la temperatura de un yacimiento geotérmico podrían ser subestimadas o sobreestimadas, lo que podría justificar las inconsistencias que muestran los diversos geotermómetros cuando son aplicados en un mismo sitio. Las variaciones en las condiciones termodinámicas del equilibrio fluido-roca de los yacimientos en cada campo geotérmico son complejas y en particular pueden afectar la estimación de las temperaturas cuando se utiliza la geotermometría clásica. En ese sentido, lo ideal sería que el cálculo o la estimación de las temperaturas se realicen con un geotermómetro desarrollado con base en las condiciones y relaciones de equilibrio termodinámico de los constituyentes minerales presentes durante la interacción fluido-roca propias del campo de interés. Al realizar la determinación del estado de equilibrio fluido-roca actual del campo geotérmico de Cerro Prieto-I, se puede mejorar la estimación de las temperaturas del reservorio geotérmico mediante la geotermometría clásica al recalibrar los valores de los coeficientes presentes en los geotermómetros de soluto Na/K, los cuales se puede estimar a partir de las actividades iónicas de las especies Na y K y de la concentración de estas especies presentes en los fluidos geotérmicos a condiciones de yacimieto (mediante un análisis termodionámico-químico).

1.4 Objetivos

1.4.1. Objetivo general

Determinar el estado de equilibrio termodinámico-químico fluido-roca del yacimiento geotérmico de Cerro Prieto-I y recalibrar los geotermómetros de solutos (Na/K) mediante un análisis termodinámico para inferir o estimar su temperatura actual.

1.4.2. Objetivos específicos

1 Actualizar una base de datos (con información disponible en la literatura) con información histórica de la geoquímica de fluidos y temperaturas de fondo de pozos -BHT- (temperaturas del yacimiento basado en registros de perforación de pozos; es posible que estas temperaturas hayan variado al presente, lo que podría traducirse en la presencia de errores en la recalibración de los geotermómetros de solutos que se plantea como objetivo general, sin embargo, se trabajará con estas temperaturas, dado que son las únicas disponibles en la literatura) del campo geotérmico de Cerro Prieto-I.

- 2 Determinar y comprender los procesos de las fases mineralógicas que dominan la composición química de los fluidos y como estos afectan las mediciones de los geotermómetros.
- 3 Evaluar y analizar el proceso de interacción fluido-roca (mineral) del yacimiento geotérmico utilizando la termodinámica y química para estimar el estado de equilibrio.
- 4 Estimar las temperaturas del yacimiento del campo geotérmico de Cerro Prieto-I con los geotermómetros de Na/K recalibrados y su comparación con los geotermómetros clásicos reportados en la literatura.

1.5 Área de estudio

El campo geotérmico de Cerro Prieto (CGCP) está ubicado dentro del Saltón Trough (que se extiende desde el Mar de Saltón al sur de California, EE.UU., hasta el Golfo de California, México) a 21 km al sureste de la ciudad de Mexicali. La zona geotérmica del Valle de Mexicali se localiza dentro de la cuenca del Saltón, que abarca desde el Saltón Sea en la porción sur del estado de California (EE.UU.) hasta el Golfo de California y forma parte del sistema tectónico de San Andrés, formado por fallas transcurrentes con desplazamiento normales, de dirección general NO-SE (Lippman *et al.*, 1997; Lira-Herrera,. 2005; Aguilar-Dumas, 2008; Figura 2). El CGCP empezó a explotarse comercialmente en 1973, a partir de esa fecha se ha extraído vapor geotérmico mediante las diferentes centrales generadoras.

1.5.1 Geología regional

Desde el punto de vista tectónico, el CGCP se encuentra dentro de una cuenca de tipo pull-apart (transtensional) perteneciente al sistema de fallas de San Andrés, limitado por dos importantes fallas de deslizamiento lateral derecho, conocidas como Imperial y Cerro Prieto, de orientación noroeste-sureste (Figura 3). Estas fallas principales están relacionadas con varias fallas secundarias con dirección norestesuroeste que actúan como colectores de los fluidos geotérmicos (Quijano-León y Gutiérrez-Negrín, 2003). Las fallas más importantes reconocidas en la zona del CGCP son la Cucapá, Cerro Prieto, Michoacán e Imperial (Aguilar, 2006).

Figura 2. Mapa de localización del campo geotérmico de Cerro Prieto (CGCP).

Figura 3. Mapa geológico regional para el campo geotérmico de Cerro Prieto (CGCP) (tomado de Macías-Vazquez y Rocha-López, 2013).

Falla Imperial: Esta falla delimita el lado oriental del centro de dispersión Cerro Prieto y forma parte de un límite intra-placas. Es la principal conexión entre el sistema de San Andrés y las estructuras del Golfo de California. Sin tener una buena expresión geomorfológica, se extiende a lo largo de 75 km, desde 3 km al sur de la ciudad de Brawley, California, hasta el centro de dispersión Cerro Prieto con una orientación N 42° W. Su velocidad de desplazamiento se ha estimado en 47 mm/año (Cruz-Castillo, 2002 en Camacho-Hernández, 2009).

Falla Cerro Prieto: De rumbo NE-SW, con echado al SW de 75° a 80°, es una estructura que pertenece al sistema de fallas Cerro Prieto (Aguilar-Dumas, 2006 en Camacho-Hernández, 2009). Esta falla es de tipo dextral y se extiende a lo largo de 80 km desde el centro de dispersión Cerro Prieto hasta la Cuenca de Wagner. El posible trazo de la falla es visible únicamente en su sector sur; la parte norte ha sido determinada por mecanismos focales y métodos geofísicos. Es la estructura que marca la frontera entre las placas de Norteamérica y del Pacífico en la región del valle de Mexicali, y su desplazamiento promedio es mayor a 50 mm/año (Cruz-Castillo, 2002 en Camacho-Hernández, 2009). Sistema de fallas H con rumbo NE-SW y echado al SE de 45° a 65°, es producto de los esfuerzos de tipo dextral entre la Falla Imperial y el sistema de la Falla Cerro Prieto (Aguilar-Dumas, 2006 en Camacho-Hernández, 2009).

Falla Michoacán: Corresponde al mismo sistema de fallas Cerro Prieto, de rumbo NW-SE y echado variable al SE. Esta estructura y la falla Cerro Prieto forman un horst o bloque levantado que se acuña hacia al sur (Aguilar-Dumas, 2006 en Camacho-Hernández, 2009).

En la Figura 4 se presentan las principales fallas locales, relacionadas directamente con el CGCP.

Figura 4. Mapa geológico y fallas relacionadas directamente con el campo geotérmico de Cerro Prieto (CGCP).

1.5.2 Litología

A continuación se describe la litología del CGCP:

Rocas batolíticas cretáceas (~120 Ma). Estos afloramientos de rocas graníticas y tonalíticas se encuentran en las cercanías de Sierra Cucapá y Sierra El Mayor. Han sido perforados por algunos de los pozos de Cerro Prieto (Lippmann y Mañón, 1987).

Rocas sedimentarias terciarias (1.8-13.5 Ma). Estos sedimentos están compuestos por una secuencia de lutitas grises a negras y areniscas de cuarzo de grano fino a medio. Los fluidos geotérmicos están alojados en estas areniscas (Aguilar, 2006). La parte superior de esta unidad está constituida por lutitas marrones y lutitas cuyos espesores varían entre 0 y 100 m y la distribución no es uniforme. Diferentes autores (Lippmann y Mañón, 1987; Lippmann et al., 1997; Aguilar, 2006) consideran que estos sedimentos finos forman la capa sello de los fluidos geotérmicos. *Sedimentos aluviales del Pleistoceno y recientes* (0.1-1.8 Ma). Estos sedimentos se conocen en el CGCP como los "sedimentos clásticos no consolidados" (arenas, gravas y arcillas de color marrón). El grosor de esta unidad varía entre 500 y 2300 m, aumentando hacia el este del CGCP. *Rocas volcánicas cuaternarias*. Estas rocas andesíticas y rio-dacíticas conforman el volcán Cerro Prieto al NW del campo geotérmico.

1.5.3 Yacimiento geotérmico

El CGCP se caracteriza por ser un sistema de líquido dominante, el área que se explota actualmente tiene una extensión de aproximadamente 15 km² y en ella se han perforado más de 300 pozos, con profundidades que varían entre 1250 y 3550 m, esto lo convierte en el campo más grande del país con una capacidad instalada de 570 MW (Arellano-Gómez, 2010; Romo-Jones et al., 2019). Con el fin de facilitar la administración del campo, el personal técnico de la Comisión Federal de Electricidad (CFE) lo ha dividido en cuatro áreas principales (Figura 5): Cerro Prieto I (CP I), que se encuentra en la parte oeste del campo; Cerro Prieto II (CP II), en la parte sureste; Cerro Prieto III (CP III), en la parte norte; y Cerro Prieto IV (CP IV), en la parte este de CP III. Varios autores han discutido el comportamiento geológico, químico y termodinámico de las áreas del CGCP, los principales son Puente y de la Peña (1978), Truesdell et al. (1979), Truesdell et al. (1997), Lippmann et al. (1983) y Lippmann et al. (2000). Estudios realizados sobre el origen del fluido del yacimiento han mostrado que se compone de una mezcla de agua marina y de agua del río Colorado (Truesdell et al., 1981).

Estudios han demostrado que las concentraciones de cloruros, bromuros y deuterio se originaron de la mezcla de aguas sin sufrir alteración en el sistema hidrotermal ya que estas especies no se encuentran normalmente en la matriz rocosa y, por tanto, no son afectadas por los procesos de interacción agua-roca. Mediante el diagrama de clasificación de fluidos geotérmicos de Giggenbach (1991) y de Piper se ha determinado que los fluidos del CGCP son del tipo clorurado sódico (Barragán et al., 1995; Izquierdo et al., 2001; Arellano-Gómez, 2010). Fausto et al. (1981) realizó un análisis de la geoquímica de los fluidos geotérmicos obtenidos de pozos durante el periodo 1979-1980, estimando a partir de ello la temperatura del reservorio mediante geotermómetros de Na/K y SiO₂ obteniendo temperaturas de 319 °C. Arellano-Gómez (2010) estimó temperaturas con el geotermómetro de Na/K concluyendo que la mayoría de los fluidos muestra un equilibrio total, indicando temperaturas de yacimiento entre 275 y 325 °C.

Figura 5. Perfil litológico para el yacimiento del campo geotérmico de Cerro Prieto (CGCP) (tomado de Lira-Herrera, 2005).

1.5.4 Alteración hidrotermal en el CGCP-I

Las principales asociaciones de minerales en el yacimiento son (Figura 6) calcita-ilita-epidota-clorita, calcita-ilita-cuarzo-clorita, calcita-ilita-epidota-wairakita, calcita-ilita-epidota-anfíbol, Wairakita-epidota-pirita, con esto Izquierdo *et al.* (2001) supone que la temperatura en campo estaba en un inicio entre 250

y 300 °C. Específicamente para el pozo 424, el conjunto mineral correspondiente es calcita-illita/esmectitacuarzo. La temperatura de formación propuesta es <250 °C; que concuerda con los registros de temperatura. Si ocasionalmente ocurre epidota, indica una temperatura más alta. Barragán *et al.* (1995) determinó que la mayoría de pozos correspondientes a Cerro Prieto I se alimentan de un yacimiento (a) a una temperatura promedio de 274 ± 24 °C y presenta sobresaturación de calcita en el fluido, con un pH ligeramente alcalino aparentemente parece estar controlado por la reacción entre el K-feldespato y la Kmica.

Las temperaturas más altas se encuentran en general sobre la traza del sistema de fallas conocida como la Falla H, entre la falla Cerro Prieto y la falla Imperial, que consiste de una serie de fallas normales originadas a partir de extensión, principalmente en la parte noreste en las inmediaciones del pozo M-198. Los valores de temperatura disminuyen tanto hacia el noroeste como al sureste (temperaturas alrededor de los 270-280 °C), en donde probablemente la Falla H tiene una menor influencia. Los pozos que presentan mayor temperatura de la promedio se alimentan de un estrato más profundo donde se localiza el yacimiento "b" el cual tiene una temperatura mayor. El valor de temperatura promedio para el segundo yacimiento se estimó en 294 ± 13 °C. El total de pozos de las zonas de Cerro Prieto II y III se alimentan del yacimiento b. El fluido a fondo de pozo es ligeramente básico para el conjunto de pozos de Cerro Prieto I, en donde se calculó un pH promedio de 6.65 (±0.66). El mismo cálculo proporcionó un pH neutro para los pozos de las zonas de Cerro Prieto II y III con un valor promedio de 5.68 ± 1.21. Sin embargo, se calculó un pH relativamente bajo en un número apreciable de pozos de alta entalpia en la zona norte del campo, correspondiente a la zona Cerro Prieto III (Barragán et al., 1995). Así también reportaron que la concentración de Na⁺ y K⁺ en el fluido del yacimiento de Cerro Prieto se encuentra controlada por el equilibrio con feldespatos. Izquierdo et al. (2001) estableció conjuntos paragenéticos en la zona de cuarzoepidota de los pozos de CP IV, estimando temperaturas de reservorio de 255 - 316 °C mediante geotermómetro de cuarzo. Los valores isótopos de ¹⁸0 y D para estos fluidos en condiciones de descarga total están en el rango de -89.8 a -96.7 para el deuterio y de 7.3 a -9.4 para el oxígeno.

Arellano *et al.* (2011) estimó temperaturas del reservorio mediante los geotermómetros de Na/K y SiO₂ obteniendo un intervalo de temperatura de 268 – 321°C y 283 -321 °C, respectiviamente. A pesar de la discrepancia que presenta en la estimación de la temperatura con los geotérmometros clásicos de Na/K y SiO₂ respecto a las temperaturas de fondo de pozos (BHT, por sus siglas en inglés), se ha considerado que estos geotermómetros son los que mejor han funcionado en el CGCP.

Figura 6. Representación de la alteración hidrotermal en algunos pozos del campo geotérmico de Cerro Prieto (CGCP), (Tomado de Cobo y Bermejo, 1982).

ZONA DE TRANSICION

La geoquímica es un factor importante en el estudio y entendimiento de yacimientos geotérmicos. De acuerdo con Arnórsson (2000) la geoquímica de fluidos hidrotermales se usa extensivamente en todas las fases de exploración y desarrollo de la energía geotermal, permitiéndonos caracterizar los procesos termodinámicos que prevalecen en un reservorio o manifestaciones termales, tales como: su origen, alteración hidrotermal (interacción agua-roca), presión e inferir la posible temperatura del yacimiento usando geotermómetros isotópicos y químicos, así como también modelos de mezcla para la identificación de fuentes de aguas, especialmente usando técnicas isotópicas. La exploración geoquímica es una herramienta de bajo costo, y se emplea en la exploración geotérmica para establecer junto con los métodos geológicos, geofísicos y térmicos para saber si la explotación del recurso geotérmico es económicamente rentable para la producción de energía eléctrica o bien, para usos directos. A continuación, se detallan técnicas de clasificación para fluidos (líquidos) geotérmicos.

Un yacimiento geotérmico contiene fluidos que poseen temperaturas mayores a 200 °C, las condiciones para el origen de un yacimiento geotérmico son:

- Fuente de calor primaria (generalmente una cámara magmática).
- Material rocoso permeable que permita el alojamiento de fluidos geotérmicos (en fase vapor/líquido, en el mayor de los casos el agua es de fuente meteórica).
- Capas de roca sello.

2.1 Clasificación de sistemas geotérmicos

El modelo conceptual de un sistema o yacimiento geotérmico hidrotermal más comúnmente explicado involucra una fuente de calor primaria, que en la mayoría de los campos geotérmicos de origen magmático es una cámara magmática, en la cual el magma proviene del manto y no alcanza a llegar a la superficie, quedando alojado a profundidades entre 5 y 10 km, en donde se calientan grandes volúmenes de roca y los fluidos confinados en el reservorio (principalmente fluidos pluviales y magmáticos), los cuales dan

origen a la formación de los sistemas geotérmicos con temperaturas mayores a los 200°C (Figua 7) (Stober y Bucher, 2013).

Figura 7. Modelo conceptual de un sistema geotérmicos hidrotermal (tomado y modificado de Dickson y Fanelli, 2005).

La generación de energía eléctrica requiere entonces de la transformación y aprovechamiento de la energía térmica de los fluidos, por lo tanto, se tiene un proceso de conversión de energía, es decir, de energía térmica (de los fluidos), a energía mecánica (el paso de los fluidos en forma de vapor o como una mezcla de vapor y agua hacia las turbinas), para finalmente pasar a energía eléctrica (generada en las turbinas y disponible para su uso). En la actualidad se han identificado ocho tipos de sistemas geotérmicos (Santoyo-Gutiérrez y Torres-Alvarado, 2010).

2.1.1 Sistema geotérmico hidrotermal

Toth et al. (2017) define un sistema o yacimiento geotérmico hidrotermal como una área extensa, porosa y permeable saturada con agua o vapor (fluidos) a altas temperaturas, donde se localiza una fuente de

calor y un mecanismo de recarga. Actualmente, estos sistemas son los únicos comerciales para la generación de energía eléctrica. Este tipo de sistema debe reunir tres condiciones geológicas básicas:

- Fuente de calor: generalmente es una cámara magmática a 700 1000 °C, situado a 5-10 km de la superficie.
- 2. Acuífero: material rocoso permeable que permita el alojamiento de fluidos geotérmicos (en fase vapor/líquido).
- 3. Capa sello: material rocoso impermeable, situado sobre el acuífero para que mantenga el agua confinada y la presión del reservorio.

Los recursos geotérmicos también pueden dividirse por sus temperaturas y su tipo de aprovechamiento. A continuación, se describe la clasificación de los sistemas geotérmicos hidrotermales respecto a la temperatura, entalpía y estado físico (Axelssson, 2016):

Temperatura

- *Temperatura baja:* Sistemas con una temperatura de yacimiento menor a 150°C a 1 km de profundidad, caracterizados por la presencia de aguas termales.
- *Temperatura alta:* Sistemas con una temperatura de yacimiento mayor a 200°C a un kilómetro de profundidad.

Entalpía

- Entalpía baja: Sistemas geotérmicos con una entalpía de yacimiento menor a 800 kJ/kg a temperaturas menores de 190°C.
- Entalpía alta: Sistemas geotérmicos con una entalpía de yacimiento mayor a 800 kJ/kg.

Estado físico

 Líquido dominante: reservorios geotérmicos con temperatura del agua por debajo del punto de ebullición, con respecto a las condiciones de presión existente en el yacimiento. Puede existir presencia de vapor.

- *Mixtos*: yacimientos geotérmicos donde el vapor y el agua coexisten.
- *Vapor dominante:* reservorio geotérmico donde la temperatura se encuentra por encima del punto de ebullición.

El origen del agua en los fluidos de los sistemas hidrotermales en su mayoría es meteórico (lluvia) o pluvial; ésta se infiltra a través de fracturas existentes en la roca del yacimiento, penetrando varios kilómetros de profundidad en donde es acumulada y se calienta. La interacción de este fluido-roca puede llegar a alcanzar una temperatura de 500°C. Los sistemas hidrotermales pueden clasificarse en sistemas de alta, media o baja entalpía, y en yacimientos de vapor o líquido dominantes (Santoyo-Gutiérrez y Torres-Alvarado, 2010; Stober y Bucher, 2013).

2.1.2 Sistemas geotérmicos mejorados (SGM)

Los SGM o de roca seca caliente, en la actualidad no son comerciales, pero ofrecen mayor potencial geotérmico que los sistemas hidrotermales. Este recurso geotérmico se encuentra disponible a profundidades entre 3 y 10 km con temperaturas mayores a 200°C. Lo interesante de estos sistemas es el calor almacenado en la roca caliente y la baja o nula permeabilidad [presencia de fluidos] (Stober y Bucher, 2013). La explotación de los SGM requiere crear de manera artificial fracturamiento hidráulico en la roca seca caliente, inyectar agua a través de un pozo inyector, la cual después de alcanzar una mayor temperatura, es extraída mediante un pozo productor, para finalmente utilizarla para la generación de energía eléctrica. Actualmente, países como Australia, Francia, Suiza, Inglaterra, Japón y EE.UU., realizan investigación a través de proyectos piloto para su aprovechamiento en el futuro (Santoyo-Gutiérrez y Torres-Alvarado, 2010; Stober y Bucher, 2013) y estudios de factibilidad realizados por MIT (2006) indican que para el 2050 se podrían instalar más de 100,000 MW en el mundo.

2.1.3 Sistemas geotérmicos marinos

Recursos geotérmicos de alta entalpia (> 300°C) existentes en el fondo marino, que se manifiestan como descargas hidrotermales en forma de chimeneas o fumarolas (Santoyo- Gutiérrez y Torres-Alvarado, 2010). Existen dos tipos de sistemas geotérmicos submarinos, el primero son los sistemas profundos,

localizados a lo largo de zonas de las dorsales oceánicas, generalmente a una profundidad aproximada de 1000 a 4000 m debajo del nivel del mar, y los sistemas superficiales, localizados cerca de la línea de costa a profundidades entre 1-300 m. Este tipo de sistema se ha localizado y estudiado ampliamente en el Golfo de California con flujos de calor de hasta 12 W/m² (Prol-Ledesma et al., 2013; Suárez-Arriaga et al., 2014; Neumann et al., 2017).

2.1.4 Sistemas geotérmicos supercríticos

Son sistemas asociados con temperaturas de hasta 600°C localizados a grandes profundidades, su principal característica es que tienen fluidos geotérmicos en estado supercrítico. Este fluido puede proporcionar hasta 10 veces más energía que un sistema geotérmico hidrotermal (yacimientos convencionales) (Fridleifsson y Elders, 2005).

2.1.5 Sistemas geotérmicos magmáticos

Se caracterizan porque tienen temperaturas entre 600 y 1400°C, geológicamente se asocian a estructuras volcánicas activas, zonas de debilidad cortical, límites de placas e intrusiones ígneas con temperatura lo suficientemente alta para fundirse parcialmente (DiPippo y Renner, 2014). Actualmente este tipo de sistemas aún no se encuentran en explotación, debido a que no se dispone de materiales que resistan la corrosión y las altas temperaturas (Santoyo-Gutiérrez y Torres-Alvarado, 2010).

2.1.6 Sistemas geotérmicos de agua caliente asociado con yacimientos de petróleo y gas

Es el calor contenido en el agua producida en pozos profundos de petróleo o gas (Davis y Michaelides, 2009; Santoyo-Gutiérrez y Torres-Alvarado, 2010). Estos recursos no se explotan en la actualidad y se desconoce su potencial térmico.

2.1.7 Sistemas geotérmicos conductivos sedimentarios

Se localizan en cuencas sedimentarias, donde la formación se debe a la formación de capas sedimentarias a varios kilómetros de profundidad, con gradiente geotérmico por arriba del promedio (>30°C/Km) relacionado con fuentes de calor radiogénicas. La naturaleza de estos sistemas es conductiva (Saemundsson, 2013). El gradiente geotérmico no es lo suficientemente elevado para la producción de energía eléctrica, su interés comercial radica en los usos directos (Martíni, 2011).

2.1.8 Sistemas geotérmicos geopresurizados

Se caracterizan por encontrarse a grandes profundidades (6000 m), sometidos a alta presión (~700 bar) y temperaturas por encima de los 150°C, y por la presencia de fluido geotérmico saturado con metano. Generalmente están confinados en yacimientos de roca sedimentaria (Sanyal, 2010). Este tipo de sistema ofrece energía térmica (agua caliente), química (metano) y mecánica (flujos de fluidos a alta presión). Actualmente no se explota y en México no se ha estimado aún su potencial (Santoyo-Gutiérrez y Torres-Alvarado, 2010).

2.2 Clasificación de fluidos geotérmicos

Los fluidos se clasifican con base a su composición química y de acuerdo a las reacciones de disolución entre la interacción agua-roca, resultando seis tipos de aguas geotérmicas:

Aguas cloruradas: el cloruro es el anión dominante. Este tipo de fluido son de origen profundo en sistemas de alta temperatura, el agua asciende a la superficie por medio de grietas y fallas, permitiendo manifestarse a través de manantiales o geiser. Es común encontrar este tipo de aguas en rocas volcánicas y sedimentarias, su pH es alcalino en un rango de 5-9. El dióxido de carbono y niveles bajos de sulfuro de hidrogeno, son los principales gases disueltos. La alta concentración de Cl impide cualquier confusión entre estas aguas y el bicarbonato o las aguas clorurobicarbonatadas. Estos tipos de aguas se pueden utilizar con seguridad en geotermometría. Los manantiales de cloruro indican una zona de alimentación altamente permeable (Nicholson, 1993).

- Aguas cloruro-sódicas: Son principalmente aguas de origen meteórico, en algunos sistemas pueden presentarse aguas congénitas u otras aguas salinas. Presentan un pH neutro y circulan en reservorios geotérmicos profundos. Los principales gases disueltos son CO₂ y H₂S, y aunque hay predominancia de cloro y potasio, también existe calcio que usualmente es bajo pero variable, contiene apreciable sílice, una considerable pero variable cantidad de sulfatos, bicarbonatos y cantidades mínimas de flúor.
- ➤ Aguas sulfato-ácidas: Estas aguas provienen de la oxidación de H₂S→ SO₄ cerca de la superficie y la mayoría de sus componentes se disuelven de la roca superficial. Los resultados de la ebullición se traducen en la transferencia de gas, principalmente SO₂ y H₂S, en la fase vapor. Esta fase de vapor puede alcanzar la superficie sin ninguna interacción con aguas poco profundas o superficiales, en forma de fumarolas. Este tipo de aguas no son útiles para la predicción de las propiedades del subsuelo. Son comunes en áreas geotérmicas volcánicas a temperaturas inferiores a los 400°C. Presentan bajos contenidos de cloruro y valores de pH de 0 a 3. Dada su naturaleza, su origen geoquímico indica que son aguas de origen superficial (Marini, 2000). Estas aguas no pueden emplearse en la geotermometría ya que las concentraciones de los constituyentes disueltos no tienen relación con el equilibrio de los fluidos minerales en el depósito (Nicholson, 1993).
- Aguas sulfatadas: el sulfato es anión principal. Estas aguas son formadas por fluidos superficiales que reaccionan con gases geotermales condensados (CO₂ y H₂S) separados del fluido geotérmico profundo, generalmente se encuentran cerca de la superficie (<100 m), penetrándose a través de fallas en el sistema geotérmico. Se caracterizan por un bajo contenido de cloro y valores bajos de pH (2-3). Son corrosivas, calientes y capaces de disolver la roca y formar cráteres y cavernas (ej., la zona geotermal Wai-O-Tapu en Nueva Zelanda). Tambien estas aguas no pueden emplearse en la geotermometría ya que las concentraciones de los constituyentes disueltos no tienen relación con el equilibrio de los fluidos minerales en el depósito (Nicholson, 1993).</p>
- Aguas bicarbonatadas: estas aguas son las denominadas ricas en CO₂ y aguas neutras bicarbonatadas sulfatadas. Son producto de condensación de vapor y gas en aguas superficiales más oxigenadas. Son comunes en antigüas aguas geotérmicas o en periferias de salidas en áreas geotérmicas. Se encuentran en sistemas no volcánicos de alta temperatura (ej. Turquía y África), presentan problemas en el origen y pueden constituir el fluido originario del reservorio geotérmico. Están presentes en reservorios geotérmicos profundos en rocas metamórficas y/o

sedimentarias (ej., planta geotérmica Kızıldere en Turquía) su pH es cercano a neutro debido a la reacción con las rocas locales (en el depósito superficial o durante el flujo lateral), contenido bajo de cloruros y algunas veces con variables concentraciones de sulfatos. Estas aguas son corrosivas, por lo tanto, se deben tener en consideración al desarrollar un campo geotérmico (Nicholson, 1993).

- Aguas sulfato ácidas-cloruradas: estas aguas se pueden formar por varios procesos y se han sugerido los siguientes:
 - a) Mezclas de aguas cloruradas y sulfatadas a profundidades variables.
 - b) Descarga cerca de la superficie y la oxidación del H₂S en aguas cloruradas.
 - c) Condensación de gases volcánicos en las aguas meteóricas en superficie.
 - d) Condensación de vapor magmático en profundidad.

e) Paso de fluidos a través de secuencias cloruradas ricas en sulfato (ej. Evaporitas) o litologías que contienen sulfuro nativo.

Estas aguas son típicamente de pH 2-5, con cloruro y sulfato en proporciones aproximadamente iguales. Las aguas formadas por el proceso (a) son probablemente las más usuales, las formadas por los procesos (c) y (d) pueden reconocerse por las concentraciones muy altas de Cl, S04 y, en su mayoría, de diagnóstico, alto Flúor. Estas aguas también pueden ser inusualmente ácidas con pH 0-2; Sin embargo, las reacciones de neutralización del agua de roca pueden elevar el pH y enmascarar este rasgo característico (Nicholson, 1993).

2.3 Geoquímica de fluidos hidrotermales

Para determinar la composición química de los fluidos y gases del yacimiento, es importante medir parámetros químicos como: contenido total de sólidos disueltos (TSD) en partes por millón (ppm) o miligramos por litro (mg/l); el pH; conductividad eléctrica (μ S/cm); salinidad (ppm) y la temperatura (°C; entalpía). Los elementos mayores disueltos consisten fundamentalmente en aniones (Cl, SO₄, HCO₃, Br, NO₂, NO₃, F, PO₄₋₃), cationes (Na, K, Ca, Mg, Li, Fe, Mn, Sr, As), y la sílice (SiO₂), donde frecuentemente, la concentración de estos elementos se encuentra por encima de los 1000 mg/l (Brimhall y Crerar, 1987). Además, contienen isótopos de oxígeno (δ^{18} O) y deuterio (δ D), y gases disueltos (C, H₂, He, Ar, B, CO₂, NH₄ y H₂S). Las concentraciones de soluto variarán enormemente, estas diferencias se deben a las variaciones de temperatura, contenido de gas, fuente de calor, tipo de roca, permeabilidad, antigüedad del sistema y fuente de fluido o mezcla.

2.3.1 Aniones

Un anión es un ion con carga eléctrica negativa, producido como resultado de haber ganado varios electrones. En soluciones de origen hidrotermal, los aniones más importantes son: cloruros (Cl), bicarbonatos (HCO₃) y sulfatos (SO₄). Estos elementos son los responsables de la transformación de los fluidos inmaduros, ácidos y oxidantes de origen magmático a fluidos neutros (Tabla 2). Las características principales de los aniones son:

- Cloruro (Cl⁻): Las altas concentraciones de cloruro en manantiales indican aguas alimentadas directamente de la profundidad del depósito. El agua de lluvia es una fuente importante del ion cloruro, especialmente en zonas cercanas a la costa, disminuyendo tierra adentro. Debido a que este ion no forma sales de baja solubilidad, no se oxida ni se reduce, proporciona la característica de ser un trazador ideal.
- Bicarbonato (HCO₃): El anhídrido carbónico disuelto en agua y en función de su presión parcial (PCO₂), una parte se mantiene en disolución en forma de gas y otra reacciona con el agua para dar ácido carbónico obteniendo iones carbonato y bicarbonato. La disolución de calizas y dolomías, es la fuente principal de la hidrólisis de silicatos dando lugar a la formación de estos iones.
- Sulfato (SO₄²⁻): La concentración de sulfato es usualmente baja en los fluidos geotérmicos profundos, pero incrementa al aumentar la oxidación de sulfuro de hidrógeno. La disolución de sales sulfatadas (yeso y anhidrita) son el aporte más importante de este ion en aguas subterráneas.
- Nitrato (NO₃⁻): Presente en aguas subterráneas como resultado de la disolución de las rocas o por oxidación bacteriana de materia orgánica. Es un indicador de contaminación.

Aniones	Agua de lluvia	Agua de mar	Agua subterránea
Cloruro (Cl ⁻)	0-20 mg/l	20,000 mg/l	10-3000 mg/l
Sulfato (SO4 ⁻²)	0-10 mg/l	5000 mg/l	2-150 mg/l
Bicarbonato (HCO3)	0-20 mg/l	120 mg/l	50-400 mg/l
Nitrato (NO₃ ⁻)	0-5 mg/l	1 mg/l	<10 mg/l

 Tabla 2. Valores composicionales representativo de las aguas (Lillo, 2012).

2.3.2 Cationes

Es un ion con carga positiva debido a la pérdida de electrones. En fluidos hidrotermales los cationes más analizados son Na, K, Ca y Mg (Tabla 3), los cuales son considerados geoindicadores y se utilizan en el desarrollo de métodos geoquímicos. El proceso más importante, en su formación es la disolución de la roca que alberga al sistema geotermal y el grado de equilibrio alcanzado. Las condiciones de equilibrio dependen de la temperatura, la presión y el grado de madurez de las aguas (Nicholson, 1993). Otros cationes para considerar son el Fe y Al.

- Sodio (Na⁺): El sodio puede ser adsorbido por arcillas de elevada capacidad catiónica y puede tener intercambio con calcio originando la disminución en la dureza de las aguas. Las sales con Na son altamente solubles y tienden a permanecer disueltas.
- Potasio (K⁺): Procedente de la meteorización de los feldespatos y la solubilización de depósitos de evaporitas. El potasio se fija en procesos de formación de arcillas y de adsorción de minerales con capacidad de intercambio iónico.
- Calcio (Ca²⁺): La concentración de calcio es baja, generalmente en líquidos de alta temperatura (50 mg/Kg), pero aumentan con la acidez y la salinidad. Su concentración en el yacimiento está controlada por minerales con solubilidad retrograda (p. ej. la calcita).
- Magnesio (Mg²⁺): Los niveles de magnesio en los fluidos geotérmicos de alta temperatura suelen ser muy bajos (0.01-0.1 mg/kg), ya que el Mg²⁺ se incorpora fácilmente a los minerales secundarios de alteración como la illita, la montmorillonita y especialmente la clorita. Las concentraciones más altas pueden indicar reacciones cercanas a la superficie de lixiviación de Mg²⁺ de la roca local o la dilución por agua subterránea que puede ser relativamente rica en Mg⁺².
| Cationes | Agua de mar | Agua subterránea |
|------------------------------|-------------|------------------|
| Sodio (Na ⁺) | 10000 mg/l | 5-150 mg/l |
| Potasio (K ⁺) | 4000 mg/l | 1-10 mg/l |
| Calcio (Ca ²⁺) | 10-250 mg/l | 50,000 mg/l |
| Magnesio (Mg ²⁺) | 1200 mg/l | 1-75 mg/l |

Tabla 3. Composición cationica representativa de las aguas (Lillo, 2012).

2.4 Especies neutras

*Sílice (SiO*₂). La presencia de sílice en aguas subterráneas está dada por los procesos de hidrólisis de feldespatos y silicatos. El cuarzo y la sílice amorfa, por su baja solubilidad, depende de la temperatura, aunque no es una fuente significativa de SiO₂ del agua subterránea. En aguas naturales, la sílice se encuentra como H₄SiO₄ que se disocia a partir de un pH inferior a 9.

2.5 Isótopos estables: Hidrógeno (H) y Deuterio (D)

El agua es el constituyente dominante en los fluidos geotérmicos, el conocimiento de su origen es fundamental para desarrollar cualquier teoría relacionada con la evolución del yacimiento geotérmico. Aggarwal et al. (2004) menciona que la isotopía es una herramienta indispensable en la exploración geoquímica debido a que los isótopos estables son altamente sensitivos a la temperatura y a los procesos fisicoquímicos, lo que permite inferir el origen, distribución, naturaleza e interacción de los fluidos dentro del sistema geotérmico. Los isótopos comúnmente utilizados son de oxígeno (¹⁸O/¹⁶O) e hidrógeno (D/H, ³H). La composición de estos isótopos se expresa en términos de la variación entre sus isótopos pesado/ligero con respecto a un estándar de referencia (SMOW, Standard Mean Ocean Water; por sus siglas en inglés) (Güleç 2013) y se les denomina como ¹⁸O y *C* respectivamente. La relación de estos elementos caracteriza a los fluidos meteóricos de todo el mundo, se encuentran correlacionados a través de una función lineal llamada Línea de Agua Meteórica Global (Global Meteoric Water Line –GMWL-) propuesta por Craig (1961). Esta metodología tiene la finalidad de poder dilucidar el origen de los fluidos y procesos de mezcla, evaporación o condensación (Figura 8).

Figura 8. Diagrama donde se muestra la Línea de Agua Meteórica Global (GMWL, Global Meteoric Water Line) y los diferentes tipos de agua con respecto a la composición isotópica de δ^{18} O y δ D (modificado y tomado de Güleç, 2013).

2.6 Gases en el yacimiento

Dentro de un sistema geotérmico existen seis gases principales y la concentración de estos componentes de la fase vapor presente en las emanaciones superficiales de los sistemas geotérmicos puede ser afectada por diversos factores: 1) presión y temperatura del yacimiento; 2) solubilidad de los gases; 3) coeficiente de distribución de masa entre la fase vapor y el líquido; 4) presión y temperatura de separación; 5) ebullición de la fase líquida, etc. (Nicholson, 1993). En la Tabla 4 se muestran algunas características de los principales componentes de la fase gaseosa, mencionadas por Nicholson (1993) y Arnórsson y Gunnlaugsson (1985).

Los gases presentes en fluidos geotérmicos se emplean para realizar cálculos de temperatura, sin embargo, esta no se implementa de la misma manera como la geotermometría de solutos. La mayoría de los geotermómetros de gas requieren del conocimiento de las relaciones gas/vapor para la fuente del fluido caliente vapor/agua (D'Amore y Panichi, 1987). Dado que el vapor y la fase de agua rara vez se descargan juntos en la superficie, estas proporciones no se pueden determinar para fuentes termales o fumarolas. Por tanto, esto ha limitado la aplicación de la mayoría de los geotermómetros de gas a descargas de pozos. Además, la toma de muestra de gases es más costoso comparado con el de solutos.

Especie	Características
	Es el gas más abundante en sistemas geotérmicos (90 %), se asocia con diversos procesos como, la
CO2	punto de ebullición, con respecto al aumento en la profundidad, entre otros.
H₂S	Se trata de un gas dos o tres veces más soluble que el CO ₂ , por lo cual tiende a reaccionar con los fluidos y la roca circundante provocando acidificación y formando minerales de sulfuro de hierro.
	Altas concentraciones de NH ₃ pueden ser el resultado de la alteración de materia orgánica en rocas
NH₃	sedimentarias. De igual forma cabe destacar que este gas es el más soluble de la fase gaseosa.
H ₂	Se trata de un gas altamente reactivo, por lo que su concentración y la relación de H ₂ /CO ₂ se utilizan para reconocer las direcciones de flujo y las zonas de flujo ascendente.
	Altas concentraciones de CH ₄ son típicas de sistemas sedimentarios ricos en materia orgánica. Su
CH ₄	formación se atribuye principalmente a reacción Fischer-Tropsch
	$CO_2 + 4H_2 = CH_4 + 2H_2O.$
N2	Se considera que la mayor parte de este gas es de origen atmosférico, por lo que su presencia en yacimientos se atribuye a procesos de mezclado con aguas meteóricas.

Tabla 4. Características de los gases mayoritarios presentes en sistemas geotérmicos hidrotermales.

2.7 Minerales de alteración hidrotermal en sistemas geotérmicos

Varios métodos geoquímicos se basan en las relaciones entre los minerales de alteración hidrotermal que se producen en los sistemas geotérmicos y los fluidos que circulan en estos sistemas. Estos métodos incluyen los geotermómetros químicos, la evaluación de la transferencia de masa irreversible que tiene lugar durante la interacción agua-roca (Helgeson, 1968; Helgeson et al., 1970), además de otras técnicas que se centran en la interacción agua-roca (o equilibrio mineral-solución).

Los minerales de alteración hidrotermal presentes en el yacimiento se observan en cortes y núcleos recuperados durante la perforación de pozos. Estos son estudiados por medio de petrología óptica de rocas para determinar las asociaciones minerales primarias (roca original) y secundarias (roca con alteración mineral por hidrotermalismo) con el objetivo de identificar el grado de alteración y equilibrio en estas asociaciones minerales.

Se han identificado y descrito 51 minerales hidrotermales típicos de los sistemas geotérmicos activos cuya ocurrencia depende de varios factores tales como: temperatura, presión, composición de fluidos y permeabilidad. Sin embargo, los minerales más importantes se muestran en la Figura 9.

Figura 9. Rangos de temperatura para minerales típicos de alteración hidrotermal. Las barras sólidas y discontinuas indican los rangos de temperatura de ocurrencia más y menos frecuentes, respectivamente (Henley y Ellis, 1983).

Entre estos minerales, el cuarzo, la calcita, la adularia y la albita pueden considerarse fases de composición pura y por ello son relativamente estables. Mientras que la epidota y el grupo mineralógico de cloritas y zeolitas exhiben cambios de composición debido a la estructura cristalina que los forma. Aunque la secuencia de minerales de alteración varía de un sistema a otro, existe una relación general entre los minerales de alteración hidrotermal y los rangos de temperatura (Henley y Ellis., 1983). El conocimiento de la mineralogía de alteración hidrotermal que se desarrolla en sistemas geotérmicos es de suma importancia para la geoquímica de fluidos.

2.8 Geotermómetros

Los geotermómetros se basan en uno o más constituyentes presentes en los fluidos del yacimiento geotérmico, tales como solutos, gases y especies neutras (sílice); cuyas concentraciones o proporciones son controladas por la temperatura del fluido, presión del yacimiento y la química de la roca circundante.

Son herramientas valiosas en la evaluación de nuevos campos y en el monitoreo de los sistemas en producción, implementados para estimar la temperatura del fluido del yacimiento. También se pueden aplicar a pozos o descargas superficiales naturales con el propósito de estimar las temperaturas del posible yacimiento. La mayoría de los geotermómetros se basan en el supuesto de equilibrio químico entre los elementos disueltos en el agua y los minerales de la roca. La constante de equilibrio de las reacciones de disolución y precipitación mineral depende directamente de la temperatura, relacionándose la concentración química del fluido con la temperatura (Arnorsson, 2012). Existe una gran variedad de geotermómetros que incluyen: relaciones químicas de solutos, tales como Na/K, K-Mg, Li-Mg, Na-Li, Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg; relación de gases CO₂-H₂S-H₂-CH₄, CO, CO₂, He-Ar, CO₂-H₂, H₂S-H₂; y de sílice SiO₂. Sin embargo, los geotermómetros comúnmente aplicados en las etapas de exploración y monitoreo de yacimientos geotérmicos son los de Na/K, sílice (cuarzo y calcedonia) y Na-K-Ca (Arnórsson y Svavarsson, 1985).

Para que la temperatura obtenida mediante estos geotermómetros sea válida es necesario tomar en cuenta los siguientes criterios, propuestos por Nicholson (1993):

- La concentración de los elementos o especies a utilizar en los geotermómetros es controlada únicamente por una reacción fluido-mineral dependiente de la temperatura.
- Abundancia de minerales y/o especies disueltas en el sistema de roca-fluido para que la reacción se produzca fácilmente.
- Las reacciones deben alcanzar el equilibrio en el reservorio.
- No deben presentarse reacciones en zonas cercanas a la superficie.
- Qué no haya mezcla o disolución a profundidad.

2.8.1 Geotermómetros de cationes

Los geotermómetros de cationes se basan en la distribución entre la fase sólida/líquida. Este tipo de geotermómetros funciona bien en aguas con temperaturas altas (350°C). Las reacciones químicas son

menos afectadas por la disolución y separación de vapor, volviendo al reequilibrio más lentamente en comparación a los geotermómetros de sílice (Nicholson, 1993).

2.8.1.1 Geotermómetros de Na/K

El geotermómetro de Na/K (Tabla 5) ha evolucionado constantemente durante los últimos treinta años desde la observación inicial de que las relaciones bajas de Na/K eran indicativas de alta temperatura en profundidad, hasta una calibración cada vez más precisa de la dependencia de la temperatura de esta relación. La variación de Na y K depende de la temperatura de las aguas geotérmicas, y se debe al intercambio iónico entre los feldespatos alcalinos coexistentes de acuerdo a la reacción:

Na-Feldespato +
$$K^+_{(aq)} = K$$
-Feldespato + Na $^+_{(aq)}$ (Albita) (1)

Los fluidos clorurados en yacimientos de alta temperatura (≥ 180°C) son adecuadas para este geotermómetro. Para yacimientos de baja temperatura (120°C) donde los fluidos tienen largos tiempos de residencia, las concentraciones de Na y K son influenciadas por otros minerales, tales como las arcillas (Nicholson, 1993). Por lo anterior, en algunos casos el geotermómetro de Na/K puede ser aplicable. Algunas ecuaciones recalibradas funcionan para reservorios con temperaturas en el rango de 180-350°C. La ventaja de este geotermómetro es que la disolución o la pérdida de vapor no le afectan demasiado, ya que se basa en una relación de concentraciones.

Por otro lado, las limitaciones en el empleo del geotermómetro Na/K que presenta malos resultados cuando existen temperaturas por debajo de los 100°C. Su empleo tampoco será adecuado si las aguas presentan altas concentraciones de calcio (Ca), como es el caso de los manantiales que depositan rocas de travertino (IGME, 1985). Su principal ventaja es que se podrán obtener buenos resultados si las aguas muestreadas son aguas clasificadas como maduras (cloruradas) que presentan pH neutros. Porque con esto se cumple con las suposiciones fundamentales de su aplicación.

Geotermómetros de Na-K	Ecuación	No. Ec.
Na-K (Fournier y Truesdell, 1973)	T (°C)= $\left[\frac{777}{log\frac{Na}{K}+0.700}\right] - 273.15$	(2)
Na-K (Fournier <i>et al.,</i> 1979);T>250 °C	T (°C)= $\left[\frac{1217}{log\frac{Na}{K}+1.483}\right] - 273.15$	(3)
Na-K (Truesdell, 1976); T<156 °C	T (°C)= $\left[\frac{855.6}{\log \frac{Na}{K} + 0.8573}\right] - 273.15$	(4)
Na-K (Tonani, 1980); 25 <t<250 td="" °c<=""><td>T (°C)= $\left[\frac{833}{\log \frac{Na}{K} + 0.780}\right] - 273.15$</td><td>(5)</td></t<250>	T (°C)= $\left[\frac{833}{\log \frac{Na}{K} + 0.780}\right] - 273.15$	(5)
Na-K (Arnórsson-1, 1983); 250 <t<350 td="" °c<=""><td>T (°C)= $\left[\frac{933}{\log \frac{Na}{K}+0.993}\right] - 273.15$</td><td>(6)</td></t<350>	T (°C)= $\left[\frac{933}{\log \frac{Na}{K}+0.993}\right] - 273.15$	(6)
Na-K (Arnórsson-2, 1983)	T (°C)= $\left[\frac{1319}{\log \frac{Na}{K}+1.699}\right] - 273.15$	(7)
Na-K (Nieva y Nieva, 1987)	T (°C)= $\left[\frac{1178}{log\frac{Na}{K}+1.239}\right] - 273.15$	(8)
Na- K (Giggenbach, 1988)	T (°C)= $\left[\frac{1390}{\log \frac{Na}{K} + 1.75}\right] - 273.15$	(9)
Na-K (Verma y Santoyo, 1997)	T (°C)= $\left[\frac{1289}{\log \frac{Na}{K} + 0.615}\right] - 273.15$	(10)
Na-K (Díaz-González <i>et al.,</i> -1, 2008)	T (°C)= $\left[\frac{\frac{883}{\log \frac{Na}{K} + 0.894}}\right] - 273.15$	(11)
Na-K (Díaz-González <i>et al.,</i> -2, 2008)	T (°C)= $\left[\frac{883}{\log \frac{Na}{K} + 0.908}\right] - 273.15$	(12)

Tabla 5. Ecuaciones de los geotermómetros de Na-K (Verma et al., 2008).

2.8.1.2 Geotermómetros de sílice

Los geotermómetros de sílice se basan en variaciones determinadas experimentalmente de la solubilidad de diferentes especies de sílice en el agua, en función de la temperatura y la presión (Fournier, 1977). El geotermómetro de sílice se fundamenta en la reacción básica de disolución de sílice, en función de la temperatura, las aguas que emergen a la superficie se encuentran sobresaturadas de sílice:

$$SiO_2 + H_2O = H_4SiO_4$$
 (13)

En la mayoría de los sistemas geotérmicos, los fluidos profundos con temperaturas > 180°C están en equilibrio con el cuarzo; este es estable hasta los 870°C. La solubilidad de la sílice (en este caso Cuarzo) es

menor en comparación con otros polimorfos de sílice. El cuarzo es común en rocas como mineral primario y secundario (minerales de alteración hidrotermal). Los minerales de alteración polimorfos de sílice con una estructura cristalina menos ordenada (es decir, calcedonia, ópalo, cristobalita) tienen solubilidades más altas que el cuarzo y se forman principalmente a temperaturas inferiores a 180°C.

El geotermómetro de cuarzo tiene mejores resultados para condiciones de reservorio > 150°C. Por debajo de esta temperatura, la calcedonia probablemente controla el contenido de sílice disuelto en lugar del cuarzo. Dependiendo de la fase mineral que controle la solubilidad de sílice, las concentraciones se pueden determinar en función de las temperaturas a través de las siguientes ecuaciones (Tabla 6).

Geotermómetro de SiO ₂	Ecuación	No. Ec.
SiO ₂ (Fournier-1, 1977)	$T (^{\circ}C) = \left[\frac{1309}{7 + 12 + 12}\right] - 273.15$	(14)
SiO ₂ (Fournier-2, 1977)	$T (°C) = \left[\frac{15.19 - log SiO_2}{5.75 - log SiO_2}\right] - 273.15$	(15)
SiO2 (Fournier y Poter, 1982)	$T(^{\circ}C) = (-42.198 + 0.28831)S(-3.6686 \times 10^{-4})S^{2} + (2.1665 \times 10^{-7})S^{3} + 77.024 \log S$	(16)
SiO2 (Verma y Santoyo-1, 1997)	$T(^{\circ}C) = (-44.119 + 0.24469)S - (1.7414 \times 10^{-4})S^{2} + 70.205 \log S$	(17)
SiO2 (Verma y Santoyo-2, 1997)	T (°C)= 140.82 + (0.23517)S	(18)
SiO2 (Árnorsson-2, 2000)	T (°C)= $(-55.3 + 0.3659)S(-5.3954 \times 10^{-4})S^2 + 55132 \times 10^{-7}S^3 + 74.360 \log S$	(19)
SiO2 (Verma, 2000)	$T (^{\circ}C) = \left[\frac{1175.7}{4.88 - logS}\right] - 273.15$	(20)
Calcedonia (50-250 °C; (Fournier-3, 1977)	T (°C)= $\left[\frac{1032}{4.69 - logCSiO_2}\right] - 273.15$	(21)
Cristobalita α (100-250 °C)	$T (^{\circ}C) = \left[\frac{1000}{4.78 - logCSiO_2}\right] - 273.15$	(22)
Cristobalita β	T (°C)= $\left[\frac{781}{4.51-logCSiO_2}\right] - 273.15$	(23)
		(24)
Sílice amorfa	T (°C)= $\left[\frac{731}{4.52 - logCSiO_2}\right] - 273.15$	(25)

Tabla 6. Ecuaciones de los geotermómetros de SiO2 (Verma et al., 2008; Nicholson, 1993).

Las principales limitaciones que se han observado en la aplicación de estas ecuaciones geotermométricas radican en: (i) la adecuada identificación de la fase mineral que controla la solubilidad del cuarzo (sílice) en el reservorio; (ii) determnar con buena precisión el pH del fluido a condiciones de yacimiento (a la profundidad del yacimiento), puesto que la solubilidad de la sílice está en función del pH y; (iii) la corrección de la concentración de la sílice presente en el fluido geotérmcio a condiciones de descarga total del pozo, ya que se require estimar las fracciones de líquido y vapor presentes en el yacimiento geotérmico (Fournier y Potter, 1982; Verma 2000). Según Verma y Santoyo, (1997) el uso de estos geotermómetros a temperaturas superiores a 300°C presentan una elevada propagación de error.

Dentro de la geotermia, la termodinámica-química recientemente ha jugado un rol importante en cuanto al uso y desarrollo de cálculos teóricos y modelos para alcanzar una mejor precisión en cuanto a la comprensión de los diversos procesos que ocurren en el interior de un yacimiento geotérmico.

La metodología que se ha utilizado en este trabajo se basa principalmente en el diagrama propuesto por Libbey y William-Jones (2016) modificado por Almirudis et al. (2018). En el diagrama (Figura 10) se abordan los procesos de la interacción agua-roca en un yacimiento geotérmico. Para la evaluación del fluido en el yacimiento se inicia en la Vía A, estudiando el "Fraccionamiento de fluidos" siguiendo la ruta: Elementos móviles \rightarrow Reactividad \rightarrow Reactivos \rightarrow Volatilidad \rightarrow No Volátiles. Con el objetivo de llevar un a cabo un estudio profundo de geotermometría de solutos.

Para la evaluación del estado de la roca dentro del yacimiento, se continua en el diagrama por la Vía B, "Fraccionamiento de rocas" siguiendo la ruta: Elementos móviles \rightarrow Elementos mayores. Esto con la finalidad de identificar la asociación mineral y el equilibrio entre el fluido y mineral localizados.

Figura 10. Metodología geoquímica integral de estudios relacionados con la interacción fluido-roca (modificado de Libbey y Williams-Jones, 2016).

3.1 Base de datos

Inicialmente se hizo una búsqueda y se compiló de la literatura (trabajos publicados por Manon et al., 1977; Fausto et al., 1981, Truesdell et al., 1981, Fausto et al., 1982, Bermejo et al., 1979, Barragán et al., 1995, etc.) la composición geoquímica de fluidos (agua y gases) de descarga de pozos del CGCP, así como también datos de registros de temperatura. En total 787 muestras con información geoquímica de 32 pozos del CGCP-I fueron compiladas. Con base a la información obtenida se realizó el estudio del estado de equilibrio termodinámico-químico del yacimiento geotérmico. En la Tabla 7 se muestra información química de muestras de fluidos geotérmicos de 32 pozos del CGCP-I. Información completa de las 787 muestras se encuentran en el anexo 1A.

3.2 Balance iónico

Para verificar la calidad de los análisis de los elementos (iones) disueltos en las aguas del yacimiento geotérmico, un balance iónico cationes (+) y aniones (-) debe ser realizado. Este se basa en la diferencia porcentual entre las cargas de las principales especies con carga positivas (p. ej. Na⁺ y K⁺) y negativas (p. ej. Cl⁻, SO⁻4 y HCO⁻³) (Nicholson, 1993). Cabe mencionar que para realizar este cálculo primero se debe hacer el cambio de unidades de las muestras a miliequivalentes sobre litro (meq/L), considerando el peso atómico y la valencia de los elementos (Ec. 26). El porcentaje es adimensional.

Balance iónico (%) =
$$\left(\frac{\sum \text{Cationes} - \sum \text{Aniones}}{\sum \text{Cationes} + \sum \text{Aniones}}\right) X \ 100$$
 (26)

De acuerdo con Nicholson (1993), el resultado del balance de cargas no debe de superar el 5% (con una tolerancia del 10%) en muestras para análisis geoquímicos. En el balance iónico se tiene valores igual a cero para aguas neutras, si los valores son distintos a cero se debe a errores en la medición de los datos y/o mayor concentración de iones (valores negativos) o cationes (valores positivos), lo que ocasiona diferencias en el balance iónico (Benavente, 2010).

3.3 Clasificación de aguas geotérmicas

En la exploración geoquímica el uso de los diagramas ternarios se emplea para la clasificación de aguas geotérmicas. Son utilizados para caracterizar distintos tipos de aguas, así como las modificaciones de carácter con la transición de las aguas de una fase mineral a otra y definir la extensión de la mezcla entre las aguas.

3.3.1 Diagramas de clasificación de aguas geotérmicas

La clasificación de las aguas geotérmicas es esencial para una correcta utilización de las técnicas geoquímicas, que pueden aplicarse con base en la composición química de los fluidos geotérmicos, que reflejará la procedencia (Martini, 2000). La clasificación geoquímica de los fluidos se puede llevar a cabo siguiendo diferentes técnicas, visualizándolas en diagramas, algunos de las cuales se describen a continuación.

3.3.1.1. Diagrama triangular Cl-SO₄-HCO₃

Este tipo de diagrama es aplicado para la clasificación inicial de las muestras de los fluidos geotérmicos (Marini, 2000), se utiliza un triángulo donde se grafican los iones de Cl-SO₄-HCO₃. La posición de los datos en este gráfico se obtiene calculando la sumatoria (Σ) de la concentración de las tres especies involucradas (en mg/kg) y se evalúan los porcentajes (%) de cada uno de los componentes individuales (Figura 11).

3.3.1.2. Diagrama de Schoeller

El diagrama de Schoeller compara el logaritmo de la concentración de los constituyentes de un fluido para una serie de análisis, con los valores de cada análisis conectado con una línea. Se utilizan valores logarítmicos, por la cual se muestra una amplia gama de contenidos. El efecto de la mezcla con agua diluida (así como la ganancia o pérdida de vapor de agua) es la línea que representa una muestra verticalmente sin cambiar su forma (Figura 12). La principal desventaja de este procedimiento es que cuando se representan muchas muestras en la misma gráfica, los patrones individuales pueden perderse, pero los patrones de mezcla se mantendrán claros (Marini, 2000).

									Ca	ationes					Anio	ones		_	
Nº M	Pozo	Туас	рΗ	T _{sep}	Psep	н	Na	К	Са	Mg	Li	Mn	В	Cl-	HCO3	SO4-	SiO2	STD	UN
60	M-5	291	8.2	166.1	7.22	1280.7ª	8350	2050	525	0.8	23	0	21	15600	43	5.0	1000	27617.8	1
82	M-7	119	0	-	4.69	1218.1 ^d	6125	922	421	3.7	14	0	0	11060	0	0.0	546	19091.7	1
125	M-8	291	8.21	169.6	6.75	1408.9ª	5257	1310	258	0.0	15	0	16	10128	32	10.0	974	18000	1
185	M-9	131	8	160	6.18	979.71ª	5550	880	420	1.8	13	0	13	10000	66	32.0	500	17475.8	1
227	M-11	281	7.9	173.6	6.76	1214.1 ^c	8229	2031	550	0.3	0	0	0	16129	0	12.0	1345	28296.3	1
250	M-14	264	8.05	-	8.2	1327.2ª	7079	1439	445	0.6	18	0	18	13113	0	11.0	960	23083.6	1
261	M-19A	297	8.25	-	7.8	1289.5ª	8238	2058	556	0.2	24	0	0	16329	0	0.0	1291	28496.2	1
331	M-20	243	8.4	163	6.67	1151.3°	7100	1620	510	1.4	16	0	17	12800	58	5.0	800	22927.4	1
351	M-21A	279	7.95	-	8.20	1563.3 ^c	8761	2252	679	0.2	22	0	21	17271	63	13.0	1104	30186.2	1
388	M-25	256	8.1	163.2	6.52	1297 ^b	8650	2000	585	0.6	23	0	0	16900	44	7.0	900	29109.6	1
420	M-26	276	8	163.2	6.7	1226 ^b	9050	2200	840	0.9	21	0	19	16800	40	5.0	1000	29975.9	1
513	M-27	284	8.5	-	7.06	1138ª	5884	1384	361	0.0	13	0	0	11366	0	0.0	960	19968	1
533	M-29	255	8.2	164	6.80	1340	6875	1362	509	90.0	22	0	14	12505	91	10.7	4/2	21950.7	1
559	M-30	287	8.1	168.5	7.63	1195.3ª	8500	1980	585	0.9	22	0	19	16400	36	16.0	950	28508.9	1
616	M-31	2/2	8.3	1/0	7.91	1414.3	4982	111/	370	1.0	15	0	0	9650	105	20.0	480	16/40	1
6/8	IVI-35	301	0	-	9.75	1348.1ª	/8/5	1969	414	0.5	22	0	0	15160	0	0.0	1129	26569.5	1
705	IVI-42	2/1	0	-	8.07	11/2.3 ^c	7442	1600	355	0.2	0	0	0	13815	0	0.0	929	24141.2	1
710	M-45	319	0	-	6.76	2030.6 ^b	6162	1721	309	0.0	16	0	21	11793	98	0.0	1125	21245	2
712	M-48	329	0	-	7.38	1611.5 ^b	10544	3037	521	0.0	25	0	21	20082	89	0.0	1237	35556	2
713	M-50	302	0	-	8	1396.3 ^b	6155	1605	233	0.0	15	0	17	11456	92	0.0	1204	20777	2
716	M-51	302	0	-	35.9	1542 ^b	7975	2285	435	0.0	28	0	0	15245	0	0.0	999	26967	1
768	M-53	302	0	-	71	1543 ^b	9759	3216	393	7.3	0	0	0	18501	122	0.0	1502	33500.3	1
773	M-84	348	0	-	6.69	2030.6 ^b	10794	3355	491	0.0	28	0	25	20879	66	0.0	1395	37033	2
775	M-90	287	0	-	7.17	1275. ³	5654	1367	195	0.0	14	0	14	10308	100	0.0	1050	18702	2
776	M-101	305	0	-	7.10	1372.8 ^b	10124	2855	504	0.0	25	0	19	19248	92	0.0	1312	34179	2
777	M-102	346	0	-	6.69	1645.4 ^b	10468	3141	421	0.0	30	0	23	20623	24	0.0	1400	36130	2
779	M-103	331	0	-	9.03	1603.9 ^b	11031	3058	473	0.0	32	0	25	17933	44	0.0	1271	33867	2
783	M-114	270	0	-	7.03	1197.4 ^b	7385	1416	528	0.0	19	0	18	13749	92	0.0	907	24114	2
785	M-130	281	0	-	6.89	1375.7 ^b	8610	2122	499	0.0	21	0	22	16191	89	0.0	1123	28677	2
786	M-181	245	0	-	7.38	1161 ^b	8237	1917	511	0.0	23	0	17	15958	35	0.0	899	27597	2

Tabla 7. Composición química de muestras de agua de descarga de pozos del campo geotérmico Cerro Prieto-I.

Nota: N^oM= Número de muestra; Tyac= temperatura (^oC) de yacimiento; T_{sep} = temperatura (^oC) a condiciones de separación (tomado de Mañón et al, 1977); Psep= presión a condiciones de separación (tomado de Mañón et al, 1977); H= entalpía (kJ/kg) (a: Mañón et al., 1977; b: Fausto et al., 1981; c: Truesdell et al., 1981; d: Fausto et al., 1982) UN= unidad de medida (1: mg/l; 2:mg/kg).

Figura 11. Diagrama de Cl-SO₄-HCO₃ desarrollado por Giggenbach 1988, donde se visualizan las muestras de los pozos del campo geotérmico Las Tres Vírgenes (tomado de Tello-Hinojosa, 2005).

Figura 12. Ejemplo de diagrama Schoeller con datos de manifestaciones y pozos domésticos del campo geotérmico Las Tres Vírgenes (modificado de Verma et al., 2006).

3.3.1.3 Diagrama de Pipper

El Diagrama de Pipper-Hill (1944), es efectivo para segregar datos analíticos en relación con su origen, con base en los componentes disueltos, así como las modificaciones de carácter con la transición de las aguas de una fase mineral a otra. Se conforma de dos triángulos equiláteros para representar, respectivamente la composición aniónica y catiónica del agua y un campo central romboidal donde se representa la composición del agua deducida con base en las cantidades relativas en el fluido de Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, F⁻, HCO₃, SO₄ y CO₃ (Figura 13). Estos son los componentes iónicos más importantes en los fluidos hidrotermales y fríos, y son por tanto utilizados para caracterizar o clasificar el tipo de agua geotérmica que se extrae de los pozos.

Figura 13. Diagrama de Pipper.

3.4 Cálculo de concentración química de fluidos a condiciones de reservorio

En 1992 Arnorsson y Sigurdsson desarrollaron una técnica implementada a la estimación de la composición química de la fase liquida de un reservorio de dos fases, a condiciones de descarga total y a condiciones de reservorio. Sin embargo, antes de utilizar esta metodología se deben establecer las condiciones de temperatura y presión de saturación del agua a condiciones atmosféricas en el área de estudio.

3.4.1 Temperatura y presión de saturación del agua a condiciones atmosféricas

En el inicio de los cálculos es necesario conocer la temperatura y presión de saturación del agua a la altura con respecto al nivel del mar de cada pozo del campo geotérmico de acuerdo a las ecuaciones 27 y 28.

$$P_s = P_o \ exp^{-(Mgh/RT)} \tag{27}$$

$$T_{s} = \frac{1}{\frac{1}{To} - \left(\frac{R}{\lambda}\right) \left(ln\frac{P_{s}}{P_{o}}\right)}$$
(28)

donde P_s es la presión de saturación del agua en función de la altura sobre el nivel del mar a la que se encuentran los pozos (MPa), P_o es la presión de ebullición del agua sobre el nivel del mar (0.101335 MPa), M es el peso molecular del aire (0.02885 gr/grmol), g es la aceleración de la gravedad (9.81 m/s²), h es la altura sobre el nivel de mar (m), R representa la constante general de los gases (8.314472 J/mol K), T es la temperatura absoluta (298.15 K), T_s es la temperatura de saturación del agua en función de la altura sobre el nivel del mar (K), T_o es la temperatura de ebullición del agua a nivel del mar (K) y λ es el calor molar de evaporación del agua a una atmosfera de presión y a 100°C (9717cal/gr mol).

3.4.2 Cálculo de la fracción de líquido y vapor a la temperatura de saturación

Para el cálculo de las concentraciones de aniones, cationes y especies a condiciones de descarga total se debe estimar las fracciones de líquido X_l y vapor X_v en cada pozo. Para ello se utiliza la presión y temperatura de saturación (calculada previamente) y los valores de entalpias del fluido (mezcla) del pozo a condiciones de descarga. Estos valores se sustituyen en las ecuaciones 29 y 30 las cuales se muestran a continuación.

$$X_l = \frac{H_v - H_o}{H_v - H_I} \tag{29}$$

$$X_{\nu} = \frac{H_o - H_I}{H_V - H_I} \tag{30}$$

donde H_o es la entalpia de mezcla (dato estimado a condiciones de descarga en el pozo), H_I es la entalpia de líquido saturado y H_V es la entalpia de vapor saturado (los valores de entalpias fueron obtenidos de tablas termodinámicas del agua saturada reportadas por Cengel, 2007).

3.4.3 Cálculo de la composición a descarga total y en el reservorio

El caso mas simple para estimar la composición química en la descarga total de un pozo de mezcla ocurre cuando el nivel de la primera ebullición está dentro del pozo. Esto indica que solamente agua líquida existe en el yacimiento. En este caso según Arnorsson (2000) es posible suponer que la masa y el calor se conservan conforme ascienden en el pozo, termodinámicamente, el pozo se puede considerar como un sistema aislado.

La concentración de solutos de los fluidos evaporados a presión atmosférica se puede corregir a descarga total a partir de las ecuaciones de conservación del calor (entalpía) y masa propuestas por Arnorsson y Sigurdsson (1982).

$$H_{o} = H_{l}(1 - X_{v}) + H_{v}X_{v}$$
(31)

y para la masa de un componente *i*:

$$C_{DTi} = C_{ai} (1 - X_V) + C_v X_v$$
⁽³²⁾

sabemos que

$$X_l + X_v = 1$$
 $X_l = 1 - X_v$ (33)

Si se considera que la concentración de los solutos en la fase vapor es despreciable, o bien, que se trate de un sistema de fase líquida únicamente entonces $C_v \cong 0$, y si además sustituímos la ec. 33 en la ec. 32, tenemos que:

$$C_{DTi} = C_{ai} (1 - X_V) = Ca_i(X_l)$$
(34)

donde C_{DTi} es la concentración en la descarga total del componente (*i*), C_{ai} es la concentración a presión atmosférica del componente (*i*), X_V y X_l es la fracción de vapor y líquido a temperatura y presión de saturación del campo.

Es de gran importancia determinar las concentraciones de las especies en el yacimiento debido a que es posible identificar variaciones en la concentración a descarga total y a condiciones de yacimiento. Para estimar la concentración a condiciones de yacimiento (reservorio) " C_{Yi} " se utiliza la siguiente expresión propuesta por Arnorsson y Sigurdsson (1982):

$$C_{DT} = Ca (1 - X_V) = C_{Vi} (1 - X_{V^R})$$
(35)

despejando tenemos

$$C_{Yi} = C_{DTi} / (1 - X_{V^R})$$
(36)

donde C_{Yi} es la concentración a condiciones de reservorio del componente (*i*), C_{DTi} es la concentración del componente *C* en la descarga total y X_{v^R} es la fracción de vapor en el reservorio a temperatura del yacimiento (la fórmula de la fracción de vapor a temperatura de saturación es la misma que se utiliza para estimar la fracción de vapor a condiciones a descarga total; solo que para este último se utilizan los valores de las entalpias del agua a temperatura del yacimiento).

3.5 Determinación de equilibrio en soluciones hidrotermales acuosas

Los procesos que pueden establecerse entre los fluidos hidrotermales y la roca del yacimiento son complejos, aun cuando pueden plantearse con base a reacciones que afectan a los fluidos en estado de sobresaturación o subsaturación, en relación con las fases sólidas o gaseosas a determinadas temperaturas. Las reacciones de estado pueden calcularse mediante el planteamiento de modelos de equilibrio químico entre el fluido geotérmico y las fases minerales estables en función de datos petrográficos y la observación de minerales de alteración (Giggenbach, 1988).

Durante el proceso de interacción fluido-roca los factores que controlan el estado de equilibrio solutomineral son: temperatura, presión, composición química del fluido, composición de la roca, permeabilidad de la roca, y duración del proceso de interacción (Fournier y Potter, 1982; Giggenbach, 1988; Nicholson, 1993; Arnorsson *et al.*, 2006). A mayor diferencia de temperatura entre el fluido y la roca será mayor el efecto sobre la mineralogía original. La velocidad de reacción entre el fluido-roca siempre se incrementa conforme aumenta la temperatura. Con respecto a la composición del fluido, mientras más bajo es el pH, más se afectará los minerales originales (Fournier, 1979; Nicholson, 1993; Arnorsson *et al.*, 2006).

El estudio de las reacciones de equilibrio puede indicar el origen de los constituyentes disueltos y de los efectos químicos de las mezclas de fluidos en relación con procesos de solución mineral y de precipitación. Existen dos tipos de reacciones de equilibrio en el fluido que son de importancia: equilibrio de solubilidad, disolución o precipitación (en minerales como el cuarzo o calcita) y el equilibrio de intercambio iónico entre elementos como el Sodio (Na) y Potasio (K) que ocurre entre feldespatos y micas (Nicholson, 1993).

La solubilidad de los minerales gobierna la química de los fluidos, esto es importante para entender los factores termodinámicos que afectan el equilibrio en el yacimiento geotérmico. Las reacciones de solubilidad determinan cuando un mineral permanece en la solución antes de la precipitación. Las reacciones más importantes en la composición del fluido geotérmico incluyen minerales como el cuarzo, la calcita y anhidrita (Arnorsson *et al.,* 2000). En casi todos los sistemas geotérmicos la solubilidad sigue tres patrones de comportamiento: 1) la solubilidad mineral aumenta con el aumento de la temperatura (p. ej., cloruros de metales alcalinos); 2) la solubilidad mineral disminuye al aumentar la temperatura conocido como solubilidad retrógrada (p. ej., yeso, anhidrita, calcita) y; 3) la solubilidad mineral aumenta con el aumento de la temperatura de temperatura, pero sólo hasta un valor máximo y luego disminuye con aumentos de temperatura adicionales (p. ej. la sílice) (Nicholson, 1993). Esto coloca a la temperatura como el factor

termodinámico principal de control en la solubilidad mineral dentro de los yacimientos geotérmicos. Sin embargo, cambios en el pH, presión y salinidad también ejercen un menor control.

3.6 Relación Concentración-Actividad

La actividad describe el comportamiento de especies acuosas en una dilución infinita hipotética, en donde la actividad iónica se aproxima o es igual a la concentración iónica, por lo tanto, el coeficiente de actividad también se aproximará (Árnorsson et al., 1982). Sin embargo, en soluciones reales de concentración finita, el coeficiente de actividad no equivale a la molalidad de cada ion en solución, por lo que hay que establecer su equivalencia mediante la ecuación de coeficiente de actividad. Por lo anterior en condiciones geotérmicas se realizan suposiciones sencillas: las actividades "ai" de un sólido y el agua en condiciones ideales o puras se suponen igual a 1 y las fugacidades de gases se pueden suponer que son iguales a las presiones parciales.

3.6.1 Cálculo actividad iónica, fuerza iónica y coeficientes de actividad

La actividad iónica es la concentración efectiva de los iones en el medio de reacción y corrige las desviaciones de una serie de propiedades de las soluciones reales como carga, tamaño e interacciones iónicas presentes. La actividad iónica se expresa como:

$$a_i = \gamma_i. \ m_i \tag{37}$$

donde " γ_i " representa el coeficiente de actividad (adimensiona) y " m_i " (moles/kg) la concentración molal de la solución.

El primer paso para el cálculo de la actividad en una solución acuosa es determinar la fuerza lónica. Ésta describe las cargas disueltas en una solución. La ecuación 37 es implementada para el cálculo.

$$I = \frac{1}{2} \Sigma m_i z_i^2 \tag{38}$$

donde " m_i " (moles/kg) es la concentración molal de ion presente en la solución y " z_i " es la carga iónica, el factor ½ se introdujo arbitrariamente para que la fuerza iónica de un electrolito univalente (1:1) coincidiese con su concentración molal " m_i ". La sumatoria se realiza para todos los iones y especies presentes en la solución.

3.6.2 Coeficientes de actividad

Los coeficientes de actividad son factores convenientes que producen el valor de actividad, cuando se multiplican por la concentración. El cálculo de los coeficientes de actividad se realiza con la ecuación desarrollada por Debye-Hückel en 1923. Actualmente se han desarrollado más de cuatro ecuaciones para el cálculo de coeficientes de actividad iónica (Tabla 8).

En el presente estudio se utiliza la ecuación modificada de Debye-Hückel por Truesdell-Jones (1974) que se usa ampliamente para fluidos geotérmicos.

$$\log Yi = \frac{-A \, z^2 i \, \sqrt{I}}{1 + a^{\circ} i \, B \, \sqrt{I}} + bI \tag{39}$$

donde "*I*" es la fuerza iónica de la solución, $a^{e}i$ es el diámetro efectivo del ion acuoso "*i*" (ver Tabla 9), $z^{2}i$ es la carga iónica y "*b*" es un parámetro empírico característico del electrolito. Los coeficientes A y B son constantes definidas por las siguientes ecuaciones:

$$A = \frac{(2_{\pi}N) \, 1/2_{e^3} p^{1/2}}{2.302585 (1000)^{\frac{1}{2}} (\varepsilon k \, T)^{3/2}} = \frac{1.824829238 \, x \, 10 \, p^{1/2}}{(\varepsilon T)^{3/2}} \tag{40}$$

$$B = \left(\frac{(8_{\pi}N)\rho \ e^2}{1000\varepsilon kT}\right) = \frac{50.29158649 \ x10^8 \rho^{1/2}}{(\varepsilon T)^{1/2}}$$
(41)

donde π =3.14159265, "*N*" se refiere al número de Avogadro (6.02252 x 10²³ mole⁻¹), *e* representa la carga electrónica absoluta (4.80289 x 10⁻¹⁰), *p* o *p* es la densidad en gr cm⁻³, *e* la constante dieléctrica del H₂O, *T* la temperatura en la escala termodinámica en K y *k* es la constante de Boltzmann (1.38054 x 10⁻¹⁶ erg K⁻¹). Dentro de la ecuación las constantes A y B tienen unidades expresadas en *kg*1/2 *mole*-1/2 y *kg*1/2 *mole*-1/2 *cm*-1 respectivamente. Sin embargo, el coeficiente de actividad es adimensional. Con incremento de temperatura y presión, cambian la constante dieléctrica y los parámetros de Debye-Hückel, esto ocasiona que aumente la solubilidad mineral.

