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Resumen de la tesis que presenta Josué Gabriel González Flores como requisito par­
cial para la obtención del grado de Doctor en Ciencias en Ciencias de la Tierra con 
orientación en Sismología. 

Rol del tensor de esfuerzos viscosos del fluido en la propagación de ondas 
poroelásticas a través de discontinuidades 

Resumen aprobado por: - 1 f1�'-�L� 
Dr. Pratap Narayan Sahay Sahay 

Director de tesis 

El tensor de esfuerzo viscoso del fluido captura los esfuerzos debidos al cambio en 
el tiempo de la deformación de un fluido Newtoniano. La traza de este tensor describe 
la disipación de presión, y la parte libre de traza describe el movimiento de cizalla del 
fluido, es decir, la vorticidad del fluido. Ambos procesos representan los dos mecan­
ismos de atenuación intrínseca del fluido. Este tensor no existe en la ampliamente 
utilizada teoría de poroelasticidad de Biot. Como resultado, la disipación viscosa en 
el fluido no se incluye adecuadamente. Esta solo tiene en cuenta la disipación debida 
al arrastre del movimiento relativo de las partes que constituyen el medio poroso. 
La falta del tensor de esfuerzo viscoso del fluido tiene implicaciones para la propa­
,gación de ondas a través de discontinuidades poroelásticas. Esta tesis estudia esas 
implicaciones analizando el scattering de ondas en contactos planos con superficies 
i}npermeables y permeables. Esto se realiza en la teoría de poroelasticidad de De la
f-ruz-Spanos que incluye el tensor de esfuerzo viscoso del fluido en las relaciones con­

itutivas. Esta teoría describe un proceso adicional, la onda S lenta, que manifiesta 
verticidad del fluido a macro-escala, junto con las ondas P rápida, P lenta y S rápida 
edichas en la teoría de Biot. El caso de las superficies impermeables es de especial 
erés porque aumenta la generación de vorticidad del fluido; por lo tanto, las impli-

aciones del tensor de esfuerzo viscoso son más evidentes. Este caso muestra que sin 
!tensor de esfuerzo viscoso en las ecuaciones constitutivas, el movimiento del fluido
'está restringido en la dirección tangencial al contacto. Esto provoca una violación
'la condición fundamental de no deslizamiento del fluido. La ausencia del tensor de
Uerzo viscoso no sólo afecta a la definición de las condiciones de frontera, también 
vaca un cambio en la amplitud de las ondas convertidas. En el caso de las ondas 5, 
era una reducción de la amplitud que, en superficies impermeables, existe aunque 
·• aya ningún contraste de propiedades. Esta también se produce en las ondas P;
embargo, la reducción de amplitud es menor. Este efecto no se limita a las superfi­
impermeables, también aparece en los contactos permeables con variaciones en
ropiedades. En todos los casos, los efectos no son exclusivamente función de la 
encia. Por el contrario, dependen del contraste de propiedades en la heterogenei­
y el contacto hidráulico. Debido a esto, el efecto del esfuerzo viscoso no puede 
�'
!

'minarse con un único término en las ecuaciones de movimiento, como postula 
'oría de permeabilidad dinámica. Por lo tanto, las ecuaciones poroelásticas deben 
ir el tensor de esfuerzo viscoso del fluido, como se hace en la teoría de De la 
Spanos, para describir adecuadamente la propagación de las ondas a través de 
ntinuidades. 

Poroelasticidad, propagación de ondas, tensor de esfuerzos 
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Abstract of the thesis presented by Josué Gabriel González Flores as a partial require­
ment to obtain the Doctor of Science degree in Earth Science with orientation in Seis­
mology. 

Role of the fluid viscous stress tensor in poroelastic wave propagation 
across discontinuities 

Abstract approved by: 

Dr. Pratap Narayan Sahay Sahay 
Thesis Director 

The fluid viscous stress tensor captures the stresses due to the strain rate of a 
Newtonian fluid. The trace of this tensor describes the pressure dissipation, and the 
trace-free part describes the fluid shear motion, i.e., the fluid vorticity. Both terms 
represent the two intrinsic ioss mechanisms of the fluid. This tensor is missing in the 
widely used Biot theory of poroelasticity. As a result, the viscous dissipation within the 
fluid is not adequately captured in this theory. lt only accounts for the viscous dissipa­
tion due to the drag of the relative motion of the constituent parts of a porous medium. 
The missing fluid viscous stress tensor has implications for waves across poroelastic 
discontinuities. This thesis studies those implications by analyzing the wave-scattering 
on planar contacts with impermeable and permeable surfaces. it is carried out in the 

mework of the de la Cruz-Spanos poroelasticity theory that includes the fluid vis­
cous stress tensor into the constitutive relations. This theory incorporates an addi-

1 wave process, the siow 5-wave, which manifests fluid vorticity at a macro-scale, 
along with the fast P-, slow P-, and fast 5-waves predicted in the Biot theory. The case 

irWºf impermeable surfaces is of particular interest because it enhances the generation
ilii{ of fluid vortic_ity; hence the implic�tions of the. flui? viscous stress ten�or are more
� apparent. Th1s case shows that, w1thout the fluid v1scous stress tensor 1n the poroe­
�¡ L.lastic constitutive equations, the motion of the fluid is unconstrained in the tangential 
•· • direction of the contact. lt causes a violation of the fundamental no-slip boundary

condition of the fluid. The absence of fluid viscous stress tensor not only affects the 
definition of boundary conditions but also causes a change in the amplitude of the 
scattered waves. In the case of 5-waves, it generates a reduction of amplitude that, 
··· impermeable surfaces, exists even if there is not any contrast in properties. lt aiso
occurs in P-waves. However, there is a minar amplitude reduction in this case. This
effect is not limited to the impermeable surfaces, but it also appears in the permeable

.. contacts with variations in properties. In al! the cases, those effects are not exclusively
Sffunction of the frequency. lnstead, they are dependent on the contrast of properties
at the heterogeneity and the hydraulic contact. Therefore, the effect of the viscous 

ress can not be determined with a single term in the equations of motion, as the 
namic permeability theory postulates. Thus, the poroelastic equations must include 

,e fluid viscous stress tensor, as in the de la Cruz-Spanos theory, to describe the wave 
ropagation across discontinuities. 

: Poroelasticity, wave propagation, viscous stress tensor 
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Chapter 1. Introduction

1.1 Background and perspective

1.1.1 Physics of viscous boundary layers in porous media

Reservoir seismology aims to obtain higher resolution subsurface images in the

context of geo-fluid characterization. Herein, the reservoirs are composed of a solid

frame with connected pores, and they are saturated with viscous fluids. The effects of

the saturating fluid on elastic moduli are well known. However, the wave attenuation

resulting from the solid frame and the fluid interactions is an open research prob-

lem. The cause of this attenuation is the generation of the intrinsic diffusive processes

of a Newtonian fluid. These processes are pressure diffusion and fluid vorticity, and

they are characterized by the fluid viscous stress tensor (Landau and Lifshitz, 1987).

Although, in a Newtonian Fluid both process are presented, the vorticity is the predom-

inant cause of attenuation, since any relative motion of the fluid with respect to the

solid frame generates it.

Because the fluid vorticity’s skin depth (δ) is frequency-dependent, the generation

of relative fluid motion in a pore has two regimes. At low frequencies, δ is larger

than any characteristic pore-throat diameter (Λ); thus, the fluid remains almost fully

coupled to the pore walls due to the viscous forces, as shown in Figure 1 for the case

of a single pore under a periodic motion. As the frequency increases, δ approaches

Λ, causing a significant reduction in coupling. Finally, at high enough frequencies, the

viscous skin depth becomes smaller than the pore radius; thus, the fluid and the solid

frame are only coupled in the vicinity of the pore walls. This allows the generation of

fluid vorticity and the viscous boundary layers (VBLs) near to the walls (Figure 2).

While the fluid to solid frame interaction can be analyzed at pore-scale for a single

pore, studying the effect on the attenuation of mechanical waves is not feasible. This is

because the wavelength is much larger than the characteristic pore size. Hence, there

is a vast number of pores at wavelength, and their distribution is usually undefined.

The study of these effects can be naturally performed in the poroelastic theory that

up-scales the behavior of a porous medium by considering the average motion of the

solid frame and fluid in a representative volume element (RVE).
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Figure 1. Fluid vorticity in a single pore generated by an in-phase periodic oscillation, in the vertical
direction of the pore walls. The left panel is a schematic representation of the fluid motion, and the right
one presents the normalized displacement of a Newtonian fluid. Here, the viscous skin depth is five times
the pore-throat radius. Therefore, the fluid is viscously coupled to the wall.
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Figure 2. Fluid vorticity in a single pore generated by an in-phase periodic oscillation, in the vertical
direction of the pore walls. The left panel is a schematic representation of the fluid motion, and the right
one presents the normalized displacement of a Newtonian fluid. Here, the pore-throat radius is five times
the viscous skin depth. Therefore the fluid vorticity is generated near the walls.

1.1.2 Viscous boundary layers in Biot poroelastic theory

The standard theory for analyzing wave propagation in fluid-saturated porous me-

dia is due to Biot (1956a, 1956b). He constructs the poroelastic constitutive equations

by a variational approach considering an elastic energy potential but ignoring the

fluid viscous stress. This theory successfully predicts a second compressional (slow

P-) wave, which represents the out-of-phase compressional motion of the constituent

parts of the porous medium, apart from the seismic wave fields, namely, the fast P-

and S-waves. The slow P-wave has a diffusive character in the low-frequency regime
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when the fluid is viscously coupled to the solid frame, and it behaves as the P-wave in

the fluid in the high-frequency regime. The generation of slow P-wave amounts to the

reduction in the amplitude of the seismic waves. However, not until the early eight-

ies, when Plona (1981) observed the slow P-wave experimentally for the first time,

did the rock physics and seismic exploration community starts paying attention to the

poroelastic theory.

In the poroelastic perspective, the wave attenuation mechanisms are the fluid

movement relative to the solid frame on account of Darcy flow, so-called wave-induced

fluid flow (WIFF), and the viscous relaxations within the fluid. WIFF can occur in pore-

scale heterogeneities, i.e., the squirt flow, or in heterogeneities much larger than the

pore size but much smaller than the wavelength, i.e., the mesoscopic flow. Also, it

can occur in macroscopically homogeneous media due to pressure gradients between

peaks and troughs of the wave, the so-called Biot global flow. In all these cases,

the fluid is moving to balance the pressure gradients that the wave generates. This

mechanism is widely studied. Müller et al. (2010) present a review of those studies.

In contrast, there are few studies on the second mechanism, considering it an inde-

pendent process. This is because the fluid viscous stress tensor, which is needed to

characterize the intrinsic relaxation of Newtonian fluids (Landau and Lifshitz, 1987), is

missing in the widely used poroelastic theory of Biot.

It is believed that Biot global flow quantifies the effects of fluid viscous stress. In

fact, it only accounts for the attenuation due to the viscous-inertial coupling of the

fluid, as it does not consider the generation of fluid vorticity. This belief seems plausi-

ble in the low-frequency regime when the fluid is viscously coupled to the pore walls

(Figure 1) because fluid vorticity is not generated in this regime. However, in the

high-frequency regime, fluid vorticity develops (Figure 2). Therefore, at least in this

regime, the viscous stress tensor must be included to account for the generation of

fluid vorticity.

Biot (1956b) points out that, at the high-frequency regime, an additional term is

needed to capture the effects of the viscous forces in the VBLs. He proposed incor-

porating this effect by including a viscodynamic correction factor in the fluid mobility

term. This factor aims to capture the effects of the fluid viscous stress tensor without

including it. However, there is no expression that defines the correction in his work,
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and its definition requires knowing the geometry of the pore-space, which is infeasible

for porous rocks. Johnson (1982) points out that for soft porous materials, such as gels,

the viscous forces of the fluid must affect the deformation of the solid frame. He at-

tempts to incorporate the fluid viscous stress tensor into the Biot theory by postulating

the existence of effective bulk and shear viscosities. Such effective viscosities account

for the effect of the fluid viscous stress tensor at the macro-scale. However, their incor-

poration into the Biot theory is not properly defined. The effective viscosities are not

related to the fluid properties, and they do not account for the interactions at the pore

surface. Later, Johnson et al. (1987) incorporated the viscodynamic correction factor

of Biot (1956b) in the poroelastic equations of motion by considering a frequency-

dependent (dynamic) permeability, the so-called JKD model. The JKD model considers

the effect of VBLs but not explicitly the existence of the fluid vorticity. Thus, it cannot

account for the development of VBLs at heterogeneities because additional couplings

of the fluid and the heterogeneity have to be considered in this case. For that, the

model must include a description of the fluid vorticity that the coupling with the het-

erogeneity will generate. However, the fluid viscous stress tensor that describes the

fluid vorticity is neglected in the JKD model.

1.1.3 Viscous stress tensor and slow S-wave in poroelastic theory

There has been attempts to incorporate the fluid viscous stress tensor in the poroe-

lastic description. Katsube (1985) and Katsube and Carroll (1987a, 1987b) develop a

poroelastic approach that includes the fluid viscous stress tensor into the formulation

using the mathematics of the mixture theory. However, this theory does not define the

parameters in terms of the physical properties of porous media. In addition, the con-

struction of the macroscopic description does not include all the interactions happen-

ing at the pore surfaces. It only accounts for the interactions in terms of displacements

but ignores the strains and stresses that such interactions generate.

Another theory of poroelasticity that includes the fluid viscous stress tensor is given

by de la Cruz and Spanos (1985). Here onwards, I refer to it as the dCS theory. To con-

struct the macroscopic poroelastic equations, they up-scale the linear elastic theory

and Navier-Stokes equations applying the mathematics of volume-averaging (Slattery,

1969; Whitaker, 1969).This methodology includes the average motions, strains, and
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stresses of the solid frame, the fluid, and the pore surfaces. The inclusion of the fluid

viscous stress tensor in the dCS theory predicts an additional shear wave, the slow

S-wave, and the waves predicted in the Biot theory. This slow S-wave is the manifes-

tation of fluid vorticity at the macro-scale. It allows a complete description of a porous

medium at the macro-scale; however, de la Cruz and Spanos (1985) do not define its

parameters in terms of the properties of porous media. It was not until two decades

later that those parameters were interpreted and related to the properties of porous

media by Sahay (2008). In his work, Sahay also shows that the Biot theory can be

derived from dCS theory if the viscous stress tensor is vanished in the constitutive

equations.

Sahay (2008) analyzes the implications of including the viscous stress tensor in the

dCS poroelastic theory for the case of S-waves propagating in a homogeneous infinite

medium. He found that, for practical purposes, the viscous stress does not affect the

fast S-wave, except for very high frequencies where the fluid strength is in the same

order as that of the solid frame. In that range of frequencies, the fluid relaxes the wave

amplitude generating an attenuation peak not observed in the Biot theory, which does

not include the viscous stress tensor.

The existence of the slow S-wave affects the wave propagation across discontinu-

ities due to the conversion scattering into this wave, as it was shown in the context

of randomly inhomogeneous porous media (Müller and Sahay, 2011a). It results in

attenuation and dispersion of the fast waves in the vicinity and above the Biot crit-

ical frequency (Müller and Sahay, 2011c). The analysis of Müller and Sahay shows

the importance of including the conversion scattering into the slow S-wave on wave

propagation. They define the dominant frequencies and the length of heterogeneities

where such scattering is essential. However, they do not study the parameters that

control the generation of the slow S-wave. Moreover, their analysis is limited to me-

dia with weak contrasts, which is not always the case in wave propagation. Thus, to

understand the effects of the fluid viscous stress tensor, further studies are needed.

The reflection and transmission problem analysis is a classic topic for the under-

standing scattered waves at a discontinuity. To study the role of the fluid viscous stress

tensor, the reflection and transmission solution for two porous media in impermeable

contact is of particular interest. The impermeable surfaces enhance the generation of
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the slow S-wave, since the fluid vorticity occur throughout the interface; hence, the

implications of the fluid viscous stress tensor are more apparent. Furthermore, slow

S-wave must be generated at any heterogeneity that causes a change in fluid motion,

even if the surface is permeable.

1.1.4 Limited theoretical and experimental insights of scattering in imper-

meable surfaces

In the literature, there are a few reports on the scattering of poroelastic waves

incident at an impermeable contact. On the Biot theory, Geerstma and Smit (1961)

analyze a P-wave traveling in the normal direction across the interface between a solid

and a poroelastic medium, where the solid is a natural impermeable medium. They

conclude that a porous medium in contact with a solid behaves as a pure elastic solid.

Afterward, Deresiewicz and Rice (1964) studied the same problem and found a slow

P-wave of small amplitude generated at the impermeable surface. Meaning that the

porous medium does not behave as an elastic solid.

The publications on experimental analysis of impermeable surfaces are also scarce.

The first report is due to Rasolofosaon (1988). He propagates an ultrasonic pulse

across a porous slab, with impermeable surfaces, immersed in a water tank. The pulse

hits the surface of the porous slab, travels across it, and is recorded at a receiver

placed a few centimeters away from the sample. The experiment is performed at dif-

ferent incident angles. Rasolofosaon reports that the response of a porous slab with

sealed surfaces is close to an elastic solid, and the slow P-wave is not generated, as

Geerstma and Smit (1961) predict. However, Rasolofosaon qualitatively shows that

the amplitude observed was smaller than expected in the Biot theory. Afterward, John-

son et al. (1994) quantify the transmitted amplitude experimentally. It is similar to

Rasolofosaon’s (1988) experiment, focusing only on the normal incident angle. They

show that the slow P-wave is generated even with an impermeable surface.

Although the scattering into the slow P-wave is reported by Geerstma and Smit

(1961) (theoretically) and Johnson et al. (1994) (experimentally), both works are de-

veloped for a P-wave incident perpendicular to the surface. Thus, in this case, the slow

S-wave cannot be generated at the interface because the particle motion is in the nor-
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mal direction. In addition, the theoretical analysis is carried out in the framework of

the Biot theory, which does not account for the viscous stress tensor. Therefore, even

if their research is extended to non-normal incident angles, the fluid viscous stress

tensor could not be captured because of the limitations of the Biot theory.

The published works on reflection and transmission solutions carried out in the dCS

theory are also limited. The lone paper that solves the problem for a porous medium

in contact with a solid medium is given by De la Cruz and Spanos (1992). That work

aims to show the advantages of using the dCS poroelastic theory instead of the elastic

approach. The results show all the poroelastic effects and do not distinguish between

the consequences of the fluid viscous stress tensor and those caused by the contrast

of elastic properties. Furthermore, De la Cruz and Spanos (1992) get the reflection and

transmission solution for a virtual interface located in the zone where the mass is con-

served instead of the physical contact of both porous media. This consideration leads

to predictions that might be unphysical for the reflection and transmission coefficients.

The limited works in the literature evidence the need for an exhaustive study on

the effect of viscous stresses. Such a study is not just an academic exercise, but it can

improve the understanding of wave processes in reservoirs.

1.1.5 Geological context: permeable and impermeable boundaries

In sedimentary reservoirs, impermeable boundaries are not uncommon. In the

petroleum geology research area, impermeable barriers and the factors that give their

origin are well known (North, 1985). The shale and the clay content are the common

materials causing impermeable surfaces. These surfaces appear in sandstone-shale

successions, which are common in deltaic sequences. Also, in the sandstone forma-

tions, the deposition with clay breaks can cause horizontal impermeable surfaces that

prevent fluid motion across the bedding. Even at the pore-scale, the presence of au-

thigenic clay mineral generates impermeable zones. Furthermore, the scattering into

the slow S-wave is not limited to the impermeable surfaces, but it is generated in all

the heterogeneities. Thus, any change in porosity, permeability, saturating fluid, or

elastic moduli within the reservoir can generate the slow S-wave by mode conversion.

Therefore, the understanding of the fluid vorticity and the associated viscous forces
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will help in the characterization of these reservoirs.

1.2 Thesis objectives and accomplishments

This thesis aims to study the role of the fluid viscous stress tensor on wave prop-

agation in heterogeneous porous media to advance the understanding of attenuation

mechanisms in reservoirs. I carry it out in two stages that define the specific objectives

of the thesis. They are:

1. Study the effects of the fluid viscous stress tensor in the scattering of waves that

travel across the planar contact of two porous-half spaces.

2. Analyze the effects of the fluid viscous stress tensor in wave propagation across

a thin layered porous medium.

The former objective is performed by solving the reflection and transmission prob-

lem for two porous half-spaces in contact. The permeable and impermeable interfaces

are considered because slow S-wave and viscous stress tensor effects exist in both

cases. The first step for this analysis is to define the appropriated boundary condition,

mainly for the tangential fluid motion associated with the fluid vorticity. The reflection

and transmission solution in the welded contact of a solid and a porous half-space is

developed to corroborate the boundary conditions proposed. It shows an unphysical

motion of the fluid that violates the no-slip state if the viscous stress tensor is not

accounted for.

Thereafter, the amplitude of waves scattered in the permeable/impermeable con-

tact of two porous half-spaces is analyzed. The solutions in the dCS and Biot theories

are contrasted in order to distinguish the effects of the viscous stress tensor. It proves

that the viscous stress tensor affects the amplitude of all scattered waves, regardless

of whether the contact is permeable or impermeable. But the effect is more profound

in impermeable interfaces.

The second objective seeks to show the effects of the viscous stress tensor in me-

dia with many heterogeneities. The thin layered porous medium is considered because

it is the simplest heterogeneous medium, with a common presence in reservoirs, that
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can be analyzed semi-analytically. The amplitude of waves that travel across a stack of

plane poroelastic layers is calculated using the reflectivity method. For this purpose,

I have developed a reflectivity method algorithm for poroelastic layers with perme-

able or impermeable surfaces. It is implemented for dCS and Biot theories. To the

best of my knowledge, it is the first algorithm in poroelasticity research that considers

impermeable layers and can be used for all frequency regimes.

The wave amplitudes computed with the reflectivity method in the dCS theory show

that the conversion scattering into the slow S-wave at each contact causes a decre-

ment not observed in the Biot theory. This reduction is more significant for S-waves

and also on impermeable surfaces. Even though it exists in all the cases, tt is ob-

served that the number of contacts enhances that reduction, such that a vast number

of heterogeneities has a larger effect on the viscous stress tensor.

1.3 Outline of thesis

Chapter 2 introduces the governing equation of the dCS poroelastic theory. It devel-

ops the solution for plane waves, and the dispersion relations of the poroelastic waves

are analyzed. Also, the Biot theory is presented as a limit of the dCS theory where the

viscous stress tensor vanishes. The boundary conditions for the permeable and imper-

meable contacts are presented in Chapter 3. This chapter shows that the boundary

condition that accounts for the relative fluid motion in the tangential direction is only

possible if the fluid viscous stress tensor is included. Chapter 4 analyzes the poroelas-

tic reflection/transmission problem in planar contact with a solid half-space. It shows

that the lack of that tensor, and the unconstrained fluid motion, leads to predict a

relative fluid motion at the contact that violates the no-slip boundary condition. Then,

Chapter 5 analyzes the scattered waves in a planar interface of two porous media from

the reflection and transmission solution. Both permeable and impermeable contacts

are considered. The effect of the fluid viscous stress tensor in waves that travel across

a stack of thin porous layers is developed in Chapter 6. In such a stack, the effect of

impermeable surfaces, permeable surfaces, and porosity variations is analyzed. Chap-

ter 7 presents the impact of the fluid viscous stress tensor in attenuation. Finally, the

discussions and concluding remarks are presented in Chapter 8.



10

Chapter 2. Basics of poroelastic theory

This chapter introduces the poroelastic equations of motion and constitutive rela-

tions, in Cartesian coordinates, described in the dCS theory (de la Cruz and Spanos,

1985; Sahay et al., 2001). Using the definitions stated by Sahay (2008, 2013), these

equations are presented in a form that their comparison with the poroelastic theory

of Biot (1962) is straightforward (section 2.1). Herein, the index notation is used for

the stresses, strains, and displacement fields, with the italic sub-indices "j, k, l, m,

n=x, y, z". The roman sub-indices are used to distinguish between scalar variables.

The variables s
j

and j, with a single sub-index, are used for the displacement fields,

and these variables with double sub-indices, i.e., s
jk

and jk, define their associated

strain tensors. The gradient (∇ = ,j), divergence (∇ · ~ = j,j), curl (∇ × ~ = εjkk,),

double curl (∇ × (∇ × ~) = εjkεkmnm,n), and Laplacian (∇2 = ,kk or ∇2 = ∂j∂j) linear

differential operators are also presented in index notation. Boldface letters are used

to represent matrices. The sub-indices j, k, and l in matrices indicate the sub-indices

of each element of the matrix.

Section 2.2 develops the plane wave solution for the poroelastic wave equations

of motion in the frequency domain. The methodology used for the solution has been

previously presented for cylindrical (Solorza and Sahay, 2009; Gonzalez, 2017) and

Cartesian (Sahay, 2008; Sanchez, 2010) geometries. However, for completeness of

the work, this methodology is also presented. In section 2.3 the relation between dCS

and Biot theories is shown. Finally, the dispersion relations of the existing waves are

described in section 2.4.

2.1 The dCS poroelastic theory

2.1.1 Governing equations

The poroelastic theory is constructed in terms of the average motions of the solid

and fluid parts; however, it is commonly described in terms of the solid-frame dis-

placement (s
j
) and the relative motion of the fluid with respect to the solid frame

(j = η
0
(f

j
− s

j
), where η

0
is the unperturbed porosity), which is referred to as the

filtration displacement field (Biot, 1962). In terms of these fields, the equations of
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motion, expressed in matrix notation, are

















ρ◦m ρ◦f

ρ◦f
S
η
0
ρ◦f





︸ ︷︷ ︸

ρ

∂2

∂t2
+
ρ◦f
η
0

Ωb





0 0

0 1





∂

∂t

















s
j

j





︸ ︷︷ ︸

j

=





τjk,k

σf
jk,k



+





ρ◦m

ρ◦f



Fj. (1)

Herein ρ◦m = ϕ0ρ
◦
s + η0ρ

◦
f is the unperturbed bulk density of the porous medium, ρ◦s and

ρ◦f are, respectively, the unperturbed densities of the solid mineral and the fluid. The

term η
0

is the porosity and ϕ
0
= 1 − η

0
is the volume fraction of the solid. The term S

is the tortuosity of the pore space, and Ωb = η
0
νf/κ is a lumped parameter that has

dimension of frequency and can be viewed as the weighted hydraulic conductivity. νf

is the pore-fluid kinematic shear viscosity and κ is the permeability. Fj is the external

body force.

The tensors τjk = τs
jk
+ τf

jk
and σf

jk
= τf

jk
/η

0
are, respectively, the total and the pore-

fluid stresses, and τs
jk

and τf
jk

are the volume averaged solid and fluid stresses. They

are related to the porous deformation by the poroelastic constitutive relations in this

framework, as





τjk

σf
jk





︸ ︷︷ ︸

τjk

=
�

K + ξ
∂

∂t

�





s


w



 δjk + 2
�

μ + ν
∂

∂t

�





̆s
jk

w̆jk



 , (2)

where

K =





K?d α?M?

αM? M?



 , (3)

ξ =





α 1

α/η
0
1/η

0





η
0
M?

Kf
ξf, (4)

μ =





1 0

0 0



μ0, (5)

and

ν =





αμ 1

αμ/η0 1/η
0



μf. (6)
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The terms s
jk
= 1

2

�

s
j,k
+ s

k,j

�

and jk =
1
2

�

j,k + k,j

�

are, respectively, the solid-frame

and filtration strain tensors. The elements ̆s
jk

and ̆jk are the trace free part of solid-

frame and filtration strain tensors, respectively. The term K0 + αα∗M∗ ≡ K?d is the

bulk modulus of the undrained porous medium. K0 is the bulk modulus of the solid

frame, i.e., the bulk modulus for the porous frame without any saturating fluid. The

term α ≡ η
0
+ ϕ0δKs is the Biot bulk coefficient, η

0
+ ϕ0δKsn ≡ α∗ is the effective pres-

sure coefficient for bulk volume, n is a non-dimensional coefficient that describes the

effective pressure for porosity, and 1
M∗ =

η
0
Kf
+ n

α−η
0

Ks
is defined as the generalized fluid

storage coefficient (Sahay, 2013). Ks corresponds to the bulk modulus of the solid part

if it has no pores, i.e., the bulk modulus of the solid mineral, and Kf is the bulk modulus

of the pore-fluid. The bulk modulus of the solid mineral and that of the solid-frame are

related as ϕ
0
(1 − δKs)Ks ≡ K0. So, δKs is interpreted as the Bulk modulus decrement

parameter of solid-frame. μ0 is the shear modulus of the solid-frame, and it is related

to the shear modulus of the solid mineral as ϕ
0
(1− δμs)μs ≡ μ0. δμs is interpreted as the

shear modulus decrement parameter of the solid-frame, and η
0
+ϕ0δμs ≡ αμ is the Biot

shear coefficient (Sahay, 2008). The terms ξf and μf are the bulk and shear viscosity

of the pore-fluid, respectively.

By substituting the constitutive relations 2 into the equations of motion 1, they are

written as

�


∂2

∂t2
+ ΩiD

∂

∂t

�





s
j

j



 =
�

C
α
+N

α

∂

∂t

�





s
,j

,j



−
�

C
β
+N

β

∂

∂t

�





εjkεkmnsm,n

εjkεkmnm,n



 . (7)

Herein  is the 2 × 2 identity matrix, Ωi = Ωb/(S − mf) is the Biot critical frequency,

which marks the transition from low- to high-frequency regime, and mf = η
0
ρ◦f /ρ

◦
m is

the fluid mass fraction (the equivalent mass fraction for the solid is ms = ϕ
0
ρ◦s/ρ

◦
m).

The matrices D, Cα, Nα, Cβ, and Nβ are

D =





0 −mf
η
0

0 1



 , (8)

C
α
= ρ−1

�

K +
4

3
μ

�

, (9)

N
α
= ρ−1

�

ξ +
4

3
ν

�

, (10)
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C
β
= ρd

−1μ, (11)

and

N
β
= ρ−1ν . (12)

The matrices Cα and Nα are associated with compressional processes, whereas Cβ

and Nβ are related to shear processes. The elements of Cα and Cβ matrices have the

dimension of velocity squared. The elements of Nα and Nβ have the dimension of

kinematic viscosity.

2.1.2 Frequency domain representation

The poroelastic equations of motion (equation 7) in frequency domain are

α





s
,j

,j



− β





εjkεkmnsm,n

εjkεkmnm,n



+ ω2





s
j

j



 = 0, (13)

where α and β are non-symmetric 2 by 2 matrices associated with P- and S-waves,

respectively, whose elements are dimensionally equal to velocity squared. They are

α = Ω−1 (Cα− ωNα) ≡





α11 α12

α12 α22



 , (14)

β = Ω−1
�

Cβ− ωNβ

�

≡





β11 β12

β22 β22



 , (15)

where Ω is a 2×2 matrix associated with the Biot relaxation frequency Ωi

Ω =  + 
Ωi

ω
D. (16)

Using the definition of the α and β matrices, the constitutive relations in frequency

domain read as





τjk

σf
jk



 = ρΩ



(α − 2β)





s


w



 δjk + 2β





s
jk

wjk







 . (17)
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2.2 Plane wave propagation in a homogeneous medium

To develop the plane wave solution of the equations of motion 13 for a homoge-

neous isotropic poroelastic medium, let us consider the Cartesian coordinates with the

wave motion independent of the y-coordinate. In such a case, the horizontally polar-

ized shear- (SH-) waves decouple in the y-direction, and the compressional (P-) and

vertically polarized shear (SV-) waves are constrained to the -z plane.

2.2.1 Plane wave solution for SH-waves

The equations of motion for SH-waves are a coupled system of two Helmholtz equa-

tions. In matrix form it reads as

β∇2y + ω2y = 0, (18)

which are decoupled by the transformation

y =





s
y

y



 = Rβ =





1 γβ

γβ 1





︸ ︷︷ ︸

Rβ













︸ ︷︷ ︸



. (19)

Rβ is the right-eigenvector matrix of β. The elements  and  are the decoupled

potentials for the SH wave modes existing in the poroelastic medium, and they are

called fast and slow SH-waves, respectively. The terms γβ = β21/(β
2
 − β22) and γβ =

(β2 − β22)/β12 are the ratio of filtration to solid-frame fields generated by the fast S-

wave and the ratio of solid-frame to filtration field generated by the slow S-wave,

respectively.

Rβ diagonalizes the β matrix as

LT
β
βRβ= Λβ ≡





β2 0

0 β2



 , (20)

where, LT
β
= R−1

β
is the left eigenvector matrix. The elements β2 and β2 are, respec-

tively, the square velocity of the fast (S) and slow (S) S-waves, and they are the

eigenvalues of the β matrix.
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By substituting equation 19 into 18, followed by the application of LT
β

upon it from

the left, yields to the following set of two decoupled scalar Helmholtz equations

�

Λβ∇2 + ω2
�

 = 0. (21)

The plane wave solution for equation 21 is

± =





±
±



 = eωp





e±ωqβz 0

0 e±ωqβz









b±

b±



 = eω(p±Qβz)b± , (22)

The ± sign determines the up-going (-) and down-going (+) wavefields. The hori-

zontal slownesses p is the free parameter. The terms q2
β
= β−2 − p

2 and q2
β
= β−2 − p

2

are the squared vertical slownesses for the fast and slow S-waves, respectively. The

terms b and b are displacement amplitudes for the fast and slow S-waves, respec-

tively.

The stresses generated by the SH-wave solution 22 are only

τ
yz
= ±ρΩRβΛβQβ

± . (23)

Herein, the relation 20 is used to change βRα = RαΛβ.

2.2.2 Plane wave solution for P-SV waves

The P- and SV-waves can be decoupled by applying a potential decomposition as

 =





∇s

∇w





︸ ︷︷ ︸

L

+





∇ × (∇ × (êzΨs))

∇ × (∇ × (êzΨw))





︸ ︷︷ ︸

N

(24)

L and N are a generalization of the Hansen vectors (Ben-Menahem, 1981). L is

a curl-free vector that represents compressional motion, and N is a divergence-free

vector related to shear waves.

Substituting the vector decomposition 24 in the equations of motion 13 leads to
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two systems of two Helmholtz equations. They are

�

α∇2 + ω2
�





s

w





︸ ︷︷ ︸



= 0, (25)

and
�

β∇2 + ω2
�





Ψs

Ψw





︸ ︷︷ ︸

Ψ

= 0, (26)

where  and Ψ are the P- and S-potentials, respectively.

2.2.2.1 Plane wave solution for decoupled P potentials

As with the SH-waves, the matrix Helmholtz equations for P-potentials (equation

25) are decoupled by the transformation

 = Rαϕ =





1 γα

γα 1





︸ ︷︷ ︸

Rα





ϕ

ϕ





︸ ︷︷ ︸

ϕ

. (27)

Herein, Rα is the right-eigenvector matrix of the α matrix. The elements ϕ and ϕ

are the decoupled potentials for the compressional wave modes existing in a poroe-

lastic medium, and they are called fast and slow P-waves, respectively. The terms

γα = (α
2

− α11)/α12 and γα = α12 /(α2 − α11) defines, respectively, the ratio of filtration

field to solid-frame field generated by the fast P wave and the ratio of solid-frame to

filtration field generated by the slow P wave.

Rα diagonalizes the α matrix as

LT
α
α Rα= Λα ≡





α2 0

0 α2



 , (28)

where, LT
α
= R−1

α
is the left eigenvector matrix. The elements α2 and α2 are, respec-

tively, the square velocity of the fast (P) and slow (P) P-waves, and they are the

eigenvalues of the α matrix.
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By substituting equation 27 into 25, followed by the application of LT
α

upon it from

the left, yields to the following set of two decoupled scalar Helmholtz equations

�

Λα∇2 + ω2
�

ϕ = 0. (29)

The plane wave solution for equation 29 is

ϕ± =





ϕ±

ϕ±



 = eωp





e±ωqαz 0

0 e±ωqαz









±

±



 = eω(p±Qαz)± , (30)

The terms q2
α
= α−2 − p

2 and q2
α
= α−2 − p

2 are the squared vertical slownesses for

the fast and slow P-waves, respectively. The terms  and  are potential amplitudes

for the fast and slow P-waves, respectively.