Nombre	Ecuación	Rango de uso en soluciones con fuerza iónica (I)
Ecuación extendida Debye-Hückel	$\log \gamma_{Ca^{2+}} = \frac{-A z^{2} c_{a^{2+}} \sqrt{I}}{1 + a^{\circ} c_{a^{2+}} + B \sqrt{I}}$	Mejor uso $\ge 0.1 \text{ mol kg}^{-1}$ Adecuadas aproximaciones 1 mol kg^{-1}
Ecuación limitada Debye-Hückel	$\log \gamma_{Ca^{2+}} = -A z^2_{Ca^{2+}} \sqrt{I}$	Soluciones muy diluidas (muy baja "I") ≥ 0.001 mol kg ⁻¹
Ecuación modificada de Debye-Hückel por Truesdell-Jones (1974)	$\log \gamma_{Na^{2+}} = \frac{-A z^2 Na^{2+\sqrt{I}}}{1 + a^{\circ} Na^{2+} + B\sqrt{I}} + bI$	Soluciones normales (alta "I") 0.8 a 1 mol kg ⁻¹ 0 a 2 mol kg ⁻¹
Ecuación Davies (1962)	$\log \gamma_{Ca^{2+}} = -A z^2_{Ca^{2+}} \left[\frac{\sqrt{l}}{1 + \sqrt{l}} - 0.31 \right]$	Solulciones con "I" 0.6 mol kg ⁻¹

Tabla 8. Ecuaciones desarrolladas para cálculo de coeficientes de actividad (Misra, 2013).

Tabla 9. Valores de la carga iónica (*zi*) y diámetro del ión (ai) para especies más comunes en fluidos geotérmicos (tomados de Henley et al., 1984).

Componente	H⁺	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	HCO ₃ -	H₃SiO₄	HS [.]
Carga ión (z)	1	1	1	2	2	1	1	1
Diámetro *10-8 cm (ai)	9.0	4.0	6.0	6.0	8.0	4.5	4.0	4.0
Componente	SO ₄	NH ₄	HSO₄	OH-	CO₃	CL-	F ⁻	H ₂ BO ⁻ ₃
Componente Carga ión (z)	SO ₄ 2	NH ₄ 1	HSO ₄ 1	ОН⁻ 1	CO ₃	CL ⁻ 1	F ⁻ 1	H₂BO⁻ ₃ 1

3.7 Cálculo del pH

El pH de los fluidos de un yacimiento no se puede medir directamente, por lo tanto, para examinar el equilibrio mineral-fluido de un reservorio geotérmico se utilizará un método simple propuesto por Henley y Truesdell (1984), para la estimación del pH de las muestras de agua de descarga de pozos del CGCP- I. Este método se basa en la disociación del CO₂ disuelto por los iones bicarbonato e hidrógeno (ecuaciones 41-44). Para este método, previamente se necesita calcular la presión o temperatura de separación del vapor en el cabezal del pozo y/o donde se tome lla muestra (condiciones de descarga total).

El pH de las aguas geotérmicas superficiales está determinado principalmente por la pérdida de dióxido de carbono al hervir, lo que hace que la solución se vuelva progresivamente más alcalina. Sin embargo, el pH también está influenciado por la salinidad, la temperatura del fluido y por los minerales (Nicholson, 1993).

$$Co_2(g) + H_2O(l) = H_2CO_3(aq)$$
 (42)

$$H_2CO_3 = HCO_3^- + H^+$$
(43)

$$K_{\rm H_{2CO_{3}}} = \frac{a_{\rm k_{\rm HCO_{3}}} \cdot a_{\rm H^{+}}}{a_{\rm H_{2}CO^{3}}}$$
(44)

$$\log K_{\rm H_2CO_3} = \log \gamma_{\rm HCO_3^-} / \gamma_{\rm H_2CO_3} + \log m_{\rm HCO_3^-} / m_{\rm H_2CO_3} - pH$$
(45)

despejando resulta:

pH (T°C) = log K_{H₂CO₃} + log
$$\gamma_{\text{HCO}_{3}^{-}} / \gamma_{\text{H2CO_{3}}}$$
 + log $m_{\text{HCO}_{3}^{-}} / m_{\text{H2CO_{3}}}$ (46)

donde " γi " es el coeficiente de actividad iónica individual de las especies disueltas, que podemos calcular mediante la ecuación de Debye-Hückel. Los valores de disociación del H₂CO₃ que se sustituirán en la ecuación ec. (45) se obtiene mediante la ecuación de la dependencia de temperatura de las constantes de equilibrio establecidas por Arnorsson et al. (1982) (Tabla 10, ec.49).

Reacción	Log K (T)	Ecuaciones de la dependencia de temperatura de las constantes de equilibrio	No. Ec.
H₂O -H⁺ + OH⁻	14	-606.52 -21.71x10 ⁵ /T ² +31286/T -97.61x10 ⁻³ •T +94.9731• InT	(47)
H₄SiO₄ - H⁺ + H₃SiO₄	-9.91	-2549/T -15.36x10 ⁻⁶ ∙ T ²	(48)
$H_3SiO_4 - H^+ + H_2SiO_4$	-11.73	+5.37 -3320/T -20.00x10 ⁻³ ∙T	(49)
$H_2CO_3 - H^+ + HCO_3^-$	-6.36	+6.38 -2107/T -19.13x10 ⁻³ •T	(50)
$HCO_{3}^{-} - H_{+}^{+} + CO_{3}^{-2}$	-10.33	+4.40 -2589/T -20.36x10 ⁻³ •T	(51)
$H_2SO_4 - H^+ + HSO_4^-$	3	+0.38 +1422/T -0.38 • InT	(52)

Tabla 10. Datos termodinámicos y funciones de temperatura de la constante de equilibrio para disociación, solubilidad de gases y reducción de oxidación en solución acuosa (Árnorsson et al., 1982).

InT se refiere a logaritmo natural de la temperatura en K (Arnorsson y Singurssond 1982).

También los valores de disociación del H₂CO₃, se pueden obtener mediante una regresión lineal a partir de los datos recopilados por Henley et al. (1984) y que se muestran para esta especie en la Tabla 11. A medida que se pierden gases al hervir la solución, el pH del líquido residual aumenta. Esto se debe en gran parte al consumo de iones de hidrógeno a medida que el dióxido de carbono se disuelve en la fase de vapor. Cuando se pierde dióxido de carbono del líquido, el equilibrio se moverá hacia la derecha, consumiendo protones y, por lo tanto, aumentando el pH de la solución (Arnorsson-Sigurdsson, 1982).

Tabla 11. Valores de constante de disociación en ácidos débiles adaptada de Glove, 1982 (tomado de Henley et al.,1984).

Т°С	0	10	25	50	75	100	125	150	175	200	225	250	275	300
H₂O	14.94	14.54	13.99	13.27	12.71	12.26	11.91	11.64	11.44	11.3	11.22	11.2	11.22	11.3
H₂CO₃	6.57	6.47	6.36	6.29	6.32	6.42	6.57	6.77	6.99	7.23	7.49	7.75	8.02	8.29
H₂S	7.45	7.23	6.98	6.72	6.61	6.61	6.68	6.81	6.98	7.17	7.38	7.6	7.82	8.05
NH^{+}_{4}	10.08	9.74	9.24	8.54	7.94	7.41	6.94	6.51	6.13	5.78	5.45	5.15	4.87	4.61
H₄SiO₄	10.28	10.08	9.82	9.5	9.27	9.1	8.97	8.87	8.85	8.85	8.89	8.96	9.07	9.22
H₃BO₃	9.5	9.39	9.23	9.08	9	8.95	8.93	8.94	8.98	9.03	9.11	9.22	9.35	9.51
HF	2.96	3.05	3.18	3.4	3.64	3.85	4.09	4.34	4.59	4.89	5.3	5.72	6.2	6.8
HSO⁻₄	1.7	1.81	1.99	2.3	2.64	2.99	3.35	3.73	4.11	4.51	4.9	5.31	5.72	6.13
HCI	-0.26	-0.24	-0.2	-0.14	-0.06	0.03	0.14	0.25	0.37	0.5	0.66	0.84	1.06	1.37
HCO⁻₃	10.63	10.49	10.33	10.17	10.13	10.16	10.25	10.39	10.57	10.78	11.02	11.29	11.58	11.89

3.8 Diagrama de equilibrio termodinámico

3.8.1 Diagramas de relación y estabilidad catiónica Na/H+, K/H+, Ca/H+ y Mg/H+ catiónica

Arnórsson et al. (1983), utilizando sólo datos de acuíferos profundos de muestras de aguas geotérmicas pertenecientes a campos geotérmicos de Islandia (omitiendo datos de aguas termales y muestras de agua de pozos poco profundos) realizaron un ajuste a los datos (distribución) de las especies acuosas (cationes y aniones), donde observaron que sigue un patrón exponencial (curva) la temperatura respecto a las actividades de los cationes. De este ajuste, desarrollaron funciones matemáticas las cuales describen satisfactoriamente la dependencia de la temperatura a las diversas relaciones catión/protón y las concentraciones de ácido débil (Tabla 10).

Tabla 12. Ecuaciones de funciones que describen la relación entre la temperatura de moléculas disueltas y la razóncatión/protón de especies acuosas (Arnórsson et al., 1983).

	Functión de la terra antima		Log K
Razon especie/ion	Función de la temperatura	DMA	SD
Log H ₄ SiO ₄ °	-0.588-0.00441 T-1515.21/T + 1.347Log	0.060	0.05
$Log H_2CO_3^{\circ}$	-1.794-0.0051 T-4469.63/T +4.1414LogT	0.300	0.26
Log H ₂ S	-1.678-0.00355T -5071 .05/T +3 .8889LogT	0.360	0.33
Log H ₂ SiO ₄ °	-6.436-0.03906T-13335.68/T+14.7958LogT	0.57	0.48
Log aNa ⁺ /aH ⁺	2.694+0.02023T +4243.4 7/T -6.2069LogT	0.14	0.12
Log aK⁺/aH⁺	2.505+0.01971 T + 3325.71/T-5.7814LogT	12	0.09
Log √aCa++/aH+	1.733+0.01 1 17T+3890.51/T-3.9977LogT	0.17	0.12
Log √aMg++/aH+	1.816+0.01078T+3727.48/T-4.1640LogT	0.34	0.27

DMA= desviación media; SD= desviación estándar

Los autores indican que la correlación de los diversos componentes principales con el ion hidrógeno se seleccionó arbitrariamente, ya que si se hubieran seleccionado otras proporciones de cationes o especies no disociadas en algunos casos se observaría una menor dependencia de la temperatura, pero una mejor correlación en otros. Por ejemplo, se observó una buena correlación con la temperatura para las relaciones Ca⁺²/H⁺ y Mg⁺²/H⁺. La variación de cualquier relación de actividad catiónica y cualquier concentración de especies, a una temperatura particular, siempre estará dentro de los límites indicados por las curvas de las funciones de la Tabla 12. Por lo tanto, la precisión en la predicción de la composición del agua nunca sobrepasara los valores de la curva originada de la ecuación de la función (Arnórsson et al., 1983). La buena relación de las concentraciones de los ácidos débiles no disociados y las relaciones catión/protón con una sola función de temperatura se relaciona a la fuerte dependencia de la actividad de iones de hidrógeno calculada. Sin embargo, la actividad de los iones hidrógenos es sensible a los mecanismos de ebullición y

desgasificación, por ello la presencia de estos procesos se tendrá un gran efecto en las relaciones catión/protón.

3.8.2. Diagramas de estabilidad mineral y equilibrio químico

Los diagramas de estabilidad mineral permiten visualizar o representar el equilibrio químico entre minerales y la solución acuosa (Tello, 2005) (Figura 14). Se utilizan para definir y representar el estado químico termodinámico de las fases mineralógicas que se pueden encontrar en equilibrio a determinadas temperaturas y presiones. Se construyen a partir de reacciones entre minerales identificados en el yacimiento, empleando logaritmos de actividad de las especies en los ejes coordenados. Estos son una herramienta ilustrativa que facilita el análisis de la interacción entre el fluido y la roca. Las relaciones y métodos termodinámicos utilizados en la construcción e interpretación de los diagramas de actividad se han resumido en varias publicaciones (Garrels y Christ, 1965; Helgeson, 1968, 1970; Helgeson et al., 1969; Walther y Helgeson, 1980; Helgeson et al., 1984), en donde la posición y la pendiente de un límite de campo de estabilidad dado en el diagrama está determinado por la estequiometría de los minerales y la constante de equilibrio de la reacción.

Figura 14. Relaciones de actividad calculadas combinadas de K^+/H^+ y Ca^{+2}/H^+ en comparación con las relaciones de equilibrio inferidas y calculadas con aluminosilicatos del sistema K-Na-Ca (Truesdell y Henley 1982). Las áreas cerradas muestran las condiciones bajo las cuales los minerales son estables. La pendiente de las líneas de límite depende de la estequiometría de la reacción. La posición de las límeas límite está determinada por la constante de equilibrio, que a su vez está determinada por el cambio de energía libre de formación del reactivo y los productos.

Las constantes de equilibrio "K", de los minerales en soluciones acuosas se han establecido experimentalmente para diferentes reacciones entre los minerales y las especies estables que intervienen en el sistema hidrotermal, para el rango de temperaturas de interés geotérmico. La utilización de las constantes permite construir gráficos que definen el campo de estabilidad de los minerales constituyentes de rocas de yacimiento, entre los más comunes se encuentran: Microclina, albita, micas potásicas, caolín, entre otros, a diferentes temperaturas. Con esto, se define el campo de estabilidad en relación con los minerales de alteración (Henley et al., 1984). Arnórsson et al. (1982) utilizando métodos experimentales, desarrollaron las constantes de equilibrio para varias reacciones de silicatos en fases acuosas y productos de actividad de los minerales hidrotermales (Tabla 13).

Para las fases líquidas del sistema geotérmico del CGCP-I, se expresará el logaritmo de la relación entre la actividad de cada ion independiente y la actividad del ion hidrógeno elevado a la potencia correspondiente a la carga del ion. Los valores de actividad y coeficientes de actividad se calculan con base en la metodología descrita anteriormente. Para construir los límites de los campos de estabilidad de las fases minerales en equilibrio, se utilizó la subrutina ACT2 del programa geoquímico "The Geochemist's Workbench" (GWB, 2021), licencia para estudiante.

Estos diagramas visualizan y establecen los campos de estabilidad entre minerales y fluidos hidrotermales proporcionando información exclusivamente cualitativa (Zong-he, 1988). Su implementación ayuda en la interpretación del ambiente y las reacciones químicas que fomentan la formación de asociaciones de minerales de alteración definiendo las condiciones críticas del yacimiento. La creación de estas asociaciones minerales y su actividad dictarán el equilibrio del fluido en el sistema geotérmico.

3.8.3 Diagrama Q/K

Los diagramas de log (Q/K) dan una indicación del estado de equilibrio al comparar las concentraciones de constituyentes medidas con las actividades de saturación teórica en un rango de temperaturas (Figura 15).

Utilizando las actividades de los componentes en soluciones acuosas a una serie de temperaturas, es posible calcular el grado de sobresaturación o subsaturación de la fase acuosa con minerales a cada temperatura. Esto se expresa para el mineral k en términos de Log (Q/K)_k:

$$\log \left(\frac{Q}{K}\right)_{k} = \log II \ a_{i}^{Vi} K^{k} - \log K_{k}$$
⁽⁵³⁾

dónde "*Q*" es el producto de actividad iónica calculado y *K* es la constante de equilibrio para el mineral "*k*"; "a," es la actividad del componente "i" (Na⁺, K⁺, Ca²⁺ o Mg²⁺⁾ y "vi" es el coeficiente estequiométrico de la especie en componente "i" en la expresión de acción de masa en equilibrio para el mineral "k". Por lo tanto, el valor de (Q/K) para cada mineral proporciona una medida de proximidad de los componentes en la solución acuosa para alcanzar el equilibrio con el mineral de la roca. En donde el valor numérico de log (Q / K) es mayor que cero para minerales sobresaturados y menor que cero para minerales subsaturados. Si una solución acuosa está en equilibrio con respecto a un determinado conjunto mineral, se puede identificar la temperatura a la que los componentes alcanzan el equilibrio. Los minerales en equilibrio con el fluido se cruzarán con el logaritmo (Q/K), que será igual a la línea a la misma temperatura (Reed y Spycher, 1984).

Figura 15. Relaciones de actividad calculada de Na⁺/K⁺ en los fluidos del acuífero Cerro Prieto de 1977 en comparación con las constantes de equilibrio (línea) para el intercambio iónico entre Albita y Microclina. (Truesdell-Henley 1982).

Los datos termodinámicos crecientes y mejorados para varias especies en soluciones acuosas y los métodos numéricos mencionados anteriormente han permitido calcular el valor logarítmico (Q/K) para

muchos minerales utilizando valores analíticos para los componentes químicos de los fluidos geotérmicos. La convergencia de las curvas Log (Q/K) para el ensamblaje de equilibrio a cero a la temperatura de equilibrio establece una base para la geotermometría.

Tabla 13. Constantes de equilibrio para algunas reacciones agua-roca (Arnorsson et al., 1983).
--

Mineral	Reacción	Ecuación en función de la temperatura (K)
Adularia	$KAlSi_{3}O_{8} + 8H_{2}O \iff K^{+} + Al(OH)_{4}^{-} + 3H_{4}SiO_{4}^{\circ}$	+38.85 - 0.0458T – 17260/T + 1012722/ T^2
Anhidrita	$CaSO_4 \iff Ca^{+2} + SO_4^{-2}$	+ 6.20 - 0.0229T - 1217/T
Mg- Clorita	$Mg_5Al_2Si_3O_{10}(OH)_8 + 10H_2O <> 5Mg^{+2} + 2^a 1(OH)_4^- + 3H_4SiO_4^\circ + 8OH^-$	-1022.12 - 0.3861T + 9363/T + 412.461logT
Laumontita	$CaAl_2Si_4O_{12}.4H_2O + 8H_2O <> Ca^{+2} + 2^a 1(OH)_4^- + 4H_4SiO_4^\circ$	+ 65.95 - 0.0828T - 28358/T +1916098/ T^2
Ca-Montmorilonita	$6Ca_{0.167}Al_{2.33}Si_{3.6^{\circ}10}(OH)_{2} + 60H_{2}O + 12^{\circ}H^{-} <> Ca^{+2} + 14^{a}1(OH)_{4}^{-} + 22H_{4}SiO_{4}^{\circ}$	+30499.49 + 3.5109T – 1954295/T + 125536640/T ² - 10715.661LogT
Na- Montmorilonita	$3Na_{0.33}Al_{2.33}Si_{3.6^{\circ}10}(OH)_{2} + 30H_{2}O + 6^{\circ}H^{-} <> Na^{+} + 7\text{Al}(OH)_{4}^{-} + 11\text{H}_{4}\text{Si}O_{4}^{\circ}$	+15273.90 + 1.7623T – 978782/T + 62805036/T ² - 5366.181LogT
Pirrotita	$8FeS + SO_4 + 22H_4SiO_4^{\circ} + 60H^- <> 8Fe(OH)_4^- + 9H_2S$	+3014.68 + 1.2522T -103450/T - 1284.861LogT
Wairakita	$aAl_2Si_4O_{12} \cdot 2H_2O + 10H_2O \iff Ca^{+2} + 2Al(OH)_4^- + 4H_4SiO_4^\circ$	+61.00 - 0.0847T – 25018/T + 1801911/ T^2
Epidota	$Ca_2FeAl_2Si_3O_{12}.(OH) + 12H_2O <$ > $2Ca^{+2} + Fe(OH)_4^- + 2Al(OH)_4^- + 3H_4SiO_4^\circ + OH^-$	-27399.84 - 3.8749T + 1542767/T -92778364/T ² + 9850.38LogT
Albita-Low	$NaAlSi_3O_8 + H_2O \iff Na^+ + Al(OH)_4^- + 3H_4SiO_4^\circ$	+36.83 -0.0439T -16474/T + 1004631/ T^2
Calcita	$CaCO_3 <> Ca^{++} + CO_3^{\circ}$	+ 10.22 - 0.0349T – 2476/T
Fluorita	$CaF_2 <> Ca^{++} + 2F^-$	+66.54 – 4318/T - 25.47LogT
Microclina	$\operatorname{KAl}Si_{3}O_{8} + 8\operatorname{H}_{2}O \iff \operatorname{K}^{+} + \operatorname{Al}(\operatorname{OH})_{4}^{-} + 3\operatorname{H}_{4}\operatorname{Si}O_{4}^{\circ}$	+44.55 - 0.0498T – 19883/T + 1214019/ T^2
K-Montmorilonita	$3K_{0.33}Al_{2.33}Si_{3.6} \circ O_{10}(OH)_2 + 30H_2O + 6 \circ H^- <> K^+ + 7Al(OH)_4^- + 11H_4SiO_4^\circ$	+15075.11 + \.7346T-967127/T+ 61985927/T ² -5294.721LogT
Muscovita	$\operatorname{KAl}_3Si_3O_{10}(OH)_2 + 10H_2O + 2^\circ H^- <> K^+ + 3Al(OH)_4^- + 3H_4SiO_4^\circ$	+6113 .68 + 0.6914T – 394755/T + 25226323/T ² -2144.77LogT
Pirita	$8FeS_2 + 26H_2O + 100H^- \iff 8Fe(OH)_4^- + SO_4 + 15H_2S$	+4523.89 + 1.6002T – 180405/T - 1860.33LogT
Wallostonita	$CaSiO_3 + 2H^+ + H_2O \iff Ca^{+2} + H_4SiO_4^\circ$	-222.85 - 0.0337T +16258/T - 671106/T ² +80.68LogT
Calcedonia	$SiO_2 + 2H_2O \iff H_4SiO_4^\circ$	+ 0.11 - 1101/T
Magnetita	$Fe_3O_4 + 4H_2O <> 2Fe(OH)_4^- + Fe^{+2}$	-155 .58 + 0.1658T + 35298/T -4258774/ T^2
Mg- Montmorilonita	$6Mg_{0.167}Al_{2.33}Si_{3.67}\circ_{10}(OH)_2 + 60H_2O + 12OH^- < > Mg^{+2} + 14^a 1(OH)_4^- + 22H_4SiO_4^\circ$	+30514.87 + 3.5188T – 1953843/T + 125538830/T ² -10723.71LogT
Prehnita	$Ca_2Al_2Si_4O_{10}$. $(0H)_2 + 10H_2O <> Ca^{+2} + 2^a 1(0H)_4^- + 2OH^- + 3H_4SiO_4^\circ$	+90.53 - 0.1298T – 36162/T + 2511432/T ²
Cuarzo	$SiO_2 + 2H_2O \implies H_4SiO_4^\circ$	+0.12 - 1164/T(180-300°C)
Zoisita (Epidota)	$Ca_2Al_2Si_3O_{12}$. (OH) + 12 H_2O <> $2Ca^{+2}$ + $Al1(OH)_4^-$ + OH^- 3 $H_4SiO_4^\circ$	+106.61- 0.149T -40448/T+3028977/T ²

4.1 Clasificación de aguas

Diversos autores han realizado y reportado estudios geoquímicos con el fin de caracterizar los fluidos geotérmicos de pozos y manifestaciones hidrotermales del CGCP (p. ej. Mañón *et al.*, 1979, Fausto *et al.*, 1981, Truesdell *et al.*, 1982, Bermejo *et al.*, 1981, etc). A partir de la información disponible y reportada en la literatura, se procesó la información geoquímica de fluidos (muestras de agua) en condiciones de descarga total (ver Tabla 7, Anexo Tabla 22) de 32 pozos geotérmicos del CGCP-I para determinar su composición geoquímica a condiciones de yacimiento. Previo a este estudio, se realizó el análisis de la composición química de aniones y cationes a través del uso de diversos diagramas para identificar y determinar las características de las aguas dentro del yacimiento geotérmico, explicar su origen y establecer si estas aguas se encuentran en equilibrio termodinámico-químico. Los resultados se describen a continuación.

4.1.1 Diagrama triangular de Cl-SO₄-HCO₃

La Figura 16 muestra el diagrama ternario de contenido relativo de Cl-SO₄-HCO₃ (desarrollado por Giggenbach, 1988) de las concentraciones de las aguas geotérmicas en condiciones de yacimiento de varios pozos del CGCP. Los muestreos de agua de los 32 pozos se ubican en la región de "aguas maduras" y se clasifican como aguas cloruradas- sódicas (agua característica en una salmuera geotérmica), tal como lo han mencionado con anterioridad Manon et al. (1977) y Truesdell et al. (1981).

4.1.2 Diagrama de Pipper

En el diagrama de Piper (Figura 17) las aguas de los pozos geotérmicos son químicamente similares. Las composiciones promedio de sus aguas son del tipo cloruradas-sódicas con alto contenido en Na y alta salinidad, resultado consistente con los estudios geoquímicos de Barragán et al. (1995).

Figura 16. Contenido relativo de Cl, SO₄ y HCO₃ de pozos del campo geotérmico CGCP-I (diagrama propuesto por Giggenbach, 1991).

Figura 17. Diagrama de Piper donde se indica que la composición de las aguas geotérmicas (787 muestras) de 32 pozos del CGCP-I se clasifica del tipo cloruradas-sódicas.

4.2 Concentraciones calculadas en condiciones a descarga total y de yacimiento

El cálculo de las concentraciones de solutos a condiciones de yacimiento se realizó a partir de la composición geoquímica de 787 muestras de agua geotérmica de 32 pozos del CGCP-I en condición de descarga total. El cálculo de las concentraciones se realizó a una temperatura y presión de saturación del agua a condiciones atmosféricas para el campo de 99.9 °C (considerando que el CGCP-I se encuentra a una altura de 12 msnm) y 1.032 atmósferas, respectivamente. Con los valores de temperatura y presión de saturación, y del conocimiento previo de la temperatura de yacimiento (obtenidos de registros de temperatura de pozos) y los valores de entalpia (obtenidos de datos reportados en la literatura), se realizó el cálculo de las fracciones de líquido y vapor presentes en el fluido del yacimiento geotérmico.

4.2.1 Fracción de vapor y líquido a temperatura de saturación

Para realizar el cálculo de las fracciones de vapor y líquido presentes en el fluido geotérmico se requiere de los valores de entalpías estimadas en cada pozo del campo. En un sistema geotérmico, se llevan a cabo reacciones químicas como producto de la interacción fluido-roca, donde la entalpía es la cantidad de calor que se absorbe o desprende durante estas reacciones. Cuando se presenta un cambio de fase en el fluido, es decir, cuando cambia de líquido a gaseoso (vapor), el cambio de entalpía será un cambio en el calor latente de vaporización. En los sistemas geotérmicos, las entalpías por debajo de 1,000 kJ/kg indican que la fracción líquida en el reservorio continúa siendo dominante, es decir, no hay presencia de fase gaseosa (vapor). Si la entalpía excede este valor, se produce evaporación en el fluido y entonces la fracción de vapor dentro del yacimiento se enriquecerá y habrá un exceso de vapor.

En la Tabla 14 se presentan los valores de las fracciones de vapor y líquido calculadas en condiciones de descarga total y de yacimiento para 32 muestras de 32 pozos del CGCP-I (ver resto de la base en el Anexo Tabla 23). Se puede observar que casi todos los pozos tienen un valor de entalpía mayor o igual a 1000 kJ/kg, lo que signifa que existe un proceso de ebullición dentro del yacimiento, que puede ser resultado de cambios en las condiciones de presión en el reservorio ocasionando un pH ácido, produciendo una mayor cantidad de vapor y transporte de especies volátiles dentro del yacimiento.

Muestra	Pozo	т (°С)	рН уас	Н	Xv	XI	Xvr	Xlr
60	M-5	291	8.2	1280.7ª	0.6192	0.3808	0.0000	1.0000
82	M-7	119	-	1218.1 ^d	0.6470	0.3530	0.3252	0.6748
125	M-8	291	8.21	1408.9ª	0.5647	0.4353	0.0748	0.9252
185	M-9	131	-	979.71ª	0.7524	0.2476	0.0552	0.9448
227	M-11	281	7.9	1214.1 ^c	0.6125	0.3875	0.0353	0.9647
250	M-14	264	8.05	1327.2ª	0.5987	0.4013	0.0181	0.9819
261	M-19A	297	8.25	1289.5ª	0.6153	0.3847	0.0317	0.9683
331	M-20	243	8.4	1151.3 ^c	0.6370	0.3630	0.1029	0.8971
351	M-21A	279	7.95	1563.3 ^c	0.4947	0.5053	0.2125	0.7875
388	M-25	256	8.1	1297 ^b	0.6125	0.3875	0.1063	0.8937
420	M-26	276	8	1226 ^b	0.6120	0.3880	0.0515	0.9485
513	M-27	284	8.05	1138ª	0.5746	0.4254	0.0211	0.9789
533	M-29	255	8.2	1340 ^b	0.7444	0.2556	0.0000	1.0000
559	M-30	287	8.1	1195.3ª	0.6570	0.3430	0.0000	1.0000
616	M-31	272	8.3	1414.3ª	0.5833	0.4167	0.1040	0.8960
678	M-35	301	-	1348.1ª	0.5894	0.4106	0.0006	0.9994
705	M-42	271	-	1172.3 ^c	0.6581	0.3419	0.0013	0.9987
710	M-45	319	-	2030.6 ^b	0.2874	0.7126	0.2899	0.7101
712	M-48	329	-	1611.5 ^b	0.4728	0.5272	0.5801	0.4199
713	M-50	302	-	1396.3 ^b	0.5681	0.4319	0.0186	0.9814
716	M-51	302	-	1542 ^b	0.5089	0.4911	0.0608	0.9392
768	M-53	302	-	1543 ^b	0.5334	0.4666	0.1936	0.8064
773	M-84	348	-	2030.6 ^b	0.2874	0.7126	0.0000	1.0000
775	M-90	287	-	1275. ³	0.6216	0.3784	0.0019	0.9981
776	M-101	305	-	1372.8 ^b	0.5784	0.4216	0.0023	0.9977
777	M-102	346	-	1645.4 ^b	0.4578	0.5422	0.0019	0.9981
779	M-103	331	-	1603.9 ^b	0.4762	0.5238	0.0648	0.9352
783	M-114	270	-	1197.4 ^b	0.6561	0.3439	0.0071	0.9929
785	M-130	281	-	1375.7 ^b	0.5783	0.4217	0.0854	0.9146
786	M-181	245	-	1161 ^b	0.6722	0.3278	0.0559	0.9441

Tabla 14. Fracciones de vapor y líquido presentes en fluidos de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) a temperatura de saturación y a condiciones de yacimiento.

H= entalpía (kJ/kg; a: Mañón et al., 1977; b: Fausto et al., 1981; c: Truesdell et al., 1981; d: Fausto et al., 1982).Xv= fracción de vapor a descarga total; XI= fracción liquida a descarga total; Xvr= fracción de vapor a condiciones de reservorio; XIv= fracción liquida a condiciones de reservorio.

4.2.2 Composición a descarga total y en condiciones de yacimiento

En la Tabla 15 se muentran las concentraciones en condiciones de yacimiento calculadas para muestras de 32 pozos del CGCP-I, (ver el resto de las muestras en el Anexo Tabla 23). Cabe mencionar que el cálculo se realizó a partir de una temperatura de referencia (en este caso a temperaturas reportadas en registro de pozos) para cada pozo del CGCP-I.

N Muestra	Pozo	T yac	Н	рН	Na-C _{Yi}	К- <i>С</i> _{Үі}	Са-С _{Үі}	Mg-C _{Yi}	SiO ₂ -C _{Yi}
60	M-5	291	1280.74	8.2	5170.49	1269.40	325.09	0.50	619.22
82	M-7	119	1218.1	-	5872.28	883.96	403.63	3.55	523.47
125	M-8	291	1408.97	8.21	3208.35	799.49	157.46	0.02	594.43
185	M-9	131	979.71	-	5204.57	825.23	393.86	1.69	468.88
227	M-11	281	1234.59	7.9	5224.65	1289.50	349.20	0.22	853.95
250	M-14	264	1327.22	8.05	4730.58	961.62	297.37	0.41	641.53
261	M-19A	297	1289.53	8.25	5069.09	1266.35	342.12	0.13	794.39
331	M-20	243	1240.55	8.4	5062.66	1155.14	363.66	1.00	570.44
351	M-21A	279	1563.31	7.95	5504.23	1414.85	426.59	0.11	693.60
388	M-25	256	1295.11	8.1	5928.02	1370.64	400.91	0.41	616.79
420	M-26	276	1297.07	8	5839.14	1419.46	541.98	0.58	645.21
513	M-27	284	1381.64	8.05	3682.00	866.06	225.90	0.03	600.73
533	M-29	255	1024.88	8.2	5117.42	1013.81	378.88	66.99	351.33
559	M-30	287	1195.33	8.1	5584.67	1300.90	384.36	0.59	624.17
616	M-31	272	1378.57	8.3	3242.92	727.09	240.84	0.65	312.44
678	M-35	301	1348.15	-	4644.03	1161.16	244.14	0.29	665.79
705	M-42	271	1172.3	-	4903.59	1054.25	233.91	0.14	612.13
710	M-45	319	2030.6	-	3286.95	918.02	164.83	0.00	600.10
712	M-48	329	1611.5	-	5430.69	1564.21	268.34	0.00	637.12
713	M-50	302	1396.3	-	3608.35	940.93	136.60	0.00	705.84
716	M-51	302	1530.07	-	4646.25	1331.24	253.43	0.00	582.02
768	M-53	302	1474.59	-	5701.31	1878.82	229.59	4.26	877.72
773	M-84	348	2030.6	-	5265.84	1636.73	239.53	0.00	680.55
775	M-90	287	1275.3	-	3521.49	851.41	121.45	0.00	653.97
776	M-101	305	1372.85	-	5869.61	1655.25	292.21	0.00	760.66
777	M-102	346	1645.41	-	4801.63	1440.76	193.11	0.00	642.17
779	M-103	331	1603.96	-	5616.50	1557.00	240.83	0.00	647.14
783	M-114	270	1197.42	-	4880.05	935.70	348.91	0.00	599.35
785	M-130	281	1375.78	-	5443.74	1341.65	315.50	0.00	710.03
786	M-181	245	1161	-	5864.84	1364.93	363.84	0.00	640.10

Tabla 15. Concentración (mg/l) a condiciones de yacimiento (Yi) de cationes disueltos en muestreos de agua de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I).

Tyac= temperatura de yacimiento; H= entalpía (KJ/Kg); C_{Yi} = concentraciones a condición de yacimiento.

4.3 Actividad iónica y coeficientes de actividad

En las muestras de agua de descarga de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) se calculó la especiación química a la temperatura de fondo de pozo (BHT) reportada para cada pozo. Con el objetivo de elaborar los diagramas de estabilidad mineral a partir de actividades iónicas (Helgenson, 1969), se desarrolló un algoritmo en lenguaje de programación FORTRAN para resolver la ecuación de Debye-Hückel modificada de Truesdell y Jones (1974) para calcular los valores de actividad iónica y el coeficientes de actividad. Para realizar el cálculo de los coeficientes de actividades (ai) fue necesario calcular la fuerza iónica (I) durante la reacción, por lo que fue necesario estimar los coeficientes A y B de la ecuación de Debye-Hückel. La importancia de conocer el valor de estos coeficientes consiste en que si existe un incremento de temperatura y/o presión entonces aumenta la solubilidad mineral y por ende se tendrán concentraciones en la fase liquida progresivamente más altas.

Los valores de concentración de iones principales y especies fueron calculados a condiciones de yacimiento (para el caso del elemento Al⁺³, en el CGCP la concentración de este ha sido detectada en valores traza). Los cálculos se realizaron bajo el supuesto de la inexistencia de ebullición adiabática y de enfriamiento de tipo conductivo, debido a que estos procesos son los que se han identificado como causantes de desequilibrio mineralógico. El cálculo de actividad (ai; mol/L) y de los coeficientes de actividad (log γ ; adimensional) se realizaron para todas las especies iónicas reportadas en la base de datos que corresponden a muestras de aguas geotérmicas (los valores de las actividades para todos los constituyentes de las aguas se muestran en la Tabla 23 del Anexo . Las actividades iónicas (*a*i) para los cationes de Na⁺, K⁺, Ca²⁺ y Mg²⁺ se muestran en la Tabla 16.

4.4 pH y [aH+]

Los cálculos del pH en condiciones de yacimiento para los pozos del CGCP-I se realizaron por el método del HCO₃ (disociación de CO2), utilizando los datos reportados de la fracción de vapor y de CO₂ presentes en las muestras a la salida del pozo. Los resultados del pH y del [aH⁺] (también referido como protón H⁺) se muestran en las Tabla 17.

De la base de datos de 787 muestras, 62 que corresponden a los pozos M-7 y M-9 (ver Tabla 7 y Anexo Tabla 22) no fueron considerados para el cálculo del pH debido a la ausencia de datos disponibles de la fracción de gas presente en la fracción de vapor y del porcentaje de CO₂ contenido en la fracción de gas en cada muestra, respectivamente. Utilizando un total de 725 muestras, los resultados del cálculo del pH indican dos grupos. El primero con 714 muestras (98.5%, algunas muestras se presentan en la Tabla 17, la información de las muestras faltantes se encuentran en la Tabla 25 del Anexo), donde los valores de pH obtenidos con respecto a los reportados en la literatura muestra un error normalizado entre -4.47 a +4.01% con un error promedio de 0.17%. El segundo grupo con 11 muestras (1.5%, ver Tabla 25 del Anexo) en el cual, los valores de pH obtenidos con respecto a los reportados entre
-8.45 y 10.60% (para estas muestras se cuenta con el valor del pH reportado en la literatra y los valores de las fracciones de gas y CO₂ fueron estimados). La medición de un valor de pH promedio cercano al neutro indica que a condiciones de yacimiento la mineralogía constituyente de la roca no tendrá alto grado de disolución. Así, por ejemplo, el K⁺, que es el principal constituyente del mineral feldespato se mantendrá relativamente estable a una temperatura constante y un pH neutro. Sin embargo, al presentarse un incremento en la temperatura y una disminución en el pH (a uno más ácido), se llevará a cabo la disolución de este catión y por ende la del mineral que constituye.

Tabla 16. Actividades iónicas calculadas para los cationes Na⁺, K⁺, Ca²⁺ y Mg²⁺ en 32 (de 787) muestreos de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) con sus respectivos valores log.

NM	Pozo	Туас	Na- <i>a</i> i	log	log K-ai		Ca- <i>a</i> i	log Mg-ai		log aMg ²⁺	SiO ₂ -ai	log
				aNa+		aK+		aCa ²⁺				SiO ₂
60	M-5	291	0.1102	-0.9579	0.0145	-1.83	0.0005	-1.663	0.0000	0.0000013	0.0052	-2.281
82	M-7	119	0.1744	-0.7584	0.0144	-1.84	0.0021	-1.335	0.0021	0.0021375	0.0045	-2.351
125	M-8	291	0.0736	-1.1333	0.0101	-1.99	0.0003	-1.763	0.0000	0.0000001	0.0049	-2.313
185	M-9	131	0.1534	-0.8141	0.0134	-1.87	0.0020	-1.345	0.0000	0.0000165	0.0040	0.0040
227	M-11	281	0.0864	-1.0634	0.0129	-1.88	0.0004	-1.701	0.0000	0.0000000	0.0044	-2.357
250	M-14	264	0.1116	-0.9521	0.0124	-1.90	0.0007	-1.586	0.0000	0.0000016	0.0054	0.0054
261	M-19A	297	0.1054	-0.9771	0.0141	-1.84	0.0005	-1.661	0.0000	0.000003	0.0067	0.0067
331	M-20	243	0.1250	-0.9032	0.0155	-1.80	0.0009	-1.515	0.0000	0.0000049	0.0048	0.0048
351	M-21A	279	0.1088	-0.9633	0.0145	-1.83	0.0005	-1.641	0.0000	0.0000000	0.0057	-2.247
388	M-25	256	0.1207	-0.9182	0.0179	-1.74	0.0005	-1.637	0.0000	0.0000000	0.0052	-2.281
420	M-26	276	0.0770	-1.1135	0.0106	-1.97	0.0004	-1.704	0.0000	0.0000001	0.0048	-2.317
513	M-27	284	0.0847	-1.0720	0.0109	-1.96	0.0005	-1.665	0.0000	0.0000001	0.0050	0.0050
533	M-29	255	0.1234	-0.9088	0.0171	-1.76	0.0006	-1.620	0.0001	0.0000884	0.0047	-2.331
559	M-30	287	0.0922	-1.0353	0.0153	-1.86	0.0004	-1.693	0.0000	0.0000000	0.0000	0.0000
616	M-31	272	0.1119	-0.9512	0.0158	-1.80	0.0006	-1.618	0.0000	0.0000060	0.0000	0.0000
678	M-35	301	0.1057	-0.9759	0.0140	-1.84	0.0003	-1.743	0.0000	0.0000269	0.0049	-2.308
705	M-42	271	0.0970	-1.0131	0.0161	-1.79	0.0005	-1.651	0.0000	0.0000000	0.0000	0.0000
710	M-45	319	0.0663	-1.1784	0.0101	-1.95	0.0002	-1.890	0.0000	0.0000000	0.0049	0.0049
712	M-48	329	0.0931	-1.0312	0.0141	-1.89	0.0002	-1.897	0.0000	0.0000000	0.0054	0.0054
713	M-50	302	0.0782	-1.1071	0.0112	-1.92	0.0002	-1.885	0.0000	0.0000000	0.0058	0.0058
716	M-51	302	0.0962	-1.0169	0.0149	-1.82	0.0003	-1.729	0.0000	0.0000000	0.0049	0.0049
768	M-53	302	0.1146	-0.9410	0.0201	-1.69	0.0002	-1.824	0.0000	0.0000096	0.0075	0.0075
773	M-84	348	0.0752	-1.1240	0.0121	-1.91	0.0001	-2.065	0.0000	0.0000000	0.0058	0.0058
775	M-90	287	0.1162	-0.9349	0.0148	-1.82	0.0005	-1.656	0.0000	0.0000000	0.0054	-2.271
776	M-101	305	0.1061	-0.9742	0.0139	-1.85	0.0004	-1.718	0.0000	0.0000000	0.0032	-2.501
777	M-102	346	0.0798	-1.0978	0.0096	-2.01	0.0001	-1.964	0.0000	0.0000000	0.0054	-2.265
779	M-103	331	0.0853	-1.0693	0.0110	-1.95	0.0001	-1.939	0.0000	0.0000057	0.0049	-2.310
783	M-114	270	0.1119	-0.9510	0.0150	-1.82	0.0006	-1.618	0.0000	0.0000000	0.0057	-2.248
785	M-130	281	0.1093	-0.9616	0.0140	-1.85	0.0005	-1.646	0.0000	0.0000010	0.0060	-2.224
786	M-181	245	0.1178	-0.9290	0.0159	-1.79	0.0006	-1.596	0.0000	0.0000399	0.0048	-2.323

NM= número de muestra; ai= actividades iónica.

NM	Pozo	pH (CO2)	pH rep	Error (%)	aH⁺
60	M-5	8.16	8.2*	-0.48	0.000000069063970
125	M-8	8.21	8.21*	0.03	0.000000061265800
227	M-11	8.10	7.9*	2.55	0.000000079237460
250	M-14	7.91	8.05*	-1.68	0.000000121657200
261	M-19A	8.28	8.25*	0.37	0.000000052388890
331	M-20	7.69	8.4*	-8.45	0.000000204235700
351	M-21A	8.08	7.95*	1.62	0.000000083380110
388	M-25	8.02	8.1*	-0.32	0.000000094654850
420	M-26	8.00	8*	-0.03	0.000000100606800
513	M-27	8.13	8.5*	1.05	0.000000073385320
533	M-29	8.32	8.2*	1.42	0.000000048250860
559	M-30	8.07	8.1*	-0.38	0.000000085236000
616	M-31	8.26	8.3*	-0.42	0.000000054331550
678	M-35	8.33	8.05	3.44	0.000000047148890
705	M-42	7.99	8.05	-0.73	0.000000102085700
710	M-45	8.54	8.05	6.06	0.000000028985390
712	M-48	8.66	8.05	7.58	0.000000021887330
713	M-50	8.34	8.05	3.58	0.000000045916640
716	M-51	8.34	8.05	3.58	0.000000045916640
768	M-53	8.34	8.05	3.58	0.000000045916640
773	M-84	8.90	8.05	10.60	0.000000012488850
775	M-90	8.17	8.05	1.46	0.000000067939870
776	M-101	8.37	8.05	4.01	0.000000042394520
777	M-102	8.88	8.05	10.27	0.000000013274560
779	M-103	8.68	8.05	7.88	0.000000020669300
783	M-114	7.98	8.05	-0.87	0.000000104685700
785	M-130	8.10	8.05	0.63	0.000000079237460
786	M-181	7.71	8.05	-4.21	0.000000194497400

Tabla 17. Resultados del pH y H⁺ en 30 (de 787) muestras del campo geotérmico de Cerro Prieto-I (CGCP-I).

NM= número de muestra; pH (CO2) = pH estimado; pH rep= (*pH reportado por Manón et al., 1977. Datos de pH sin * son valores promedio calculados para esos pozos).

4.5 Estado de equilibrio y diagramas de equilibrio termodinámico

4.5.1 Estado de equilibrio de cationes y diagramas de estabilidad catiónica Na/H⁺, K/H⁺, Ca/H⁺ Mg/H⁺

En la Figura 18A-D, se muestran los diagramas de estabilidad catiónica, donde las curvas representan la relación de las razones catiónicas para: A: aNa⁺/H⁺; B: aK⁺/H⁺; C: aCa²⁺/H⁺ y D: aMg²⁺/aH⁺. Estas curvas visualizan el comportamiento de los cationes en el fluido geotérmico (Arnórsson, 1983). Las razones catiónicas del presente trabajo se calcularon a partir de las concentraciones a condicones de yacimiento con temperaturas de fondo de pozo (BHT), las cuales se encuentran en un intervalo de temperaturas

entre119-348 °C (Tabla 16). Así, los diagramas de estabilidad reflejan si las razones calculadas presentan un comportamiento diferente a las registradas en el trabajo de Barragán et al., (1995).

La Figura 18A se observa la curva de saturación para la razón [aNa⁺/aH⁺], donde los valores de las muestras de la mayoría de los pozos sobrepasan la curva de saturación a excepción de algunas muestras del pozo M-27, la cual se posiciona sistemáticamente por debajo y sobre la curva. Para la Figura 18B se visualiza la razón catiónica [aK⁺/aH⁺] donde se muestra un comportamiento bastante similar a la razón [aNa⁺/H⁺], con la distinción de que ninguna muestra presenta insaturación de esta razón catiónica. Estos diagramas sugieren que los pozos del CGCP-I presentan un enriquecimiento de Na⁺ y K⁺, salvo a los pozos M-7, M-9 y M-27 lo cuales presentan un empobrecimiento de estos cationes.

Tabla 18. Valores estimados de razones Na⁺, K⁺, Ca⁺², Mg⁺² / aH^+ , a temperatura de vacimiento para cada muestra en los pozos del CGCP.

NM	Pozo	Туас	рН _(СО2)	Log(aNa ⁺ /aH ⁺)	Log(aK ⁺ /aH ⁺)	Log(aCa ⁺² /aH ⁺)	Log(aMg ⁺² /aH ⁺)
60	M-5	291	8.16	7.20	6.32	9.67	4.57
82	M-7	119	8.21	5.77	4.69	7.73	7.73
125	M-8	291	8.10	7.08	6.22	9.37	2.25
185	M-9	131	7.91	5.81	4.75	7.86	3.68
227	M-11	281	8.28	7.04	6.21	9.40	-
250	M-14	264	7.69	6.96	6.01	9.48	4.26
261	M-19A	297	8.08	7.30	6.43	9.92	3.58
331	M-20	243	8.02	6.79	5.88	9.32	4.76
351	M-21A	279	8.00	7.12	6.24	9.60	-
388	M-25	256	8.13	7.11	6.28	9.50	-
420	M-26	276	8.32	6.88	6.02	9.18	1.96
513	M-27	284	8.07	7.06	6.17	9.61	2.15
533	M-29	255	8.26	7.41	6.55	10.15	8.53
559	M-30	287	8.33	7.03	6.25	9.37	-
616	M-31	272	7.99	7.31	6.46	10.06	6.08
678	M-35	301	8.54	7.35	6.47	9.68	7.51
705	M-42	271	8.66	6.98	6.20	9.38	-
710	M-45	319	8.34	7.36	6.54	9.51	-
712	M-48	329	8.34	7.63	6.81	9.73	-
713	M-50	302	8.34	7.23	6.39	9.14	-
716	M-51	302	8.90	7.32	6.51	9.76	-
768	M-53	302	8.17	7.40	6.64	9.38	6.64
773	M-84	348	8.37	7.78	6.99	9.55	-
775	M-90	287	8.88	7.23	6.34	9.71	-
776	M-101	305	8.68	7.40	6.52	9.87	-
777	M-102	346	7.98	7.78	6.86	9.90	-
779	M-103	331	8.10	7.62	6.73	9.61	6.88
783	M-114	270	7.98	7.03	6.16	9.49	-
785	M-130	281	8.10	7.14	6.25	9.62	4.18
786	M-181	245	7.71	6.78	5.91	9.04	6.62

NM= número de muestra.

En la Figura 18C, el valor de la razón catiónica [aCa⁺²/aH⁺] en las muestras de los pozos presentan una distribución bastante alejada a la curva de equilibrio, lo cual nos indica un enriquecimiento del catión Ca⁺² en el fluido geotérmico. Esto podría sugerir la precipitación de minerales cálcicos dentro del reservorio. En la Figura 18D los datos de la razón catiónica [aMg⁺²/aH⁺] muestra una distribución bastante amplia con respecto a la curva de saturación, lo que podría sugerirnos un aumento y descenso de este catión, sin embargo, el valor de la concentración en mg/l es muy baja en comparación con la de los otros cationes, por ello los minerales compuestos de Mg⁺² son escasos.

4.5.2 Diagramas de estabilidad mineral y equilibrio químico

Para el cáculo de la especiación química se realizó con base a las temperaturas de registro de fondo de pozos (BHT) del CGCP-I, con el fin de elaborar diagramas de estabilidad y equilibrio químico para poder estimar las fases mineralógicas que controlan la composición química de los fluidos geotérmicos del campo.

Con base en la información mineralógica, en este trabajo se utilizaron dos diagramas. El primero es el sistema Na₂O-Al₂O₃-SiO₂-K₂O-H₂O el cual incluye minerales sódicos y potásicos cuyos campos se definen por las razones [aNa⁺/aH⁺] y [aK⁺/aH⁺]. El segundo sistema, CaO-Al₂O₃-SiO₂-MgO-H₂O+/-CO₂, que incluye minerales cálcicos y potásicos cuyos campos se definen por las razones [aCa⁺²/aH⁺] y [aMg⁺²/aH⁺].

En los diagramas se observan las fases mineralógicas presentes en el yacimiento los cuales han sido reportados por Elders (1979), Truesdell y Henley et al. (1982) y Barragán et al. (1995).

Las Figuras 19A-D muestran los diagramas de estabilidad mineral del sistema Na₂O-Al₂O₃-SiO₂-K₂O-H₂O para las temperaturas de registros de pozos utilizadas en este estudio. Esto se realizó para visualizar el cambio entre los límites de los minerales con respecto al aumento de temperatura en el yacimiento y observar la posición de las muestras con el cambio entre estos límites minerales.

Este sistema considera la mineralogía primaria (original) de la roca del yacimiento, y de acuerdo con estudios realizados por Truesdell y Henley (1982) y Barragán et al., (1995), el fluido de los pozos del CGCP-I presentan un buena relación Na/K, con tendencia al equilibrio con el feldespato potásico, lo cual se corrobora en este estudio. El fluido se encuentra en cuasiequilibrio con la microclina a excepción del pozo M-27, el cual presenta una tendencia a la plagioclasa albita. En el diagrama de Na₂O-Al₂O₃-SiO₂-K₂O-H₂O (Figura 20A-B), se observa un valor promedio de las muestras de los 31 pozos del CGCP-I, se aprecia que la distribución de los datos presenta una buena relación entre los minerales albita y microclina en la línea de equilibrio termodinámico a 280 °C y 300 °C, en este último, las muestras del CGCP-I se encuentran en cuasiequilibrio con los minerales albita/microclina.

Figura 18. Logaritmo de las razones catión/protón vs la temperatura de registro de pozos (A) log [aNa+/aH+], (B) log [aK+/aH+], (C) log [aCa+2/aH+], (D) log [aMg+2/aH+] de muestras de pozos del CGCP-I.

Figura 20. Comportamiento de los fluidos (promedio) del campo geotérmico de Cerro Prieto (CGCP-I) para el sistema Na₂O-Al₂O₃-SiO₂-K₂O-H₂O₂ que incluye minerales sódicos y potásicos.

Las Figura 21 y 22 muestran el diagrama de estabilidad mineral del sistema CaO-Al₂O₃-SiO₂-K₂O-H₂O+/-CO₂ a 280 °C utilizando las muestras de la base de datos y en el diagrama a 300 °C se muestra los promedios de las muestras de los 32 pozos del CGCP-I. Los diagramas muestran una tendencia hacia la fase del mineral wairakita, tal como lo proponen Elders (1979) y Reed (1979) para esta zona del CGCP-I. En este diagrama se puede observar que la totalidad de los pozos están en equilibrio con la Wairakita, lo que indica que la actividad del calcio en el agua de los pozos del CGCP-I es controlada por este mineral.

Figura 21. Comportamiento de los fluidos del campo geotérmico de Cerro Prieto (CGCP-I) para el sistema CaO-Al₂O₃-SiO₂-K₂O-H₂O+/-CO₂ que incluye minerales cálcicos y potásicos a 280 °C.

Figura 22. Comportamiento de los fluidos del campo geotérmico de Cerro Prieto (CGCP-I) para el sistema CaO-Al₂O₃-SiO₂-K₂O-H₂O+/-CO₂ que incluye minerales cálcicos y potásicos a 300 °C.

4.5.3 Estado de saturación de minerales seleccionados (diagrama Q/K)

Dentro de un reservorio, la solubilidad de los minerales regirán la composición química de los fluidos geotérmicos y esta a su vez se verá afectada por los procesos fisicoquímicos que se originen en el yacimiento, los cuáles determinan el grado de equilibrio en la interacción entre el fluido y la roca. Es importante conocer qué minerales influyen mayoritariamente en el equilibrio mineral dentro del yacimiento. Los índices de saturación del cuarzo se calcularon con el programa PHREEQC a partir de las concentraciones a condiciones de yacimiento y pH calculados con el método de disociación de CO₂, a temperaturas de referencia para cada pozo. Los minerales seleccionados para analizar el grado de saturación fueron la calcita y el cuarzo, debido a la presencia de estos en el CGCP-I.

En la Figura 23 se visualiza la línea de la constante de equilibrio para la calcita. Se observa que la mayoría de los pozos se encuentran en equilibrio con la calcita con excepción de los pozoz M-84, M-102 y M-103, los cuales presenta una subsaturación. Los pozos que se encuentran en la línea de equilibrio y en la región de subsaturación es muy probable que no presenten una depositación de calcita. Sin embargo, los pozos que se ubican en la región de sobresaturación como lo son el M-7, M-9 y M-90 es muy probable que presenten depositación de calcita en el yacimiento. Este mineral se presenta en abundancia en areniscas y lutitas del acuífero de Cerro Prieto, que cabe resaltar, es dónde se encuentra el reservorio.

Figura 23. Curva de saturación de la calcita en muestras de agua de pozos del campo geotérmico Cerro Prieto (CGCP-I) con respecto a la solubilidad del cuarzo para las muestras de pozos.

Figura 24. Curva de saturación del cuarzo en muestras de agua de pozos del campo geotérmico Cerro Prieto (CGCP-I) con respecto a la solubilidad del calcio para las muestras de pozos.

La Figura 24 representa el estado de saturación de la sílice (cuarzo). Para éste mineral se observa que la mayoría de los pozos se encuentran ligeramente sobresaturados con respecto al cuarzo. Esto sugiere que es posible que deposite sílice en el yacimiento.Esto es congruente con lo reportado por Izquierdo et al., (2013) donde menciona que pozos de esta zona del campo presentan incrustaciones de sílice y calcita. Sin embargo, hay tres pozos subsaturados que probablemente no presenten depósitos de sílice, los cuales corresponden al M-11, M-35 y M-90.

4.5.4 Estado de equilibrio roca-fluido

Para llevar a cabo la estimación del estado de equilibrio fluido-roca y la temperatura del reservorio, se implementó el método desarrollado por Giggenbach (1988). Este método se desarrolla con base en términos de procesos de disolución y equilibrio de los componentes de la roca, el cuál supone la disolución inicial de la roca y un posterior equilibrio total de la roca.

Figura 25. Diagrama de Giggenbach (1988). Interacción fluido-roca en términos de dos procesos: disolución inicialequilibrio final para el campo geotérmico Cerro Prieto (CGCP-I).

Figura 26. Diagrama ternario Na-K-Mg para evaluar las temperaturas a las cuáles se está efectuando el equilibrio roca- fluido para el campo geotérmico de CP-I (Giggenbach, 1988).

. En la Figura 25 se muestra la gráfica cuyos ejes X y Y se refieren a las relaciones de concentración de los principales cationes (Ca⁺²/Mg⁺² y Na⁺/K⁺, respectivamente). Se puede observar que las muestras de los pozos del CGCP-I se distribuyen hacia el final de la curva, donde los procesos de equilibrio fluido-roca se están efectuando en un intervalo de temperaturas entre 260- 320 °C. En la Figura 26 se presenta el diagrama ternario propuesto también por Giggenbach, en el cual se visualiza que la mayoría de muestras de aguas producidas por pozos en la zona CGCP-I se ubican en el área de equilibrio parcial y total en un intervalo de temperaturas.

4.6 Nuevos geotermómetros Na/K

4.6.1 Actividad iónica y concentración

Para la calibración de los geotermómetros de Na⁺/K⁺ se usó la metodología geoquímica o empírica, como ya se explicó en capítulos anteriores, en la cuál se utilizaron las actividades iónicas y las concentraciones (en mg/kg) de los componentes principales de las especies catiónicas presentes en los fluidos geotérmicos

a condiciones de yacimiento. En este trabajo se implementaron ambas formas, para ello se utilizaron datos de la Tabla 15 la cual muestra las concentraciones de compuestos mayores en condiciones de temperaturas de yacimiento y los valores calculados de actividades iónicas de componentes principales (Na⁺, K⁺, Ca²⁺, Mg²⁺) que se encuentran en la Tabla 16.

La calibración del geotermómetro catiónico Na⁺/K⁺ se desarrolló con el logaritmo de las actividades iónicas y concentraciones de la relación Na⁺/K⁺. Es de suma importancia tener siempre en cuenta que los geotermómetros de Na⁺/K⁺ emplean relaciones de iones en lugar de la concentración de una sola especie química (como en el caso del SiO₂), lo que significa que no se verán afectados por la pérdida de vapor o disolución con agua relativamente pura (Arnórsson, 2000). La variación del Na⁺ y K⁺ en el fluido depende del intercambio iónico de estos elementos entre un equilibrio termodinámico (Nicholson, 1993).

Utilizando las actividades iónicas y concentraciones *vs.* Temperaturas de fondo de pozo (BTH) se estimaron nuevas ecuaciones mediante regresión lineal, las cuales sólo son válidas para los intervalos de temperatura entre 240 a 350°C que corresponden a la base de datos utilizada en el presente estudio. Primero, se realizó la regresión lineal para 718 muestras de aguas pertenecientes a 30 pozos del CGCP-I (se omitieron 69 muestras de las 787, que correspondientes a los pozos M-7 y M-9 debido a que las temperautas BHT que se reportan son bajas < 140°C). Con base en la ecuación clásica de los geotermómetros Na/K (Ec. 54), para la relación bivariada actividades aNa⁺/aK⁺ *vs* BHT (temperaturas en 1/K), se obtuvo la ecuación 55 que corresponde a un nuevo geotermómetro de Na/K utilizando para la regresión las actividades iónicas de las 718 muestras de aguas geotérmicas del CGCP-I.

$$T \circ C = \frac{b}{\log\left(\frac{aNa^+}{aK^+}\right) + a} - 273.15$$
(54)

$$T \,^{\circ}C = \frac{832.87}{\log\left(\frac{aNa^+}{aK^+}\right) - 0.8947} - 273.1 \tag{55}$$

donde los coeficientes a y b se obtuvieron a partir de la regresión lineal entre la constante de equilibrio (log Keq) contra el inverso de la temperatura (1/T).

Utilizando la misma metodología, también se obtuvo una ecuación del geotermómetro Na⁺/K⁺ (Ec. 56) usando las concentraciones de Na⁺ y K⁺ de las 718 muestras de aguas geotérmicas del CGCP-I en condiciones de yacimiento:

$$T \,^{\circ}C = \frac{222.75}{\log\left(\frac{aNa^+}{aK^+}\right) + 0.4546} - 273.1 \tag{56}$$

La comparación de los resultados de las temperaturas estimadas con los nuevos geotermómetros por ambas ecuaciones (ecuaciones 55 y 56) con respecto a las temperaturas BTH de los pozos del CGCP-I se realizó mediante la estimación del error normalizado de acuedo a la siguiente ecuación:

$$e = \frac{T_{geo} - T_{yac}}{T_{vac}}$$
(57)

donde T_{geo} es la temperatura estimada por el nuevo geotermómetro de (aNa⁺/aK⁺ ó Na⁺/K⁺) y T_{yac} es la temperatura (BHT) de yacimiento geotérmico de acuerdo con la información de los pozos reportados en la literatura.

En la Figura 27 se muestra un diagrama de cajas y bigotes donde se presenta la distribución del error normalizado entre las temperaturas estimadas a partir de las ecuaciones 55 y 56 y las temperaruras de fondo de pozo (BHT), respectivamente. Se puede observar que el geotermómetro cálculado con base en la expresión del logaritmo de las actividades iónica/químicas (Log *ai*) muestra una menor dispersion del error con respecto a las estimaciones del geotermómetro basado en el logaritmo de las concentraciones Log *C*.

Figura **27.** Gráfico que muestra los errores normalizados entre las temperaturas estimadas con los geotermómetros Log *ai* y Log *C* vs. Temperaturas de fondo de pozo (BHT). La nomenclatura 718 Log *C* y 718 Log *ai* hace referencia al geotermómetro desarrollado con las concentraciones químicas y las actividades iónica de las 718 muestras de los fluidos geotérmicos del CGCP-I a condiciones de yacimiento.

Sin embargo, pese a que el nuevo geotermómetro "*Log ai*" presenta errores más bajos respecto al nuevo geotermómetro de "Log *C*", se identificaron errores considerablemente altos (>20%), por lo que se procedió a realizar un nuevo análisis de los valores de las actividades ionicas, donde se logró identificar y clasificar en tres grupos la base de datos de las 718 muestras de aguas de fluidos geotérmicos a condiciones de yacimiento (Figura 28). El criterio de esta clasificación se basa en la constante de equilibrio que gobierna la reacción mostrada en la ecuación 1 descrita por Giggenbach, (1988); donde asumiendo que los minerales puros (como la albita y el feldespato) en estado sólido, la razón de su actividad tiende a la unidad, la reacción queda sólo en función de las actividades químicas de los iones Na⁺/K⁺ donde la constante de quilibrio es $K_{eq} = 1.7(Na^+/K^+)$. Para el presente estudio, la alteración mineral es gorbernada por la reacción Albita (plagioclasa)/ K-Feldespato (microclina), donde la constate de equilibrio corresponde a $K_{eq} = 1.9(Na^+/K^+)$. Con base a esta discusión, los valores del log*n* aNa⁺/aK⁺ (logaritmo natural) fueron clasificados en tres grupos: el grupo A, con valores de log*n* aNa⁺/aK⁺ entre 1.6 y 2.0; el grupo B con valores de log*n* aNa⁺/aK⁺ > 2.0; y grupo C con valores de log*n* aNa⁺/aK⁺ < 1.6 (Figura 28).

(63)

Para cada grupo y aplicando la misma metodología antes descrita, se desarrollaron tres nuevas ecuaciones geotermométricas, las cuales se presentan en la Tabla 19.

Figura 28. Clasificación de los grupos A, B y C con base en la relación Logn aNa⁺/aK⁺ vs 1/TK (el inverso de la temperatura en K) en las 718 muestras de aguas de fluidos geotérmicos a condiciones de yacimiento del CGCP-I. El grupo A corresponde a valores del logn aNa⁺/aK⁺ entre 1.6 a 2.0; el grupo B valores de logn aNa⁺/aK⁺ > 2.0 y el grupo C con valores de logn aNa⁺/aK⁺ < 1.6.

Tabla 19. Ecuaciones del geotermómetro Na/K desarrollados a partir de las actividades iónicas y de las concentraciones de sus componentes catiónicos.

Ecuaciones o	del geoterm	ómetro de Na⁺/K⁺	
Geotermómetros Na/K ai (actividades ióni	cas)	Geotermómetro Na/K C (concentraciones	;)
Gpo A (266 Log <i>ai</i>)		Gpo A (266 Log C)	
$T \circ C = \frac{440.327}{\log\left(\frac{aNa^+}{aK^+}\right) + 1.186} - 273.1$ Gpo B (256 Log <i>ai</i>)	(58)	$T \circ C = \frac{477.281}{\log\left(\frac{Na^+}{K^+}\right) - 0.251} - 273.1$ Gpo B (256 Log C)	(61)
$T ^{\circ}C = \frac{500.913}{\log\left(\frac{aNa^+}{aK^+}\right) + 1.1687} - 273.1$		$T ^{\circ}C = \frac{353.153}{\log\left(\frac{Na^+}{K^+}\right) - 0.0121} - 273.1$	
Gpo C (196 Log ai)	(59)	Gpo C (196 Log C)	(62)
$T \circ C = \frac{1085.82}{\log\left(\frac{aNa^+}{aK^+}\right) - 0.1383} - 273.1$	(60)	$T ^{\circ}C = \frac{1062.118}{\log\left(\frac{Na^+}{K^+}\right) - 1.3463} - 273.1$	(63)

*La cantidad colocada antes del "Log *ai* y Log *C*" se refiere a la cantidad de muestras utilizadas en la regresión.

Como se observa en la Figura 29, los geotermómetros desarrollados con los logaritmos de las actividades (266 Log Na/K *ai*) presentan los menores errores normalizados o incertidumbres con respecto a los que se estimaron a partir de las concentraciones (para los 3 grupos) y a los geotermómetros clásicos comúnmente usados y reportados en la literatura (ver Tabla 5). El geotermómetro desarrollado con los logaritmos de las actividades de las 266 muestras (grupo A; 266 Log Na/K *ai*), presenta errores ente –10 y 13 %, el desarrollado con las actividades iónicas de 256 muestras (grupo B; 256 Log promNa/K *ai*), entre –11 y 10%, mientras que para el geotermómetro con las actividades de 196 muestras (grupo C; 196 Log Na/K *ai*), presenta errores entre –9 y 8%.

4.6.2 Geotermómetros de concentraciones químicas

Utilizando sólo las concentraciones de los componentes químicos en relación con las temperaturas de fondo de pozo (BTH), se estimó otra nueva ecuación llamada GT_Reyna-Avilez-2022 mediante regresión lineal (Ec. 64), válida para intervalos de temperaturas entre 80 a 350 °C. Los coeficientes de esta ecuación se recalibraron utilizando la base de datos de las 718 muestras de aguas de pozos geotérmicos a condiciones de yacimientos y los 34 datos publicados por Verma y Santoyo, (1997) y que los autores utilizaron para el desarrollo de su geotermómetro de Na⁺/K⁺ (el geotermómetro se muestra en la Tabla 5 y, 23 de las 34 muestras publicadas por los autores corresponden a pozos del CGCP-I). Se realizó la regresión lineal para un total de 752 muestras de aguas pertenecientes a 30 pozos del CGCP-I y a los reportados por Verma y Santoyo, (1997). En la Figura 30 se muestra la gráfica de la regresión de la cuál se obtuvieron los coeficientes de la ecuación GT_Reyna-Avilez-2022 y, en la Figura 31 se presenta el desempeño de esta ecuación con respecto a las ecuaciones geotermométricas clásicas, en la cual se observa que este nuevo geotermómetro estima errores más bajos en conparacion a los clásicos e incluso en comparación con el de Verma y Santoyo, 1997, donde el error para el 90% de la base de datos se encuentran entre $\pm 10\%$.

$$T \,^{\circ}C = \frac{1286.22}{\log\left(\frac{aNa^+}{aK^+}\right) + 1.705} - 273.1 \tag{64}$$

Figura 29. Desempeño de las ecuaciones geotermométricas desarrolladas a partir de las actividades catiónicas aNa⁺/aK⁺ en pozos del CCGP-I vs las ecuaciones geotermométricas clásicas. **e**rr=error; GT= Geotermómetro; **ai**=actividad iónica; **C**=concentraciones; FT73= Fournier y Truesdell, 1973; T76=Truesdell, 1976; F79= Fournier, 1972; TON80=Tonani, 1980; A183=Árnorsson- 1, 1983; A283=Árnorsson- 2, 1983; NN87=Nieva y Nieva, 1987; G88=Giggenbach, 1988; VS97=Verma y Santoyo, 1997; DG108=Díaz-González – 1, 2008; DG208=Díaz-González – 2, 2008.

Figura 30. Relación Log (Na/K) vs Temperatura de pozos del CGCP-I. Rombos azules corresponden a los datos compilados en el presente trabajo, los triánfulos marón corresponden a los datos reportados por Verma y Santoyo, (1997; VS97). Linea azul corresponde a la regresión de la ecuación geotermométricas por GT_Reyna-Avilez-2022, línea marrón corresponde a la regresion de la ecuación geotermometríca de Verma y Santoyo, (1997).

En la Figura 31 se muestra el desempeño de la ecuación geotermométrica desarrollada GT_Reyna-Avilez-2022 (basada en concentraciones de Na/K) contra el desempeño de los geotermómetros clásicos en la estimacion de la temperatura de las 718 muestras de aguas geotérmicas del CGCP-I. Como se observa, los errores normalizados estimados con el geotermómetro GT_Reyna-Avilez-2022 presentan una distribución homogénea y una distribución del tipo Gaussiana con respecto a los errores estimados con los geotermómetros clásicos. El GT_Reyna-Avilez-2022 muestra errores que van de -16 a +19% en comparación con los geotermómetros clásicos, donde para el GTFT73 lo errores se encuentran entre -17 y +41%, para el de GTT76 entre -17 y +38, el GT79 de -10 a +22%, el GTTON80 entre -11 y +42%, el GTA183 entre -12 y +32%; el GTA283 entre -11 y +22%, el GTNN87 se encuentran entre -3 y +47%, el GTG88 entre +2 y + 30, el GTVS97 se encuentran entre -9 y +26%, el GTDG108 entre -12 y +38%, y finalmente el GTDG208 se encuentran entre -15 y +38%.

Figura 31. Desempeño de las ecuaciones desarrolladas a partir de las concentraciones químicas de Na⁺ y K⁺ en pozos del CCGP-I vs las ecuaciones geotermométricas clásicas. err=error; GT= Geotermómetro; GT_Reyna-Avilez-2022=geotermómetros desarrollado en el presente trabajo basado en concentración química; FT73= Fournier y Truesdell, 1973; T76= Truesdell, 1976; F79= Fournier, 1972; TON80= Tonani, 1980; A183= Árnorsson- 1, 1983; A283= Árnorsson- 2, 1983; NN87= Nieva y Nieva, 1987; G88= Giggenbach, 1988; VS97= Verma y Santoyo, 1997; DG108= Díaz-González – 1, 2008; DG108= Díaz-González – 2, 2008.

Capítulo 5. Discusiones

A partir de la composición química del agua separada de los pozos productores del CGCP-I se caracterizó el tipo de agua producida por los pozos y también se determinó el estado de equilibrio agua-roca y las temperaturas a las cuales se está efectuando dicho equilibrio, además de haber calculado las actividades iónicas en la fase acuosa de los componentes mayoritarios del fluido geotérmico del campo. Al graficar el contenido relativo de CI-SO₄-HCO₃ de la composición química referida en la Tabla 7, las aguas se ubican en la región de "aguas maduras" del tipo clorurado-sódica, asociadas a una salmuera de origen geotérmico totalmente equilibrada (Figura 16). Estos resultados son congruentes con los estudios geoquímicos previos realizados y reportados por: Mañón et al., 1977; Truesdell et al., 1989; Barragán et al., 1995; Arellano-Gómez et al., 2010.

5.1 Estado de equilibrio a condiciones de yacimiento

5.1.1 Diagrama de estabilidad catiónica

Truesdell y Henley (1979) y Barragán et al., (1995) realizaron estudios sobre el equilibrio guímico de los fluidos del campo geotérmico de Cerro Prieto mediante los programas ENTHALP y EQQYAC, respectivamente, para calcular la especiación de las muestras de fluidos obteniendo los coeficientes de actividad y actividades iónicas de los cationes Na⁺, K⁺, Ca⁺² y Mg²⁺. En el presente trabajo se utilizó el programa de especiación química PHREEQC para obtener los índices de saturación. Adicional, se desarrolló un algoritmo escrito en lenguaje de programación en FORTRAN para el cálculo de los coeficientes de actividad y actividades iónicas de los cationes Na⁺, K⁺, Ca⁺² y Mg²⁺. El algoritmo sigue la metodología propuesta por Arnórsson (1982), el cual utiliza la ecuación de Debyel-Hookel modificada de Truesdell-Jones, (1974). Los coeficientes de actividad y actividades iónicas fueron calculados usando la concentración de los componentes iónicos a condiciones de yacimiento. Los valores calculados de las actividades iónicas para los cationes antes mencionados, fueron graficados en los diagramas de estabilidad catiónica y mineral, además de utilizarlos para estimar los valores de las razones logarítmicas de los cationes aNa⁺/aH⁺, aK⁺/aH⁺, aCa⁺²/aH⁺² y Mg⁺²/aH⁺². En la Tabla 20 se muestran los valores obtenidos de las razones catiónicas en el presente estudio y valores de razones reportadas por Barragán et al. (1995) para algunos pozos del CGCP-I (ver Tabla completa en el Anexo Tabla 27), los valores se presentan en la Figura 32, en la gráfica no se muestran los valores de actividad iónica calculadas por Truesdell y Henley (1979).