2.2.2.2 Plane wave solution for decoupled S potentials

The S-potentials (equation 26) obey the same matrix Helmholtz equations that the

SH waves (equation 18); therefore, S-potentials have the same solution. Thus, after

the transformation Ψ = Rβψ, the solutions for S-potentials are

ψ± =





ψ±

ψ±



 = eωp





e±ωqβz 0

0 e±ωqβz









b±

b±



 = eω(p±Qβz)b± . (31)

In this case, the terms b and b are potential amplitudes for the fast and slow S-waves,

respectively.

2.2.2.3 Displacements and stresses in terms of decoupling potentials

Substituting the solutions 30 and 31 for potentials into equation 24, the expressions

of displacements are

z = ±ωRαQαϕ
± + ωpRβψ± . (32)

 = ωpRαϕ
± ∓ ωRβQβψ

± , (33)
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Thereafter, substituting the above solutions in the constitutive relations 17, and using

the relation 20 to change βRα = RαΛβ, the stresses generated by the P-SV waves are

τzz = −ω2ρΩ
��

 −2p2β
�

Rαϕ
±±2pRβΛβQβψ

±� , (34)

τz = −ω2ρΩ[±2pβRαQαϕ
± − Rβ

�

 − 2p2Λβ
�

ψ±]. (35)

2.3 Biot theory as a limiting case of the dCS theory

The poroelastic equations of motion in the Biot theory have the same form as equa-

tion 1. However, the definition of stresses is different in each theory. It is because of

two main reasons: (i) the Biot theory assumes a reciprocal interaction at the pore sur-

face, and (ii) the Biot constitutive relations ignore the fluid viscous stress tensor. The

last one is stated under the assumption that the fluid viscous forces are fully captured

by the fluid mobility term, the first derivative in time of the equation of motion 1, as it

is considered in steady-state flow analyses using Darcy law.

The reciprocal interaction at the pore surface describes a specific deformation in

which, for a fluid-saturated porous medium subjected to an equal increment of the

confining and pore pressures, that is, the unjacketed experiment, the amount of defor-

mation undergone by the bulk volume is equal to that at the pore volume. This limit

is constructed in the dCS theory by setting the effective pressure coefficient for the

porosity equal to one (n = 1). Once n is set to one, the constitutive relations in the

Biot theory can be recovered from equation 2, ignoring the strain rate terms. That is,

by vanishing the fluid viscosities ξf and μf in the matrices ξ and ν of the constitutive

relations, respectively. In this limit, the constitutive relations become





τjk

σf
jk



 = K





s


w



 δjk + 2μ





̆s
jk

w̆jk



 . (36)

Vanishing μf in the matrix ν has a strong impact on the description of shear pro-

cesses. It is apparent in the SH-wave equation 18 that, in this limit, is given by





μ0 0

0 0



∇2





s
y


y



+ ω2





ρm ρf

ρf
ρf
η
0

�

S + Ωbω
�









s
y


y



 = 0. (37)
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From the second equation of the system of equations 37 one finds that the filtration

and solid-frame displacement fields are not independent. Instead, they are related as


y
= γ

Biot
s
y
, (38)

with the coefficient of proportionality

γ
Biot
= −

η
0
/S

1 + Ωb/Sω

. (39)

Utilizing the dependence of the two fields (equation 38), from the first equation of

the system of equations 37, the equation of motion for the solid-frame becomes

�

β2Biot∇
2 + ω2

�

s
y
= 0, (40)

with

β2Biot =
μ
0

ρm + ρfγBiot
, (41)

where βBiot is read off as the shear wave velocity. Thus, there is only one shear wave,

and the slow S-wave does not appear. Equation 38 also implies that the shear motion

for the filtration field is governed by the same wave equation 40. Thus, the diffusive

nature of shear motion within the viscous fluid (the vorticity) is not accounted for.

The plane wave solution of equation 40 is

s
y
= b±eω(p±qβBiotz). (42)

Here, q2
βBiot

= β
Biot
−2 − p2 is the vertical slowness for the S-wave in the Biot theory.

The compressional waves are affected by the lack of both viscosities, ξf and μf.

However, its effects are not as pronounced as in the S waves. The solution keeps the

same form as equation 30, with a change in the definition of α matrix that does not

contain the matrix ξ in the Biot theory. The effects of these differences are shown in

section 2.4.
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2.3.1 The Johnson-Koplik-Dashen dynamic permeability model

In a porous medium, at sufficiently low frequencies, the viscous skin depth of the

fluid shear motion greatly exceeds any characteristic pore-throat size (Λ). Therefore,

one expects that the fluid moves in unison with the solid frame during shear exci-

tation. At higher frequencies, when the viscous skin depth becomes comparable or

smaller than Λ, viscous boundary layers develop in the vicinity of pore interfaces.

Then, the unison shearing motion of solid-frame and fluid is no longer possible. In-

stead, the fluid develops a shear motion independent of the solid-frame shearing.

Biot (1956b) pointed out the need for an additional term to capture the fluid shear

motion in the high-frequency regime. He proposed to incorporate this effect by includ-

ing a viscodynamic correction factor in the Darcy term of fluid mobility. This factor

is alternatively incorporated into the poroelastic equations of motion by making the

permeability frequency-dependent (Johnson et al., 1987). It is known as the Johnson-

Koplik-Dashen dynamic permeability (JKD) and is given by

κ(ω) =
κ

�

1 − 4 ωΩb
κS2

η
0
Λ2

�1/2
, (43)

where 2/Λ is the dynamically weighted surface to pore volume ratio. Λ characterize

the average pore-throat diameter.

The inclusion of the JKD term into the Biot poroelastic theory only modifies the first

derivative in time of the equation of motion (the Ωb term changes). However, the rest

of the equations remains unaffected, even the fluid stress.

2.4 Poroelastic dispersion relations

The poroelastic dispersion relations describe the frequency-dependent behavior of

the waves. This section analyzes such behavior for the waves in the dCS and Biot theo-

ries. For that, the dispersion relations are computed in MATLAB using the properties of

the sintered glass beads porous media as in Bouzidi and Schmitt (2012). Those prop-

erties are presented in Appendix A. The pseudocode of MATLAB function is described

in section 1 of Appendix B.
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2.4.1 Fast S-wave

The phase velocity for the fast S-wave (left panel of figure 3) shows three distinct

regimes separated by the Biot critical frequency (Ωi) and the saturated-frame relax-

ation frequency for S-waves (Ωβ = μ0/μf). Ωi marks the transition from the viscous to

the inertial coupling of the fluid to the solid frame. Whereas Ωβ marks the critical point

where the fluid shear strength is equal to that in the solid frame, and it causes a relax-

ation of the shearing of porous media. Above this critical frequency, the description of

fluid-solid frame interaction at the pore surface has to be modified since the current

poroelastic theories consider that the fluid shearing does not affect the solid frame, an

assumption that is not valid at or above Ωβ. However, I show the value of velocity and

attenuation at those frequencies for completeness.

The inverse of quality factor (right panel of Figure 3) shows two peaks in the critical

frequencies. The peak at Ωi is generated by the Darcy relaxation, and the one at Ωβ

is generated by the intrinsic fluid viscous relaxation. The geometric average of Ωi and

Ωβ, Ω†β, marks the frequency beyond which intrinsic viscous relaxation of the pore fluid

takes over the Darcy relaxation.

To compare the dispersion relation with that described in the Biot theory, I present

it by the red dashed line. In contrast with the dCS theory, there are only two regimes in

the S wave predicted in the Biot theory, below and above Ωi. The Biot S-wave does not

show the solid frame relaxation frequency Ωβ, and it is equivalent to the fast S-wave

in dCS theory at frequencies below Ω†β.

The approximations for shear velocities at regimes below Ωβ are presented in Sahay

(2008). Those approximations for the fast S-wave velocity are

β2 ≈



















β2c

�

1 −  ωΩidfmf

�

ω� Ωi,

β2c
1− mfS

�

1 −  mf
S
Ωi
ω − 

ω
Ωβ

�η
0
S
ms
mf
+ αμ

�

1 − 1
S

��
�

Ωi � ω� Ωβ,

(44)

where βc =
p

μ0/ρm is the Gassmann shear velocity.

The asymptotic form of the dispersion relation 44 shows that, in the low-frequency

regime (ω � Ωi), the fluid is viscously coupled to the solid frame causing a behavior
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as an effective elastic medium. However, as the coupling is not perfect, the inverse

quality factor increases with frequency. In the high-frequency regime (Ωi � ω � Ωβ),

the fluid is coupled only in the vicinity of the pore-wall, causing a relative motion of

the fluid with respect to the solid frame. It causes a reduction in the effective density

that increases the phase velocity. The inverse quality factor decreases with frequency

until Ω†β, after which it increases until it achieves the peak at Ωβ (Figure 3).
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Figure 3. Dispersion relation for the fast S wave. The phase velocity is on the left side, and the inverse
quality factor is on the right side.

2.4.2 Slow-S wave

The dispersion relation for the slow S-wave is shown in figure 4. This wave shows

only two regimes, the low- and high-frequency regimes. In the low-frequency regime,

the slow S-wave has the behavior of a damped diffusive wave. Herein, the velocity is

very slow and is strongly attenuated. It is because the fluid is viscously coupled to the

solid frame, and this coupling annihilates the fluid vorticity. As the frequency increase

above Ωi, the fluid decouples from the solid frame, and it allows the development of

fluid vorticity. In the high-frequency regime, the slow S-wave behaves as a diffusive

wave. It shows a phase velocity that increases with frequency (left panel of figure 4)

and an inverse quality factor around two (1/Q≈2), characteristics of a diffusive wave.

The approximation for the slow S-wave dispersion relation is also presented in Sa-

hay (2008) for ω < Ωβ. These approximations are
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β2 ≈



















−ω2 κ
η
0

�

1 + ω κ
η
0
νf
S
�

, ω� Ωi � Ωβ.

−ωνfS
�

1 − 1S
Ωi
ω + 

ω
Ωβ

αμ
S (S − 1)

�

, Ωi � ω� Ωβ.

(45)

The asymptotic expression 45 shows that, in the low-frequency regime, the phase

velocity of the slow S-wave depends on the permeability and the squared frequency.

In the high-frequency regime, this velocity squared is described by the same equation

as the fluid vorticity weighted by the tortuosity of the solid frame (S).

10
−2

10
0

10
2

10
4

10
6

10
8

10
−5

10
0

Ω
i

↓
Ω
†
β

↓

Ωβ

↓

Phase velocity for S
II
−wave

Normalized frequency (ω/Ωi)

V
 (

m
/s

)

 

 

dCS

10
−2

10
0

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

10
4

Ω
i

↓

Ω
†
β

↓

Ωβ

↓

1/Q for S
II
−wave

Normalized frequency (ω/Ωi)

1
/Q

 

 

dCS

Figure 4. Dispersion relation for the slow S wave. The phase velocity is on the left side, and the inverse
quality factor is on the right side.

2.4.3 Fast P-wave

Like the fast S-wave, the phase velocity for the fast P-wave (left panel of figure 5)

shows three distinct regimes separated by the Biot critical frequency (Ωi) and the

saturated-frame relaxation frequency for P-waves (Ωα = (K?d + 4μ/3)/(ξfη0M
?/Kf +

4μf/3)). Herein, Ωα marks the frequency where the intrinsic fluid relaxation relaxes

the compression of the porous medium. As in the case of S-waves, above Ωα the

poroelastic framework must be corrected; however, the values for phase velocity and

attenuation are computed for completeness.
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The inverse quality factor (right panel of figure 5) has two peaks at the critical

frequencies. At Ωi, the attenuation is generated by the fluid relaxation, and, at Ωα,

the peak of inverse quality factor is caused by intrinsic relaxation of the fluid. At the

geometric average of Ωi and Ωα, Ω†
α
, the intrinsic relaxation of the fluid takes over the

Darcy relaxation.

Below Ωα, the fast P-wave predicted in the Biot theory, red dashed line in figure

5, shows the same phase velocity that in dCS theory. The values of inverse Q are

equivalent below Ω†
α
.
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Figure 5. Dispersion relation for the fast P wave. The phase velocity is on the left side, and the inverse
quality factor is on the right side.

The approximations for the fast P-wave velocity in the low- and high-frequency

regimes are

α2 ≈














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


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
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






















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− ms
S+ϵ?

α20
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− ms
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α20
α?c
2

α2fl
α?c
2

×
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df − ms
(S+ϵ?)2

α20
α?c
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α2fl
α?c

2 −
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α?−η
0

�

(α−ϒ)
η
0
ds+(S−1)dfϒ

η
0
ms

mf(S+ϵ?)
α20
α?c

2

��

, Ωi�ω�Ω
α
.

(46)

Herein α?c
2 = (K?d + 4μ0/3)/ρ

◦
m is the generalized Gassmann P-wave velocity squared,
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α20 = (K0 + 4μ0/3)/(ϕ0ρ
◦
s) is the P-wave velocity squared in the solid frame, and α?fl

2 =

η
0
M?/ρ◦f is the P-wave velocity squared of the fluid inside the porous frame.

The dispersion relation 46 shows that, in the low-frequency regime (ω � Ωi), the

phase velocity of the fast P-wave shows the same value that an effective elastic

(Gassmann) medium because of fluid and solid frame constituent parts are coupled.

The inverse quality factor increases with frequency since the coupling is not perfect.

In the high-frequency regime (Ωi � ω � Ωα), the phase velocity shows an increment

because the fluid is partially decoupled, as it happens in the fast S-wave. However, the

fluid does not support the load in the same amount as in the low-frequency regime,

and the increment is smaller than the fast S-wave. The inverse quality factor decrease

with frequency until Ω†
α
, after which it increases with frequency to the pick at Ωα.

2.4.4 Slow P-wave

The dispersion relation for the slow P-wave is shown in figure 6. The phase velocity

shows three distinct regimes separated by Ωi and Ωα, as the fast P-wave. At the

low-frequency regime (ω � Ωi), the slow P-wave shows the behavior of a diffusive

wave, it is, the phase velocity increase with frequency and is attenuated around a

half-wavelength (Q ≈ 1/2). In the high-frequency regime (Ωi � ω � Ωα), the slow

P-wave is a propagating wave, with a nearly constant phase velocity and an inverse

quality factor that decreases with frequency. Above Ωα, the slow-P wave behaves as a

diffusive wave since the intrinsic fluid diffusion is dominant; however, it also needs a

correction as in the fast P-wave.

The approximation for the slow P wave dispersion relations in the low- and high-

frequency regimes are

α2 ≈








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−α2flms
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ω
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�

1 + ω
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(S + ϵ?)

�
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α2fl
S+ϵ?ms

α0
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�

1 − Ωiω
S−mf
S+ϵ? −

 ωΩ?
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�

�

1 +
�

α? − η
0

�
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� η

0
mf
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2 −
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(47)
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Figure 6. Dispersion relation for the slow P wave. The phase velocity is on the left side, and the inverse
quality factor is on the right side.
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Chapter 3. Boundary conditions at discontinuities

Boundary conditions are essential to describe the behavior of waves across discon-

tinuities. They control the way waves are scattered at the interface. The widely used

poroelastic boundary conditions are due to Deresiewicz and Skalak (1963). However,

because they do not define the behavior of fluid motion tangential to surfaces, these

conditions cannot be applied to general cases where such fluid motion occurs. This

chapter presents the complete set of boundary conditions for the poroelastic theory.

Section 3.1 presents an overview of the boundary conditions given by Deresiewicz and

Skalak (1963). Although they define the conditions for different hydraulic contacts,

only the permeable (open-pore) and impermeable (closed-pore) limits can be derived

from the poroelastic differential equations of motion.

Moreover, in any case, the condition of the fluid motion in the tangential direction

is undefined. In section 3.2 the boundary conditions are extended for accounting for

that motion. Herein, the case of a solid half-space in welded contact with a porous

half-space is used to understand the fluid motion in the tangential direction. Then, the

boundary conditions are extended for two porous media at impermeable/permeable

contact (section 3.3).

3.1 Boundary conditions in the literature

Deresiewicz and Skalak (1963) give the widely accepted poroelastic boundary con-

ditions. These are developed in the Biot theory from the continuity of the total normal

energy flux that, for the s
j

and j fields, is defined as

J⊥ =
�

τjk̇
s
j
− pfδjk̇j

�

n̂k. (48)

The boundary conditions in a permeable interface are defined as the continuity of

each term in expression 48. They are

��

̇s⊥

��

= 0, (49)
��

̇s‖

��

= 0, (50)

[[τ⊥]] = 0, (51)
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��

τ‖
��

= 0, (52)

[[̇⊥]] = 0, (53)
��

pf
��

= 0. (54)

Herein, [[ ]] represents a jump in its argument. The sub-index ⊥ and ‖ stand for the

normal and tangential directions, respectively. The continuity of ̇s⊥ together with ẇ⊥

satisfy the mass conservation principle. The continuity of normal and tangential trac-

tions, equations 51 and 52, are on account of Newton’s third law. Equation 50 satisfies

the no-slip boundary condition for the solid frame of the porous medium. Equation 54

defines the equilibrium of pressure across the interface.

In the opposite limit, the impermeable or closed-pore case, the fluid cannot flow

across the interface; thus, the conditions 53 and 54 changes to

̇
(1)
⊥ = ̇

(2)
⊥ = 0. (55)

That is, the filtration field in the normal direction vanishes on both sides of the inter-

face.

The boundary conditions of Deresiewicz and Skalak (equations 49-55) are widely

used on the reflection-transmission solutions for porous media. However, they do

not describe the behavior of the filtration field parallel to the interface (̇‖), which

accounts for the no-slip condition for the fluid motion. It is because the fluid stress

does not account for the viscous forces, causing two redundant degrees of freedom

related to the fluid’s tangential motion.

3.2 Definition of the boundary condition for tangential fluid motion

In the dCS poroelastic theory, the total normal energy flux is

J⊥ =
�

τjk̇
s
j
+ σf

jk
̇j

�

n̂k. (56)

To fully define the boundary conditions, it is necessary to constrain the term
��

σf‖̇‖
��

=

0, which accounts for the normal energy flux carried on in the fluid shearing, along

with the conditions 49-54.
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To understand the tangential motion of the fluid at a discontinuity, let us consider

the case of a porous media in welded contact with a solid half-space. The last one

acts as a natural impermeable medium that completely disrupts fluid motion. The

boundary conditions for this case are

̇s⊥ = ̇⊥, (57)

̇s‖ = ̇‖, (58)

τ⊥ = σ⊥, (59)

τ‖ = σ‖, (60)

̇⊥ = 0. (61)

The terms  and σ are the displacements and stresses in the solid medium. The

condition 57 stands for the conservation of mass. Equation 58 satisfies the no-slip

condition of the solid, and equations 59 and 60 account for the Newton’s third law.

Equation 61 is the impermeable condition in the Biot theory, and it specifies that the

fluid is not able to flow across the interface.

The remaining condition can be satisfied by vanishing either the traction σf‖ or the

filtration field ̇‖. The choice σf‖ = 0 means that the viscous shear stress of the fluid

is vanishing as in a stress-free surface. However, viscous fluids support shear stresses

and must be continuous with that of the interface portion in contact, accounting for

Newton’s third law. Therefore, σf‖ = 0 is not a suitable condition since it violates New-

ton’s third law. On the other hand, choosing ̇‖ = 0 defines a state where the fluid

is coupled to the solid frame of porous medium. This condition is feasible since the

fluid is always in touch with the solid on an impermeable surface, and viscous fluids in

contact with solids obey the no-slip condition. Therefore, as the solid-frame motion is

continuous (equation 58), both parts of the porous medium, the fluid and solid frame,

move in unison, and it is satisfied vanishing the tangential filtration field in both sides

of the interface. It is

̇‖ = 0. (62)
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3.3 Extending boundary conditions in a porous-porous contact

For two porous half-spaces in an impermeable contact, the interface can be defined

by considering a solid layer of zero thickness between the half-spaces. In such a case,

the boundary conditions are defined by the equations 49-52, 55, and

̇
(1)
‖ = ̇

(2)
‖ = 0. (63)

For the permeable case, the term σf‖̇‖ does not vanish. Instead, it is continuous

across the interface
���

σf‖̇‖
��

= 0
�

. It is satisfied by considering the continuity of each

term. It is

��

̇‖
��

= 0, (64)
��

σf‖

��

= 0. (65)

The continuity of the ̇‖ field accounts for the no-slip condition of the fluid. Whereas

the continuity of the σf‖ traction accounts for Newton’s third law.
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Chapter 4. Implications of the fluid viscous stress at an

impermeable surface

This chapter analyzes the behavior of a porous medium with an impermeable sur-

face by solving the reflection-transmission problem of a horizontally polarized shear

(SH) wave normally incident upon a planar contact of a solid and a porous half-space.

It enables us to understand the implications of the presence (dCS theory) or absence

(Biot theory) of the fluid viscous stress tensor.

Section 4.1 establishes the media configuration for the reflection-transmission prob-

lem. Then, in section 4.2 the reflection and transmission coefficients are developed in

the Biot theory. They show an unphysical fluid motion at the contact that violates

the no-slip condition for the fluid (equation 63). Section 4.3 analyzes if the JKD term

solves that shortcoming. However, the unphysical fluid motion at the contact persists.

Finally, the analysis in the dCS theory is presented in section 4.4. Herein, the trans-

mission coefficients show that the fluid motion associated with the transmitted slow

S-wave counteracts that generated by the transmitted fast S-wave. Therefore, the

no-slip condition is fully satisfied.

4.1 Statement of the problem

Let there be an isotropic elastic solid half-space in welded contact with a fluid-

saturated porous half-space. The boundary is defined by the plane z = 0 (Figure

7). I consider a plane SH-wave in the upper half-space propagating in the positive

z-direction. The normally incident SH-wave will generate a reflected SH-wave in the

solid half-space. In the porous medium, only one transmitted SH-wave is predicted in

the Biot theory, with and without JKD correction, whereas there are two transmitted

SH-waves, the fast and slow S-waves, in the dCS theory.

The displacement in the solid half-space (
y
) is governed by the equation of motion

of linear elasticity. In the frequency domain, it is represented as the scalar Helmholtz

equation

β2∇2
y
+ ω2

y
= 0 for z ≤ 0, (66)
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and the stress is given by the elastic constitutive equation

σ
yz
= ρ β2 ∂zy for z ≤ 0 . (67)

β =
p

μ/ρ is the S-wave velocity, and ρ and μ are the density and shear modulus of the

solid half-space, respectively.

Figure 7. Schematic representation of horizontally polarized incident, reflected and transmitted shear
waves at the planar contact of solid and porous half-spaces. Within the Biot theory, there is only one
transmitted S-wave. Whereas, in the dCS theory, there are the transmitted fast (S ) and slow (S) S-
waves. The Biot S-wave and the dCS theory S -wave are equivalent and they are denoted by the same
arrow. The dCS theory S-wave is marked by a dotted arrow.

In the Biot theory, the displacements and corresponding stresses in the porous half-

space are given by equations 18 and 23, respectively. In the dCS theory, the motion is

described by equation 37, and the stress is given by equation 36.

4.2 Reflection and transmission coefficients in the Biot theory

For the normal incident case, the Helmholtz equation 66 permits the down-going

incident (
yinc

) and up-going reflected (
yr

) plane waves in the upper solid half-space

as


yinc

= e
ωq

β
z
, (68)


yr
= rSBiote

−ωq
β
z
. (69)
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Here, the amplitude of the incident wave is taken as unity; therefore, the reflected

wave amplitude rSBiot is the reflection coefficient. The term q
β

is the vertical slowness

of S-wave, which for the normal incidence is q
β
= 1/β.

In the porous half-space, the transmitted wave permitted by equation 40 is a down-

going plane wave that propagates on the solid-frame. The solution reads

s
yt
= tSBiote

ω q
βBiot

z
, (70)

where, qβBiot = 1/βBiot is the vertical slowness for the normal incident case.

Substituting equations 68 and 69 into equation 67, and equation 70 into equa-

tion 36 for τyz, the stresses in the upper elastic and lower poroelastic half-spaces are

obtained. Thereupon, applying the boundary conditions 58 and 60, the system of

equations is




ρβ (ρm + ρfγβBiot)βBiot

−1 1









rSBiot

tSBiot



=





ρβ

1



. (71)

It yields to the following solution

tSBiot =
2ρβ

ρβ + (ρm + ρfγβBiot)βBiot
. (72)

rSBiot = tSBiot − 1. (73)

Because the shear motion for the filtration field is completely specified by the solid-

frame motion, equation 38, the complete poroelastic motion generated by the trans-

mitted wave is

yt =





s
y


y



 = tSBiot





1

γ
Biot



e
ω q

βBiot
z
, (74)

which means that the no-slip condition for the filtration field, equation 62, is never

satisfied, since neither tSBiot nor γβBiot can be vanishing. Choosing the vanishing trans-

mission coefficient tSBiot would amount to an unphysical state because it will result

in total reflection whatsoever the contrast in impedance is. Furthermore, γβBiot is also

non-vanishing, as its explicit expression, in terms of material properties and frequency,

worked out below in equation 75 shows.
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4.2.1 Non-vanishing filtration field at the interface

In the following, I derive the explicit expression of |tSBiotγβBiot |, the amplitude of non-

vanishing filtration field at the interface.

The ratio γβBiot and the velocity βBiot are frequency-dependent and, in turn, they

make the transmission coefficient tSBiot frequency-dependent. This dependence has

two distinct regimes, separated by the transition frequency Ωi.

By performing a series expansion in terms of frequency and retaining only the

leading-order terms in equation 39, the asymptotic expressions of γβBiot in the low-

and high-frequency regimes are

γβBiot ≈ −
η
0

S
×



















ω2

Ω2b/S
2 − 

ω
Ωb/S

, ω� Ωi

1 − Ωb/Sω Ωi � ω

. (75)

Using the preceding equation and the approximation for βBiot into equation 72, the

asymptotic form of transmission coefficient tSBiot is

tSBiot≈


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
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+ Z

βc
︸ ︷︷ ︸

AslotBiot

�

1−  ωΩb
mf
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Zβc
Zβ+Zβc

�

, ω� Ωi
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Z
β
+ Z′

βc
︸ ︷︷ ︸

AshitBiot

�

1− 
Ωi
ω
1
S
mf
2

Z′
βc

Zβ+Z
′
βc

�

, Ωi � ω

. (76)

Herein, Z
β
= ρβ is the S-wave impedance in the solid half-space. Z

βc
= ρmβc and

Z′
βc
= (

p

1 −mf/S)ρmβc are the effective S-wave impedances in the porous half-space

in the low- and high-frequency regimes, respectively. In equation 76, the magnitude of

the complex numbers within square-brackets is approximately unity since each lumped

material parameter is arranged to be less than unity, and the leading scaled frequency

term is much smaller than unity. Therefore, the modulus of the coefficient is essentially

the term marked by the underbrace. Thus, As
lo

tBiot
and As

hi

tBiot
are, respectively, read off
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as the amplitudes of the solid-frame displacement field generated by the transmitted

wave at the low- and high-frequency regimes.

The transmitted wave generates a filtration displacement field at the contact as per

equation 74. The amplitude of this motion, |tSBiotγβBiot | ≡ A
w
tBiot

, is approximated as

AwtBiot ≈












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









−η
0

ω

Ωb

2Z
β

Z
β
+ Z

βc
︸ ︷︷ ︸

AwlotBiot

, ω� Ωi

−
η
0

S

2Z
β

Z
β
+ Z′

βc
︸ ︷︷ ︸

AwhitBiot

. Ωi � ω

. (77)

Equation 77 shows that in the sub-Biot critical frequency (Ωi) regime, the filtration dis-

placement field is not significant because of the scaled frequency term. However, as

the frequency approaches Ωi, the filtration displacement field increase and makes a

transition to its asymptotic value for the high-frequency regime, which is given by the

amplitude of the solid-frame displacement (As
hi

tBiot
) weighted by the factor −η

0
/S. This

means that the no-slip condition of the fluid at the contact (equation 62) could be sat-

isfied only if porosity is vanishing (η
0
= 0) or tortuosity is infinite (S → ∞), which are

unphysical extremities for a porous medium. Therefore, it is observed that this condi-

tion is not satisfied for any fluid-saturated porous medium. This is expected because

equation 62 was not part of the BVP statement, and this analysis demonstrates that

this no-slip condition is not "automatically" or "implicitly" accounted for.

4.2.2 Numerical example of solid-frame and filtration displacement fields at

the contact

To numerically illustrate the robustness of the above asymptotic expressions, they

are compared against the exact amplitude of the solid-frame and filtration fields com-

puted based on equation 72. The physical properties of the porous half-space are as

reported by Bouzidi and Schmitt (2012). The shear modulus and density of the solid

half-space are taken such that the wave is completely transmitted in the low-frequency
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limit.

Figure 8 shows the solid-frame and filtration amplitudes generated by the trans-

mitted wave. The amplitudes are normalized by the amplitude in the solid half-space

generated by the incident wave. Herein, the asymptotes AstBiot and AwtBiot , which are pre-

sented by the dotted lines, are in good agreement with the corresponding exact solu-

tions. Below the critical frequency Ωi, the solid-frame displacement (left panel of Figure

8) is unity indicating perfect transmission. This is because the S-wave impedance of

both media is the same. Above Ωi, the solid and the fluid are not any longer perfectly

coupled. Therefore, the effective density is reduced in the porous medium, which in

turn reduces its effective impedance. This increases the amplitude of the solid-frame

motion.

The amplitude of the filtration displacement (right panel of Figure 8) is negligi-

bly small in the low-frequency regime. However, as the frequency approaches to Ωi,

the amplitude increases and makes a transition to its maximum value in the high-

frequency regime. In the high-frequency regime, the partial fluid-solid coupling gen-

erates a filtration displacement that is negative η
0
/S fraction (-0.27) of the amplitude

of the solid-frame motion. This prediction is unphysical in the sense that the filtration

field is expected to vanish at the contact (equation 62).
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Figure 8. Displacement fields related to the transmitted wave in the Biot theory. The solid-frame field is
in the left panel and the filtration field is in the right panel. The shear modulus and density in the solid
half-space are 3.6 GPa and 1881 kg/m3, respectively. The porous half-space properties are in Table 1 of
Appendix A. The frequency is normalized by the Biot critical frequency Ωi, which for this data set is 2530
Hz. The displacements are normalized by the amplitude of the motion in the solid half-space generated
by the incident wave. The asymptotes for the solid-frame and filtration displacement fields are presented
by the dotted-lines.
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4.3 Reflection and transmission coefficients in the Biot theory with the dy-

namic permeability

This section analyzes whether the dynamic permeability correction is able to elim-

inate the relative fluid motion at the discontinuity and thereby rendering a physical

meaningful solution to the reflection-transmission problem.

In the Biot theory with the JKD term, the filtration field is yet entirely specified by

the solid-frame field as equation 38, except the ratio γβBiot therein transforms to

γ
βJKD
= −

η
0
S

1 + Ωbω
1
S

�

1 − 4 ωΩb
κS2

η
0
Λ2

�1/2
, (78)

and the form of governing equation of shear motion still remains as equation 40, with

the S-wave velocity term β
Biot

therein changed to

βJKD =

√

√

√

μ
0

ρm + ρfγβJKD
. (79)

Therefore, the transmission coefficient keeps the same form as equation 72. It reads

tSJKD =
2ρβ

ρβ + (ρm + ρfγβJKD)βJKD
. (80)

In regime ω�Ωi, the ratio γ
βJKD

and βJKD velocity become γ
βBiot

and βBiot, respec-

tively. Therefore, the transmission coefficient tSJKD is essentially equal to tSBiot in the

low-frequency regime.

The asymptotes in the high-frequency regime for γ
βJKD

and βJKD are

γ
βJKD
≈ −

1

1 +
p
2νf/ω
Λ

η
0

S



1 − 

p
2νf/ω
Λ

1 +
p
2νf/ω
Λ



 , Ωi � ω, (81)

and

βJKD ≈



1 −
mf
S

1 +
p
2νf/ω
Λ


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−1/2

βc
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��

1 +
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
, Ωi � ω. (82)
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By substituting these approximations into equation 80, the transmission coefficient, in

the high-frequency regime, is given by

t
hi

JKD
≈

2Zβ

Zβ + Z
JKD

βc
︸ ︷︷ ︸

AshitJKD




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1 − 

1

2

Z
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βc

Zβ + Z
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βc

mf
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p
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�

1 − mf
S +

p
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Λ

��
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p
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�






, (83)

where Z
JKD

βc
= ρmβc

Ç

1 −mf/S
�

1 +
p

2νf/ω/Λ
�

is the effective S-wave impedance in the

high-frequency regime. As
hi

tJKD
is the amplitude of the solid-frame field generated by the

transmitted wave in the high-frequency regime. The inclusion of the JKD term makes

the transition of the amplitude to the high-frequency regime smoother because of the

ω1/2 term. Finally, the amplitude of the filtration field generated by the transmitted

wave becomes

Aw
hi

tJKD
≈ −

η
0
S

1 +
p
2νf/ω
Λ

2Zβ

Zβ + Z
JKD

βc

. (84)

It is observed that this amplitude is not vanishing. Instead, the amplitude increases

with frequency. Note that as frequency increases, the ratio wavelength of fluid vorticity

to pore-throat diameter
p

2νf/ω/Λ becomes insignificant, the transmission coefficient

in equation 83 asymptotically approach to that of the Biot theory (second line of equa-

tion 76). Likewise, the filtration field in equation 84 tends to that of the Biot theory,

equation 77.

To illustrate the robustness of the asymptotic expressions in this case, they are

compared against the exact displacements fields computed using equation 80. The

properties of both half-spaces are the same as those in Figure 8. Figure 9 shows the

normalized displacements for the solid-frame and filtration displacement fields gener-

ated by the transmitted SH-wave. The asymptotes As
hi

tJKD
and Aw

hi

tJKD
are in good agree-

ment with the corresponding exact solutions. By comparing with the solution of the

Biot theory, the solid-frame displacement shows the same values in the low-frequency

regime. In the high-frequency regime, there is now a smoother transition to the max-

imum value. Most importantly, the filtration field at the contact persists even with

the dynamic permeability correction factor. The displacement has the same value in

the high-frequency limit as in the Biot theory prediction. This means that the no-slip
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boundary condition of the fluid is not satisfied.
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Figure 9. Displacement fields related to the transmitted wave in the Biot theory including the dynamic
permeability term. The solid-frame field is in the left panel and the filtration field is in the right panel.
The asymptotes for the solid-frame and filtration displacement fields are presented by the dotted-lines.
The frequency is normalized by Ωi. The displacements are normalized by the amplitude of the motion in
the solid half-space generated by the incident wave. The properties of the half-spaces are the same as in
Figure 8.

4.4 Reflection and transmission coefficients in the dCS theory

For the normal incident case, the permitted waves in the solid are given by equa-

tions 68 and 69. In the porous half-space, the transmitted waves permitted by the

system of Helmholtz equations 18 are two down-going plane waves (equation 22). In

terms of solid-frame and filtration displacements, the solution reads

yt =





s
y


y



 = tS





1

γβ



e
ω q

β
z + tS





γβ

1



e
ω q

β
z
. (85)

Herein, qβ = 1/β and qβ = 1/β are the respective vertical slowness for the normal

incident case. The terms tS and tS are the transmission coefficients of the state vector

corresponding to fast and slow S-waves, respectively. Thus, tS and tSγβ are read off

as the amplitudes of solid-frame and filtration fields, respectively, associated with the

transmitted fast S-wave. Likewise, tSγβ and tS are read off as the amplitudes of solid-

frame and filtration fields, respectively, associated with the transmitted slow S-wave.