NM	Pozo	Туас	рНуас	Log(aNa ⁺ /aH ⁺)	Log(aK⁺/aH⁺)	Log(aCa ⁺² /aH ⁺)	Log(aMg ⁺² /aH ⁺)
60	M-5	291	8.16	7.20	6.32	9.67	4.57
	M-5*			7.02	6.16	8.80	4.62
82	M-7	119	8.21	5.77	4.69	7.73	7.73
125	M-8	291	8.10	7.08	6.22	9.37	2.25
	M-8*			7.11	6.24	8.98	4.73
185	M-9	131	7.91	5.81	4.75	7.86	3.68
227	M-11	281	8.28	7.04	6.21	9.40	-
	M-11*			7.12	6.34	10.09	5.24
250	M-14	264	7.69	6.96	6.01	9.48	4.26
	M-14*			6.88	5.96	9.23	4.92
261	M-19A	297	8.08	7.30	6.43	9.92	3.58
	M-19A*			7.26	6.34	9.56	5.05
331	M-20	243	8.02	6.79	5.88	9.32	4.76
351	M-21A	279	8.00	7.12	6.24	9.60	-
	M-21A*			6.95	6.00	9.58	4.83
388	M-25	256	8.13	7.11	6.28	9.50	-
	M-25*			7.14	6.24	9.66	5.06
420	M-26	276	8.32	6.88	6.02	9.18	1.96
	M-26*			6.92	6.05	9.71	3.72
513	M-27	284	8.07	7.06	6.17	9.61	2.15
	M-27*			6.95	6.07	8.96	4.54
533	M-29	255	8.26	7.41	6.55	10.15	8.53
	M-29*			6.86	5.88	7.65	4.97
559	M-30	287	8.33	7.03	6.25	9.37	-
	M-30*			6.96	6.14	9.19	4.60
616	M-31	272	7.99	7.31	6.46	10.06	6.08
	M-31*			6.83	6.05	8.44	4.13
678	M-35	301	8.54	7.35	6.47	9.68	7.51
	M-35*			7.11	6.11	9.77	5.07
705	M-42	271	8.66	6.98	6.20	9.38	-
708	M-43	240		6.95	6.13	6.38	-
	M-43*			7.19	6.35	9.77	3.78
710	M-45	319	8.34	7.36	6.54	9.51	-
	M-45*			7.34	6.69	9.45	4.09
712	M-48	329	8.34	7.63	6.81	9.73	-
	M-48*			7.55	6.83	10.08	3.96
713	M-50	302	8.34	7.23	6.39	9.14	-
	M-50*			7.15	6.21	9.51	4.83
716	M-51	302	8.90	7.32	6.51	9.76	-
	M-51*			7.17	6.48	9.19	3.82
768	M-53	302	8.17	7.40	6.64	9.38	6.64
	M-53*			7.19	6.60	8.68	2.49
773	M-84	348	8.37	7.78	6.99	9.55	-

Tabla 20. Relaciones de razones logarítmicas para los cationes aNa⁺/aH⁺, aK⁺/aH⁺, aCa⁺²/aH⁺ y Mg⁺²/aH⁺.

*Datos reportados por Barragán et al., 1995.

								_
	M-84*			7.61	7.02	10.50	4.57	
775	M-90	287	8.88	7.23	6.34	9.71	-	
	M-90*			7.06	6.22	9.07	3.75	
776	M-101	305	8.68	7.40	6.52	9.87	-	
777	M-102	346	7.98	7.78	6.86	9.90	-	
	M-102*			7.62	4.94	9.53	3.43	
779	M-103	331	8.10	7.62	6.73	9.61	6.88	
	M-103*			7.36	6.55	8.75	4.64	
783	M-114	270	7.98	7.03	6.16	9.49	-	
	M-114*			7.01	6.03	9.83	4.87	
785	M-130	281	8.10	7.14	6.25	9.62	4.18	
	M-130*			7.05	6.10	9.61	4.97	
786	M-181	245	7.71	6.78	5.91	9.04	6.62	

Continuación Tabla 20.

*Datos reportados por Barragán et al., 1995.

La Figura 32A muestra la razón del logaritmo de la razón aNa⁺/aH⁺ y el comportamiento del catión Na en los pozos, donde podemos observar que los valores de actividad reportados por Barragán et al., (1995) son muy cercanos a los obtenidos en el presente estudio. La distribución del cation Na⁺ se encuentra concentrada por encima de la curva de saturación denotando una alta concentración del catión en el fluido. En la Figura 32B se representa el logaritmo de la razón aK⁺/aH⁺ en la que se visualiza la concentración similar a la Figura 28A, a excepción de dos pozos (M-7 y M-9), las cuales presentan un menor contenido tanto de Na⁺ y K⁺ en el fluido. Cabe resaltar que estos dos pozos reportan temperaturas menores a 150 °C. En la Figura 32C se grafica el logaritmo de la relación aCa²⁺/aH⁺, se observan los valores de Barragán et al., (1995) bastantes similares a los obtenidos en este trabajo, con una tendencia lineal debido al enriquecimiento de este catión en el fluido. Finalmente, en la Figura 32D muestra la relación de la razón aMg²⁺/aH⁺ en la que se observan los valores reportados por Barragán et al., (1995) por debajo de los obtenidos en este trabajo, lo cual denota la variación de la concentración de este catión en el fluido geotérmico.

A pesar de que Barragán et al., (1995) utilizó temperaturas estimadas a partir de geotermometría clásica (geotermómetro catiónico de Nieva y Nieva) para realizar los cálculos de la especiación química y/o actividades, en el presente estudio se utilizaron temperaturas de fondo de pozo (BHT), encontrando un comportamiento similar entre los valores de las razones de los cationes Na⁺/H⁺ y K⁺/H⁺ calculadas en el presente trabajo y los reportados por Barragán et al., (1995).

Figura 32. Logarítmo de las razones catión/protón vs temperatura en pozos del campo geotérmico Cerro Prieto-I (CGCP-I). Puntos en color rojo corresponden a datos reportados por Barragán et al., 1995; puntos en color negro corresponden a datos calculados en este trabajo.

5.1.2 Diagramas de estabilidad mineral

En el diagrama de estabilidad mineral para el sistema Na₂O-Al₂O₃-SiO₂-K₂O-H₂O, Barragán et al, (1995) describió el equilibrio entre los minerales plagioclasa y feldespato- K a 260°C. En este trabajo los pozos del CGCP-I muestran un estado de cuasiequilibrio (metaestable) entre los minerales albita y la microclina a una temperatura de 280°C. Sin embargo, se observa que los pozos M-26 y M-25 (Figura 20) tienden más al equilibrio con la plagioclasa. Este resultado puede estar asociado a que estos pozos presentan un pH bajo (alcalino), lo que es común en la alteración propilítica. La buena relación entre la albita y microclina a sume que los los fluidos han alcanzado el equilibrio con los minerales hidrotermales dentro del yacimiento a temperaturas superiores a 150°C (Truesdell et al., 1987).

En los resultados del diagrama de estabilidad mineral para el sistema CaO-Al₂O₃-SiO₂-K₂O-H₂O+/-CO₂, Truesdell y Henley (1979) estiman un equilibrio entre las temperaturas 260 y 330° C con los minerales plagioclasa y feldespato potásico, es decir, no identificaron minerales de alteración (o secundarios). En este trabajo para este sistema mineral se observó un equilirio a 280 °C con los minerales de alteración: heulandita, prehnita, y wairakita con mayor tendencia hacia la wairakita a los 300 °C, tal como lo reportan Elders et al., (1979) y Reed (1979).

5.1.3 Estado de equilibrio Fluido-Roca

Utilizando la metodología y gráficas desarrollados por Giggenbach (1988), se estimó el estado de equilibrio fluido-roca a una temperatura entre 280-310°C (Figura 24 y 25), lo cuál representa una estimación más razonable debido al uso de temperaturas de fondo de pozo y los valores de la actividad catiónica, en comparación de trabajos anteriores (Henley y Truesdell, 1973 y Barragán et al., 1995).

5.2 Geotermómetros

5.2.1 Geotermómetro Na+/K+ (actividades iónicas)

En el presente estudio se estimaron temperaturas de 30 pozos del CGCP-I con geotermómetros basados en el logaritmo de actividades iónicas para 718 muestras (266 Log *ai*, 256 Log *ai* y 196 Log *ai*). Con base a los resultados de estas ecuaciones tenemos una mejoría en la estimación de las temperaturas de los pozos del CGCP-I. Sin embargo, nos dimos cuenta que los valores en la relación del logaritmo infieren en el cálculo de los coeficientes A y B del geotermómetro, en ese sentido, la ausencia o falta de concentración de los componentes químicos de aniones, imposibilita el desarrollo de una ecuación para una extensa cantidad de datos, ya que para el calculo de las actividades se requiere estimar las fuerzas ionicas, donde este parámetro está en función de las concentraciones de cationes y aniones presentes en las muestras de agua, lo que también afecta el correcto calculo de la constante de equilibrio de la muestra.

Verma y Santoyo (1997) realizaron una recalibración del geotermómetro Na/K de Fournier (1979) para estudiar las temperaturas de yacimiento para 23 pozos el CGCP (Tabla 21). Como se puede observar, las estimaciones de temperatura con el geotermómetro desarrollado con base en las actividades de composición catiónica (266 Log ai, 256 Log ai y 196 Log ai), presentan una mejoría para los pozos M-25 (con 17 muestras), M-30 (con 19 muestras) y el M-26 (con 22 muestras). Por otro lado, las estimaciones con el geotermómetro desarrollado con las concentraciones de composición catiónica (GT Reyna-Avilez-2022), mejoran para algunos casos, como lo son para los pozos M-31 (con 25 muestras) M-53 (con 44 muestras) y M-90 (con 2 muestras). La valores de los errores normalizados entre -17% y +19% estimados por las ecuaciones desarrolladas con actividades iónicas podría deberse a la ausencia que existe en los datos de concentración de algunos aniones (p.ej. HCO₃ y/o SO₄) ya que el trabajar con los componentes de actividad catiónica implica considerar la composición química completa del agua, es decir, toma en cuenta todos los componentes químicos del fluido para una estimacion adecuada de las fuerzas ionicas con las cuales se estiman los coeficientes de actividad iónica. Por otro lado, los valores de los errores en las estimaciones de temperatura con los geotermómetros desarrollados con base en las concentraciones se le puede atribuir a que en el CGCP-I se han registrado temperaturas altas >300 °C, lo cual de acuerdo a los resultados de la alteración mineral, el sistema se encuentra en cuasiequilibrio, lo que afecta realizar una buena aproximación analítica. Para afrontar esta limitación, se desarrolló un geotermómetro utilizando información de la literatura con valores de concentraciones a temperaturas < 200 °C (Verma y Santoyo, 1997). En la Tabla 21, se presentan los resultados de la estimación de la temperarura de pozos del CGCP-I con los geotermómetros de Fournier, (1979), Verma y Santoyo, (1997); Fausto, (1981); y los geotermómteros desarrollados en el presente estudio basado en actividades iónicas (Log ai) y el de concentraciones GT_Reyna-Avilez-2022, respectivamente.

	Temperatura geotermométrica Na/K (T° C)													
Pozo	F (1979)	%err	VS(1977)	%err	FTO(1981)	%err	#Log ai	%err	GT_Reyna-Avilez-2022	%err	T° medida			
M-5	297	2.06	295	1.37	296	1.72	295 ²	1.37	294	1.03	291			
M-8	294	1.03	293	0.69	282	-3.09	292 ¹	0.34	290	-0.34	291			
M-11	302	6.71	300	6.01	302	6.71	274 ³	-2.49	281	-0.71	281			
M-14	275	4.17	275	4.17	275	4.17	260 ²	1.89	263	-0.38	264			
M-19A	297	0.00	296	-0.34	299	0.67	301 ²	1.35	294	-1.01	297			
M-21A	291	4.30	290	3.94	287	2.87	277 ¹	-0.72	284	1.79	279			
M-25	300	17.19	298	16.41	300	17.19	257 ³	0.39	276	7.81	256			
M-26	287	3.99	287	3.99	288	4.35	271 ¹	-1.81	281	1.81	276			
M-27	293	3.17	291	2.46	294	3.52	292 ²	2.82	278	-2.11	284			
M-29	271	6.27	271	6.27	269	5.49	253 ³	-0.78	261	2.35	255			
M-30	297	3.48	295	2.79	296	3.14	287 ³	0.00	286	-0.35	287			
M-31	286	5.15	286	5.15	288	5.88	276 ¹	1.47	273	0.37	272			
M-35	302	0.33	300	-0.33	301	0.00	300 ²	-0.33	295	-1.99	301			
M-42	282	4.06	281	3.69	282	4.06	280 ³	3.32	269	-0.74	271			
M-45	327	2.51	323	1.25	325	1.88	348 ¹	9.09	296	-7.21	319			
M-50	310	2.65	308	1.99	312	3.31	356 ¹	17.8	303	0.33	302			
M-51	324	7.28	321	6.29	323	6.95	306 ¹	1.32	299	-0.99	302			
M-53	339	12.25	335	10.93	338	11.92	304 ³	0.66	315	4.30	302			
M-84	340	-2.30	335	-3.74	331	-4.89	370 ³	6.32	309	-11.2	348			
M-90	345	20.21	341	18.82	313	9.06	288 ²	0.35	287	0.00	287			

Tabla 21. Temperaturas estimadas por cada geotermómetro implementado por los autores antes mencionados, y los valores de las temperaturas estimadas en el presente estudio con sus respectivos porcentajes de error normalizado.

Superíndices significan= 1: Gpo A (266 Log *ai*); 2: Gpo B (256 Log *ai*); 3: Gpo C (196 Log *ai*). GT_Reyna-Avilez-2022 geotermómetro desarrollado con base en concentraciones químicas; F (1979): Fournier, 1979; VS(1997): Verma y Santoyo(1997); FTO(1981): Fausto (1981); % err: porcentaje de error normalizado en cada estimación; T°: temperatura del yacimiento.

Capítulo 6. Conclusiones

- En el presente trabajo, una base de datos con información geoquímica de 787 muestras de agua separada de 32 pozos del campo geotérmico de Cerro Prieto (CGCP-I) fue compilada para determinar el estado de equilibrio termodinámico-químico fluido-roca del yacimiento y recalibrar los geotermómetros de solutos (Na⁺/K⁺) para inferir o estimar su temperatura actual.
- El método desarrollado por Giggenbach (1988) basado en las relaciones de los cationes Ca⁺²/Mg⁺² y Na⁺/K⁺
 fue utilizado para determinar el estado de equilibrio fluido-roca y la temperatura del reservorio, nuestros resultados indican que el equilibrio se encuentra en un intervalo de temperaturas entre 280 320 °C.
- A partir de los diagramas de estabilidad mineral para el sistema NaO₂-Al₂O₃-SiO₂-K₂O-H₂O se identificó que la mineralogía que controla la relación Na⁺/K⁺ en los fluidos del yacimiento geotérmico (CGCP-I) son los minerales albita/microclina. En el diagrama de estabilidad mineral, la localización de las relaciones catiónicas de las muestras en el límite de estabilidad mineral entre la albita y microclina indica condiciones de un estado de equilibrio cuasiestable (metaestable) a temperaturas de 280 y 300 °C, estos resultados fueron conformados con el diagrama de Giggenbach.
- En los diagramas de estabilidad mineral para el sistema CaO-Al₂O₃-SiO₂-MgO-H₂O+/-CO se encontró que la actividad del Ca⁺² en el agua de los pozos del CGCP-I es controlada por el mineral wairakita a una temperatura entre 280 y 300 °C, lo cual es congruente por lo reportado por Elders (1979) y Reed (1979) para la alteración hidrotermal del campo y, difiere con lo publicado por Truesdell y Henley (1973), quienes determinaron que la fase mineralógica está gobernada por el mineral plagioclasa de composición oligoclasa, con una temperatura de equilibrio de 260 °C. Posteriormente, con base en este mismo diagrama, Barragán et al., (1995) determinó que los componentes del fluido del CGCP-I muestran un equilibrio hacia los feldespatos potásicos a una temperatura de 274 °C. Nuestros datos implican una temperatura de equilibrio más razonable por el uso de temperaturas de fondo de pozo (BHT).
- Se determinó con base a la curva de saturación de la calcita, que la mayoría de las muestras de agua de los pozos del CGCP-I se encuentran en equilibrio con este mineral, con excepción de las muestras de los pozos M-84, M-102 y M-103, los cuales tienden a la región de subsaturación, mientras que los pozos M-7, M-9 y M-90 tienden a la región de sobresaturación. Para la curva de saturación de la sílice (cuarzo) se determinó que las muestras de los pozos se encuentran ligeramente sobresaturados, a excepción de los pozos M-11, M-90 y M-35, que presentan subsaturación. Estos resultados indican que los pozos que se ubican en la

región de sobresaturación es muy probable que presenten depositación de calcita y/o sílice en el yacimiento.

- A partir de la base de datos, se desarrollaron seis nuevos geotermómetros de Na⁺/K⁺. Tres geotermómetros basados en el logaritmo de la actividad iónica (Log *ai*) y tres geotermómetros basados en concentraciones (Log *C*). También, se desarrolló un nuevo geotermómetro llamado GT_Reyna-Avilez-2022 basado en la razón de las concentraciones Na⁺/K⁺ utilizando la base de datos del presente trabajo y los datos publicados por Verma y Santoyo, (1997). Este geotermómetro es válido para intervalos de temperaturas entre 80 y 350 °C.
- Las temperaturas estimadas con los geotermómetros desarrollados en este trabajo presentan errores normalizados en promedio de ±10% con respecto a la temperatura del yacimiento y a las temperaturas estimadas con los geotermómetros clásicos, lo que indica una reducción en la incertidumbre en las estimaciones de las temperaturas del yacimiento.
 - Las temperaturas calculadas con base a los geotermómetros desarrollados utilizando el logaritmo de actividades iónicas para los cationes Na⁺ y K⁺, presentan una mejor estimación de la temperatura del yacimiento, donde se logró obtener errores normalizados de ±10%, esto se ve reflejado en mejoras a la estimación de temperatura de entre 5 a 10 °C con respecto a geotermómetros clásicos los cuales están basados en la concentración del componente. En cuanto a los geotermómetros desarrollados con base en las concentraciones químicas incluyendo el desarrollado utilizando los datos reportados por Verma y Santoyo (1997), presentaron una mejora (errores normalizados obtenidos de ±10%) en comparación con los geotermómetros clásicos. Con base a estos resultados, se establece que las ecuaciones geotermométricas basadas en las temperaturas de fondo de pozo (BHT), ofrecen ser una alternativa geotermométrica la cual brindan una mejora en la estimación de la temperatura de un yacimiento en producción.

Los resultados de la presente investigación aportan otro camino para estimar la temperatura de yacimiento en campos geotérmicos actualmente en producción, al desarrollar geotermómetros de solutos basados en las actividades químicas y en las concentraciones de las especies Na⁺/K⁺ presentes en los fluidos geotérmicos a condiciones de yacimiento. Conocer el estado termodinámico-químico de un yacimiento a partir de la geotermometría, ayuda en gran medida a validar o establecer condiciones iniciales en el desarrollo de modelos 2D y 3D del campo de concentraciones en el reservorio y también funciona como una buena herramienta geoquímica para complementar estudios encaminados a identificar nuevas áreas con potencial geotérmico en campos geotérmicos actualmente en explotación, como lo es el caso del campo geotérmico de Cerro Prieto.

Literatura citada

- Aguilar-Dumas A. 2008. Análisis geológico-productivo enfocado a la exploración de la parte oriental del campo geotérmico de Cerro Prieto, BC. Geotermia, 21(1)2-11.
- Arellano-Gómez V.M., Barragán-Reyes R.M., Aragón-Aguilar A., Izquierdo-Montalvo G., Portugal-Marín E.
 2010. Características y principales procesos en el yacimiento del área Cerro Prieto IV. Tecnología y Ciencias del Agua, antes Ingeniería hidráulica en México, 1(1)121-136.
- Ármannsson, H. 2012. Geochemical Aspects of Geothermal Utilization. En: Letcher T. (Ed). Comprehensive renewable energy. Elservier. Reykjavik, Iceland. pp. 95-164.
- Arnórsson, S. 1983. Chemical equilibria in Icelandic geothermal systems—Implications for chemical geothermometry investigations. Geothermics, 12(2-3), 119-128.
- Arnórsson S. 2000. Isotopic and chemical techniques in geotermal exploration, development and use. Sampling methods, data handling, interpretation, edited by Stefán Anórsson.- Vienna: International Atomic Energy Agency, 351 pp.
- Arnórsson, S. 2000a. The quartz- and Na/K geothermometers: I. New thermodynamic calibration, in Proceedings of the World Geothermal Congress 2000, Kyushu-Tohoku, Japan, 929-934.
- Arnórsson, S., Gunnlaugsson E. 1983. The chemistry of geothermal waters in Iceland II: Mineral equilibria and independ variables controlling water compositions. Geochimica et Cosmochimica Acta, 47, 547-566.
- Arnórsson, S., Gunnlaugsson E. 1985. New gas geothermometers for geothermal exploration calibration and application. Geochimica et Cosmochimica Acta, 49, 1307-1325.
- Arnórsson, S., Óskarsson, N. 2007. Molybdenum and tungsten in volcanic rocks and in surface and <100 °C ground waters in Iceland. Geochimica et Cosmochimica Acta, 71(2), 284-304.
- Arnórsson, S., Svavarsson, H. 1985. Application of chemical geothermometry to geothermal exploration and development. Geothermal Resources Council, Trans. 9,293-298.
- Arnórsson, S., Sigurdsson, S., Svavarsson, H. 1982. The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0 to 370 °C. Geochimica et Cosmochimica Acta, 46(9), 1513-1532.
- Arnórsson, S., Gunnlaugsson, E., Svavarsson, H. 1983. The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochimica et Cosmochimica Acta, 47(3), 567-577.
- Barragán R.M., Arellano V.M., Nieva D. 1995. Interacción agua-roca en el yacimiento geotérmico de Cerro Prieto, Baja California. Ingeniería hidráulica en México, 10(3)7-9.
- Bertani R. 2016. Geothermal power generation in the world 2010–2014 update report. Geothermics, 60, 31-34.

- Castillo F., Bermejo F.J., Domínguez B., Esquer A., Navarro F.J. 1981. Distribución de temperaturas en el campo geotérmico de Cerro Prieto. Tercer simposio del campo geotérmico de Cerro Prieto, 3,474-483.
- Camacho-Hernández J.M. 2009. Zonas de alteración hidrotermal y condiciones actuales del yacimiento: un enfoque para determinar zonas productoras al oriente del campo geotérmico de Cerro Prieto, BC. Geotermia, 22(2)35-44.
- Cobo J.M. 1979. Geología y mineralogía del campo geotérmico de Cerro Prieto, B.C. Comisión Federal de Electricidad, (CFE), 1,105-117.
- Cobo J.M., Bermejo F.J. 1982. Análisis de los pozos exploratorios del campo Cerro Prieto y Valle de Mexicali. Carto Simposio sobre el campo geotérmico de Cerro Prieto, Baja California 2(1)693-761.
- Fournier, R.O., Truesdell, A.H. 1973. An empirical Na-K-Ca geothermometer for natural waters. Geochimica et Cosmochimica Acta. 37(5)1255-1275.
- Fournier, R.O. 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, (5)41-50.
- Fournier, R.O. 1979. A revised equation for the Na/K geothermometer: Geothermal Resources Council, Transactions. (3)221-224.
- Fournier, R.O., Potter R.W. 1982. A revised and expanded silica (quartz) geothermometer. Geothermal Resources Council Bulletin. 11(10)3-12.
- Giggenbach W.F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52, 2749-2765.
- Giggenbach, W. F. 1991. Chemical techniques in geothermal exploration, in Applications of Geochemistry in Geothermal Reservoir Development. F. D'Amore Ed., UNITAR/UNDP Centre on Small Energy Resources. United Nations Institute for Training and Research, 119-144.
- Gómez-Arias E., González-Fernández A. 2017. La geotermia como energía renovable y sustentable en México. In Cabal-Cuesta H., Gómez-Arias E., Rodríguez-Martínez A., (Eds.), Serie de Ponencias: Perspectivas de Sustentabilidad en México (pp. 135-152). Madrid, España: Editorial Centro de Investigaciones Energéticas, Medioambientales y Tecnológicos.
- Gómez-Ávila M., Gómez-Arias E. 2017. Base de datos del complejo Volcánico Las Tres Vírgenes, Baja California Sur, México. Proyecto interno del CeMIE-Geo (sin publicar).
- Huttrer W. Gerald. 2020. Geothermal Power Generation in the World 2015-2020 Update Report. Proccedings World Geothermal Congress, 17 pp.
- Izquierdo G., Portugal E., Aragón A., Torres I., Álvarez J. 2001. Hydrothermal Mineralogy, Isotopu and Geochemistry in the Area of Cerro Prieto IV Baja California Norte, Mexico. Geothermal Resources Council Transactions, 25(2).

Lippmann M.J. 1983. Overview of Cerro Prieto studies. Geothermics, 12(4)265-289.

Puente I., de la Peña A. 1978. Geology of the Cerro Prieto geothermal field. Geothermics 8(4)155-175.

- Lippmann M.J., Truesdell A.H., Pruess K. 2000. The Control of Fault H on the Hydrology of the Cerro Prieto III Area. PROCEEDINGS, Twenty-Fifth Workshop on Geothermal Reservoir Engineering. Stanford University. 14.
- Lippman M. J., Mañón A. 1987. The Cerro Prieto Geothermal Field: Geotermal Sci. Technol. I. 38 pp.
- Lira-Herrera H. (2005). Actualización del modelo geológico conceptual del yacimiento geotérmico de Cerro Prieto, BC. Geotermia, 18(1)37-46.
- Lippmann M.J., Truesdell A.H., Gutiérrez-Puente H. 1997. What a will a 6 Km deep well at Cerro Prieto find? Proceedings. Twenty-First Workshop on Geothermal Reservoir Engineering. Stanford University 1997, 27-29.
- Macías-Vázquez J.L., Rocha-López V. S. 2013. Evolución Vulcanológica del Volcán Cerro Prieto, B.C. Geotermia, 26(1)24-33.
- Quijano-León J.L., Gutiérrez-Negrín L. C.A. 2003. 30 Years of Geothermal-Electric Generation in Mexico. Mexican Geothermal Development. An Unfinished Journey, 198-203 pp.
- Romo-Jones J.M., Gutiérrez-Negrín L.C., Canchola-Félix I. 2019. Mexico Country Report. IEA Geothermal, June 2020, 1-10 pp.
- Truesdell, A.H. y Jones, B.F. 1974. WATEQ, a computer program for calculating chemical equilibria of natural waters. U.S. Geological Survey, Journal of Research, 2,233-248.
- Truesdell A.H., Mañón A., Jiménez M.E., Sánchez A., Fausto-L. J.J. 1979. Geochemical evidence of drawdown in the Cerro Prieto Geothermal Field. Geothermics 8(1)257-265.
- Truesdell A.H., Thompson J.M, Coplen T.B. 1981. The origin of the Cerro Prieto geothermal brine. Geothermics, 10(4)225-238.
- Tello, H.E. 2005. Estado de equilibrio soluto-mineral saturación de minerales de alteración en fluidos geotérmicos de alta temperatura de México. Tesis Doctoral en ingeniería. Universidad Autónoma de México. 294 pp.
- Tello, H.E., Verma, M.P., González- Partida E 2005. Geochemical Characteristics of Reservoir Fluids in the Las Tres Vírgenes, BCS, Mexico: Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29.
- Truesdell A.H 1976. Summary of Section III. Geochemical techniques in exploration: Proceedings 2nd Symposium on the development and use of geothermal resources, San Francisco, 1, 837-844.
- Truesdell, A.H., Terrazas, B., Hernández, L., Janik, C.J., Quijano J.L. and Tovar, R 1989. The response of the Cerro Prieto reservoir to exploitation as indicated by fluid geochemistry. Proceedings CFE-DOE Symposium in Geothermal Energy. DOE CONF 8904129, 123-132 pp.
- Verma P., Santoyo E. 1997. New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. Journal of Volcanology and Geothermal Research, 79, 9-23.

- Verma M.P 2000. Revised quartz solubility temperature dependence equation along the water-vapor saturation curve: Proceedings world Geothermal Congress 2000 Kyushu-Tohoku, Japan, 1927-1932.
- Verma, M.P 2000a. Chemical thermodynamics of silica: a critique on its geothermometers: Geothermics, 29(3)323-346.
- Verma, M.P., Tello, H.E., Sandoval, F., Tovar, R., Martínez, J.L 2002. An interlab calibration of silica for geothermal water chemistry: Geothermics, 31(6)677-686.
- Verma P., Pandarinath K., Santoyo, E., González, P.E., Torres A. I.S., Tello, H. E 2006. Fluid chemistry and temperatures prior to exploitation at the Las Tres Vírgenes geothermal field, Mexico: Geothermics, 35(2)156-180.
- Verma P., Pandarinath K., Santoyo E. 2008. SolGeo: A new computer program for solute geothermometers and its application to Mexican geothermal fields. Geothermics, 37(2)597-621.

Anexos

Tabla 22. Composición química de muestras de agua de descarga de pozos reportadas del campo geotérmico Cerro Prieto-I.

							Cationes						Aniones								
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl ⁻	HCO₃	SO4 ⁻	SiO ₂	STD	UN
1	M-5	291	166.1	39.3	1313.02	-	8637.5	2317.5	506	0	29.1	0	21.5	0	0	16473	3.66	0	1176	29164.26	1
2	M-5	291	166.1	39.3	1313.02	-	9062.5	2287	520	0	0	0	13.7	0	0	16045	74.4	0	0	28002.6	1
3	M-5	291	166.1	7.58	1313.02	-	6000	1518	316	0	17.4	0	7.1	0	0	10504	174.4	0	639	19175.9	1
4	M-5	291	166.1	10.34	1313.02	-	6475	1681	344	0	21.4	0	11.7	0	0	11278	15.6	0	0	19826.7	1
5	M-5	291	166.1	10.34	1313.02	-	5812	1612	324	0	21.6	0	11.6	0	0	11038	13.42	0	785	19617.62	1
6	M-5	291	166.1	13.1	1313.02	-	4825	1630	316	0	16.25	0	13.2	0	0	11230	104.9	0	785	18920.35	1
7	M-5	291	166.1	12.41	1313.02	-	6200	1587	334.8	0	16.75	0	15	0	0	11624	113	0	810	20700.55	1
8	M-5	291	166.1	12.76	1313.02	-	6000	1560	332	0	13.25	0	14.2	0	0	11416	112.9	0	805	20253.35	1
9	M-5	291	166.1	11.72	1313.02	-	6125	1667.5	255.2	0	16.8	0	15.1	0	0	11241	110.2	0	675	20105.8	1
10	M-5	291	166.1	11.65	1313.02	-	6200	1675	262	0	15.5	0	13.5	0	0	11057	129.5	0	757	20109.5	1
11	M-5	291	166.1	11.72	1313.02	-	6125	1487	301	0	15.7	0	14.1	0	0	11131	108.7	0	672	19854.5	1
12	M-5	291	166.1	12	1313.02	-	6312	1337	347	0	15.4	0	14.2	0	0	11315	132.1	0	792	20264.7	1
13	M-5	291	166.1	12.41	1313.02	-	5687	1567	279	0	15.2	0	10.1	0	0	11290	138.3	0	795	19781.6	1
14	M-5	291	166.1	12.41	1313.02	-	5875	1450	332	0	19.7	0	9.5	0	0	11382	133.2	0	798	19999.4	1
15	M-5	291	166.1	12.41	1313.02	-	5625	1512	360	0	19.5	0	10.5	0	0	11187	117.2	0	790	19621.2	1
16	M-5	291	166.1	13.31	1313.02	-	6012	1487	312	0	18	0	12	0	0	11354	146.5	0	695	20036.5	1
17	M-5	291	166.1	11.45	1313.02	-	5950	1525	320	0	16.6	0	12.1	0	0	10657	111.5	0	665	19257.2	1
18	M-5	291	166.1	11.45	1313.02	-	5800	1440	266	0	18	0	14.2	0	0	10956	141	0	660	19295.2	1
19	M-5	291	166.1	14.07	1313.02	-	6250	1560	328	0	17.5	0	11.7	0	0	11108	106	0	840	20221.2	1
20	M-5	291	166.1	22.06	1313.02	7.5	8750	2225	504	0	15	0	16.2	0	0	15195	73	2	683	27463.2	1
21	M-5	291	166.1	20.68	1313.02	-	9950	2350	584	0	30.7	0	24	0	0	17864	67	0	0	30869.7	1
22	M-5	291	166.1	20.68	1313.02	-	8914	2187	506	0	27.9	0	0	0	0	16747	0	0	986	29367.9	1
23	M-5	291	166.1	20.68	1313.02	-	8333	2070	456	0	28.3	0	0	0	0	15346	0	0	707	26940.3	1
24	M-5	291	166.1	20.68	1313.02	-	8300	2210	521	2.4	27.5	0	0	0	0	16431	44	0	864	28399.9	1
25	M-5	291	166.1	20.68	1313.02	-	7950	2075	487	2.4	26	0	0	0	0	15597	30	0	0	26167.4	1
26	M-5	291	166.1	20.68	1313.02	-	8135	2030	485	4.8	26.5	0	0	0	0	15577	29	0	879	27166.3	1
27	M-5	291	166.1	19.99	1313.02	-	8250	1977	455	0	27.4	0	0	0	0	15344	0	0	950	27003.4	1
28	M-5	291	166.1	19.99	1313.02	-	8053	1949	441	0	28.4	0	0	0	0	14999	0	0	958	26428.4	1
29	M-5	291	166.1	6.18	1313.02	-	8750	2070	489	0	24.8	0	0	0	0	15850	0	0	1035	28218.8	1

NM= número de muestra; H= entalpía (kJ/kg); UNI= unidad de medida (1: mg/l; 2: mg/kg).

Continuación Tabla 22.

								Cationes						Aniones							
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl	HCO ₃	SO4 ⁻	SiO ₂	STD	UN
30	M-5	291	166.1	6.76	1313.02	-	8582	2095	481	0	0	0	0	0	0	15241	0	0	611	27010	1
31	M-5	291	166.1	20.34	1313.02	-	8825	2028	500	0	0	0	0	0	0	15720	0	0	1048	28121	1
32	M-5	291	166.1	6.89	1313.02	-	9013	2066	450.5	0	0	0	0	0	0	15834	0	0	0	27363.5	1
33	M-5	291	166.1	7.1	1313.02	-	8079	1970	332	7.3	0	0	18.5	0	0	15600	28	1.3	949	26985.1	1
34	M-5	291	166.1	6.89	1313.02	-	8037	1994	463	0	0	0	0	0	0	15005	0	0	884	26383	1
35	M-5	291	166.1	6.21	1313.02	-	8007	1877	461	0	0	0	0	0	0	15407	0	0	901	26653	1
36	M-5	291	166.1	7.58	1313.02	-	7950	1950	460.5	0	0	0	0	0	0	15150	0	0	958.4	26468.9	1
37	M-5	291	166.1	7.45	1313.02	-	7900	1950	456	0	0	0	0	0	0	15466	0	0	1097	26869	1
38	M-5	291	166.1	7.24	1313.02	-	7550	1820	455	0	0	0	0	0	0	15600	0	0	930	26355	1
39	M-5	291	166.1	6.89	1313.02	-	7976	1892	455	0.5	0	0	0	0	0	15210	0	0	1159	26692.5	1
40	M-5	291	166.1	7.45	1313.02	-	7921	1922	523	0.48	0	0	0	0	0	14990	0	0	900	26256.48	1
41	M-5	291	166.1	7.31	1313.02	7.89	8016	1899	504	0.5	0	0	17.74	0	0.05	14828	59.11	13	1318	26655.4	1
42	M-5	291	166.1	7.31	1313.02	-	8487	1969	403	0.24	0	0	23	0	0	15599	0	0	1034	27515.24	1
43	M-5	291	166.1	6.72	1193.24	-	6950	1670	395	0.45	17.5	0.9	14.5	0.3	0	12900	43	5	790	22786.65	1
44	M-5	291	166.1	6.18	1318.84	6.85	8749	2068	489	0	24.8	0	0	0	0	15850	0	0	1035	28215.8	1
45	M-5	291	166.1	6.57	1406.76	6.51	8585	2052	481	0	14.4	0	0	0	0	15241	0	0	611	26984.4	1
46	M-5	291	166.1	5.98	1410.95	-	8802	2028	500	0	25.9	0	0	0	0	15720	0	0	1048	28123.9	1
47	M-5	291	166.1	6.28	1373.27	-	9013	2066	451	0	26.2	0	0	0	0	15834	0	0	0	27390.2	1
48	M-5	291	166.1	6.28	1373.27	-	8070	1970	332	7.3	22	0	0	0	0	15600	0	0	949	26950.3	1
49	M-5	291	166.1	6.28	1331.4	-	8037	1994	463	0	0	0	0	0	0	15005	0	0	884	26383	1
50	M-5	291	166.1	6.18	1306.28	-	8001	1877	461	0	0	0	0	0	0	15407	0	0	901	26647	1
51	M-5	291	166.1	6.28	1364.9	-	7950	2950	461	0	22.3	0	0	0	0	15150	0	0	958	27491.3	1
52	M-5	291	166.1	6.47	1272.79	-	7900	1950	456	0	21.2	0	0	0	0	15466	0	0	1097	26890.2	1
53	M-5	291	166.1	6.77	1289.53	-	7550	1820	455	0	21.6	0	0	0	0	15600	0	0	930	26376.6	1
54	M-5	291	166.1	6.08	1327.22	-	7976	1892	445	0.5	21.8	0	0	0	0	15210	0	0	1159	26704.3	1
55	M-5	291	166.1	7.21	1306.28	-	7921	1922	523	0.48	18.9	0	0	0	0	14990	0	0	900	26275.38	1
56	M-5	291	166.1	7.55	1327.22	-	6914	1631	443	0	0	0	0	0	0	12537	0	0	0	21525	1
57	M-5	291	166.1	6.18	1260.23	-	8016	1899	504	0.5	22.9	0	0	0	0	14828	0	0	1318	26588.4	1
58	M-5	291	166.1	7.16	1272.79	-	8487	1969	403	0.24	21.4	0	0	0	0	15599	0	0	1034	27513.64	1
59	M-5	291	166.1	6.47	1247.67	-	8167	1975	423	0.63	21.2	0	0	0	0	15564	0	0	1066	27216.83	1
60	M-5	291	166.1	7.22	1280.74	8.2	8350	2050	525	0.8	22.5	0	21	0	0	15600	42.8	5	1000	27617.1	1
61	M-5	291	166.1	6.34	1294.98	-	7835	1738	410	0	21	0	21	0	0	14408	50	0	1056	25539	1

NM= número de muestra; UNI= unidad de medida (1: mg/l; 2: mg/kg). H= entalpía (kJ/kg).

Continuación Tabla 22.

							Cationes							Aniones							
NM	Pozo	Туас	Tsep	Psep	н	рН	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl ⁻	HCO ₃	SO4	SiO ₂	STD	UN
62	M-5	291	166.1	6.55	1302.09	-	7851	1752	362	0	19	0	22	0	0	14481	94	0	1131	25712	2
63	M-7	119	0	5.52	1218.1	-	5156	1125	348	0	12.5	0	2.3	0	0	9603	26.8	0	481	16754.6	2
64	M-7	119	0	1.61	1218.1	-	5000	1087	320	0	15.4	0	9.3	0	0	8815	38.4	0	0	15285.1	1
65	M-7	119	0	5.24	1218.1	-	4575	1187	292	0	11.75	0	13	0	0	9900	197.6	0	465	16641.35	1
66	M-7	119	0	5.38	1218.1	-	5875	1287	322	0	14.5	0	14	0	0	10245	257.9	0	485	18500.4	1
67	M-7	119	0	5.52	1218.1	-	4300	1287	316	0	14.5	0	13.6	0	0	10346	264.4	0	445	16986.5	1
68	M-7	119	0	5.31	1218.1	-	5050	1125	268.3	0	13.75	0	14.8	0	0	9924	258.9	0	520	17174.75	1
69	M-7	119	0	0	1218.1	-	5400	1250	275.2	0	15.37	0	12.3	0	0	10176	187.9	0	475	17791.77	1
70	M-7	119	0	5.45	1218.1	-	6012	1187	311	0	15.12	0	13.8	0	0	10422	201.1	0	505	18667.02	1
71	M-7	119	0	5.1	1218.1	-	6000	1362	312	0	14.45	0	13.1	0	0	10340	203.9	0	527	18772.45	1
72	M-7	119	0	5.45	1218.1	-	5250	1187	295	0	12.75	0	11	0	0	10166	207.7	0	597	17726.45	1
73	M-7	119	0	5.31	1218.1	-	5250	1237	320	0	14.75	0	13	0	0	10266	156.16	0	482	17738.91	1
74	M-7	119	0	5.17	1218.1	-	5625	1262	304	0	16.25	0	10	0	0	10030	197	0	560	18004.25	1
75	M-7	119	0	4.9	1218.1	-	5800	1175	316	0	16	0	14	0	0	10258	136	0	530	18245	1
76	M-7	119	0	5.17	1218.1	-	5800	1262	304	0	16	0	13.8	0	0	10109	190.4	0	480	18175.2	1
77	M-7	119	0	5.58	1218.1	-	5800	1125	308	0	14.5	0	13.6	0	0	10060	204	0	485	18010.1	1
78	M-7	119	0	6.07	1218.1	-	5500	1137	316	0	15.6	0	11.4	0	0	10066	0	0	545	17591	1
79	M-7	119	0	7.86	1218.1	-	5562	1099	264	0	0	0	0	0	0	9665	0	0	0	16590	1
80	M-7	119	0	3.45	1218.1	-	5759	936	304	0	10.4	0	0	0	0	9900	0	0	454	17363.4	1
81	M-7	119	0	2.41	1218.1	-	4669	932	287	0	5	0	0	0	0	9100	0	0	0	14993	1
82	M-7	119	0	4.69	1218.1	-	6125	922	421	3.7	13.8	0	0	0	0	11060	0	0	546	19091.5	1
83	M-8	291	169.6	7.28	1408.97	-	8028	1948	395	18.6	0	0	93	0	0	14362	0	0	824	25668.6	1
84	M-8	291	169.6	0	1408.97	-	8562	1993	497	50.4	0	0	84.6	0	0	14645	0	0	1039	26871	1
85	M-8	291	169.6	0	1408.97	-	8512	2106	415	19.2	0	0	89.6	0	0	14835	0	0	954	26930.8	1
86	M-8	291	169.6	20.68	1408.97	-	8580	2123	398	34.7	0	0	82.1	0	0	14805	0	0	899	26921.8	1
87	M-8	291	169.6	13.79	1408.97	-	8782	2123	353	75.3	0	0	84.4	0	0	14909	0	0	1024	27350.7	1
88	M-8	291	169.6	7.79	1408.97	-	8488	2171	405	36.2	0	0	80.9	0	0	14919	0	0	905	27005.1	1
89	M-8	291	169.6	44.68	1408.97	-	8305	2223	394	24.7	0	0	12.3	0	0	15841	0	0	1083	27883	1
90	M-8	291	169.6	26.2	1408.97	-	7656	1787	428	0	22.8	0	10.7	0	0	14503	68.3	0	1044	25519.8	1
91	M-8	291	169.6	36.54	1408.97	-	7156	1795	380	0	22	0	13.6	0	0	13366	1.22	0	0	22733.82	1
92	M-8	291	169.6	34.96	1408.97	-	7738	1912	378	14.1	0	0	12.8	0	0	13414	0	0	933	24401.9	1
93	M-8	291	169.6	44.68	1408.97	-	7125	1862	404	0	23.1	0	10.5	0	0	13642	2.44	0	864.5	23933.54	1

NM= número de muestra; UNI= unidad de medida (1: mg/l; 2: mg/kg). H= entalpía (kJ/kg).
Continuación Tabla 22.

										Cati	iones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	AI	Cl	HCO ₃	SO4	SiO ₂	STD	UN
94	M-8	291	169.6	46.19	1408.97	-	7437	1990	404	0	19.25	0	17.7	0	0	13840	46.3	0	770	24524.25	1
95	M-8	291	169.6	15.51	1408.97	-	7750	1800	388	0	20.12	0	17.4	0	0	13889	66.8	0	810	24741.32	1
96	M-8	291	169.6	10.82	1408.97	-	7800	1845	412	0	20	0	14.7	0	0	13563	77.12	0	940	24671.82	1
97	M-8	291	169.6	11.03	1408.97	-	6775	1687.5	337	0	18.75	0	18.2	0	0	13417	68.8	0	870	23192.25	1
98	M-8	291	169.6	11.58	1408.97	-	6825	1825	342	0	19.5	0	17	0	0	12133	10.7	0	865	22037.2	1
99	M-8	291	169.6	10.96	1408.97	-	7025	1675	347	0	20.5	0	15.6	0	0	13052	44.68	0	850	23029.78	1
100	M-8	291	169.6	10.96	1408.97	-	8000	2075	425	0	20	0	16.2	0	0	14242	33.5	0	995	25806.7	1
101	M-8	291	169.6	25.03	1408.97	-	7750	2300	375	0	18.25	0	9.1	0	0	14858	44.7	0	995	26350.05	1
102	M-8	291	169.6	47.57	1408.97	-	7250	1800	398	0	23	0	13	0	0	14153	14.6	0	910	24561.6	1
103	M-8	291	169.6	33.78	1408.97	-	7400	2600	424	0	27	0	12.7	0	0	15732	37.28	0	915	27147.98	1
104	M-8	291	169.6	51.02	1408.97	-	8850	2500	472	0	31.75	0	16.7	0	0	16284	45.27	0	875	29074.72	1
105	M-8	291	169.6	48.61	1408.97	-	8400	2425	436	0	28.25	0	16	0	0	15089	57.12	0	765	27216.37	1
106	M-8	291	169.6	31.92	1408.97	-	9925	2550	488	0	29.75	0	16.1	0	0	16439	48.96	0	765	30261.81	1
107	M-8	291	169.6	48.26	1408.97	-	8250	2250	400	0	29	0	15.2	0	0	14976	57.1	0	1020	26997.3	1
108	M-8	291	169.6	29.99	1408.97	-	7775	2075	381.6	0	0	0	0	0	0	14514	0	0	780	25525.6	1
109	M-8	291	169.6	29.79	1408.97	-	6625	1984	315.3	0	0	0	0	0	0	13905	0	0	0	22829.3	1
110	M-8	291	169.6	8.27	1408.97	-	6775	2062	368	0	0	0	0	0	0	13885	0	0	0	23090	1
111	M-8	291	169.6	16	1408.97	-	7995	2125	427	0	24.4	0	18	0	0	15885	74	0	1218	27766.4	1
112	M-8	291	169.6	7.24	1408.97	-	8483	2236	497	0	28	0	0	0	0	16241	0	0	918	28403	1
113	M-8	291	169.6	7.03	1408.97	-	8066	2066	487	0	23.7	0	0	0	0	15400	0	0	979	27021.7	1
114	M-8	291	169.6	7.72	1408.97	-	3525	1958	577	0	15.1	0	0	0	0	14408	0	0	943	21426.1	1
115	M-8	291	169.6	7.1	1408.97	-	8213	1835	445	0	22.8	0	0	0	0	14384	0	0	914	25813.8	1
116	M-8	291	169.6	7.1	1408.97	-	7919	1893	408	0	20.8	0	0	0	0	15158	0	0	0	25398.8	1
117	M-8	291	169.6	7.72	1408.97	-	6535	1675	244	9.7	17	0	9.5	0	0	12700	17	4.3	896	22107.5	1
118	M-8	291	169.6	7.58	1408.97	-	6526	1557	324	0	0	0	0	0	0	11994	0	0	893	21294	1
119	M-8	291	169.6	6.76	1408.97	-	6625	1557	315	0	0	0	0	0	0	12140	0	0	863	21500	1
120	M-8	291	169.6	7.31	1408.97	-	6100	1664	303	0	18	0	0	0	0	11800	0	0	872.8	20757.8	1
121	M-8	291	169.6	7.93	1408.97	-	6420	1470	323	0	16.2	0	0	0	0	11863	0	0	1098	21190.2	1
122	M-8	291	169.6	7.79	1408.97	-	6300	1440	314	0	20	0	0	0	0	11900	0	0	895	20869	1
123	M-8	291	169.6	7.65	1408.97	-	6435	1419	297	0.3	17.1	0	0	0	0	12110	0	0	1045	21323.4	1
124	M-8	291	169.6	7.24	1408.97	-	5591	1371	281	0.1	15.3	0	0	0	0	10580	0	0	840	18678.4	1
125	M-8	291	169.6	6.76	1408.97	8.21	5257	1310	258	0.04	14.5	0	15.52	0	0	10128	32.4	10	974	17999.46	1

Continuación Tabla 22.

										Cati	ones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl	HCO₃	SO4	SiO ₂	STD	UN
126	M-8	291	169.6	6.48	1247.67	-	6411	1456	382	0.14	18.6	0	0	0	0	11945	0	0	974	21186.74	1
127	M-8	291	169.6	6.18	1415.14	6.8	8070	2064	485	0	23.7	0	0	0	0	15400	0	0	979	27021.7	1
128	M-8	291	169.6	7.06	1402.58	-	8515	1955	575	0	15.1	0	0	0	0	14408	0	0	943	26411.1	1
129	M-8	291	169.6	5.88	1406.76	-	8213	1835	445	0	22.8	0	0	0	0	14384	0	0	816	25715.8	1
130	M-8	291	169.6	6.77	1771.02	-	7919	1893	408	0	0	0	0	0	0	15158	0	0	0	25378	1
131	M-8	291	169.6	7.06	1457.01	-	6535	1675	244	9.7	17	0	0	0	0	12700	0	0	896	22076.7	1
132	M-8	291	169.6	6.96	1431.89	-	6526	1557	324	0	0	0	0	0	0	11994	0	0	893	21294	1
133	M-8	291	169.6	6.47	1448.63	-	6656	1557	315	0	0	0	0	0	0	12140	0	0	863	21531	1
134	M-8	291	169.6	6.77	1360.71	-	6100	1664	303	0	18	0	0	0	0	11800	0	0	873	20758	1
135	M-8	291	169.6	7.06	1452.82	-	6420	1470	323	0	16.2	0	0	0	0	11863	0	0	1089	21181.2	1
136	M-8	291	169.6	6.96	1394.2	-	6300	1440	314	0	20	0	0	0	0	11900	0	0	895	20869	1
137	M-8	291	169.6	6.77	1352.34	-	6435	1419	297	0.3	17.1	0	0	0	0	12110	0	0	1045	21323.4	1
138	M-8	291	169.6	7.21	1498.87	-	5591	1371	281	0.1	15.3	0	0	0	0	10580	0	0	840	18678.4	1
139	M-8	291	169.6	6.37	1381.64	-	5257	1310	258	0.04	14.5	0	0	0	0	10128	0	0	971	17938.54	1
140	M-8	291	169.6	6.77	1276.97	-	6411	1456	382	0.14	18.6	0	0	0	0	11945	0	0	920	21132.74	1
141	M-8	291	169.6	6.28	1364.9	-	6369	1525	285	0.21	16.2	0	0	0	0	11863	0	0	973	21031.41	1
142	M-8	291	169.6	7.84	1372.43	-	8000	2000	460	0.4	18.5	0	20	0	0	15300	65	15	1000	26878.9	1
143	M-8	291	169.6	6.21	1294.56	8.3	5026	983	231	0	14	0	14	0	0	9207	72	0	811	16358	2
144	M-8	291	169.6	6.27	1440.26	-	3700	821	158	0	10	0	13	0	0	6816	147	0	926	12591	2
145	M-9	131	160	20.68	1129.39	-	7430	1358	505	21.5	16.9	0	93.9	0	0	12313	0	0	308	22046.3	1
146	M-9	131	160	17.24	1129.39	-	7292	1345	504.4	19	16.2	0	86.9	0	0	12208	0	0	272	21743.5	1
147	M-9	131	160	43.78	1129.39	-	7545	1399	523	22.4	16.8	0	35.9	0	0	12299	0	0	359	22200.1	1
148	M-9	131	160	20.68	1129.39	-	5968	1160	424	21.8	15	0	8.1	0	0	10706	0	0	489	18791.9	1
149	M-9	131	160	5.17	1129.39	-	5718	12063	400	17	17	0	6.1	0	0	9850	0	0	0	28071.1	1
150	M-9	131	160	6.89	1129.39	-	4750	1187	396	10.9	14.5	0	8.7	0	0	9652	0	0	379.5	16398.6	1
151	M-9	131	160	8.83	1129.39	-	5575	1128	412	2.9	11.28	0	11.5	0	0	10540	0	0	410	18090.68	1
152	M-9	131	160	8.41	1129.39	-	5675	1475	410	0	12.75	0	11.3	0	0	10545	76.4	0	355	18560.45	1
153	M-9	131	160	8.69	1129.39	-	6200	1300	442	0	17.5	0	11.9	0	0	10245	82.6	0	655	18954	1
154	M-9	131	160	9.86	1129.39	-	5600	1250	406	0	15	0	13.1	0	0	11192	77.1	0	470	19023.2	1
155	M-9	131	160	9.65	1129.39	-	5700	1340	416.8	0	19.25	0	11.6	0	0	11497	26.2	0	652	19662.85	1
156	M-9	131	160	9.65	1129.39	-	5762	1212	468.6	0	19.25	0	13	0	0	11771	34.9	0	640	19920.75	1
157	M-9	131	160	16.89	1129.39	-	7000	1375	512.1	0	19	0	13.4	0	0	12291	30.7	0	410	21651.2	1

Continuación Tabla 22.

										Cat	iones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl⁻	HCO₃	SO4	SiO ₂	STD	UN
158	M-9	131	160	15.17	1129.39	-	6500	1400	512.1	0	17.75	0	9.7	0	0	12284	46.6	0	572.5	21342.65	1
159	M-9	131	160	15.17	1129.39	-	6465	1385	512	0	19.5	0	12.7	0	0	12309	61.2	0	515	21279.4	1
160	M-9	131	160	11.38	1129.39	-	6550	1350	480	0	19	0	9.8	0	0	11936	29.28	0	530	20904.08	1
161	M-9	131	160	13.24	1129.39	-	6850	1340	492	0	20.3	0	12.7	0	0	12001	39.94	0	510	21265.94	1
162	M-9	131	160	10.34	1129.39	-	6000	1300	448	0	17	0	12	0	0	10657	73.44	0	540	19047.44	1
163	M-9	131	160	11.03	1129.39	-	6125	1260	468	0	17.2	0	9.6	0	0	11008	40.8	0	540	19468.6	1
164	M-9	131	160	7.58	1129.39	-	5437	1150	517	0	13.7	0	16.8	0	0	12773	57.1	0	532	20496.6	1
165	M-9	131	160	7.24	1129.39	-	6450	1070	499	0	17.3	0	22.7	0	0	11662	61.7	0	0	19782.7	1
166	M-9	131	160	6.89	1129.39	-	6331	1067	447	0	0	0	11.5	0	0	11459	65.3	0	495	19875.8	1
167	M-9	131	160	6.89	1129.39	-	6128	1030	465	0	18.5	0	0	0	0	11537	0	0	0	19178.5	1
168	M-9	131	160	5.65	1129.39	-	5842	941	422	0	16.1	0	0	0	0	10076	0	0	0	17297.1	1
169	M-9	131	160	6.21	1129.39	-	5550	838	437	0	12.2	0	0	0	0	10144	0	0	512	17493.2	1
170	M-9	131	160	11.58	1129.39	-	6100	778	371	0	14.7	0	0	0	0	9538	0	0	0	16801.7	1
171	M-9	131	160	4.83	1129.39	-	4058	532	343	0	4	0	0	0	0	7450	0	0	0	12387	1
172	M-9	131	160	13.79	1129.39	-	5820	910	500	0	13.6	0	0	0	0	11162	0	0	346.5	18752.1	1
173	M-9	131	160	13.79	1129.39	-	5870	879	470	0	13.3	0	0	0	0	11032	0	0	342	18606.3	1
174	M-9	131	160	13.1	1129.39	-	5730	848	465	0	13.35	0	0	0	0	10645	0	0	357.3	18058.65	1
175	M-9	131	160	5.52	1129.39	-	5820	860	472	0	13.6	0	0	0	0	10845	0	0	353	18363.6	1
176	M-9	131	160	15.86	1129.39	-	5590	772	438	0	12.35	0	0	0	0	10311	0	0	347.6	17470.95	1
177	M-9	131	160	7.45	1129.39	-	6020	910	440	0	13.8	0	0	0	0	10862	0	0	594	18839.8	1
178	M-9	131	160	7.45	1129.39	-	5800	944	442	0	14.2	0	0	0	0	11100	0	0	495	18795.2	1
179	M-9	131	160	0.34	1129.39	-	5358	730	396	1.9	13.6	0	0	0	0	10020	0	0	0	16519.5	1
180	M-9	131	160	10.34	1129.39	-	3918	522	317.6	0	0	0	0	0	0	7098.4	65.9	0	0	11921.9	1
181	M-9	131	160	7.93	1129.39	-	4977	661	500	0.75	11.8	0	0	0	0	9350	0	0	641	16141.55	1
182	M-9	131	160	5.69	1109.5	-	6316	938	420	0	16.1	0	0	0	0	10076	0	0	0	17766.1	1
183	M-9	131	160	7.26	1214.17	-	6020	910	440	0	13.8	0	0	0	0	10862	0	0	594	18839.8	1
184	M-9	131	160	6.57	1214.17	-	5800	944	422	0	14.2	0	0	0	0	11100	0	0	495	18775.2	1
185	M-9	131	160	6.18	979.71	8	5550	880	420	1.8	12.5	0	13	0	0	10000	66	32	500	17475.3	1
186	M-11	281	173.6	41.3	1234.59	-	9210	2168	443	23.6	26.6	0	100.5	0	0	15525	0	0	599.8	28096.5	1
187	M-11	281	173.6	18.96	1234.59	-	2040	7331	443.7	24.7	0	0	12.2	0	0	14353	0	0	0	24204.6	1
188	M-11	281	173.6	17.37	1234.59	-	1637	6281	318	28.9	19	0	4.75	0	0	11059	0	0	674.5	20022.15	1
189	M-11	281	173.6	18.06	1234.59	-	1887	6281	336	13.3	19.9	0	10.7	0	0	11130	0	0	0	19677.9	1

Continuación Tabla 22.

										Cati	ones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рН	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl	HCO ₃	SO4	SiO ₂	STD	UN
190	M-11	281	173.6	19.51	1234.59	-	1787	6387	332	12.15	18	0	13.6	0	0	12530	0	0	780	21859.75	1
191	M-11	281	173.6	19.51	1234.59	-	6750	1825	358	0	16.2	0	13.6	0	0	12412	96.1	0	695	22165.9	1
192	M-11	281	173.6	17.93	1234.59	-	7000	1762	330	0	19.7	0	14	0	0	12292	104.6	0	665	22187.3	1
193	M-11	281	173.6	20.34	1234.59	-	1362	1362	279	0	15.7	0	12	0	0	10540	147.6	0	680	14398.3	1
194	M-11	281	173.6	14.75	1234.59	-	3120	720	86.8	0	9.5	0	6.9	0	0	5511	220.7	0	402	10076.9	1
195	M-11	281	173.6	14.82	1234.59	-	4250	1242	243	0	10.45	0	7.2	0	0	8157	186.4	0	595	14691.05	1
196	M-11	281	173.6	24.82	1234.59	-	8350	2260	544	0	28.2	0	21.5	0	0	16445	39.9	0	840	28528.6	1
197	M-11	281	173.6	24.82	1234.59	-	7000	2075	596	0	30	0	14.9	0	0	15732	39.9	0	815	26302.8	1
198	M-11	281	173.6	18.62	1234.59	-	4625	1250	280	0	14.2	0	10.3	0	0	8954	316.9	0	525	15975.4	1
199	M-11	281	173.6	21.1	1234.59	-	4300	1337	276	0	14.2	0	11.5	0	0	9262	152.3	0	535	15888	1
200	M-11	281	173.6	21.24	1234.59	-	5300	1300	310	0	15	0	12	0	0	9263	168	0	520	16888	1
201	M-11	281	173.6	24.96	1234.59	-	6425	1530	344	0	18	0	11	0	0	11256	136	0	775	20495	1
202	M-11	281	173.6	39.99	1234.59	-	5500	1787	452	153	14	0	16	0	0	13150	46	0	597	21715	1
203	M-11	281	173.6	39.99	1234.59	-	7775	1825	498	0	28	0	25	0	0	15032	66	0	652	25901	1
204	M-11	281	173.6	39.85	1234.59	-	8281	1987	494	0	0	0	17	0	0	15965	59	0	870	27673	1
205	M-11	281	173.6	39.3	1234.59	-	8416	1846	551	0	27	0	0	0	0	15324	0	0	927	27091	1
206	M-11	281	173.6	40.47	1234.59	-	8166	1880	565	0	26	0	0	0	0	15300	0	0	682	26619	1
207	M-11	281	173.6	41.58	1234.59	-	8333	1806	551	0	24	0	0	0	0	14800	0	0	838	26352	1
208	M-11	281	173.6	41.92	1234.59	-	8600	1818	563	0	25.1	0	0	0	0	15088	0	0	873	26967.1	1
209	M-11	281	173.6	42.4	1234.59	-	8875	1834	527	0	24.4	0	0	0	0	15284	0	0	0	26544.4	1
210	M-11	281	173.6	31.03	1234.59	-	7504	1496	561	7.3	22	0	9.8	0	0	14450	44	4.3	758	24856.4	1
211	M-11	281	173.6	30.68	1234.59	-	7829	1510	639	0	0	0	0	0	0	14791	0	0	0	24769	1
212	M-11	281	173.6	15.51	1234.59	-	6332	801	645	0	0	0	0	0	0	12160	0	0	551	20489	1
213	M-11	281	173.6	13.1	1234.59	-	6360	772	653	0	0	0	0	0	0	11994	0	0	0	19779	1
214	M-11	281	173.6	13.79	1234.59	-	6380	630	747	0	0	0	0	0	0	12750	0	0	535.7	21042.7	1
215	M-11	281	173.6	12.07	1234.59	-	6400	650	742	0	0	0	0	0	0	12750	0	0	482.1	21024.1	1
216	M-11	281	173.6	12.89	1234.59	-	6600	668	813	0	0	0	0	0	0	13300	0	0	582.1	21963.1	1
217	M-11	281	173.6	8.83	1234.59	-	6300	630	780	0	0	0	0	0	0	12300	0	0	531.4	20541.4	1
218	M-11	281	173.6	9.17	1234.59	-	6100	600	696	0	0	0	0	0	0	12100	0	0	525	20021	1
219	M-11	281	173.6	5.45	1234.59	-	5950	570	620	0	0	0	0	0	0	11400	0	0	514	19054	1
220	M-11	281	173.6	4.48	1234.59	-	6010	560	600	0	0	0	0	0	0	11000	0	0	546.5	18716.5	1
221	M-11	281	173.6	13.58	1234.59	-	5600	560	618	0	0	0	0	0	0	11300	0	0	525	18603	1

Continuación Tabla 22.

							Cationes										Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рН	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl⁻	HCO ₃	SO4	SiO ₂	STD	UN
222	M-11	281	173.6	7.21	1234.59	-	6765	1466	479	0	0	0	0	0	0	11850	0	0	0	20560	1
223	M-11	281	173.6	21.51	1234.59	-	7272	1581	454	0	0	0	0	0	0	12850	0	0	0	22157	1
224	M-11	281	173.6	18.96	1234.59	-	7871	1955	521	0	0	0	0	0	0	15167	0	0	0	25514	1
225	M-11	281	173.6	10.34	1234.59	-	8365	2069	524	0	0	0	0	0	0	15342	0	0	0	26300	1
226	M-11	281	173.6	6.34	1234.59	-	8106	2048	521	0	0	0	0	0	0	15372	0	0	0	26047	1
227	M-11	281	173.6	6.76	1234.59	7.9	8229	2031	550	0.34	0	0	0	0	0.05	16129	0	12	1345	28296.39	1
228	M-11	281	173.6	7.24	1214.17	-	8366	2124	389	0.22	0	0	0	0	0	15588	0	0	0	26467.22	1
229	M-11	281	173.6	8.53	1184.86	-	8187	1876	566	0	26	0	0	0	0	15300	0	0	682	26637	1
230	M-11	281	173.6	6.37	1247.67	-	8599	1818	563	0	25.1	0	0	0	0	15088	0	0	873	26966.1	1
231	M-11	281	173.6	6.18	1226.73	-	8875	1834	527	0	24.4	0	0	0	0	15284	0	0	0	26544.4	1
232	M-11	281	173.6	7.94	1197.42	-	7504	1496	561	7.3	22	0	0	0	0	14450	0	0	758	24798.3	1
233	M-11	281	173.6	6.77	1180.68	-	7829	1510	639	0	0	0	0	0	0	14791	0	0	0	24769	1
234	M-11	281	173.6	5.79	1067.63	-	6332	801	645	0	0	0	0	0	0	12160	0	0	551	20489	1
235	M-11	281	173.6	6.37	1272.79	-	8229	2032	550	0.34	25.2	0	0	0	0	16129	0	0	1345	28310.54	1
236	M-11	281	173.6	6.86	1247.67	-	8366	2124	389	0.22	23.6	0	0	0	0	15588	0	0	1040	27530.82	1
237	M-11	281	173.6	6.77	1343.96	-	8478	2044	471	0.44	24	0	0	0	0	15751	0	0	1034	27802.44	1
238	M-11	281	173.6	8.67	1138.39	8.2	8200	1800	540	1.1	20	0	19	0	0	16700	40	10	900	28230.1	1
239	M-11	281	173.6	6.62	1358.62	-	8095	1888	437	0	25	0	21	0	0	15043	57	0	1067	26633	2
240	M-11	281	173.6	6.48	1369.08	-	8012	1869	439	0	0	0	17	0	0	15051	79	0	1128	26595	2
241	M-14	264	0	14.48	1200.27	-	2811	789	150	0	0	0	0	0	0	5409	0	0	0	9159	1
242	M-14	264	0	7.21	1200.27	-	3202	919	158	0	0	0	0	0	0	6098	0	0	0	10377	1
243	M-14	264	0	27.23	1200.27	-	3087	617	21	0	0	0	0	0	0	5864	0	0	0	9589	1
244	M-14	264	0	22.41	1200.27	-	318	58	17.8	0	0	0	0	0	0	550	0	0	0	943.8	1
245	M-14	264	0	23.44	1200.27	-	6988	1377	461	0	0	0	0	0	0	12677	0	0	0	21503	1
246	M-14	264	0	16.2	1200.27	-	151	33	10.3	0	0	0	0	0	0	1300	0	0	0	1494.3	1
247	M-14	264	0	16.41	1200.27	-	7092	1391	480	0	0	0	0	0	0	12697	0	0	0	21660	1
248	M-14	264	0	16.55	1200.27	-	6927	1370	470	0	0	0	0	0	0	12677	0	0	0	21444	1
249	M-14	264	0	16.2	1138.81	-	6928	1426	472	0	0	0	0	0	0	12757	0	0	0	21583	1
250	M-14	264	0	8.27	1327.22	8.05	7079	1439	445	0.61	17.7	0	18.38	0	0.05	13113	0	11	960	23083.74	1
251	M-14	264	0	7.24	1289.53	-	7357	1469	346	0.41	17	0	0	0	0	13383	0	0	877	23449.41	1
252	M-14	264	0	7.35	1289.53	-	7212	1468	389	0.99	16.7	0	0	0	0	12893	0	0	578	22557.69	1
253	M-14	264	0	6.34	1153.04	-	6505	1193	352	0	16	0	17	0	0	11730	67	0	725	20605	2

Continuación Tabla 22.

										С	ationes	5					Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl	HCO ₃	SO4	SiO ₂	STD	UN
254	M-14	264	0	6.48	1130.44	-	5937	1103	319	0	14	0	16	0	0	10770	115	0	842	19116	2
255	M-19A	297	0	7.03	1281.16	-	8606	2157	525	0	0	0	0	0	0	16025	0	0	923	28236	1
256	M-19A	297	0	6.83	1335.59	-	8702	2105	517	0	0	0	0	0	0	16431	0	0	680	28435	1
257	M-19A	297	0	8.27	1570.05	-	8320	2260	525	0	24.3	0	0	0	0	16950	0	0	975	29054.3	1
258	M-19A	297	0	7.93	1515.62	-	7580	1890	441	0	20.3	0	0	0	0	14666	0	0	1296	25893.3	1
259	M-19A	297	0	7.86	1469.57	-	8232	2087	493	0.4	22.9	0	0	0	0	16200	0	0	1121	28156.3	1
260	M-19A	297	0	7.58	1465.38	-	8490	2110	572	0.25	23.4	0	0	0	0	16110	0	0	0	27305.65	1
261	M-19A	297	0	7.86	1289.53	8.25	8238	2058	556	0.21	24.4	0	0	0	0.05	16329	0	0	1291	28496.66	1
262	M-19A	297	0	7.55	1318.84	-	8707	2118	440	0.18	21.3	0	0	0	0	16148	0	0	1094	28528.48	1
263	M-19A	297	0	7.16	1306.28	-	8463	2318	481	0.44	22.6	0	0	0	0	15892	0	0	1151	28328.04	1
264	M-19A	297	0	6.28	1371.77	-	8606	2157	525	0	0	0	0	0	0	16025	0	0	923	28236	1
265	M-19A	297	0	5.69	1371.77	-	8702	2105	517	0	0	0	0	0	0	16431	0	0	880	28635	1
266	M-19A	297	0	7.07	1371.77	-	8320	2260	525	0	24.33	0	0	0	0	16950	0	0	975	29054.33	1
267	M-19A	297	0	7.45	1371.77	-	7580	1890	441	0	20.3	0	0	0	0	14666	0	0	1296	25893.3	1
268	M-19A	297	0	6.57	1371.77	-	8232	2087	493	0.4	22.9	0	0	0	0	16200	0	0	1121	28156.3	1
269	M-19A	297	0	7.41	1371.77	-	8490	2110	572	0.25	23.4	0	0	0	0	16110	0	0	0	27305.65	1
270	M-19A	297	0	7.06	1371.77	-	8238	2058	556	0.21	24.4	0	17.26	0	0	16329	43.7	12	1291	28569.57	1
271	M-19A	297	0	7.35	1239.29	-	8707	2118	440	0.18	21.3	0	0	0	0	16148	0	0	1094	28528.48	1
272	M-19A	297	0	6.83	1325.96	-	8070	1833	465	0	24	0	20	0	0	15043	43	0	1045	26543	2
273	M-19A	297	0	6.83	1343.96	-	8193	1867	451	0	20	0	20	0	0	15184	77	0	1129	26941	2
274	M-20	243	163	6.83	1562.93	-	9100	2611	489	0	25	0	18	0	0	16677	46	0	1018	29984	2
275	M-20	243	163	6.83	1616.1	-	8937	2341	473	0	21	0	24	0	0	16825	118	0	1180	29919	2
276	M-20	243	163	6	1151.37	-	7625	1530	428	34	0	0	81.8	0	0	12780	0	0	776	23254.8	1
277	M-20	243	163	6.34	1306.96	-	7125	1212	628	7.29	16.75	0	16.2	0	0	12708	0	0	835	22548.24	1
278	M-20	243	163	30.47	1306.96	-	6000	1175	508	0	15.2	0	11.8	0	0	10885	84.6	0	480	19159.6	1
279	M-20	243	163	18.41	1306.96	-	5875	1180	700	0	19.2	0	17	0	0	12051	88.12	0	579	20509.32	1
280	M-20	243	163	19.03	1306.96	-	5632	1255	549	0	16.6	0	11.7	0	0	11309	308.4	0	610	19691.7	1
281	M-20	243	163	7.58	1306.96	-	5800	1350	553	0	19	0	13.5	0	0	11546	227.4	0	622.5	20131.4	1
282	M-20	243	163	6.41	1306.96	-	6387	1285	610	0	19.12	0	12.6	0	0	12215	281.8	0	537	21347.52	1
283	M-20	243	163	6.55	1306.96	-	6500	1390	642	0	18.7	0	14.2	0	0	11901	262.6	0	635	21363.5	1
284	M-20	243	163	7.24	1306.96	-	6675	1500	707	0	18.12	0	10.4	0	0	12510	268.1	0	605	22293.62	1
285	M-20	243	163	7.52	1306.96	-	6325	1415	708	0	19.6	0	10.5	0	0	12608	174.5	0	595	21855.6	1

Continuación Tabla 22.

										Cati	ones						Anior	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	AI	Cl⁻	HCO ₃	SO4	SiO ₂	STD	UN
286	M-20	243	163	8.69	1306.96	-	6050	1475	728	0	23	0	11	0	0	12935	170.4	0	635	22027.4	1
287	M-20	243	163	8.83	1306.96	-	6760	1425	672	0	20.25	0	13.7	0	0	12948	154.5	0	615	22608.45	1
288	M-20	243	163	9.93	1306.96	-	6200	1450	656	0	21.75	0	13	0	0	12250	108.8	0	590	21289.55	1
289	M-20	243	163	10.82	1306.96	-	6187	1275	664	0	18.2	0	13.2	0	0	10657	263	0	500	19577.4	1
290	M-20	243	163	8.27	1306.96	-	6750	1475	656	0	21.7	0	14.2	0	0	12645	185	0	650	22396.9	1
291	M-20	243	163	7.58	1306.96	-	5775	1212	628	0	0	0	0	0	0	9787	0	0	447	17849	1
292	M-20	243	163	10.34	1306.96	-	6090	1375	521	0	11	0	0	0	0	12060	0	0	0	20057	1
293	M-20	243	163	2.07	1306.96	-	5817	1165	463	0	0	0	0	0	0	10603	0	0	0	18048	1
294	M-20	243	163	27.58	1306.96	-	5825	1170	473	0	0	0	0	0	0	10773	0	0	0	18241	1
295	M-20	243	163	11.72	1306.96	-	6725	1450	555	0	0	0	0	0	0	12673	0	0	0	21403	1
296	M-20	243	163	11.72	1306.96	-	6000	1275	461	0	0	0	0	0	0	10773	0	0	0	18509	1
297	M-20	243	163	15.51	1306.96	-	5900	1267	461	0	0	0	0	0	0	11055	0	0	0	18683	1
298	M-20	243	163	9.45	1306.96	-	8286	2058	495	0	27	0	0	0	0	15494	0	0	951	27311	1
299	M-20	243	163	6.14	1306.96	-	6580	1690	501	0	19	0	0	0	0	13150	0	0	776	22716	1
300	M-20	243	163	7.24	1306.96	-	7006	1551	516	0	16	0	0	0	0	12399	0	0	684	22172	1
301	M-20	243	163	6.07	1306.96	-	7150	1432	507	0	19.6	0	0	0	0	12335	0	0	910	22353.6	1
302	M-20	243	163	7.38	1306.96	-	6950	1433	484.5	0	18.8	0	0	0	0	12227	0	0	0	21113.3	1
303	M-20	243	163	6.55	1306.96	-	4835	920	457	0	0	0	0	0	0	10028	0	0	646.6	16886.6	1
304	M-20	243	163	6.9	1306.96	-	5267	930.6	470	0	0	0	0	0	0	10574.9	0	0	603.3	17845.8	1
305	M-20	243	163	17.58	1306.96	-	5612	1407.6	377.9	0	0	0	0	0	0	12014.7	0	0	404.7	19816.9	1
306	M-20	243	163	13.38	1306.96	-	5750	1536.6	518.5	0	0	0	0	0	0	12312.6	0	0	546.3	20664	1
307	M-20	243	163	21.79	1306.96	-	6035	1222	451	0	0	0	8.2	0	0	11496	52.5	11.6	606	19882.3	1
308	M-20	243	163	24.13	1306.96	-	6086	1222	465	0	0	0	0	0	0	11265	0	0	606	19644	1
309	M-20	243	163	6.83	1306.96	-	6210	1267	583	0	0	0	0	0	0	11897	0	0	0	19957	1
310	M-20	243	163	6.55	1306.96	-	5813	1155	442	0	0	0	0	0	0	11192	0	0	0	18602	1
311	M-20	243	163	10.89	1306.96	-	5019	909	425	0	0	0	0	0	0	10083	0	0	0	16436	1
312	M-20	243	163	18.06	1306.96	-	6785	1437	491	0	0	0	0	0	0	12969	0	0	686	22368	1
313	M-20	243	163	16.55	1306.96	-	5700	1216	450	0	11.92	0	0	0	0	11350	0	0	595	19322.92	1
314	M-20	243	163	6.48	1306.96	-	6380	1200	450	0	12.8	0	0	0	0	11412	0	0	641	20095.8	1
315	M-20	243	163	6.55	1306.96	-	6600	1468	495	0	14.2	0	0	0	0	12700	0	0	675	21952.2	1
316	M-20	243	163	7.65	1306.96	-	5980	1254	445	2.1	13.5	0	0	0	0	11580	0	0	735	20009.6	1
317	M-20	243	163	8.83	1306.96	-	6346	1361	544.9	0.7	14.7	0	0	0	0	12050	0	0	0	20317.3	1

Continuación Tabla 22.