By substituting the displacements given in equations 68 and 69 into the expression
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67 and the displacements of equation 85 into the expression 2, the stresses are ob-

tained. Thereupon, applying the boundary conditions, equations 58, 60 and 62, the

system of equations is


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

ρβ (1+
mf
η
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


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ρβ

1

0









. (86)

It yields the following solution for the reflection and transmission coefficients for dis-

placement fields

tS =
2ρβ

ρβ
�

1 − γγ
�

+ ρmβ+ γρf
�

β

− β



�

− γγρmβ
(87)

tS = −γβ tS (88)

rS =
�

1 − γβγβ
�

tS − 1. (89)

From the second line of equation 85 it is apparent that for vanishing filtration field at

the contact z = 0, the required condition is tSγβ + tS = 0, which is precisely equation

88. Hence, the no-slip condition is satisfied.

By setting shear viscosity vanishing in ν matrix, the dCS theory reduces to the

standard Biot theory. In this case γβ = γβBiot , β = βBiot, and, γβ and β go to zero;

thus, the coefficients in equations 87 and 89 reduce to those in equations 72 and 73,

respectively. The coefficient tS is meaningless, since, in this limit, the slow S-wave

does not exist; hence, equation 88 is redundant.

For completeness, in the following I develop the asymptotic forms of the transmis-

sion coefficients tS and tS and their associated filtration field. It allows us to determine

the parameters controlling the filtration field at the contact and gives a comparison

with the approximation in the Biot theory, equation 77.

By substituting the asymptotes 44 and 45 for shear velocities, and the elements of

the β matrix on γβ and γβ , and retaining only the leading-order terms of their real

and imaginary part, they are approximated for the low- and high-frequency regimes as
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γβ ≈ − ω
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β
. (91)

Applying the approximations for velocities and eigenvectors in the exact expres-

sions 87 and 88 of transmission coefficients, and retaining only the leading-order

terms, I find

tS≈
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(92)

The approximation 92 in the low-frequency regime corresponds to the expression 76

in the Biot theory. In the high-frequency regime, the amplitudes of the transmission S-

wave in Biot and S-wave in dCS theory are equivalent. However, the imaginary term

of the wave has an additional element, the underlined term, in the dCS case. This

term is negligible at frequencies below Ω†β. Therefore, for ω < Ω†β the amplitude in both

theories is the same.

In the dCS theory, the additional transmitted S-wave has the amplitude
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(93)

The transmitted fast S-wave generates a filtration displacement field at the contact

per equation 85. The amplitude of this motion, |tSγβ | = A
w
t

, is approximated as

Awt≈
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(94)

The terms Aw
lo

t
and Aw

hi

t
are the amplitudes of the filtration field associated to the fast

S-wave in the low- and high-frequency regime, respectively. This amplitude is the same

as that predicted in the Biot theory, in equation 77.

Likewise, per equation 85, the transmitted slow S-wave generates a filtration dis-

placement field at the contact. Its amplitude, |tS | = Awt , is approximated as

Awt≈
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(95)
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The terms Aw
lo

t
and Aw

hi

t
are, respectively, the amplitude of the filtration field gener-

ated by the transmitted S-wave in the low- and high-frequency regime. These ampli-

tudes in equation 95 are equal and opposite to that generated by the S-wave, equation

94. Therefore, as both processes, the fast and slow S-waves, are generated, the net

motion of the fluid at the contact is vanishing for the entire range of frequencies. This

means that the no-slip condition for the fluid (equation 62) is satisfied. This is expected

since in the dCS theory this boundary condition is part of the BVP, thereby ensuring

that no field components are unconstrained.

4.4.1 Numerical example of solid-frame and filtration displacement fields at

the contact

To numerically illustrate the motion generated at the contact, the amplitude of

the solid-frame and filtration displacement fields generated by the transmission co-

efficients in equations 87 and 88 are computed. Herein, the properties of the solid

an porous half-space are the same than in the Biot case, Figure 8. Figure 10 shows

that the normalized amplitude of the solid-frame and filtration displacements have the

same values as in the Biot theory. However, the generation of the S-wave at the con-

tact generates a filtration displacement with the same magnitude and opposite sign.

This is true for all frequencies, but its magnitude in the low-frequency regime is ex-

ponentially small. The S-wave also generates a negligibly small motion of the solid

frame.
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Figure 10. Displacement fields related to the transmitted wave in the dCS theory. The asymptotes for
the solid-frame and filtration displacement field are presented by the black dotted-line. The frequency is
normalized by the Biot critical frequency Ωi. The displacements are normalized by the amplitude of the
motion in the solid half-space generated by the incident wave. The properties of both half-spaces are the
same as in Figure 8.
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Chapter 5. Conversion scattering at a porous-porous plane

interface

This chapter analyzes the role of the fluid viscous stress tensor in a single planar

contact from the solution of the reflection-transmission problem. For that, I consider

two poroelastic half-spaces in welded contact. The properties of these media are given

in Appendix A. Both permeable and impermeable cases are considered. The reflection

and transmission coefficients are computed for the displacement amplitudes (Ad) that

are related to the potential amplitudes (Ap) by

Ad = V Ap, (96)

where V = α, α, β, β stands for the velocity of the wave analyzed.

To analyze the effects of the fluid viscous stress tensor, I compare the solutions of

the dCS theory with those obtained in the Biot theory using the relative difference of

the magnitude of the coefficients in each approach. It is defined as

Relative difference =
|AdBiot | − |AddCS |

|AdBiot |
, (97)

The | · | means the magnitude of the coefficient, which is a complex number. Then, the

positive values indicate that the amplitude predicted in the dCS theory is smaller than

that in the Biot theory. In contrast, negative values account for larger amplitude in the

dCS theory than in the Biot theory.

Section 5.1 introduces a geometric representation of slownesses in the poroelastic

theory. Then, section 5.2 analyzes the scattered amplitudes for SH-waves incident in

the contact of two porous media. The reflection and transmission coefficients for an

incident fast SH-wave are analytically developed herein. After that, the amplitude of

scattered waves from incident P- and SV-waves are numerically analyzed in section

5.3.
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5.1 Geometric ray representation

In the geometrical representation of waves, the rays describe the wave propagation

direction. In this case, the slowness can be defined in terms of the ray angle (θ), the

angle between the ray and the z-axis. According to Snell’s law, horizontal slowness is

defined as

p =
sin(θP)

α
=
sin(θP)

α
=
sin(θS)

β
=
sin(θS)

β
, (98)

where θP , θP , θS , and θS are the angle of propagation for the fast P-, slow P-, fast S-,

and slow S-waves, respectively. Then, the vertical slownesses are

qα =
cos(θP)

α
, qα =

cos(θP)

α
, qβ =

cos(θS)

β
, qβ =

cos(θS)

β
. (99)

Using the geometric representations of slownesses, the following terms related to

the stresses (equations 34 and 35) are

2pρΩRβΛβQβ =





ZτS
sin(2θS )

β
ZτS

sin(2θS )
β

ZσfS
sin(2θS )

β
ZσfS

sin(2θS )
β



 , (100)

ρΩRβ
�

 − 2p2Λβ
�

=





ZτS
cos(2θS )

β
ZτS

cos(2θS )
β

ZσfS
cos(2θS )

β
ZσfS

cos(2θS )
β



 , (101)

ρΩ
�

 −2p2β
�

Rα =


















χ1ZτS
︸ ︷︷ ︸

c1

cos(2θS )
β

+
β

β
χ3ZτS

︸ ︷︷ ︸

c2

cos(2θS )
β

β

β
χ2ZτS

︸ ︷︷ ︸

c3

cos(2θS )
β

+ χ4ZτS
︸ ︷︷ ︸

c4

cos(2θS )
β

χ1ZσS
︸ ︷︷ ︸

c5

cos(2θS )
β

+
β

β
χ3ZσS

︸ ︷︷ ︸

c6

cos(2θS )
β

β

β
χ2ZσS

︸ ︷︷ ︸

c7

cos(2θS )
β

+ χ4ZσS
︸ ︷︷ ︸

c8

cos(2θS )
β



















,(102)
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and

2pρΩβRαQα =



















�

β

α
χ1ZτS +

β

α
χ3ZτS

�

︸ ︷︷ ︸

d1

sin(2θP )
α

�

β

α
χ2ZτS +

β

α
χ4ZτS

�

︸ ︷︷ ︸

d2

sin(2θP )
α

�

β

α
χ1ZσS +

β

α
χ3ZσS

�

︸ ︷︷ ︸

d3

sin(2θP )
α

�

β

α
χ2ZσS +

β

α
χ4ZσS

�

︸ ︷︷ ︸

d4

sin(2θP )
α



















.

(103)

The terms c and d are introduced for compactness in establishing the reflection-

transmission systems. The terms ZτS , ZτS , ZσS , and ZσS are the elements of the

shear waves impedance matrix Zβ that is defined as

Zβ = ρΩRβ





β 0

0 β



 ≡





ZτS ZτS

ZσfS ZσfS



 . (104)

The interactions of P- and SV-waves are

χ = LT
β
Rα ≡





χ1 χ2

χ3 χ4



 , (105)

where χ1 gives the interaction of fast P- and fast S-waves, χ2 gives the interaction of

fast S- and slow P-waves, χ3 is the interaction of the slow S- and the fast P-waves, and

χ4 is the interaction of the slow S- and slow P-waves.

5.2 SH-waves across a planar contact

For the case of SH-waves, an incident wave generates two reflected and two trans-

mitted waves. Because the fast SH wave is the only propagating wave, the scattering

of the slow S-waves, which are diffusive processes, is not expected. However, the

reflection-transmission problem for those waves is established for completeness. Fig-

ure 11 shows the different kinds of incident, reflected and transmitted waves.

The incident and scattered waves are described by the plane wave solution 22, and

the amplitude of the last ones are presented in a matrix as
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x =

















r
S̀Ś

r
S̀Ś

t
ŚŚ

t
ŚŚ

r
S̀Ś

r
S̀Ś

t
ŚŚ

t
ŚŚ

t
S̀S̀

t
S̀S̀

r
ŚS̀

r
ŚS̀

t
S̀S̀

t
S̀S̀

r
ŚS̀

r
ŚS̀

















. (106)

Herein, r and t stand for the reflection and transmission coefficients, respectively. The

sub-indexes identify the incident (first sub-index) and scattered (second sub-index)

waves. Herein,´and`identify the up-going and down-going waves, respectively.

Figure 11. Schematic representation of the SH-waves scattered in a porous-porous contact.

The values of the scattering matrix 106 are obtained by solving the reflection and

transmission problem for each incident wave.

5.2.1 Reflection and transmission coefficients for an impermeable contact

Let us consider two poroelastic half-spaces in an impermeable welded contact. The

boundary is defined by the plane z = 0. The upper (z<0) and lower (z>0) media are

identified by the superscripts () and (b), respectively. For an impermeable contact,

the boundary conditions are defined by equations 50, 52, and 63. From the solution for
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the SH-waves (equation 22) and their respective stresses (equation 23), the reflection

and transmission system for the scattering matrix 106 is

ASHXSH = BSH. (107)

Here,

ASH =

















−1 −γ()β 1 γ
(b)
β

Z
()
τScos(θ()S ) Z

()
τScos(θ()S ) Z

(b)
τScos(θ(b)

S(b)
) Z

(b)
τScos(θ(b)S )

−γ()β −1 0 0

0 0 γ
(b)
β

1

















, (108)

and

BSH =















1 γ
()
β

−1 −γ(b)β
Z
()
τScos(θ()S ) Z

()
τScos(θ()S ) Z

(b)
τScos(θ(b)S ) Z

(b)
τScos(θ(b)S )

γ
()
β

1 0 0

0 0 −γ(b)β −1















. (109)

In the limit to the Biot theory, the system is determined by the boundary conditions

50 and 52. Because the slow SH-wave does not exist in this limit, the reflection-

transmission problem can be derived from equations 108 and 109 by removing, in

both matrices, columns two and four, related to the reflected and transmitted slow

S-waves. Also, rows three and four have to be removed because they correspond to

the no-slip boundary condition of the fluid that is not accounted for in the Biot theory.

5.2.1.1 Effect of the fluid viscous stress tensor

To analyze the effect of the fluid viscous stress tensor, let us consider an incident

fast SH-wave from the upper-medium. In this case, the solution for the system 107

gives the following reflection and transmission coefficients

tS̀S̀ =
2Δ()RβZ

()
τS

cos(θ()β )

Δ(b)Rβ
�

Z
()
τS

cos(θ()β ) − γ
()
β
Z
()
τS

cos(θ()β )
�

+ Δ()Rβ
�

Z
(b)
τS

cos(θ(b)β ) − γ
(b)
β
Z
(b)
τS

cos(θ(b)β )
� ,

(110)

tS̀S̀ = −γ
(b)
β
tS̀S̀, (111)
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rS̀Ś = tS̀S̀ − 1, (112)

rS̀Ś = −γ
()
β
tS̀S̀. (113)

Herein, ΔRβ = 1 − γβγβ is the determinant of the Rβ matrix.

The equation 110 shows that the amplitude of the transmitted wave is affected by

the shear forces generated by the viscous fluid, introduced by the term ZτS . Addition-

ally, the term ΔRβ 6= 1 indicates that the displacements are affected by the generation

of the slow S-wave.

Because the fluid viscous stress tensor is absent in the Biot theory, its effects are

not present. It can be seen in the reflection and transmission coefficients which are

defined as

tS̀S̀Biot =
2Z()SBiotcos(θ()βBiot)

Z
()
SBiot

cos(θ()βBiot) + Z
(b)
SBiot

cos(θ(b)βBiot)
, (114)

rS̀ŚBiot = tS̀S̀Biot − 1. (115)

The term ZSBiot = (ρm+ρfγβBiot)βBiot is the impedance for shear waves in the Biot theory.

Herein, the coefficients 114 and 115 have the same form as a pure elastic solution,

and the viscous forces of the fluid do not affect the coefficients.

The comparison of coefficients in both theories shows that the fluid viscous stress

tensor in the dCS theory induces a change in the amplitude of the transmitted waves,

which does not exist in the Biot theory. It is apparent in the limit of two porous media

with the same properties. In such a case, the solution in the Biot theory predicts that

the wave is wholly transmitted (tS̀S̀Biot = 1). In contrast, the transmission amplitude in

the dCS theory is

tS̀S̀ =
ZτScos(θβ)

ZτScos(θβ) − γZτScos(θβ)
. (116)

The expression 116 shows that even though both media are the same, an imperme-

able surface causes a change in the amplitude. It is a consequence of the vanishing of

the filtration displacement field at the impermeable surface that generates a change in

the total stress by the factor −γZτS . Such behavior is illustrated in Figure 12, which

shows the amplitude of the scattered waves at the interface of two water-saturated
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sintered glass beads porous samples (properties in Table 1 of Appendix A) with the

same properties and an impermeable surface. It shows that the fast SH-wave is al-

most completely transmitted in the low-frequency regime (ω� Ωi). Around the critical

frequency (ω ∼ Ωi), this amplitude has a small increase that is barely perceptible in the

plot. As the frequency is above Ωi, the amplitude of the transmitted fast SH-wave de-

creases with frequency, and, in turn, the reflected fast SH-wave increases by the same

magnitude. This behavior is also enhanced by the incident angle (θβ). Additionally,

the reflected and transmitted slow SH-waves are generated with the same amplitude

in both media.
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Figure 12. Amplitude of the reflection and transmission coefficients for a fast SH-wave incident at
an impermeable contact of two porous media with the same properties. The amplitude is plotted as a
function of frequency, and it is presented for the incident angles 0◦ (blue), 20◦ (red), 40◦ (green), 60◦

(yellow), and 80◦ (cyan).

The reflection and transmission coefficients for the case of two porous media with

different properties, equations 110-113, are presented in Figure 13. The upper half-

space is considered a Berea sandstone, which properties are in Table 2 of Appendix

A, and the lower half-space is the sintered glass beads porous medium. This figure
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shows the variation of reflection and transmission coefficients with the incident angle

for ω = 0.01Ω(b)i , ω = Ω(b)i , ω = 10Ω(b)i , ω = 100Ω(b)i , and ω = 1000Ω(b)i . Where Ω(b)i
is the critical frequency of the lower half-space. In that range of frequencies, there

are critical angles for the fast SH wave that span from 65.8◦ at ω = 1000Ω(b)i to 76.3◦

at ω = 0.01Ω(b)i . The amplitude of the scattered waves is governed by the contrast

in elastic properties and density. It has the same behavior than in the Biot theory.

Moreover, the fluid viscous stress tensor causes an additional effect of minor impact

in the amplitude.
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Figure 13. Amplitude of the reflection and transmission coefficients for a fast SH-wave incident at an
impermeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower is
a sintered glass beads porous medium. The amplitudes are presented respect to incident angle for the
Ωi · 10−2 (blue), Ωi (red), Ωi · 101 (green), Ωi · 102 (yellow), and Ωi · 103 (cyan) frequencies.

The relative difference of the reflected and transmitted fast SH-waves is presented

in Figure 14. The relative difference is computed only with the fast S-waves. Figure

14 shows that the amplitudes predicted in the dCS theory are smaller than those of

the Biot theory. The reduction in amplitude due to the viscous stress tensor is of the

same order as that observed in Figure 13. However, it is smaller than the change in
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amplitude generated by the contrast in elastic properties.
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Figure 14. Relative difference of the reflection and transmission coefficients for a fast SH-wave incident
at an impermeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower
is a sintered glass beads porous medium. The amplitudes are presented respect to incident angle for the
Ωi · 10−2 (blue), Ωi (red), Ωi · 101 (green), Ωi · 102 (yellow), and Ωi · 103 (cyan) frequencies.