										Cat	iones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рН	Na	К	Ca	Mg	Li	Mn	В	Fe	Al	Cl-	HCO₃	SO4-	SiO ₂	STD	UN
318	M-20	243	163	6.83	1306.96	-	6266	1234	448	1.9	12.4	0	0	0	0	11724	0	0	760	20446.3	1
319	M-20	243	163	6.08	1285.35	-	6573	1709	501	0	19	0	0	0	0	13150	0	0	1035	22987	1
320	M-20	243	163	6.08	1289.53	-	7151	1432	507	0	18.8	0	0	0	0	12227	0	0	0	21335.8	1
321	M-20	243	163	6.67	1222.55	-	6950	1433	485	0	18.8	0	0	0	0	12227	0	0	0	21113.8	1
322	M-20	243	163	5.79	1268.6	-	6035	1222	451	0	15	0	0	0	0	11496	0	0	606	19825	1
323	M-20	243	163	6.28	1243.48	-	6086	1222	465	0	0	0	0	0	0	11265	0	0	606	19644	1
324	M-20	243	163	6.28	1293.72	-	6785	1437	491	0	0	0	0	0	0	12969	0	0	686	22368	1
325	M-20	243	163	5.88	1197.42	-	5700	1216	470	0	11.9	0	0	0	0	11350	0	0	595	19342.9	1
326	M-20	243	163	6.57	1209.99	-	6380	1200	450	0	12.8	0	0	0	0	11412	0	0	641	20095.8	1
327	M-20	243	163	6.18	1285.35	-	5980	1254	445	2.1	13.5	0	0	0	0	11580	0	0	735	20009.6	1
328	M-20	243	163	6.52	1201.61	-	6346	1361	545	0.7	14.7	0	0	0	0	12050	0	0	0	20317.4	1
329	M-20	243	163	6.47	1205.8	-	6266	1234	448	1.9	12.4	0	0	0	0	11724	0	0	760	20446.3	1
330	M-20	243	163	6.47	1637.04	-	6392	1189	481	2.2	13.1	0	0	0	0	11846	0	0	739	20662.3	1
331	M-20	243	163	6.67	1240.55	8.4	7100	1620	510	1.4	15.5	0	17	0	0	12800	57.9	5	800	22926.8	1
332	M-21A	279	0	19.31	1563.31	-	5803	1628	318.6	8.8	14.3	0	0	0	0	10301	0	0	804	18877.7	1
333	M-21A	279	0	40.82	1563.31	-	11650	2873	664	0	0	0	0	0	0	19554	0	0	0	34741	1
334	M-21A	279	0	40.82	1563.31	-	10300	2540	587	0	0	0	0	0	0	17292	0	0	0	30719	1
335	M-21A	279	0	42.4	1563.31	-	11581	2971	625	0	0	0	0	0	0	19956	0	0	0	35133	1
336	M-21A	279	0	42.4	1563.31	-	10167	2607	627	0	0	0	0	0	0	17745	0	0	0	31146	1
337	M-21A	279	0	20.68	1563.31	-	12401	3022	747	0	0	0	0	0	0	20710	0	0	0	36880	1
338	M-21A	279	0	11.38	1563.31	-	12406	3061	746	0	0	0	0	0	0	20821	0	0	0	37034	1
339	M-21A	279	0	9.38	1563.31	-	10269	2428	591	0	0	0	0	0	0	17091	0	0	0	30379	1
340	M-21A	279	0	10.89	1563.31	-	12708	3163	769	0	0	0	0	0	0	21414	0	0	0	38054	1
341	M-21A	279	0	57.92	1563.31	-	9825	2811	609.2	0	0	0	0	0	0	17705	0	0	830	31780.2	1
342	M-21A	279	0	40.68	1563.31	-	10540	2773	723.4	0	0	0	0	0	0	20720	0	0	961	35717.4	1
343	M-21A	279	0	8.62	1563.31	-	9602	2517	557	0	24	0	13.3	0	0	18700	41.5	0.2	894	32349	1
344	M-21A	279	0	8.27	1563.31	-	9177	2262	647	0	0	0	0	0	0	17190	0	0	903	30179	1
345	M-21A	279	0	9.65	1563.31	-	8989	2206	605	0	0	0	0	0	0	17289	0	0	829	29918	1
346	M-21A	279	0	8.27	1563.31	-	8020	2150	571	0	20.3	0	0	0	0	16300	0	0	817	27878.3	1
347	M-21A	279	0	8.27	1563.31	-	8500	2120	555	0	19.8	0	0	0	0	16518	0	0	819	28531.8	1
348	M-21A	279	0	45.51	1563.31	-	9200	2616	561	0	22.2	0	0	0	0	17700	0	0	890	30989.2	1
349	M-21A	279	0	9.45	1563.31	-	8628	2153	597	0.3	20.9	0	0	0	0	17100	0	0	941	29440.2	1

Continuación Tabla 22.

										Cat	iones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рН	Na	к	Ca	Mg	Li	Mn	В	Fe	Al	Cŀ	HCO₃	SO4-	SiO ₂	STD	UN
350	M-21A	279	0	8.96	1563.31	-	8683	2186	699	0.3	20.9	0	0	0	0	16880	0	0	0	28469.2	1
351	M-21A	279	0	8.2	1563.31	7.95	8761	2252	679	0.18	21.7	0	20.71	0	0	17271	63.25	13	1104	30185.84	1
352	M-21A	279	0	8.27	1563.31	-	8355	2000	537	0.23	17.5	0	0	0	0	16058	0	0	972	27939.73	1
353	M-21A	279	0	7.9	1980.36	-	9602	2517	557	19.4	24	0	0	0	0	18700	0	0	894	32313.4	1
354	M-21A	279	0	7.26	1779.39	-	9177	2262	647	0	0	0	0	0	0	17190	0	0	903	30179	1
355	M-21A	279	0	6.96	1704.03	-	8989	2206	605	0	0	0	0	0	0	17289	0	0	829	29918	1
356	M-21A	279	0	6.96	1695.65	-	8020	2150	571	0	20.3	0	0	0	0	15300	0	0	817	26878.3	1
357	M-21A	279	0	7.55	1628.67	-	8500	2120	555	0	19.8	0	0	0	0	16518	0	0	819	28531.8	1
358	M-21A	279	0	8.92	1549.12	-	8683	2186	699	0.3	20.9	0	0	0	0	16880	0	0	0	28469.2	1
359	M-21A	279	0	6.96	1469.57	-	8761	2252	679	0.18	21.7	0	0	0	0.05	17271	0	0	1104	30088.93	1
360	M-21A	279	0	7.06	1423.51	-	8355	2000	537	0.23	17.5	0	0	0	0	16058	0	0	972	27939.73	1
361	M-21A	279	0	6.67	1314.66	-	8361	2096	533	0.36	18.5	0	0	0	0	15740	0	0	948	27696.86	1
362	M-21A	279	0	6.34	1294.98	-	6440	1312	450	0	16	0	16	0	0	11862	60	0	888	21044	2
363	M-21A	279	0	6.34	1356.52	-	6014	1238	395	0	15	0	17	0	0	11229	103	0	966	19977	2
364	M-25	256	163.2	6.62	1297.908	-	7807	1789	427	0	23	0	21	0	0	14534	58	0	940	25599	2
365	M-25	256	163.2	6.69	1335.59	-	7782	1837	401	0	20	0	19	0	0	14652	90	0	1107	25908	2
366	M-25	256	163.2	0.21	1214.17	-	930	20	176	0	0	0	0	0	0	1487	0	0	0	2613	1
367	M-25	256	163.2	0.34	1295.11	-	934	20	180	0	0	0	0	0	0	1537	0	0	0	2671	1
368	M-25	256	163.2	0.41	1295.11	-	930	21	180	0	0	0	0	0	0	1487	0	0	0	2618	1
369	M-25	256	163.2	0.41	1295.11	-	936	22	180	0	0	0	0	0	0	1487	0	0	0	2625	1
370	M-25	256	163.2	2.34	1295.11	-	930	34	176	0	0	0	0	0	0	1537	0	0	0	2677	1
371	M-25	256	163.2	6.34	1295.11	-	5825	1412	376	0	0	0	0	0	0	10413	0	0	0	18026	1
372	M-25	256	163.2	5.58	1295.11	-	5450	1287	360	0	0	0	0	0	0	10513	0	0	0	17610	1
373	M-25	256	163.2	3.52	1295.11	-	5825	1330	360	0	0	0	0	0	0	10413	0	0	0	17928	1
374	M-25	256	163.2	3.59	1295.11	-	5625	1362	360	0	0	0	0	0	0	10413	0	0	500	18260	1
375	M-25	256	163.2	3.59	1295.11	-	5750	1450	372	0	0	0	0	0	0	10413	0	0	525	18510	1
376	M-25	256	163.2	3.79	1295.11	-	5875	1400	344	0	21.2	0	11.4	0	0	10413	166	0	560	18790.6	1
377	M-25	256	163.2	18.27	1295.11	-	7040	1440	500	0	24.9	0	22.3	0	0	12982	57	0	0	22066.2	1
378	M-25	256	163.2	31.72	1295.11	-	7450	1644	480	0	0	0	0	0	0	13600	0	0	0	23174	1
379	M-25	256	163.2	34.47	1295.11	-	7650	1590	480	0	0	0	0	0	0	13800	0	0	762	24282	1
380	M-25	256	163.2	33.23	1295.11	-	7980	1820	521	0	0	0	0	0	0	14500	0	0	0	24821	1
381	M-25	256	163.2	33.09	1295.11	-	8520	1990	565	0	0	0	0	0	0	15750	0	0	0	26825	1

Continuación Tabla 22.

										Cat	tiones					Anio	nes				
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl	HCO ₃	SO4 ⁻	SiO ₂	STD	UN
382	M-25	256	163.2	24.68	1295.11	-	8580	1930	565	0	0	0	0	0	0	15750	0	0	0	26825	1
383	M-25	256	163.2	18.2	1295.11	-	8520	1915	565	0	0	0	0	0	0	15700	0	0	946	27646	1
384	M-25	256	163.2	16.27	1295.11	-	8510	1835	561	0	0	0	0	0	0	15600	0	0	956	27462	1
385	M-25	256	163.2	16.27	1295.11	-	8490	1850	561	0	0	0	0	0	0	15650	0	0	0	26551	1
386	M-25	256	163.2	15.86	1295.11	-	8700	1850	570	0	0	0	0	0	0	15950	0	0	901	27971	1
387	M-25	256	163.2	6.62	1295.11	-	8515	2055	561	0	14.6	0	0	0	0	16000	0	0	878	28023.6	1
388	M-25	256	163.2	6.62	1295.11	8.1	8650	2000	585	0.6	23	0	0	0	0	16900	44	7	900	29109.6	1
389	M-25	256	163.2	7.24	1295.11	-	8950	2055	561	0	14.3	0	0	0	0	16418	0	0	948	28946.3	1
390	M-25	256	163.2	6.14	1295.11	-	6898	2230	628	0	0	0	0	0	0	16373	0	0	888	27017	1
391	M-25	256	163.2	6.27	1295.11	-	9238	1990	544	0	28	0	0	0	0	17041	0	0	0	28841	1
392	M-25	256	163.2	28.82	1295.11	-	6937	2307	505	0	0	0	0	0	0	15545	0	0	950	26244	1
393	M-25	256	163.2	6.48	1295.11	-	8525	1980	457	21	23	0	11.4	0	0	15805	35.4	7.4	905	27770.2	1
394	M-25	256	163.2	6.55	1295.11	-	8211	1972	539	0	0	0	0	0	0	15199	0	0	942	26863	1
395	M-25	256	163.2	38.96	1295.11	-	8021	1944	490	0	0	0	0	0	0	15430	0	0	0	25885	1
396	M-25	256	163.2	6.62	1295.11	-	8510	1847	525	0	0	0	0	0	0	15807	0	0	765	27454	1
397	M-25	256	163.2	6.48	1295.11	-	7630	1930	512	0	22.8	0	0	0	0	15400	0	0	893	26387.8	1
398	M-25	256	163.2	6.96	1295.11	-	7960	1950	532	0	22.4	0	0	0	0	15667	0	0	1171	27302.4	1
399	M-25	256	163.2	7.31	1295.11	-	7880	2030	687	0	22	0	0	0	0	15700	0	0	895	27214	1
400	M-25	256	163.2	6.89	1295.11	-	8081	1935	465	0.8	22.3	0	0	0	0	15380	0	0	1076	26960.1	1
401	M-25	256	163.2	7.38	1295.11	-	7804	1918	557	0.46	23.1	0	0	0	0	15060	0	0	0	25362.56	1
402	M-25	256	163.2	6.21	1295.11	-	8063	1911	526	0.47	23.4	0	20.75	0	0.05	15315	68.1	0	1141	27068.77	1
403	M-25	256	163.2	6.89	1295.11	-	8138	1942	372	0.28	21.4	0	0	0	0	15263	0	12	984	26732.68	1
404	M-25	256	163.2	6.57	1272.79	-	8515	2052	563	0	24.6	0	0	0	0	16000	0	0	878	28032.6	1
405	M-25	256	163.2	6.47	1285.35	-	8936	2052	563	0	14.6	0	0	0	0	16418	0	0	948	28931.6	1
406	M-25	256	163.2	6.08	1289.53	-	8950	2055	628	0	0	0	0	0	0	16373	0	0	888	28894	1
407	M-25	256	163.2	5.69	1268.6	-	9238	1990	544	0	28	0	0	0	0	17041	0	0	0	28841	1
408	M-25	256	163.2	6.37	1276.97	-	8525	1487	457	21	23	0	0	0	0	15805	0	0	905	27223	1
409	M-25	256	163.2	5.59	1318.84	-	8211	1972	539	0	0	0	0	0	0	15199	0	0	942	26863	1
410	M-25	256	163.2	6.18	1331.4	-	8510	1847	527	0	0	0	0	0	0	15807	0	0	765	27456	1
411	M-25	256	163.2	6.18	1306.28	-	7630	1930	512	0	28.8	0	0	0	0	15400	0	0	893	26393.8	1
412	M-25	256	163.2	6.28	1335.59	-	7960	1950	532	0	22.4	0	0	0	0	15667	0	0	1171	27302.4	1
413	M-25	256	163.2	6.86	1314.66	-	7880	2030	687	0	22	0	0	0	0	15700	0	0	895	27214	1

Continuación Tabla 22.

										Cati	ones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	AI	Cl	HCO ₃	SO4	SiO ₂	STD	UN
414	M-25	256	163.2	6.18	1339.78	-	8081	1935	465	0.8	22.3	0	0	0	0	15380	0	0	1076	26960.1	1
415	M-25	256	163.2	7.21	1276.97	-	7804	1918	557	0.46	23.1	0	0	0	0	15060	0	0	0	25362.56	1
416	M-25	256	163.2	5.49	1289.53	-	8063	1911	526	0.47	23.4	0	0	0	0	15315	0	0	1141	26979.87	1
417	M-25	256	163.2	6.77	1306.28	-	8138	1942	372	0.28	21.4	0	0	0	0	15263	0	0	984	26720.68	1
418	M-25	256	163.2	6.18	1314.66	-	8043	2029	461	0.68	21.6	0	0	0	0	15249	0	0	990	26794.28	1
419	M-25	256	163.2	6.7	1232.18	-	8650	2000	585	0.6	23	0	20	0	0	16900	44	7	900	29129.6	1
420	M-26	276	163.2	6.7	1297.07	8	9050	2200	840	0.9	20.5	0	19	0	0	16800	39.6	5	1000	29975	1
421	M-26	276	163.2	11.51	1339.99	-	9335	2629	510	29.9	24.8	0	13	0	0	16772	0	0	872	30185.7	1
422	M-26	276	163.2	6.21	1339.99	-	60625	1575	300	19.4	16	0	8.25	0	0	10605	0	0	689.5	73838.15	1
423	M-26	276	163.2	11.58	1339.99	-	5406	1543	332	19.4	21.6	0	10.5	0	0	11071	0	0	0	18403.5	1
424	M-26	276	163.2	14.48	1339.99	-	6287	1575	324	1.2	17.25	0	13.2	0	0	11348	87.8	0	720	20373.45	1
425	M-26	276	163.2	18.96	1339.99	-	6375	1650	336	0	18.2	0	14.8	0	0	11427	86.8	0	660	20567.8	1
426	M-26	276	163.2	7.86	1339.99	-	6350	1630	368	0	15	0	16.4	0	0	12295	99.14	0	605	21378.54	1
427	M-26	276	163.2	13.51	1339.99	-	6000	1575	294	0	16.12	0	12.9	0	0	11417	99.1	0	680	20094.12	1
428	M-26	276	163.2	13.17	1339.99	-	6525	1750	306	0	17	0	14.2	0	0	11742	69.8	0	725	21149	1
429	M-26	276	163.2	13.03	1339.99	-	4625	1587	297	0	20.5	0	13	0	0	11919	52.3	0	738	19251.8	1
430	M-26	276	163.2	6.41	1339.99	-	6500	1610	338	0	20.75	0	9.7	0	0	11706	55.9	0	797	21037.35	1
431	M-26	276	163.2	14.07	1339.99	-	6650	1612	338	0	16.5	0	10.7	0	0	11771	100.5	0	755	21253.7	1
432	M-26	276	163.2	15.65	1339.99	-	6300	1582	320	0	19.75	0	9.9	0	0	12409	58.6	0	760	21459.25	1
433	M-26	276	163.2	15.17	1339.99	-	6375	1662	368	0	21	0	11.3	0	0	12336	71.9	0	745	21590.2	1
434	M-26	276	163.2	14.69	1339.99	-	6400	1565	328	0	18.75	0	13	0	0	12100	87.87	0	810	21322.62	1
435	M-26	276	163.2	14.34	1339.99	-	6175	1625	336	0	19.5	0	12	0	0	11810	81.6	0	725	20784.1	1
436	M-26	276	163.2	19.93	1339.99	-	6750	1537	356	0	24	0	13.5	0	0	12848	71	0	740	22339.5	1
437	M-26	276	163.2	19.24	1339.99	-	6775	1637	364	0	21	0	14.4	0	0	12794	62	0	850	22517.4	1
438	M-26	276	163.2	25.51	1339.99	-	8740	2224	481	0	0	0	0	0	0	16029	0	0	0	27474	1
439	M-26	276	163.2	14.48	1339.99	-	9300	2464	529	0	0	0	0	0	0	17289	0	0	0	29582	1
440	M-26	276	163.2	9.79	1339.99	-	9300	2396	525	0	0	0	0	0	0	17286	0	0	0	29507	1
441	M-26	276	163.2	6.89	1339.99	-	9012	2358	537	0	30	0	0	0	0	17227	0	0	954	30118	1
442	M-26	276	163.2	6.89	1339.99	-	9175	2398	542	0	30	0	0	0	0	17347	0	0	961	30453	1
443	M-26	276	163.2	6.89	1339.99	-	9187	2394	543	0	0	0	0	0	0	17098	0	0	1003	30225	1
444	M-26	276	163.2	6.76	1339.99	-	9475	2285	773	0	26	0	0	0	0	17600	0	0	950	31109	1
445	M-26	276	163.2	7.24	1339.99	-	9380	2361	966	0	23	0	0	0	0	17006	0	0	838	30574	1

Continuación Tabla 22.

										Cati	iones						Anion	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl-	HCO ₃	SO4	SiO ₂	STD	UN
446	M-26	276	163.2	6.14	1339.99	-	9300	2251	442	0	23	0	0	0	0	17153	0	0	0	29169	1
447	M-26	276	163.2	6.34	1339.99	-	9875	2205	838	0	31	0	0	0	0	17759	0	0	828	31536	1
448	M-26	276	163.2	6.89	1339.99	-	9863	2284	892.5	0	29.9	0	0	0	0	18730	0	0	0	31799.4	1
449	M-26	276	163.2	37.16	1339.99	-	7682	2056	839	0	0	0	0	0	0	16781	0	0	0	27358	1
450	M-26	276	163.2	10.27	1339.99	-	8096	2207	823.4	0	0	0	0	0	0	17376	0	0	902	29404.4	1
451	M-26	276	163.2	7.17	1339.99	-	8663	2043	521	9.7	23	0	11.7	0	0	16900	15.9	2	876	29065.3	1
452	M-26	276	163.2	0	1339.99	-	9579	2066	962	0	0	0	0	0	0	18500	0	0	0	31107	1
453	M-26	276	163.2	30.34	1339.99	-	8019	2100	853	0	18.5	0	0	0	0	16700	0	0	570	28260.5	1
454	M-26	276	163.2	36.89	1339.99	-	8257	2200	886	0	19.6	0	0	0	0	17200	0	0	0	28562.6	1
455	M-26	276	163.2	36.13	1339.99	-	8762	2300	946	0	20	0	0	0	0	18100	0	0	0	30128	1
456	M-26	276	163.2	34.47	1339.99	-	9048	2300	826	0	20.6	0	0	0	0	18500	0	0	0	30694.6	1
457	M-26	276	163.2	46.88	1339.99	-	8667	2366	814	0	19.6	0	0	0	0	17900	0	0	0	29766.6	1
458	M-26	276	163.2	31.72	1339.99	-	8550	2300	830	0	19.8	0	0	0	0	179500	0	0	806	192005.8	1
459	M-26	276	163.2	37.92	1339.99	-	8550	2283	802	0	19.7	0	0	0	0	17850	0	0	848	30352.7	1
460	M-26	276	163.2	37.23	1339.99	-	8620	2283	788	0	19.4	0	0	0	0	17950	0	0	792	30452.4	1
461	M-26	276	163.2	0	1339.99	-	8550	2283	780	0	19.4	0	0	0	0	17900	0	0	820	30352.4	1
462	M-26	276	163.2	36.54	1339.99	-	8550	2293	780	0	19.2	0	0	0	0	18200	0	0	0	29842.2	1
463	M-26	276	163.2	37.09	1339.99	-	8701	2300	840	0	20.7	0	0	0	0	18600	0	0	820	31281.7	1
464	M-26	276	163.2	35.23	1339.99	-	8350	2040	780	0	19	0	0	0	0	16418	0	0	962	28569	1
465	M-26	276	163.2	33.78	1339.99	-	7830	1910	687	0	17.5	0	0	0	0	15300	0	0	817	26561.5	1
466	M-26	276	163.2	9.65	1339.99	-	7780	1762	695	0	0	0	0	0	0	15115	0	0	0	25352	1
467	M-26	276	163.2	22.48	1339.99	-	6830	1548	577	0.7	16.8	0	0	0	0	13300	0	0	1000	23272.5	1
468	M-26	276	163.2	22.75	1339.99	-	6556	1509	610	0.61	16.7	0	0	0	0	13480	0	0	0	22172.31	1
469	M-26	276	163.2	24.13	1339.99	-	6505	1432	583.3	0	0	0	0	0	0	11960	41.5	0	0	20521.8	1
470	M-26	276	163.2	21.51	1339.99	-	6686	1514	581	0.69	19.9	0	14.6	0	0.05	12606	118.74	12	1006	22558.98	1
471	M-26	276	163.2	21.24	1197.42	-	6562	1467	510	0.43	15.1	0	0	0	0	14606	0	0	942	24102.53	1
472	M-26	276	163.2	6.18	1339.78	-	9474	2283	774	0	26	0	0	0	0	17600	0	0	950	31107	1
473	M-26	276	163.2	6.47	1360.71	-	9356	2357	966	0	23	0	0	0	0	17006	0	0	838	30546	1
474	M-26	276	163.2	5.79	1373.27	-	9874	2205	838	0	29.9	0	0	0	0	17759	0	0	838	31543.9	1
475	M-26	276	163.2	6.67	1394.2	-	9863	2284	893	0	31	0	0	0	0	18730	0	0	893	32694	1
476	M-26	276	163.2	6.18	1339.78	-	8663	2043	521	9.7	23	0	0	0	0	16900	0	0	876	29035.7	1
477	M-26	276	163.2	7.65	1482.13	-	8350	2040	780	0	19	0	0	0	0	16418	0	0	962	28569	1

Continuación Tabla 22.

										Cati	ones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рН	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl ⁻	HCO ₃	SO4	SiO ₂	STD	UN
478	M-26	276	163.2	6.86	1536.56	-	7830	1910	687	0	17.5	0	0	0	0	15300	0	0	817	26561.5	1
479	M-26	276	163.2	7.55	1373.27	-	6830	1548	577	0.7	16.8	0	0	0	0	13300	0	0	1000	23272.5	1
480	M-26	276	163.2	21.89	1373.27	-	6556	1509	610	0.61	16.7	0	0	0	0	13480	0	0	0	22172.31	1
481	M-26	276	163.2	7.26	1402.58	-	6686	1514	581	0.69	19.9	0	0	0	0	12606	0	0	1006	22413.59	1
482	M-26	276	163.2	7.26	1251.85	-	6562	1467	510	0.43	15.1	0	0	0	0	12606	0	0	942	22102.53	1
483	M-26	276	163.2	6.86	1272.79	-	6607	1572	493	0.74	15.6	0	0	0	0	12409	0	0	903	22000.34	1
484	M-26	276	163.2	6.76	1218.36	-	4926	1012	363	0	13	0	12	0	0	9426	56	0	844	16652	2
485	M-26	276	163.2	6.62	1226.73	-	5116	1077	361	0	12	0	12	0	0	9398	84	0	999	17059	2
486	M-27	284	0	6.55	1340.61	-	5405	1179	299	0	13	0	13	0	0	10085	77	0	859	17930	1
487	M-27	284	0	7.72	1108.25	-	5116	1077	361	0	12	0	8	0	0	9398	84	0	999	17055	1
488	M-27	284	0	7.45	1383.23	-	1.8	1.9	0	0	0	0	0	0	0	12	0	0	0	15.7	1
489	M-27	284	0	12.41	1383.23	-	11.7	3.6	0	0	0	0	0	0	0	17	0	0	0	32.3	1
490	M-27	284	0	8.27	1383.23	-	8	2.9	0	0	0	0	0	0	0	24	0	0	0	34.9	1
491	M-27	284	0	11.17	1383.23	-	9.7	3.4	0	0	0	0	0	0	0	16	0	0	0	29.1	1
492	M-27	284	0	17.24	1383.23	-	32.2	9.3	0	0	0	0	0	0	0	54	0	0	0	95.5	1
493	M-27	284	0	20.34	1383.23	-	34.1	9.8	0	0	0	0	0	0	0	57	0	0	0	100.9	1
494	M-27	284	0	23.44	1383.23	-	169.5	48.8	0	0	0	0	0	0	0	350	0	0	0	568.3	1
495	M-27	284	0	30.34	1383.23	-	380	382	0	0	0	0	0	0	0	2850	0	0	0	3612	1
496	M-27	284	0	37.92	1383.23	-	2108	605.5	0	0	0	0	0	0	0	4500	0	0	0	7213.5	1
497	M-27	284	0	37.78	1383.23	-	2001	508	178	0	5.09	0	0	0	0	4340	0	0	0	7032.09	1
498	M-27	284	0	41.02	1383.23	-	2420	676	208.9	0	5.95	0	0	0	0	5020	0	0	0	8330.85	1
499	M-27	284	0	44.82	1383.23	-	3140	843	271	0	13	0	0	0	0	6100	0	0	0	10367	1
500	M-27	284	0	49.3	1383.23	-	3384	844	298	0	14	0	0	0	0	7650	0	0	0	12190	1
501	M-27	284	0	35.85	1383.23	-	1988	598	181	0	4.9	0	0	0	0	4426	0	0	0	7197.9	1
502	M-27	284	0	48.47	1383.23	-	3173	990	351	0	0	0	0	0	0	7278	0	0	0	11792	1
503	M-27	284	0	47.99	1383.23	-	3082	1023	345	0	0	0	0	0	0	7425	0	0	0	11875	1
504	M-27	284	0	48.26	1383.23	-	3948	1030	356	0	0	0	0	0	0	7622	0	0	0	12956	1
505	M-27	284	0	49.99	1383.23	-	4147	1184	384	0	0	0	0	0	0	10498	0	0	0	16213	1
506	M-27	284	0	20.68	1383.23	-	9481	2631	928	0	0	0	0	0	0	18538	0	0	0	31578	1
507	M-27	284	0	26.2	1383.23	-	6046	1581	459	0	0	0	0	0	0	11267	0	0	0	19353	1
508	M-27	284	0	17.24	1383.23	-	5923	1555	428	0	0	0	0	0	0	11017	0	0	0	18923	1
509	M-27	284	0	27.58	1383.23	-	5472	1445	372	0	0	0	0	0	0	10398	0	0	0	17687	1

Continuación Tabla 22.

						Cationes								Anio	nes						
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl	HCO ₃	SO4	SiO ₂	STD	UN
510	M-27	284	0	10.2	1383.23	-	6024	1511	414	0	0	0	0	0	0	11097	0	0	0	19046	1
511	M-27	284	0	7.58	1383.23	-	5884	1384	361	0.04	13.1	0	18	0	0.05	11366	77.74	14	960	20077.93	1
512	M-27	284	0	7.03	1383.23	-	5752	1314	471	0.04	15.3	0	0	0	0	11233	0	0	933	19718.34	1
513	M-27	284	0	7.06	1381.64	8.05	5884	1384	361	0.04	13.1	0	0	0	0	11366	0	0	960	19968.14	1
514	M-27	284	0	6.86	1582.61	-	5752	1314	471	0.04	15.3	0	0	0	0	11233	0	0	933	19718.34	1
515	M-27	284	0	6.96	1503.06	-	5986	1468	293	0.12	14.6	0	0	0	0	11041	0	0	14.6	18817.32	1
516	M-29	255	164	17.93	1080.19	-	6550	1331	490	21.8	0	0	13.2	0	0	11880	0	0	496.5	20782.5	1
517	M-29	255	164	13.93	1024.88	-	6531	1462	520	20.7	0	0	9.6	0	0	12312	0	0	0	20855.3	1
518	M-29	255	164	14.41	1024.88	-	5875	1318	440	17	16.7	0	5.84	0	0	11211	0	0	485.5	19369.04	1
519	M-29	255	164	7.72	1024.88	-	6762	1287	436	1.7	12.75	0	11.3	0	0	11132	0	0	390	20032.75	1
520	M-29	255	164	6.55	1024.88	-	6000	1225	484	0	14	0	14.8	0	0	11033	234.7	0	410	19415.5	1
521	M-29	255	164	6.55	1024.88	-	6625	1337	506	0	14.7	0	14.5	0	0	11368	237.6	0	509	20611.8	1
522	M-29	255	164	6.21	1024.88	-	5375	1237	425	0	14.2	0	11.8	0	0	11222	209.3	0	440	18934.3	1
523	M-29	255	164	6.07	1024.88	-	5425	1262	507	0	17.2	0	11.4	0	0	10665	270	0	437	18594.6	1
524	M-29	255	164	6.34	1024.88	-	4262	1312	434	0	18	0	12.2	0	0	934	166.4	0	465	7603.6	1
525	M-29	255	164	6.34	1024.88	-	6187	1255	486	0	18	0	9.8	0	0	11120	216.5	0	482	19774.3	1
526	M-29	255	164	6.34	1024.88	-	6250	1287	520	0	15.1	0	8.5	0	0	11230	273.7	0	435	20019.3	1
527	M-29	255	164	6.89	1024.88	-	6050	1365	500	0	17.6	0	12.7	0	0	11163	189	0	472	19769.3	1
528	M-29	255	164	6.55	1024.88	-	6562	1337	492	0	18.2	0	10.1	0	0	11387	178.1	0	500	20484.4	1
529	M-29	255	164	7.86	1024.88	-	6550	1287	508	0	18	0	13.4	0	0	11553	186.4	0	490	20605.8	1
530	M-29	255	164	7.52	1024.88	-	6200	1437	484	0	19.5	0	12.8	0	0	11553	108.8	0	475	20290.1	1
531	M-29	255	164	6.89	1024.88	-	5925	1375	469	0	17.5	0	13	0	0	10657	128	0	480	19064.5	1
532	M-29	255	164	6.96	1024.88	-	6450	1280	516	0	20	0	12	0	0	11405	242	0	470	20395	1
533	M-29	255	164	13.44	1024.88	8.2	6875	1362	509	90	22	0	14	0	0	12505	91	10.7	472	21950.7	1
534	M-29	255	164	6.89	1024.88	-	6780	1305	506	0	22.5	0	0	0	0	12576	38	0	0	21227.5	1
535	M-29	255	164	6.55	1024.88	-	7125	1362	493	0	0	0	13	0	0	13093	32	0	467	22585	1
536	M-29	255	164	6.41	1024.88	-	6307	1198	459	0	19.4	0	0	0	0	11929	0	0	0	19912.4	1
537	M-29	255	164	6.21	1024.88	-	6380	1216	473	0	19.8	0	0	0	0	11907	0	0	388	20383.8	1
538	M-29	255	164	5.86	1024.88	-	6249	935	473	0	11.9	0	0	0	0	12000	0	0	479	20147.9	1
539	M-29	255	164	5.17	1024.88	-	4970	490	477	0	0	0	0	0	0	8980	0	0	0	14917	1
540	M-29	255	164	10	1024.88	-	5320	538	529	0	0	0	0	0	0	9750	0	0	0	16137	1
541	M-29	255	164	9.31	1024.88	-	5620	570	549	0	0	0	0	0	0	10450	0	0	0	17189	1

Continuación Tabla 22.

										Cat	iones						Anior	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl-	HCO ₃	SO4	SiO ₂	STD	UN
542	M-29	255	164	6.55	1024.88	-	4680	464	425	0	0	0	0	0	0	8300	0	0	0	13869	1
543	M-29	255	164	3.93	1024.88	-	5750	583	523	0	0	0	0	0	0	10500	0	0	0	17356	1
544	M-29	255	164	9.65	1024.88	-	5900	622	531	0	0	0	0	0	0	10550	0	0	0	17603	1
545	M-29	255	164	6.89	916.91	-	6813	1088	513	14	19.2	0	0	0	0	12510	0	0	708	21665.2	1
546	M-29	255	164	6.55	1024.88	-	6801	1121.5	584	0	19.5	0	0	0	0	12570	0	0	610	21706	1
547	M-29	255	164	6.89	1024.88	-	6841	1152	529	0.81	19.7	0	0	0	0	12580	0	0	0	21122.51	1
548	M-29	255	164	7.24	1024.88	-	7072	1236	271	0.9	19.3	0	0	0	0	12830	0	0	320	21749.2	1
549	M-29	255	164	6.18	1024.88	-	6813	1088	513	0	19.2	0	0	0	0	12510	0	0	708	21651.2	1
550	M-29	255	164	6.86	1024.88	-	6841	1152	529	0.81	19.7	0	0	0	0	12580	0	0	0	21122.51	1
551	M-29	255	164	6.37	916.91	-	6966	1156	554	0	20.3	0	0	0	0.05	12971	0	0	739	22406.35	1
552	M-29	255	164	6.57	925.28	-	7072	1236	271	0.9	19.3	0	0	0	0	12830	0	0	320	21749.2	1
553	M-29	255	164	6.37	916.91	-	7002	1312	501	0	19.4	0	0	0	0	12915	0	0	682	22431.4	1
554	M-29	255	164	6.8	1013.21	8.1	6450	1200	480	3.7	15	0	18	0	0	12100	54.7	15	500	20836.4	1
555	M-29	255	164	7.31	1109.5	-	7009	1218	488	0	21	0	17	0	0	12596	55	0	716	22120	2
556	M-29	255	164	8.55	1320.1	-	6956	1240	488	0	18	0	19	0	0	12769	77	0	772	22339	2
557	M-30	287	168.5	6.69	1276.56	-	7905	1751	522	0	22	0	17	0	0	14779	60	0	906	25962	2
558	M-30	287	168.5	6.76	1232.18	-	7634	1765	499	0	20	0	17	0	0	14552	81	0	1050	25618	2
559	M-30	287	168.5	7.63	1195.33	8.1	8500	1980	585	0.9	22	0	19	0	0	16400	36.4	16	950	28509.3	1
560	M-30	287	168.5	7.24	1214.17	-	6032	1665	340	0	19.3	0	0	0	0	11578	0	0	517	20151.3	1
561	M-30	287	168.5	34.47	1251.35	-	8119	2071	457	0	0	0	0	0	0	15200	0	0	0	25847	1
562	M-30	287	168.5	38.61	1251.35	-	7930	2230	461	0	0	0	0	0	0	15100	0	0	0	25721	1
563	M-30	287	168.5	37.23	1251.35	-	9640	2360	557	0	0	0	0	0	0	17800	0	0	0	30357	1
564	M-30	287	168.5	28.96	1251.35	-	9590	2460	557	0	0	0	0	0	0	17750	0	0	0	30357	1
565	M-30	287	168.5	16.41	1251.35	-	9560	2450	561	0	0	0	0	0	0	17500	0	0	0	30071	1
566	M-30	287	168.5	19.24	1251.35	-	9450	2640	557	0	0	0	0	0	0	173200	0	0	0	185847	1
567	M-30	287	168.5	7.58	1251.35	-	8270	1962	565	0	27.2	0	0	0	0	16000	0	0	920	27744.2	1
568	M-30	287	168.5	8.14	1251.35	-	9370	2100	622	0	28.6	0	0	0	0	16565	0	0	778	29463.6	1
569	M-30	287	168.5	7.72	1251.35	-	9375	1990	602	0	26.2	0	0	0	0	15931	0	0	896	28820.2	1
570	M-30	287	168.5	7.72	1251.35	-	8825	1973	612	0	26.4	0	0	0	0	15784	0	0	0	27220.4	1
571	M-30	287	168.5	37.23	1251.35	-	7827	1360	541	0	0	0	0	0	0	15295	0	0	913.7	25936.7	1
572	M-30	287	168.5	7.93	1251.35	-	8430	1968	540	7	23	0	10.3	0	0	15715	28.8	15.2	899	27636.3	1
573	M-30	287	168.5	7.72	1251.35	-	8111	1929	569	0	0	0	0	0	0	15345	0	0	877	26831	1

Continuación Tabla 22.

										Ca	tiones						Anior	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl	HCO ₃	SO4	SiO ₂	STD	UN
574	M-30	287	168.5	39.85	1251.35	-	8043	2001	565	0	0	0	0	0	0	16035	0	0	0	26644	1
575	M-30	287	168.5	32.54	1251.35	-	8330	1941	569	0	0	0	0	0	0	16338	0	0	0	27178	1
576	M-30	287	168.5	38.13	1251.35	-	8188	2086	571	0	0	0	0	0	0	16489	0	0	0	27334	1
577	M-30	287	168.5	7.58	1251.35	-	8093	1818	554	0	0	0	0	0	0	15612	0	0	839	26916	1
578	M-30	287	168.5	7.52	1251.35	-	7600	1880	561	0	21.66	0	0	0	0	15200	0	0	791.5	26054.16	1
579	M-30	287	168.5	7.93	1251.35	-	8100	1850	560	0	21	0	0	0	0	15466	0	0	1070	27067	1
580	M-30	287	168.5	7.86	1251.35	-	7620	1940	543	0	20.3	0	0	0	0	15100	0	0	870	26093.3	1
581	M-30	287	168.5	29.99	1251.35	-	7950	1899	497	0.7	21.6	0	0	0	0	15400	0	0	1008	26776.3	1
582	M-30	287	168.5	7.93	1251.35	-	7952	1864	625	0.79	22.1	0	0	0	0	15080	0	0	0	25543.89	1
583	M-30	287	168.5	8	1251.35	-	6913	1592	532.1	0	0	0	0	0	0	12647.2	34.2	0	0	21718.5	1
584	M-30	287	168.5	7.79	1251.35	8	7809	1833	596	0.82	22	0	17.5	0	0.05	15173	0.84	13	1077	26542.21	1
585	M-30	287	168.5	8.14	1251.35	-	7881	1927	514	0.5	16.8	0	0	0	0	15263	0	0	947	26549.3	1
586	M-30	287	168.5	7.76	1235.11	-	8655	2033	567	0	27.2	0	0	0	0	16000	0	0	920	28202.2	1
587	M-30	287	168.5	7.35	1285.35	-	9356	2099	619	0	28.6	0	0	0	0	16565	0	0	778	29445.6	1
588	M-30	287	168.5	6.77	1276.97	-	9373	1990	602	0	26.2	0	0	0	0	15931	0	0	896	28818.2	1
589	M-30	287	168.5	6.86	1260.23	-	8825	1973	612	0	26.4	0	0	0	0	15784	0	0	0	27220.4	1
590	M-30	287	168.5	7.26	1306.28	-	8430	1968	540	7	23	0	0	0	0	15715	0	0	899	27582	1
591	M-30	287	168.5	4.71	1293.72	-	8111	1929	569	0	0	0	0	0	0	15345	0	0	877	26831	1
592	M-30	287	168.5	6.77	1293.72	-	8993	1818	554	0	0	0	0	0	0	15612	0	0	839	27816	1
593	M-30	287	168.5	6.96	937.84	-	7600	1880	561	0	21.6	0	0	0	0	15200	0	0	791	26053.6	1
594	M-30	287	168.5	7.26	1285.35	-	8100	1850	560	0	21	0	0	0	0	15466	0	0	1070	27067	1
595	M-30	287	168.5	7.16	1285.35	-	7620	1940	543	0	20.3	0	0	0	0	15100	0	0	807	26030.3	1
596	M-30	287	168.5	7.55	1293.72	-	7952	1864	625	0.79	22.1	0	0	0	0	15080	0	0	0	25543.89	1
597	M-30	287	168.5	7.28	1302.09	-	6913	1592	532	0	21.6	0	0	0	0	12647	0	0	0	21705.6	1
598	M-30	287	168.5	6.96	1218.36	8	7809	1833	596	0.82	22	0	0	0	0	15173	0	0	1077	26510.82	1
599	M-30	287	168.5	7.35	1297.91	-	7881	1927	514	0.5	16.8	0	0	0	0	15263	0	0	947	26549.3	1
600	M-30	287	168.5	7.06	1285.35	-	8063	2005	595	0.81	20.7	0	0	0	0	15225	0	0	960	26869.51	1
601	M-31	272	170	41.44	1378.57	-	9040	2439	495	19.5	28.7	0	12.6	0	0	15887	0	0	1344	29265.8	1
602	M-31	272	170	26.2	1378.57	-	7793	2038	441	26.1	22.4	0	11.7	0	0	15137	0	0	712.8	26182	1
603	M-31	272	170	37.23	1378.57	-	6937	1940	412	14.6	27.6	0	12.4	0	0	13667	0	0	824.5	23835.1	1
604	M-31	272	170	27.58	1378.57	-	6775	1890	392	2.9	20.37	0	15.3	0	0	13594	0	0	700	23389.57	1
605	M-31	272	170	22.89	1378.57	-	7375	1800	404	0	19	0	16.3	0	0	13594	68.2	0	730	24006.5	1

Continuación Tabla 22.

										Cati	ones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl	HCO ₃	SO4	SiO ₂	STD	UN
606	M-31	272	170	12.76	1378.57	-	5875	1125	520	0	11.25	0	15.1	0	0	10197	88.12	0	569	18400.47	1
607	M-31	272	170	21.3	1378.57	-	6825	1915	366	0	17.8	0	10.6	0	0	13173	81.4	0	710	23098.8	1
608	M-31	272	170	19.86	1378.57	-	7187	1800	399.8	0	21.5	0	13.3	0	0	13033	24.8	0	705	23184.4	1
609	M-31	272	170	18.27	1378.57	-	7125	1725	331.1	0	21.75	0	20.7	0	0	13397	53.7	0	725	23399.25	1
610	M-31	272	170	20.27	1378.57	-	7325	1812	355.9	0	21.75	0	12.8	0	0	13266	30.7	0	810	23634.15	1
611	M-31	272	170	17.79	1378.57	-	7550	1887	394.9	0	19.75	0	11.5	0	0	13249	97.7	0	662	23871.85	1
612	M-31	272	170	16.89	1378.57	-	7350	1920	400	0	23.25	0	14.2	0	0	13059	90.5	0	650	23506.95	1
613	M-31	272	170	15.86	1378.57	-	7250	1725	396	0	21.25	0	12	0	0	13185	73.2	0	640	23302.45	1
614	M-31	272	170	16.69	1378.57	-	7812	1955	416	0	24.12	0	14.5	0	0	13944	74.56	0	850	25090.18	1
615	M-31	272	170	18.55	1378.57	-	6925	1712	408	0	24.25	0	14.2	0	0	13396	78.8	0	685	23243.25	1
616	M-31	272	170	18.55	1378.57	8.3	4982	1117	370	1	15	0	0	0	0	9650	105	20	480	16740	1
617	M-31	272	170	13.79	1378.57	-	7000	1717	384	0	21.5	0	13.5	0	0	12695	78.9	0	800	22709.9	1
618	M-31	272	170	29.65	1378.57	-	7500	1928	421	0	0	0	0	0	0	14311	70.8	0	806	25036.8	1
619	M-31	272	170	29.3	1378.57	-	7380	1900	461	0	0	0	0	0	0	14019	58.7	0	0	23818.7	1
620	M-31	272	170	34.47	1378.57	-	8330	2050	507	0	0	0	0	0	0	15467	41.1	0	0	26395.1	1
621	M-31	272	170	27.58	1378.57	-	8160	2000	502	0	0	0	0	0	0	15175	32.8	0	0	25869.8	1
622	M-31	272	170	21.37	1378.57	-	5000	1250	316	0	0	0	0	0	0	9648	92.4	0	0	16306.4	1
623	M-31	272	170	11.03	1378.57	-	6665	1750	420	0	0	0	0	0	0	12843	110.9	0	0	21788.9	1
624	M-31	272	170	11.03	1378.57	-	506	225	32	0	0	0	0	0	0	934	61.6	0	0	1758.6	1
625	M-31	272	170	6.55	1378.57	-	7495	1960	469	0	0	0	0	0	0	14421	83.1	0	0	24428.1	1
626	M-31	272	170	19.99	1378.57	-	8533	2172	549	0	28.5	0	0	0	0	16341	0	0	767	28390.5	1
627	M-31	272	170	19.99	1378.57	-	8783	2201	553	0	0	0	0	0	0	16301	0	0	829	28667	1
628	M-31	272	170	18.62	1378.57	-	8044	2011	453	0	21.6	0	0	0	0	14506	0	0	935	25970.6	1
629	M-31	272	170	19.31	1378.57	-	7850	2447	430	0	18.6	0	0	0	0	13849	0	0	770	25364.6	1
630	M-31	272	170	19.1	1378.57	-	7988	1795	413	0	0	0	0	0	0	13761	0	0	766	24723	1
631	M-31	272	170	19.17	1378.57	-	8100	1432	476	0	22.8	0	0	0	0	13975	0	0	0	24005.8	1
632	M-31	272	170	37.23	1378.57	-	2533	679	148	0	0	0	0	0	0	5560	0	0	399	9319	1
633	M-31	272	170	28.96	1378.57	-	5842	1493	311	0	0	0	0	0	0	11696	0	0	800	20142	1
634	M-31	272	170	17.58	1378.57	-	7241	1588	398	12.8	17	0	8.8	0	0	13295	47.6	9.1	731	23348.3	1
635	M-31	272	170	16.89	1378.57	-	6907	1604	413	0	0	0	0	0	0	12470	0	0	657	22051	1
636	M-31	272	170	0.34	1378.57	-	6181	1498	373	0	0	0	0	0	0	11814	0	0	0	19866	1
637	M-31	272	170	32.41	1378.57	-	5930	1408	293	0	0	0	0	0	0	11301	0	0	711	19643	1

Continuación Tabla 22.

										Cat	iones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	AI	Cl	HCO ₃	SO4	SiO ₂	STD	UN
638	M-31	272	170	17.24	1378.57	-	6965	1563	441	0	0	0	0	0	0	13262	0	0	0	22231	1
639	M-31	272	170	16.89	1378.57	-	6320	1500	413	0	0	0	0	0	0	12750	0	0	744	21727	1
640	M-31	272	170	8.27	1378.57	-	6450	1480	434	0	18.5	0	0	0	0	13114	0	0	838	22334.5	1
641	M-31	272	170	27.58	1378.57	-	6100	1454	355	0	16.3	0	0	0	0	11800	0	0	740	20465.3	1
642	M-31	272	170	27.99	1378.57	-	5950	1356	307	0.3	16.5	0	0	0	0	11220	0	0	864	19713.8	1
643	M-31	272	170	7.93	1378.57	-	6551	1494	437	0.15	17.8	0	0	0	0	13530	0	0	0	22029.95	1
644	M-31	272	170	7.52	1378.57	8	6913	1540	463	0.16	18.4	0	18	0	0	13205	57.82	18	833	23066.38	1
645	M-31	272	170	7.45	1243.48	-	7104	1539	336	0.11	16.7	0	0	0	0	13076	0	0	800	22871.81	1
646	M-31	272	170	18.63	1457.01	-	8047	2009	453	0	21.6	0	0	0	0	14506	0	0	935	25971.6	1
647	M-31	272	170	6.96	1390.02	-	7859	2443	428	0	18.6	0	0	0	0	13849	0	0	770	25367.6	1
648	M-31	272	170	6.57	1390.02	-	7988	1795	413	0	0	0	0	0	0	13761	0	0	766	24723	1
649	M-31	272	170	6.96	1448.63	-	8100	1432	476	0	22.8	0	0	0	0	13975	0	0	0	24005.8	1
650	M-31	272	170	7.35	1436.07	-	7241	1588	398	12.8	17	0	0	0	0	13295	0	0	731	23282.8	1
651	M-31	272	170	7.26	1394.2	-	6907	1604	413	0	0	0	0	0	0	12470	0	0	657	22051	1
652	M-31	272	170	7.41	1406.76	-	6965	1563	441	0	0	0	0	0	0	13263	0	0	711	22943	1
653	M-31	272	170	6.86	1364.9	-	6320	1500	413	0	16.3	0	0	0	0	12750	0	0	744	21743.3	1
654	M-31	272	170	7.94	1406.76	-	6450	1480	434	0	18.5	0	0	0	0	13114	0	0	838	22334.5	1
655	M-31	272	170	7.89	1373.27	-	6551	1494	437	0.15	17.8	0	0	0	0	13530	0	0	0	22029.95	1
656	M-31	272	170	7.06	1410.95	-	6913	1540	463	0.16	18.4	0	0	0	0.05	13205	0	0	833	22972.61	1
657	M-31	272	170	7.45	1348.15	-	7104	1539	336	0.11	16.7	0	0	0	0	13076	0	0	800	22871.81	1
658	M-31	272	170	6.57	1339.78	-	6514	1647	373	0.22	16.8	0	0	0	0	12260	0	0	824	21635.02	1
659	M-31	272	170	7.91	1414.3	8.3	7700	1930	500	0.2	19.5	0	19	0	0	15400	48.4	6	850	26473.1	1
660	M-31	272	170	6.76	1221.71	-	6017	1239	330	0	16	0	16	0	0	10050	60	0	817	18545	2
661	M-31	272	170	6.62	1389.6	-	5375	1131	275	0	14	0	14	0	0	9753	102	0	998	17662	2
662	M-35	301	-	6.76	1338.07	-	5661	1576	569	0	17.8	0	0	0	0	10811	0	0	0	18634.8	1
663	M-35	301	-	6.62	1338.07	-	9571	2611	551	13.4	23.4	0	0	0	0	16810	0	0	0	29579.8	1
664	M-35	301	-	8.03	1338.07	-	9709	2476	498	1.9	23.7	0	0	0	0	16859	0	0	0	29567.6	1
665	M-35	301	-	44.13	1338.07	-	9459	2557	545	0	19.6	0	0	0	0	17064	0	0	0	29644.6	1
666	M-35	301	-	24.13	1338.07	-	9500	2431	519	0	24.4	0	0	0	0	16859	0	0	0	29333.4	1
667	M-35	301	-	19.99	1338.07	-	8754	2385	457	0	26.3	0	0	0	0	16104	0	0	1040	28766.3	1
668	M-35	301	-	15.51	1338.07	-	8600	2215	459	0	24.7	0	0	0	0	15325	0	0	0	26623.7	1
669	M-35	301	-	11.03	1338.07	-	8209	2200	477	0	0	0	0	0	0	16377	0	0	998	28261	1

Continuación Tabla 22.

										Cati	iones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	AI	Cl	HCO ₃	SO4	SiO ₂	STD	UN
670	M-35	301	-	10.34	1338.07	-	8506	2281	342	35	22	0	0	0	0	16195	30.5	4.8	1029	28445.3	1
671	M-35	301	-	24.27	1338.07	-	8356	2122	473	0	0	0	0	0	0	15665	0	0	1007	27623	1
672	M-35	301	-	10	1338.07	-	8119	2186	467	0	0	0	0	0	0	16026	0	0	0	26798	1
673	M-35	301	-	10.2	1338.07	-	8114	2183	463	0	0	0	0	0	0	15977	0	0	0	26737	1
674	M-35	301	-	47.44	1338.07	-	8337	2072	459	0	0	0	0	0	0	15992	0	0	891	27751	1
675	M-35	301	-	49.64	1338.07	-	7840	2098	435	0	21.6	0	0	0	0	15600	0	0	1010	27004.6	1
676	M-35	301	-	9.65	1338.07	-	7500	2090	434	0	21.5	0	0	0	0	15667	0	0	1070	26782.5	1
677	M-35	301	-	9.65	1260.23	-	8070	2070	445	0	21.2	0	0	0	0	15700	0	0	920	27226.2	1
678	M-35	301	-	9.65	1348.15	-	7875	1969	414	0.5	21.7	0	0	0	0	15160	0	0	1129	26569.2	1
679	M-35	301	-	34.13	1369.08	-	7781	2016	496	0.27	22.2	0	0	0	0	15100	0	0	0	25415.47	1
680	M-35	301	-	9.31	1025.77	-	6831	1718	422.2	0	0	0	0	0	0	1249.2	12.2	0	0	10232.6	1
681	M-35	301	-	9.31	1356.52	-	7658	1956	459	0.24	22.2	0	0	0	0.05	14776	33.41	10	1207	26121.9	1
682	M-35	301	-	9.1	1352.34	-	7987	2005	381	0.12	20.5	0	0	0	0	15075	0	0	1037	26505.62	1
683	M-35	301	-	7.65	1427.7	-	8600	2215	459	0	24.7	0	0	0	0	15325	0	0	0	26623.7	1
684	M-35	301	-	7.85	1394.2	-	8506	2281	342	35	22	0	0	0	0	16195	0	0	1029	28410	1
685	M-35	301	-	7.26	1385.83	-	8356	2122	473	0	0	0	0	0	0	15665	0	0	1007	27623	1
686	M-35	301	-	7.35	1406.76	-	8337	2072	459	0	0	0	0	0	0	15992	0	0	891	27751	1
687	M-35	301	-	7.65	1423.51	-	7840	2098	435	0	21.6	0	0	0	0	15600	0	0	1010	27004.6	1
688	M-35	301	-	7.85	1406.76	-	7500	2090	434	0	21.5	0	0	0	0	15667	0	0	1070	26782.5	1
689	M-35	301	-	7.26	1335.59	-	7874	1980	399	0.31	20.4	0	0	0	0	14585	0	0	1119	25977.71	1
690	M-35	301	-	6.89	1390.44	-	6541	1513	293	0	19	0	19	0	0	11994	62	0	985	21426	2
691	M-35	301	-	6.76	1188.21	-	6143	1402	232	0	15	0	14	0	0	11212	90	0	1165	20273	2
692	M-42	271	-	2.62	1193.24	-	5179	1259	339	0	15.2	0	0	0	0	10200	0	0	0	16992.2	1
693	M-42	271	-	7.62	1193.24	-	5935	1400	369	0	17.1	0	0	0	0	11350	0	0	0	19071.1	1
694	M-42	271	-	10	1193.24	-	6181	1479	377	0	17.3	0	0	0	0	11550	0	0	0	19604.3	1
695	M-42	271	-	13.1	1193.24	-	6100	1498	377	0	17.5	0	0	0	0	11650	0	0	0	19642.5	1
696	M-42	271	-	24.82	1193.24	-	6984	1646	429	0	18.6	0	0	0	0	12680	0	0	0	21757.6	1
697	M-42	271	-	31.72	1193.24	-	6710	1628	430	0	19.4	0	0	0	0	12598	0	0	0	21385.4	1
698	M-42	271	-	7.72	1193.24	-	4697	1178	328	0	0	0	0	0	0	9298	0	0	0	15501	1
699	M-42	271	-	36.2	1193.24	-	7261	1701	455	0	0	0	0	0	0	12967	0	0	0	22384	1
700	M-42	271	-	33.03	1193.24	-	7184	1638	445	0	0	0	0	0	0	12996	0	0	0	22263	1
701	M-42	271	-	19.99	1193.24	-	7332	1669	455	0	0	0	0	0	0	12996	0	0	0	22452	1

Continuación Tabla 22.

										Catio	ones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl ⁻	HCO ₃	SO4	SiO ₂	STD	UN
702	M-42	271	-	15.51	1193.24	-	7184	1658	449	0	0	0	0	0	0	12948	0	0	0	22239	1
703	M-42	271	-	9.45	1193.24	-	6611	1513	416	0	0	0	0	0	0	11949	0	0	0	20489	1
704	M-42	271	-	33.44	1193.24	-	7223	1658	455	0	0	0	0	0	0	13062	0	0	0	22398	1
705	M-42	271	-	8.07	1172.3	-	7442	1600	355	0.21	0	0	0	0	0	13815	0	0	929	24141.21	1
706	M-42	271	-	6.76	1214.17	-	6941	1357	355	0	19	0	17	0	0	12586	57	0	901	22233	2
707	M-42	271	-	6.69	1193.24	-	7002	1430	358	0	17	0	18	0	0	12874	94	0	965	22758	2
708	M-43	240	-	6.76	1170.63	-	7551	1566	432	0	19	0	19	0	0	13769	77	0	950	24383	2
709	M-45	319	-	6.69	1815.82	-	8832	2485	421	0	26	0	20	0	0	16698	61	0	1070	29613	2
710	M-45	319	-	6.76	2030.6	-	6162	1721	309	0	16	0	21	0	0	11793	98	0	1125	21245	2
711	M-48	329	-	7.79	1652.95	-	10562	2912	563	0	29	0	19	0	0	20013	45	0	1152	35295	2
712	M-48	329	-	7.38	1611.5	-	10544	3037	521	0	25	0	21	0	0	20082	89	0	1237	35556	2
713	M-50	302	-	8	1396.3	-	6155	1605	233	0	15	0	17	0	0	11456	92	0	1204	20777	2
714	M-50	302	-	7.52	1355.69	-	6718	1697	271	0	19	0	13	0	0	12620	68	0	1072	22478	2
715	M-51	302	-	21.86	1530.07	-	6600	1920	224	0	0	0	0	0	0	12411	0	0	510	21665	1
716	M-51	302	-	35.85	1530.07	-	7975	2285	435	0	28	0	0	0	0	15245	0	0	999	26967	1
717	M-51	302	-	35.16	1530.07	-	7775	2238	385	0	27	0	0	0	0	14866	0	0	360	25651	1
718	M-51	302	-	54.47	1530.07	-	8550	2470	408	0	0	0	0	0	0	15912	0	0	0	27340	1
719	M-51	302	-	54.47	1530.07	-	8112	2385	414	0	0	0	0	0	0	15593	0	0	1030	27534	1
720	M-51	302	-	47.57	1530.07	-	8128	2407	417	0	0	0	0	0	0	15444	0	0	0	26396	1
721	M-51	302	-	23.44	1530.07	-	6180	1905	302	0	16	0	0	0	0	11184	0	0	785	20372	1
722	M-51	302	-	20.68	1530.07	-	5380	1618	256	0	13	0	0	0	0	10800	0	0	0	18067	1
723	M-51	302	-	7.72	1530.07	-	2746	816	148.3	0	0	0	0	0	0	5448.8	91.5	0	0	9250.6	1
724	M-51	302	-	15.86	1530.07	-	5199	1551	208	0.06	13	0	0	0	0	10046	0	0	727	17744.06	1
725	M-51	302	-	8	1542.84	-	8722	2413	420	0	25	0	18	0	0	16578	40	0	1120	29336	2
726	M-51	302	-	7.58	1517.3	-	8141	2328	380	0	20	0	18	0	0	15423	83	0	1228	27621	2
727	M-53	302	-	6.55	1543.25	-	9555	2961	399	0	29	0	23	0	0	17967	59	0	1346	32339	2
728	M-53	302	-	6.48	1405.93	-	9363	2937	393	0	26	0	24	0	0	18087	95	0	1373	32298	2
729	M-53	302	-	3.65	1474.59	-	5116	1548	281	0	0	0	0	0	0	9433	0	0	0	16378	1
730	M-53	302	-	3.65	1474.59	-	5127	1658	237	0	0	0	0	0	0	9850	0	0	0	16872	1
731	M-53	302	-	4.47	1474.59	-	4427	1652	246	0	0	0	0	0	0	8936	0	0	0	15261	1
732	M-53	302	-	10.88	1474.59	-	4612	1525	246	0	0	0	0	0	0	9334	0	0	0	15717	1
733	M-53	302	-	8.62	1474.59	-	4954	1673	264	0	0	0	0	0	0	9830	0	0	0	16721	1

Continuación Tabla 22.

										Cati	ones						Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	AI	Cl	HCO ₃	SO4	SiO ₂	STD	UN
734	M-53	302	-	10.18	1474.59	-	4849	1681	224	0	0	0	0	0	0	9830	0	0	0	16584	1
735	M-53	302	-	11.17	1474.59	-	5078	1716	220	0	0	0	0	0	0	10674	0	0	0	17688	1
736	M-53	302	-	12.07	1474.59	-	5154	1740	114	0	0	0	0	0	0	9929	0	0	765.7	17702.7	1
737	M-53	302	-	12.69	1474.59	-	4932	1728	220	0	0	0	0	0	0	9880	0	0	733	17493	1
738	M-53	302	-	12.82	1474.59	-	4908	1783	246	0	0	0	0	0	0	10525	0	0	762	18224	1
739	M-53	302	-	18.48	1474.59	-	5286	1790	241	0	0	0	0	0	0	10574	0	0	0	17891	1
740	M-53	302	-	18.62	1474.59	-	5290	1859	241	0	0	0	0	0	0	10922	0	0	715.5	19027.5	1
741	M-53	302	-	18.89	1474.59	-	5384	1912	233	0	0	0	0	0	0	11121	0	0	899.5	19549.5	1
742	M-53	302	-	19.31	1474.59	-	5002	1850	202	0	0	0	0	0	0	10624	0	0	466	18144	1
743	M-53	302	-	20.75	1474.59	-	5493	2016	246	0	0	0	0	0	0	11617	0	0	442	19814	1
744	M-53	302	-	22.61	1474.59	-	3500	1314	171	0	0	0	0	0	0	8043	0	0	442	13470	1
745	M-53	302	-	21.72	1474.59	-	4861	2011	277	0	0	0	0	0	0	11965	0	0	430	19544	1
746	M-53	302	-	23.1	1474.59	-	5014	2050	220	0	0	0	0	0	0	11746	0	0	0	19030	1
747	M-53	302	-	29.58	1474.59	-	5697	2138	244	0	0	0	0	0	0	13446	0	0	0	21525	1
748	M-53	302	-	49.92	1474.59	-	6900	2678	300	0	0	0	0	0	0	14995	0	0	0	24873	1
749	M-53	302	-	58.54	1474.59	-	7055	2748	340	0	0	0	0	0	0	16295	0	0	0	26438	1
750	M-53	302	-	62.67	1474.59	-	7753	2801	352	0	0	0	0	0	0	16284	0	0	0	27190	1
751	M-53	302	-	68.88	1474.59	-	7742	2840	296	0	0	0	0	0	0	15986	0	0	0	26864	1
752	M-53	302	-	67.5	1474.59	-	7905	2664	342	0	0	0	0	0	0	15986	0	0	0	26897	1
753	M-53	302	-	71.98	1474.59	-	7963	2669	341	0	0	0	0	0	0	16185	0	0	0	27158	1
754	M-53	302	-	75.08	1474.59	-	7843	2742	340	0	0	0	0	0	0	16483	0	0	1441	28849	1
755	M-53	302	-	75.08	1474.59	-	7905	2801	348	0	0	0	0	0	0	16334	0	0	0	27388	1
756	M-53	302	-	64.74	1474.59	-	7691	0	0	0	0	0	0	0	0	16495	0	0	0	24186	1
757	M-53	302	-	63.57	1474.59	-	7770	2726	333	0	0	0	0	0	0	16145	0	0	0	26974	1
758	M-53	302	-	61.98	1474.59	-	8318	1957	351	0	0	0	0	0	0	17325	0	0	0	27951	1
759	M-53	302	-	64.12	1474.59	-	9167	2211	349	0	0	0	0	0	0	16127	0	0	0	27854	1
760	M-53	302	-	60.33	1474.59	-	7245	2727	333	0	0	0	0	0	0	15877	0	0	1190	27372	1
761	M-53	302	-	62.74	1474.59	-	8260	2750	333	0	0	0	0	0	0	19450	0	0	1187	31980	1
762	M-53	302	-	61.71	1474.59	-	7820	2781	321	0	0	0	0	0	0	16100	0	0	0	27022	1
763	M-53	302	-	59.29	1474.59	-	8200	2751	0	0	0	0	0	0	0	16200	0	0	1216	28367	1
764	M-53	302	-	57.23	1474.59	-	7656	2691	320	0	0	0	0	0	0	15800	0	0	0	26467	1
765	M-53	302	-	43.78	1474.59	-	7436	2491	317	0	0	0	0	0	0	14179	0	0	0	24423	1

Continuación Tabla 22.

							Cationes										Anio	nes			
NM	Pozo	Туас	Tsep	Psep	н	рΗ	Na	К	Са	Mg	Li	Mn	В	Fe	Al	Cl ⁻	HCO₃	SO4	SiO ₂	STD	UN
766	M-53	302	-	75.84	1474.59	-	9583	3155	409	0	0	0	0	0	0	18064	0	0	1350	32561	1
767	M-53	302	-	79.29	1474.59	-	9660	3157	397	0	0	0	0	0	0	18258	0	0	0	31472	1
768	M-53	302	-	71.71	1474.59	-	9759	3216	393	7.3	0	0	0	0	0	18501	122	0	1502.4	33500.7	1
769	M-53	302	-	47.57	1474.59	-	8200	2660	347	0	23.5	0	0	0	0	15800	0	0	885	27915.5	1
770	M-53	302	-	21.37	1474.59	-	4614	1184	241.4	0	0	0	0	0	0	9777.8	32.9	0	0	15850.1	1
771	M-53	302	-	18.82	1474.59	-	5405	1956	333	0.07	17.7	0	0	0	0	11252	0	0	833	19796.77	1
772	M-84	348	-	7.03	1781.9	-	10942	3421	499	0	35	0	25	0	0	21408	36	0	1279	37645	2
773	M-84	348	-	6.69	2030.6	-	10794	3355	491	0	28	0	25	0	0	20879	66	0	1395	37033	2
774	M-90	287	-	7.38	1374.53	-	6516	1665	251	0	20	0	16	0	0	12095	70	0	1050	21683	2
775	M-90	287	-	7.17	1275.3	-	5654	1367	195	0	14	0	14	0	0	10308	100	0	1050	18702	2
776	M-101	305	-	7.1	1372.85	-	10124	2855	504	0	25	0	19	0	0	19248	92	0	1312	34179	2
777	M-102	346	-	6.69	1645.41	-	10468	3141	421	0	30	0	23	0	0	20623	24	0	1400	36130	2
778	M-102	346	-	6.62	1688.12	-	10686	3233	464	0	25	0	21	0	0	20308	49	0	0	34786	2
779	M-103	331	-	9.03	1603.96	-	11031	3058	473	0	32	0	25	0	0	17933	44	0	1271	33867	2
780	M-103	331	-	7.52	1531.11	-	8386	2363	362	0	23	0	20	0	0	16319	76	0	0	27549	2
781	M-104	341	-	6.96	2030.6	-	8313	2651	433	0	23	0	37	0	0	16247	109	0	1305	29118	2
782	M-114	270	-	6.55	1186.12	-	7459	1344	570	0	23	0	17	0	0	13689	50	0	835	23987	2
783	M-114	270	-	7.03	1197.42	-	7385	1416	528	0	19	0	18	0	0	13749	92	0	907	24114	2
784	M-130	281	-	6.96	1240.55	-	8759	2159	474	0	23	0	22	0	0	16718	58	0	1088	29301	2
785	M-130	281	-	6.89	1375.78	-	8610	2122	499	0	21	0	22	0	0	16191	89	0	1123	28677	2
786	M-181	245	-	7.38	1161	-	8237	1917	511	0	23	0	17	0	0	15958	35	0	899	27597	2
787	M-181	245	-	6.69	1059.26	-	7738	1718	600	0	18	0	16	0	0	14648	63	0	699	25500	2

NM	Pozo	Туас	pH rep	Н	Xv	XI	Xvr	Xlr
1	M-5	291		1313.02	0.6192	0.3808	0.0000	1.0000
2	M-5	291	-	1313.02	0.6470	0.3530	0.3252	0.6748
3	M-5	291	-	1313.02	0.5647	0.4353	0.0748	0.9252
4	M-5	291	-	1313.02	0.7524	0.2476	0.0552	0.9448
5	M-5	291	-	1313.02	0.6125	0.3875	0.0353	0.9647
6	M-5	291	-	1313.02	0.5987	0.4013	0.0181	0.9819
7	M-5	291	-	1313.02	0.6153	0.3847	0.0317	0.9683
8	M-5	291	-	1313.02	0.6370	0.3630	0.1029	0.8971
9	M-5	291	-	1313.02	0.4947	0.5053	0.2125	0.7875
10	M-5	291	-	1313.02	0.6125	0.3875	0.1063	0.8937
11	M-5	291	-	1313.02	0.6120	0.3880	0.0515	0.9485
12	M-5	291	-	1313.02	0.5746	0.4254	0.0211	0.9789
13	M-5	291	-	1313.02	0.7444	0.2556	0.0000	1.0000
14	M-5	291	-	1313.02	0.6570	0.3430	0.0000	1.0000
15	M-5	291	-	1313.02	0.5833	0.4167	0.1040	0.8960
16	M-5	291	-	1313.02	0.5894	0.4106	0.0006	0.9994
17	M-5	291	-	1313.02	0.6581	0.3419	0.0013	0.9987
18	M-5	291	-	1313.02	0.2874	0.7126	0.2899	0.7101
19	M-5	291	-	1313.02	0.4728	0.5272	0.5801	0.4199
20	M-5	291	7.5	1313.02	0.5681	0.4319	0.0186	0.9814
21	M-5	291	-	1313.02	0.5089	0.4911	0.0608	0.9392
22	M-5	291	-	1313.02	0.5334	0.4666	0.1936	0.8064
23	M-5	291	-	1313.02	0.2874	0.7126	0.0000	1.0000
24	M-5	291	-	1313.02	0.6216	0.3784	0.0019	0.9981
25	M-5	291	-	1313.02	0.5784	0.4216	0.0023	0.9977
26	M-5	291	-	1313.02	0.4578	0.5422	0.0019	0.9981
27	M-5	291	-	1313.02	0.4762	0.5238	0.0648	0.9352
28	M-5	291	-	1313.02	0.6561	0.3439	0.0071	0.9929
29	M-5	291	-	1313.02	0.5783	0.4217	0.0854	0.9146
30	M-5	291	-	1313.02	0.6722	0.3278	0.0559	0.9441
31	M-5	291	-	1313.02	0.6339	0.3661	0.0000	1.0000
32	M-5	291	-	1313.02	0.5597	0.4403	0.3252	0.6748
33	M-5	291	-	1313.02	0.5653	0.4347	0.0748	0.9252
34	M-5	291	-	1313.02	0.5634	0.4366	0.0552	0.9448
35	IVI-5	291	-	1313.02	0.4022	0.5978	0.0353	0.9647
30	IVI-5	291	-	1313.02	0.5412	0.4588	0.0181	0.9819
37	IVI-5	291	-	1313.02	0.5523	0.4477	0.0317	0.9683
38	IVI-5	291	-	1313.02	0.5449	0.4551	0.1029	0.8971
59		291	-	1212.02	0.5656	0.4102	0.2125	0.7873
40	IVI-5	291	-	1313.02	0.5431	0.4569	0.1063	0.8937
41	M-5	291	7.89	1313.02	0.5690	0.4310	0.0515	0.9485
42	M-5	291		1313.02	0.5875	0.4125	0.0211	0.9789
43	M-5	291		1193.24	0.5227	0.4773	0.0000	1.0000
44	M-5	291		1318.84	0.5746	0.4254	0.0000	1.0000
45	M-5	291		1406.76	0.6209	0.3791	0.1040	0.8960
46	M-5	291		1410.95	0.5820	0.4180	0.0006	0.9994
47	M-5	291		1373.27	0.5690	0.4310	0.0540	0.9460

Tabla 23. Fracción de vapor líquidio presentes en fluidos de pozos del CGCP-I a temperatura de saturacióny a condiciones de yacimiento.