5.2.2 Reflection and transmission coefficients for a permeable contact

For a permeable contact, the boundary conditions are defined by equations 50, 52,

64 and 65. In this case, the system 107 holds; however, the terms A and B change to

ASH =

















−1 −γ()β 1 γ
(b)
β

Z
()
τScos(θ()S ) Z

()
τScos(θ()S ) Z

(b)
τScos(θ(b)

S(b)
) Z

(b)
τScos(θ(b)S )

−γ()β −1 γ
(b)
β

1

Z
()
σScos(θ()S ) Z

()
σScos(θ()S ) Z

(b)
σScos(θ(b)

S(b)
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(b)
σScos(θ(b)S )

















(117)

BSH =


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γ
()
β

1 −γ(b)β −1

Z
()
σScos(θ()S ) Z

()
σScos(θ()S ) Z

(b)
σScos(θ(b)S ) Z

(b)
σScos(θ(b)S )















, (118)

The Biot theory determines the system by the same boundary conditions as in the

previous case. They are 50 and 52. Therefore, there is no difference between the

permeable and impermeable interfaces.
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5.2.2.1 Effect of the fluid viscous stress tensor

To analyze the effect of the fluid viscous stress tensor in a permeable contact, let

me examine the coefficients for an incident fast SH-wave from the upper-medium. In

this case, the reflection and transmission coefficients are

t
S̀S̀
=

2
�

g1Δ
()
Zβcos(θ

()
S )cos(θ

()
S ) + ƒ2Δ

()
Rβ

�

Δ(b)RβΔ
()
Zβcos(θ

()
S )cos(θ

()
S ) + ƒ2g2 + ƒ3δγβ + Δ

()
RβΔ

(b)
Zβcos(θ

(b)
S )cos(θ

(b)
S ) + ƒ1g1 + ƒ4δγβ

,

(119)

t
S̀S̀
=

2
�

δγβΔ
()
Zβcos(θ

()
S )cos(θ

()
S ) − ƒ3Δ

(b)
Rβ

�

Δ(b)RβΔ
()
Zβcos(θ

()
S )cos(θ

()
S ) + ƒ2g2 + ƒ3δγβ + Δ

()
RβΔ

(b)
Zβcos(θ

(b)
S )cos(θ

(b)
S ) + ƒ1g1 + ƒ4δγβ

,

(120)

r
S̀Ś
=
Δ(b)RβΔ

()
Zβcos(θ

()
S )cos(θ

()
S ) + ƒ2g2 + ƒ3δγβ − Δ

()
RβΔ

(b)
Zβcos(θ

(b)
S )cos(θ

(b)
S ) − ƒ1g1 − ƒ4δγβ

Δ(b)RβΔ
()
Zβcos(θ

()
S )cos(θ

()
S ) + ƒ2g2 + ƒ3δγβ + Δ

()
RβΔ

(b)
Zβcos(θ

(b)
S )cos(θ

(b)
S ) + ƒ1g1 + ƒ4δγβ

,

(121)

r
S̀Ś
=

−2
�

ƒ3g1 + ƒ2δγβ
�

Δ(b)RβΔ
()
Zβcos(θ

()
S )cos(θ

()
S ) + ƒ2g2 + ƒ3δγβ + Δ

()
RβΔ

(b)
Zβcos(θ

(b)
S )cos(θ

(b)
S ) + ƒ1g1 + ƒ4δγβ

.

(122)

Herein ΔZβ is the determinant of the Zβ matrix. The terms δγβ = γ
()
β
− γ(b)β and δγβ =

γ
()
β
− γ

(b)
β

are the differences of γβ and γβ terms, respectively. Also, the following

terms are introduced

ƒ1 =
�

Z
(b)
τS
Z
()
σS
− Z()τSZ

(b)
σS

�

cos(θ(b)S )cos(θ
()
S ), (123)

ƒ2 =
�

Z
()
τS
Z
(b)
σS
− Z(b)τSZ

()
σS

�

cos(θ()S )cos(θ
(b)
S ), (124)

ƒ3 =
�

Z
()
τS
Z
(b)
σS
− Z(b)τSZ

()
σS

�

cos(θ()S )cos(θ
(b)
S ), (125)

ƒ4 =
�

Z
()
σS

Z
(b)
τS
− Z(b)σSZ

()
τS

�

cos(θ()S )cos(θ
(b)
S ), (126)

g1 = 1 − γ
()
β
γ
(b)
β
, (127)

g2 = 1 − γ
(b)
β
γ
()
β
. (128)

The coefficients 119 to 122 show that the interaction of the saturating fluids across

the contact affects the reflection and transmission coefficients even in a permeable

surface. Such an interaction affects all scattered waves, not only the slow SH-waves.

As expected, in the limit of two porous media with the same properties, the incident

wave is not scattered. Instead, the wave is completely transmitted as if it was a
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homogeneous medium.

Figure 15 shows the reflection and transmission coefficients for the case of a Berea

sandstone in a permeable contact with a sintered glass beads porous medium. The

medium properties are the same than in Figure 13. In this case, the amplitude of the

scattered waves shows the same behavior as the scattered waves in an impermeable

contact, as they are shown in Figure 13. However, the relative differences with respect

to the coefficients in the Biot theory, which are presented in Figure 16, are one order of

magnitude smaller than in the impermeable contact (Figure 14). Even so, the effects

of the fluid viscous stress tensor are present in the SH-wave scattering in a permeable

contact.
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Figure 15. Amplitude of the reflection and transmission coefficients for a fast SH-wave incident at a
permeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower is a
sintered glass beads porous medium. The amplitudes are plotted as a function of the incident angle, and
they are presented for the angular frequencies Ωi ·10−2 (blue), Ωi (red), Ωi ·101 (green), Ωi ·102 (yellow),
and Ωi · 103 (cyan).
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Figure 16. Relative difference of the reflection and transmission coefficients for a fast SH-wave incident
at a permeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower is a
sintered glass beads porous medium. The amplitudes are plotted as a function of the incident angle, and
they are presented for the angular frequencies Ωi ·10−2 (blue), Ωi (red), Ωi ·101 (green), Ωi ·102 (yellow),
and Ωi · 103 (cyan).

5.3 P- and SV-waves across a planar contact

For the case of P- and SV-waves, the incident wave generates four reflected and

four transmitted waves. Figure 17 shows a scheme of the scattered waves for the

incident fast waves, and Figure 18 shows those waves for the incident slow waves.

Figure 17. Schematic representation of the P- and SV-waves scattered from the fast waves incident in a
porous-porous contact.



57

Figure 18. Schematic representation of the P- and SV-waves scattered from the slow waves incident in
a porous-porous contact.

The incident and scattered P-waves are described by the plane wave solution 30;

whereas the solution 31 describes the S-waves. The amplitude coefficients of these

scattered waves, presented in a matrix, are

XPSV =







































rP̀Ṕ rP̀Ṕ rS̀Ṕ rS̀Ṕ tṔṔ tṔṔ tŚṔ tŚṔ
rP̀Ṕ rP̀Ṕ rS̀Ṕ rS̀Ṕ tṔṔ tṔṔ tŚṔ tŚṔ
rP̀Ś rP̀Ś rS̀Ś rS̀Ś tṔŚ tṔŚ tŚŚ tŚŚ
rP̀Ś rP̀Ś rS̀Ś rS̀Ś tṔŚ tṔŚ tŚŚ tŚŚ
tP̀P̀ tP̀P̀ tS̀P̀ tS̀P̀ rṔP̀ rṔP̀ rŚP̀ rŚP̀
tP̀P̀ tP̀P̀ tS̀P̀ tS̀P̀ rṔP̀ rṔP̀ rŚP̀ rŚP̀
tP̀S̀ tP̀S̀ tS̀S̀ tS̀S̀ rṔS̀ rṔS̀ rŚS̀ rŚS̀
tP̀S̀ tP̀S̀ tS̀S̀ tS̀S̀ rṔS̀ rṔS̀ rŚS̀ rŚS̀







































. (129)

The values of the scattering matrix 129 are obtained by solving the reflection and

transmission problem for the incident P- and SV-waves.
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5.3.1 Reflection and transmission coefficients for an impermeable contact

For the case of incident P- and SV-waves in an impermeable contact, the boundary

conditions for establishing the reflection and transmission problem are the equations

49 to 52, 55, and 63. By substituting the displacements in terms of potentials (equa-

tions 32 and 33) and their respective stresses (equations 34 and 35) in the boundary

conditions, the reflection and transmission system for the scattering matrix 129 is

APSVXPSV = BPSV. (130)

Herein

APSV =









































cos(θ()P ) γ
()
α cos(θ

()
P ) −sin(θ()S ) −γ()β sin(θ

()
S
)

−sin(θ()P ) −γ()α sin(θ
()
P ) −cos(θ()S ) −γ()β cos(θ

()
S
)

−c()1 cos(2θ
()
S
) − c()2 cos(2θ

()
S
) −c()3 cos(2θ

()
S
) − c()4 cos(2θ

()
S
) Z

()
τS
sin(2θ()S ) Z

()
τS
sin(2θ()S )

d
()
1 sin(2θ

()
P ) d

()
2 sin(2θ

()
P ) Z

()
τS
cos(2θ()S ) Z

()
τS
cos(2θ()S )

γ
()
α cos(θ

()
P ) cos(θ()P ) −γ()β sin(θ

()
S
) −sin(θ()S )

0 0 0 0

−γ()α sin(θ
()
P ) −sin(θ()P ) −γ()β cos(θ

()
S
) −cos(θ()S )

0 0 0 0

cos(θ(b)P ) γ
(b)
α cos(θ

(b)
P ) sin(θ(b)S ) γ

(b)
β
sin(θ(b)S )

sin(θ(b)P ) γ
(b)
α sin(θ

(b)
P ) −cos(θ(b)S ) −γ(b)β cos(θ

(b)
S
)

c
(b)
1 cos(2θ

(b)
S
) + c(b)2 cos(2θ

(b)
S
) c

(b)
3 cos(2θ

(b)
S
) + c(b)4 cos(2θ

(b)
S
) Z

(b)
τS
sin(2θ(b)S ) Z

(b)
τS
sin(2θ(b)S )

d
(b)
1 sin(2θ

(b)
P ) d

(b)
2 sin(2θ

(b)
P ) −Z(b)τScos(2θ

(b)
S
) −Z(b)τScos(2θ

(b)
S
)

0 0 0 0

γ
(b)
α cos(θ

(b)
P ) cos(θ(b)P ) γ

(b)
β
sin(θ(b)S ) sin(θ(b)S )

0 0 0 0

γ
(b)
α sin(θ

(b)
P ) sin(θ(b)P ) −γ(b)β cos(θ

(b)
S
) −cos(θ(b)S )









































,

(131)
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and

BPSV =









































cos(θ()P ) γ
()
α cos(θ

()
P ) sin(θ()S ) γ

()
β
sin(θ()S )

sin(θ()P ) γ
()
α sin(θ

()
P ) −cos(θ()S ) −γ()β cos(θ

()
S
)

c
()
1 cos(2θ

()
S
) + c()2 cos(2θ

()
S
) c

()
3 cos(2θ

()
S
) + c()4 cos(2θ

()
S
) Z

()
τS
sin(2θ()S ) Z

()
τS
sin(2θ()S )

d
()
1 sin(2θ

()
P ) d

()
2 sin(2θ

()
P ) −Z()τScos(2θ

()
S
) −Z()τScos(2θ

()
S
)

γ
()
α cos(θ

()
P ) cos(θ()P ) γ

()
β
sin(θ()S ) sin(θ()S )

0 0 0 0

γ
()
α sin(θ

()
P ) sin(θ()P ) −γ()β cos(θ

()
S
) −cos(θ()S )

0 0 0 0

cos(θ(b)P ) γ
(b)
α cos(θ

(b)
P ) −sin(θ(b)S ) −γ(b)β sin(θ

(b)
S
)

−sin(θ(b)P ) −γ(b)α sin(θ
(b)
P ) −cos(θ(b)S ) −γ(b)β cos(θ

(b)
S
)

−c(b)1 cos(2θ
(b)
S
) − c(b)2 cos(2θ

(b)
S
) −c(b)3 cos(2θ

(b)
S
) − c(b)4 cos(2θ

(b)
S
) Z

(b)
τS
sin(2θ(b)S ) Z

(b)
τS
sin(2θ(b)S )

d
(b)
1 sin(2θ

(b)
P ) d

(b)
2 sin(2θ

(b)
P ) Z

(b)
τS
cos(2θ(b)S ) Z

(b)
τS
cos(2θ(b)S )

0 0 0 0

γ
(b)
α cos(θ

(b)
P ) cos(θ(b)P ) −γ(b)β sin(θ

(b)
S
) −sin(θ(b)S )

0 0 0 0

−γ(b)α sin(θ
(b)
P ) −sin(θ(b)P ) −γ(b)β cos(θ

(b)
S
) −cos(θ(b)S )









































.

(132)

In the limit to the Biot theory, the system is determined by the boundary conditions

49 to 52, and 55. The reflection and transmission problem can be derived from equa-

tions 131 and 132 by removing, in both matrices, columns four and eight, which are

related to the reflected and transmitted slow S-waves, respectively. Also, rows seven

and eight, which correspond to the no-slip condition of the fluid, have to be removed.

5.3.1.1 Effect of the fluid viscous stress tensor

To examine the impact of the fluid viscous stress tensor, the numerical solution of

the system 130 is computed by the Gauss-Jordan elimination method. The pseudocode
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for this solution is described in section B.2 of Appendix B.

Figure 19 shows the reflection and transmission coefficients from a fast P-wave trav-

eling across two water-saturated sintered glass beads porous media with the same

properties (Table 1 of Appendix A) and an impermeable surface. This figure shows

the variation of reflection and transmission coefficients with the incident angle for

ω = 0.01Ωi, ω = Ωi, ω = 10Ωi, ω = 100Ωi, and ω = 1000Ωi. In the low-frequency

regime, the incident wave is almost completely transmitted without generating scat-

tered waves. However, in the high-frequency regime, the impermeable contact without

any change in properties causes the scattering of the incident fast-P wave. It reduces

the amplitude of the transmitted fast P-wave and generates a reflected fast P-wave

with the same magnitude. These amplitudes reduce with increasing incident angle,

whereas the reflected and transmitted fast S-waves increase with incident angle. The

reflected and transmitted slow P-waves have the same behavior. These have an ampli-

tude of 0.12 at the normal incident angle, and the amplitude decreases with increasing

the incident angle.The reflected and transmitted slow S-wave amplitude increases with

the incident angle.

Although it is not reported before, the scattered waves in an impermeable surface

have a similar behavior in the Biot theory. However, the effect of the fluid viscous

stress tensor, in the dCS theory, causes a small difference in the amplitude of the

scattered waves. It is observed in the relative differences of the coefficients shown

in Figure 20. These differences have a negative value for the reflected fast P- and

transmitted slow S-waves. In contrast, the rest of the scattered waves show a positive

value that increases with the incident angle. The most significant relative difference

is observed in the reflected fast P-wave. The reflected and transmitted fast S-waves

show the same relative difference with opposite sign and a magnitude in the order of

10−2, one order of magnitude larger than the effects observed in the SH case. The

scattered slow P-waves are also affected by the fluid viscous stress tensor in the order

of 10−3.

For an incident fast S-wave traveling across two water-saturated sintered glass

beads porous media with the same properties, the reflection and transmission coef-

ficients are strongly affected by the impermeable surface (Figure 21). At the normal

incident angle (θβ = 0), the fast S-wave is transmitted with a small reduction in am-
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Figure 19. Amplitude of the reflection and transmission coefficients for a fast P-wave incident at an
impermeable contact of two water-saturated sintered glass beads porous media with the same proper-
ties. The amplitudes are plotted as a function of incident angle, and they are presented for the angular
frequencies Ωi · 10−2 (blue), Ωi (red), Ωi · 101 (green), Ωi · 102 (yellow), and Ωi · 103 (cyan).
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Figure 20. Relative difference of the reflection and transmission coefficients for a fast P-wave incident
at an impermeable contact of two water-saturated sintered glass beads porous media with the same
properties. The differences are plotted as a function of incident angle, and they are presented for the
angular frequencies Ωi · 10−2 (blue), Ωi (red), Ωi · 101 (green), Ωi · 102 (yellow), and Ωi · 103 (cyan).

plitude, as in the SH case. However, its amplitude is reduced with increasing incident

angle, and it is almost completely reflected above 80◦. The fast and slow P-waves

are generated at non-normal incident angles, and they have the same behavior in the

reflected and transmitted waves. The fast-P waves have an amplitude in the order of

10−2 ( 0.02 in its maximum value), and the slow P-waves achieve amplitudes of 10−1

( 0.3 in its maximum value). The reflected and transmitted slow S-waves show the

same value as the SH case at the normal incident angle, but as the angle increases,

the amplitude decrease.
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The relative difference for these coefficients, Figure 21, shows that this effect also

appears in the Biot theory. The viscous stress tensor causes a negative relative dif-

ference for the reflected fast and slow P-waves, whereas the rest of the scattered

waves have a positive value. The reflected fast S-wave shows a significant difference

at low incident angles, but at these angles, the amplitude of the reflected fast S-wave

is small. Additionally, the magnitude of the relative difference for the reflected and

transmitted fast P-waves is in the order of 10−2.

For the case of a Berea sandstone in impermeable contact with a sintered glass

beads porous medium, the reflection and transmission coefficients from an incident

fast P-wave are in Figure 23. In this case, the amplitude of the scattered fast waves

has a larger value than those in Figure 19 where the change in elastic properties does

not exist. The reflected slow P- and slow S-waves have a smaller amplitude due to the

larger tortuosity in the Berea sandstone. The transmitted slow waves have amplitudes

in the same order as the scattered fast waves.

The contrast in properties of the media governs the amplitude of the scattered

waves. Moreover, the fluid viscous stress tensor causes an effect that is observed in

the relative differences shown in Figure 24. It shows a positive value for the trans-

mitted fast P-wave and the reflected fast S- and slow P-waves. The reflected fast P-,

transmitted fast S- and slow P-waves have a negative value. This effect increases with

the incident angle. It is larger in the slow P-waves with a magnitude of 10−3. The

relative difference in the scattered fast waves is smaller. It has a magnitude of 10−4

for fast S-waves and 10−5 for fast P-waves.

For a fast S-wave incident at the impermeable contact of a Berea sandstone and

a sintered glass beads porous medium, the reflection and transmission coefficients

are in Figure 25. In this case, there are critical angles for the fast P-wave that span

from 29.6◦ at ω = 1000Ω(b)i to 29.7◦ at ω = 0.01Ω(b)i , and critical angles for the fast

S-wave that span from 65.8◦ at ω = 1000Ω(b)i to 76.3◦ at ω = 0.01Ω(b)i . The amplitude

of the scattered fast waves has a larger value than in Figure 21 where the change in

elastic properties does not exist. The reflected slow P- and slow S-waves have a smaller

amplitude due to the large tortuosity in the Berea sandstone, and the transmitted slow

waves have amplitudes in the same order as the scattered fast waves.
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Figure 21. Amplitude of the reflection and transmission coefficients for a fast S-wave incident at an
impermeable contact of two porous media with the same properties. The amplitudes are plotted as a
function of incident angle, and they are presented for the angular frequencies Ωi · 10−2 (blue), Ωi (red),
Ωi · 101 (green), Ωi · 102 (yellow), and Ωi · 103 (cyan).
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Figure 22. Relative difference of the reflection and transmission coefficients for a fast S-wave incident
at an impermeable contact of two porous media with the same properties. The differences are plotted as
a function of incident angle, and they are presented for the angular frequencies Ωi · 10−2 (blue), Ωi (red),
Ωi · 101 (green), Ωi · 102 (yellow), and Ωi · 103 (cyan).

The fluid viscous stress tensor effects are observed in the relative differences shown

in Figure 26. The transmitted fast P- and S-waves show a negative difference above

their critical angle. However, above that angle, the waves are not transmitted any-

more. For an incident fast S-wave, the fluid viscous stress tensor causes a change in

amplitude of the same order in all scattered waves.
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Figure 23. Amplitude of the reflection and transmission coefficients for a fast P-wave incident at an
impermeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower is
a sintered glass beads porous medium. The amplitudes are plotted as a function of incident angle, and
they are presented for the angular frequencies Ωi ·10−2 (blue), Ωi (red), Ωi ·101 (green), Ωi ·102 (yellow),
and Ωi · 103 (cyan).
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Figure 24. Relative difference of the reflection and transmission coefficients for a fast P-wave incident
at an impermeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower
is a sintered glass beads porous medium. The differences are plotted as a function of incident angle, and
they are presented for the angular frequencies Ωi ·10−2 (blue), Ωi (red), Ωi ·101 (green), Ωi ·102 (yellow),
and Ωi · 103 (cyan).
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Figure 25. Amplitude of the reflection and transmission coefficients for a fast S-wave incident at an
impermeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower is
a sintered glass beads porous medium. The amplitudes are plotted as a function of incident angle, and
they are presented for the angular frequencies Ωi ·10−2 (blue), Ωi (red), Ωi ·101 (green), Ωi ·102 (yellow),
and Ωi · 103 (cyan).
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Figure 26. Relative difference of the reflection and transmission coefficients for a fast S-wave incident
at an impermeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower
is a sintered glass beads porous medium. The differences are plotted as a function of incident angle, and
they are presented for the angular frequencies Ωi ·10−2 (blue), Ωi (red), Ωi ·101 (green), Ωi ·102 (yellow),
and Ωi · 103 (cyan).

5.3.2 Reflection and transmission coefficients for a permeable contact

For the case of incident P- and SV-waves in a permeable contact, the boundary con-

ditions for establishing the reflection and transmission problem are the equations 49

to 54, 64, and 65. By substituting the displacements in terms of potentials (equations

32 and 33) and their respective stresses (equations 34 and 35) in the boundary condi-

tions, the reflection and transmission system for the scattering matrix 129 is the same
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equation 130, with the matrix APSV and BPSV changed to
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In the limit to the Biot theory, the system is determined by the boundary conditions

49 to 54. As in the impermeable contact, the reflection and transmission problem can

be derived from equations 133 and 134 by removing, in both matrices, columns four

and eight, which are related to the reflected and transmitted slow S-waves, respec-

tively. Also, rows seven and eight have to be removed. These rows correspond to the

continuity of fluid motion and fluid stresses in the tangential direction, which the Biot

theory does not define.
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5.3.2.1 Effect of the fluid viscous stress tensor

To examine the impact of the fluid viscous stress tensor in a permeable contact,

the numerical solution of the system 130 is computed by the Gauss-Jordan elimination

method, as in the impermeable case. The pseudocode for this solution is described in

section B.2 of Appendix B, too.

As in the case of SH-waves, the fluid viscous stress tensor also affects the scat-

tered waves in a permeable contact. Figure 27 shows the reflection and transmission

coefficients for an incident fast P-wave traveling across the permeable contact of the

Berea sandstone and the sintered glass beads porous medium. The amplitude of the

scattered fast waves shows the same behavior that the scattered waves in an imper-

meable contact (Figure 23) with a smaller magnitude. However, such a difference is

so small that is not appreciable. The reflected slow waves are one order of magnitude

larger than that in the impermeable case, whereas the transmitted slow waves have

almost the same values.

The relative differences are presented in Figure 28. Herein, the difference of the

scattered fast waves has the same magnitude as that in the case of the impermeable

contact (Figure 24). The relative differences for the reflected and transmitted slow

P-wave are one order of magnitude smaller.

For a fast S-wave incident at the permeable contact of a Berea sandstone and a

sintered glass beads porous medium, the reflection and transmission coefficients are in

Figure 29. In the high-frequency regime, the amplitude of the reflected and transmitted

fast S-waves is smaller than that of the scattered fast S-waves in an impermeable

contact (Figure 25). The reflected and transmitted fast P-waves are also smaller, but

their difference is not significant enough to be observed in the plots. The reflected slow

P- and S-waves show different behavior and a larger amplitude than the corresponding

waves in the impermeable case. The transmitted slow P and S-waves show the same

behavior with a smaller amplitude.
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Figure 27. Amplitude of the reflection and transmission coefficients for a fast P-wave incident at a
permeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower is a
sintered glass beads porous medium. The amplitudes are plotted as a function of incident angle, and
they are presented for the angular frequencies Ωi ·10−2 (blue), Ωi (red), Ωi ·101 (green), Ωi ·102 (yellow),
and Ωi · 103 (cyan).
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Figure 28. Relative difference of the reflection and transmission coefficients for a fast P-wave incident
at a permeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower is
a sintered glass beads porous medium. The differences are plotted as a function of incident angle, and
they are presented for the angular frequencies Ωi ·10−2 (blue), Ωi (red), Ωi ·101 (green), Ωi ·102 (yellow),
and Ωi · 103 (cyan).

The relative differences are presented in Figure 30. Herein, the difference of the

reflected fast P-wave is one order of magnitude smaller than that in the case of the

impermeable contact (Figure 26). The difference of the transmitted fast P-wave shows

a similar behavior. The difference for the reflected and transmitted fast S-waves are

one order of magnitude smaller. In contrast, the relative difference for the reflected

and transmitted slow P-waves are in the same order of magnitude.
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Figure 29. Amplitude of the reflection and transmission coefficients for a fast S-wave incident at a
permeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower is a
sintered glass beads porous medium. The amplitudes are plotted as a function of incident angle, and
they are presented for the angular frequencies Ωi ·10−2 (blue), Ωi (red), Ωi ·101 (green), Ωi ·102 (yellow),
and Ωi · 103 (cyan).
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Figure 30. Relative difference of the reflection and transmission coefficients for a fast S-wave incident
at a permeable contact of two porous media. The upper-medium is a Berea sandstone, and the lower is
a sintered glass beads porous medium. The differences are plotted as a function of incident angle, and
they are presented for the angular frequencies Ωi ·10−2 (blue), Ωi (red), Ωi ·101 (green), Ωi ·102 (yellow),
and Ωi · 103 (cyan).



77

Chapter 6. Conversion scattering in a stack of plane poroe-

lastic layers

This chapter analyzes the role of the fluid viscous stress tensor in a stack of planar

poroelastic layers. For that, I consider a down-going fast P- or S-wave incident at

the upper layer and travels across a stack of N plane layers. Both permeable and

impermeable cases are considered. The wave propagation across a stack of layers is

solved by the reflectivity method.

As in the case of single contact, the scattering is generated by various factors

different from the fluid viscous stress tensor. However, the relative difference of the

solution in the Biot and dCS theories (equation 97) allow us to separate the effect of

the fluid viscous stress tensor.

Section 6.1 presents the Kennett reflectivity method (Kennett, 1983) extended for

poroelastic layers. After that, the conversion scattering for the case of an incident

fast SH-wave is analyzed in section 6.2. Then, section 6.3 presents the analysis of

conversion scattering for incident P- and SV-waves.

6.1 The reflectivity method for a stack of plane poroelastic layers

To analyze the wave propagation across a layering medium, let us consider an

incident down-going fast P- or S- wave coming from the top of a stack of N plane

layers in-between of two porous half-spaces (Figure 31). In the lower half-space only

down-going waves exist, and the scattered waves in the upper half-space propagate

in the up-going direction. Although both reflected and transmitted waves are gener-

ated across the stack, I focus on analyzing transmitted waves at the lower half-space

because they travel once across the contacts.

The wave propagation across the layered medium is semi-analytically solved by

Kennett’s reflectivity method (Kennett, 1983). It uses the medium geometry, which

is homogeneous in the horizontal direction, to solve the wave propagation in the

frequency-wavenumber (ω−k) domain by applying a double Fourier transform. In such
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a domain, the governing equations for poroelastic wave propagation are represented

as a system of first-order equations.

Figure 31. Conversion scattering in a stack of N plane poroelastic layer in between of two porous half-
spaces. The terms  and n are the numbers of layers and contacts, respectively. The term h is the layer
thickness, and L is the total length of the stack.

6.1.1 Formulation for SH-waves in frequency-wavenumber domain

The governing equations for SH-waves in the ω − k domain are

∂

∂z





y

Ω−1ρ−1τyz



 =





0 β−1

�

βk2 − ω2
�

0





︸ ︷︷ ︸

SH





y

Ω−1ρ−1τyz





︸ ︷︷ ︸

bSH

. (135)

By applying the transformation bSH = DSHvSH, where DSH is the eigenvector matrix of

SH, the system 135 is diagonalized. For a homogeneous medium, it has the solution

vSH =


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T

. (136)

The elements S− and S− are, respectively, the up-going fast and slow S-waves, and S+

and S+ are the down-going fast and slow S-waves, respectively.
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6.1.2 Formulation for P- and SV-waves in frequency-wavenumber domain

For the case of P- and SV-waves, the governing equations are the 8 × 8 system
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. (137)

As in the case of SH waves, by applying the transformation bPSV = DPSVvPSV, where

DPSV is the eigenvector matrix of PSV, the system 137 is diagonalized. Then, for a

homogeneous medium, it has the solution

vPSV =





e−ωzqα−
︸ ︷︷ ︸

P−

, e−ωzqα−
︸ ︷︷ ︸

P−

, e−ωzqβb−
︸ ︷︷ ︸

S−

, e−ωzqβb−
︸ ︷︷ ︸

S−

eωzqα+
︸ ︷︷ ︸

P+

, eωzqα+
︸ ︷︷ ︸

P+

, eωzqβb+
︸ ︷︷ ︸

S+

, eωzqβb+
︸ ︷︷ ︸

S+





T

. (138)

The elements P− and P− are, respectively, the up-going fast and slow P-waves, and P+

and P+ are the down-going fast and slow P-waves, respectively.

6.1.3 Recursive solution for wave propagation across a stack of porous lay-

ers

Kennett’s reflectivity method (Kennett, 1983) shows that the wave propagation

across a stack can be computed by iteratively applying the plane wave solution for

each homogeneous layer (equations 136 and 138) and, then, the reflection and trans-

mission coefficients at each contact. It gives an exact solution in the ω − k domain.

For a down-going wave incident from the upper-medium, the solution for total re-
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flected (RD) and transmitted (TD) waves is first established at the contact of the last

layer (N) and the lower half-space as if it was the only interface. At this contact,

the amplitudes RD
N

and TD
N

are the reflection (rD
N
) and transmission (tD

N
) coefficients

for down-going waves incident at a single contact, which are developed in Chapter 5.

The terms rD and tD for the case of P- and SV-waves are 4 × 4 matrix, and they are

composed of the upper- and lower-left blocks of XPSV matrix (equation 129), respec-

tively. For the case of SH-waves, they are 2 × 2 matrices composed by the upper- and

lower-left blocks of XSH matrix (equation 106), respectively.

Then, the response of the layer N − 1 is added to the amplitudes RD
N

and TD
N
. For

that, the wavefields are propagated at the contact N−1, in between layers N and N−1,

using the plane wave solution in the homogeneous porous layer N. At the top of layer

N, the amplitudes of the total reflected and transmitted wavefields are

R′D
N
= ED

N
RD
N
ED
N
, (139)

T′D
N
= TD

N
ED
N
. (140)

ED
N

is a diagonal matrix that includes the phase effects due to propagating the wave-

fields from the bottom to the top of the layer  = N. For SH-waves, it is defined as

ED
N
= Diag

n

e
ωqN

β
hN , e

ωqN
β
hN
o

. (141)

For the case of P- and SV-waves, it is

ED
N
= Diag

n

e
ωqN

α
hN , e

ωqN
α
hN , e

ωqN
β
hN , e

ωqN
β
hN
o

. (142)

The elements qN


are the vertical slowness for the  = P-, P-, S-, S-waves in the

layer N, and hN is the layer thickness.

After that, the scattering of the wavefields at the contact N − 1 is included in the

total reflection matrix RD by

RD
N−1 = r

D
N−1 + t

U
N−1R

′D
N

�

 − rU
N
R′D

N

�−1
tD
N−1. (143)

In equation 143, the effects of the waves reflected at the contact n = N−1 are included
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by the term rD
N−1. The terms rU and tU are, respectively, the reflection and transmission

coefficients for up-going waves incident at a single contact. For the case of P- and

SV-waves, they are 4 × 4 matrix composed of the upper- and lower-right blocks of

XPSV matrix (equation 129), respectively. For the case of SH-waves, they are 2 × 2

matrices composed by the upper- and lower-right blocks of XSH matrix (equation 106),

respectively. The term
�

 − rU
N
R′D

N

�−1
describes all the interactions that exist between

the scattered waves at the contact n = N−1 and the scattered waves generated in the

stack below the contact. This term is usually replaced by a series expansion as

�

 − rU
N
R′D

N

�−1
≈  + rU

N
R′D

N
+ rU

N
R′D

N
rU
N
R′D

N
+ ... , (144)

where the identity matrix  accounts for the waves that travels once across the layer,

and rU
N
R′D

N
, rU

N
R′D

N
rU
N
R′D

N
, and higher order terms describes waves with multiple reflec-

tions in the layers (Kennett, 1983).

The scattering effects on the wavefields TD become

TD
N−1 = T

′D
N

�

 − rU
N−1R

′D
N

�−1
tD
N−1. (145)

It includes the direct transmission and the multiple reflections that are transmitted at

the bottom. The multiple reflections can be removed from TD by substituting the series

expansion 144 and retaining only the identity matrix.

The above steps are repeated iteratively until the layer 1 is added to the stack.

Thereafter, the matrices RD and TD give the total reflection and transmission ampli-

tudes for waves that come from the upper half-space and are scattered in the stack of

layers.

This methodology has been implemented in C parallelized by OpenMP. The pseu-

docode of this implementation is described in section B.3 of Appendix B.

6.2 SH-waves across a stack of layers

To analyze the effects of the fluid viscous stress tensor in a stack of porous layers,

first, let us consider the simplest case of a down-going fast SH-wave traveling across a
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stack of layers. The total transmission is given by TDd. Herein, d = [ASH, 0]T describes

the incident wavefield, and ASH is the amplitude of the incident fast SH-wave, which

for this case is taken as 1. In order to remove the influence of reverberations, I vanish

the multiple reflections in the calculus of TD.

The total transmitted fast SH-wave is given by the element (1,1) of TDd, and it can

be represented as
�

TDd
�

1,1
= TDSS

m=N
∑

m=1

e
ωqm

β
hm
, (146)

where TDSS is the amplitude of the transmitted fast SH-wave that includes all the scat-

tering effects. The term
∑m=N

m=1 e
ωqm

β
hm

describes the propagation of the wave across all

the layers; this is, the change in phase because of propagation and reduction in am-

plitude due to the intrinsic attenuation of the fast S-wave. Because the last one exists

even if the viscous stress tensor is not taken into account, I focus on the analysis of

TDSS .

Figure 32 shows the amplitude of a fast SH-wave that travels in the normal direc-

tion of a stack of ten, one hundred, and one thousand water-saturated sintered glass

beads porous layers with the same properties and impermeable surfaces. The layer

thickness is one millimeter in all the cases. So, the total thickness for the stack of ten,

one hundred, and one thousand are one centimeter, ten centimeters, and one meter,

respectively. The properties of porous media are in Table 1 of Appendix A. The mag-

nitude of TDSS , which includes all scattering effects, is presented in the left panel, and

the relative difference is presented in the right panel. Such a difference is computed

using the expression 97 in order to observe only the effect of the fluid viscous stress

tensor. Herein, the amplitude TDSS reduces inversely proportional to the number of

layers, and that reduction in amplitude is enhanced with the frequency. Around the

critical frequency Ωi, the amplitude for the case of one thousand layers shows a small

increment. It must exist in the low-frequency regime for all number of layers; however,

it is only noticeable for the case of one thousand layers around the critical angle.

Because the wave travels in the normal direction and all multiples are removed, the

amplitude TDSS corresponds to the product of transmission coefficients at each contact.

In this case of the same properties in each layer, the amplitude can be analytically
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solved. It is

TDSS =





1

1 − γ
ZτS
ZτS





N

(147)
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Figure 32. Total transmitted amplitude of a SH wave that travels across a stack of sintered glass beads
porous layers with same properties and impermeable surfaces. The frequency is normalized by the Biot
critical frequency Ωi.

Equation 147 is asymptotically expanded in terms of the end-member properties

and critical frequencies by applying the asymptotic forms of shear velocities (equations

44 and 45), γβ (equation 90), and γβ (equation 91). It leads to

|TDSS | ≈















































1

1−2 ω
Ωb

�

η0mf
ω
Ωβ

ω
Ωb

�1/2





N/2

, ω� Ωi.





1

1+ 2S

�

η0
2

mf
S−mf

ω
Ωβ

�1/2





N/2

, Ωi � ω� Ωβ.