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	Н	Xv	XI	Xvr	Xlr
48	M-5	291		1373.27	0.5875	0.4125	0.0540	0.9460
49	M-5	291	-	1364.9	0.4022	0.5978	0.0353	0.9647
50	M-5	291	-	1272.79	0.5412	0.4588	0.0181	0.9819
51	M-5	291	-	1364.9	0.5523	0.4477	0.0317	0.9683
52	M-5	291	-	1272.79	0.5449	0.4551	0.1029	0.8971
53	M-5	291	-	1289.53	0.5838	0.4162	0.2125	0.7875
54	M-5	291	-	1327.22	0.5431	0.4569	0.1063	0.8937
55	M-5	291	-	1306.28	0.5690	0.4310	0.0515	0.9485
56	M-5	291	-	1327.22	0.5875	0.4125	0.0211	0.9789
57	M-5	291	-	1260.23	0.5227	0.4773	0.0000	1.0000
58	M-5	291	-	1272.79	0.5746	0.4254	0.0000	1.0000
59	M-5	291	-	1247.67	0.6209	0.3791	0.1040	0.8960
60	M-5	291	8.2	1280.74	0.5820	0.4180	0.0006	0.9994
61	M-5	291	-	1294.98	0.5690	0.4310	0.0540	0.9460
62	M-5	291	-	1302.09	0.5746	0.4254	0.0211	0.9789
63	M-7	119	-	1218.1	0.7444	0.2556	0.0000	1.0000
64	M-7	119	-	1218.1	0.6570	0.3430	0.0000	1.0000
65	M-7	119	-	1218.1	0.5833	0.4167	0.1040	0.8960
66	M-7	119	-	1218.1	0.5894	0.4106	0.0006	0.9994
67	M-7	119	-	1218.1	0.6581	0.3419	0.0013	0.9987
68	M-7	119	-	1218.1	0.2874	0.7126	0.2899	0.7101
69	M-7	119	-	1218.1	0.4728	0.5272	0.5801	0.4199
70	M-7	119	-	1218.1	0.5681	0.4319	0.0186	0.9814
71	M-7	119	-	1218.1	0.5089	0.4911	0.0608	0.9392
72	M-7	119	-	1218.1	0.5334	0.4666	0.1936	0.8064
73	M-7	119	-	1218.1	0.2874	0.7126	0.0000	1.0000
74	M-7	119	-	1218.1	0.6216	0.3784	0.0019	0.9981
75	M-7	119	-	1218.1	0.5784	0.4216	0.0023	0.9977
76	M-7	119	-	1218.1	0.4578	0.5422	0.0019	0.9981
77	M-7	119	-	1218.1	0.4762	0.5238	0.0648	0.9352
78	M-7	119	-	1218.1	0.5746	0.4254	0.0211	0.9789
79	M-7	119	-	1218.1	0.7444	0.2556	0.0000	1.0000
80	M-7	119	-	1218.1	0.6570	0.3430	0.0000	1.0000
81	M-7	119	-	1218.1	0.5833	0.4167	0.1040	0.8960
82	M-7	119	-	1218.1	0.5894	0.4106	0.0006	0.9994
83	M-8	291	-	1408.97	0.6581	0.3419	0.0013	0.9987
84	M-8	291	-	1408.97	0.2874	0.7126	0.2899	0.7101
85	M-8	291	-	1408.97	0.4728	0.5272	0.5801	0.4199
86	M-8	291	-	1408.97	0.5681	0.4319	0.0186	0.9814
87	M-8	291	-	1408.97	0.5089	0.4911	0.0608	0.9392
88	M-8	291	-	1408.97	0.5334	0.4666	0.1936	0.8064
89	M-8	291	-	1408.97	0.2874	0.7126	0.0000	1.0000
90	M-8	291	-	1408.97	0.6216	0.3784	0.0019	0.9981
91	M-8	291	-	1408.97	0.5784	0.4216	0.0023	0.9977
92	M-8	291	-	1408.97	0.4578	0.5422	0.0019	0.9981
93	M-8	291	-	1408.97	0.4762	0.5238	0.0648	0.9352
94	M-8	291	-	1408.97	0.2874	0.7126	0.2899	0.7101
95	M-8	291	-	1408.97	0.4728	0.5272	0.5801	0.4199

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	Н	Xv	XI	Xvr	Xlr
96	M-8	291	-	1408.97	0.5681	0.4319	0.0186	0.9814
97	M-8	291	-	1408.97	0.5746	0.4254	0.0211	0.9789
98	M-8	291	-	1408.97	0.7444	0.2556	0.0000	1.0000
99	M-8	291	-	1408.97	0.6570	0.3430	0.0000	1.0000
100	M-8	291	-	1408.97	0.5833	0.4167	0.1040	0.8960
101	M-8	291	-	1408.97	0.5894	0.4106	0.0006	0.9994
102	M-8	291	-	1408.97	0.6581	0.3419	0.0013	0.9987
103	M-8	291	-	1408.97	0.2874	0.7126	0.2899	0.7101
104	M-8	291	-	1408.97	0.4728	0.5272	0.5801	0.4199
105	M-8	291	-	1408.97	0.5681	0.4319	0.0186	0.9814
106	M-8	291	-	1408.97	0.5089	0.4911	0.0608	0.9392
107	M-8	291	-	1408.97	0.5334	0.4666	0.1936	0.8064
108	M-8	291	-	1408.97	0.2874	0.7126	0.0000	1.0000
109	M-8	291	-	1408.97	0.6216	0.3784	0.0019	0.9981
110	M-8	291	-	1408.97	0.5784	0.4216	0.0023	0.9977
111	M-8	291	-	1408.97	0.4578	0.5422	0.0019	0.9981
112	M-8	291	-	1408.97	0.4762	0.5238	0.0648	0.9352
113	M-8	291	-	1408.97	0.2874	0.7126	0.2899	0.7101
114	M-8	291	-	1408.97	0.4728	0.5272	0.5801	0.4199
115	M-8	291	-	1408.97	0.5681	0.4319	0.0186	0.9814
116	M-8	291	-	1408.97	0.5089	0.4911	0.0608	0.9392
117	M-8	291	-	1408.97	0.5334	0.4666	0.1936	0.8064
118	M-8	291	-	1408.97	0.2874	0.7126	0.0000	1.0000
119	M-8	291	-	1408.97	0.6216	0.3784	0.0019	0.9981
120	M-8	291	-	1408.97	0.5784	0.4216	0.0023	0.9977
121	M-8	291	-	1408.97	0.4578	0.5422	0.0019	0.9981
122	M-8	291	-	1408.97	0.4762	0.5238	0.0648	0.9352
123	M-8	291	-	1408.97	0.2874	0.7126	0.2899	0.7101
124	M-8	291	-	1408.97	0.4728	0.5272	0.5801	0.4199
125	M-8	291	8.21	1408.97	0.5681	0.4319	0.0186	0.9814
126	M-8	291	-	1247.67	0.5746	0.4254	0.0211	0.9789
127	M-8	291	-	1415.14	0.7444	0.2556	0.0000	1.0000
128	M-8	291	-	1402.58	0.6570	0.3430	0.0000	1.0000
129	M-8	291	-	1406.76	0.5833	0.4167	0.1040	0.8960
130	M-8	291	-	1771.02	0.5894	0.4106	0.0006	0.9994
131	M-8	291	-	1457.01	0.6581	0.3419	0.0013	0.9987
132	M-8	291	-	1431.89	0.2874	0.7126	0.2899	0.7101
133	M-8	291	-	1448.63	0.4728	0.5272	0.5801	0.4199
134	M-8	291	-	1360.71	0.5681	0.4319	0.0186	0.9814
135	M-8	291	-	1452.82	0.5089	0.4911	0.0608	0.9392
136	M-8	291	-	1394.2	0.5334	0.4666	0.1936	0.8064
137	M-8	291	-	1352.34	0.5833	0.4167	0.1040	0.8960
138	M-8	291	-	1498.87	0.5894	0.4106	0.0006	0.9994
139	M-8	291	-	1381.64	0.6581	0.3419	0.0013	0.9987
140	M-8	291	-	1276.97	0.2874	0.7126	0.2899	0.7101
141	M-8	291	-	1364.9	0.4728	0.5272	0.5801	0.4199
142	M-8	291	8.3	1372.43	0.5681	0.4319	0.0186	0.9814
143	M-8	291	-	1294.56	0.4728	0.5272	0.5801	0.4199
144	M-8	291	-	1440.26	0.5681	0.4319	0.0186	0.9814

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	Н	Xv	XI	Xvr	Xlr
145	M-9	131	-	1129.39	0.4022	0.5978	0.0353	0.9647
146	M-9	131	-	1129.39	0.5412	0.4588	0.0181	0.9819
147	M-9	131	-	1129.39	0.5523	0.4477	0.0317	0.9683
148	M-9	131	-	1129.39	0.5449	0.4551	0.1029	0.8971
149	M-9	131	-	1129.39	0.5838	0.4162	0.2125	0.7875
150	M-9	131	-	1129.39	0.5431	0.4569	0.1063	0.8937
151	M-9	131	-	1129.39	0.5690	0.4310	0.0515	0.9485
152	M-9	131	-	1129.39	0.5875	0.4125	0.0211	0.9789
153	M-9	131	-	1129.39	0.5227	0.4773	0.0000	1.0000
154	M-9	131	-	1129.39	0.5746	0.4254	0.0000	1.0000
155	M-9	131	-	1129.39	0.6209	0.3791	0.1040	0.8960
156	M-9	131	-	1129.39	0.5820	0.4180	0.0006	0.9994
157	M-9	131	-	1129.39	0.5690	0.4310	0.0540	0.9460
158	M-9	131	-	1129.39	0.5746	0.4254	0.0211	0.9789
159	M-9	131	-	1129.39	0.7444	0.2556	0.0000	1.0000
160	M-9	131	-	1129.39	0.6570	0.3430	0.0000	1.0000
161	M-9	131	-	1129.39	0.5833	0.4167	0.1040	0.8960
162	M-9	131	-	1129.39	0.5894	0.4106	0.0006	0.9994
163	M-9	131	-	1129.39	0.6581	0.3419	0.0013	0.9987
164	M-9	131	-	1129.39	0.2874	0.7126	0.2899	0.7101
165	M-9	131	-	1129.39	0.4728	0.5272	0.5801	0.4199
166	M-9	131	-	1129.39	0.5681	0.4319	0.0186	0.9814
167	M-9	131	-	1129.39	0.5089	0.4911	0.0608	0.9392
168	M-9	131	-	1129.39	0.5334	0.4666	0.1936	0.8064
169	M-9	131	-	1129.39	0.2874	0.7126	0.0000	1.0000
170	M-9	131	-	1129.39	0.6216	0.3784	0.0019	0.9981
171	M-9	131	-	1129.39	0.5784	0.4216	0.0023	0.9977
172	M-9	131	-	1129.39	0.4578	0.5422	0.0019	0.9981
173	M-9	131	-	1129.39	0.4762	0.5238	0.0648	0.9352
174	M-9	131	-	1129.39	0.5746	0.4254	0.0211	0.9789
175	M-9	131	-	1129.39	0.7444	0.2556	0.0000	1.0000
176	M-9	131	-	1129.39	0.6570	0.3430	0.0000	1.0000
177	M-9	131	-	1129.39	0.5833	0.4167	0.1040	0.8960
178	M-9	131	-	1129.39	0.5894	0.4106	0.0006	0.9994
179	M-9	131	-	1129.39	0.6581	0.3419	0.0013	0.9987
180	M-9	131	-	1129.39	0.2874	0.7126	0.2899	0.7101
181	M-9	131	-	1129.39	0.4728	0.5272	0.5801	0.4199
182	M-9	131	-	1109.5	0.5681	0.4319	0.0186	0.9814
183	M-9	131	-	1214.17	0.5089	0.4911	0.0608	0.9392
184	M-9	131	-	1214.17	0.5334	0.4666	0.1936	0.8064
185	M-9	131	8	979.71	0.2874	0.7126	0.0000	1.0000
186	M-11	281	-	1234.59	0.6216	0.3784	0.0019	0.9981
187	M-11	281	-	1234.59	0.5784	0.4216	0.0023	0.9977
188	M-11	281	-	1234.59	0.4578	0.5422	0.0019	0.9981
189	M-11	281	-	1234.59	0.4762	0.5238	0.0648	0.9352
190	M-11	281	-	1234.59	0.2874	0.7126	0.2899	0.7101
191	M-11	281	-	1234.59	0.4728	0.5272	0.5801	0.4199
192	M-11	281	-	1234.59	0.5681	0.4319	0.0186	0.9814
193	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	н	Χv	XI	Xvr	Xir
194	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
195	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
196	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
197	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
198	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
199	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
200	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
201	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
202	M-11	281	7.6	1234.59	0.1013	99.9772	0.0353	0.9647
203	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
204	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
205	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
206	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
207	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
208	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
209	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
210	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
211	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
212	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
213	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
214	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
215	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
216	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
217	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
218	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
219	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
220	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
221	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
222	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
223	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
224	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
225	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
226	M-11	281	-	1234.59	0.1013	99.9772	0.0353	0.9647
227	M-11	281	7.9	1234.59	0.1013	99.9772	0.0353	0.9647
228	M-11	281	-	1214.17	0.1013	99.9772	0.0353	0.9647
229	M-11	281	-	1184.86	0.1013	99.9772	0.0000	1.0000
230	M-11	281	-	1247.67	0.1013	99.9772	0.0040	0.9960
231	M-11	281	-	1226.73	0.1013	99.9772	0.0000	1.0000
232	M-11	281	-	1197.42	0.1013	99.9772	0.0000	1.0000
233	M-11	281	-	1180.68	0.1013	99.9772	0.0000	1.0000
234	M-11	281	-	1067.63	0.1013	99.9772	0.0000	1.0000
235	M-11	281	-	1272.79	0.1013	99.9772	0.0203	0.9797
236	M-11	281	-	1247.67	0.1013	99.9772	0.0040	0.9960
237	M-11	281	-	1343.96	0.1013	99.9772	0.0664	0.9336
238	M-11	281	8.2	1138.39	0.1013	99.9772	0.0000	1.0000
239	M-11	281	-	1358.62	0.1013	99.9772	0.0759	0.9241
240	M-11	281	-	1369.08	0.4022	0.5978	0.0353	0.9647
241	M-14	264	-	1200.27	0.5412	0.4588	0.0181	0.9819

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	н	Xv	XI	Xvr	Xlr
242	M-14	264	-	1200.27	0.5523	0.4477	0.0317	0.9683
243	M-14	264	-	1200.27	0.5449	0.4551	0.1029	0.8971
244	M-14	264	-	1200.27	0.5838	0.4162	0.2125	0.7875
245	M-14	264	-	1200.27	0.5431	0.4569	0.1063	0.8937
246	M-14	264	-	1200.27	0.5690	0.4310	0.0515	0.9485
247	M-14	264	-	1200.27	0.5875	0.4125	0.0211	0.9789
248	M-14	264	-	1200.27	0.5227	0.4773	0.0000	1.0000
249	M-14	264	-	1138.81	0.5746	0.4254	0.0000	1.0000
250	M-14	264	8.05	1327.22	0.6209	0.3791	0.1040	0.8960
251	M-14	264	-	1289.53	0.5820	0.4180	0.0006	0.9994
252	M-14	264	-	1289.53	0.5690	0.4310	0.0540	0.9460
253	M-14	264	-	1153.04	0.5746	0.4254	0.0211	0.9789
254	M-14	264	-	1130.44	0.7444	0.2556	0.0000	1.0000
255	M-19A	297	-	1281.16	0.6570	0.3430	0.0000	1.0000
256	M-19A	297	-	1335.59	0.5833	0.4167	0.1040	0.8960
257	M-19A	297	-	1570.05	0.5894	0.4106	0.0006	0.9994
258	M-19A	297	-	1515.62	0.6581	0.3419	0.0013	0.9987
259	M-19A	297	-	1469.57	0.2874	0.7126	0.2899	0.7101
260	M-19A	297	-	1465.38	0.4728	0.5272	0.5801	0.4199
261	M-19A	297	8.25	1289.53	0.5681	0.4319	0.0186	0.9814
262	M-19A	297	-	1318.84	0.5089	0.4911	0.0608	0.9392
263	M-19A	297	-	1306.28	0.5334	0.4666	0.1936	0.8064
264	M-19A	297	-	1371.77	0.2874	0.7126	0.0000	1.0000
265	M-19A	297	-	1371.77	0.6216	0.3784	0.0019	0.9981
266	M-19A	297	-	1371.77	0.5784	0.4216	0.0023	0.9977
267	M-19A	297	-	1371.77	0.4578	0.5422	0.0019	0.9981
268	M-19A	297	-	1371.77	0.4762	0.5238	0.0648	0.9352
269	M-19A	297	-	1371.77	0.5746	0.4254	0.0211	0.9789
270	M-19A	297	-	1371.77	0.7444	0.2556	0.0000	1.0000
271	M-19A	297	-	1239.29	0.6570	0.3430	0.0000	1.0000
272	M-19A	297	-	1325.96	0.5833	0.4167	0.1040	0.8960
273	M-19A	297	-	1343.96	0.5894	0.4106	0.0006	0.9994
274	M-20	243	-	1562.93	0.6581	0.3419	0.0013	0.9987
275	M-20	243	-	1616.1	0.2874	0.7126	0.2899	0.7101
276	M-20	243	-	1151.37	0.4728	0.5272	0.5801	0.4199
277	M-20	243	-	1306.96	0.5681	0.4319	0.0186	0.9814
278	M-20	243	-	1306.96	0.5089	0.4911	0.0608	0.9392
279	M-20	243	-	1306.96	0.5334	0.4666	0.1936	0.8064
280	M-20	243	-	1306.96	0.2874	0.7126	0.0000	1.0000
281	M-20	243	-	1306.96	0.6216	0.3784	0.0019	0.9981
282	M-20	243	-	1306.96	0.5784	0.4216	0.0023	0.9977
283	M-20	243	-	1306.96	0.4578	0.5422	0.0019	0.9981
284	M-20	243	-	1306.96	0.4762	0.5238	0.0648	0.9352
285	M-20	243	-	1306.96	0.2874	0.7126	0.2899	0.7101
286	M-20	243	-	1306.96	0.4728	0.5272	0.5801	0.4199
287	M-20	243	-	1306.96	0.5681	0.4319	0.0186	0.9814
288	M-20	243	-	1306.96	0.4022	0.5978	0.0353	0.9647
289	M-20	243	-	1306.96	0.5412	0.4588	0.0181	0.9819
290	M-20	243	-	1306.96	0.5523	0.4477	0.0317	0.9683

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	Н	Xv	XI	Xvr	Xlr
291	M-20	243	-	1306.96	0.5449	0.4551	0.1029	0.8971
292	M-20	243	-	1306.96	0.5838	0.4162	0.2125	0.7875
293	M-20	243	-	1306.96	0.5431	0.4569	0.1063	0.8937
294	M-20	243	-	1306.96	0.5690	0.4310	0.0515	0.9485
295	M-20	243	-	1306.96	0.5875	0.4125	0.0211	0.9789
296	M-20	243	-	1306.96	0.5227	0.4773	0.0000	1.0000
297	M-20	243	-	1306.96	0.5746	0.4254	0.0000	1.0000
298	M-20	243	-	1306.96	0.6209	0.3791	0.1040	0.8960
299	M-20	243	-	1306.96	0.5820	0.4180	0.0006	0.9994
300	M-20	243	-	1306.96	0.5690	0.4310	0.0540	0.9460
301	M-20	243	-	1306.96	0.5746	0.4254	0.0211	0.9789
302	M-20	243	-	1306.96	0.7444	0.2556	0.0000	1.0000
303	M-20	243	-	1306.96	0.6570	0.3430	0.0000	1.0000
304	M-20	243	-	1306.96	0.5833	0.4167	0.1040	0.8960
305	M-20	243	-	1306.96	0.5894	0.4106	0.0006	0.9994
306	M-20	243	-	1306.96	0.6581	0.3419	0.0013	0.9987
307	M-20	243	-	1306.96	0.2874	0.7126	0.2899	0.7101
308	M-20	243	-	1306.96	0.4728	0.5272	0.5801	0.4199
309	M-20	243	-	1306.96	0.5681	0.4319	0.0186	0.9814
310	M-20	243	-	1306.96	0.5089	0.4911	0.0608	0.9392
311	M-20	243	-	1306.96	0.5334	0.4666	0.1936	0.8064
312	M-20	243	-	1306.96	0.2874	0.7126	0.0000	1.0000
313	M-20	243	-	1306.96	0.6216	0.3784	0.0019	0.9981
314	M-20	243	-	1306.96	0.5784	0.4216	0.0023	0.9977
315	M-20	243	-	1306.96	0.4578	0.5422	0.0019	0.9981
316	M-20	243	-	1306.96	0.4762	0.5238	0.0648	0.9352
317	M-20	243	-	1306.96	0.5746	0.4254	0.0211	0.9789
318	M-20	243	-	1306.96	0.7444	0.2556	0.0000	1.0000
319	M-20	243	-	1285.35	0.6570	0.3430	0.0000	1.0000
320	M-20	243	-	1289.53	0.5833	0.4167	0.1040	0.8960
321	M-20	243	-	1222.55	0.5894	0.4106	0.0006	0.9994
322	M-20	243	-	1268.6	0.6581	0.3419	0.0013	0.9987
323	M-20	243	-	1243.48	0.2874	0.7126	0.2899	0.7101
324	M-20	243	-	1293.72	0.4728	0.5272	0.5801	0.4199
325	M-20	243	-	1197.42	0.5681	0.4319	0.0186	0.9814
326	M-20	243	-	1209.99	0.5089	0.4911	0.0608	0.9392
327	M-20	243	-	1285.35	0.5334	0.4666	0.1936	0.8064
328	M-20	243	-	1201.61	0.2874	0.7126	0.0000	1.0000
329	M-20	243	-	1205.8	0.6216	0.3784	0.0019	0.9981
330	M-20	243	-	1637.04	0.5784	0.4216	0.0023	0.9977
331	M-20	243	8.4	1240.55	0.4578	0.5422	0.0019	0.9981
332	M-21A	279	-	1563.31	0.4762	0.5238	0.0648	0.9352
333	M-21A	279	-	1563.31	0.2874	0.7126	0.2899	0.7101
334	M-21A	279	-	1563.31	0.4728	0.5272	0.5801	0.4199
335	M-21A	279	-	1563.31	0.5681	0.4319	0.0186	0.9814
336	M-21A	279	-	1563.31	0.4022	0.5978	0.0353	0.9647
337	M-21A	279	-	1563.31	0.5412	0.4588	0.0181	0.9819
338	M-21A	279	-	1563.31	0.5523	0.4477	0.0317	0.9683
339	M-21A	279	-	1563.31	0.5449	0.4551	0.1029	0.8971

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	н	Xv	XI	Xvr	Xlr
340	M-21A	279	-	1563.31	0.5838	0.4162	0.2125	0.7875
341	M-21A	279	-	1563.31	0.5431	0.4569	0.1063	0.8937
342	M-21A	279	-	1563.31	0.5690	0.4310	0.0515	0.9485
343	M-21A	279	-	1563.31	0.5875	0.4125	0.0211	0.9789
344	M-21A	279	-	1563.31	0.5227	0.4773	0.0000	1.0000
345	M-21A	279	-	1563.31	0.5746	0.4254	0.0000	1.0000
346	M-21A	279	-	1563.31	0.6209	0.3791	0.1040	0.8960
347	M-21A	279	-	1563.31	0.5820	0.4180	0.0006	0.9994
348	M-21A	279	-	1563.31	0.5690	0.4310	0.0540	0.9460
349	M-21A	279	-	1563.31	0.5746	0.4254	0.0211	0.9789
350	M-21A	279	-	1563.31	0.7444	0.2556	0.0000	1.0000
351	M-21A	279	7.95	1563.31	0.6570	0.3430	0.0000	1.0000
352	M-21A	279	-	1563.31	0.5833	0.4167	0.1040	0.8960
353	M-21A	279	-	1980.36	0.5894	0.4106	0.0006	0.9994
354	M-21A	279	-	1779.39	0.6581	0.3419	0.0013	0.9987
355	M-21A	279	-	1704.03	0.2874	0.7126	0.2899	0.7101
356	M-21A	279	-	1695.65	0.4728	0.5272	0.5801	0.4199
357	M-21A	279	-	1628.67	0.5681	0.4319	0.0186	0.9814
358	M-21A	279	-	1549.12	0.5089	0.4911	0.0608	0.9392
359	M-21A	279	-	1469.57	0.5334	0.4666	0.1936	0.8064
360	M-21A	279	-	1423.51	0.2874	0.7126	0.0000	1.0000
361	M-21A	279	-	1314.66	0.6216	0.3784	0.0019	0.9981
362	M-21A	279	-	1294.98	0.5784	0.4216	0.0023	0.9977
363	M-21A	279	-	1356.52	0.4578	0.5422	0.0019	0.9981
364	M-25	256	-	1297.908	0.4762	0.5238	0.0648	0.9352
365	M-25	256	-	1335.59	0.5746	0.4254	0.0211	0.9789
366	M-25	256	-	1214.17	0.7444	0.2556	0.0000	1.0000
367	M-25	256	-	1295.11	0.6570	0.3430	0.0000	1.0000
368	M-25	256	-	1295.11	0.5833	0.4167	0.1040	0.8960
369	M-25	256	-	1295.11	0.5894	0.4106	0.0006	0.9994
370	M-25	256	-	1295.11	0.6581	0.3419	0.0013	0.9987
371	M-25	256	-	1295.11	0.2874	0.7126	0.2899	0.7101
372	M-25	256	-	1295.11	0.4728	0.5272	0.5801	0.4199
373	M-25	256	-	1295.11	0.5681	0.4319	0.0186	0.9814
374	M-25	256	-	1295.11	0.5089	0.4911	0.0608	0.9392
375	M-25	256	-	1295.11	0.5334	0.4666	0.1936	0.8064
376	M-25	256	-	1295.11	0.2874	0.7126	0.0000	1.0000
377	M-25	256	-	1295.11	0.6216	0.3784	0.0019	0.9981
378	M-25	256	-	1295.11	0.5784	0.4216	0.0023	0.9977
379	M-25	256	-	1295.11	0.4578	0.5422	0.0019	0.9981
380	M-25	256	-	1295.11	0.4762	0.5238	0.0648	0.9352
381	M-25	256	-	1295.11	0.2874	0.7126	0.2899	0.7101
382	M-25	256	-	1295.11	0.4728	0.5272	0.5801	0.4199
383	M-25	256	-	1295.11	0.5681	0.4319	0.0186	0.9814
384	M-25	256	-	1295.11	0.4022	0.5978	0.0353	0.9647
385	M-25	256	-	1295.11	0.5412	0.4588	0.0181	0.9819
386	M-25	256	-	1295.11	0.5523	0.4477	0.0317	0.9683
387	M-25	256	-	1295.11	0.5449	0.4551	0.1029	0.8971
388	M-25	256	-	1295.11	0.5838	0.4162	0.2125	0.7875

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	Н	Xv	XI	Xvr	Xlr
389	M-25	256	-	1295.11	0.5431	0.4569	0.1063	0.8937
390	M-25	256	-	1295.11	0.5690	0.4310	0.0515	0.9485
391	M-25	256	-	1295.11	0.5875	0.4125	0.0211	0.9789
392	M-25	256	-	1295.11	0.5227	0.4773	0.0000	1.0000
393	M-25	256	-	1295.11	0.5746	0.4254	0.0000	1.0000
394	M-25	256	-	1295.11	0.6209	0.3791	0.1040	0.8960
395	M-25	256	-	1295.11	0.5820	0.4180	0.0006	0.9994
396	M-25	256	-	1295.11	0.5690	0.4310	0.0540	0.9460
397	M-25	256	-	1295.11	0.5746	0.4254	0.0211	0.9789
398	M-25	256	-	1295.11	0.7444	0.2556	0.0000	1.0000
399	M-25	256	-	1295.11	0.6570	0.3430	0.0000	1.0000
400	M-25	256	-	1295.11	0.5833	0.4167	0.1040	0.8960
401	M-25	256	-	1295.11	0.5894	0.4106	0.0006	0.9994
402	M-25	256	7.97	1295.11	0.6581	0.3419	0.0013	0.9987
403	M-25	256	-	1295.11	0.2874	0.7126	0.2899	0.7101
404	M-25	256	-	1272.79	0.4728	0.5272	0.5801	0.4199
405	M-25	256	-	1285.35	0.5681	0.4319	0.0186	0.9814
406	M-25	256	-	1289.53	0.5089	0.4911	0.0608	0.9392
407	M-25	256	-	1268.6	0.5334	0.4666	0.1936	0.8064
408	M-25	256	-	1276.97	0.2874	0.7126	0.0000	1.0000
409	M-25	256	-	1318.84	0.6216	0.3784	0.0019	0.9981
410	M-25	256	-	1331.4	0.5784	0.4216	0.0023	0.9977
411	M-25	256	-	1306.28	0.4578	0.5422	0.0019	0.9981
412	M-25	256	-	1335.59	0.4762	0.5238	0.0648	0.9352
413	M-25	256	-	1314.66	0.5746	0.4254	0.0211	0.9789
414	M-25	256	-	1339.78	0.7444	0.2556	0.0000	1.0000
415	M-25	256	-	1276.97	0.6570	0.3430	0.0000	1.0000
416	M-25	256	-	1289.53	0.5833	0.4167	0.1040	0.8960
417	M-25	256	-	1306.28	0.5894	0.4106	0.0006	0.9994
418	M-25	256	-	1314.66	0.6581	0.3419	0.0013	0.9987
419	M-25	256	8.1	1232.18	0.2874	0.7126	0.2899	0.7101
420	M-26	276	8	1297.07	0.4728	0.5272	0.5801	0.4199
421	M-26	276	-	1339.99	0.5681	0.4319	0.0186	0.9814
422	M-26	276	-	1339.99	0.5089	0.4911	0.0608	0.9392
423	M-26	276	-	1339.99	0.5334	0.4666	0.1936	0.8064
424	M-26	276	-	1339.99	0.2874	0.7126	0.0000	1.0000
425	M-26	276	-	1339.99	0.6216	0.3784	0.0019	0.9981
426	M-26	276	-	1339.99	0.5784	0.4216	0.0023	0.9977
427	M-26	276	-	1339.99	0.4578	0.5422	0.0019	0.9981
428	M-26	276	-	1339.99	0.4762	0.5238	0.0648	0.9352
429	M-26	276	-	1339.99	0.2874	0.7126	0.2899	0.7101
430	M-26	276	-	1339.99	0.4728	0.5272	0.5801	0.4199
431	M-26	276	-	1339.99	0.5681	0.4319	0.0186	0.9814
432	M-26	276	-	1339.99	0.4022	0.5978	0.0353	0.9647
433	M-26	276	-	1339.99	0.5412	0.4588	0.0181	0.9819
434	M-26	276	-	1339.99	0.5523	0.4477	0.0317	0.9683
435	M-26	276	-	1339.99	0.5449	0.4551	0.1029	0.8971
436	M-26	276	-	1339.99	0.5838	0.4162	0.2125	0.7875
437	M-26	276	-	1339.99	0.5431	0.4569	0.1063	0.8937

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	Н	Χv	XI	Xvr	Xlr
438	M-26	276	-	1339.99	0.5690	0.4310	0.0515	0.9485
439	M-26	276	-	1339.99	0.5875	0.4125	0.0211	0.9789
440	M-26	276	-	1339.99	0.5227	0.4773	0.0000	1.0000
441	M-26	276	-	1339.99	0.5746	0.4254	0.0000	1.0000
442	M-26	276	-	1339.99	0.6209	0.3791	0.1040	0.8960
443	M-26	276	-	1339.99	0.5820	0.4180	0.0006	0.9994
444	M-26	276	-	1339.99	0.5690	0.4310	0.0540	0.9460
445	M-26	276	-	1339.99	0.5746	0.4254	0.0211	0.9789
446	M-26	276	-	1339.99	0.7444	0.2556	0.0000	1.0000
447	M-26	276	-	1339.99	0.6570	0.3430	0.0000	1.0000
448	M-26	276	-	1339.99	0.5833	0.4167	0.1040	0.8960
449	M-26	276	-	1339.99	0.5894	0.4106	0.0006	0.9994
450	M-26	276	-	1339.99	0.6581	0.3419	0.0013	0.9987
451	M-26	276	-	1339.99	0.2874	0.7126	0.2899	0.7101
452	M-26	276	-	1339.99	0.4728	0.5272	0.5801	0.4199
453	M-26	276	-	1339.99	0.5681	0.4319	0.0186	0.9814
454	M-26	276	-	1339.99	0.5089	0.4911	0.0608	0.9392
455	M-26	276	-	1339.99	0.5334	0.4666	0.1936	0.8064
456	M-26	276	-	1339.99	0.2874	0.7126	0.0000	1.0000
457	M-26	276	-	1339.99	0.6216	0.3784	0.0019	0.9981
458	M-26	276	-	1339.99	0.5784	0.4216	0.0023	0.9977
459	M-26	276	-	1339.99	0.4578	0.5422	0.0019	0.9981
460	M-26	276	-	1339.99	0.4762	0.5238	0.0648	0.9352
461	M-26	276	-	1339.99	0.5746	0.4254	0.0211	0.9789
462	M-26	276	-	1339.99	0.7444	0.2556	0.0000	1.0000
463	M-26	276	-	1339.99	0.6570	0.3430	0.0000	1.0000
464	M-26	276	-	1339.99	0.5833	0.4167	0.1040	0.8960
465	M-26	276	-	1339.99	0.5894	0.4106	0.0006	0.9994
466	M-26	276	-	1339.99	0.6581	0.3419	0.0013	0.9987
467	M-26	276	-	1339.99	0.2874	0.7126	0.2899	0.7101
468	M-26	276	-	1339.99	0.4728	0.5272	0.5801	0.4199
469	M-26	276	-	1339.99	0.5681	0.4319	0.0186	0.9814
470	M-26	276	8	1339.99	0.5089	0.4911	0.0608	0.9392
471	M-26	276	-	1197.42	0.5334	0.4666	0.1936	0.8064
472	M-26	276	-	1339.78	0.2874	0.7126	0.0000	1.0000
473	M-26	276	-	1360.71	0.6216	0.3784	0.0019	0.9981
474	M-26	276	-	1373.27	0.5784	0.4216	0.0023	0.9977
475	M-26	276	-	1394.2	0.4578	0.5422	0.0019	0.9981
476	M-26	276	-	1339.78	0.4762	0.5238	0.0648	0.9352
477	M-26	276	-	1482.13	0.2874	0.7126	0.2899	0.7101
478	M-26	276	-	1536.56	0.4728	0.5272	0.5801	0.4199
479	M-26	276	-	1373.27	0.5681	0.4319	0.0186	0.9814
480	M-26	276	-	1373.27	0.4022	0.5978	0.0353	0.9647
481	M-26	276	-	1402.58	0.5412	0.4588	0.0181	0.9819
482	M-26	276	-	1251.85	0.5523	0.4477	0.0317	0.9683
483	M-26	276	-	1272.79	0.5449	0.4551	0.1029	0.8971
484	M-26	276	-	1218.36	0.5838	0.4162	0.2125	0.7875
485	M-26	276	-	1226.73	0.5431	0.4569	0.1063	0.8937
486	M-27	284	-	1340.61	0.5690	0.4310	0.0515	0.9485

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	Н	Xv	XI	Xvr	Xlr
487	M-27	284	-	1108.25	0.5875	0.4125	0.0211	0.9789
488	M-27	284	-	1383.23	0.5227	0.4773	0.0000	1.0000
489	M-27	284	-	1383.23	0.5746	0.4254	0.0000	1.0000
490	M-27	284	-	1383.23	0.6209	0.3791	0.1040	0.8960
491	M-27	284	-	1383.23	0.5820	0.4180	0.0006	0.9994
492	M-27	284	-	1383.23	0.5690	0.4310	0.0540	0.9460
493	M-27	284	-	1383.23	0.5746	0.4254	0.0211	0.9789
494	M-27	284	-	1383.23	0.7444	0.2556	0.0000	1.0000
495	M-27	284	-	1383.23	0.6570	0.3430	0.0000	1.0000
496	M-27	284	-	1383.23	0.5833	0.4167	0.1040	0.8960
497	M-27	284	-	1383.23	0.5894	0.4106	0.0006	0.9994
498	M-27	284	-	1383.23	0.6581	0.3419	0.0013	0.9987
499	M-27	284	-	1383.23	0.2874	0.7126	0.2899	0.7101
500	M-27	284	-	1383.23	0.4728	0.5272	0.5801	0.4199
501	M-27	284	-	1383.23	0.5681	0.4319	0.0186	0.9814
502	M-27	284	-	1383.23	0.5089	0.4911	0.0608	0.9392
503	M-27	284	-	1383.23	0.5334	0.4666	0.1936	0.8064
504	M-27	284	-	1383.23	0.2874	0.7126	0.0000	1.0000
505	M-27	284	-	1383.23	0.6216	0.3784	0.0019	0.9981
506	M-27	284	-	1383.23	0.5784	0.4216	0.0023	0.9977
507	M-27	284	-	1383.23	0.4578	0.5422	0.0019	0.9981
508	M-27	284	-	1383.23	0.4762	0.5238	0.0648	0.9352
509	M-27	284	-	1383.23	0.5746	0.4254	0.0211	0.9789
510	M-27	284	-	1383.23	0.7444	0.2556	0.0000	1.0000
511	M-27	284	-	1383.23	0.6570	0.3430	0.0000	1.0000
512	M-27	284	-	1383.23	0.5833	0.4167	0.1040	0.8960
513	M-27	284	-	1381.64	0.5894	0.4106	0.0006	0.9994
514	M-27	284	-	1582.61	0.6581	0.3419	0.0013	0.9987
515	M-27	284	-	1503.06	0.2874	0.7126	0.2899	0.7101
516	M-29	255	-	1080.19	0.4728	0.5272	0.5801	0.4199
517	M-29	255	-	1024.88	0.5681	0.4319	0.0186	0.9814
518	M-29	255	-	1024.88	0.5089	0.4911	0.0608	0.9392
519	M-29	255	-	1024.88	0.5334	0.4666	0.1936	0.8064
520	M-29	255	-	1024.88	0.2874	0.7126	0.0000	1.0000
521	M-29	255	-	1024.88	0.6216	0.3784	0.0019	0.9981
522	M-29	255	-	1024.88	0.5784	0.4216	0.0023	0.9977
523	M-29	255	-	1024.88	0.4578	0.5422	0.0019	0.9981
524	M-29	255	-	1024.88	0.4762	0.5238	0.0648	0.9352
525	M-29	255	-	1024.88	0.2874	0.7126	0.2899	0.7101
526	M-29	255	-	1024.88	0.4728	0.5272	0.5801	0.4199
527	M-29	255	-	1024.88	0.5681	0.4319	0.0186	0.9814
528	M-29	255	-	1024.88	0.6216	0.3784	0.0019	0.9981
529	M-29	255	-	1024.88	0.5784	0.4216	0.0023	0.9977
530	M-29	255	-	1024.88	0.4578	0.5422	0.0019	0.9981
531	M-29	255	-	1024.88	0.4762	0.5238	0.0648	0.9352
532	M-29	255	-	1024.88	0.5746	0.4254	0.0211	0.9789
533	M-29	255	8.2	1024.88	0.7444	0.2556	0.0000	1.0000
534	M-29	255	-	1024.88	0.6570	0.3430	0.0000	1.0000
535	M-29	255	-	1024.88	0.5833	0.4167	0.1040	0.8960

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	н	Χv	XI	Xvr	Xir
536	M-29	255	-	1024.88	0.5894	0.4106	0.0006	0.9994
537	M-29	255	-	1024.88	0.6581	0.3419	0.0013	0.9987
538	M-29	255	-	1024.88	0.2874	0.7126	0.2899	0.7101
539	M-29	255	-	1024.88	0.4728	0.5272	0.5801	0.4199
540	M-29	255	-	1024.88	0.5681	0.4319	0.0186	0.9814
541	M-29	255	-	1024.88	0.5089	0.4911	0.0608	0.9392
542	M-29	255	-	1024.88	0.5334	0.4666	0.1936	0.8064
543	M-29	255	-	1024.88	0.2874	0.7126	0.0000	1.0000
544	M-29	255	-	1024.88	0.6216	0.3784	0.0019	0.9981
545	M-29	255	-	916.91	0.6216	0.3784	0.0019	0.9981
546	M-29	255	-	1024.88	0.5784	0.4216	0.0023	0.9977
547	M-29	255	-	1024.88	0.4578	0.5422	0.0019	0.9981
548	M-29	255	-	1024.88	0.4762	0.5238	0.0648	0.9352
549	M-29	255	-	1024.88	0.5746	0.4254	0.0211	0.9789
550	M-29	255	-	1024.88	0.7444	0.2556	0.0000	1.0000
551	M-29	255	-	916.91	0.6570	0.3430	0.0000	1.0000
552	M-29	255	-	925.28	0.5833	0.4167	0.1040	0.8960
553	M-29	255	-	916.91	0.5894	0.4106	0.0006	0.9994
554	M-29	255	8.1	1013.21	0.6581	0.3419	0.0013	0.9987
555	M-29	255	-	1109.5	0.2874	0.7126	0.2899	0.7101
556	M-29	255	-	1320.1	0.4728	0.5272	0.5801	0.4199
557	M-30	287	-	1276.56	0.5681	0.4319	0.0186	0.9814
558	M-30	287	-	1232.18	0.5089	0.4911	0.0608	0.9392
559	M-30	287	8.1	1195.33	0.5334	0.4666	0.1936	0.8064
560	M-30	287	-	1214.17	0.2874	0.7126	0.0000	1.0000
561	M-30	287	-	1251.35	0.6216	0.3784	0.0019	0.9981
562	M-30	287	-	1251.35	0.5833	0.4167	0.1040	0.8960
563	M-30	287	-	1251.35	0.5894	0.4106	0.0006	0.9994
564	M-30	287	-	1251.35	0.6581	0.3419	0.0013	0.9987
565	M-30	287	-	1251.35	0.2874	0.7126	0.2899	0.7101
566	M-30	287	-	1251.35	0.4728	0.5272	0.5801	0.4199
567	M-30	287	-	1251.35	0.5681	0.4319	0.0186	0.9814
568	M-30	287	-	1251.35	0.5089	0.4911	0.0608	0.9392
569	M-30	287	-	1251.35	0.5334	0.4666	0.1936	0.8064
570	M-30	287	-	1251.35	0.4728	0.5272	0.5801	0.4199
571	M-30	287	-	1251.35	0.5681	0.4319	0.0186	0.9814
572	M-30	287	-	1251.35	0.5089	0.4911	0.0608	0.9392
573	M-30	287	-	1251.35	0.5334	0.4666	0.1936	0.8064
574	M-30	287	-	1251.35	0.1013	99.9772	0.0000	1.0000
575	M-30	287	-	1251.35	0.6216	0.3784	0.0019	0.9981
576	M-30	287	-	1251.35	0.5784	0.4216	0.0023	0.9977
577	M-30	287	-	1251.35	0.4578	0.5422	0.0019	0.9981
578	M-30	287	-	1251.35	0.4762	0.5238	0.0648	0.9352
579	M-30	287	-	1251.35	0.5746	0.4254	0.0211	0.9789
580	M-30	287	-	1251.35	0.7444	0.2556	0.0000	1.0000
581	M-30	287	-	1251.35	0.6570	0.3430	0.0000	1.0000
582	M-30	287	-	1251.35	0.5833	0.4167	0.1040	0.8960
583	M-30	287	-	1251.35	0.5894	0.4106	0.0006	0.9994
584	M-30	287	8	1251.35	0.6581	0.3419	0.0013	0.9987

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	Н	Xv	XI	Xvr	Xlr
585	M-30	287	-	1251.35	0.2874	0.7126	0.2899	0.7101
586	M-30	287	-	1235.11	0.4728	0.5272	0.5801	0.4199
587	M-30	287	-	1285.35	0.5681	0.4319	0.0186	0.9814
588	M-30	287	-	1276.97	0.5089	0.4911	0.0608	0.9392
589	M-30	287	-	1260.23	0.5334	0.4666	0.1936	0.8064
590	M-30	287	-	1306.28	0.2874	0.7126	0.0000	1.0000
591	M-30	287	-	1293.72	0.6216	0.3784	0.0019	0.9981
592	M-30	287	-	1293.72	0.6216	0.3784	0.0019	0.9981
593	M-30	287	-	937.84	0.5784	0.4216	0.0023	0.9977
594	M-30	287	-	1285.35	0.4578	0.5422	0.0019	0.9981
595	M-30	287	-	1285.35	0.4762	0.5238	0.0648	0.9352
596	M-30	287	-	1293.72	0.5746	0.4254	0.0211	0.9789
597	M-30	287	-	1302.09	0.7444	0.2556	0.0000	1.0000
598	M-30	287	-	1218.36	0.6570	0.3430	0.0000	1.0000
599	M-30	287	-	1297.91	0.5833	0.4167	0.1040	0.8960
600	M-30	287	-	1285.35	0.5894	0.4106	0.0006	0.9994
601	M-31	272	-	1378.57	0.6581	0.3419	0.0013	0.9987
602	M-31	272	-	1378.57	0.2874	0.7126	0.2899	0.7101
603	M-31	272	-	1378.57	0.4728	0.5272	0.5801	0.4199
604	M-31	272	-	1378.57	0.5681	0.4319	0.0186	0.9814
605	M-31	272	-	1378.57	0.5089	0.4911	0.0608	0.9392
606	M-31	272	-	1378.57	0.5334	0.4666	0.1936	0.8064
607	M-31	272	-	1378.57	0.2874	0.7126	0.0000	1.0000
608	M-31	272	-	1378.57	0.6216	0.3784	0.0019	0.9981
609	M-31	272	-	1378.57	0.5833	0.4167	0.1040	0.8960
610	M-31	272	-	1378.57	0.5894	0.4106	0.0006	0.9994
611	M-31	272	-	1378.57	0.6581	0.3419	0.0013	0.9987
612	M-31	272	-	1378.57	0.2874	0.7126	0.2899	0.7101
613	M-31	272	-	1378.57	0.4728	0.5272	0.5801	0.4199
614	M-31	272	-	1378.57	0.5681	0.4319	0.0186	0.9814
615	M-31	272	-	1378.57	0.5089	0.4911	0.0608	0.9392
616	M-31	272	8.3	1378.57	0.5334	0.4666	0.1936	0.8064
617	M-31	272	-	1378.57	0.4728	0.5272	0.5801	0.4199
618	M-31	272	-	1378.57	0.5681	0.4319	0.0186	0.9814
619	M-31	272	-	1378.57	0.5089	0.4911	0.0608	0.9392
620	M-31	272	-	1378.57	0.5334	0.4666	0.1936	0.8064
621	M-31	272	-	1378.57	0.4728	0.5272	0.5801	0.4199
622	M-31	272	-	1378.57	0.4762	0.5238	0.0648	0.9352
623	M-31	272	-	1378.57	0.5746	0.4254	0.0211	0.9789
624	M-31	272	-	1378.57	0.7444	0.2556	0.0000	1.0000
625	M-31	272	-	1378.57	0.6570	0.3430	0.0000	1.0000
626	M-31	272	-	1378.57	0.5833	0.4167	0.1040	0.8960
627	M-31	272	-	1378.57	0.5894	0.4106	0.0006	0.9994
628	M-31	272	-	1378.57	0.6581	0.3419	0.0013	0.9987
629	M-31	272	-	1378.57	0.2874	0.7126	0.2899	0.7101
630	M-31	272	-	1378.57	0.4728	0.5272	0.5801	0.4199
631	M-31	272	-	1378.57	0.5681	0.4319	0.0186	0.9814

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	н	Xv	XI	Xvr	Xlr
632	M-31	272	-	1378.57	0.5089	0.4911	0.0608	0.9392
633	M-31	272	-	1378.57	0.5334	0.4666	0.1936	0.8064
634	M-31	272	-	1378.57	0.2874	0.7126	0.0000	1.0000
635	M-31	272	-	1378.57	0.6216	0.3784	0.0019	0.9981
636	M-31	272	-	1378.57	0.6216	0.3784	0.0019	0.9981
637	M-31	272	-	1378.57	0.5784	0.4216	0.0023	0.9977
638	M-31	272	-	1378.57	0.4578	0.5422	0.0019	0.9981
639	M-31	272	-	1378.57	0.4762	0.5238	0.0648	0.9352
640	M-31	272	-	1378.57	0.5746	0.4254	0.0211	0.9789
641	M-31	272	-	1378.57	0.7444	0.2556	0.0000	1.0000
642	M-31	272	-	1378.57	0.6570	0.3430	0.0000	1.0000
643	M-31	272	-	1378.57	0.5833	0.4167	0.1040	0.8960
644	M-31	272	8	1378.57	0.5894	0.4106	0.0006	0.9994
645	M-31	272	-	1243.48	0.6581	0.3419	0.0013	0.9987
646	M-31	272	-	1457.01	0.2874	0.7126	0.2899	0.7101
647	M-31	272	-	1390.02	0.4728	0.5272	0.5801	0.4199
648	M-31	272	-	1390.02	0.5681	0.4319	0.0186	0.9814
649	M-31	272	-	1448.63	0.5089	0.4911	0.0608	0.9392
650	M-31	272	-	1436.07	0.5334	0.4666	0.1936	0.8064
651	M-31	272	-	1394.2	0.2874	0.7126	0.0000	1.0000
652	M-31	272	-	1406.76	0.6216	0.3784	0.0019	0.9981
653	M-31	272	-	1364.9	0.5833	0.4167	0.1040	0.8960
654	M-31	272	-	1406.76	0.5894	0.4106	0.0006	0.9994
655	M-31	272	-	1373.27	0.6581	0.3419	0.0013	0.9987
656	M-31	272	-	1410.95	0.2874	0.7126	0.2899	0.7101
657	M-31	272	-	1348.15	0.4728	0.5272	0.5801	0.4199
658	M-31	272	-	1339.78	0.5681	0.4319	0.0186	0.9814
659	M-31	272	8.3	1414.3	0.5089	0.4911	0.0608	0.9392
660	M-31	272	-	1221.71	0.5334	0.4666	0.1936	0.8064
661	M-31	272	-	1389.6	0.4728	0.5272	0.5801	0.4199
662	M-35	301	-	1338.07	0.5681	0.4319	0.0186	0.9814
663	M-35	301	-	1338.07	0.5089	0.4911	0.0608	0.9392
664	M-35	301	-	1338.07	0.5334	0.4666	0.1936	0.8064
665	M-35	301	-	1338.07	0.4728	0.5272	0.5801	0.4199
666	M-35	301	-	1338.07	0.5681	0.4319	0.0186	0.9814
667	M-35	301	-	1338.07	0.5089	0.4911	0.0608	0.9392
668	M-35	301	-	1338.07	0.4762	0.5238	0.0648	0.9352
669	M-35	301	-	1338.07	0.5746	0.4254	0.0211	0.9789
670	M-35	301	-	1338.07	0.7444	0.2556	0.0000	1.0000
671	M-35	301	-	1338.07	0.6570	0.3430	0.0000	1.0000
672	M-35	301	-	1338.07	0.5833	0.4167	0.1040	0.8960
673	M-35	301	-	1338.07	0.5894	0.4106	0.0006	0.9994
674	M-35	301	-	1338.07	0.6581	0.3419	0.0013	0.9987
675	M-35	301	-	1338.07	0.2874	0.7126	0.2899	0.7101
676	M-35	301	-	1338.07	0.4728	0.5272	0.5801	0.4199
677	M-35	301	-	1260.23	0.5681	0.4319	0.0186	0.9814
678	M-35	301	-	1348.15	0.5089	0.4911	0.0608	0.9392
679	M-35	301	-	1369.08	0.5334	0.4666	0.1936	0.8064
680	M-35	301	-	1025.77	0.2874	0.7126	0.0000	1.0000
Continuación Tabla 23.

NM	Pozo	Туас	pH rep	н	Xv	XI	Xvr	Xlr
681	M-35	301	-	1356.52	0.6216	0.3784	0.0019	0.9981
682	M-35	301	-	1352.34	0.6216	0.3784	0.0019	0.9981
683	M-35	301	-	1427.7	0.5784	0.4216	0.0023	0.9977
684	M-35	301	-	1394.2	0.4578	0.5422	0.0019	0.9981
685	M-35	301	-	1385.83	0.4762	0.5238	0.0648	0.9352
686	M-35	301	-	1406.76	0.5746	0.4254	0.0211	0.9789
687	M-35	301	-	1423.51	0.7444	0.2556	0.0000	1.0000
688	M-35	301	-	1406.76	0.6570	0.3430	0.0000	1.0000
689	M-35	301	-	1335.59	0.5833	0.4167	0.1040	0.8960
690	M-35	301	-	1390.44	0.5894	0.4106	0.0006	0.9994
691	M-35	301	-	1188.21	0.6581	0.3419	0.0013	0.9987
692	M-42	271	-	1193.24	0.2874	0.7126	0.2899	0.7101
693	M-42	271	-	1193.24	0.4728	0.5272	0.5801	0.4199
694	M-42	271	-	1193.24	0.5681	0.4319	0.0186	0.9814
695	M-42	271	-	1193.24	0.5089	0.4911	0.0608	0.9392
696	M-42	271	-	1193.24	0.5334	0.4666	0.1936	0.8064
697	M-42	271	-	1193.24	0.2874	0.7126	0.0000	1.0000
698	M-42	271	-	1193.24	0.6216	0.3784	0.0019	0.9981
699	M-42	271	-	1193.24	0.5833	0.4167	0.1040	0.8960
700	M-42	271	-	1193.24	0.5894	0.4106	0.0006	0.9994
701	M-42	271	-	1193.24	0.6581	0.3419	0.0013	0.9987
702	M-42	271	-	1193.24	0.2874	0.7126	0.2899	0.7101
703	M-42	271	-	1193.24	0.4728	0.5272	0.5801	0.4199
704	M-42	271	-	1193.24	0.5681	0.4319	0.0186	0.9814
705	M-42	271	-	1172.3	0.5089	0.4911	0.0608	0.9392
706	M-42	271	-	1214.17	0.5334	0.4666	0.1936	0.8064
707	M-42	271	-	1193.24	0.4728	0.5272	0.5801	0.4199
708	M-43	240	-	1170.63	0.5681	0.4319	0.0186	0.9814
709	M-45	319	-	1815.82	0.5089	0.4911	0.0608	0.9392
710	M-45	319	-	2030.6	0.5089	0.4911	0.0608	0.9392
711	M-48	329	-	1652.95	0.5334	0.4666	0.1936	0.8064
712	M-48	329	-	1611.5	0.4728	0.5272	0.5801	0.4199
713	M-50	302	-	1396.3	0.5681	0.4319	0.0186	0.9814
714	M-50	302	-	1355.69	0.5089	0.4911	0.0608	0.9392
715	M-51	302	-	1530.07	0.2874	0.7126	0.2899	0.7101
716	M-51	302	-	1530.07	0.4728	0.5272	0.5801	0.4199
717	M-51	302	-	1530.07	0.5681	0.4319	0.0186	0.9814
718	M-51	302	-	1530.07	0.5089	0.4911	0.0608	0.9392
719	M-51	302	-	1530.07	0.5334	0.4666	0.1936	0.8064
720	M-51	302	-	1530.07	0.4728	0.5272	0.5801	0.4199
721	M-51	302	-	1530.07	0.5681	0.4319	0.0186	0.9814
722	M-51	302	-	1530.07	0.5089	0.4911	0.0608	0.9392
723	M-51	302	-	1530.07	0.5089	0.4911	0.0608	0.9392
724	M-51	302	-	1530.07	0.5334	0.4666	0.1936	0.8064
725	M-51	302	-	1542.84	0.4728	0.5272	0.5801	0.4199
726	M-51	302	-	1517.3	0.5681	0.4319	0.0186	0.9814
727	M-53	302	-	1543.25	0.5089	0.4911	0.0608	0.9392
728	M-53	302	-	1405.93	0.2874	0.7126	0.2899	0.7101
729	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199

NM= número de muestra; Xv= fracción de vapor a condiciones de descarga; Xl= fracción de líquido a condiciones de descarga; Xvr= fracción de vapor a condiciones de reservorio; Xlr= fracción de líquido a condiciones de reservorio.

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	н	Xv	XI	Xvr	Xlr
730	M-53	302	-	1474.59	0.5681	0.4319	0.0186	0.9814
731	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
732	M-53	302	-	1474.59	0.5334	0.4666	0.1936	0.8064
733	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199
734	M-53	302	-	1474.59	0.5681	0.4319	0.0186	0.9814
735	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
736	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
737	M-53	302	-	1474.59	0.5334	0.4666	0.1936	0.8064
738	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199
739	M-53	302	-	1474.59	0.5681	0.4319	0.0186	0.9814
740	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
741	M-53	302	-	1474.59	0.2874	0.7126	0.2899	0.7101
742	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199
743	M-53	302	-	1474.59	0.5681	0.4319	0.0186	0.9814
744	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
745	M-53	302	-	1474.59	0.5334	0.4666	0.1936	0.8064
746	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199
747	M-53	302	-	1474.59	0.2874	0.7126	0.2899	0.7101
748	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199
749	M-53	302	-	1474.59	0.5681	0.4319	0.0186	0.9814
750	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
751	M-53	302	-	1474.59	0.5334	0.4666	0.1936	0.8064
752	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199
753	M-53	302	-	1474.59	0.5681	0.4319	0.0186	0.9814
754	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
755	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
756	M-53	302	-	1474.59	0.5334	0.4666	0.1936	0.8064
757	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199
758	M-53	302	-	1474.59	0.5681	0.4319	0.0186	0.9814
759	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
760	M-53	302	-	1474.59	0.5334	0.4666	0.1936	0.8064
761	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199
762	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
763	M-53	302	-	1474.59	0.5334	0.4666	0.1936	0.8064
764	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199
765	M-53	302	-	1474.59	0.5681	0.4319	0.0186	0.9814
766	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
767	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
768	M-53	302	-	1474.59	0.5334	0.4666	0.1936	0.8064
769	M-53	302	-	1474.59	0.4728	0.5272	0.5801	0.4199
770	M-53	302	-	1474.59	0.5681	0.4319	0.0186	0.9814
771	M-53	302	-	1474.59	0.5089	0.4911	0.0608	0.9392
772	M-84	348	-	1781.9	0.2874	0.7126	0.2899	0.7101
773	M-84	348	-	2030.6	0.4728	0.5272	0.5801	0.4199
774	M-90	287	-	1374.53	0.5681	0.4319	0.0186	0.9814
775	M-90	287	-	1275.3	0.5089	0.4911	0.0608	0.9392
776	M-101	305	-	1372.85	0.5334	0.4666	0.1936	0.8064
777	M-102	346	-	1645.41	0.4728	0.5272	0.5801	0.4199
778	M-102	346	-	1688.12	0.2874	0.7126	0.2899	0.7101

NM= número de muestra; Xv= fracción de vapor a condiciones de descarga; XI= fracción de líquido a condiciones de descarga; Xvr= fracción de vapor a condiciones de reservorio; XIr= fracción de líquido a condiciones de reservorio.

Continuación Tabla 23.

NM	Pozo	Туас	pH rep	Н	Xv	XI	Xvr	Xlr
779	M-103	331	-	1603.96	0.4728	0.5272	0.5801	0.4199
780	M-103	331	-	1531.11	0.5681	0.4319	0.0186	0.9814
781	M-104	341	-	2030.6	0.5089	0.4911	0.0608	0.9392
782	M-114	270	-	1186.12	0.5334	0.4666	0.1936	0.8064
783	M-114	270	-	1197.42	0.4728	0.5272	0.5801	0.4199
784	M-130	281	-	1240.55	0.5681	0.4319	0.0186	0.9814
785	M-130	281	-	1375.78	0.5334	0.4666	0.1936	0.8064
786	M-181	245	-	1161	0.4728	0.5272	0.5801	0.4199
787	M-181	245	-	1059.26	0.5681	0.4319	0.0186	0.9814

NM= número de muestra; Xv= fracción de vapor a condiciones de descarga; XI= fracción de líquido a condiciones de descarga; Xvr= fracción de vapor a condiciones de reservorio; XIr= fracción de líquido a condiciones de reservorio.

								Ca	tiones						Anio	nes		
NM	Pozo	T_{yac}	н	рН	Na-C _{Yi}	К- <i>С</i> _{Үі}	Ca-C _{Yi}	Mg-C _{Yi}	Li-C _{Yi}	Mn-C _{Yi}	В-С _{Үі}	Fe-C _{Yi}	Al-C _{Yi}	Cl-C _{Yi}	НСО ₃ - <i>С</i> _{Уі}	SO ₄ <i>C</i> _{Yi}	SiO ₂ -C _{Yi}	un
1	M-5	291	1313.02	-	5295.48	1420.81	310.22	0.00	17.84	0.00	13.18	0.00	0.00	10099.27	2.24	0.00	720.98	1
2	M-5	291	1313.02	-	5556.04	1402.11	318.80	0.00	0.00	0.00	8.40	0.00	0.00	9836.87	45.61	0.00	0.00	1
3	M-5	291	1313.02	-	3678.48	930.66	193.73	0.00	10.67	0.00	4.35	0.00	0.00	6439.79	106.92	0.00	391.76	1
4	M-5	291	1313.02	-	3969.69	1030.59	210.90	0.00	13.12	0.00	7.17	0.00	0.00	6914.32	9.56	0.00	0.00	1
5	M-5	291	1313.02	-	3563.22	988.29	198.64	0.00	13.24	0.00	7.11	0.00	0.00	6767.18	8.23	0.00	481.27	1
6	M-5	291	1313.02	-	2958.11	999.32	193.73	0.00	9.96	0.00	8.09	0.00	0.00	6884.89	64.31	0.00	481.27	1
7	M-5	291	1313.02	-	3801.10	972.96	205.26	0.00	10.27	0.00	9.20	0.00	0.00	7126.44	69.28	0.00	496.59	1
8	M-5	291	1313.02	-	3678.48	956.40	203.54	0.00	8.12	0.00	8.71	0.00	0.00	6998.92	69.22	0.00	493.53	1
9	M-5	291	1313.02	-	3755.12	1022.31	156.46	0.00	10.30	0.00	9.26	0.00	0.00	6891.63	67.56	0.00	413.83	1
10	M-5	291	1313.02	-	3801.10	1026.91	160.63	0.00	9.50	0.00	8.28	0.00	0.00	6778.83	79.39	0.00	464.10	1
11	M-5	291	1313.02	-	3755.12	911.65	184.54	0.00	9.63	0.00	8.64	0.00	0.00	6824.19	66.64	0.00	411.99	1
12	M-5	291	1313.02	-	3869.76	819.69	212.74	0.00	9.44	0.00	8.71	0.00	0.00	6937.00	80.99	0.00	485.56	1
13	M-5	291	1313.02	-	3486.59	960.70	171.05	0.00	9.32	0.00	6.19	0.00	0.00	6921.67	84.79	0.00	487.40	1
14	M-5	291	1313.02	-	3601.85	888.97	203.54	0.00	12.08	0.00	5.82	0.00	0.00	6978.08	81.66	0.00	489.24	1
15	M-5	291	1313.02	-	3448.58	926.98	220.71	0.00	11.96	0.00	6.44	0.00	0.00	6858.53	71.85	0.00	484.33	1
16	M-5	291	1313.02	-	3685.84	911.65	191.28	0.00	11.04	0.00	7.36	0.00	0.00	6960.91	89.82	0.00	426.09	1
17	M-5	291	1313.02	-	3647.83	934.95	196.19	0.00	10.18	0.00	7.42	0.00	0.00	6533.59	68.36	0.00	407.70	1
18	M-5	291	1313.02	-	3555.87	882.84	163.08	0.00	11.04	0.00	8.71	0.00	0.00	6716.91	86.44	0.00	404.63	1
19	M-5	291	1313.02	-	3831.75	956.40	201.09	0.00	10.73	0.00	7.17	0.00	0.00	6810.09	64.99	0.00	514.99	1
20	M-5	291	1313.02	7.5	5364.45	1364.10	308.99	0.00	9.20	0.00	9.93	0.00	0.00	9315.75	44.75	1.23	418.73	1
21	M-5	291	1313.02	-	6100.15	1440.74	358.04	0.00	18.82	0.00	14.71	0.00	0.00	10952.06	41.08	0.00	0.00	1
22	M-5	291	1313.02	-	5465.00	1340.81	310.22	0.00	17.10	0.00	0.00	0.00	0.00	10267.25	0.00	0.00	604.50	1
23	M-5	291	1313.02	-	5108.80	1269.08	279.56	0.00	17.35	0.00	0.00	0.00	0.00	9408.33	0.00	0.00	433.45	1
24	M-5	291	1313.02	-	5088.57	1354.91	319.41	1.47	16.86	0.00	0.00	0.00	0.00	10073.52	26.98	0.00	529.70	1
25	M-5	291	1313.02	-	4873.99	1272.14	298.57	1.47	15.94	0.00	0.00	0.00	0.00	9562.21	18.39	0.00	0.00	1
26	M-5	291	1313.02	-	4987.41	1244.55	297.34	2.94	16.25	0.00	0.00	0.00	0.00	9549.95	17.78	0.00	538.90	1
27	M-5	291	1313.02	-	5057.91	1212.06	278.95	0.00	16.80	0.00	0.00	0.00	0.00	9407.10	0.00	0.00	582.43	1
28	M-5	291	1313.02	-	4937.13	1194.89	270.37	0.00	17.41	0.00	0.00	0.00	0.00	9195.59	0.00	0.00	587.33	1
29	M-5	291	1313.02	-	5364.45	1269.08	299.80	0.00	15.20	0.00	0.00	0.00	0.00	9717.32	0.00	0.00	634.54	1
30	M-5	291	1313.02	-	5261.45	1284.40	294.89	0.00	0.00	0.00	0.00	0.00	0.00	9343.95	0.00	0.00	374.59	1
31	M-5	291	1313.02	-	5410.43	1243.33	306.54	0.00	0.00	0.00	0.00	0.00	0.00	9637.62	0.00	0.00	642.51	1
32	M-5	291	1313.02	-	5525.69	1266.62	276.19	0.00	0.00	0.00	0.00	0.00	0.00	9707.51	0.00	0.00	0.00	1

Tabla 24. Concentración (mg/l) a condiciones de yacimiento (Yi) de cationes disueltos en muestreos de agua de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I).

Continuación o	le Tab	la 24
----------------	--------	-------

Cont	Continuación de Tabla 24.																	
								Ca	ationes						Anio	nes		
NM	Pozo	Tyac	н	рН	Na-C _{Yi}	К-С _{Үі}	Ca-C _{Yi}	Mg-C _{Yi}	Li- <i>C</i> _{Yi}	Mn-C _{Yi}	В-С _{Үі}	Fe- <i>C</i> _{Yi}	Al-C _{Yi}	Cl-C _{Yi}	НСО 3- <i>С</i> уі	SO 4- <i>C</i> Yi	SiO ₂ - <i>C</i> _{Yi}	un
33	M-5	291	1313.02	-	4953.07	1207.77	203.54	4.48	0.00	0.00	11.34	0.00	0.00	9564.05	17.17	0.80	581.81	1
34	M-5	291	1313.02	-	4927.33	1222.48	283.86	0.00	0.00	0.00	0.00	0.00	0.00	9199.27	0.00	0.00	541.96	1
35	M-5	291	1313.02	-	4908.93	1150.75	282.63	0.00	0.00	0.00	0.00	0.00	0.00	9445.73	0.00	0.00	552.39	1
36	M-5	291	1313.02	-	4873.99	1195.51	282.32	0.00	0.00	0.00	0.00	0.00	0.00	9288.16	0.00	0.00	587.58	1
37	M-5	291	1313.02	-	4843.33	1195.51	279.56	0.00	0.00	0.00	0.00	0.00	0.00	9481.90	0.00	0.00	672.55	1
38	M-5	291	1313.02	-	4628.75	1115.81	278.95	0.00	0.00	0.00	0.00	0.00	0.00	9564.05	0.00	0.00	570.16	1
39	M-5	291	1313.02	-	4889.93	1159.95	278.95	0.31	0.00	0.00	0.00	0.00	0.00	9324.95	0.00	0.00	710.56	1
40	M-5	291	1313.02	-	4856.21	1178.34	320.64	0.29	0.00	0.00	0.00	0.00	0.00	9190.07	0.00	0.00	551.77	1
41	M-5	291	1313.02	7.89	4914.45	1164.24	308.99	0.31	0.00	0.00	10.88	0.00	0.03	9090.75	36.24	7.97	808.04	1
42	M-5	291	1313.02	-	5203.21	1207.16	247.07	0.15	0.00	0.00	14.10	0.00	0.00	9563.44	0.00	0.00	633.92	1
43	M-5	291	1193.24	-	4572.72	1098.77	259.89	0.30	11.51	0.59	9.54	0.20	0.00	8487.50	28.29	3.29	519.78	1
44	M-5	291	1318.84	6.85	5362.37	1267.50	299.71	0.00	15.20	0.00	0.00	0.00	0.00	9714.66	0.00	0.00	634.36	1
45	M-5	291	1406.76	6.51	5238.71	1252.16	293.51	0.00	8.79	0.00	0.00	0.00	0.00	9300.31	0.00	0.00	372.84	1
46	M-5	291	1410.95	-	5369.92	1237.24	305.04	0.00	15.80	0.00	0.00	0.00	0.00	9590.44	0.00	0.00	639.36	1
47	M-5	291	1373.27	-	5509.50	1262.91	275.69	0.00	16.02	0.00	0.00	0.00	0.00	9679.06	0.00	0.00	0.00	1
48	M-5	291	1373.27	-	4933.06	1204.23	202.95	4.46	13.45	0.00	0.00	0.00	0.00	9536.02	0.00	0.00	580.11	1
49	M-5	291	1331.4	-	4923.04	1221.42	283.61	0.00	0.00	0.00	0.00	0.00	0.00	9191.27	0.00	0.00	541.49	1
50	M-5	291	1306.28	-	4906.78	1151.11	282.72	0.00	0.00	0.00	0.00	0.00	0.00	9448.67	0.00	0.00	552.56	1
51	M-5	291	1364.9	-	4861.76	1804.05	281.92	0.00	13.64	0.00	0.00	0.00	0.00	9264.86	0.00	0.00	585.86	1
52	M-5	291	1272.79	-	4919.64	1214.34	283.97	0.00	13.20	0.00	0.00	0.00	0.00	9631.29	0.00	0.00	683.15	1
53	M-5	291	1289.53	-	4645.75	1119.90	279.98	0.00	13.29	0.00	0.00	0.00	0.00	9599.16	0.00	0.00	572.26	1
54	M-5	291	1327.22	-	4886.65	1159.17	272.64	0.31	13.36	0.00	0.00	0.00	0.00	9318.71	0.00	0.00	710.08	1
55	M-5	291	1306.28	-	4857.72	1178.71	320.74	0.29	11.59	0.00	0.00	0.00	0.00	9192.94	0.00	0.00	551.94	1
56	M-5	291	1327.22	-	4236.00	999.26	271.41	0.00	0.00	0.00	0.00	0.00	0.00	7681.04	0.00	0.00	0.00	1
57	M-5	291	1260.23	-	5036.44	1193.14	316.66	0.31	14.39	0.00	0.00	0.00	0.00	9316.40	0.00	0.00	828.10	1
58	M-5	291	1272.79	-	5285.19	1226.17	250.96	0.15	13.33	0.00	0.00	0.00	0.00	9714.11	0.00	0.00	643.91	1
59	M-5	291	1247.67	-	5176.71	1251.87	268.12	0.40	13.44	0.00	0.00	0.00	0.00	9865.34	0.00	0.00	675.69	1
60	M-5	291	1280.74	8.2	5170.49	1269.40	325.09	0.50	13.93	0.00	13.00	0.00	0.00	9659.85	26.50	3.10	619.22	1
61	M-5	291	1294.98	-	4807.47	1066.42	251.57	0.00	12.89	0.00	12.89	0.00	0.00	8840.59	30.68	0.00	647.95	1
62	M-5	291	1302.09	-	4815.72	1074.66	222.05	0.00	11.65	0.00	13.49	0.00	0.00	8882.49	57.66	0.00	693.74	1

Continuación de Tabla 24.

					Cationes									Anion	es			
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-C _{Yi}	К- <i>С</i> _{Үі}	Ca-C _{Yi}	Mg-C _{Yi}	Li-C _{Yi}	Mn-C _{Yi}	В- <i>С</i> _{Yi}	Fe-C _{Yi}	Al-C _{Yi}	CI-C _{Yi}	HCO ₃ -C _{Yi}	SO4-	SiO ₂ -C _{Yi}	un
																C Yi		
63	M-7	119	1218.1	-	4943.26	1078.58	333.64	0.00	11.98	0.00	2.21	0.00	0.00	9206.77	25.69	0.00	461.15	1
64	M-7	119	1218.1	-	4793.70	1042.15	306.80	0.00	14.76	0.00	8.92	0.00	0.00	8451.28	36.82	0.00	0.00	1
65	M-7	119	1218.1	-	4386.23	1138.02	279.95	0.00	11.27	0.00	12.46	0.00	0.00	9491.52	189.45	0.00	445.81	1
66	M-7	119	1218.1	-	5632.59	1233.90	308.71	0.00	13.90	0.00	13.42	0.00	0.00	9822.28	247.26	0.00	464.99	1
67	M-7	119	1218.1	-	4122.58	1233.90	302.96	0.00	13.90	0.00	13.04	0.00	0.00	9919.11	253.49	0.00	426.64	1
68	M-7	119	1218.1	-	4841.63	1078.58	257.23	0.00	13.18	0.00	14.19	0.00	0.00	9514.53	248.22	0.00	498.54	1
69	M-7	119	1218.1	-	5177.19	1198.42	263.85	0.00	14.74	0.00	11.79	0.00	0.00	9756.13	180.15	0.00	455.40	1
70	M-7	119	1218.1	-	5763.94	1138.02	298.17	0.00	14.50	0.00	13.23	0.00	0.00	9991.98	192.80	0.00	484.16	1
71	M-7	119	1218.1	-	5752.43	1305.80	299.13	0.00	13.85	0.00	12.56	0.00	0.00	9913.36	195.49	0.00	505.26	1
72	M-7	119	1218.1	-	5033.38	1138.02	282.83	0.00	12.22	0.00	10.55	0.00	0.00	9746.54	199.13	0.00	572.37	1
73	M-7	119	1218.1	-	5033.38	1185.96	306.80	0.00	14.14	0.00	12.46	0.00	0.00	9842.41	149.72	0.00	462.11	1
74	M-7	119	1218.1	-	5392.91	1209.93	291.46	0.00	15.58	0.00	9.59	0.00	0.00	9616.15	188.87	0.00	536.89	1
75	M-7	119	1218.1	-	5560.69	1126.52	302.96	0.00	15.34	0.00	13.42	0.00	0.00	9834.74	130.39	0.00	508.13	1
76	M-7	119	1218.1	-	5560.69	1209.93	291.46	0.00	15.34	0.00	13.23	0.00	0.00	9691.89	182.54	0.00	460.19	1
77	M-7	119	1218.1	-	5560.69	1078.58	295.29	0.00	13.90	0.00	13.04	0.00	0.00	9644.91	195.58	0.00	464.99	1
78	M-7	119	1218.1	-	5273.06	1090.09	302.96	0.00	14.96	0.00	10.93	0.00	0.00	9650.67	0.00	0.00	522.51	1
79	M-7	119	1218.1	-	5332.51	1053.65	253.11	0.00	0.00	0.00	0.00	0.00	0.00	9266.21	0.00	0.00	0.00	1
80	M-7	119	1218.1	-	5521.38	897.38	291.46	0.00	9.97	0.00	0.00	0.00	0.00	9491.52	0.00	0.00	435.27	1
81	M-7	119	1218.1	-	4476.35	893.54	275.16	0.00	4.79	0.00	0.00	0.00	0.00	8724.52	0.00	0.00	0.00	1
82	M-7	119	1218.1	-	5872.28	883.96	403.63	3.55	13.23	0.00	0.00	0.00	0.00	10603.65	0.00	0.00	523.47	1
83	M-8	291	1408.97	-	4899.50	1188.87	241.07	11.35	0.00	0.00	56.76	0.00	0.00	8765.15	0.00	0.00	502.89	1
84	M-8	291	1408.97	-	5225.40	1216.33	303.32	30.76	0.00	0.00	51.63	0.00	0.00	8937.86	0.00	0.00	634.10	1
85	M-8	291	1408.97	-	5194.89	1285.30	253.28	11.72	0.00	0.00	54.68	0.00	0.00	9053.82	0.00	0.00	582.23	1
86	M-8	291	1408.97	-	5236.39	1295.67	242.90	21.18	0.00	0.00	50.11	0.00	0.00	9035.51	0.00	0.00	548.66	1
87	M-8	291	1408.97	-	5359.67	1295.67	215.44	45.96	0.00	0.00	51.51	0.00	0.00	9098.98	0.00	0.00	624.95	1
88	M-8	291	1408.97	-	5180.24	1324.96	247.17	22.09	0.00	0.00	49.37	0.00	0.00	9105.09	0.00	0.00	552.32	1
89	M-8	291	1408.97	-	5068.55	1356.70	240.46	15.07	0.00	0.00	7.51	0.00	0.00	9667.78	0.00	0.00	660.96	1
90	M-8	291	1408.97	-	4672.47	1090.61	261.21	0.00	13.91	0.00	6.53	0.00	0.00	8851.20	41.68	0.00	637.15	1
91	M-8	291	1408.97	-	4367.32	1095.49	231.91	0.00	13.43	0.00	8.30	0.00	0.00	8157.29	0.74	0.00	0.00	1
92	M-8	291	1408.97	-	4722.51	1166.90	230.69	8.61	0.00	0.00	7.81	0.00	0.00	8186.58	0.00	0.00	569.41	1
93	M-8	291	1408.97	-	4348.40	1136.38	246.56	0.00	14.10	0.00	6.41	0.00	0.00	8325.73	1.49	0.00	527.61	1

Continuación de Tab	la 24.

					Cationes										Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-C _{Yi}	К-С уі	Са-С _{Уі}	Mg-C _{Yi}	Li-C Yi	Mn- <i>C</i> _{Yi}	В-С _{Уі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ - <i>С</i> _{Уі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
94	M-8	291	1408.97	-	4538.81	1214.50	246.56	0.00	11.75	0.00	10.80	0.00	0.00	8446.57	28.26	0.00	469.93	1
95	M-8	291	1408.97	-	4729.84	1098.54	236.80	0.00	12.28	0.00	10.62	0.00	0.00	8476.48	40.77	0.00	494.34	1
96	M-8	291	1408.97	-	4760.35	1126.01	251.44	0.00	12.21	0.00	8.97	0.00	0.00	8277.52	47.07	0.00	573.68	1
97	M-8	291	1408.97	-	4134.79	1029.88	205.67	0.00	11.44	0.00	11.11	0.00	0.00	8188.41	41.99	0.00	530.96	1
98	M-8	291	1408.97	-	4165.31	1113.80	208.72	0.00	11.90	0.00	10.38	0.00	0.00	7404.79	6.53	0.00	527.91	1
99	M-8	291	1408.97	-	4287.37	1022.26	211.77	0.00	12.51	0.00	9.52	0.00	0.00	7965.65	27.27	0.00	518.76	1
100	M-8	291	1408.97	-	4882.41	1266.38	259.38	0.00	12.21	0.00	9.89	0.00	0.00	8691.91	20.45	0.00	607.25	1
101	M-8	291	1408.97	-	4729.84	1403.69	228.86	0.00	11.14	0.00	5.55	0.00	0.00	9067.86	27.28	0.00	607.25	1
102	M-8	291	1408.97	-	4424.69	1098.54	242.90	0.00	14.04	0.00	7.93	0.00	0.00	8637.60	8.91	0.00	555.37	1
103	M-8	291	1408.97	-	4516.23	1586.78	258.77	0.00	16.48	0.00	7.75	0.00	0.00	9601.26	22.75	0.00	558.43	1
104	M-8	291	1408.97	-	5401.17	1525.75	288.06	0.00	19.38	0.00	10.19	0.00	0.00	9938.15	27.63	0.00	534.01	1
105	M-8	291	1408.97	-	5126.53	1479.98	266.09	0.00	17.24	0.00	9.76	0.00	0.00	9208.84	34.86	0.00	466.88	1
106	M-8	291	1408.97	-	6057.24	1556.27	297.83	0.00	18.16	0.00	9.83	0.00	0.00	10032.74	29.88	0.00	466.88	1
107	M-8	291	1408.97	-	5034.99	1373.18	244.12	0.00	17.70	0.00	9.28	0.00	0.00	9139.87	34.85	0.00	622.51	1
108	M-8	291	1408.97	-	4745.09	1266.38	232.89	0.00	0.00	0.00	0.00	0.00	0.00	8857.91	0.00	0.00	476.04	1
109	M-8	291	1408.97	-	4043.25	1210.84	192.43	0.00	0.00	0.00	0.00	0.00	0.00	8486.24	0.00	0.00	0.00	1
110	M-8	291	1408.97	-	4134.79	1258.44	224.59	0.00	0.00	0.00	0.00	0.00	0.00	8474.03	0.00	0.00	0.00	1
111	M-8	291	1408.97	-	4879.36	1296.89	260.60	0.00	14.89	0.00	10.99	0.00	0.00	9694.64	45.16	0.00	743.35	1
112	M-8	291	1408.97	-	5177.19	1364.63	303.32	0.00	17.09	0.00	0.00	0.00	0.00	9911.90	0.00	0.00	560.26	1
113	M-8	291	1408.97	-	4922.69	1260.88	297.22	0.00	14.46	0.00	0.00	0.00	0.00	9398.64	0.00	0.00	597.49	1
114	M-8	291	1408.97	-	2151.31	1194.97	352.14	0.00	9.22	0.00	0.00	0.00	0.00	8793.22	0.00	0.00	575.51	1
115	M-8	291	1408.97	-	5012.41	1119.90	271.58	0.00	13.91	0.00	0.00	0.00	0.00	8778.57	0.00	0.00	557.82	1
116	M-8	291	1408.97	-	4832.98	1155.30	249.00	0.00	12.69	0.00	0.00	0.00	0.00	9250.95	0.00	0.00	0.00	1
117	M-8	291	1408.97	-	3988.32	1022.26	148.91	5.92	10.38	0.00	5.80	0.00	0.00	7750.83	10.38	2.62	546.83	1
118	M-8	291	1408.97	-	3982.83	950.24	197.74	0.00	0.00	0.00	0.00	0.00	0.00	7319.95	0.00	0.00	545.00	1
119	M-8	291	1408.97	-	4043.25	950.24	192.24	0.00	0.00	0.00	0.00	0.00	0.00	7409.06	0.00	0.00	526.69	1
120	M-8	291	1408.97	-	3722.84	1015.54	184.92	0.00	10.99	0.00	0.00	0.00	0.00	7201.56	0.00	0.00	532.67	1
121	M-8	291	1408.97	-	3918.13	897.14	197.13	0.00	9.89	0.00	0.00	0.00	0.00	7240.00	0.00	0.00	670.11	1
122	M-8	291	1408.97	-	3844.90	878.83	191.63	0.00	12.21	0.00	0.00	0.00	0.00	7262.59	0.00	0.00	546.22	1
123	M-8	291	1408.97	-	3927.29	866.02	181.26	0.18	10.44	0.00	0.00	0.00	0.00	7390.75	0.00	0.00	637.76	1
124	M-8	291	1408.97	-	3412.20	836.72	171.49	0.06	9.34	0.00	0.00	0.00	0.00	6456.99	0.00	0.00	512.65	1
125	M-8	291	1408.97	8.21	3208.35	799.49	157.46	0.02	8.85	0.00	9.47	0.00	0.00	6181.13	19.77	6.10	594.43	1

Continuación de Tabla 24.

								Ca	ationes						Anio	nes		
NM	Pozo	Tyac	н	рН	Na-C _{Yi}	К- <i>С</i> үі	Са-С _{Уі}	Mg-C _{Yi}	Li-C _{Yi}	Mn- <i>C</i> _{Yi}	В-С _{Үі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО з- <i>С</i> уі	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
126	M-8	291	1247.67	-	4063.62	922.89	242.13	0.09	11.79	0.00	0.00	0.00	0.00	7571.36	0.00	0.00	617.37	1
127	M-8	291	1415.14	6.8	4922.19	1258.91	295.82	0.00	14.46	0.00	0.00	0.00	0.00	9393.02	0.00	0.00	597.13	1
128	M-8	291	1402.58	-	5197.11	1193.23	350.95	0.00	9.22	0.00	0.00	0.00	0.00	8793.89	0.00	0.00	575.56	1
129	M-8	291	1406.76	-	5011.67	1119.74	271.54	0.00	13.91	0.00	0.00	0.00	0.00	8777.28	0.00	0.00	497.93	1
130	M-8	291	1771.02	-	4703.87	1124.44	242.35	0.00	0.00	0.00	0.00	0.00	0.00	9003.82	0.00	0.00	0.00	1
131	M-8	291	1457.01	-	3976.60	1019.25	148.48	5.90	10.34	0.00	0.00	0.00	0.00	7728.06	0.00	0.00	545.22	1
132	M-8	291	1431.89	-	3976.79	948.80	197.44	0.00	0.00	0.00	0.00	0.00	0.00	7308.85	0.00	0.00	544.17	1
133	M-8	291	1448.63	-	4052.18	947.90	191.77	0.00	0.00	0.00	0.00	0.00	0.00	7390.85	0.00	0.00	525.40	1
134	M-8	291	1360.71	-	3731.16	1017.81	185.33	0.00	11.01	0.00	0.00	0.00	0.00	7217.65	0.00	0.00	533.98	1
135	M-8	291	1452.82	-	3907.57	894.72	196.60	0.00	9.86	0.00	0.00	0.00	0.00	7220.48	0.00	0.00	662.83	1
136	M-8	291	1394.2	-	3846.89	879.29	191.73	0.00	12.21	0.00	0.00	0.00	0.00	7266.35	0.00	0.00	546.50	1
137	M-8	291	1352.34	-	3937.70	868.31	181.74	0.18	10.46	0.00	0.00	0.00	0.00	7410.35	0.00	0.00	639.46	1
138	M-8	291	1498.87	-	3393.67	832.18	170.56	0.06	9.29	0.00	0.00	0.00	0.00	6421.93	0.00	0.00	509.87	1
139	M-8	291	1381.64	-	3212.11	800.43	157.64	0.02	8.86	0.00	0.00	0.00	0.00	6188.38	0.00	0.00	593.30	1
140	M-8	291	1276.97	-	3980.49	904.01	237.18	0.09	11.55	0.00	0.00	0.00	0.00	7416.47	0.00	0.00	571.21	1
141	M-8	291	1364.9	-	3894.88	932.59	174.29	0.13	9.91	0.00	0.00	0.00	0.00	7254.67	0.00	0.00	595.03	1
142	M-8	291	1372.43	-	4890.44	1222.61	281.20	0.24	11.31	0.00	12.23	0.00	0.00	9352.96	39.73	9.17	611.30	1
143	M-8	291	1294.56	8.3	3083.93	603.16	141.74	0.00	8.59	0.00	8.59	0.00	0.00	5649.38	44.18	0.00	497.63	2
144	M-8	291	1440.26	-	2253.63	500.06	96.24	0.00	6.09	0.00	7.92	0.00	0.00	4151.56	89.54	0.00	564.02	2
145	M-9	131	1129.39	-	6950.29	1270.32	472.40	20.11	15.81	0.00	87.84	0.00	0.00	11518.03	0.00	0.00	288.11	1
146	M-9	131	1129.39	-	6821.20	1258.16	471.83	17.77	15.15	0.00	81.29	0.00	0.00	11419.80	0.00	0.00	254.44	1
147	M-9	131	1129.39	-	7057.87	1308.68	489.23	20.95	15.72	0.00	33.58	0.00	0.00	11504.93	0.00	0.00	335.82	1
148	M-9	131	1129.39	-	5582.68	1085.11	396.63	20.39	14.03	0.00	7.58	0.00	0.00	10014.78	0.00	0.00	457.43	1
149	M-9	131	1129.39	-	5348.82	11284.2	374.17	15.90	15.90	0.00	5.71	0.00	0.00	9214.05	0.00	0.00	0.00	1
150	M-9	131	1129.39	-	4443.32	1110.36	370.43	10.20	13.56	0.00	8.14	0.00	0.00	9028.83	0.00	0.00	355.00	1
151	M-9	131	1129.39	-	5215.06	1055.17	385.40	2.71	10.55	0.00	10.76	0.00	0.00	9859.50	0.00	0.00	383.53	1
152	M-9	131	1129.39	-	5308.60	1379.77	383.53	0.00	11.93	0.00	10.57	0.00	0.00	9864.18	71.47	0.00	332.08	1
153	M-9	131	1129.39	-	5799.71	1216.07	413.46	0.00	16.37	0.00	11.13	0.00	0.00	9583.54	77.27	0.00	612.71	1
154	M-9	131	1129.39	-	5238.44	1169.30	379.79	0.00	14.03	0.00	12.25	0.00	0.00	10469.40	72.12	0.00	439.66	1
155	M-9	131	1129.39	-	5331.99	1253.48	389.89	0.00	18.01	0.00	10.85	0.00	0.00	10754.71	24.51	0.00	609.90	1
156	M-9	131	1129.39	-	5389.98	1133.75	438.35	0.00	18.01	0.00	12.16	0.00	0.00	11011.02	32.65	0.00	598.68	1

Continuación de Tabla 24.

					Cationes										Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na- <i>C</i> _{Yi}	К- <i>С</i> үі	Са-С _{Уі}	Mg-	Li-C Yi	Mn-C _{Yi}	В-С _{Үі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	HCO₃-	SO 4-	SiO ₂ - <i>C</i> _{Yi}	un
								С _{Yi}							С _{Үі}	С _{Yi}		
157	M-9	131	1129.39	-	6548.05	1286.23	479.04	0.00	17.77	0.00	12.53	0.00	0.00	11497.45	28.72	0.00	383.53	1
158	M-9	131	1129.39	-	6080.34	1309.61	479.04	0.00	16.60	0.00	9.07	0.00	0.00	11490.90	43.59	0.00	535.54	1
159	M-9	131	1129.39	-	6047.60	1295.58	478.94	0.00	18.24	0.00	11.88	0.00	0.00	11514.28	57.25	0.00	481.75	1
160	M-9	131	1129.39	-	6127.11	1262.84	449.01	0.00	17.77	0.00	9.17	0.00	0.00	11165.37	27.39	0.00	495.78	1
161	M-9	131	1129.39	-	6407.74	1253.48	460.23	0.00	18.99	0.00	11.88	0.00	0.00	11226.17	37.36	0.00	477.07	1
162	M-9	131	1129.39	-	5612.62	1216.07	419.08	0.00	15.90	0.00	11.23	0.00	0.00	9968.94	68.70	0.00	505.14	1
163	M-9	131	1129.39	-	5729.55	1178.65	437.78	0.00	16.09	0.00	8.98	0.00	0.00	10297.28	38.17	0.00	505.14	1
164	M-9	131	1129.39	-	5085.97	1075.75	483.62	0.00	12.82	0.00	15.72	0.00	0.00	11948.33	53.41	0.00	497.65	1
165	M-9	131	1129.39	-	6033.56	1000.92	466.78	0.00	16.18	0.00	21.23	0.00	0.00	10909.06	57.72	0.00	0.00	1
166	M-9	131	1129.39	-	5922.25	998.11	418.14	0.00	0.00	0.00	10.76	0.00	0.00	10719.16	61.08	0.00	463.04	1
167	M-9	131	1129.39	-	5732.35	963.50	434.98	0.00	17.31	0.00	0.00	0.00	0.00	10792.13	0.00	0.00	0.00	1
168	M-9	131	1129.39	-	5464.82	880.25	394.75	0.00	15.06	0.00	0.00	0.00	0.00	9425.46	0.00	0.00	0.00	1
169	M-9	131	1129.39	-	5191.67	783.90	408.79	0.00	11.41	0.00	0.00	0.00	0.00	9489.06	0.00	0.00	478.94	1
170	M-9	131	1129.39	-	5706.16	727.77	347.05	0.00	13.75	0.00	0.00	0.00	0.00	8922.19	0.00	0.00	0.00	1
171	M-9	131	1129.39	-	3796.00	497.65	320.85	0.00	3.74	0.00	0.00	0.00	0.00	6969.00	0.00	0.00	0.00	1
172	M-9	131	1129.39	-	5444.24	851.25	467.72	0.00	12.72	0.00	0.00	0.00	0.00	10441.34	0.00	0.00	324.13	1
173	M-9	131	1129.39	-	5491.01	822.25	439.66	0.00	12.44	0.00	0.00	0.00	0.00	10319.73	0.00	0.00	319.92	1
174	M-9	131	1129.39	-	5360.05	793.25	434.98	0.00	12.49	0.00	0.00	0.00	0.00	9957.72	0.00	0.00	334.23	1
175	M-9	131	1129.39	-	5444.24	804.48	441.53	0.00	12.72	0.00	0.00	0.00	0.00	10144.81	0.00	0.00	330.21	1
176	M-9	131	1129.39	-	5229.09	722.16	409.72	0.00	11.55	0.00	0.00	0.00	0.00	9645.28	0.00	0.00	325.16	1
177	M-9	131	1129.39	-	5631.33	851.25	411.59	0.00	12.91	0.00	0.00	0.00	0.00	10160.71	0.00	0.00	555.65	1
178	M-9	131	1129.39	-	5425.53	883.05	413.46	0.00	13.28	0.00	0.00	0.00	0.00	10383.34	0.00	0.00	463.04	1
179	M-9	131	1129.39	-	5012.07	682.87	370.43	1.78	12.72	0.00	0.00	0.00	0.00	9373.07	0.00	0.00	0.00	1
180	M-9	131	1129.39	-	3665.04	488.30	297.09	0.00	0.00	0.00	0.00	0.00	0.00	6640.10	61.65	0.00	0.00	1
181	M-9	131	1129.39	-	4655.67	618.32	467.72	0.70	11.04	0.00	0.00	0.00	0.00	8746.33	0.00	0.00	599.61	1
182	M-9	131	1109.5	-	5910.32	877.75	393.02	0.00	15.07	0.00	0.00	0.00	0.00	9428.82	0.00	0.00	0.00	1
183	M-9	131	1214.17	-	5622.17	849.86	410.92	0.00	12.89	0.00	0.00	0.00	0.00	10144.20	0.00	0.00	554.75	1
184	M-9	131	1214.17	-	5416.71	881.62	394.11	0.00	13.26	0.00	0.00	0.00	0.00	10366.47	0.00	0.00	462.29	1
185	M-9	131	979.71	8	5204.57	825.23	393.86	1.69	11.72	0.00	12.19	0.00	0.00	9377.60	61.89	0.01	468.88	1
186	M-11	281	1234.59	-	5847.50	1376.48	281.26	14.98	16.89	0.00	0.00	0.00	0.00	9856.94	0.00	0.00	380.82	1
187	M-11	281	1234.59	-	1295.21	4654.51	281.71	15.68	0.00	0.00	7.75	0.00	0.00	9112.83	0.00	0.00	0.00	1

Continuación de Tabla 24.

								Ca	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-C _{Yi}	К- <i>С</i> үі	Са-С _{Уі}	Mg-C _{Yi}	Li-C Yi	Mn- <i>C</i> _{Yi}	В-С _{Уі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО 3- <i>С</i> Уі	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
188	M-11	281	1234.59	-	1039.34	3987.85	201.90	18.35	12.06	0.00	3.02	0.00	0.00	7021.44	0.00	0.00	428.25	1
189	M-11	281	1234.59	-	1198.07	3987.85	213.33	8.44	12.63	0.00	6.79	0.00	0.00	7066.52	0.00	0.00	0.00	1
190	M-11	281	1234.59	-	1134.58	4055.15	210.79	7.71	11.43	0.00	8.63	0.00	0.00	7955.39	0.00	0.00	495.23	1
191	M-11	281	1234.59	-	4285.63	1158.71	227.30	0.00	10.29	0.00	8.63	0.00	0.00	7880.47	61.01	0.00	441.26	1
192	M-11	281	1234.59	-	4444.35	1118.71	209.52	0.00	12.51	0.00	8.89	0.00	0.00	7804.28	66.41	0.00	422.21	1
193	M-11	281	1234.59	-	864.74	864.74	177.14	0.00	9.97	0.00	7.62	0.00	0.00	6691.92	93.71	0.00	431.74	1
194	M-11	281	1234.59	-	1980.91	457.13	55.11	0.00	6.03	0.00	4.38	0.00	0.00	3498.97	140.12	0.00	255.23	1
195	M-11	281	1234.59	-	2698.36	788.55	154.28	0.00	6.63	0.00	4.57	0.00	0.00	5178.94	118.35	0.00	377.77	1
196	M-11	281	1234.59	-	5301.48	1434.89	345.39	0.00	17.90	0.00	13.65	0.00	0.00	10441.05	25.33	0.00	533.32	1
197	M-11	281	1234.59	-	4444.35	1317.43	378.40	0.00	19.05	0.00	9.46	0.00	0.00	9988.36	25.33	0.00	517.45	1
198	M-11	281	1234.59	-	2936.45	793.63	177.77	0.00	9.02	0.00	6.54	0.00	0.00	5684.96	201.20	0.00	333.33	1
199	M-11	281	1234.59	-	2730.10	848.87	175.23	0.00	9.02	0.00	7.30	0.00	0.00	5880.51	96.70	0.00	339.68	1
200	M-11	281	1234.59	-	3365.01	825.38	196.82	0.00	9.52	0.00	7.62	0.00	0.00	5881.15	106.66	0.00	330.15	1
201	M-11	281	1234.59	-	4079.28	971.41	218.41	0.00	11.43	0.00	6.98	0.00	0.00	7146.52	86.35	0.00	492.05	1
202	M-11	281	1234.59	-	3491.99	1134.58	286.98	97.14	8.89	0.00	10.16	0.00	0.00	8349.03	29.21	0.00	379.04	1
203	M-11	281	1234.59	-	4936.40	1158.71	316.18	0.00	17.78	0.00	15.87	0.00	0.00	9543.93	41.90	0.00	413.96	1
204	M-11	281	1234.59	-	5257.67	1261.56	313.64	0.00	0.00	0.00	10.79	0.00	0.00	10136.29	37.46	0.00	552.37	1
205	M-11	281	1234.59	-	5343.38	1172.04	349.83	0.00	17.14	0.00	0.00	0.00	0.00	9729.32	0.00	0.00	588.56	1
206	M-11	281	1234.59	-	5184.65	1193.63	358.72	0.00	16.51	0.00	0.00	0.00	0.00	9714.08	0.00	0.00	433.01	1
207	M-11	281	1234.59	-	5290.68	1146.64	349.83	0.00	15.24	0.00	0.00	0.00	0.00	9396.63	0.00	0.00	532.05	1
208	M-11	281	1234.59	-	5460.20	1154.26	357.45	0.00	15.94	0.00	0.00	0.00	0.00	9579.48	0.00	0.00	554.27	1
209	M-11	281	1234.59	-	5634.80	1164.42	334.60	0.00	15.49	0.00	0.00	0.00	0.00	9703.92	0.00	0.00	0.00	1
210	M-11	281	1234.59	-	4764.34	949.82	356.18	4.63	13.97	0.00	6.22	0.00	0.00	9174.41	27.94	2.73	481.26	1
211	M-11	281	1234.59	-	4970.69	958.71	405.71	0.00	0.00	0.00	0.00	0.00	0.00	9390.91	0.00	0.00	0.00	1
212	M-11	281	1234.59	-	4020.23	508.56	409.52	0.00	0.00	0.00	0.00	0.00	0.00	7720.47	0.00	0.00	349.83	1
213	M-11	281	1234.59	-	4038.01	490.15	414.59	0.00	0.00	0.00	0.00	0.00	0.00	7615.08	0.00	0.00	0.00	1
214	M-11	281	1234.59	-	4050.71	399.99	474.28	0.00	0.00	0.00	0.00	0.00	0.00	8095.07	0.00	0.00	340.12	1
215	M-11	281	1234.59	-	4063.41	412.69	471.10	0.00	0.00	0.00	0.00	0.00	0.00	8095.07	0.00	0.00	306.09	1
216	M-11	281	1234.59	-	4190.39	424.12	516.18	0.00	0.00	0.00	0.00	0.00	0.00	8444.27	0.00	0.00	369.58	1
217	M-11	281	1234.59	-	3999.92	399.99	495.23	0.00	0.00	0.00	0.00	0.00	0.00	7809.36	0.00	0.00	337.39	1
218	M-11	281	1234.59	-	3872.94	380.94	441.90	0.00	0.00	0.00	0.00	0.00	0.00	7682.38	0.00	0.00	333.33	1

Continuación d	le Tabla 24.

								Cá	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-C _{Yi}	К-С _{Үі}	Са- <i>С</i> _{Уі}	Mg-C _{Yi}	Li-C Yi	Mn- <i>C</i> _{Yi}	В-С _{Уі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО₃- <i>С</i> _{Үі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
219	M-11	281	1234.59	-	3777.70	361.90	393.64	0.00	0.00	0.00	0.00	0.00	0.00	7237.94	0.00	0.00	326.34	1
220	M-11	281	1234.59	-	3815.79	355.55	380.94	0.00	0.00	0.00	0.00	0.00	0.00	6983.98	0.00	0.00	346.98	1
221	M-11	281	1234.59	-	3555.48	355.55	392.37	0.00	0.00	0.00	0.00	0.00	0.00	7174.45	0.00	0.00	333.33	1
222	M-11	281	1234.59	-	4295.15	930.77	304.12	0.00	0.00	0.00	0.00	0.00	0.00	7523.65	0.00	0.00	0.00	1
223	M-11	281	1234.59	-	4617.05	1003.79	288.25	0.00	0.00	0.00	0.00	0.00	0.00	8158.56	0.00	0.00	0.00	1
224	M-11	281	1234.59	-	4997.36	1241.24	330.79	0.00	0.00	0.00	0.00	0.00	0.00	9629.64	0.00	0.00	0.00	1
225	M-11	281	1234.59	-	5311.00	1313.62	332.69	0.00	0.00	0.00	0.00	0.00	0.00	9740.75	0.00	0.00	0.00	1
226	M-11	281	1234.59	-	5146.56	1300.29	330.79	0.00	0.00	0.00	0.00	0.00	0.00	9759.80	0.00	0.00	0.00	1
227	M-11	281	1234.59	7.9	5224.65	1289.50	349.20	0.22	0.00	0.00	0.00	0.00	0.03	10240.42	0.00	7.62	853.95	1
228	M-11	281	1214.17	-	5426.88	1377.80	252.34	0.14	0.00	0.00	0.00	0.00	0.00	10111.66	0.00	0.00	0.00	1
229	M-11	281	1184.86	-	5416.96	1241.26	374.50	0.00	17.20	0.00	0.00	0.00	0.00	10123.31	0.00	0.00	451.25	1
230	M-11	281	1247.67	-	5472.68	1157.03	358.31	0.00	15.97	0.00	0.00	0.00	0.00	9602.49	0.00	0.00	555.61	1
231	M-11	281	1226.73	-	5707.72	1179.49	338.93	0.00	15.69	0.00	0.00	0.00	0.00	9829.50	0.00	0.00	0.00	1
232	M-11	281	1197.42	-	4923.34	981.52	368.07	4.79	14.43	0.00	0.00	0.00	0.00	9480.58	0.00	0.00	497.32	1
233	M-11	281	1180.68	-	5194.57	1001.89	423.98	0.00	0.00	0.00	0.00	0.00	0.00	9813.89	0.00	0.00	0.00	1
234	M-11	281	1067.63	-	4518.11	571.54	460.23	0.00	0.00	0.00	0.00	0.00	0.00	8676.60	0.00	0.00	393.16	1
235	M-11	281	1272.79	-	5230.78	1291.64	349.61	0.22	16.02	0.00	0.00	0.00	0.00	10252.43	0.00	0.00	854.95	1
236	M-11	281	1247.67	-	5324.39	1351.78	247.57	0.14	15.02	0.00	0.00	0.00	0.00	9920.70	0.00	0.00	661.89	1
237	M-11	281	1343.96	-	5369.06	1294.45	298.28	0.28	15.20	0.00	0.00	0.00	0.00	9975.00	0.00	0.00	654.83	1
238	M-11	281	1138.39	8.2	5594.20	1228.00	368.40	0.75	13.64	0.00	12.96	0.00	0.00	11393.07	27.29	6.82	614.00	1
239	M-11	281	1358.62	-	5122.34	1194.69	276.52	0.00	15.82	0.00	13.29	0.00	0.00	9518.88	36.07	0.00	675.17	2
240	M-11	281	1369.08	-	5066.82	1181.96	277.63	0.00	0.00	0.00	10.75	0.00	0.00	9518.32	49.96	0.00	713.35	2
241	M-14	264	1200.27	-	1892.83	531.29	101.00	0.00	0.00	0.00	0.00	0.00	0.00	3642.23	0.00	0.00	0.00	1
242	M-14	264	1200.27	-	2156.12	618.82	106.39	0.00	0.00	0.00	0.00	0.00	0.00	4106.18	0.00	0.00	0.00	1
243	M-14	264	1200.27	-	2078.68	415.47	14.14	0.00	0.00	0.00	0.00	0.00	0.00	3948.61	0.00	0.00	0.00	1
244	M-14	264	1200.27	-	214.13	39.06	11.99	0.00	0.00	0.00	0.00	0.00	0.00	370.35	0.00	0.00	0.00	1
245	M-14	264	1200.27	-	4705.48	927.22	310.42	0.00	0.00	0.00	0.00	0.00	0.00	8536.25	0.00	0.00	0.00	1
246	M-14	264	1200.27	-	101.68	22.22	6.94	0.00	0.00	0.00	0.00	0.00	0.00	875.37	0.00	0.00	0.00	1
247	M-14	264	1200.27	-	4775.51	936.65	323.22	0.00	0.00	0.00	0.00	0.00	0.00	8549.72	0.00	0.00	0.00	1
248	M-14	264	1200.27	-	4664.40	922.51	316.48	0.00	0.00	0.00	0.00	0.00	0.00	8536.25	0.00	0.00	0.00	1
249	M-14	264	1138.81	-	4725.13	972.58	321.92	0.00	0.00	0.00	0.00	0.00	0.00	8700.71	0.00	0.00	0.00	1

Continuación de Tabla 24.

								Ca	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-С _{Yi}	К-С _{Үі}	Са-С _{Уі}	Mg-C _{Yi}	Li-C Yi	Mn-C _{Yi}	В-С _{Үі}	Fe-C Yi	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ -С _{Уі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
250	M-14	264	1327.22	8.05	4730.58	961.62	297.37	0.41	11.83	0.00	12.28	0.00	0.03	8762.84	0.00	7.35	641.53	1
251	M-14	264	1289.53	-	4927.08	983.81	231.72	0.27	11.39	0.00	0.00	0.00	0.00	8962.77	0.00	0.00	587.34	1
252	M-14	264	1289.53	-	4829.97	983.14	260.52	0.66	11.18	0.00	0.00	0.00	0.00	8634.61	0.00	0.00	387.09	1
253	M-14	264	1153.04	-	4436.09	813.57	240.05	0.00	10.91	0.00	11.59	0.00	0.00	7999.27	45.69	0.00	494.41	2
254	M-14	264	1130.44	-	4071.23	756.37	218.75	0.00	9.60	0.00	10.97	0.00	0.00	7385.40	78.86	0.00	577.39	2
255	M-19A	297	1281.16	-	5327.42	1335.26	324.99	0.00	0.00	0.00	0.00	0.00	0.00	9920.04	0.00	0.00	571.37	1
256	M-19A	297	1335.59	-	5213.94	1261.24	309.77	0.00	0.00	0.00	0.00	0.00	0.00	9844.88	0.00	0.00	407.43	1
257	M-19A	297	1570.05	-	4924.58	1337.69	310.75	0.00	14.38	0.00	0.00	0.00	0.00	10032.65	0.00	0.00	577.10	1
258	M-19A	297	1515.62	-	4501.21	1122.33	261.88	0.00	12.05	0.00	0.00	0.00	0.00	8709.08	0.00	0.00	769.60	1
259	M-19A	297	1469.57	-	4900.79	1242.46	293.50	0.24	13.63	0.00	0.00	0.00	0.00	9644.42	0.00	0.00	667.37	1
260	M-19A	297	1465.38	-	5055.51	1256.43	340.61	0.15	13.93	0.00	0.00	0.00	0.00	9592.96	0.00	0.00	0.00	1
261	M-19A	297	1289.53	8.25	5069.09	1266.35	342.12	0.13	15.01	0.00	0.00	0.00	0.03	10047.74	0.00	0.00	794.39	1
262	M-19A	297	1318.84	-	5244.74	1275.80	265.04	0.11	12.83	0.00	0.00	0.00	0.00	9726.90	0.00	0.00	658.98	1
263	M-19A	297	1306.28	-	5144.81	1409.15	292.41	0.27	13.74	0.00	0.00	0.00	0.00	9661.03	0.00	0.00	699.71	1
264	M-19A	297	1371.77	-	5148.14	1290.33	314.06	0.00	0.00	0.00	0.00	0.00	0.00	9586.21	0.00	0.00	552.14	1
265	M-19A	297	1371.77	-	5205.57	1259.22	309.27	0.00	0.00	0.00	0.00	0.00	0.00	9829.08	0.00	0.00	526.42	1
266	M-19A	297	1371.77	-	4977.05	1351.94	314.06	0.00	14.55	0.00	0.00	0.00	0.00	10139.55	0.00	0.00	583.25	1
267	M-19A	297	1371.77	-	4534.38	1130.60	263.81	0.00	12.14	0.00	0.00	0.00	0.00	8773.25	0.00	0.00	775.27	1
268	M-19A	297	1371.77	-	4924.41	1248.45	294.91	0.24	13.70	0.00	0.00	0.00	0.00	9690.90	0.00	0.00	670.59	1
269	M-19A	297	1371.77	-	5078.75	1262.21	342.17	0.15	14.00	0.00	0.00	0.00	0.00	9637.06	0.00	0.00	0.00	1
270	M-19A	297	1371.77	-	4928.00	1231.10	332.60	0.13	14.60	0.00	10.32	0.00	0.00	9768.06	26.14	7.18	772.28	1
271	M-19A	297	1239.29	-	5551.28	1350.36	280.53	0.11	13.58	0.00	0.00	0.00	0.00	10295.40	0.00	0.00	697.50	1
272	M-19A	297	1325.96	-	4837.26	1098.72	278.73	0.00	14.39	0.00	11.99	0.00	0.00	9016.97	25.77	0.00	626.39	2
273	M-19A	297	1343.96	-	4907.17	1118.23	270.13	0.00	11.98	0.00	11.98	0.00	0.00	9094.41	46.12	0.00	676.21	2
274	M-20	243	1562.93	-	6345.89	1820.78	341.00	0.00	17.43	0.00	12.55	0.00	0.00	11629.72	32.08	0.00	709.90	2
275	M-20	243	1616.1	-	6201.75	1624.52	328.23	0.00	14.57	0.00	16.65	0.00	0.00	11675.56	81.89	0.00	818.85	2
276	M-20	243	1151.37	-	5461.87	1095.96	306.58	24.35	0.00	0.00	58.59	0.00	0.00	9154.45	0.00	0.00	555.86	1
277	M-20	243	1306.96	-	5082.28	864.52	447.95	5.20	11.95	0.00	11.56	0.00	0.00	9064.65	0.00	0.00	595.61	1
278	M-20	243	1306.96	-	4279.82	838.13	362.36	0.00	10.84	0.00	8.42	0.00	0.00	7764.30	60.35	0.00	342.39	1
279	M-20	243	1306.96	-	4190.65	841.70	499.31	0.00	13.70	0.00	12.13	0.00	0.00	8596.01	62.86	0.00	413.00	1
280	M-20	243	1306.96	-	4017.32	895.19	391.60	0.00	11.84	0.00	8.35	0.00	0.00	8066.74	219.98	0.00	435.11	1

Continuación de Tabla 24.	
	-

								Ca	ationes						Anio	nes		
NM	Pozo	Tyac	н	рΗ	Na- <i>C</i> _{Yi}	К- <i>С</i> үі	Са- <i>С</i> _{Үі}	Mg-C _{Yi}	Li-C Yi	Mn- <i>C</i> _{Yi}	В-С үі	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	HCO₃- <i>С</i> _{Yi}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
281	M-20	243	1306.96	-	4137.16	962.96	394.46	0.00	13.55	0.00	9.63	0.00	0.00	8235.79	162.21	0.00	444.03	1
282	M-20	243	1306.96	-	4555.86	916.59	435.11	0.00	13.64	0.00	8.99	0.00	0.00	8712.99	201.01	0.00	383.04	1
283	M-20	243	1306.96	-	4636.47	991.49	457.94	0.00	13.34	0.00	10.13	0.00	0.00	8489.01	187.31	0.00	452.95	1
284	M-20	243	1306.96	-	4761.29	1069.95	504.30	0.00	12.93	0.00	7.42	0.00	0.00	8923.42	191.24	0.00	431.55	1
285	M-20	243	1306.96	-	4511.64	1009.32	505.02	0.00	13.98	0.00	7.49	0.00	0.00	8993.32	124.47	0.00	424.42	1
286	M-20	243	1306.96	-	4315.48	1052.12	519.28	0.00	16.41	0.00	7.85	0.00	0.00	9226.57	121.55	0.00	452.95	1
287	M-20	243	1306.96	-	4821.93	1016.46	479.34	0.00	14.44	0.00	9.77	0.00	0.00	9235.84	110.21	0.00	438.68	1
288	M-20	243	1306.96	-	4422.48	1034.29	467.93	0.00	15.51	0.00	9.27	0.00	0.00	8737.96	77.61	0.00	420.85	1
289	M-20	243	1306.96	-	4413.20	909.46	473.63	0.00	12.98	0.00	9.42	0.00	0.00	7601.67	187.60	0.00	356.65	1
290	M-20	243	1306.96	-	4814.79	1052.12	467.93	0.00	15.48	0.00	10.13	0.00	0.00	9019.71	131.96	0.00	463.65	1
291	M-20	243	1306.96	-	4119.32	864.52	447.95	0.00	0.00	0.00	0.00	0.00	0.00	6981.09	0.00	0.00	318.85	1
292	M-20	243	1306.96	-	4344.01	980.79	371.63	0.00	7.85	0.00	0.00	0.00	0.00	8602.43	0.00	0.00	0.00	1
293	M-20	243	1306.96	-	4149.28	831.00	330.26	0.00	0.00	0.00	0.00	0.00	0.00	7563.15	0.00	0.00	0.00	1
294	M-20	243	1306.96	-	4154.99	834.56	337.39	0.00	0.00	0.00	0.00	0.00	0.00	7684.41	0.00	0.00	0.00	1
295	M-20	243	1306.96	-	4796.96	1034.29	395.88	0.00	0.00	0.00	0.00	0.00	0.00	9039.68	0.00	0.00	0.00	1
296	M-20	243	1306.96	-	4279.82	909.46	328.83	0.00	0.00	0.00	0.00	0.00	0.00	7684.41	0.00	0.00	0.00	1
297	M-20	243	1306.96	-	4208.49	903.75	328.83	0.00	0.00	0.00	0.00	0.00	0.00	7885.56	0.00	0.00	0.00	1
298	M-20	243	1306.96	-	5910.43	1467.98	353.08	0.00	19.26	0.00	0.00	0.00	0.00	11051.91	0.00	0.00	678.35	1
299	M-20	243	1306.96	-	4693.53	1205.48	357.36	0.00	13.55	0.00	0.00	0.00	0.00	9379.93	0.00	0.00	553.52	1
300	M-20	243	1306.96	-	4997.40	1106.33	368.06	0.00	11.41	0.00	0.00	0.00	0.00	8844.24	0.00	0.00	487.90	1
301	M-20	243	1306.96	-	5100.11	1021.45	361.64	0.00	13.98	0.00	0.00	0.00	0.00	8798.59	0.00	0.00	649.11	1
302	M-20	243	1306.96	-	4957.45	1022.16	345.60	0.00	13.41	0.00	0.00	0.00	0.00	8721.55	0.00	0.00	0.00	1
303	M-20	243	1306.96	-	3448.82	656.24	325.98	0.00	0.00	0.00	0.00	0.00	0.00	7153.00	0.00	0.00	461.22	1
304	M-20	243	1306.96	-	3756.96	663.80	335.25	0.00	0.00	0.00	0.00	0.00	0.00	7543.10	0.00	0.00	430.34	1
305	M-20	243	1306.96	-	4003.05	1004.05	269.56	0.00	0.00	0.00	0.00	0.00	0.00	8570.12	0.00	0.00	288.67	1
306	M-20	243	1306.96	-	4101.49	1096.06	369.85	0.00	0.00	0.00	0.00	0.00	0.00	8782.61	0.00	0.00	389.46	1
307	M-20	243	1306.96	-	4304.78	871.66	321.70	0.00	0.00	0.00	5.85	0.00	0.00	8200.13	37.45	8.27	432.26	1
308	M-20	243	1306.96	-	4341.16	871.66	331.69	0.00	0.00	0.00	0.00	0.00	0.00	8035.35	0.00	0.00	432.26	1
309	M-20	243	1306.96	-	4429.61	903.75	415.86	0.00	0.00	0.00	0.00	0.00	0.00	8486.16	0.00	0.00	0.00	1
310	M-20	243	1306.96	-	4146.43	823.86	315.28	0.00	0.00	0.00	0.00	0.00	0.00	7983.28	0.00	0.00	0.00	1
311	M-20	243	1306.96	-	3580.07	648.39	303.15	0.00	0.00	0.00	0.00	0.00	0.00	7192.23	0.00	0.00	0.00	1

continuation de	Idu	Id	24
-----------------	-----	----	----

Cont	inuaciór	n de Ta	bla 24.															
								Ca	ationes						Anio	nes		_
NM	Pozo	T_{yac}	н	рН	Na-С _{Yi}	К-С _{Үі}	Са- <i>С</i> _{Үі}	Mg-C _{Yi}	Li-C _{Yi}	Mn-C _{Yi}	В-С _{Үі}	Fe-C Yi	Al-C _{Yi}	CI- <i>C</i> _{Yi}	НСО₃- <i>С</i> _{Үі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
312	M-20	243	1306.96	-	4839.76	1025.02	350.23	0.00	0.00	0.00	0.00	0.00	0.00	9250.82	0.00	0.00	489.33	1
313	M-20	243	1306.96	-	4065.82	867.38	320.99	0.00	8.50	0.00	0.00	0.00	0.00	8095.98	0.00	0.00	424.42	1
314	M-20	243	1306.96	-	4550.87	855.96	320.99	0.00	9.13	0.00	0.00	0.00	0.00	8140.21	0.00	0.00	457.23	1
315	M-20	243	1306.96	-	4707.80	1047.13	353.08	0.00	10.13	0.00	0.00	0.00	0.00	9058.94	0.00	0.00	481.48	1
316	M-20	243	1306.96	-	4265.55	894.48	317.42	1.50	9.63	0.00	0.00	0.00	0.00	8260.04	0.00	0.00	524.28	1
317	M-20	243	1306.96	-	4526.62	970.80	388.68	0.50	10.49	0.00	0.00	0.00	0.00	8595.30	0.00	0.00	0.00	1
318	M-20	243	1306.96	-	4469.55	880.22	319.56	1.36	8.84	0.00	0.00	0.00	0.00	8362.76	0.00	0.00	542.11	1
319	M-20	243	1285.35	-	4675.17	1215.56	356.35	0.00	13.51	0.00	0.00	0.00	0.00	9353.18	0.00	0.00	736.16	1
320	M-20	243	1289.53	-	5085.05	1018.29	360.53	0.00	13.37	0.00	0.00	0.00	0.00	8694.58	0.00	0.00	0.00	1
321	M-20	243	1222.55	-	4960.48	1022.79	346.16	0.00	13.42	0.00	0.00	0.00	0.00	8726.88	0.00	0.00	0.00	1
322	M-20	243	1268.6	-	4296.60	870.00	321.09	0.00	10.68	0.00	0.00	0.00	0.00	8184.54	0.00	0.00	431.44	1
323	M-20	243	1243.48	-	4338.94	871.21	331.52	0.00	0.00	0.00	0.00	0.00	0.00	8031.24	0.00	0.00	432.04	1
324	M-20	243	1293.72	-	4823.62	1021.60	349.06	0.00	0.00	0.00	0.00	0.00	0.00	9219.97	0.00	0.00	487.69	1
325	M-20	243	1197.42	-	4073.63	869.04	335.90	0.00	8.50	0.00	0.00	0.00	0.00	8111.53	0.00	0.00	425.23	1
326	M-20	243	1209.99	-	4556.65	857.05	321.39	0.00	9.14	0.00	0.00	0.00	0.00	8150.55	0.00	0.00	457.81	1
327	M-20	243	1285.35	-	4253.38	891.93	316.51	1.49	9.60	0.00	0.00	0.00	0.00	8236.49	0.00	0.00	522.78	1
328	M-20	243	1201.61	-	4534.34	972.46	389.41	0.50	10.50	0.00	0.00	0.00	0.00	8609.95	0.00	0.00	0.00	1
329	M-20	243	1205.8	-	4476.21	881.53	320.04	1.36	8.86	0.00	0.00	0.00	0.00	8375.20	0.00	0.00	542.92	1
330	M-20	243	1637.04	-	4426.54	823.40	333.10	1.52	9.07	0.00	0.00	0.00	0.00	8203.51	0.00	0.00	511.77	1
331	M-20	243	1240.55	8.4	5062.66	1155.14	363.66	1.00	11.05	0.00	12.12	0.00	0.00	9127.05	41.29	3.57	570.44	1
332	M-21A	279	1563.31	-	3645.82	1022.82	200.17	5.53	8.98	0.00	0.00	0.00	0.00	6471.76	0.00	0.00	505.13	1
333	M-21A	279	1563.31	-	7319.29	1805.01	417.17	0.00	0.00	0.00	0.00	0.00	0.00	12285.10	0.00	0.00	0.00	1
334	M-21A	279	1563.31	-	6471.13	1595.79	368.79	0.00	0.00	0.00	0.00	0.00	0.00	10863.96	0.00	0.00	0.00	1
335	M-21A	279	1563.31	-	7275.94	1866.58	392.67	0.00	0.00	0.00	0.00	0.00	0.00	12537.66	0.00	0.00	0.00	1
336	M-21A	279	1563.31	-	6387.57	1637.89	393.92	0.00	0.00	0.00	0.00	0.00	0.00	11148.57	0.00	0.00	0.00	1
337	M-21A	279	1563.31	-	7791.12	1898.62	469.31	0.00	0.00	0.00	0.00	0.00	0.00	13011.37	0.00	0.00	0.00	1
338	M-21A	279	1563.31	-	7794.26	1923.12	468.69	0.00	0.00	0.00	0.00	0.00	0.00	13081.11	0.00	0.00	0.00	1
339	M-21A	279	1563.31	-	6451.66	1525.43	371.30	0.00	0.00	0.00	0.00	0.00	0.00	10737.68	0.00	0.00	0.00	1
340	M-21A	279	1563.31	-	7983.99	1987.20	483.14	0.00	0.00	0.00	0.00	0.00	0.00	13453.67	0.00	0.00	0.00	1
341	M-21A	279	1563.31	-	6172.71	1766.05	382.74	0.00	0.00	0.00	0.00	0.00	0.00	11123.44	0.00	0.00	521.46	1
342	M-21A	279	1563.31	-	6621.92	1742.18	454.49	0.00	0.00	0.00	0.00	0.00	0.00	13017.66	0.00	0.00	603.76	1

Continuación de Tabla 24.

								Ca	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-C _{Yi}	К-С уі	Са-С _{Уі}	Mg-	Li-C Yi	Mn-C _{Yi}	В-С _{Yi}	Fe-C Yi	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	HCO ₃ -	SO4-	SiO ₂ - <i>C</i> _{Yi}	un
								С үі							С _{Үі}	С _{Үі}		
343	M-21A	279	1563.31	-	6032.60	1581.34	349.94	0.00	15.08	0.00	8.36	0.00	0.00	11748.56	26.07	0.13	561.67	1
344	M-21A	279	1563.31	-	5765.59	1421.14	406.49	0.00	0.00	0.00	0.00	0.00	0.00	10799.88	0.00	0.00	567.32	1
345	M-21A	279	1563.31	-	5647.48	1385.95	380.10	0.00	0.00	0.00	0.00	0.00	0.00	10862.08	0.00	0.00	520.83	1
346	M-21A	279	1563.31	-	5038.69	1350.77	358.74	0.00	12.75	0.00	0.00	0.00	0.00	10240.72	0.00	0.00	513.29	1
347	M-21A	279	1563.31	-	5340.25	1331.92	348.69	0.00	12.44	0.00	0.00	0.00	0.00	10377.68	0.00	0.00	514.55	1
348	M-21A	279	1563.31	-	5780.04	1643.54	352.46	0.00	13.95	0.00	0.00	0.00	0.00	11120.29	0.00	0.00	559.16	1
349	M-21A	279	1563.31	-	5420.67	1352.66	375.07	0.19	13.13	0.00	0.00	0.00	0.00	10743.34	0.00	0.00	591.20	1
350	M-21A	279	1563.31	-	5455.23	1373.39	439.16	0.19	13.13	0.00	0.00	0.00	0.00	10605.12	0.00	0.00	0.00	1
351	M-21A	279	1563.31	7.95	5504.23	1414.85	426.59	0.11	13.63	0.00	13.01	0.00	0.00	10850.77	39.74	8.17	693.60	1
352	M-21A	279	1563.31	-	5249.16	1256.53	337.38	0.14	10.99	0.00	0.00	0.00	0.00	10088.68	0.00	0.00	610.67	1
353	M-21A	279	1980.36	-	5731.24	1502.35	332.46	11.58	14.33	0.00	0.00	0.00	0.00	11161.66	0.00	0.00	533.61	1
354	M-21A	279	1779.39	-	5645.76	1391.60	398.04	0.00	0.00	0.00	0.00	0.00	0.00	4423.34	0.00	0.00	555.53	1
355	M-21A	279	1704.03	-	5576.12	1368.44	375.30	0.00	0.00	0.00	0.00	0.00	0.00	10724.84	0.00	0.00	514.25	1
356	M-21A	279	1695.65	-	4979.24	1334.83	354.51	0.00	12.60	0.00	0.00	0.00	0.00	9499.05	0.00	0.00	507.24	1
357	M-21A	279	1628.67	-	5310.64	1324.54	346.75	0.00	12.37	0.00	0.00	0.00	0.00	10320.14	0.00	0.00	511.70	1
358	M-21A	279	1549.12	-	5460.70	1374.77	439.60	0.19	13.14	0.00	0.00	0.00	0.00	10615.75	0.00	0.00	0.00	1
359	M-21A	279	1469.57	-	5541.44	1424.42	429.48	0.11	13.73	0.00	0.00	0.00	0.03	10924.12	0.00	0.00	698.29	1
360	M-21A	279	1423.51	-	5300.53	1268.83	340.68	0.15	11.10	0.00	0.00	0.00	0.00	10187.42	0.00	0.00	616.65	1
361	M-21A	279	1314.66	-	5337.95	1338.16	340.29	0.23	11.81	0.00	0.00	0.00	0.00	10048.96	0.00	0.00	605.24	1
362	M-21A	279	1294.98	-	4115.80	838.50	287.59	0.00	10.23	0.00	10.23	0.00	0.00	7580.99	38.35	0.00	567.52	2
363	M-21A	279	1356.52	-	3830.68	788.56	251.60	0.00	9.55	0.00	10.83	0.00	0.00	7152.43	65.61	0.00	615.30	2
364	M-25	256	1297.91	-	5349.70	1225.90	292.60	0.00	15.76	0.00	14.39	0.00	0.00	9959.34	39.74	0.00	644.13	2
365	M-25	256	1335.59	-	5320.59	1255.97	274.17	0.00	13.67	0.00	12.99	0.00	0.00	10017.65	61.53	0.00	756.86	2
366	M-25	256	1214.17	-	640.22	13.77	121.16	0.00	0.00	0.00	0.00	0.00	0.00	1023.66	0.00	0.00	0.00	1
367	M-25	256	1295.11	-	640.09	13.71	123.36	0.00	0.00	0.00	0.00	0.00	0.00	1053.34	0.00	0.00	0.00	1
368	M-25	256	1295.11	-	637.35	14.39	123.36	0.00	0.00	0.00	0.00	0.00	0.00	1019.07	0.00	0.00	0.00	1
369	M-25	256	1295.11	-	641.46	15.08	123.36	0.00	0.00	0.00	0.00	0.00	0.00	1019.07	0.00	0.00	0.00	1
370	M-25	256	1295.11	-	637.35	23.30	120.62	0.00	0.00	0.00	0.00	0.00	0.00	1053.34	0.00	0.00	0.00	1
371	M-25	256	1295.11	-	3991.99	967.67	257.68	0.00	0.00	0.00	0.00	0.00	0.00	7136.24	0.00	0.00	0.00	1
372	M-25	256	1295.11	-	3735.00	882.01	246.72	0.00	0.00	0.00	0.00	0.00	0.00	7204.78	0.00	0.00	0.00	1
373	M-25	256	1295.11	-	3991.99	911.48	246.72	0.00	0.00	0.00	0.00	0.00	0.00	7136.24	0.00	0.00	0.00	1

								Ca	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na- <i>С</i> _{Yi}	К-С _{Үі}	Са- <i>С</i> _{Үі}	Mg-C _{Yi}	Li-C Yi	Mn-C _{Yi}	В-С _{Уі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ - <i>С</i> _{Үі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
374	M-25	256	1295.11	-	3854.93	933.41	246.72	0.00	0.00	0.00	0.00	0.00	0.00	7136.24	0.00	0.00	342.66	1
375	M-25	256	1295.11	-	3940.59	993.71	254.94	0.00	0.00	0.00	0.00	0.00	0.00	7136.24	0.00	0.00	359.79	1
376	M-25	256	1295.11	-	4026.26	959.45	235.75	0.00	14.53	0.00	7.81	0.00	0.00	7136.24	113.76	0.00	383.78	1
377	M-25	256	1295.11	-	4824.66	986.86	342.66	0.00	17.06	0.00	15.28	0.00	0.00	8896.83	39.06	0.00	0.00	1
378	M-25	256	1295.11	-	5105.64	1126.67	328.95	0.00	0.00	0.00	0.00	0.00	0.00	9320.36	0.00	0.00	0.00	1
379	M-25	256	1295.11	-	5242.70	1089.66	328.95	0.00	0.00	0.00	0.00	0.00	0.00	9457.42	0.00	0.00	522.21	1
380	M-25	256	1295.11	-	5468.86	1247.28	357.05	0.00	0.00	0.00	0.00	0.00	0.00	9937.15	0.00	0.00	0.00	1
381	M-25	256	1295.11	-	5838.93	1363.79	387.21	0.00	0.00	0.00	0.00	0.00	0.00	10793.80	0.00	0.00	0.00	1
382	M-25	256	1295.11	-	5880.05	1322.67	387.21	0.00	0.00	0.00	0.00	0.00	0.00	10793.80	0.00	0.00	0.00	1
383	M-25	256	1295.11	-	5838.93	1312.39	387.21	0.00	0.00	0.00	0.00	0.00	0.00	10759.53	0.00	0.00	648.31	1
384	M-25	256	1295.11	-	5832.08	1257.56	384.46	0.00	0.00	0.00	0.00	0.00	0.00	10691.00	0.00	0.00	655.17	1
385	M-25	256	1295.11	-	5818.37	1267.84	384.46	0.00	0.00	0.00	0.00	0.00	0.00	10725.27	0.00	0.00	0.00	1
386	M-25	256	1295.11	-	5962.29	1267.84	390.63	0.00	0.00	0.00	0.00	0.00	0.00	10930.86	0.00	0.00	617.47	1
387	M-25	256	1295.11	-	5835.50	1408.33	384.46	0.00	10.01	0.00	0.00	0.00	0.00	10965.13	0.00	0.00	601.71	1
388	M-25	256	1295.11	8.1	5928.02	1370.64	400.91	0.41	15.76	0.00	0.00	0.00	0.00	11581.92	30.15	4.80	616.79	1
389	M-25	256	1295.11	-	6133.62	1408.33	384.46	0.00	9.80	0.00	0.00	0.00	0.00	11251.59	0.00	0.00	649.68	1
390	M-25	256	1295.11	-	4727.34	1528.27	430.38	0.00	0.00	0.00	0.00	0.00	0.00	11220.75	0.00	0.00	608.56	1
391	M-25	256	1295.11	-	6330.99	1363.79	372.81	0.00	19.19	0.00	0.00	0.00	0.00	11678.55	0.00	0.00	0.00	1
392	M-25	256	1295.11	-	4754.07	1581.03	346.09	0.00	0.00	0.00	0.00	0.00	0.00	10653.31	0.00	0.00	651.05	1
393	M-25	256	1295.11	-	5842.36	1356.94	313.19	14.39	15.76	0.00	7.81	0.00	0.00	10831.49	24.26	5.07	620.22	1
394	M-25	256	1295.11	-	5627.17	1351.45	369.39	0.00	0.00	0.00	0.00	0.00	0.00	10416.19	0.00	0.00	645.57	1
395	M-25	256	1295.11	-	5496.96	1332.26	335.81	0.00	0.00	0.00	0.00	0.00	0.00	10574.50	0.00	0.00	0.00	1
396	M-25	256	1295.11	-	5832.08	1265.79	359.79	0.00	0.00	0.00	0.00	0.00	0.00	10832.86	0.00	0.00	524.27	1
397	M-25	256	1295.11	-	5229.00	1322.67	350.88	0.00	15.63	0.00	0.00	0.00	0.00	10553.94	0.00	0.00	611.99	1
398	M-25	256	1295.11	-	5455.15	1336.38	364.59	0.00	15.35	0.00	0.00	0.00	0.00	10736.92	0.00	0.00	802.51	1
399	M-25	256	1295.11	-	5400.33	1391.20	470.82	0.00	15.08	0.00	0.00	0.00	0.00	10759.53	0.00	0.00	613.36	1
400	M-25	256	1295.11	-	5538.08	1326.10	318.67	0.55	15.28	0.00	0.00	0.00	0.00	10540.23	0.00	0.00	737.40	1
401	M-25	256	1295.11	-	5348.24	1314.45	381.72	0.32	15.83	0.00	0.00	0.00	0.00	10320.93	0.00	0.00	0.00	1
403	M-25	256	1295.11	-	5577.14	1330.89	254.94	0.19	14.67	0.00	0.00	0.00	0.00	10460.05	0.00	8.22	674.36	1
404	M-25	256	1272.79	-	5843.24	1408.14	386.35	0.00	16.88	0.00	0.00	0.00	0.00	10979.66	0.00	0.00	602.51	1
405	M-25	256	1285.35	-	6127.78	1407.14	386.07	0.00	10.01	0.00	0.00	0.00	0.00	11258.49	0.00	0.00	650.08	1
406	M-25	256	1289.53	-	6135.91	1408.86	430.54	0.00	0.00	0.00	0.00	0.00	0.00	11224.94	0.00	0.00	608.79	1

Continuación de Tabla 24.

								Ca	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-C _{Yi}	К- <i>С</i> үі	Са-С _{Уі}	Mg-	Li-C Yi	Mn-C _{Yi}	В-С _{Үі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	HCO₃-	SO 4-	SiO ₂ - <i>C</i> _{Yi}	un
								С _{Yi}							С _{Үі}	С _{Үі}		
407	M-25	256	1268.6	-	6340.87	1365.92	373.40	0.00	19.22	0.00	0.00	0.00	0.00	11696.77	0.00	0.00	0.00	1
408	M-25	256	1276.97	-	5848.72	1020.18	313.53	14.41	15.78	0.00	0.00	0.00	0.00	10843.29	0.00	0.00	620.89	1
409	M-25	256	1318.84	-	5619.60	1349.64	368.89	0.00	0.00	0.00	0.00	0.00	0.00	10402.18	0.00	0.00	644.70	1
410	M-25	256	1331.4	-	5819.82	1263.13	360.40	0.00	0.00	0.00	0.00	0.00	0.00	10810.10	0.00	0.00	523.17	1
411	M-25	256	1306.28	-	5225.86	1321.88	350.67	0.00	19.73	0.00	0.00	0.00	0.00	10547.60	0.00	0.00	611.62	1
412	M-25	256	1335.59	-	5442.29	1333.23	363.73	0.00	15.32	0.00	0.00	0.00	0.00	10711.61	0.00	0.00	800.62	1
413	M-25	256	1314.66	-	5394.41	1389.68	470.30	0.00	15.06	0.00	0.00	0.00	0.00	10747.75	0.00	0.00	612.69	1
414	M-25	256	1339.78	-	5523.60	1322.63	317.84	0.55	15.24	0.00	0.00	0.00	0.00	10512.68	0.00	0.00	735.48	1
415	M-25	256	1276.97	-	5345.03	1313.66	381.49	0.32	15.82	0.00	0.00	0.00	0.00	10314.73	0.00	0.00	0.00	1
416	M-25	256	1289.53	-	5527.80	1310.14	360.61	0.32	16.04	0.00	0.00	0.00	0.00	10499.60	0.00	0.00	782.24	1
417	M-25	256	1306.28	-	5573.79	1330.09	254.79	0.19	14.66	0.00	0.00	0.00	0.00	10453.77	0.00	0.00	673.95	1
418	M-25	256	1314.66	-	5506.00	1388.99	315.59	0.47	14.79	0.00	0.00	0.00	0.00	10439.01	0.00	0.00	677.72	1
419	M-25	256	1232.18	-	5949.06	1375.51	402.34	0.41	15.82	0.00	13.76	0.00	0.00	11623.02	30.26	4.81	618.98	1
420	M-26	276	1297.07	8	5839.14	1419.46	541.98	0.58	13.23	0.00	12.26	0.00	0.00	10839.51	25.55	3.23	645.21	1
421	M-26	276	1339.99	-	6008.78	1692.24	328.28	19.25	15.96	0.00	8.37	0.00	0.00	10795.86	0.00	0.00	561.29	1
422	M-26	276	1339.99	-	9023.30	1013.80	193.11	12.49	10.30	0.00	5.31	0.00	0.00	6826.26	0.00	0.00	443.82	1
423	M-26	276	1339.99	-	3479.75	993.20	213.70	12.49	13.90	0.00	6.76	0.00	0.00	7126.22	0.00	0.00	0.00	1
424	M-26	276	1339.99	-	4046.84	1013.80	208.55	0.77	11.10	0.00	8.50	0.00	0.00	7304.52	56.52	0.00	463.45	1
425	M-26	276	1339.99	-	4103.48	1062.08	216.28	0.00	11.72	0.00	9.53	0.00	0.00	7355.37	55.87	0.00	424.83	1
426	M-26	276	1339.99	-	4087.39	1049.20	236.88	0.00	9.66	0.00	10.56	0.00	0.00	7914.09	63.81	0.00	389.43	1
427	M-26	276	1339.99	-	3862.10	1013.80	189.24	0.00	10.38	0.00	8.30	0.00	0.00	7348.93	63.79	0.00	437.70	1
428	M-26	276	1339.99	-	4200.03	1126.45	196.97	0.00	10.94	0.00	9.14	0.00	0.00	7558.13	44.93	0.00	466.67	1
429	M-26	276	1339.99	-	2977.04	1021.53	191.17	0.00	13.20	0.00	8.37	0.00	0.00	7672.06	33.66	0.00	475.04	1
430	M-26	276	1339.99	-	4183.94	1036.33	217.57	0.00	13.36	0.00	6.24	0.00	0.00	7534.96	35.98	0.00	513.02	1
431	M-26	276	1339.99	-	4280.50	1037.62	217.57	0.00	10.62	0.00	6.89	0.00	0.00	7576.80	64.69	0.00	485.98	1
432	M-26	276	1339.99	-	4055.21	1018.31	205.98	0.00	12.71	0.00	6.37	0.00	0.00	7987.47	37.72	0.00	489.20	1
433	M-26	276	1339.99	-	4103.48	1069.80	236.88	0.00	13.52	0.00	7.27	0.00	0.00	7940.48	46.28	0.00	479.54	1
434	M-26	276	1339.99	-	4119.57	1007.37	211.13	0.00	12.07	0.00	8.37	0.00	0.00	7788.57	56.56	0.00	521.38	1
435	M-26	276	1339.99	-	3974.75	1045.99	216.28	0.00	12.55	0.00	7.72	0.00	0.00	7601.90	52.52	0.00	466.67	1
436	M-26	276	1339.99	-	4344.86	989.34	229.15	0.00	15.45	0.00	8.69	0.00	0.00	8270.04	45.70	0.00	476.33	1
437	M-26	276	1339.99	-	4360.96	1053.71	234.30	0.00	13.52	0.00	9.27	0.00	0.00	8235.29	39.91	0.00	547.13	1

continuation de	Idu	Id	24
-----------------	-----	----	----

Cont	inuaciór	n de Ta	bla 24.															
								Ca	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na- <i>C</i> _{Yi}	К-С _{Үі}	Са- <i>С</i> _{Үі}	Mg-C _{Yi}	Li-C Yi	Mn-C _{Yi}	В-С _{Үі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ - <i>С</i> _{Уі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
438	M-26	276	1339.99	-	5625.79	1431.55	309.61	0.00	0.00	0.00	0.00	0.00	0.00	10317.60	0.00	0.00	0.00	1
439	M-26	276	1339.99	-	5986.26	1586.04	340.51	0.00	0.00	0.00	0.00	0.00	0.00	11128.64	0.00	0.00	0.00	1
440	M-26	276	1339.99	-	5986.26	1542.27	337.93	0.00	0.00	0.00	0.00	0.00	0.00	11126.71	0.00	0.00	0.00	1
441	M-26	276	1339.99	-	5800.88	1517.81	345.66	0.00	19.31	0.00	0.00	0.00	0.00	11088.73	0.00	0.00	614.07	1
442	M-26	276	1339.99	-	5905.80	1543.55	348.88	0.00	19.31	0.00	0.00	0.00	0.00	11165.98	0.00	0.00	618.58	1
443	M-26	276	1339.99	-	5913.52	1540.98	349.52	0.00	0.00	0.00	0.00	0.00	0.00	11005.70	0.00	0.00	645.61	1
444	M-26	276	1339.99	-	6098.90	1470.82	497.57	0.00	16.74	0.00	0.00	0.00	0.00	11328.83	0.00	0.00	611.50	1
445	M-26	276	1339.99	-	6037.75	1519.74	621.80	0.00	14.80	0.00	0.00	0.00	0.00	10946.48	0.00	0.00	539.41	1
446	M-26	276	1339.99	-	5986.26	1448.93	284.51	0.00	14.80	0.00	0.00	0.00	0.00	11041.10	0.00	0.00	0.00	1
447	M-26	276	1339.99	-	6356.37	1419.32	539.41	0.00	19.95	0.00	0.00	0.00	0.00	11431.17	0.00	0.00	532.97	1
448	M-26	276	1339.99	-	6348.65	1470.17	574.49	0.00	19.25	0.00	0.00	0.00	0.00	12056.19	0.00	0.00	0.00	1
449	M-26	276	1339.99	-	4944.78	1323.41	540.05	0.00	0.00	0.00	0.00	0.00	0.00	10801.65	0.00	0.00	0.00	1
450	M-26	276	1339.99	-	5211.26	1420.61	530.01	0.00	0.00	0.00	0.00	0.00	0.00	11184.64	0.00	0.00	580.60	1
451	M-26	276	1339.99	-	5576.23	1315.05	335.36	6.24	14.80	0.00	7.53	0.00	0.00	10878.25	10.23	1.29	563.87	1
452	M-26	276	1339.99	-	6165.84	1329.85	619.22	0.00	0.00	0.00	0.00	0.00	0.00	11908.14	0.00	0.00	0.00	1
453	M-26	276	1339.99	-	5161.70	1351.74	549.06	0.00	11.91	0.00	0.00	0.00	0.00	10749.51	0.00	0.00	366.90	1
454	M-26	276	1339.99	-	5314.89	1416.10	570.30	0.00	12.62	0.00	0.00	0.00	0.00	11071.35	0.00	0.00	0.00	1
455	M-26	276	1339.99	-	5639.95	1480.47	608.92	0.00	12.87	0.00	0.00	0.00	0.00	11650.67	0.00	0.00	0.00	1
456	M-26	276	1339.99	-	5824.05	1480.47	531.68	0.00	13.26	0.00	0.00	0.00	0.00	11908.14	0.00	0.00	0.00	1
457	M-26	276	1339.99	-	5578.80	1522.96	523.96	0.00	12.62	0.00	0.00	0.00	0.00	11521.93	0.00	0.00	0.00	1
458	M-26	276	1339.99	-	5503.49	1480.47	534.26	0.00	12.74	0.00	0.00	0.00	0.00	11554.12	0.00	0.00	518.81	1
459	M-26	276	1339.99	-	5503.49	1469.53	516.23	0.00	12.68	0.00	0.00	0.00	0.00	11489.75	0.00	0.00	545.84	1
460	M-26	276	1339.99	-	5548.55	1469.53	507.22	0.00	12.49	0.00	0.00	0.00	0.00	11554.12	0.00	0.00	509.80	1
461	M-26	276	1339.99	-	5503.49	1469.53	502.07	0.00	12.49	0.00	0.00	0.00	0.00	11521.93	0.00	0.00	527.82	1
462	M-26	276	1339.99	-	5503.49	1475.97	502.07	0.00	12.36	0.00	0.00	0.00	0.00	11715.04	0.00	0.00	0.00	1
463	M-26	276	1339.99	-	5600.69	1480.47	540.69	0.00	13.32	0.00	0.00	0.00	0.00	11972.51	0.00	0.00	527.82	1
464	M-26	276	1339.99	-	5374.76	1313.11	502.07	0.00	12.23	0.00	0.00	0.00	0.00	10567.99	0.00	0.00	619.22	1
465	M-26	276	1339.99	-	5040.04	1229.44	442.21	0.00	11.26	0.00	0.00	0.00	0.00	9848.36	0.00	0.00	525.89	1
466	M-26	276	1339.99	-	5007.86	1134.17	447.36	0.00	0.00	0.00	0.00	0.00	0.00	9729.27	0.00	0.00	0.00	1
467	M-26	276	1339.99	-	4396.36	996.42	371.41	0.45	10.81	0.00	0.00	0.00	0.00	8560.99	0.00	0.00	643.68	1
468	M-26	276	1339.99	-	4219.99	971.32	392.65	0.39	10.75	0.00	0.00	0.00	0.00	8676.85	0.00	0.00	0.00	1
469	M-26	276	1339.99	-	4187.16	921.75	375.46	0.00	0.00	0.00	0.00	0.00	0.00	7698.45	26.71	0.00	0.00	1

Continuación	de	Tabla	24.

								Ca	tiones						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-С үі	К-С _{Үі}	Са- <i>С</i> _{Уі}	Mg-C _{Yi}	Li-C Yi	Mn- <i>C</i> _{Yi}	В-С _{Үі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ -С _{Үі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
470	M-26	276	1339.99	-	4303.67	974.54	373.98	0.44	12.81	0.00	9.40	0.00	0.03	8114.27	76.43	7.72	647.55	1
471	M-26	276	1197.42	-	4305.30	962.49	334.61	0.28	9.91	0.00	0.00	0.00	0.00	9582.93	0.00	0.00	618.04	1
472	M-26	276	1339.78	-	6098.33	1469.55	498.22	0.00	16.74	0.00	0.00	0.00	0.00	11328.97	0.00	0.00	611.51	1
473	M-26	276	1360.71	-	6015.11	1515.35	621.06	0.00	14.79	0.00	0.00	0.00	0.00	10933.41	0.00	0.00	538.76	1
474	M-26	276	1373.27	-	6343.43	1416.58	538.36	0.00	19.21	0.00	0.00	0.00	0.00	11409.05	0.00	0.00	538.36	1
475	M-26	276	1394.2	-	6328.33	1465.47	572.97	0.00	19.89	0.00	0.00	0.00	0.00	12017.60	0.00	0.00	572.97	1
476	M-26	276	1339.78	-	5576.30	1315.06	335.36	6.24	14.80	0.00	0.00	0.00	0.00	10878.39	0.00	0.00	563.87	1
477	M-26	276	1482.13	-	5326.62	1301.35	497.58	0.00	12.12	0.00	0.00	0.00	0.00	10473.34	0.00	0.00	613.68	1
478	M-26	276	1536.56	-	4974.90	1213.55	436.50	0.00	11.12	0.00	0.00	0.00	0.00	9721.07	0.00	0.00	519.09	1
479	M-26	276	1373.27	-	4387.85	994.49	370.69	0.45	10.79	0.00	0.00	0.00	0.00	8544.42	0.00	0.00	642.44	1
480	M-26	276	1373.27	-	4211.82	969.44	391.89	0.39	10.73	0.00	0.00	0.00	0.00	8660.06	0.00	0.00	0.00	1
481	M-26	276	1402.58	-	4287.67	970.91	372.59	0.44	12.76	0.00	0.00	0.00	0.00	8084.11	0.00	0.00	645.14	1
482	M-26	276	1251.85	-	4243.80	948.74	329.83	0.28	9.77	0.00	0.00	0.00	0.00	8152.60	0.00	0.00	609.21	1
483	M-26	276	1272.79	-	4268.35	1015.57	318.49	0.48	10.08	0.00	0.00	0.00	0.00	8016.63	0.00	0.00	583.37	1
484	M-26	276	1218.36	-	3191.01	655.56	235.15	0.00	8.42	0.00	7.77	0.00	0.00	6106.07	36.28	0.00	546.73	2
485	M-26	276	1226.73	-	3312.75	697.39	233.76	0.00	7.77	0.00	7.77	0.00	0.00	6085.46	54.39	0.00	646.88	2
486	M-27	284	1340.61	-	3389.85	739.43	187.52	0.00	8.15	0.00	8.15	0.00	0.00	6325.00	48.29	0.00	538.74	1
487	M-27	284	1108.25	-	3558.48	749.12	251.10	0.00	8.35	0.00	5.56	0.00	0.00	6536.86	58.43	0.00	694.86	1
488	M-27	284	1383.23	-	1.13	1.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.51	0.00	0.00	0.00	1
489	M-27	284	1383.23	-	7.32	2.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.64	0.00	0.00	0.00	1
490	M-27	284	1383.23	-	5.01	1.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.02	0.00	0.00	0.00	1
491	M-27	284	1383.23	-	6.07	2.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.01	0.00	0.00	0.00	1
492	M-27	284	1383.23	-	20.15	5.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	33.79	0.00	0.00	0.00	1
493	M-27	284	1383.23	-	21.34	6.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	35.67	0.00	0.00	0.00	1
494	M-27	284	1383.23	-	106.06	30.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	219.00	0.00	0.00	0.00	1
495	M-27	284	1383.23	-	237.77	239.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1783.27	0.00	0.00	0.00	1
496	M-27	284	1383.23	-	1318.99	378.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2815.69	0.00	0.00	0.00	1
497	M-27	284	1383.23	-	1252.04	317.86	111.38	0.00	3.18	0.00	0.00	0.00	0.00	2715.57	0.00	0.00	0.00	1
498	M-27	284	1383.23	-	1514.21	422.98	130.71	0.00	3.72	0.00	0.00	0.00	0.00	3141.06	0.00	0.00	0.00	1
499	M-27	284	1383.23	-	1964.72	527.47	169.57	0.00	8.13	0.00	0.00	0.00	0.00	3816.82	0.00	0.00	0.00	1
500	M-27	284	1383.23	-	2117.40	528.10	186.46	0.00	8.76	0.00	0.00	0.00	0.00	4786.67	0.00	0.00	0.00	1

continuation de	Idu	Id	24
-----------------	-----	----	----

Cont	inuaciór	n de Ta	bla 24.															
								Cá	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-C _{Yi}	К-С _{Үі}	Са- <i>С</i> _{Үі}	Mg-C _{Yi}	Li-C Yi	Mn-C _{Yi}	В-С уі	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ - <i>С</i> _{Үі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
501	M-27	284	1383.23	-	1243.91	374.17	113.25	0.00	3.07	0.00	0.00	0.00	0.00	2769.39	0.00	0.00	0.00	1
502	M-27	284	1383.23	-	1985.37	619.45	219.62	0.00	0.00	0.00	0.00	0.00	0.00	4553.90	0.00	0.00	0.00	1
503	M-27	284	1383.23	-	1928.43	640.10	215.87	0.00	0.00	0.00	0.00	0.00	0.00	4645.88	0.00	0.00	0.00	1
504	M-27	284	1383.23	-	2470.30	644.48	222.75	0.00	0.00	0.00	0.00	0.00	0.00	4769.15	0.00	0.00	0.00	1
505	M-27	284	1383.23	-	2594.81	740.84	240.27	0.00	0.00	0.00	0.00	0.00	0.00	6568.69	0.00	0.00	0.00	1
506	M-27	284	1383.23	-	5932.34	1646.24	580.66	0.00	0.00	0.00	0.00	0.00	0.00	11599.38	0.00	0.00	0.00	1
507	M-27	284	1383.23	-	3783.03	989.24	287.20	0.00	0.00	0.00	0.00	0.00	0.00	7049.85	0.00	0.00	0.00	1
508	M-27	284	1383.23	-	3706.07	972.98	267.80	0.00	0.00	0.00	0.00	0.00	0.00	6893.43	0.00	0.00	0.00	1
509	M-27	284	1383.23	-	3423.88	904.15	232.76	0.00	0.00	0.00	0.00	0.00	0.00	6506.11	0.00	0.00	0.00	1
510	M-27	284	1383.23	-	3769.27	945.45	259.04	0.00	0.00	0.00	0.00	0.00	0.00	6943.48	0.00	0.00	0.00	1
511	M-27	284	1383.23	-	3681.67	865.98	225.88	0.03	8.20	0.00	11.26	0.00	0.03	7111.80	48.64	8.76	600.68	1
512	M-27	284	1383.23	-	3599.07	822.18	294.71	0.03	9.57	0.00	0.00	0.00	0.00	7028.58	0.00	0.00	583.79	1
513	M-27	284	1381.64	8.05	3682.00	866.06	225.90	0.03	8.20	0.00	0.00	0.00	0.00	7112.44	0.00	0.00	600.73	1
514	M-27	284	1582.61	-	3551.83	811.39	290.84	0.02	9.45	0.00	0.00	0.00	0.00	6936.31	0.00	0.00	576.12	1
515	M-27	284	1503.06	-	3717.77	911.74	181.98	0.07	9.07	0.00	0.00	0.00	0.00	6857.33	0.00	0.00	9.07	1
516	M-29	255	1080.19	-	4637.25	942.32	346.91	15.43	0.00	0.00	9.35	0.00	0.00	8410.77	0.00	0.00	351.51	1
517	M-29	255	1024.88	-	4861.36	1088.24	387.06	15.41	0.00	0.00	7.15	0.00	0.00	9164.46	0.00	0.00	0.00	1
518	M-29	255	1024.88	-	4373.07	981.06	327.51	12.65	12.43	0.00	4.35	0.00	0.00	8344.93	0.00	0.00	361.38	1
519	M-29	255	1024.88	-	5033.31	957.98	324.54	1.27	9.49	0.00	8.41	0.00	0.00	8286.12	0.00	0.00	290.30	1
520	M-29	255	1024.88	-	4466.11	911.83	360.27	0.00	10.42	0.00	11.02	0.00	0.00	8212.43	174.70	0.00	305.18	1
521	M-29	255	1024.88	-	4931.33	995.20	376.64	0.00	10.94	0.00	10.79	0.00	0.00	8461.79	176.86	0.00	378.88	1
522	M-29	255	1024.88	-	4000.89	920.76	316.35	0.00	10.57	0.00	8.78	0.00	0.00	8353.12	155.79	0.00	327.51	1
523	M-29	255	1024.88	-	4038.11	939.37	377.39	0.00	12.80	0.00	8.49	0.00	0.00	7938.51	200.98	0.00	325.28	1
524	M-29	255	1024.88	-	3172.43	976.59	323.05	0.00	13.40	0.00	9.08	0.00	0.00	695.22	123.86	0.00	346.12	1
525	M-29	255	1024.88	-	4605.31	934.16	361.76	0.00	13.40	0.00	7.29	0.00	0.00	8277.19	161.15	0.00	358.78	1
526	M-29	255	1024.88	-	4652.20	957.98	387.06	0.00	11.24	0.00	6.33	0.00	0.00	8359.07	203.73	0.00	323.79	1
527	M-29	255	1024.88	-	4503.33	1016.04	372.18	0.00	13.10	0.00	9.45	0.00	0.00	8309.20	140.68	0.00	351.33	1
528	M-29	255	1024.88	-	4884.44	995.20	366.22	0.00	13.55	0.00	7.52	0.00	0.00	8475.93	132.57	0.00	372.18	1
529	M-29	255	1024.88	-	4875.50	957.98	378.13	0.00	13.40	0.00	9.97	0.00	0.00	8599.50	138.75	0.00	364.73	1
530	M-29	255	1024.88	-	4614.98	1069.63	360.27	0.00	14.51	0.00	9.53	0.00	0.00	8599.50	80.99	0.00	353.57	1
531	M-29	255	1024.88	-	4410.29	1023.48	349.10	0.00	13.03	0.00	9.68	0.00	0.00	7932.56	95.28	0.00	357.29	1

|--|

								Ca	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na- <i>C</i> _{Yi}	К-С _{Үі}	Са- <i>С</i> _{Үі}	Mg-C _{Yi}	Li-C Yi	Mn-C _{Yi}	В-С уі	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ - <i>С</i> _{Уі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
532	M-29	255	1024.88	-	4801.07	952.77	384.09	0.00	14.89	0.00	8.93	0.00	0.00	8489.33	180.13	0.00	349.85	1
533	M-29	255	1024.88	8.2	5117.42	1013.81	378.88	66.99	16.38	0.00	10.42	0.00	0.00	9308.12	67.74	7.96	351.33	1
534	M-29	255	1024.88	-	5046.71	971.38	376.64	0.00	16.75	0.00	0.00	0.00	0.00	9360.97	28.29	0.00	0.00	1
535	M-29	255	1024.88	-	5303.51	1013.81	366.97	0.00	0.00	0.00	9.68	0.00	0.00	9745.80	23.82	0.00	347.61	1
536	M-29	255	1024.88	-	4694.63	891.73	341.66	0.00	14.44	0.00	0.00	0.00	0.00	8879.37	0.00	0.00	0.00	1
537	M-29	255	1024.88	-	4748.96	905.13	352.08	0.00	14.74	0.00	0.00	0.00	0.00	8863.00	0.00	0.00	288.81	1
538	M-29	255	1024.88	-	4651.46	695.97	352.08	0.00	8.86	0.00	0.00	0.00	0.00	8932.22	0.00	0.00	356.54	1
539	M-29	255	1024.88	-	3699.43	364.73	355.06	0.00	0.00	0.00	0.00	0.00	0.00	6684.28	0.00	0.00	0.00	1
540	M-29	255	1024.88	-	3959.95	400.46	393.76	0.00	0.00	0.00	0.00	0.00	0.00	7257.43	0.00	0.00	0.00	1
541	M-29	255	1024.88	-	4183.26	424.28	408.65	0.00	0.00	0.00	0.00	0.00	0.00	7778.48	0.00	0.00	0.00	1
542	M-29	255	1024.88	-	3483.57	345.38	316.35	0.00	0.00	0.00	0.00	0.00	0.00	6178.12	0.00	0.00	0.00	1
543	M-29	255	1024.88	-	4280.02	433.96	389.30	0.00	0.00	0.00	0.00	0.00	0.00	7815.69	0.00	0.00	0.00	1
544	M-29	255	1024.88	-	4391.68	462.99	395.25	0.00	0.00	0.00	0.00	0.00	0.00	7852.91	0.00	0.00	0.00	1
545	M-29	255	916.91	-	5315.77	848.90	400.26	10.92	14.98	0.00	0.00	0.00	0.00	9760.80	0.00	0.00	552.41	1
546	M-29	255	1024.88	-	5062.34	834.79	434.70	0.00	14.51	0.00	0.00	0.00	0.00	9356.50	0.00	0.00	454.05	1
547	M-29	255	1024.88	-	5092.11	857.49	393.76	0.60	14.66	0.00	0.00	0.00	0.00	9363.95	0.00	0.00	0.00	1
548	M-29	255	1024.88	-	5264.06	920.02	201.72	0.67	14.37	0.00	0.00	0.00	0.00	9550.03	0.00	0.00	238.19	1
549	M-29	255	1024.88	-	5071.27	809.85	381.85	0.00	14.29	0.00	0.00	0.00	0.00	9311.84	0.00	0.00	527.00	1
550	M-29	255	1024.88	-	5092.11	857.49	393.76	0.60	14.66	0.00	0.00	0.00	0.00	9363.95	0.00	0.00	0.00	1
551	M-29	255	916.91	-	5435.15	901.96	432.25	0.00	15.84	0.00	0.00	0.00	0.04	10120.49	0.00	0.00	576.60	1
552	M-29	255	925.28	-	5491.66	959.80	210.44	0.70	14.99	0.00	0.00	0.00	0.00	9962.95	0.00	0.00	248.49	1
553	M-29	255	916.91	-	5463.24	1023.67	390.90	0.00	15.14	0.00	0.00	0.00	0.00	10076.79	0.00	0.00	532.12	1
554	M-29	255	1013.21	8.1	4757.65	885.14	354.06	2.73	11.06	0.00	13.28	0.00	0.00	8925.21	40.35	11.06	368.81	1
555	M-29	255	1109.5	-	4871.30	846.52	339.16	0.00	14.60	0.00	11.82	0.00	0.00	8754.29	38.23	0.00	497.62	2
556	M-29	255	1320.1	-	4774.00	851.03	334.92	0.00	12.35	0.00	13.04	0.00	0.00	8763.55	52.85	0.00	529.83	2
557	M-30	287	1276.56	-	4923.24	1090.52	325.10	0.00	13.70	0.00	10.59	0.00	0.00	9204.36	37.37	0.00	564.26	2
558	M-30	287	1232.18	-	4891.19	1130.86	319.72	0.00	12.81	0.00	10.89	0.00	0.00	9323.64	51.90	0.00	672.75	2
559	M-30	287	1195.33	8.1	5584.67	1300.90	384.36	0.59	14.45	0.00	12.48	0.00	0.00	10775.13	23.92	10.51	624.17	1
560	M-30	287	1214.17	-	3912.85	1080.06	220.55	0.00	12.52	0.00	0.00	0.00	0.00	7510.45	0.00	0.00	335.37	1
561	M-30	287	1251.35	-	5133.06	1309.34	288.93	0.00	0.00	0.00	0.00	0.00	0.00	9609.86	0.00	0.00	0.00	1
562	M-30	287	1251.35	-	5013.57	1409.87	291.46	0.00	0.00	0.00	0.00	0.00	0.00	9546.64	0.00	0.00	0.00	1

	Continuación de Tabla 24.	
--	---------------------------	--

								Ca	tiones						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-С үі	К-С үі	Са- <i>С</i> _{Уі}	Mg-C _{Yi}	Li-C Yi	Мп-С үі	В-С _{Үі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ -С _{Уі}	SO 4- <i>C</i> γi	SiO ₂ - <i>C</i> _{Yi}	un
563	M-30	287	1251.35	-	6094.68	1492.06	352.15	0.00	0.00	0.00	0.00	0.00	0.00	11253.66	0.00	0.00	0.00	1
564	M-30	287	1251.35	-	6063.07	1555.28	352.15	0.00	0.00	0.00	0.00	0.00	0.00	11222.04	0.00	0.00	0.00	1
565	M-30	287	1251.35	-	6044.10	1548.96	354.68	0.00	0.00	0.00	0.00	0.00	0.00	11063.99	0.00	0.00	0.00	1
566	M-30	287	1251.35	-	5974.55	1669.08	352.15	0.00	0.00	0.00	0.00	0.00	0.00	109501.9	0.00	0.00	0.00	1
567	M-30	287	1251.35	-	5228.52	1240.43	357.21	0.00	17.20	0.00	0.00	0.00	0.00	10115.65	0.00	0.00	581.65	1
568	M-30	287	1251.35	-	5923.98	1327.68	393.25	0.00	18.08	0.00	0.00	0.00	0.00	10472.85	0.00	0.00	491.87	1
569	M-30	287	1251.35	-	5927.14	1258.13	380.60	0.00	16.56	0.00	0.00	0.00	0.00	10072.02	0.00	0.00	566.48	1
570	M-30	287	1251.35	-	5579.41	1247.39	386.92	0.00	16.69	0.00	0.00	0.00	0.00	9979.08	0.00	0.00	0.00	1
571	M-30	287	1251.35	-	4948.45	859.83	342.04	0.00	0.00	0.00	0.00	0.00	0.00	9669.93	0.00	0.00	577.67	1
572	M-30	287	1251.35	-	5329.68	1244.22	341.40	4.43	14.54	0.00	6.51	0.00	0.00	9935.46	18.21	9.61	568.37	1
573	M-30	287	1251.35	-	5128.00	1219.57	359.74	0.00	0.00	0.00	0.00	0.00	0.00	9701.54	0.00	0.00	554.46	1
574	M-30	287	1251.35	-	5085.01	1265.09	357.21	0.00	0.00	0.00	0.00	0.00	0.00	10137.77	0.00	0.00	0.00	1
575	M-30	287	1251.35	-	5266.46	1227.15	359.74	0.00	0.00	0.00	0.00	0.00	0.00	10329.34	0.00	0.00	0.00	1
576	M-30	287	1251.35	-	5176.68	1318.83	361.00	0.00	0.00	0.00	0.00	0.00	0.00	10424.80	0.00	0.00	0.00	1
577	M-30	287	1251.35	-	5116.62	1149.39	350.25	0.00	0.00	0.00	0.00	0.00	0.00	9870.34	0.00	0.00	530.44	1
578	M-30	287	1251.35	-	4804.93	1188.59	354.68	0.00	13.69	0.00	0.00	0.00	0.00	9609.86	0.00	0.00	500.41	1
579	M-30	287	1251.35	-	5121.05	1169.62	354.05	0.00	13.28	0.00	0.00	0.00	0.00	9778.04	0.00	0.00	676.48	1
580	M-30	287	1251.35	-	4817.58	1226.52	343.30	0.00	12.83	0.00	0.00	0.00	0.00	9546.64	0.00	0.00	550.04	1
581	M-30	287	1251.35	-	5026.21	1200.60	314.22	0.44	13.66	0.00	0.00	0.00	0.00	9736.31	0.00	0.00	637.29	1
582	M-30	287	1251.35	-	5027.48	1178.47	395.14	0.50	13.97	0.00	0.00	0.00	0.00	9534.00	0.00	0.00	0.00	1
583	M-30	287	1251.35	-	4370.59	1006.51	336.41	0.00	0.00	0.00	0.00	0.00	0.00	7995.91	21.62	0.00	0.00	1
584	M-30	287	1251.35	8	4937.07	1158.87	376.81	0.52	13.91	0.00	11.06	0.00	0.03	9592.79	0.53	8.22	680.91	1
585	M-30	287	1251.35	-	4982.59	1218.30	324.97	0.32	10.62	0.00	0.00	0.00	0.00	9649.69	0.00	0.00	598.72	1
586	M-30	287	1235.11	-	5534.14	1299.93	362.55	0.00	17.39	0.00	0.00	0.00	0.00	10230.64	0.00	0.00	588.26	1
587	M-30	287	1285.35	-	5824.51	1306.72	385.35	0.00	17.80	0.00	0.00	0.00	0.00	10312.42	0.00	0.00	484.34	1
588	M-30	287	1276.97	-	5837.39	1239.35	374.92	0.00	16.32	0.00	0.00	0.00	0.00	9921.64	0.00	0.00	558.02	1
589	M-30	287	1260.23	-	5544.73	1239.63	384.52	0.00	16.59	0.00	0.00	0.00	0.00	9917.05	0.00	0.00	0.00	1
590	M-30	287	1306.28	-	5242.75	1223.93	335.83	4.35	14.30	0.00	0.00	0.00	0.00	9773.41	0.00	0.00	559.10	1
591	M-30	287	1293.72	-	5047.43	1200.41	354.09	0.00	0.00	0.00	0.00	0.00	0.00	9549.10	0.00	0.00	545.75	1
592	M-30	287	1293.72	-	5596.29	1131.33	344.75	0.00	0.00	0.00	0.00	0.00	0.00	9715.25	0.00	0.00	522.10	1
593	M-30	287	937.84	-	5859.42	1449.44	432.52	0.00	16.65	0.00	0.00	0.00	0.00	11718.84	0.00	0.00	609.84	1

|--|

								Ca	ationes						Anio	nes		
NM	Pozo	Tyac	н	рН	Na-C _{Yi}	К-С _{Үі}	Са- <i>С</i> _{Уі}	Mg-C _{Yi}	Li-C Yi	Mn-C _{Yi}	В-С _{Уі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ - <i>С</i> _{Уі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
594	M-30	287	1285.35	-	5042.59	1151.70	348.62	0.00	13.07	0.00	0.00	0.00	0.00	9628.24	0.00	0.00	666.12	1
595	M-30	287	1285.35	-	4743.77	1207.73	338.04	0.00	12.64	0.00	0.00	0.00	0.00	9400.39	0.00	0.00	502.39	1
596	M-30	287	1293.72	-	4948.48	1159.96	388.93	0.49	13.75	0.00	0.00	0.00	0.00	9384.19	0.00	0.00	0.00	1
597	M-30	287	1302.09	-	4300.18	990.29	330.93	0.00	13.44	0.00	0.00	0.00	0.00	7866.98	0.00	0.00	0.00	1
598	M-30	287	1218.36	8	5051.08	1185.64	385.51	0.53	14.23	0.00	0.00	0.00	0.00	9814.32	0.00	0.00	696.63	1
599	M-30	287	1297.91	-	4903.31	1198.92	319.79	0.31	10.45	0.00	0.00	0.00	0.00	9496.16	0.00	0.00	589.19	1
600	M-30	287	1285.35	-	5019.56	1248.20	370.41	0.50	12.89	0.00	0.00	0.00	0.00	9478.21	0.00	0.00	597.64	1
601	M-31	272	1378.57	-	5884.38	1587.61	322.21	12.69	18.68	0.00	8.20	0.00	0.00	10341.28	0.00	0.00	874.85	1
602	M-31	272	1378.57	-	5072.67	1326.59	287.06	16.99	14.58	0.00	7.62	0.00	0.00	9853.08	0.00	0.00	463.98	1
603	M-31	272	1378.57	-	4515.48	1262.80	268.18	9.50	17.97	0.00	8.07	0.00	0.00	8896.22	0.00	0.00	536.69	1
604	M-31	272	1378.57	-	4410.03	1230.25	255.16	1.89	13.26	0.00	9.96	0.00	0.00	8848.70	0.00	0.00	455.65	1
605	M-31	272	1378.57	-	4800.59	1171.67	262.97	0.00	12.37	0.00	10.61	0.00	0.00	8848.70	44.39	0.00	475.18	1
606	M-31	272	1378.57	-	3824.20	732.29	338.48	0.00	7.32	0.00	9.83	0.00	0.00	6637.50	57.36	0.00	370.38	1
607	M-31	272	1378.57	-	4442.58	1246.53	238.24	0.00	11.59	0.00	6.90	0.00	0.00	8574.66	52.99	0.00	462.16	1
608	M-31	272	1378.57	-	4678.21	1171.67	260.24	0.00	13.99	0.00	8.66	0.00	0.00	8483.53	16.14	0.00	458.90	1
609	M-31	272	1378.57	-	4637.85	1122.85	215.52	0.00	14.16	0.00	13.47	0.00	0.00	8720.47	34.95	0.00	471.92	1
610	M-31	272	1378.57	-	4768.04	1179.48	231.66	0.00	14.16	0.00	8.33	0.00	0.00	8635.20	19.98	0.00	527.25	1
611	M-31	272	1378.57	-	4914.50	1228.30	257.05	0.00	12.86	0.00	7.49	0.00	0.00	8624.13	63.60	0.00	430.91	1
612	M-31	272	1378.57	-	4784.31	1249.78	260.37	0.00	15.13	0.00	9.24	0.00	0.00	8500.46	58.91	0.00	423.10	1
613	M-31	272	1378.57	-	4719.22	1122.85	257.77	0.00	13.83	0.00	7.81	0.00	0.00	8582.47	47.65	0.00	416.59	1
614	M-31	272	1378.57	-	5085.04	1272.56	270.79	0.00	15.70	0.00	9.44	0.00	0.00	9076.53	48.53	0.00	553.29	1
615	M-31	272	1378.57	-	4507.67	1114.39	265.58	0.00	15.78	0.00	9.24	0.00	0.00	8719.82	51.29	0.00	445.88	1
616	M-31	272	1378.57	8.3	3242.92	727.09	240.84	0.65	9.76	0.00	0.00	0.00	0.00	6281.45	68.35	13.02	312.44	1
617	M-31	272	1378.57	-	4556.49	1117.64	249.96	0.00	13.99	0.00	8.79	0.00	0.00	8263.52	51.36	0.00	520.74	1
618	M-31	272	1378.57	-	4881.95	1254.99	274.04	0.00	0.00	0.00	0.00	0.00	0.00	9315.42	46.09	0.00	524.65	1
619	M-31	272	1378.57	-	4803.84	1236.76	300.08	0.00	0.00	0.00	0.00	0.00	0.00	9125.35	38.21	0.00	0.00	1
620	M-31	272	1378.57	-	5422.22	1334.40	330.02	0.00	0.00	0.00	0.00	0.00	0.00	10067.89	26.75	0.00	0.00	1
621	M-31	272	1378.57	-	5311.56	1301.85	326.77	0.00	0.00	0.00	0.00	0.00	0.00	9877.82	21.35	0.00	0.00	1
622	M-31	272	1378.57	-	3254.64	813.66	205.69	0.00	0.00	0.00	0.00	0.00	0.00	6280.14	60.15	0.00	0.00	1
623	M-31	272	1378.57	-	4338.43	1139.12	273.39	0.00	0.00	0.00	0.00	0.00	0.00	8359.85	72.19	0.00	0.00	1
624	M-31	272	1378.57	-	329.37	146.46	20.83	0.00	0.00	0.00	0.00	0.00	0.00	607.97	40.10	0.00	0.00	1

	Continuación de Tabla 24.	
--	---------------------------	--

								Ca	tiones						Anio	nes		
NM	Pozo	Tyac	н	рН	Na- <i>С</i> _{Yi}	К-С үі	Са-С _{Уі}	Mg-C _{Yi}	Li-C Yi	Mn- <i>C</i> _{Yi}	В-С _{Уі}	Fe- <i>C</i> _{Yi}	Al-C _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ -С _{Уі}	SO 4- <i>C</i> γi	SiO ₂ - <i>C</i> _{Yi}	un
625	M-31	272	1378.57	-	4878.70	1275.82	305.28	0.00	0.00	0.00	0.00	0.00	0.00	9387.02	54.09	0.00	0.00	1
626	M-31	272	1378.57	-	5554.36	1413.81	357.36	0.00	18.55	0.00	0.00	0.00	0.00	10636.80	0.00	0.00	499.26	1
627	M-31	272	1378.57	-	5717.09	1432.69	359.96	0.00	0.00	0.00	0.00	0.00	0.00	10610.76	0.00	0.00	539.62	1
628	M-31	272	1378.57	-	5236.06	1309.01	294.87	0.00	14.06	0.00	0.00	0.00	0.00	9442.35	0.00	0.00	608.62	1
629	M-31	272	1378.57	-	5109.78	1592.82	279.90	0.00	12.11	0.00	0.00	0.00	0.00	9014.69	0.00	0.00	501.21	1
630	M-31	272	1378.57	-	5199.60	1168.41	268.83	0.00	0.00	0.00	0.00	0.00	0.00	8957.41	0.00	0.00	498.61	1
631	M-31	272	1378.57	-	5272.51	932.13	309.84	0.00	14.84	0.00	0.00	0.00	0.00	9096.70	0.00	0.00	0.00	1
632	M-31	272	1378.57	-	1648.80	441.98	96.34	0.00	0.00	0.00	0.00	0.00	0.00	3619.15	0.00	0.00	259.72	1
633	M-31	272	1378.57	-	3802.72	971.83	202.44	0.00	0.00	0.00	0.00	0.00	0.00	7613.24	0.00	0.00	520.74	1
634	M-31	272	1378.57	-	4713.36	1033.67	259.07	8.33	11.07	0.00	5.73	0.00	0.00	8654.07	30.98	5.92	475.83	1
635	M-31	272	1378.57	-	4495.95	1044.09	268.83	0.00	0.00	0.00	0.00	0.00	0.00	8117.06	0.00	0.00	427.66	1
636	M-31	272	1378.57	-	4023.38	975.09	242.80	0.00	0.00	0.00	0.00	0.00	0.00	7690.05	0.00	0.00	0.00	1
637	M-31	272	1378.57	-	3860.00	916.51	190.72	0.00	0.00	0.00	0.00	0.00	0.00	7356.13	0.00	0.00	462.81	1
638	M-31	272	1378.57	-	4533.71	1017.40	287.06	0.00	0.00	0.00	0.00	0.00	0.00	8632.59	0.00	0.00	0.00	1
639	M-31	272	1378.57	-	4113.86	976.39	268.83	0.00	0.00	0.00	0.00	0.00	0.00	8299.32	0.00	0.00	484.29	1
640	M-31	272	1378.57	-	4198.48	963.37	282.50	0.00	12.04	0.00	0.00	0.00	0.00	8536.26	0.00	0.00	545.48	1
641	M-31	272	1378.57	-	3970.65	946.45	231.08	0.00	10.61	0.00	0.00	0.00	0.00	7680.94	0.00	0.00	481.69	1
642	M-31	272	1378.57	-	3873.02	882.66	199.83	0.20	10.74	0.00	0.00	0.00	0.00	7303.40	0.00	0.00	562.40	1
643	M-31	272	1378.57	-	4264.22	972.48	284.46	0.10	11.59	0.00	0.00	0.00	0.00	8807.04	0.00	0.00	0.00	1
644	M-31	272	1378.57	8	4499.86	1002.43	301.38	0.10	11.98	0.00	11.72	0.00	0.00	8595.49	37.64	11.72	542.22	1
645	M-31	272	1243.48	-	4654.65	1008.38	220.15	0.07	10.94	0.00	0.00	0.00	0.00	8567.59	0.00	0.00	524.17	1
646	M-31	272	1457.01	-	5205.93	1299.70	293.06	0.00	13.97	0.00	0.00	0.00	0.00	9384.51	0.00	0.00	604.89	1
647	M-31	272	1390.02	-	5106.84	1587.48	278.12	0.00	12.09	0.00	0.00	0.00	0.00	8999.18	0.00	0.00	500.35	1
648	M-31	272	1390.02	-	5190.66	1166.40	268.37	0.00	0.00	0.00	0.00	0.00	0.00	8942.00	0.00	0.00	497.75	1
649	M-31	272	1448.63	-	5243.25	926.95	308.12	0.00	14.76	0.00	0.00	0.00	0.00	9046.22	0.00	0.00	0.00	1
650	M-31	272	1436.07	-	4691.20	1028.81	257.85	8.29	11.01	0.00	0.00	0.00	0.00	8613.39	0.00	0.00	473.59	1
651	M-31	272	1394.2	-	4487.04	1042.02	268.30	0.00	0.00	0.00	0.00	0.00	0.00	8100.97	0.00	0.00	426.81	1
652	M-31	272	1406.76	-	4521.10	1014.57	286.26	0.00	0.00	0.00	0.00	0.00	0.00	8609.24	0.00	0.00	461.52	1
653	M-31	272	1364.9	-	4113.14	976.22	268.79	0.00	10.61	0.00	0.00	0.00	0.00	8297.87	0.00	0.00	484.21	1
654	M-31	272	1406.76	-	4186.80	960.69	281.72	0.00	12.01	0.00	0.00	0.00	0.00	8512.52	0.00	0.00	543.96	1
655	M-31	272	1373.27	-	4261.31	971.82	284.26	0.10	11.58	0.00	0.00	0.00	0.00	8801.02	0.00	0.00	0.00	1

|--|

								Ca	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-C _{Yi}	К-С _{Үі}	Са- <i>С</i> _{Уі}	Mg-C _{Yi}	Li-C Yi	Mn-C _{Yi}	В-С уі	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО 3- <i>С</i> _{Yi}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
656	M-31	272	1410.95	-	4486.13	999.37	300.46	0.10	11.94	0.00	0.00	0.00	0.03	8569.27	0.00	0.00	540.57	1
657	M-31	272	1348.15	-	4628.00	1002.60	218.89	0.07	10.88	0.00	0.00	0.00	0.00	8518.55	0.00	0.00	521.17	1
658	M-31	272	1339.78	-	4245.72	1073.49	243.12	0.14	10.95	0.00	0.00	0.00	0.00	7990.87	0.00	0.00	537.07	1
659	M-31	272	1414.3	8.3	4995.76	1252.19	324.40	0.13	12.65	0.00	12.33	0.00	0.00	9991.52	31.40	3.89	551.48	1
660	M-31	272	1221.71	-	3946.75	812.70	216.46	0.00	10.49	0.00	10.49	0.00	0.00	6592.12	39.36	0.00	535.90	2
661	M-31	272	1389.6	-	3492.81	734.95	178.70	0.00	9.10	0.00	9.10	0.00	0.00	6337.74	66.28	0.00	648.52	2
662	M-35	301	1338.07	-	3338.01	929.29	335.51	0.00	10.50	0.00	0.00	0.00	0.00	6374.72	0.00	0.00	0.00	1
663	M-35	301	1338.07	-	5643.55	1539.58	324.90	7.90	13.80	0.00	0.00	0.00	0.00	9912.03	0.00	0.00	0.00	1
664	M-35	301	1338.07	-	5724.92	1459.98	293.65	1.12	13.97	0.00	0.00	0.00	0.00	9940.93	0.00	0.00	0.00	1
665	M-35	301	1338.07	-	5577.51	1507.74	321.36	0.00	11.56	0.00	0.00	0.00	0.00	10061.80	0.00	0.00	0.00	1
666	M-35	301	1338.07	-	5601.69	1433.44	306.03	0.00	14.39	0.00	0.00	0.00	0.00	9940.93	0.00	0.00	0.00	1
667	M-35	301	1338.07	-	5161.81	1406.32	269.47	0.00	15.51	0.00	0.00	0.00	0.00	9495.74	0.00	0.00	613.24	1
668	M-35	301	1338.07	-	5071.00	1306.08	270.65	0.00	14.56	0.00	0.00	0.00	0.00	9036.40	0.00	0.00	0.00	1
669	M-35	301	1338.07	-	4840.45	1297.23	281.26	0.00	0.00	0.00	0.00	0.00	0.00	9656.72	0.00	0.00	588.47	1
670	M-35	301	1338.07	-	5015.57	1344.99	201.66	20.64	12.97	0.00	0.00	0.00	0.00	9549.40	17.98	2.83	606.75	1
671	M-35	301	1338.07	-	4927.12	1251.24	278.90	0.00	0.00	0.00	0.00	0.00	0.00	9236.88	0.00	0.00	593.78	1
672	M-35	301	1338.07	-	4787.38	1288.98	275.37	0.00	0.00	0.00	0.00	0.00	0.00	9449.75	0.00	0.00	0.00	1
673	M-35	301	1338.07	-	4784.43	1287.21	273.01	0.00	0.00	0.00	0.00	0.00	0.00	9420.85	0.00	0.00	0.00	1
674	M-35	301	1338.07	-	4915.92	1221.76	270.65	0.00	0.00	0.00	0.00	0.00	0.00	9429.70	0.00	0.00	525.38	1
675	M-35	301	1338.07	-	4622.86	1237.09	256.50	0.00	12.74	0.00	0.00	0.00	0.00	9198.56	0.00	0.00	595.55	1
676	M-35	301	1338.07	-	4422.38	1232.37	255.91	0.00	12.68	0.00	0.00	0.00	0.00	9238.06	0.00	0.00	630.93	1
677	M-35	301	1260.23	-	5070.36	1300.58	279.59	0.00	13.32	0.00	0.00	0.00	0.00	9864.28	0.00	0.00	578.03	1
678	M-35	301	1348.15	-	4644.03	1161.16	244.14	0.29	12.80	0.00	0.00	0.00	0.00	8940.13	0.00	0.00	665.79	1
679	M-35	301	1369.08	-	4584.69	1187.86	292.25	0.16	13.08	0.00	0.00	0.00	0.00	8897.17	0.00	0.00	0.00	1
680	M-35	301	1025.77	-	5000.71	1257.68	309.08	0.00	0.00	0.00	0.00	0.00	0.00	914.49	8.93	0.00	0.00	1
681	M-35	301	1356.52	-	4514.54	1153.10	270.59	0.14	13.09	0.00	0.00	0.00	0.03	8710.74	19.70	5.90	711.55	1
682	M-35	301	1352.34	-	4709.29	1182.19	224.64	0.07	12.09	0.00	0.00	0.00	0.00	8888.51	0.00	0.00	611.44	1
683	M-35	301	1427.7	-	5054.44	1301.81	269.77	0.00	14.52	0.00	0.00	0.00	0.00	9006.90	0.00	0.00	0.00	1
684	M-35	301	1394.2	-	5006.58	1342.58	201.30	20.60	12.95	0.00	0.00	0.00	0.00	9532.27	0.00	0.00	605.66	1
685	M-35	301	1385.83	-	4920.04	1249.44	278.50	0.00	0.00	0.00	0.00	0.00	0.00	9223.61	0.00	0.00	592.93	1
686	M-35	301	1406.76	-	4904.43	1218.90	270.02	0.00	0.00	0.00	0.00	0.00	0.00	9407.66	0.00	0.00	524.15	1

|--|

								Ca	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-C _{Yi}	К- <i>С</i> үі	Са- <i>С</i> _{Уі}	Mg-C _{Yi}	Li-C _{Yi}	Mn-C _{Yi}	В-С _{Yi}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ - <i>С</i> _{Уі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
687	M-35	301	1423.51	-	4608.64	1233.28	255.71	0.00	12.70	0.00	0.00	0.00	0.00	9170.25	0.00	0.00	593.71	1
688	M-35	301	1406.76	-	4412.05	1229.49	255.31	0.00	12.65	0.00	0.00	0.00	0.00	3333.74	0.00	0.00	629.45	1
689	M-35	301	1335.59	-	4684.61	1177.99	237.38	0.18	12.14	0.00	0.00	0.00	0.00	8677.29	0.00	0.00	665.74	1
690	M-35	301	1390.44	-	3850.61	890.68	172.49	0.00	11.19	0.00	11.19	0.00	0.00	7060.72	36.50	0.00	579.86	2
691	M-35	301	1188.21	-	3616.44	825.37	136.58	0.00	8.83	0.00	8.24	0.00	0.00	6600.61	52.98	0.00	685.85	2
692	M-42	271	1193.24	-	3412.48	829.56	223.37	0.00	10.02	0.00	0.00	0.00	0.00	6720.86	0.00	0.00	0.00	1
693	M-42	271	1193.24	-	3910.62	922.47	243.14	0.00	11.27	0.00	0.00	0.00	0.00	7478.60	0.00	0.00	0.00	1
694	M-42	271	1193.24	-	4072.71	974.52	248.41	0.00	11.40	0.00	0.00	0.00	0.00	7610.38	0.00	0.00	0.00	1
695	M-42	271	1193.24	-	4019.34	987.04	248.41	0.00	11.53	0.00	0.00	0.00	0.00	7676.27	0.00	0.00	0.00	1
696	M-42	271	1193.24	-	4601.81	1084.56	282.67	0.00	12.26	0.00	0.00	0.00	0.00	8354.95	0.00	0.00	0.00	1
697	M-42	271	1193.24	-	4421.27	1072.70	283.33	0.00	12.78	0.00	0.00	0.00	0.00	8300.92	0.00	0.00	0.00	1
698	M-42	271	1193.24	-	3094.89	776.19	216.12	0.00	0.00	0.00	0.00	0.00	0.00	6126.52	0.00	0.00	0.00	1
699	M-42	271	1193.24	-	4784.33	1120.80	299.80	0.00	0.00	0.00	0.00	0.00	0.00	8544.05	0.00	0.00	0.00	1
700	M-42	271	1193.24	-	4733.59	1079.29	293.21	0.00	0.00	0.00	0.00	0.00	0.00	8563.16	0.00	0.00	0.00	1
701	M-42	271	1193.24	-	4831.11	1099.72	299.80	0.00	0.00	0.00	0.00	0.00	0.00	8563.16	0.00	0.00	0.00	1
702	M-42	271	1193.24	-	4733.59	1092.47	295.85	0.00	0.00	0.00	0.00	0.00	0.00	8531.53	0.00	0.00	0.00	1
703	M-42	271	1193.24	-	4356.04	996.93	274.11	0.00	0.00	0.00	0.00	0.00	0.00	7873.29	0.00	0.00	0.00	1
704	M-42	271	1193.24	-	4759.29	1092.47	299.80	0.00	0.00	0.00	0.00	0.00	0.00	8606.65	0.00	0.00	0.00	1
705	M-42	271	1172.3	-	4903.59	1054.25	233.91	0.14	0.00	0.00	0.00	0.00	0.00	9102.81	0.00	0.00	612.13	1
706	M-42	271	1214.17	-	4568.77	893.22	233.67	0.00	12.51	0.00	11.19	0.00	0.00	8284.47	37.52	0.00	593.06	2
707	M-42	271	1193.24	-	4672.79	954.31	238.91	0.00	11.34	0.00	12.01	0.00	0.00	8591.47	62.73	0.00	643.99	2
708	M-43	240	1170.63	-	5448.20	1129.90	311.70	0.00	13.71	0.00	13.71	0.00	0.00	9934.62	55.56	0.00	685.44	2
709	M-45	319	1815.82	-	4756.47	1338.30	226.73	0.00	14.00	0.00	10.77	0.00	0.00	8992.70	32.85	0.00	576.25	2
710	M-45	319	2030.6	-	3286.95	918.02	164.83	0.00	8.53	0.00	11.20	0.00	0.00	6290.65	52.28	0.00	600.10	2
711	M-48	329	1652.95	-	5442.75	1500.59	290.12	0.00	14.94	0.00	9.79	0.00	0.00	10312.98	23.19	0.00	593.64	2
712	M-48	329	1611.5	-	5430.69	1564.21	268.34	0.00	12.88	0.00	10.82	0.00	0.00	10343.24	45.84	0.00	637.12	2
713	M-50	302	1396.3	-	3608.35	940.93	136.60	0.00	11.00	0.00	9.97	0.00	0.00	6716.05	53.93	0.00	705.84	2
714	M-50	302	1355.69	-	3944.92	996.51	159.14	0.00	11.16	0.00	7.63	0.00	0.00	7410.67	39.93	0.00	629.50	2
715	M-51	302	1530.07	-	3845.17	1118.60	130.50	0.00	0.00	0.00	0.00	0.00	0.00	7230.67	0.00	0.00	297.13	1
716	M-51	302	1530.07	-	4646.25	1331.24	253.43	0.00	16.31	0.00	0.00	0.00	0.00	8881.76	0.00	0.00	582.02	1
717	M-51	302	1530.07	-	4529.73	1303.86	224.30	0.00	15.73	0.00	0.00	0.00	0.00	8660.95	0.00	0.00	209.74	1

Continuación de Tabla 24.

					Cationes										Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na- <i>C</i> _{Yi}	К- <i>С</i> үі	Са- <i>С</i> _{Үі}	Mg-	Li-C Yi	Mn- <i>C</i> _{Yi}	В-С _{Үі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	HCO₃-	SO 4-	SiO ₂ - <i>C</i> _{Yi}	un
								С үі							С _{Үі}	С _{Үі}		
718	M-51	302	1530.07	-	4981.24	1439.03	237.70	0.00	0.00	0.00	0.00	0.00	0.00	9270.35	0.00	0.00	0.00	1
719	M-51	302	1530.07	-	4726.06	1389.50	241.20	0.00	0.00	0.00	0.00	0.00	0.00	9084.50	0.00	0.00	600.08	1
720	M-51	302	1530.07	-	4735.38	1402.32	242.94	0.00	0.00	0.00	0.00	0.00	0.00	8997.70	0.00	0.00	0.00	1
721	M-51	302	1530.07	-	3600.48	1109.86	175.95	0.00	9.32	0.00	0.00	0.00	0.00	6515.81	0.00	0.00	457.34	1
722	M-51	302	1530.07	-	3134.40	942.65	149.15	0.00	7.57	0.00	0.00	0.00	0.00	6292.10	0.00	0.00	0.00	1
723	M-51	302	1530.07	-	1599.82	475.40	86.40	0.00	0.00	0.00	0.00	0.00	0.00	3174.48	53.31	0.00	0.00	1
724	M-51	302	1530.07	-	3028.95	903.61	121.18	0.03	7.57	0.00	0.00	0.00	0.00	5852.81	0.00	0.00	423.55	1
725	M-51	302	1542.84	-	5078.05	1404.88	244.53	0.00	14.56	0.00	10.48	0.00	0.00	9651.90	23.29	0.00	652.08	2
726	M-51	302	1517.3	-	4746.07	1357.19	221.53	0.00	11.66	0.00	10.49	0.00	0.00	8991.36	48.39	0.00	715.90	2
727	M-53	302	1543.25	-	5562.95	1723.90	232.30	0.00	16.88	0.00	13.39	0.00	0.00	10460.45	34.35	0.00	783.65	2
728	M-53	302	1405.93	-	5486.85	1721.12	230.30	0.00	15.24	0.00	14.06	0.00	0.00	10599.23	55.67	0.00	804.60	2
729	M-53	302	1474.59	-	2988.82	904.36	164.16	0.00	0.00	0.00	0.00	0.00	0.00	5510.86	0.00	0.00	0.00	1
730	M-53	302	1474.59	-	2995.25	968.62	138.46	0.00	0.00	0.00	0.00	0.00	0.00	5754.48	0.00	0.00	0.00	1
731	M-53	302	1474.59	-	2586.30	965.12	143.72	0.00	0.00	0.00	0.00	0.00	0.00	5220.51	0.00	0.00	0.00	1
732	M-53	302	1474.59	-	2694.38	890.92	143.72	0.00	0.00	0.00	0.00	0.00	0.00	5453.02	0.00	0.00	0.00	1
733	M-53	302	1474.59	-	2894.18	977.38	154.23	0.00	0.00	0.00	0.00	0.00	0.00	5742.79	0.00	0.00	0.00	1
734	M-53	302	1474.59	-	2832.84	982.06	130.86	0.00	0.00	0.00	0.00	0.00	0.00	5742.79	0.00	0.00	0.00	1
735	M-53	302	1474.59	-	2966.62	1002.51	128.53	0.00	0.00	0.00	0.00	0.00	0.00	6235.87	0.00	0.00	0.00	1
736	M-53	302	1474.59	-	3011.02	1016.53	66.60	0.00	0.00	0.00	0.00	0.00	0.00	5800.63	0.00	0.00	447.33	1
737	M-53	302	1474.59	-	2881.33	1009.52	128.53	0.00	0.00	0.00	0.00	0.00	0.00	5772.00	0.00	0.00	428.23	1
738	M-53	302	1474.59	-	2867.31	1041.65	143.72	0.00	0.00	0.00	0.00	0.00	0.00	6148.82	0.00	0.00	445.17	1
739	M-53	302	1474.59	-	3088.14	1045.74	140.79	0.00	0.00	0.00	0.00	0.00	0.00	6177.45	0.00	0.00	0.00	1
740	M-53	302	1474.59	-	3090.48	1086.05	140.79	0.00	0.00	0.00	0.00	0.00	0.00	6380.75	0.00	0.00	418.00	1
741	M-53	302	1474.59	-	3145.39	1117.01	136.12	0.00	0.00	0.00	0.00	0.00	0.00	6497.01	0.00	0.00	525.50	1
742	M-53	302	1474.59	-	2922.22	1080.79	118.01	0.00	0.00	0.00	0.00	0.00	0.00	6206.66	0.00	0.00	272.24	1
743	M-53	302	1474.59	-	3209.07	1177.77	143.72	0.00	0.00	0.00	0.00	0.00	0.00	6786.78	0.00	0.00	258.22	1
744	M-53	302	1474.59	-	2044.74	767.65	99.90	0.00	0.00	0.00	0.00	0.00	0.00	4698.81	0.00	0.00	258.22	1
745	M-53	302	1474.59	-	2839.85	1174.85	161.83	0.00	0.00	0.00	0.00	0.00	0.00	6990.08	0.00	0.00	251.21	1
746	M-53	302	1474.59	-	2929.23	1197.63	128.53	0.00	0.00	0.00	0.00	0.00	0.00	6862.14	0.00	0.00	0.00	1
747	M-53	302	1474.59	-	3328.25	1249.04	142.55	0.00	0.00	0.00	0.00	0.00	0.00	7855.30	0.00	0.00	0.00	1
748	M-53	302	1474.59	-	4031.06	1564.52	175.26	0.00	0.00	0.00	0.00	0.00	0.00	8760.24	0.00	0.00	0.00	1

Continuación de Tabla 24.

						Cationes									Anio	nes		
NM	Pozo	Tyac	н	рН	Na-С үі	К-С үі	Са- <i>С</i> _{Уі}	Mg-C _{Yi}	Li-C Yi	Mn-C _{Yi}	В-С _{Уі}	Fe- <i>C</i> _{Yi}	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	НСО ₃ -С _{Уі}	SO ₄ - <i>C</i> _{Yi}	SiO ₂ - <i>C</i> _{Yi}	un
749	M-53	302	1474.59	-	4121.61	1605.41	198.63	0.00	0.00	0.00	0.00	0.00	0.00	9519.72	0.00	0.00	0.00	1
750	M-53	302	1474.59	-	4529.39	1636.38	205.64	0.00	0.00	0.00	0.00	0.00	0.00	9513.29	0.00	0.00	0.00	1
751	M-53	302	1474.59	-	4522.96	1659.16	172.93	0.00	0.00	0.00	0.00	0.00	0.00	9339.20	0.00	0.00	0.00	1
752	M-53	302	1474.59	-	4618.19	1556.34	199.80	0.00	0.00	0.00	0.00	0.00	0.00	9339.20	0.00	0.00	0.00	1
753	M-53	302	1474.59	-	4652.07	1559.26	199.22	0.00	0.00	0.00	0.00	0.00	0.00	9455.45	0.00	0.00	0.00	1
754	M-53	302	1474.59	-	4581.97	1601.91	198.63	0.00	0.00	0.00	0.00	0.00	0.00	9629.55	0.00	0.00	841.85	1
755	M-53	302	1474.59	-	4618.19	1636.38	203.31	0.00	0.00	0.00	0.00	0.00	0.00	9542.50	0.00	0.00	0.00	1
756	M-53	302	1474.59	-	4493.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9636.56	0.00	0.00	0.00	1
757	M-53	302	1474.59	-	4539.32	1592.56	194.54	0.00	0.00	0.00	0.00	0.00	0.00	9432.09	0.00	0.00	0.00	1
758	M-53	302	1474.59	-	4859.47	1143.30	205.06	0.00	0.00	0.00	0.00	0.00	0.00	10121.45	0.00	0.00	0.00	1
759	M-53	302	1474.59	-	5355.46	1291.69	203.89	0.00	0.00	0.00	0.00	0.00	0.00	9421.57	0.00	0.00	0.00	1
760	M-53	302	1474.59	-	4232.61	1593.14	194.54	0.00	0.00	0.00	0.00	0.00	0.00	9275.52	0.00	0.00	695.21	1
761	M-53	302	1474.59	-	4825.58	1606.58	194.54	0.00	0.00	0.00	0.00	0.00	0.00	11362.90	0.00	0.00	693.46	1
762	M-53	302	1474.59	-	4568.53	1624.69	187.53	0.00	0.00	0.00	0.00	0.00	0.00	9405.80	0.00	0.00	0.00	1
763	M-53	302	1474.59	-	4790.53	1607.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9464.22	0.00	0.00	710.40	1
764	M-53	302	1474.59	-	4472.72	1572.11	186.95	0.00	0.00	0.00	0.00	0.00	0.00	9230.53	0.00	0.00	0.00	1
765	M-53	302	1474.59	-	4344.19	1455.27	185.19	0.00	0.00	0.00	0.00	0.00	0.00	8283.53	0.00	0.00	0.00	1
766	M-53	302	1474.59	-	5598.49	1843.19	238.94	0.00	0.00	0.00	0.00	0.00	0.00	10553.18	0.00	0.00	788.68	1
767	M-53	302	1474.59	-	5643.48	1844.35	231.93	0.00	0.00	0.00	0.00	0.00	0.00	10666.52	0.00	0.00	0.00	1
768	M-53	302	1474.59	-	5701.31	1878.82	229.59	4.26	0.00	0.00	0.00	0.00	0.00	10808.49	71.27	0.00	877.72	1
769	M-53	302	1474.59	-	4790.53	1554.00	202.72	0.00	13.73	0.00	0.00	0.00	0.00	9230.53	0.00	0.00	517.03	1
770	M-53	302	1474.59	-	2695.55	691.71	141.03	0.00	0.00	0.00	0.00	0.00	0.00	5712.30	19.22	0.00	0.00	1
771	M-53	302	1474.59	-	3157.66	1142.72	194.54	0.04	10.34	0.00	0.00	0.00	0.00	6573.54	0.00	0.00	486.65	1
772	M-84	348	1781.9	-	5027.39	1571.80	229.27	0.00	16.08	0.00	11.49	0.00	0.00	9836.07	16.54	0.00	587.65	2
773	M-84	348	2030.6	-	5265.84	1636.73	239.53	0.00	13.66	0.00	12.20	0.00	0.00	10185.80	32.20	0.00	680.55	2
774	M-90	287	1374.53	-	4038.22	1031.87	155.55	0.00	12.39	0.00	9.92	0.00	0.00	7495.75	43.38	0.00	650.73	2
775	M-90	287	1275.3	-	3521.49	851.41	121.45	0.00	8.72	0.00	8.72	0.00	0.00	6420.16	62.28	0.00	653.97	2
776	M-101	305	1372.85	-	5869.61	1655.25	292.21	0.00	14.49	0.00	11.02	0.00	0.00	11159.45	53.34	0.00	760.66	2
777	M-102	346	1645.41	-	4801.63	1440.76	193.11	0.00	13.76	0.00	10.55	0.00	0.00	9459.69	11.01	0.00	642.17	2
778	M-102	346	1688.12	-	4925.64	1490.23	213.88	0.00	11.52	0.00	9.68	0.00	0.00	9360.84	22.59	0.00	0.00	2
779	M-103	331	1603.96	-	5616.50	1557.00	240.83	0.00	16.29	0.00	12.73	0.00	0.00	9130.69	22.40	0.00	647.14	2

Continuación de Tabla 24.

								Ca	ationes						Anio	nes		
NM	Pozo	\mathbf{T}_{yac}	н	рН	Na-C _{Yi}	К-С үі	Са- <i>С</i> _{Үі}	Mg-C _{Yi}	Li-C Yi	Mn- <i>C</i> _{Yi}	В-С үі	Fe-С үі	Al- <i>C</i> _{Yi}	CI- <i>C</i> _{Yi}	HCO ₃ -C _{Yi}	SO ₄ - <i>C</i> _{Yi}	SiO2-Cyi	un
780	M-103	331	1531.11	-	4264.02	1201.51	184.07	0.00	11.69	0.00	10.17	0.00	0.00	8297.71	38.64	0.00	0.00	2
781	M-104	341	2030.6	-	4161.93	1327.23	216.78	0.00	11.52	0.00	18.52	0.00	0.00	8134.11	54.57	0.00	653.35	2
782	M-114	270	1186.12	-	4931.63	888.61	376.86	0.00	15.21	0.00	11.24	0.00	0.00	9050.69	33.06	0.00	552.07	2
783	M-114	270	1197.42	-	4880.05	935.70	348.91	0.00	12.56	0.00	11.89	0.00	0.00	9085.41	60.79	0.00	599.35	2
784	M-130	281	1240.55	-	5579.59	1375.31	301.94	0.00	14.65	0.00	14.01	0.00	0.00	10649.57	36.95	0.00	693.07	2
785	M-130	281	1375.78	-	5443.74	1341.65	315.50	0.00	13.28	0.00	13.91	0.00	0.00	10236.88	56.27	0.00	710.03	2
786	M-181	245	1161	-	5864.84	1364.93	363.84	0.00	16.38	0.00	12.10	0.00	0.00	11362.29	24.92	0.00	640.10	2
787	M-181	245	1059.26	-	5549.81	1232.18	430.33	0.00	12.91	0.00	11.48	0.00	0.00	10505.77	45.18	0.00	501.33	2

NM	Pozo	Na-ai	Log aNa⁺	K-ai	Log aK⁺	Ca-ai	Log aCa⁺	Mg-ai	Log aMg⁺	Li-ai	Log aLi⁺
1	5	0.1122	-0.9500	0.0161	-1.7919	0.0005	-3.3359	-	-	0.0014	-2.8671
2	5	0.1181	-0.9279	0.0160	-1.7961	0.0004	-3.3585	-	-	0.0000	-
3	5	0.0835	-1.0784	0.0116	-1.9349	0.0003	-3.5961	-	-	0.0009	-3.0650
4	5	0.0888	-1.0516	0.0126	-1.8989	0.0004	-3.4183	-	-	0.0010	-2.9804
5	5	0.0803	-1.0952	0.0122	-1.9124	0.0004	-3.4296	-	-	0.0011	-2.9735
6	5	0.0674	-1.1712	0.0126	-1.9013	0.0003	-3.5097	-	-	0.0008	-3.0930
7	5	0.0851	-1.0701	0.0119	-1.9233	0.0003	-3.5178	-	-	0.0008	-3.0863
8	5	0.0827	-1.0825	0.0118	-1.9285	0.0003	-3.5154	-	-	0.0007	-3.1868
9	5	0.0845	-1.0733	0.0126	-1.8990	0.0002	-3.6569	-	-	0.0008	-3.0832
10	5	0.0856	-1.0675	0.0127	-1.8967	0.0002	-3.6665	-	-	0.0008	-3.1181
11	5	0.0846	-1.0729	0.0113	-1.9482	0.0003	-3.5611	-	-	0.0008	-3.1124
12	5	0.0869	-1.0612	0.0101	-1.9963	0.0003	-3.5126	-	-	0.0008	-3.1221
13	5	0.0789	-1.1029	0.0119	-1.9228	0.0002	-3.6324	-	-	0.0008	-3.1247
14	5	0.0812	-1.0902	0.0110	-1.9584	0.0003	-3.5308	-	-	0.0010	-3.0132
15	5	0.0780	-1.1081	0.0115	-1.9388	0.0003	-3.4660	-	-	0.0010	-3.0169
16	5	0.0830	-1.0807	0.0113	-1.9480	0.0003	-3.5831	-	-	0.0009	-3.0528
17	5	0.0825	-1.0834	0.0116	-1.9345	0.0003	-3.5222	-	-	0.0008	-3.0864
18	5	0.0806	-1.0937	0.0110	-1.9587	0.0002	-3.6623	-	-	0.0009	-3.0507
19	5	0.0861	-1.0650	0.0118	-1.9287	0.0003	-3.5155	-	-	0.0009	-3.0661
20	5	0.1145	-0.9410	0.0157	-1.8050	0.0004	-3.3639	-	-	0.0007	-3.1520
21	5	0.1276	-0.8941	0.0161	-1.7943	0.0005	-3.3283	-	-	0.0014	-2.8490
22	5	0.1159	-0.9359	0.0152	-1.8167	0.0005	-3.3332	-	-	0.0013	-2.8852
23	5	0.1096	-0.9602	0.0147	-1.8334	0.0004	-3.3573	-	-	0.0013	-2.8745
24	5	0.1085	-0.9645	0.0155	-1.8087	0.0005	-3.3341	3.987E-06	-5.399E+00	0.0013	-2.8893
25	5	0.1048	-0.9795	0.0148	-1.8310	0.0005	-3.3419	4.751E-06	-5.323E+00	0.0012	-2.9104
26	5	0.1070	-0.9707	0.0144	-1.8417	0.0004	-3.3471	8.119E-06	-5.091E+00	0.0012	-2.9031
27	5	0.1086	-0.9643	0.0140	-1.8528	0.0004	-3.3569	-	-	0.0013	-2.8883
28	5	0.1064	-0.9732	0.0139	-1.8570	0.0004	-3.3644	-	-	0.0013	-2.8714
29	5	0.1144	-0.9415	0.0146	-1.8370	0.0005	-3.3378	-	-	0.0012	-2.9342
30	5	0.1128	-0.9478	0.0148	-1.8288	0.0005	-3.3359	-	-	-	-
31	5	0.1155	-0.9376	0.0143	-1.8457	0.0005	-3.3271	-	-	-	-
32	5	0.1179	-0.9284	0.0145	-1.8375	0.0004	-3.3722	-	-	-	-
33	5	0.1064	-0.9731	0.0140	-1.8541	0.0003	-3.5165	1.237E-05	-4.908E+00	-	-

 Tabla 25.
 Actividades iónicas calculadas para los cationes y aniones en 787 muestreos de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) con sus respectivos valores log.

Mn-ai	Log aMn	B-ai	Log aB	Fe-ai	Log aFe⁺	Al-ai	Log aAl	Cl-ai	Log aCl⁺	HCO3-	Log
										ai	aHCO3
0.0000	-	0.0013	-2.8848	0.0000	-	0.0000	-	0.1266	-0.8977	0.0000	-8.1379
0.0000	-	0.0008	-3.0811	0.0000	-	0.0000	-	0.1238	-0.9075	0.0000	-6.8030
0.0000	-	0.0004	-3.3783	0.0000	-	0.0000	-	0.0887	-1.0522	0.0000	-6.1820
0.0000	-	0.0007	-3.1595	0.0000	-	0.0000	-	0.0934	-1.0297	0.0000	-7.4035
0.0000	-	0.0007	-3.1643	0.0000	-	0.0000	-	0.0924	-1.0343	0.0000	-7.4577
0.0000	-	0.0008	-3.1095	0.0000	-	0.0000	-	0.0954	-1.0207	0.0000	-6.4848
0.0000	-	0.0009	-3.0515	0.0000	-	0.0000	-	0.0964	-1.0161	0.0000	-6.4520
0.0000	-	0.0008	-3.0759	0.0000	-	0.0000	-	0.0951	-1.0217	0.0000	-6.4529
0.0000	-	0.0009	-3.0493	0.0000	-	0.0000	-	0.0938	-1.0277	0.0000	-6.3315
0.0000	-	0.0008	-3.0981	0.0000	-	0.0000	-	0.0923	-1.0346	0.0000	-6.2519
0.0000	-	0.0008	-3.0793	0.0000	-	0.0000	-	0.0930	-1.0315	0.0000	-6.4255
0.0000	-	0.0008	-3.0758	0.0000	-	0.0000	-	0.0941	-1.0262	0.0000	-6.3877
0.0000	-	0.0006	-3.2247	0.0000	-	0.0000	-	0.0949	-1.0226	0.0000	-6.2519
0.0000	-	0.0006	-3.2509	0.0000	-	0.0000	-	0.0953	-1.0210	0.0000	-6.3638
0.0000	-	0.0006	-3.2078	0.0000	-	0.0000	-	0.0940	-1.0270	0.0000	-6.4798
0.0000	-	0.0007	-3.1493	0.0000	-	0.0000	-	0.0949	-1.0228	0.0000	-6.2743
0.0000	-	0.0007	-3.1464	0.0000	-	0.0000	-	0.0896	-1.0477	0.0000	-6.4483
0.0000	-	0.0008	-3.0770	0.0000	-	0.0000	-	0.0923	-1.0347	0.0000	-6.2165
0.0000	-	0.0007	-3.1600	0.0000	-	0.0000	-	0.0925	-1.0337	0.0000	-6.4797
0.0000	-	0.0010	-3.0095	0.0000	-	0.0000	-	0.1180	-0.9281	0.0000	-6.8061
0.0000	-	0.0015	-2.8338	0.0000	-	0.0000	-	0.1346	-0.8709	0.0000	-6.8865
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1288	-0.8902	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1200	-0.9207	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1274	-0.8948	0.0000	-7.0518
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1224	-0.9123	0.0000	-7.2054
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1219	-0.9141	0.0000	-7.2180
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1201	-0.9204	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1180	-0.9281	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1229	-0.9105	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1190	-0.9245	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1220	-0.9137	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1229	-0.9105	0.0000	-
0.0000	-	0.0011	-2.9529	0.0000	-	0.0000	-	0.1222	-0.9130	0.0000	-7.0760

Continuación Tabla 25.

Continuación Tabla 25.

SO4-ai	Log aSO4	SiO2-ai	Log aSiO2
0.0000	-	0.0061	-2.2138
0.0000	-	0.0000	-
0.0000	-	0.0032	-2.4923
0.0000	-	0.0000	-
0.0000	-	0.0040	-2.4021
0.0000	-	0.0039	-2.4035
0.0000	-	0.0041	-2.3872
0.0000	-	0.0041	-2.3905
0.0000	-	0.0034	-2.4672
0.0000	-	0.0038	-2.4175
0.0000	-	0.0034	-2.4694
0.0000	-	0.0040	-2.3975
0.0000	-	0.0040	-2.3969
0.0000	-	0.0040	-2.3948
0.0000	-	0.0040	-2.3996
0.0000	-	0.0035	-2.4546
0.0000	-	0.0034	-2.4746
0.0000	-	0.0033	-2.4780
0.0000	-	0.0042	-2.3721
0.0000	-6.2421	0.0035	-2.4518
0.0000	-	0.0000	-
0.0000	-	0.0051	-2.2903
0.0000	-	0.0036	-2.4378
0.0000	-	0.0045	-2.3492
0.0000	-	0.0000	-
0.0000	-	0.0045	-2.3432
0.0000	-	0.0049	-2.3096
0.0000	-	0.0049	-2.3068
0.0000	-	0.0054	-2.2707
0.0000	-	0.0032	-2.5010
0.0000	-	0.0054	-2.2655
0.0000	-	0.0000	-
0.0000	-6.4119	0.0049	-2.3102

NM	Pozo	Na-ai	Log aNa⁺	K-ai	Log aK⁺	Ca-ai	Log aCa⁺	Mg-ai	Log aMg⁺	Li-ai	Log aLi⁺
34	5	0.1062	-0.9739	0.0142	-1.8468	0.0005	-3.3427	-	-	0.0000	-
35	5	0.1057	-0.9761	0.0134	-1.8738	0.0005	-3.3467	-	-	0.0000	-
36	5	0.1050	-0.9787	0.0139	-1.8564	0.0005	-3.3449	-	-	0.0000	-
37	5	0.1043	-0.9819	0.0139	-1.8573	0.0004	-3.3514	-	-	0.0000	-
38	5	0.0999	-1.0003	0.0130	-1.8854	0.0004	-3.3474	-	-	0.0000	-
39	5	0.1054	-0.9773	0.0135	-1.8698	0.0004	-3.3509	8.557E-07	-6.068E+00	0.0000	-
40	5	0.1047	-0.9802	0.0137	-1.8627	0.0005	-3.2895	8.222E-07	-6.085E+00	0.0000	-
41	5	0.1057	-0.9759	0.0135	-1.8693	0.0005	-3.3425	8.494E-07	-6.071E+00	0.0000	-
42	5	0.1112	-0.9540	0.0139	-1.8575	0.0004	-3.4177	4.012E-07	-6.397E+00	0.0000	-
43	5	0.0995	-1.0022	0.0130	-1.8873	0.0004	-3.3945	8.491E-07	-6.071E+00	0.0009	-3.0474
44	5	0.1144	-0.9417	0.0145	-1.8377	0.0005	-3.3378	-	-	0.0012	-2.9343
45	5	0.1123	-0.9496	0.0145	-1.8395	0.0005	-3.3371	-	-	0.0007	-3.1703
46	5	0.1146	-0.9407	0.0142	-1.8476	0.0005	-3.3287	-	-	0.0012	-2.9172
47	5	0.1175	-0.9299	0.0145	-1.8389	0.0004	-3.3733	-	-	0.0012	-2.9115
48	5	0.1062	-0.9739	0.0140	-1.8540	0.0003	-3.4904	1.242E-05	-4.906E+00	0.0010	-2.9838
49	5	0.1061	-0.9742	0.0142	-1.8471	0.0005	-3.3429	-	-	0.0000	-
50	5	0.1056	-0.9763	0.0134	-1.8737	0.0005	-3.3466	-	-	0.0000	-
51	5	0.1043	-0.9816	0.0209	-1.6805	0.0004	-3.3535	-	-	0.0010	-2.9791
52	5	0.1056	-0.9762	0.0141	-1.8522	0.0004	-3.3498	-	-	0.0010	-2.9931
53	5	0.1002	-0.9993	0.0130	-1.8846	0.0004	-3.3477	-	-	0.0010	-2.9884
54	5	0.1052	-0.9778	0.0135	-1.8702	0.0004	-3.3613	8.542E-07	-6.068E+00	0.0010	-2.9867
55	5	0.1046	-0.9803	0.0137	-1.8629	0.0005	-3.2903	8.216E-07	-6.085E+00	0.0009	-3.0483
56	5	0.0937	-1.0284	0.0121	-1.9188	0.0005	-3.3160	-	-	0.0000	-
57	5	0.1081	-0.9662	0.0138	-1.8599	0.0005	-3.3026	8.672E-07	-6.062E+00	0.0011	-2.9557
58	5	0.1130	-0.9470	0.0141	-1.8505	0.0004	-3.4105	4.082E-07	-6.389E+00	0.0010	-2.9905
59	5	0.1106	-0.9562	0.0144	-1.8417	0.0004	-3.3828	1.089E-06	-5.963E+00	0.0010	-2.9870
60	5	0.1102	-0.9579	0.0145	-1.8374	0.0005	-3.3263	1.339E-06	-5.873E+00	0.0011	-2.9723
61	5	0.1086	-0.9643	0.0140	-1.8528	0.0004	-3.3569	-	-	0.0013	-2.8883
62	5	0.1064	-0.9732	0.0139	-1.8570	0.0004	-3.3644	-	-	0.0013	-2.8714
63	7	0.1482	-0.8292	0.0179	-1.7471	0.0018	-2.7341	-	-	0.0012	-2.9139
64	7	0.1442	-0.8412	0.0174	-1.7594	0.0017	-2.7631	-	-	0.0015	-2.8218
65	7	0.1316	-0.8806	0.0189	-1.7227	0.0015	-2.8099	-	-	0.0011	-2.9402
66	7	0.1676	-0.7756	0.0202	-1.6939	0.0016	-2.7855	-	-	0.0014	-2.8528

Tabla 25. Actividades iónicas calculadas para los cationes y aniones en 787 muestreos de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) con sus respectivos valores log.

164

Mn-ai	Log aMn	B-ai	Log aB	Fe-ai	Log aFe⁺	Al-ai	Log aAl	Cl-ai	Log aCl ⁺	HCO3-ai	Log aHCO3
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1181	-0.9277	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1211	-0.9170	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1192	-0.9236	0.0000	-
0.0000	-	0.0000		0.0000	-	0.0000	-	0.1215	-0.9154	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1231	-0.9099	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1197	-0.9221	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1180	-0.9281	0.0000	-
0.0000	-	0.0011	-2.9715	0.0000	-	0.0000	-	0.1164	-0.9340	0.0000	-6.9173
0.0000	-	0.0014	-2.8575	0.0000	-	0.0000	-	0.1213	-0.9160	0.0000	-
0.0000	-6.5422	0.0009	-3.0308	0.0000	-	0.0000	-	0.1104	-0.9569	0.0000	-6.9688
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1228	-0.9106	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1186	-0.9261	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1214	-0.9157	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1225	-0.9119	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1222	-0.9128	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1180	-0.9281	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1211	-0.9168	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1182	-0.9273	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1229	-0.9103	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1233	-0.9090	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1195	-0.9225	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1180	-0.9283	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1022	-0.9906	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1189	-0.9249	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1233	-0.9090	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1251	-0.9027	0.0000	-
0.0000	-	0.0013	-2.8921	0.0000	-	0.0000	-	0.1221	-0.9134	0.0000	-7.0725
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1201	-0.9204	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1180	-0.9281	0.0000	-
0.0000	-	0.0002	-3.6575	0.0000	-	0.0000	-	0.1685	-0.7733	0.0001	-4.0607
0.0000	-	0.0009	-3.0528	0.0000	-	0.0000	-	0.1556	-0.8079	0.0001	-3.9047
0.0000	-	0.0012	-2.9059	0.0000	-	0.0000	-	0.1742	-0.7590	0.0006	-3.1920
0.0000	-	0.0014	-2.8693	0.0000	-	0.0000	-	0.1777	-0.7504	0.0008	-3.0772

Continuación Tabla 25.

ai= actividades iónica.

Continuación Tabla 25.

SO4-ai	Log aSO4	SiO2-ai	Log aSiO2
0.0000	-	0.0046	-2.3417
0.0000	-	0.0046	-2.3332
0.0000	-	0.0049	-2.3067
0.0000	-	0.0057	-2.2477
0.0000	-	0.0048	-2.3201
0.0000	-	0.0060	-2.2240
0.0000	-	0.0046	-2.3340
0.0000	-5.4082	0.0068	-2.1680
0.0000	-	0.0053	-2.2718
0.0000	-5.7690	0.0043	-2.3622
0.0000	-	0.0054	-2.2709
0.0000	-	0.0031	-2.5031
0.0000	-	0.0054	-2.2677
0.0000	-	0.0000	-
0.0000	-	0.0049	-2.3119
0.0000	-	0.0045	-2.3422
0.0000	-	0.0046	-2.3331
0.0000	-	0.0049	-2.3068
0.0000	-	0.0058	-2.2403
0.0000	-	0.0048	-2.3182
0.0000	-	0.0060	-2.2242
0.0000	-	0.0046	-2.3338
0.0000	-	0.0000	-
0.0000	-	0.0070	-2.1567
0.0000	-	0.0054	-2.2649
0.0000	-	0.0057	-2.2439
0.0000	-5.8388	0.0052	-2.2814
0.0000	-	0.0049	-2.3096
0.0000	-	0.0049	-2.3068
0.0000	-	0.0039	-2.4114
0.0000	-	0.0000	-
0.0000	-	0.0037	-2.4268
0.0000	-	0.0039	-2.4041

ai= actividades iónica.

NM	Pozo	Na-ai	Log aNa⁺	K-ai	Log aK⁺	Ca-ai	Log aCa⁺	Mg-ai	Log aMg⁺	Li-ai	Log aLi⁺
67	7	0.1236	-0.9078	0.0205	-1.6881	0.0017	-2.7781	0.00	-	0.0014	-2.8491
68	7	0.1449	-0.8388	0.0179	-1.7478	0.0014	-2.8525	0.00	-	0.0013	-2.8730
69	7	0.1546	-0.8108	0.0198	-1.7041	0.0014	-2.8460	0.00	-	0.0015	-2.8259
70	7	0.1715	-0.7659	0.0186	-1.7296	0.0016	-2.8013	0.00	-	0.0015	-2.8349
71	7	0.1711	-0.7668	0.0214	-1.6700	0.0016	-2.8002	0.00	-	0.0014	-2.8546
72	7	0.1504	-0.8227	0.0188	-1.7259	0.0015	-2.8145	0.00	-	0.0012	-2.9066
73	7	0.1503	-0.8232	0.0196	-1.7087	0.0017	-2.7802	0.00	-	0.0014	-2.8438
74	7	0.1609	-0.7934	0.0199	-1.7006	0.0016	-2.8047	0.00	-	0.0016	-2.8021
75	7	0.1656	-0.7809	0.0185	-1.7331	0.0016	-2.7906	0.00	-	0.0015	-2.8098
76	7	0.1656	-0.7809	0.0199	-1.7017	0.0016	-2.8074	0.00	-	0.0016	-2.8096
77	7	0.1657	-0.7806	0.0177	-1.7512	0.0016	-2.8009	0.00	-	0.0014	-2.8521
78	7	0.1574	-0.8030	0.0180	-1.7455	0.0016	-2.7837	0.00	-	0.0015	-2.8196
79	7	0.1598	-0.7965	0.0175	-1.7576	0.0014	-2.8544	0.00	-	0.0000	-
80	7	0.1651	-0.7824	0.0148	-1.8291	0.0016	-2.7980	0.00	-	0.0010	-2.9951
81	7	0.1351	-0.8693	0.0150	-1.8240	0.0016	-2.8034	0.00	-	0.0005	-3.3087
82	7	0.1744	-0.7584	0.0144	-1.8406	0.0021	-2.6701	2.138E-03	-2.670E+00	0.0013	-2.8753
83	8	0.1046	-0.9804	0.0137	-1.8642	0.0004	-3.4279	3.733E-04	-3.428E+00	0.0000	-
84	8	0.1109	-0.9551	0.0139	-1.8585	0.0005	-3.3399	4.572E-04	-3.340E+00	0.0000	-
85	8	0.1103	-0.9574	0.0147	-1.8341	0.0004	-3.4173	3.825E-04	-3.417E+00	0.0000	-
86	8	0.1112	-0.9537	0.0148	-1.8302	0.0004	-3.4345	3.677E-04	-3.434E+00	0.0000	-
87	8	0.1136	-0.9447	0.0147	-1.8317	0.0003	-3.4909	3.229E-04	-3.491E+00	0.0000	-
88	8	0.1100	-0.9585	0.0151	-1.8206	0.0004	-3.4270	3.741E-04	-3.427E+00	0.0000	-
89	8	0.1084	-0.9649	0.0156	-1.8063	0.0004	-3.4282	3.731E-04	-3.428E+00	0.0000	-
90	8	0.1013	-0.9943	0.0128	-1.8928	0.0004	-3.4138	0.00	-	0.0011	-2.9665
91	8	0.0957	-1.0190	0.0131	-1.8841	0.0004	-3.4006	0.00	-	0.0011	-2.9778
92	8	0.1029	-0.9877	0.0138	-1.8607	0.0004	-3.4139	2.477E-05	-4.606E+00	0.0000	-
93	8	0.0951	-1.0220	0.0135	-1.8699	0.0004	-3.3800	0.00	-	0.0011	-2.9577
94	8	0.0988	-1.0053	0.0143	-1.8438	0.0004	-3.4187	0.00	-	0.0009	-3.0386
95	8	0.1028	-0.9881	0.0129	-1.8881	0.0004	-3.4557	0.00	-	0.0010	-3.0199
96	8	0.1036	-0.9848	0.0133	-1.8768	0.0004	-3.4327	0.00	-	0.0010	-3.0222
97	8	0.0910	-1.0411	0.0123	-1.9089	0.0003	-3.5049	0.00	-	0.0009	-3.0460
98	8	0.0921	-1.0356	0.0134	-1.8717	0.0004	-3.4384	0.00	-	0.0009	-3.0269
99	8	0.0943	-1.0255	0.0122	-1.9122	0.0003	-3.4700	0.00	-	0.0010	-3.0073

Tabla 25. Actividades iónicas calculadas para los cationes y aniones en 787 muestreos de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) con sus respectivos valores log.
Continuación Ta	ola 25.
-----------------	---------

Mn-at Log alv L-at Log alv L-at Log alv PLO3-at PLO3-a			_ ·									
0.0000 - 0.013 -2.880 0.0000 - 0.0141 -0.7404 0.0009 -3.0655 0.0000 - 0.0112 -2.2375 0.0000 - 0.0000 - 0.1775 -0.7597 0.0006 -3.0745 0.0000 - 0.013 -2.8752 0.0000 - 0.0000 - 0.1805 -0.7436 0.0007 -3.1751 0.0000 - 0.011 -2.9752 0.0000 - 0.0000 - 0.1775 -0.7507 0.0007 -3.1791 0.0000 - 0.0011 -2.9634 0.0000 - 0.0000 - 0.1746 -0.7579 0.0007 -3.1793 0.0000 - 0.0010 - 0.0000 - 0.1746 -0.7579 0.0007 -3.1791 0.0000 - 0.0000 - 0.0000 - 0.1755 0.7554 0.006 - 2.934 0.0000 - 0.1755 0.7554 0.0060	Mn-ai	Log aMn	B-ai	Log aB	Fe-ai	Log aFe ⁺	Al-ai	Log aAl	Cl-ai	Log aCl ⁺	HCO3-ai	Log aHCO3
0.0000 - 0.0014 -2.4845 0.0000 - 0.1775 0.7599 0.0006 -3.2137 0.0000 - 0.0013 -2.8752 0.0000 - 0.1805 -0.7369 0.0007 -3.1852 0.0000 - 0.0013 -2.8752 0.0000 - 0.1805 -0.7436 0.0007 -3.1705 0.0000 - 0.0011 -2.9762 0.0000 - 0.1790 -0.7471 0.0007 -3.1705 0.0000 - 0.0011 -2.9762 0.0000 - 0.1790 -0.7471 0.0007 -3.1705 0.0000 - 0.0014 -2.8896 0.0000 - 0.0000 - 0.1761 -0.7574 0.0006 -3.1398 0.0000 - 0.0013 -2.8761 0.0000 - 0.1755 0.7574 0.0006 - - 0.0000 - 0.0011 -2.8830 0.0000 - 0.1755 0.7574 0.0000 - - 0.0000 - 0.1755 0.0000 - - 0.0	0.0000	-	0.0013	-2.8860	0.0000	-	0.0000	-	0.1818	-0.7404	0.0009	-3.0655
0.0000 - 0.0012 -2.2757 0.0000 - 0.1757 0.7590 0.0007 -3.1157 0.0000 - 0.0013 -2.8752 0.0000 - 0.1000 - 0.1757 0.7570 0.0007 -3.1791 0.0000 - 0.0011 -2.9762 0.0000 - 0.1790 -0.7470 0.0005 3.2949 0.0000 - 0.0010 -3.0168 0.0000 - 0.1746 -0.7579 0.0006 -3.1385 0.0000 - 0.0014 -2.8969 0.0000 - 0.1741 -0.7471 0.0006 -3.2389 0.0000 - 0.0014 -2.8969 0.0000 - 0.1754 -0.7581 0.0006 -3.2389 0.0000 - 0.0011 -2.8761 0.0000 - 0.1755 0.7581 0.0000 - 0.0000 - 0.1695 -0.7581 0.0000 - 0.0000 - 0.1695 -0.751 0.0000 - 0.0000 - 0.1615 -0.7171 0.0000 - 0.0000	0.0000	-	0.0014	-2.8485	0.0000	-	0.0000	-	0.1739	-0.7597	0.0008	-3.0745
0.0000 - 0.0131 -2.8752 0.0000 - 0.1805 -0.7436 0.0007 -3.1852 0.0000 - 0.0011 -2.9762 0.0000 - 0.1790 -0.7477 0.0007 -3.1791 0.0000 - 0.0011 -2.9762 0.0000 - 0.1790 -0.7471 0.0007 -3.1938 0.0000 - 0.0014 -2.8696 0.0000 - 0.1746 -0.7575 0.0004 -3.3938 0.0000 - 0.013 -2.8761 0.0000 - 0.1746 -0.7575 0.0007 -3.1791 0.0000 - 0.011 -2.8695 0.0000 - 0.0000 - 0.1749 0.7571 0.0007 -3.1791 0.0000 - 0.011 -2.8695 0.0000 - 0.0200 - 0.1749 0.7571 0.0007 - 3.1791 0.0000 - 0.0000 - 0.0000 - 0.1729 0.7521 0.0007 - 3.1791 0.0000 - 0.0000	0.0000	-	0.0012	-2.9275	0.0000	-	0.0000	-	0.1775	-0.7509	0.0006	-3.2137
0.0000 - 0.0011 -2.878 0.0000 - 0.0000 - 0.1790 -0.7470 0.0007 -3.1791 0.0000 - 0.0011 -2.9634 0.0000 - 0.0175 -0.7571 0.0005 -3.1294 0.0000 - 0.0010 -3.0168 0.0000 - 0.0000 - 0.1791 -0.7571 0.0005 -3.1398 0.0000 - 0.0013 -2.8964 0.0000 - 0.01761 -0.7574 0.0006 -3.1294 0.0000 - 0.0013 -2.8965 0.0000 - 0.0000 - 0.1755 0.7574 0.0007 -3.1791 0.0000 - 0.0011 -2.8905 0.0000 - 0.0000 - 0.1755 0.7574 0.0007 - 3.1791 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.758 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1131 0.9411 <t< td=""><td>0.0000</td><td>-</td><td>0.0013</td><td>-2.8752</td><td>0.0000</td><td>-</td><td>0.0000</td><td>-</td><td>0.1805</td><td>-0.7436</td><td>0.0007</td><td>-3.1852</td></t<>	0.0000	-	0.0013	-2.8752	0.0000	-	0.0000	-	0.1805	-0.7436	0.0007	-3.1852
0.0000 - 0.0011 -2.9762 0.0000 - 0.0000 - 0.775 0.757 0.0007 -3.1795 0.0000 - 0.0012 -2.9034 0.0000 - 0.0000 - 0.1796 0.7779 0.0005 -3.1938 0.0000 - 0.0014 -2.8596 0.0000 - 0.0176 -0.751 0.7579 0.0006 -3.1938 0.0000 - 0.0013 -2.8561 0.0000 - 0.0000 - 0.1756 -0.758 0.0006 -3.1791 0.0000 - 0.0011 -2.8695 0.0000 - 0.0000 - 0.1755 0.758 0.000 -3.1791 0.0000 - 0.0000 - 0.0000 - 0.1755 0.758 0.000 -3.1791 0.0000 - 0.0000 - 0.0000 - 0.1695 -0.758 0.0000 - 0.1616 0.7917 0.000 - 0.0000 - 0.0000 - 0.0000 - 0.1616 -0.7917	0.0000	-	0.0013	-2.8978	0.0000	-	0.0000	-	0.1790	-0.7470	0.0007	-3.1791
0.0000 - 0.0012 -2.9034 0.0000 - 0.0000 - 0.1790 0.7471 0.0005 -3.2499 0.0000 - 0.0010 -3.0168 0.0000 - 0.1746 -0.7579 0.0006 -3.1938 0.0000 - 0.0013 -2.8761 0.0000 - 0.1756 -0.7554 0.0006 -3.2089 0.0000 - 0.0013 -2.8830 0.0000 - 0.0000 - 0.1749 -0.7571 0.0007 -3.1791 0.0000 - 0.0000 - 0.0000 - 0.1729 -0.7621 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1729 -0.7621 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1112 -0.9471 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1112 -0.9471 0.0000 - 0.0000 - 0.0000 - 0.1112 -0.9471 0.0000<	0.0000	-	0.0011	-2.9762	0.0000	-	0.0000	-	0.1775	-0.7507	0.0007	-3.1705
0.0000 - 0.0010 -3.0168 0.0000 - 0.0000 - 0.1746 -0.7579 0.0006 -3.1938 0.0000 - 0.0014 -2.8696 0.0000 - 0.1781 -0.7494 0.0004 -3.3553 0.0000 - 0.0013 -2.8761 0.0000 - 0.1795 -0.7554 0.0006 -3.2089 0.0000 - 0.0011 -2.9605 0.0000 - 0.0000 - 0.7555 0.0758 0.0000 - - - - - - - - - 0.0000 - 0.1725 -0.7578 0.0000 - - - - - - 0.0000 - 0.1616 - - - - - - 0.0000 - 0.1616 - - - - - 0.0000 - 0.1616 - - - - - - - 0.0000 - 0.1121 -0.9411 0.0000 - 0.0000 - 0.1138 - -	0.0000	-	0.0012	-2.9034	0.0000	-	0.0000	-	0.1790	-0.7471	0.0005	-3.2949
0.0000 - 0.0014 -2.8696 0.0000 - 0.1781 0.7494 0.004 -3.3553 0.0000 - 0.0013 -2.8761 0.0000 - 0.1796 0.7554 0.0007 -3.1791 0.0000 - 0.0011 -2.9605 0.0000 - 0.1795 0.7558 0.0000 - 0.1791 0.0000 - 0.0001 - 0.0000 - 0.1755 0.7558 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1616 0.7718 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1616 0.7917 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1112 0.941 0.000 - 0.0000 - 0.0001 - 0.0000 - 0.1113 0.943 0.000 - 0.0000 - 0.0049 -2.2577 0.0000 - 0.1141 0.9428 0.0000 -	0.0000	-	0.0010	-3.0168	0.0000	-	0.0000	-	0.1746	-0.7579	0.0006	-3.1938
0.0000 - 0.0013 -2.8761 0.0000 - 0.0756 -0.7554 0.0006 -3.2089 0.0000 - 0.0011 -2.8830 0.0000 - 0.0000 - 0.7575 0.0007 -3.1791 0.0000 - 0.0001 - 0.0000 - 0.0755 0.7578 0.0000 - -0.7791 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.755 0.0000 - 0.0000 - 0.0000 - 0.7798 0.0000 - 0.0000 - 0.0000 - 0.1616 -0.719 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1112 -0.9411 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1133 -0.9437 0.0000 - 0.1134 -0.9437 0.0000 - 0.013 -2.2937 0.0000 - 0.1134 -0.9437 0.0000 - 0.0013 -2.2	0.0000	-	0.0014	-2.8696	0.0000	-	0.0000	-	0.1781	-0.7494	0.0004	-3.3553
0.0000 - 0.0013 -2.8830 0.0000 - 0.0000 - 0.1749 -0.7571 0.0000 - 0.0000 - 0.0011 -2.9605 0.0000 - 0.0000 - 0.1755 -0.7588 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1695 -0.7614 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1616 -0.7179 0.000 - 0.0000 - 0.0000 - 0.0000 - 0.1616 -0.7170 0.000 - 0.0000 - 0.0000 - 0.0000 - 0.1112 -0.7190 0.0000 - 0.0000 - 0.0051 -2.2927 0.0000 - 0.1123 -0.9437 0.0000 - 0.0000 - 0.0054 -2.2677 0.0000 - 0.1133 -0.9433 0.0000 - 0.0000 - 0.0054 -2.2933 0.0000 - 0.1141 -9.443 <td>0.0000</td> <td>-</td> <td>0.0013</td> <td>-2.8761</td> <td>0.0000</td> <td>-</td> <td>0.0000</td> <td>-</td> <td>0.1756</td> <td>-0.7554</td> <td>0.0006</td> <td>-3.2089</td>	0.0000	-	0.0013	-2.8761	0.0000	-	0.0000	-	0.1756	-0.7554	0.0006	-3.2089
0.0000 - 0.0011 -2.9605 0.0000 - 0.0000 - 0.1755 0.7588 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0113 -0.9433 0.0000 - 0.0114 -0.9433 0.0000 - 0.0000 - 0.0114 -0.9434 0.0000 - 0.0000 - 0.0114 -0.9443	0.0000	-	0.0013	-2.8830	0.0000	-	0.0000	-	0.1749	-0.7571	0.0007	-3.1791
0.0000 - 0.0000 - 0.0000 - 0.1695 -0.7708 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1729 -0.7621 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1616 -0.7917 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1112 -0.9417 0.0000 - 0.0000 - 0.0054 -2.2570 0.0000 - 0.0113 -0.9497 0.0000 - 0.0000 - 0.0054 -2.2677 0.0000 - 0.1133 -0.9497 0.0000 - 0.0000 - 0.0054 -2.2677 0.0000 - 0.1133 -0.9437 0.0000 - 0.0000 - 0.0054 -2.2677 0.0000 - 0.1133 -0.9437 0.0000 - 0.1141 -0.9428 0.0000 - 0.0000 - 0.0054 -2.2677 0.0000 - 0.1141 -0	0.0000	-	0.0011	-2.9605	0.0000	-	0.0000	-	0.1755	-0.7558	0.0000	-
0.0000 - <td>0.0000</td> <td>-</td> <td>0.0000</td> <td>-</td> <td>0.0000</td> <td>-</td> <td>0.0000</td> <td>-</td> <td>0.1695</td> <td>-0.7708</td> <td>0.0000</td> <td>-</td>	0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1695	-0.7708	0.0000	-
0.0000 - 0.0113 -0.9497 0.0000 - 0.0000 <t< td=""><td>0.0000</td><td>-</td><td>0.0000</td><td>-</td><td>0.0000</td><td>-</td><td>0.0000</td><td>-</td><td>0.1729</td><td>-0.7621</td><td>0.0000</td><td>-</td></t<>	0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1729	-0.7621	0.0000	-
0.0000 - 0.0000 - 0.0000 - 0.1910 -0.7190 0.0000 - 0.0000 - 0.0056 -2.2530 0.0000 - 0.0000 - 0.1112 -0.9541 0.0000 - 0.0000 - 0.0051 -2.2927 0.0000 - 0.0000 - 0.1123 -0.9497 0.0000 - 0.0000 - 0.0054 -2.2677 0.0000 - 0.0137 -0.9433 0.0000 - 0.0000 - 0.0051 -2.2933 0.0000 - 0.0000 - 0.1141 -0.9428 0.0000 - 0.0000 - 0.0049 -2.3133 0.0000 - 0.0000 - 0.1145 -0.9410 0.0000 - 0.0000 - 0.0007 -3.1313 0.0000 - 0.0000 - 0.1146 -0.9499 0.0000 - 0.0000 - 0.0006 -3.1947 0.0000 - 0.0000 - 0.1146 -0.9499 0.000 -	0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1616	-0.7917	0.0000	-
0.0000 - 0.0056 -2.2530 0.0000 - 0.1112 -0.9541 0.0000 - 0.0000 - 0.0051 -2.2927 0.0000 - 0.1123 -0.9497 0.0000 - 0.0000 - 0.0054 -2.2677 0.0000 - 0.1138 -0.9437 0.0000 - 0.0000 - 0.0049 -2.3058 0.0000 - 0.1137 -0.9443 0.0000 - 0.0000 - 0.0051 -2.2933 0.0000 - 0.0000 - 0.1141 -0.9428 0.0000 - 0.0000 - 0.0007 -3.1313 0.0000 - 0.0000 - 0.1146 -0.9410 0.0000 - 0.0000 - 0.0007 -3.1313 0.0000 - 0.0000 - 0.1146 -0.9410 0.0000 - 0.0000 - 0.0007 -3.1313 0.0000 - 0.0000 - 0.1146 -0.9410 0.0000 - 0.00000 - 0.0000	0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1910	-0.7190	0.0000	-
0.0000 - 0.0051 -2.2927 0.0000 - 0.1123 -0.9497 0.0000 - 0.0000 - 0.0054 -2.2677 0.0000 - 0.1138 -0.9437 0.0000 - 0.0000 - 0.0049 -2.3058 0.0000 - 0.1137 -0.9443 0.0000 - 0.0000 - 0.0051 -2.2933 0.0000 - 0.1141 -0.9428 0.0000 - 0.0000 - 0.0049 -2.3123 0.0000 - 0.1145 -0.9410 0.0000 - 0.0000 - 0.0007 -3.1313 0.0000 - 0.0000 - 0.1146 -0.9409 0.0000 - 0.0000 - 0.0007 -3.1313 0.0000 - 0.0000 - 0.1146 -0.9409 0.0000 - 0.0000 - 0.0006 -3.1947 0.0000 - 0.0000 - 0.1146 -0.9409 0.0000 - 0.0000 - 0.0006 -3.1947 0.0000	0.0000	-	0.0056	-2.2530	0.0000	-	0.0000	-	0.1112	-0.9541	0.0000	-
0.0000 - 0.0054 -2.2677 0.0000 - 0.1138 -0.9437 0.0000 - 0.0000 - 0.0049 -2.3058 0.0000 - 0.1137 -0.9443 0.0000 - 0.0000 - 0.0051 -2.2933 0.0000 - 0.0000 - 0.1141 -0.9428 0.0000 - 0.0000 - 0.0049 -2.3123 0.0000 - 0.0000 - 0.1145 -0.9410 0.0000 - 0.0000 - 0.0007 -3.1313 0.0000 - 0.0000 - 0.1228 -0.9108 0.0000 - 0.0000 - 0.0006 -3.1947 0.0000 - 0.0000 - 0.1146 -0.9409 0.000 - 0.0000 - 0.0008 -3.1947 0.0000 - 0.0102 - 0.1146 -0.9409 0.000 - 0.0000 - 0.0008 -3.1947 0.0000 - 0.0106 -0.9721 0.000 - 0.0000 -	0.0000	-	0.0051	-2.2927	0.0000	-	0.0000	-	0.1123	-0.9497	0.0000	-
0.0000 - 0.0049 -2.3058 0.0000 - 0.1137 -0.9443 0.0000 - 0.0000 - 0.0051 -2.2933 0.0000 - 0.1141 -0.9428 0.0000 - 0.0000 - 0.0049 -2.3123 0.0000 - 0.1145 -0.9410 0.0000 - 0.0000 - 0.0007 -3.1313 0.0000 - 0.1146 -0.9409 0.0000 - 0.0000 - 0.0006 -3.1947 0.0000 - 0.1146 -0.9409 0.0000 -6.7827 0.0000 - 0.0008 -3.0928 0.0000 - 0.1072 -0.9697 0.000 - 0.0000 - 0.0008 -3.1178 0.0000 - 0.1066 -0.9721 0.000 - 0.0000 - 0.0011 -2.9769 0.0000 - 0.1091 -0.9623 0.000 - 0.0000 - 0.0011 -2.9769 0.0000 - 0.1091 -0.9589 0.000 -6.7528	0.0000	-	0.0054	-2.2677	0.0000	-	0.0000	-	0.1138	-0.9437	0.0000	-
0.0000 - 0.0051 -2.2933 0.0000 - 0.1141 -0.9428 0.0000 - 0.0000 - 0.0049 -2.3123 0.0000 - 0.1145 -0.9410 0.0000 - 0.0000 - 0.0007 -3.1313 0.0000 - 0.0000 - 0.1228 -0.9108 0.0000 - 0.0000 - 0.0006 -3.1947 0.0000 - 0.0000 - 0.1146 -0.9499 0.0000 -6.7827 0.0000 - 0.0008 -3.1947 0.0000 - 0.0000 - 0.1072 -0.9697 0.000 - 0.0000 - 0.0008 -3.1178 0.0000 - 0.0000 - 0.1066 -0.9721 0.000 - 0.0000 - 0.0011 -2.9769 0.0000 - 0.1000 - 0.1011 -0.9589 0.0000 -6.7528 0.0000 - 0.0011 -2.9840 0.0000 - 0.0000 - 0.1077 -0.9679 0.0000 <td< td=""><td>0.0000</td><td>-</td><td>0.0049</td><td>-2.3058</td><td>0.0000</td><td>-</td><td>0.0000</td><td>-</td><td>0.1137</td><td>-0.9443</td><td>0.0000</td><td>-</td></td<>	0.0000	-	0.0049	-2.3058	0.0000	-	0.0000	-	0.1137	-0.9443	0.0000	-
0.0000 - 0.0049 -2.3123 0.0000 - 0.1145 -0.9410 0.0000 - 0.0000 - 0.0007 -3.1313 0.0000 - 0.1228 -0.9108 0.0000 - 0.0000 - 0.0006 -3.1947 0.0000 - 0.1146 -0.9409 0.0000 -6.7827 0.0000 - 0.0008 -3.0928 0.0000 - 0.1072 -0.9697 0.0000 -8.5376 0.0000 - 0.0008 -3.1178 0.0000 - 0.1000 - 0.1066 -0.9721 0.0000 - 0.0000 - 0.0006 -3.2045 0.0000 - 0.0000 - 0.1091 -0.9623 0.000 - 0.0000 - 0.0011 -2.9769 0.0000 - 0.1000 - 0.1011 -0.9582 0.0000 -6.7528 0.0000 - 0.0001 -2.9840 0.0000 - 0.1001 -0.9679 0.0000 -6.7528 0.0000 - 0.0001 -2.984	0.0000	-	0.0051	-2.2933	0.0000	-	0.0000	-	0.1141	-0.9428	0.0000	-
0.0000 - 0.0007 -3.1313 0.0000 - 0.0000 - 0.1228 -0.9108 0.0000 - 0.0000 - 0.0006 -3.1947 0.0000 - 0.0000 - 0.1146 -0.9409 0.0000 -6.7827 0.0000 - 0.0008 -3.0928 0.0000 - 0.0000 - 0.1072 -0.9697 0.0000 -8.5376 0.0000 - 0.0008 -3.1178 0.0000 - 0.0000 - 0.1066 -0.9721 0.0000 - 0.0000 - 0.0011 -2.9769 0.0000 - 0.0000 - 0.1091 -0.9623 0.000 -6.9469 0.0000 - 0.0011 -2.9769 0.0000 - 0.0000 - 0.1101 -0.9582 0.0000 -6.7528 0.0000 - 0.0010 -2.9840 0.0000 - 0.0000 - 0.1011 -0.9582 0.0000 -6.7528 0.0000 - 0.0011 -2.9667 0.0000 - 0.0000 </td <td>0.0000</td> <td>-</td> <td>0.0049</td> <td>-2.3123</td> <td>0.0000</td> <td>-</td> <td>0.0000</td> <td>-</td> <td>0.1145</td> <td>-0.9410</td> <td>0.0000</td> <td>-</td>	0.0000	-	0.0049	-2.3123	0.0000	-	0.0000	-	0.1145	-0.9410	0.0000	-
0.0000 - 0.0006 -3.1947 0.0000 - 0.1146 -0.9409 0.0000 -6.7827 0.0000 - 0.0008 -3.0928 0.0000 - 0.1072 -0.9697 0.0000 -8.5376 0.0000 - 0.0008 -3.1178 0.0000 - 0.1000 - 0.1066 -0.9721 0.0000 - 0.0000 - 0.0011 -2.9769 0.0000 - 0.0000 - 0.1011 -0.9589 0.0000 -6.7827 0.0000 - 0.0011 -2.9769 0.0000 - 0.0000 - 0.1091 -0.9589 0.0000 -6.7528 0.0000 - 0.0011 -2.9769 0.0000 - 0.1001 -0.9582 0.0000 -6.7528 0.0000 - 0.0010 -2.9840 0.0000 - 0.1011 -0.9582 0.0000 -6.7528 0.0000 - 0.0011 -2.9867 0.0000 - 0.1017 -0.9679 0.0000 -6.6892 0.0000 - 0.0011 <td>0.0000</td> <td>-</td> <td>0.0007</td> <td>-3.1313</td> <td>0.0000</td> <td>-</td> <td>0.0000</td> <td>-</td> <td>0.1228</td> <td>-0.9108</td> <td>0.0000</td> <td>-</td>	0.0000	-	0.0007	-3.1313	0.0000	-	0.0000	-	0.1228	-0.9108	0.0000	-
0.0000 - 0.0008 -3.0928 0.0000 - 0.1072 -0.9697 0.0000 -8.5376 0.0000 - 0.0008 -3.1178 0.0000 - 0.1066 -0.9721 0.0000 - 0.0000 - 0.0006 -3.2045 0.0000 - 0.1091 -0.9623 0.0000 -8.2588 0.0000 - 0.0011 -2.9769 0.0000 - 0.1099 -0.9589 0.0000 -6.9469 0.0000 - 0.0010 -2.9840 0.0000 - 0.1001 -0.9582 0.0000 -6.7528 0.0000 - 0.0011 -2.9840 0.0000 - 0.1007 -0.9679 0.0000 -6.7528 0.0000 - 0.0011 -2.9867 0.0000 - 0.1017 -0.9679 0.0000 -6.7114 0.0000 - 0.0011 -2.9667 0.0000 - 0.1081 -0.9660 0.0000 -6.6892 0.0000 - 0.0000 - 0.0000 - 0.0985 -1.0655 0.0	0.0000	-	0.0006	-3.1947	0.0000	-	0.0000	-	0.1146	-0.9409	0.0000	-6.7827
0.0000 - 0.0008 -3.1178 0.0000 - 0.1066 -0.9721 0.0000 - 0.0000 - 0.0006 -3.2045 0.0000 - 0.1091 -0.9623 0.0000 -8.2588 0.0000 - 0.0011 -2.9769 0.0000 - 0.1099 -0.9589 0.0000 -6.9469 0.0000 - 0.0010 -2.9840 0.0000 - 0.1001 -0.9582 0.0000 -6.7528 0.0000 - 0.0011 -2.9840 0.0000 - 0.1001 -0.9579 0.0000 -6.7528 0.0000 - 0.0011 -2.9867 0.0000 - 0.1017 -0.9679 0.0000 -6.7114 0.0000 - 0.0011 -2.9974 0.0000 - 0.1081 -0.9660 0.0000 -7.5583 0.0000 - 0.0000 - 0.0055 0.0000 -7.5583 0.0000 - 0.0000 - 0.0000 - 0.1055 0.0000 -7.5583	0.0000	-	0.0008	-3.0928	0.0000	-	0.0000	-	0.1072	-0.9697	0.0000	-8.5376
0.0000 - 0.0006 -3.2045 0.0000 - 0.1091 -0.9623 0.0000 -8.2588 0.0000 - 0.0011 -2.9769 0.0000 - 0.1099 -0.9589 0.0000 -6.9469 0.0000 - 0.0010 -2.9840 0.0000 - 0.1001 -0.9582 0.0000 -6.7528 0.0000 - 0.0009 -3.0574 0.0000 - 0.1077 -0.9679 0.0000 -6.7528 0.0000 - 0.0011 -2.9667 0.0000 - 0.1081 -0.9660 0.0000 -6.6892 0.0000 - 0.0010 -2.9974 0.0000 - 0.0000 - 0.1055 0.0000 -7.5583 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1055 0.0000 - 0.0000 - 0.0000 - 0.0020 - 6.0023	0.0000	-	0.0008	-3.1178	0.0000	-	0.0000	-	0.1066	-0.9721	0.0000	-
0.0000 - 0.0011 -2.9769 0.0000 - 0.1099 -0.9589 0.0000 -6.9469 0.0000 - 0.0010 -2.9840 0.0000 - 0.1001 -0.9582 0.0000 -6.7528 0.0000 - 0.0009 -3.0574 0.0000 - 0.1077 -0.9679 0.0000 -6.7114 0.0000 - 0.0011 -2.9667 0.0000 - 0.1081 -0.9660 0.0000 -6.6892 0.0000 - 0.0010 -2.9974 0.0000 - 0.0000 - 0.0985 -1.0655 0.0000 -7.5583 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1052 0.0781 0.0000 -	0.0000	-	0.0006	-3.2045	0.0000	-	0.0000	-	0.1091	-0.9623	0.0000	-8.2588
0.0000 - 0.0010 -2.9840 0.0000 - 0.1101 -0.9582 0.0000 -6.7528 0.0000 - 0.0009 -3.0574 0.0000 - 0.1077 -0.9679 0.0000 -6.7114 0.0000 - 0.0011 -2.9667 0.0000 - 0.1081 -0.9660 0.0000 -6.6892 0.0000 - 0.0010 -2.9974 0.0000 - 0.0000 - 0.0985 -1.0065 0.0000 -7.5583 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1053 0.0000 -7.5583	0.0000	-	0.0011	-2.9769	0.0000	-	0.0000	-	0.1099	-0.9589	0.0000	-6.9469
0.0000 - 0.0009 -3.0574 0.0000 - 0.0000 - 0.1077 -0.9679 0.0000 -6.7114 0.0000 - 0.0011 -2.9667 0.0000 - 0.0000 - 0.1081 -0.9660 0.0000 -6.6892 0.0000 - 0.0010 -2.9974 0.0000 - 0.0000 - 0.0985 -1.0065 0.0000 -7.5583 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.1053 0.0000 - 0.002	0.0000	-	0.0010	-2.9840	0.0000	-	0.0000	-	0.1101	-0.9582	0.0000	-6.7528
0.0000 - 0.0011 -2.9667 0.0000 - 0.0000 - 0.1081 -0.9660 0.0000 -6.6892 0.0000 - 0.0010 -2.9974 0.0000 - 0.0000 - 0.0985 -1.0065 0.0000 -7.5583 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0281 0.0000 - 0.0001	0.0000	-	0.0009	-3.0574	0.0000	-	0.0000	-	0.1077	-0.9679	0.0000	-6.7114
0.0000 - 0.0010 -2.9974 0.0000 - 0.0000 - 0.0985 -1.0065 0.0000 -7.5583	0.0000	-	0.0011	-2.9667	0.0000	-	0.0000	-	0.1081	-0.9660	0.0000	-6.6892
	0.0000	-	0.0010	-2.9974	0.0000	-	0.0000	-	0.0985	-1.0065	0.0000	-7.5583
0.0000 - 0.0009 -3.0320 0.0000 - 0.0000 - 0.0000 - 0.1022 -0.9781 0.0000 -0.9093	0.0000	-	0.0009	-3.0336	0.0000	-	0.0000	-	0.1052	-0.9781	0.0000	-6.9093

la 25.

SO4-ai	Log aSO4	SiO2-ai	Log aSiO2
0.0000	-	0.0036	-2.4454
0.0000	-	0.0042	-2.3771
0.0000	-	0.0038	-2.4149
0.0000	-	0.0041	-2.3861
0.0000	-	0.0043	-2.3675
0.0000	-	0.0048	-2.3160
0.0000	-	0.0039	-2.4085
0.0000	-	0.0045	-2.3430
0.0000	-	0.0043	-2.3660
0.0000	-	0.0039	-2.4092
0.0000	-	0.0039	-2.4049
0.0000	-	0.0044	-2.3552
0.0000	-	0.0000	-
0.0000	-	0.0037	-2.4351
0.0000	-	0.0000	-
0.0000	-	0.0045	-2.3512
0.0000	-	0.0042	-2.3730
0.0000	-	0.0054	-2.2707
0.0000	-	0.0049	-2.3078
0.0000	-	0.0046	-2.3337
0.0000	-	0.0053	-2.2766
0.0000	-	0.0047	-2.3308
0.0000	-	0.0056	-2.2538
0.0000	-	0.0053	-2.2728
0.0000	-	0.0000	-
0.0000	-	0.0048	-2.3227
0.0000	-	0.0044	-2.3566
0.0000	-	0.0039	-2.4059
0.0000	-	0.0041	-2.3837
0.0000	-	0.0048	-2.3192
0.0000	-	0.0044	-2.3550
0.0000	-	0.0044	-2.3587
0.0000	-	0.0043	-2.3651

NM	P070	Na-ai	l og aNa⁺	K-ai	log aK ⁺	Ca-ai	log aCa ⁺	Mg-ai	log aMg⁺	Li-ai	log al i ⁺
100	8	0.1055	-0.9769	0.0148	-1.8302	0.0004	-3.3996	0.000E+00	-	0.0009	-3.0247
101	8	0.1022	-0.9907	0.0164	-1.7854	0.0003	-3.4656	0.000E+00	-	0.0009	-3.0644
102	8	0.0964	-1.0161	0.0130	-1.8868	0.0004	-3.4013	0.000E+00	-	0.0011	-2.9609
103	8	0.0971	-1.0126	0.0184	-1.7348	0.0004	-3.4113	0.000E+00	-	0.0013	-2.8960
104	8	0.1146	-0.9408	0.0174	-1.7602	0.0004	-3.3910	0.000E+00	-	0.0015	-2.8308
105	8	0.1098	-0.9593	0.0171	-1.7675	0.0004	-3.4185	0.000E+00	-	0.0013	-2.8778
106	8	0.1276	-0.8942	0.0175	-1.7564	0.0004	-3.3915	0.000E+00	-	0.0014	-2.8620
107	8	0.1082	-0.9659	0.0159	-1.7984	0.0004	-3.4544	0.000E+00	-	0.0014	-2.8655
108	8	0.1029	-0.9875	0.0149	-1.8276	0.0004	-3.4174	0.000E+00	-	0.0000	-
109	8	0.0891	-1.0500	0.0145	-1.8377	0.0003	-3.4724	0.000E+00	-	0.0000	-
110	8	0.0909	-1.0417	0.0150	-1.8226	0.0004	-3.4099	0.000E+00	-	0.0000	-
111	8	0.1045	-0.9807	0.0150	-1.8248	0.0004	-3.4401	0.000E+00	-	0.0011	-2.9414
112	8	0.1104	-0.9570	0.0156	-1.8056	0.0005	-3.3327	0.000E+00	-	0.0013	-2.8835
113	8	0.1058	-0.9757	0.0146	-1.8351	0.0005	-3.3278	0.000E+00	-	0.0011	-2.9529
114	8	0.0483	-1.3158	0.0147	-1.8322	0.0007	-3.1770	0.000E+00	-	0.0007	-3.1323
115	8	0.1083	-0.9652	0.0131	-1.8832	0.0004	-3.3570	0.000E+00	-	0.0011	-2.9676
116	8	0.1044	-0.9812	0.0135	-1.8696	0.0004	-3.3945	0.000E+00	-	0.0010	-3.0075
117	8	0.0885	-1.0529	0.0124	-1.9069	0.0003	-3.5896	1.799E-05	-4.745E+00	0.0008	-3.0852
118	8	0.0889	-1.0509	0.0116	-1.9353	0.0004	-3.4375	0.000E+00	-	0.0000	-
119	8	0.0903	-1.0444	0.0116	-1.9353	0.0004	-3.4500	0.000E+00	-	0.0000	-
120	8	0.0835	-1.0781	0.0125	-1.9036	0.0003	-3.4583	0.000E+00	-	0.0009	-3.0564
121	8	0.0876	-1.0575	0.0110	-1.9593	0.0004	-3.4362	0.000E+00	-	0.0008	-3.1034
122	8	0.0861	-1.0649	0.0108	-1.9674	0.0004	-3.4457	0.000E+00	-	0.0010	-3.0114
123	8	0.0877	-1.0568	0.0106	-1.9751	0.0003	-3.4741	5.677E-07	-6.246E+00	0.0008	-3.0803
124	8	0.0778	-1.1088	0.0105	-1.9783	0.0003	-3.4623	2.008E-07	-6.697E+00	0.0008	-3.1209
125	8	0.0736	-1.1333	0.0101	-1.9953	0.0003	-3.5255	8.154E-08	-7.089E+00	0.0007	-3.1424
126	8	0.0902	-1.0447	0.0112	-1.9514	0.0004	-3.3601	2.697E-07	-6.569E+00	0.0009	-3.0440
127	8	0.1058	-0.9754	0.0146	-1.8356	0.0005	-3.3297	0.000E+00	-	0.0011	-2.9529
128	8	0.1118	-0.9516	0.0138	-1.8586	0.0006	-3.2544	0.000E+00	-	0.0007	-3.1487
129	8	0.1084	-0.9652	0.0131	-1.8832	0.0004	-3.3567	0.000E+00	-	0.0011	-2.9676
130	8	0.1021	-0.9909	0.0132	-1.8785	0.0004	-3.3980	0.000E+00	-	0.0000	-
131	8	0.0885	-1.0532	0.0124	-1.9069	0.0003	-3.5685	1.808E-05	-4.743E+00	0.0008	-3.0948
132	8	0.0888	-1.0514	0.0116	-1.9358	0.0004	-3.4378	0.000E+00	-	0.0000	-

Tabla 25. Actividades iónicas calculadas para los cationes y aniones en 787 muestreos de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) con sus respectivos valores log.

NM= número de muestra; ai= actividades iónica.

Continuación	Tabla	25.
--------------	-------	-----

Mn-ai	Log aMn	B-ai	Log aB	Fe-ai	Log aFe⁺	Al-ai	Log aAl	Cl-ai	Log aCl⁺	HCO3-ai	Log aHCO3
0.0000	-	0.0010	-3.0139	0.0000	-	0.0000	-	0.1119	-0.9510	0.0000	-7.1084
0.0000	-	0.0005	-3.2642	0.0000	-	0.0000	-	0.1168	-0.9325	0.0000	-6.9187
0.0000	-	0.0008	-3.1110	0.0000	-	0.0000	-	0.1126	-0.9486	0.0000	-7.4634
0.0000	-	0.0008	-3.1185	0.0000	-	0.0000	-	0.1229	-0.9104	0.0000	-7.0517
0.0000	-	0.0010	-2.9967	0.0000	-	0.0000	-	0.1248	-0.9038	0.0000	-6.9928
0.0000	-	0.0010	-3.0175	0.0000	-	0.0000	-	0.1172	-0.9309	0.0000	-6.8612
0.0000	-	0.0010	-3.0108	0.0000	-	0.0000	-	0.1246	-0.9046	0.0000	-6.9610
0.0000	-	0.0009	-3.0403	0.0000	-	0.0000	-	0.1168	-0.9326	0.0000	-6.8265
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1147	-0.9404	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1123	-0.9496	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1117	-0.9518	0.0000	-
0.0000	-	0.0011	-2.9664	0.0000	-	0.0000	-	0.1235	-0.9085	0.0000	-6.7295
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1254	-0.9019	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1202	-0.9201	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1194	-0.9230	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1131	-0.9464	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1192	-0.9237	0.0000	-
0.0000	-	0.0006	-3.2505	0.0000	-	0.0000	-	0.1036	-0.9846	0.0000	-7.2114
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0986	-1.0061	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0998	-1.0008	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0977	-1.0103	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0977	-1.0099	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0982	-1.0077	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0997	-1.0015	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0895	-1.0482	0.0000	-
0.0000	-	0.0009	-3.0420	0.0000	-	0.0000	-	0.0862	-1.0644	0.0000	-6.9825
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0982	-1.0078	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1202	-0.9201	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1125	-0.9489	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1131	-0.9464	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1193	-0.9233	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1016	-0.9930	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0984	-1.0071	0.0000	-

Continuación Tabla 25.

SO4-ai	Log aSO4	SiO2-ai	Log aSiO2
0.0000	-	0.0051	-2.2930
0.0000	-	0.0051	-2.2929
0.0000	-	0.0046	-2.3335
0.0000	-	0.0047	-2.3281
0.0000	-	0.0045	-2.3444
0.0000	-	0.0039	-2.4051
0.0000	-	0.0040	-2.4009
0.0000	-	0.0052	-2.2808
0.0000	-	0.0040	-2.3994
0.0000	-	0.0000	-
0.0000	-	0.0000	-
0.0000	-	0.0063	-2.2032
0.0000	-	0.0047	-2.3248
0.0000	-	0.0050	-2.2988
0.0000	-	0.0047	-2.3234
0.0000	-	0.0047	-2.3299
0.0000	-	0.0000	-
0.0000	-5.8301	0.0045	-2.3438
0.0000	-	0.0045	-2.3463
0.0000	-	0.0000	-
0.0000	-	0.0044	-2.3571
0.0000	-	0.0055	-2.2568
0.0000	-	0.0045	-2.3459
0.0000	-	0.0053	-2.2782
0.0000	-	0.0042	-2.3763
0.0000	-5.3980	0.0049	-2.3128
0.0000	-	0.0051	-2.2910
0.0000	-	0.0050	-2.2990
0.0000	-	0.0048	-2.3152
0.0000	-	0.0042	-2.379
0.0000	-	0.0000	-
0.0000	-	0.0045	-2.345
0.0000	-	0.0045	-2.347

NM	Pozo	Na-ai	Log aNa⁺	K-ai	Log aK ⁺	Ca-ai	Log aCa⁺	Mg-ai	Log aMg⁺	Li-ai	Log aLi⁺
133	8	0.0903	-1.0441	0.0116	-1.9372	0.0004	-3.4535	0.00	-	0.0000	
134	8	0.0837	-1.0773	0.0125	-1.9028	0.0003	-3.4578	0.00	-	0.0009	-3.0573
135	8	0.0874	-1.0583	0.0110	-1.9601	0.0004	-3.4366	0.00	-	0.0008	-3.1026
136	8	0.0862	-1.0647	0.0108	-1.9671	0.0004	-3.4456	0.00	-	0.0010	-3.0124
137	8	0.0879	-1.0558	0.0106	-1.9741	0.0003	-3.4736	5.687E-07	-6.245E+00	0.0008	-3.0800
138	8	0.0775	-1.1108	0.0105	-1.9800	0.0003	-3.4631	2.005E-07	-6.698E+00	0.0008	-3.1201
139	8	0.0739	-1.1314	0.0102	-1.9929	0.0003	-3.4850	8.239E-08	-7.084E+00	0.0007	-3.1433
140	8	0.0886	-1.0525	0.0110	-1.9583	0.0004	-3.3632	2.669E-07	-6.574E+00	0.0009	-3.0435
141	8	0.0872	-1.0596	0.0114	-1.9419	0.0003	-3.4880	4.004E-07	-6.398E+00	0.0008	-3.0965
142	8	0.1051	-0.9786	0.0142	-1.8490	0.0004	-3.3934	6.743E-07	-6.171E+00	0.0009	-3.0599
143	8	0.0717	-1.1443	0.0078	-2.1096	0.0002	-3.6030	0.00	-	0.0012	-2.9342
144	8	0.0551	-1.2585	0.0069	-2.1637	0.0001	-3.9123	0.00	-	0.0000	-
145	9	0.2007	-0.6975	0.0199	-1.7021	0.0022	-2.6557	1.845E-04	-3.734E+00	0.0018	-2.7492
146	9	0.1972	-0.7052	0.0197	-1.7053	0.0022	-2.6535	1.636E-04	-3.786E+00	0.0000	-
147	9	0.2045	-0.6894	0.0206	-1.6862	0.0023	-2.6336	1.941E-04	-3.712E+00	0.0011	-2.9578
148	9	0.1639	-0.7855	0.0175	-1.7565	0.0020	-2.6964	1.973E-04	-3.705E+00	0.0013	-2.8711
149	9	0.1547	-0.8105	0.1761	-0.7542	0.0017	-2.7616	1.453E-04	-3.838E+00	0.0014	-2.8653
150	9	0.1317	-0.8803	0.0182	-1.7390	0.0020	-2.7052	1.020E-04	-3.991E+00	0.0010	-2.9865
151	9	0.1534	-0.8140	0.0171	-1.7666	0.0020	-2.7032	2.647E-05	-4.577E+00	0.0011	-2.9771
152	9	0.1560	-0.8067	0.0223	-1.6511	0.0020	-2.7092	0.00	-	0.0008	-3.0782
153	9	0.1701	-0.7693	0.0196	-1.7075	0.0021	-2.6804	0.00	-	0.0011	-2.9747
154	9	0.1538	-0.8131	0.0189	-1.7240	0.0019	-2.7161	0.00	-	0.0010	-3.0097
155	9	0.1563	-0.8061	0.0202	-1.6951	0.0020	-2.7075	0.00	-	0.0010	-3.0041
156	9	0.1577	-0.8020	0.0182	-1.7397	0.0022	-2.6595	0.00	-	0.0010	-3.0133
157	9	0.1904	-0.7204	0.0204	-1.6904	0.0023	-2.6354	0.00	-	0.0010	-3.0171
158	9	0.1773	-0.7512	0.0209	-1.6804	0.0023	-2.6298	0.00		0.0012	-2.9051
159	9	0.1764	-0.7536	0.0207	-1.6849	0.0023	-2.6299	0.00	-	0.0012	-2.9092
160	9	0.1787	-0.7479	0.0201	-1.6959	0.0022	-2.6569	0.00	-	0.0011	-2.9445
161	9	0.1868	-0.7286	0.0200	-1.6996	0.0023	-2.6476	0.00	-	0.0011	-2.9788
162	9	0.1646	-0.7835	0.0196	-1.7076	0.0021	-2.6748	0.00	-	0.0011	-2.9433
163	9	0.1678	-0.7751	0.0190	-1.7224	0.0022	-2.6584	0.00	-	0.0011	-2.9574
164	9	0.1486	-0.8279	0.0172	-1.7640	0.0024	-2.6211	0.00	-	0.0009	-3.0353
165	9	0.1761	-0.7543	0.0160	-1.7963	0.0023	-2.6386	0.00	-	0.0019	-2.7289

Tabla 25. Actividades iónicas calculadas en 787 muestreos de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) con sus respectivos valores log.

NM= número de muestra; ai= actividades iónica.

Mn-ai	Log aMn	B-ai	Log aB	Fe-ai	Log aFe⁺	Al-ai	Log aAl	Cl-ai	Log aCl⁺	HCO3-	Log
										ai	aHCO3
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0995	-1.0024	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0975	-1.0111	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0979	-1.0091	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0981	-1.0085	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0997	-1.0011	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0897	-1.0473	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0862	-1.0644	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0983	-1.0074	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.0992	-1.0033	0.0000	-
0.0000	-	0.0012	-2.9201	0.0000	-	0.0000	-	0.1195	-0.9226	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1229	-0.9105	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1190	-0.9245	0.0000	-
0.0000	-	0.0013	-2.8848	0.0000	-	0.0000	-	0.1800	-0.7446	0.0000	-
0.0000	-	0.0008	-3.0811	0.0000	-	0.0000	-	0.1757	-0.7551	0.0000	
0.0000	-	0.0004	-3.3783	0.0000	-	0.0000	-	0.1211	-0.9168	0.0000	-
0.0000	-	0.0007	-3.1595	0.0000	-	0.0000	-	0.1286	-0.8908	0.0000	-
0.0000	-	0.0007	-3.1643	0.0000	-	0.0000	-	0.1267	-0.8974	0.0000	-
0.0000	-	0.0008	-3.1095	0.0000	-	0.0000	-	0.1299	-0.8864	0.0000	-
0.0000	-	0.0009	-3.0515	0.0000	-	0.0000	-	0.1326	-0.8774	0.0000	-
0.0000	-	0.0008	-3.0759	0.0000	-	0.0000	-	0.1306	-0.8839	0.0000	-
0.0000	-	0.0009	-3.0493	0.0000	-	0.0000	-	0.1288	-0.8902	0.0000	-
0.0000	-	0.0008	-3.0981	0.0000	-	0.0000	-	0.1267	-0.8973	0.0000	-
0.0000	-	0.0008	-3.0793	0.0000	-	0.0000	-	0.1276	-0.8942	0.0000	-
0.0000	-	0.0008	-3.0758	0.0000	-	0.0000	-	0.1294	-0.8881	0.0000	-
0.0000	-	0.0006	-3.2247	0.0000	-	0.0000	-	0.1299	-0.8864	0.0000	-
0.0000	-	0.0006	-3.2509	0.0000	-	0.0000	-	0.1306	-0.8841	0.0000	-
0.0000	-	0.0006	-3.2078	0.0000	-	0.0000	-	0.1286	-0.8907	0.0000	-
0.0000	-	0.0007	-3.1493	0.0000	-	0.0000	-	0.1302	-0.8856	0.0000	-6.1597
0.0000	-	0.0007	-3.1464	0.0000	-	0.0000	-	0.1226	-0.9116	0.0000	-6.3345
0.0000	-	0.0008	-3.0770	0.0000	-	0.0000	-	0.1262	-0.8990	0.0000	-6.1029
0.0000	-	0.0007	-3.1600	0.0000	-	0.0000	-	0.1271	-0.8959	0.0000	-6.3646
0.0000	-	0.0010	-3.0095	0.0000	-	0.0000	-	0.1671	-0.7771	0.0000	-6.6820
0.0000	-	0.0015	-2.8338	0.0000	-	0.0000	-	0.1931	-0.7141	0.0000	-6.7586

Continuación Tabla 25.

ai= actividades iónica.

173

Continuación Tabla 25.

SO4-ai	Log aSO4	SiO2-ai	Log aSiO2
0.0000	-	0.0043	0.0043
0.0000	-	0.0044	0.0044
0.0000	-	0.0055	0.0055
0.0000	-	0.0045	0.0045
0.0000	-	0.0053	0.0053
0.0000	-	0.0042	0.0042
0.0000	-	0.0049	0.0049
0.0000	-	0.0047	0.0047
0.0000	-	0.0049	0.0049
0.0000	-	0.0051	0.0051
0.0000	-	0.0041	0.0041
0.0000	-	0.0045	0.0045
0.0000	-	0.0025	0.0025
0.0000	-	0.0022	0.0022
0.0000	-	0.0029	0.0029
0.0000	-	0.0039	0.0039
0.0000	-	0.0000	0.0000
0.0000	-	0.0030	0.0030
0.0000	-	0.0032	0.0032
0.0000	-	0.0028	0.0028
0.0000	-	0.0052	0.0052
0.0000	-	0.0037	0.0037
0.0000	-	0.0052	0.0052
0.0000	-	0.0051	0.0051
0.0000	-	0.0033	0.0033
0.0000	-	0.0046	0.0046
0.0000	-	0.0041	0.0041
0.0000	-	0.0042	0.0042
0.0000	-	0.0041	0.0041
0.0000	-	0.0043	0.0043
0.0000	-	0.0043	0.0043
0.0000	-5.7410	0.0043	0.0043
0.0000	-	0.0000	0.0000

NM	Pozo	Na-ai	Log aNa⁺	K-ai	Log aK⁺	Ca-ai	Log aCa⁺	Mg-ai	Log aMg⁺	Li-ai	Log aLi⁺
166	9	0.1732	-0.7614	0.0160	-1.7956	0.0021	-2.6817	0.00	-	0.0017	-2.7674
167	9	0.1680	-0.7748	0.0155	-1.8096	0.0022	-2.6600	0.00	-	0.0017	-2.7586
168	9	0.1611	-0.7929	0.0143	-1.8440	0.0020	-2.6887	0.00	-	0.0017	-2.7723
169	9	0.1532	-0.8147	0.0128	-1.8934	0.0021	-2.6713	0.00	-	0.0016	-2.7949
170	9	0.1685	-0.7734	0.0119	-1.9254	0.0018	-2.7414	0.00	-	0.0016	-2.7872
171	9	0.1148	-0.9402	0.0084	-2.0742	0.0019	-2.7288	0.00	-	0.0017	-2.7725
172	9	0.1599	-0.7963	0.0137	-1.8618	0.0024	-2.6237	0.00	-	0.0018	-2.7561
173	9	0.1613	-0.7924	0.0133	-1.8762	0.0022	-2.6496	0.00	-	0.0015	-2.8173
174	9	0.1578	-0.8020	0.0129	-1.8904	0.0022	-2.6500	0.00	-	0.0000	-
175	9	0.1601	-0.7957	0.0130	-1.8852	0.0023	-2.6459	0.00	-	0.0000	-
176	9	0.1543	-0.8117	0.0118	-1.9295	0.0021	-2.6713	0.00	-	0.0000	-
177	9	0.1654	-0.7814	0.0138	-1.8614	0.0021	-2.6786	0.00	-	0.0000	-
178	9	0.1595	-0.7974	0.0143	-1.8452	0.0021	-2.6759	0.00	-	0.0000	-
179	9	0.1483	-0.8289	0.0112	-1.9514	0.0020	-2.7088	1.768E-05	-4.752E+00	0.0000	-
180	9	0.1112	-0.9539	0.0083	-2.0801	0.0018	-2.7562	0.00	-	0.0000	-
181	9	0.1381	-0.8598	0.0102	-1.9926	0.0025	-2.6018	7.048E-06	-5.152E+00	0.0000	-
182	9	0.1372	-0.8627	0.0183	-1.7373	0.0015	-2.8298	0.00	-	0.0000	-
183	9	0.1448	-0.8393	0.0190	-1.7211	0.0015	-2.8317	2.625E-06	-5.581E+00	0.0000	-
184	9	0.1438	-0.8423	0.0193	-1.7142	0.0017	-2.7708	2.520E-06	-5.599E+00	0.0000	-
185	9	0.1534	-0.8141	0.0134	-1.8720	0.0020	-2.6906	1.654E-05	-4.781E+00	0.0015	-2.8244
186	11	0.1189	-0.9249	0.0127	-1.8958	0.0005	-3.3372	0.00	-	0.0000	-
187	11	0.1225	-0.9118	0.0107	-1.9686	0.0005	-3.2847	0.00	-	0.0008	-3.1030
188	11	0.1013	-0.9943	0.0110	-1.9584	0.0005	-3.2744	0.00	-	0.0004	-3.4136
189	11	0.1285	-0.8911	0.0104	-1.9839	0.0007	-3.1681	1.225E-05	-4.912E+00	0.0010	-2.9855
190	11	0.1085	-0.9645	0.0142	-1.8471	0.0004	-3.3682	3.505E-05	-4.455E+00	0.0000	-
191	11	0.1151	-0.9391	0.0144	-1.8411	0.0005	-3.2795	9.346E-05	-4.029E+00	0.0000	-
192	11	0.1145	-0.9413	0.0152	-1.8168	0.0004	-3.3570	3.564E-05	-4.448E+00	0.0000	-
193	11	0.1154	-0.9377	0.0154	-1.8129	0.0004	-3.3742	6.453E-05	-4.190E+00	0.0000	-
194	11	0.1179	-0.9286	0.0153	-1.8143	0.0004	-3.4304	1.390E-04	-3.857E+00	0.0000	-
195	11	0.1142	-0.9424	0.0157	-1.8033	0.0004	-3.3668	6.732E-05	-4.172E+00	0.0000	-
196	11	0.1125	-0.9490	0.0163	-1.7891	0.0004	-3.3684	4.685E-05	-4.329E+00	0.0000	-
197	11	0.1050	-0.9788	0.0133	-1.8760	0.0004	-3.3553	0.00	-	0.0011	-2.9535
198	11	0.0991	-1.0037	0.0136	-1.8677	0.0005	-3.3431	0.00	-	0.0011	-2.9651

Tabla 25. Actividades iónicas calculadas en 787 muestreos de pozos del campo geotérmico de Cerro Prieto-I (CGCP-I) con sus respectivos valores log.

NM= número de muestra; ai= actividades iónica.

Mn-ai	Log aMn	B-ai	Log aB	Fe-ai	Log aFe⁺	Al-ai	Log aAl	Cl-ai	Log aCl⁺	HCO3-ai	Log aHCO3
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1831	-0.7372	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1694	-0.7710	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1806	-0.7434	0.0000	-6.9274
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1725	-0.7632	0.0000	-7.0826
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1720	-0.7644	0.0000	-7.0947
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1695	-0.7709	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1662	-0.7795	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1741	-0.7591	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1681	-0.7745	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1728	-0.7625	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1740	-0.7593	0.0000	-
0.0000	-	0.0011	-2.9529	0.0000	-	0.0000	-	0.1724	-0.7635	0.0000	-6.9530
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1663	-0.7792	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1706	-0.7681	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1679	-0.7750	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1712	-0.7665	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1731	-0.7618	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1685	-0.7734	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1661	-0.7796	0.0000	-
0.0000	-	0.0011	-2.9605	0.0000	-	0.0000	-	0.1730	-0.7621	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1233	-0.9090	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1254	-0.9017	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1185	-0.9261	0.0000	-
0.0000	-	0.0000	-	0.0000	-	0.0000	-	0.1373	-0.8623	0.0000	-
0.0000	-	0.0056	-2.2530	0.0000	-	0.0000	-	0.1156	-0.9369	0.0000	-
0.0000	-	0.0051	-2.2927	0.0000	-	0.0000	-	0.1169	-0.9323	0.0000	-
0.0000	-	0.0054	-2.2677	0.0000	-	0.0000	-	0.1185	-0.9263	0.0000	-
0.0000	-	0.0049	-2.3058	0.0000	-	0.0000	-	0.1183	-0.9270	0.0000	-
0.0000	-	0.0051	-2.2933	0.0000	-	0.0000	-	0.1188	-0.9254	0.0000	-
0.0000	-	0.0049	-2.3123	0.0000	-	0.0000	-	0.1192	-0.9237	0.0000	-
0.0000	-	0.0007	-3.1313	0.0000	-	0.0000	-	0.1277	-0.8937	0.0000	-
0.0000	-	0.0006	-3.1947	0.0000	-	0.0000	-	0.1191	-0.9242	0.0000	-6.7689
0.0000	-	0.0008	-3.0928	0.0000	-	0.0000	-	0.1114	-0.9533	0.0000	-8.5243

Continuación Tabla 25.	
------------------------	--

SO4-ai	Log aSO4	SiO2-ai	Log aSiO2
0.0000	-	0.0039	0.0039
0.0000	-	0.0000	0.0000
0.0000	-	0.0000	0.0000
0.0000	-	0.0040	0.0040
0.0000	-	0.0000	0.0000
0.0000	-	0.0000	0.0000
0.0000	-	0.0027	0.0027
0.0000	-	0.0027	0.0027
0.0000	-	0.0028	0.0028
0.0000	-	0.0028	0.0028
0.0000	-	0.0027	0.0027
0.0000	-5.9152	0.0047	0.0047
0.0000	-	0.0039	0.0039
0.0000	-	0.0000	0.0000
0.0000	-	0.0000	0.0000
0.0000	-	0.0050	0.0050
0.0000	-	0.0048	-2.3201
0.0000	-	0.0060	-2.2240
0.0000	-	0.0046	-2.3340
0.0000	-	0.0040	0.0040
0.0000	-	0.0000	-
0.0000	-	0.0037	-2.4351
0.0000	-	0.0000	-
0.0000	-	0.0045	-2.3512
0.0000	-	0.0042	-2.3730
0.0000	-	0.0054	-2.2707
0.0000	-	0.0049	-2.3078
0.0000	-	0.0046	-2.3337
0.0000	-	0.0053	-2.2766
0.0000	-	0.0047	-2.3308
0.0000	-	0.0056	-2.2538
0.0000	-	0.0053	-2.2728
0.0000	-	0.0000	-

NM	Pozo	Туас	рН (CO2)	pH rep	Err (%)	aH+	Log (aNa/aH)	Log (aK/aH)	Log (aCa/aH)	Log (aMg/aH)
1	M-5	291	8.00	8.05	-0.58	9.932180E-09	7.05	6.21	9.33	-
2	M-5	291	7.98	8.05	-0.85	1.043787E-08	7.05	6.19	9.25	-
3	M-5	291	8.04	8.05	-0.10	9.073565E-09	6.96	6.11	8.89	-
4	M-5	291	8.05	8.05	0.01	8.899285E-09	7.00	6.15	9.26	-
5	M-5	291	8.17	8.05	1.44	6.830202E-09	7.07	6.25	9.47	-
6	M-5	291	8.01	8.05	-0.46	9.704194E-09	6.84	6.11	9.01	-
7	M-5	291	8.03	8.05	-0.25	9.337674E-09	6.96	6.11	9.02	-
8	M-5	291	8.03	8.05	-0.19	9.228209E-09	6.95	6.11	9.04	-
9	M-5	291	8.01	8.05	-0.45	9.693822E-09	6.94	6.11	8.71	-
10	M-5	291	7.96	8.05	-1.14	1.101573E-08	6.89	6.06	8.58	-
11	M-5	291	8.01	8.05	-0.52	9.819886E-09	6.94	6.06	8.89	-
12	M-5	291	7.97	8.05	-1.01	1.073754E-08	6.91	5.97	8.91	-
13	M-5	291	8.00	8.05	-0.66	1.007922E-08	6.89	6.07	8.73	-
14	M-5	291	7.98	8.05	-0.88	1.049934E-08	6.89	6.02	8.90	-
15	M-5	291	8.05	8.05	-0.01	8.922022E-09	6.94	6.11	9.17	-
16	M-5	291	8.03	8.05	-0.25	9.337694E-09	6.95	6.08	8.89	-
17	M-5	291	8.02	8.05	-0.40	9.593045E-09	6.93	6.08	8.99	-
18	M-5	291	8.00	8.05	-0.68	1.010126E-08	6.90	6.04	8.67	
19	M-5	291	8.02	8.05	-0.34	9.499885E-09	6.96	6.09	9.01	-
20	M-5	131	7.49	7.50	-0.10	3.215277E-08	6.55	5.69	8.26	-
21	M-5	131	8.03	8.05	-0.19	9.235406E-09	7.14	6.24	9.41	-
22	M-5	131	8.21	8.05	2.02	6.126580E-09	7.28	6.40	9.76	-
23	M-5	131	8.21	8.05	2.02	6.126580E-09	7.25	6.38	9.71	-
24	M-5	131	8.16	8.05	1.39	6.894017E-09	7.20	6.35	9.65	5.52
25	M-5	131	8.00	8.05	-0.64	1.002956E-08	7.02	6.17	9.31	5.35
26	M-5	131	7.98	8.05	-0.83	1.038763E-08	7.01	6.14	9.27	5.79
27	M-5	131	8.21	8.05	2.02	6.126580E-09	7.25	6.36	9.71	-
28	M-5	131	8.21	8.05	2.02	6.126580E-09	7.24	6.36	9.70	-
29	M-5	131	8.21	8.05	2.02	6.126580E-09	7.27	6.38	9.75	-
30	M-5	131	8.21	8.05	2.02	6.126580E-09	7.27	6.38	9.75	-
31	M-5	131	8.21	8.05	2.02	6.126580E-09	7.28	6.37	9.77	-
32	M-5	131	8.21	8.05	2.02	6.126580E-09	7.28	6.38	9.68	-
33	M-5	131	8.12	8.05	0.89	7.560450E-09	7.15	6.27	9.21	6.43

Tabla 26. Resultados de la estimación de pH y actividad de potón H⁺ y su relación con las actividades de los cationens Na, K, Ca y Mgrn muestras de pozos del CGCP-I.

Cont	inuación 1	Tabla 26.								
NM	Pozo	Туас	pH (CO2)	pH rep	Err (%)	aH+	Log (aNa/aH)	Log (aK/aH)	Log (aCa/aH)	Log (aMg/aH)
34	M-5	131	8.21	8.05	2.02	6.126580E-09	7.24	6.37	9.74	-
35	M-5	131	8.21	8.05	2.02	6.126580E-09	7.24	6.34	9.73	-
36	M-5	131	8.21	8.05	2.02	6.126580E-09	7.23	6.36	9.74	-
37	M-5	131	8.21	8.05	2.02	6.126580E-09	7.23	6.36	9.72	-
38	M-5	131	8.21	8.05	2.02	6.126580E-09	7.21	6.33	9.73	-
39	M-5	131	8.21	8.05	2.02	6.126580E-09	7.24	6.34	9.72	4.29
40	M-5	131	8.21	8.05	2.02	6.126580E-09	7.23	6.35	9.85	4.26
41	M-5	131	7.85	7.89	-0.54	1.421022E-08	6.87	5.98	9.01	3.55
42	M-5	131	8.21	8.05	2.02	6.126580E-09	7.26	6.36	9.59	3.63
43	M-5	131	8.14	8.05	1.06	7.317516E-09	7.13	6.25	9.48	4.13
44	M-5	131	8.21	8.05	2.02	6.126580E-09	7.27	6.38	9.75	-
45	M-5	131	8.21	8.05	2.02	6.126580E-09	7.26	6.37	9.75	-
46	M-5	131	8.21	8.05	2.02	6.126580E-09	7.27	6.37	9.77	-
47	M-5	131	8.21	8.05	2.02	6.126580E-09	7.28	6.37	9.68	-
48	M-5	131	8.21	8.05	2.02	6.126580E-09	7.24	6.36	9.44	6.61
49	M-5	131	8.21	8.05	2.02	6.126580E-09	7.24	6.37	9.74	-
50	M-5	131	8.21	8.05	2.02	6.126580E-09	7.24	6.34	9.73	-
51	M-5	131	8.21	8.05	2.02	6.126580E-09	7.23	6.53	9.72	-
52	M-5	131	8.21	8.05	2.02	6.126580E-09	7.24	6.36	9.73	-
53	M-5	131	8.21	8.05	2.02	6.126580E-09	7.21	6.33	9.73	-
54	M-5	131	8.21	8.05	2.02	6.126580E-09	7.23	6.34	9.70	4.29
55	M-5	131	8.21	8.05	2.02	6.126580E-09	7.23	6.35	9.85	4.25
56	M-5	131	8.21	8.05	2.02	6.126580E-09	7.18	6.29	9.79	-
57	M-5	131	8.21	8.05	2.02	6.126580E-09	7.25	6.35	9.82	4.30
58	M-5	281	8.21	8.05	2.02	6.126580E-09	7.27	6.36	9.60	3.65
59	M-5	281	8.21	8.05	2.02	6.126580E-09	7.26	6.37	9.66	4.50
60	M-5	264	8.16	8.20	-0.48	6.906397E-09	7.20	6.32	9.67	4.57
61	M-5	264	8.08	8.05	0.40	8.273519E-09	7.12	6.23	9.45	-
62	M-5	264	8.05	8.05	0.02	8.877659E-09	7.11	6.23	9.44	-
63	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.70	4.79	7.60	-
64	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.69	4.77	7.54	-
65	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.65	4.81	7.45	-
66	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.76	4.84	7.50	-

Contin	uación Ta	bla 26.								
NM	Pozo	Туас	pH (CO2)	pH rep	Err (%)	aH+	Log (aNa/aH)	Log (aK/aH)	Log (aCa/aH)	Log (aMg/aH)
67	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.63	4.85	7.51	-
68	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.69	4.79	7.36	-
69	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.72	4.83	7.37	-
70	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.77	4.80	7.46	-
71	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.77	4.86	7.47	-
72	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.71	4.81	7.44	-
73	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.71	4.82	7.51	-
74	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.74	4.83	7.46	-
75	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.75	4.80	7.49	-
76	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.75	4.83	7.45	-
77	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.75	4.78	7.46	-
78	M-7	297	6.53	8.05	-18.84	2.929966E-07	5.73	4.79	7.50	-
79	M-7	243	6.53	8.05	-18.84	2.929966E-07	5.74	4.78	7.36	-
80	M-7	243	6.53	8.05	-18.84	2.929966E-07	5.75	4.70	7.47	-
81	M-7	279	6.53	8.05	-18.84	2.929966E-07	5.66	4.71	7.46	-
82	M-7	279	6.53	8.05	-18.84	2.929966E-07	5.77	4.69	7.73	7.73
83	M-8	279	8.21	8.05	2.02	6.126580E-09	7.23	6.35	9.57	9.57
84	M-8	256	8.21	8.05	2.02	6.126580E-09	7.26	6.35	9.75	9.75
85	M-8	276	8.21	8.05	2.02	6.126580E-09	7.26	6.38	9.59	9.59
86	M-8	284	8.21	8.05	2.02	6.126580E-09	7.26	6.38	9.56	9.56
87	M-8	284	8.21	8.05	2.02	6.126580E-09	7.27	6.38	9.44	9.44
88	M-8	284	8.21	8.05	2.02	6.126580E-09	7.25	6.39	9.57	9.57
89	M-8	284	8.21	8.05	2.02	6.126580E-09	7.25	6.41	9.57	9.57
90	M-8	284	8.21	8.05	2.02	6.126580E-09	7.22	6.32	9.60	-
91	M-8	284	8.21	8.05	2.02	6.126580E-09	7.19	6.33	9.62	-
92	M-8	284	8.21	8.05	2.02	6.126580E-09	7.23	6.35	9.60	7.21
93	M-8	284	8.21	8.05	2.02	6.126580E-09	7.19	6.34	9.67	-
94	M-8	284	8.21	8.05	2.02	6.126580E-09	7.21	6.37	9.59	-
95	M-8	284	8.21	8.05	2.02	6.126580E-09	7.22	6.32	9.51	-
96	M-8	284	8.21	8.05	2.02	6.126580E-09	7.23	6.34	9.56	-
97	M-8	284	8.21	8.05	2.02	6.126580E-09	7.17	6.30	9.42	-
98	M-8	284	8.21	8.05	2.02	6.126580E-09	7.18	6.34	9.55	-
99	M-8	284	8.21	8.05	2.02	6.126580E-09	7.19	6.30	9.49	-

Contin	uación Ta	bla 26.								
NM	Pozo	Туас	рН (СО2)	pH rep	Err (%)	aH+	Log (aNa/aH)	Log (aK/aH)	Log (aCa/aH)	Log (aMg/aH)
100	M-8	284	8.21	8.05	2.02	6.126580E-09	7.24	6.38	9.63	-
101	M-8	284	8.21	8.05	2.02	6.126580E-09	7.22	6.43	9.49	-
102	M-8	284	8.21	8.05	2.02	6.126580E-09	7.20	6.33	9.62	-
103	M-8	284	8.21	8.05	2.02	6.126580E-09	7.20	6.48	9.60	-
104	M-8	284	8.21	8.05	2.02	6.126580E-09	7.27	6.45	9.64	-
105	M-8	284	8.21	8.05	2.02	6.126580E-09	7.25	6.45	9.59	-
106	M-8	284	8.21	8.05	2.02	6.126580E-09	7.32	6.46	9.64	-
107	M-8	284	8.21	8.05	2.02	6.126580E-09	7.25	6.41	9.52	-
108	M-8	284	8.21	8.05	2.02	6.126580E-09	7.23	6.39	9.59	-
109	M-8	284	8.21	8.05	2.02	6.126580E-09	7.16	6.38	9.48	-
110	M-8	284	8.21	8.05	2.02	6.126580E-09	7.17	6.39	9.61	-
111	M-8	284	8.21	8.05	2.02	6.126580E-09	7.23	6.39	9.55	-
112	M-8	284	8.21	8.05	2.02	6.126580E-09	7.26	6.41	9.76	-
113	M-8	284	8.21	8.05	2.02	6.126580E-09	7.24	6.38	9.77	-
114	M-8	255	8.21	8.05	2.02	6.126580E-09	6.90	6.38	10.07	-
115	M-8	255	8.21	8.05	2.02	6.126580E-09	7.25	6.33	9.71	-
116	M-8	287	8.21	8.05	2.02	6.126580E-09	7.23	6.34	9.64	-
117	M-8	287	8.21	8.05	2.02	6.126580E-09	7.16	6.31	9.25	6.94
118	M-8	287	8.21	8.05	2.02	6.126580E-09	7.16	6.28	9.55	-
119	M-8	287	8.21	8.05	2.02	6.126580E-09	7.17	6.28	9.53	-
120	M-8	287	8.21	8.05	2.02	6.126580E-09	7.13	6.31	9.51	-
121	M-8	287	8.21	8.05	2.02	6.126580E-09	7.16	6.25	9.55	-
122	M-8	287	8.21	8.05	2.02	6.126580E-09	7.15	6.25	9.53	-
123	M-8	287	8.21	8.05	2.02	6.126580E-09	7.16	6.24	9.48	3.93
124	M-8	287	8.21	8.05	2.02	6.126580E-09	7.10	6.23	9.50	3.03
125	M-8	287	8.21	8.21	0.03	6.126580E-09	7.08	6.22	9.37	2.25
126	M-8	287	8.21	8.05	2.02	6.126580E-09	7.17	6.26	9.71	3.29
127	M-8	287	8.21	8.05	2.02	6.126580E-09	7.24	6.38	9.77	-
128	M-8	287	8.21	8.05	2.02	6.126580E-09	7.26	6.35	9.92	-
129	M-8	287	8.21	8.05	2.02	6.126580E-09	7.25	6.33	9.71	-
130	M-8	287	8.21	8.05	2.02	6.126580E-09	7.22	6.33	9.63	-
131	M-8	287	8.21	8.05	2.02	6.126580E-09	7.16	6.31	9.29	6.94
132	M-8	287	8.21	8.05	2.02	6.126580E-09	7.16	6.28	9.55	-

NM	Pozo	Туас	pHyac	Log(aNa ⁺ /aH ⁺)	Log(aK ⁺ /aH ⁺)	Log(aCa ⁺² /aH ⁺)	Log(aMg ⁺² /aH ⁺)
60	M-5	291	8.16	7 20	6.32	9.67	4 57
	M-5*			7.20	6.16	8 80	4.62
	M-5*			6.94	5.93	9.56	4.02
82	M-7	119	8.21	5.77	4.69	7.73	7.73
125	M-8	291	8 10	7.08	6.22	9 37	2 25
120	M-8*	201	0.10	7.00	6 24	8 98	4 73
185	M-9	131	7 91	7.11 5.81	4 75	7.86	3.68
227	M-11	281	8.28	7.04	6.21	9.00	5.00
221	M_11*	201	0.20	7.04	6.34	10.09	5 24
	N/ 11*			7.12	6.29	10.05	J.24 4.60
	IVI-11 NA 11*			7.12	6.19	9.03	4.00
250		264	7.60	6.94	6.18	8.04	2.50
250	IVI-14	204	7.09	0.90	6.01 5.0C	9.48	4.20
	IVI-14*			0.88	5.96	9.23	4.92
	M-14*			6.91	5.96	9.23	5.04
	M-14*			7.06	6.13	9.94	3.80
	M-14*			7.13	5.98	9.14	5.20
	M-14*			6.74	5.86	8.44	4.71
	M-14*			6.89	6.09	8.82	4.31
	M-14*			6.94	6.11	9.57	3.66
261	M-19A	297	8.08	7.30	6.43	9.92	3.58
	M-						
	19A*			7.26	6.34	9.56	5.05
	M-						
	19A*			6.97	5.99	9.89	5.04
	M-						
	19A*			6.98	6.06	9.56	4.99
331	M-20	243	8.02	6.79	5.88	9.32	4.76
351	M-21A	279	8.00	7.12	6.24	9.60	-
	M-						
	21A*			6.95	6.00	9.58	4.83
	M-						
	21A*			6.91	6.02	9.10	4.66
388	M-25	256	8.13	7.11	6.28	9.50	-
	M-25*			7.14	6.24	9.66	5.06
	M-25*			6.98	6.15	9.40	3.62
	M-25*			6.76	5.85	8.38	4.52
	M-25*			6.96	6.04	9.17	4.86
	M-25*			6.87	5.96	9.16	4.67
	M-25*			7.00	5.99	9.82	4.90
420	M-26	276	8.32	6.88	6.02	9.18	1.96
.20	M-26*	270	0.01	6.92	6.05	9 71	3 72
	M-26*			6.84	5 91	8 94	4 60
513	M-27	28/	8 07	7.06	6.17	9.61	4.00 2.15
515	N/_07*	204	0.07	6.05	6.07	2.01 2.01	2.1J 1 51
522	IVI-27	255	8 26	0.95 7 41	6.55	0.90	4.04 Q C 2
555	101-23	200	0.20	7.41 6.06	U.33 E 00	7 65	0.00
	IVI-29"			0.00	5.88	CO.1	4.97
	IVI-29*			7.03	6.01	9.87	5.30
	M-29*			/.01	6.01	9.86	5.26

Tabla 27. Relaciones de razones logarítmicas para los cationes aNa⁺/aH⁺, aK⁺/aH⁺, aCa⁺²/aH⁺ y Mg⁺²/aH⁺.

*Dato reportado por Barragán et al., 1995.

Continuación Tabla 27.

NM	Pozo	Туас	рНуас	Log(aNa ⁺ /aH ⁺)	Log(aK⁺/aH⁺)	Log(aCa ⁺² /aH ⁺)	Log(aMg ⁺² /aH ⁺)
559	M-30	287	8.33	7.03	6.25	9.37	-
	M-30*			6.96	6.14	9.19	4.60
	M-30*			7.10	6.24	10.05	3.77
	M-30*			7.14	6.19	9.69	5.15
616	M-31	272	7.99	7.31	6.46	10.06	6.08
	M-31*			6.83	6.05	8.44	4.13
678	M-35	301	8.54	7.35	6.47	9.68	7.51
	M-35*			7.11	6.11	9.77	5.07
705	M-42	271	8.66	6.98	6.20	9.38	-
	M-43*			7.19	6.35	9.77	3.78
	M-43*			7.08	6.18	9.66	4.95
710	M-45	319	8.34	7.36	6.54	9.51	-
	M-45*			7.34	6.69	9.45	4.09
	M-45*			7.33	6.52	10.01	4.95
712	M-48	329	8.34	7.63	6.81	9.73	-
	M-48*			7.55	6.83	10.08	3.96
713	M-50	302	8.34	7.23	6.39	9.14	-
	M-50*			7.15	6.21	9.51	4.83
716	M-51	302	8.90	7.32	6.51	9.76	-
	M-51*			7.17	6.48	9.19	3.82
	M-51*			7.24	6.49	9.44	3.68
	M-51*			7.20	6.36	8.57	4.50
	M-51*			7.17	6.34	9.10	4.65
768	M-53	302	8.17	7.40	6.64	9.38	6.64
	M-53*			7.19	6.60	8.68	2.49
	M-53*			7.14	6.51	8.15	3.56
773	M-84	348	8.37	7.78	6.99	9.55	-
	M-84*			7.61	7.02	10.50	4.57
	M-84*			7.74	7.07	11.36	4.58
	M-84*			7.62	6.85	10.67	5.16
775	M-90	287	8.88	7.23	6.34	9.71	-
	M-90*			7.06	6.22	9.07	3.75
	M-90*			6.96	6.06	8.99	4.75
776	M-101	305	8.68	7.40	6.52	9.87	-
777	M-102	346	7.98	7.78	6.86	9.90	-
	M-102*			7.62	4.94	9.53	3.43
	M-102*			7.58	6.83	8.84	4.65
	M-102*			7.31	6.53	9.88	4.91
779	M-103	331	8.10	7.62	6.73	9.61	6.88
	M-103*			7.36	6.55	8.75	4.64
	M-103*			7.34	6.57	9.73	4.78
783	M-114	270	7.98	7.03	6.16	9.49	-
	M-114*			7.01	6.03	9.83	4.87
	M-114*			7.02	6.14	10.00	3.80
	M-114*			6.98	6.01	9.46	4.92
785	M-130	281	8.10	7.14	6.25	9.62	4.18
	M-130*	_		7.05	6.10	9.61	4.97
786	M-181	245	7.71	6.78	5.91	9.04	6.62

*Dato reportado por Barragán et al., 1995.