(148)

The asymptotic form of |TDSS | shows that the amplitude decrement observed in the

high-frequency regime is dependent on the number of layers. In contrast, the layer

thickness is not part of the scattering effects. It is because the generation of slow

S-wave is causing this change in amplitude. Then, as it is dissipated very close to its

origin, it cannot interact with the waves in other contacts, even if the layer thickness

is in the order of the average pore size.

Although the reduction in amplitude is a consequence of the fluid viscous stress
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tensor, it is not directly controlled by the viscosity. Instead, is the ratio Ωβ = μ0/μf that

controls the magnitude of the effect. It means that a fluid with high viscosity saturating

a stiff porous rock may cause the same effect than a fluid with low viscosity within a

soft porous sample. Moreover, the end-member properties that affect the decrement

are the porosity (η0), tortuosity (S), and the fluid mass fraction (mf).

The effects of porosity and tortuosity are observed in Figure 33 where the stacks

of layers used in Figure 32 are now composed of Berea sandstone (properties in Table

2 of Appendix A), which has a smaller porosity and larger tortuosity than the sintered

glass beads porous medium. The change in amplitude shows the same behavior. It

reduces with frequency and number of layers; however, the decrement has a smaller

magnitude.
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Figure 33. Total transmitted amplitude of a SH-wave that travels across a stack of Berea sandstone
layers with same properties and impermeable surfaces. The frequency is normalized by the Biot critical
frequency Ωi.

Figure 34 shows the amplitude |TDSS | for a SH-wave that travels at different incident

angles. The stack is composed of one thousand Berea sandstone layers with the same

properties and impermeable surfaces. It shows that the behavior observed in the

normal direction is persistent for the case of non-normal incident angles; it is, the

amplitude decreases with frequency. Moreover, as the incident angle increases, the

amplitude decreases, and it achieves a relative difference larger than that observed in

a stack of sintered glass beads porous media (Figure 32).



85

0 20 40 60 80
0.5

0.6

0.7

0.8

0.9

1

Total transmitted S
I
 wave

|T
D S

IS
I|

Incident angle (°)

 

 

Ω
i
⋅10

−2
Ω

i
Ω

i
⋅10

1
Ω

i
⋅10

2
Ω

i
⋅10

3

0 20 40 60 80

0

0.1

0.2

0.3

0.4

0.5

Relative difference of |T
D

SISI
|

(|
T

D S
S

B
io

t|−
|T

D S
IS

I|)
/|

T
D S

S
B

io
t|

Incident angle (°)

Figure 34. Total transmitted amplitude of a SH-wave that travels across a stack of Berea sandstone
layers with same properties and impermeable surfaces. The amplitudes are plotted as a function of the
incident angle, and they are presented for the angular frequencies Ωi · 10−2 (blue), Ωi (red), Ωi · 101
(green), Ωi · 102 (yellow), and Ωi · 103 (cyan)

The effect of the fluid viscous stress tensor in a stack with change in porosity is

presented in Figures 35 and 36. For that, I consider a stack of one thousand Berea

sandstone layers with the same properties, except for the porosity that alternates

values of 0.2 and 0.21. The variation in porosity is small to reduce the scattering due

to a change in stiffness. Even so, the fluid viscous stress tensor effects are present

with this small change. For the case of impermeable interfaces, the amplitude |TDSS | is

presented in Figure 35. It shows that the amplitude of the total transmission reduces

with increasing frequency and incident angle. It is the same behavior in the case

of the same porosity in all layers. However, in the case of permeable surfaces, the

effect of the fluid viscous stress tensor is small (Figure 36). In this case, the total

transmission does not have a large variation with the frequency as the impermeable

case. It shows a change in the low- and high-frequency regimes, but the reduction in

amplitude related to scattering into the slow S-wave is not perceptible. It is because

the effect of the fluid viscous stress tensor, in this case, is two orders of magnitude

smaller than the case of impermeable interfaces, as the relative difference shows.

Thus, the reduction in amplitude due to the transition from low- to high-frequency

regime is the only observed in the plot.
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Figure 35. Total transmitted amplitude of a SH-wave that travels across a stack of layers with imper-
meable surfaces. The stack is composed of one thousand Berea sandstone layers with same properties,
except for the porosity that alternates values of 0.2 and 0.21. The amplitudes are plotted as a function of
the incident angle, and they are presented for the angular frequencies Ωi · 10−2 (blue), Ωi (red), Ωi · 101
(green), Ωi · 102 (yellow), and Ωi · 103 (cyan)
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Figure 36. Total transmitted amplitude of a SH-wave that travels across a stack of layers with permeable
surfaces. The stack is composed of one thousand Berea sandstone layers with same properties, except
for the porosity that alternates values of 0.2 and 0.21. The amplitudes are plotted as a function of the
incident angle, and they are presented for the angular frequencies Ωi · 10−2 (blue), Ωi (red), Ωi · 101
(green), Ωi · 102 (yellow), and Ωi · 103 (cyan)

6.3 P- and SV- waves across a stack of layers

This section analyzes the effects of the fluid viscous stress tensor on P- and SV-

waves across the stack of porous layers. In this case, the incident wavefields are

dP = [AP , 0, 0, 0]T for the fast P-wave, and dS = [0, 0, AS , 0]T for the fast S-wave. In

order to remove the influence of reverberation, the multiple reflections are neglected

in the calculus of TD. The total transmitted fast P- and SV-waves are given by the
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elements (1,1) and (3,1) of TDd, respectively. They can be represented as

�

TDdP
�

1,1
= TDPP

m=N
∑

m=1

e
ωqm

α
hm
, (149)

�

TDdS
�

3,1
= TDSS

m=N
∑

m=1

e
ωqm

β
hm
. (150)

The elements TDPP and TDSS are, respectively, the amplitude of the transmitted fast P-

and SV-waves. They include all the scattering effects.

Figure 37 shows the amplitudes |TDPP | and |TDSS | at different incident angles. The

stack is composed of one thousand Berea sandstone layers with the same properties

and impermeable surfaces. The amplitude |TDPP | shows a complete transmission in the

low-frequency regime. In the high-frequency regime, there is a reduction in amplitude

at the normal incident angle due to the generation of slow P waves, and the amplitude

increase with the angle. The relative difference with respect to the Biot value shows

that the effect of the fluid viscous stress tensor for the fast P-wave is small. It increases

with the incident angle, and it is in the order of 10−5. The amplitude |TDSS | in the

normal direction shows the same behavior than that in the SH-wave. At the non-normal

incident angle, the amplitude rapidly decays with increasing angle. It is because of the

scattering into P-waves. The effect of the fluid viscous stress tensor is in the same

order that in the SH case, as it is observed in the relative difference. This effect

reduces with the incident angle.

The effect of the fluid viscous stress tensor in a stack with change in porosity is

presented in Figures 38 and 39. For that, I consider a stack of one thousand Berea

sandstone layers with the same properties, except for the porosity that alternates

values of 0.2 and 0.21. The variation in porosity is small to reduce the scattering due

to a change in stiffness. Even so, the fluid viscous stress tensor effects are present with

this small change. For the case of impermeable interfaces, the amplitudes |TDPP | and

|TDSS | are presented in Figure 38. |TDPP | has an amplitude of 0.98 due to the scattering

waves. In this case, the effect of the fluid viscous stress tensor causes a reduction in

amplitude of two times the value in the case of the same porosity in all layers. It is in

the order of 10−5. The amplitude |TDSS | shows the same behavior as the case of the

same porosity in all layers.
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Figure 37. Total transmitted amplitude of P- and SV-waves that travel across a stack of Berea sandstone
layers with same properties and impermeable surfaces. The amplitudes are plotted as a function of the
incident angle, and they are presented for the angular frequencies Ωi · 10−2 (blue), Ωi (red), Ωi · 101
(green), Ωi · 102 (yellow), and Ωi · 103 (cyan)

Figure 39 shows the amplitudes |TDPP | and |TDSS | in the case of permeable surfaces.

The amplitude |TDPP | has a larger reduction than in the impermeable case; however,

the effect of the fluid viscous stress tensor is three orders of magnitude smaller. The

amplitude |TDSS | shows a large value that indicates a low scattering into the other

process. It is completely different than in the case of impermeable surfaces. The

effect of the fluid viscous stress tensor increases with the frequency and reduces with

the incident angle, and it is in the order of 10−5. It is four orders of magnitude smaller

than in the case of impermeable surfaces.
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Figure 38. Total transmitted amplitude of P- and SV-waves that travel across a stack of layers with imper-
meable surfaces. The stack is composed of one thousand Berea sandstone layers with same properties,
except for the porosity that alternates values of 0.2 and 0.21. The amplitudes are plotted as a function of
the incident angle, and they are presented for the angular frequencies Ωi · 10−2 (blue), Ωi (red), Ωi · 101
(green), Ωi · 102 (yellow), and Ωi · 103 (cyan)
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Figure 39. Total transmitted amplitude of P- and SV-waves that travel across a stack of layers with per-
meable surfaces. The stack is composed of one thousand Berea sandstone layers with same properties,
except for the porosity that alternates values of 0.2 and 0.21. The amplitudes are plotted as a function of
the incident angle, and they are presented for the angular frequencies Ωi · 10−2 (blue), Ωi (red), Ωi · 101
(green), Ωi · 102 (yellow), and Ωi · 103 (cyan)
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Chapter 7. Amplitude decrease due to conversion scat-

tering as a quality factor

In previous chapters, the fluid viscous stress tensor effects are analyzed from the

amplitude of scattered waves. This chapter examines those effects in terms of the

quality factor Q. This is done by analyzing the reduction in amplitude due to the

conversion scattering into the slow S-wave for a wavefield traveling across a stack

of plane layers, as per amplitude computed in chapter 6. In order to eliminate the

conversion scattering due to contrast in physical properties, a stack composed of plane

layers with the same properties and impermeable contacts is considered. In addition,

to avoid mode conversion to P waves, the analysis is performed for SH waves. In

this case, the generation of fluid vorticity at each contact, directly related to the fluid

viscous stress tensor, is the only process affecting the wave propagation.

Section 7.1 gives the framework to relate the reduction in amplitude of the total

transmitted wave, which has traveled across a stack of plane poroelastic layers, and

the quality factor. Then, based upon that, section 7.2 computes the values of Q for

an SH-wave that has traveled across the stack. Finally, in section 7.3, the values

of Q computed from the direct transmissions are contrasted with the quality factor

computed in the Biot theory with the JKD model.

7.1 Quality factor from the transmission amplitude

The reduction in amplitude of a direct wave that travels across a stack of porous

layers can be interpreted as a spatial attenuation factor α. They are related by

T = e(−αL), (151)

where T is the amplitude of a wave, of unitary amplitude at the origin, that has traveled

across the stack of layers of the length L.

The spatial attenuation factor α and the quality factor Q are related by

1

Q
= 2

αV

ω
, (152)
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where V is the phase velocity of the wave (Mavko et al., 2009).

Substituting equations 146, 149, and 150 for the amplitude of direct transmitted

waves in equation 151, and using the relation 152, Q is defined as

1

Qw
= 2

mg (qw)

Re (qw)
︸ ︷︷ ︸

1
Q1w

−
2

L

1

ωRe (qw)
n
�

|Tw|
�

︸ ︷︷ ︸

1
Q2w

, (153)

where the sub-index w labels the primary wave field being analyzed, which could be P,

SV or SH. Imag and Re are the imaginary and real parts of its argument, the slowness

qw. n and | · | stand for the natural logarithm and the magnitude of its argument,

respectively. In the right hand side of equation 153, the term Q1w represents the

quality factor that describes the amplitude decay due to intrinsic losses implicit in the

theoretical framework. This factor affects the wave even in a homogeneous medium.

Q2w represents the contribution to the quality factor of the reduction in amplitude due

to conversion scattering.

In next sections, Qw is computed in the Biot theory without and with the JKD model,

and in the dCS theory. They are, respectively, identified by the super-indices (Biot),

(JKD), and (dCS).

7.2 Quality factor of an SH-wave traveling across a stack of layers

This section analyzes the quality factor 153 in the dCS theory, Q(dCS)SH , for the case of

a normal incident SH-wave that travels across a stack of plane poroelastic layers with

the same properties, the same thickness (h), and impermeable contacts. This case is

helpful because Q2(dCS)SH is vanishing if the fluid viscous stress tensor is not taken into

account. Therefore, in this case, Q2(dCS)SH manifests the attenuation due to vorticity

diffusion described with the viscous stress tensor. Additionally, since all the layers

has the same properties, Q1(dCS)SH is the quality factor of a homogeneous poroelastic

medium, which is already described in section 2.4.1 of Chapter 2.

Because the propagation is in the normal direction, qβ = 1/β, and the travel dis-

tance is L = hN, where N is the number of layers in the stack. Then, by substituting

the expression 147 for TSH in equation 153, the inverse of Q2(dCS)SH becomes
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1

Q2(dCS)SH

=
2

h

Re
�

β
�

ω
n

��

�

�

�

1 − γ
ZτS

ZτS

�

�

�

�

�

. (154)

In contrast with the analysis of amplitude presented in Chapter 6, which shows

independence on the layer thickness, equation 154 shows that the Q2(dCS)SH is a func-

tion of the ratio between the wavelength (Re
�

β
�

/ω) and the layer thickness h, and

the transmitted wave amplitude in a single contact. Neither the stack length nor the

number of layers affects Q2(dCS)SH in this case.

The independence of Q2(dCS)SH on the number of layers and the stack length is ob-

served in Figure 40. It shows the inverse of quality factors Q
(dCS)
SH (left panel) and

Q2(dCS)SH (right panel) for the case of the stacks of ten, one hundred, and one thousand

water-saturated sintered glass beads porous layers with the same properties, 1 mil-

limeter layer thickness, and impermeable contacts. The properties of porous media

and saturating-fluid are, respectively, in Tables 1 and 3 of Appendix A. Although the

amplitude TSH decreases with the number of layers (see Figure 32), in Figure 40 is

observed that the factor Q2(dCS)SH is the same in the three stacks, as per equation 154.

Herein, the values of 1/Q2(dCS)SH are two orders of magnitude smaller than 1/Q(dCS)SH ,

showing that Q1(dCS)SH controls the quality factor in this case.
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Figure 40. Variation of the inverse of quality factors Q(dCS)SH
and Q2(dCS)SH

with the number of layers. The
quality factors are computed for a stack composed of ten, one hundred, and one thousand porous layers
with the same properties and impermeable surfaces.
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Furthermore, Figure 41 shows the increment on values of inverse quality factors

with reducing the layer thickness h. It presents the inverse quality factors Q(dCS)SH and

Q2(dCS)SH for the stacks of one hundred layers with layer thickness of h= 1mm, 0.1 mm

and 23 μm. These thicknesses are 43.5, 4.3 and 1 times the average pore-throat size

Λ. Herein, as the layer thickness reduces, the effect of Q2(dCS)SH on Q
(dCS)
SH increases and

becomes more significant than that of Q1(dCS)SH .
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Figure 41. Variation of the inverse of quality factors Q
(dCS)
SH

and Q2(dCS)SH
with the layer thickness. The

quality factors are computed for a stack composed of one hundred porous layers with the same properties
and impermeable surfaces. The layer thickness in each stack are h = 43Λ, h = 4.3Λ, and h = Λ.

To understand the controlling factors affecting Q2(dCS)SH , the expression 154 is ex-

panded in terms of frequency by substituting the approximations for the fast S-wave

velocity (equation 44) and the amplitude TSH (equation 148). Then, Q2(dCS)SH is approx-

imated as

1

Q2(dCS)SH

≈
1

h

βc

ω
×























n
�

1 − 2 ω
Ωb

�

η0mf
ω
Ωβ

ω
Ωb

�1/2�

, ω� Ωi.

1
Ç

1− mfS
ln
�

1 + 2
S

�

η
0
2

mf
S−mf

ω
Ωβ

�1/2�

, Ωi � ω� Ωβ.

(155)

The equation 155 shows that, in the high-frequency regime, the value of Q2(dCS)SH

depends on the porosity, tortuosity, fluid mass fraction and is weighted by the factor

(ω/Ωβ)1/2. In the low-frequency regime, the factor Q2(dCS)SH approach to zero with neg-

ative values. Because of that, the plot of Q2(dCS)SH in log scale only shows values in
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the high-frequency regime. The negative values are not an unphysical behavior. They

are a consequence of a negligible increment on amplitude TSH in the low-frequency

regime.

As equation 155 shows, the quality factor Q(dCS)SH and Q2(dCS)SH are affected by the

ratio μ0/μf = Ωβ. This effect is observed in Figures 42 and 43. Figure 42 shows the

quality factors for three stacks of one hundred porous layers saturated with fluids of

different viscosity. All layers have the same properties and correspond to the sintered

glass beads porous medium. The saturating fluid is an idealized fluid with the prop-

erties of water, except for the shear viscosity which takes values of μf = 1.5 × 10−3,

1.5 × 10−2, and 1.5 × 10−1 Pa·s. Because Ωi change with viscosity, in this case, the

angular frequency ω is taken instead of the normalized frequency. Q(dCS)SH and Q2(dCS)SH

show the same values for μf = 1.5 × 10−3 and μf = 1.5 × 10−2 except for a shift on

the peak frequency. For the case of μf = 1.5 × 10−1, the crossover frequency Ω†β is

achieved. It causes a higher value in Q
(dCS)
SH due to the Q1(dCS)SH . However, the change

on Q2(dCS)SH is not apparent.
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Figure 42. Variation of quality factors Q(dCS)SH
and Q2(dCS)SH

with the shear viscosity of the fluid. The quality
factors are computed for a stack composed of one hundred porous layers with the same properties,
impermeable surfaces, and layer thickness of h = Λ. The saturating fluids have the properties of water,
except the shear viscosity that takes the values 1.5 × 10−3, 1.5 × 10−2, and 1.5 × 10−1 Pa·s.

To observe the effect of μ0, Figure 43 plots the quality factors for three water-

saturated stacks of sintered glass beads porous layers with the same properties, im-

permeable surface, and different μ0 in each stack. The values of the shear modulus

of the frame are μ0 = 3.6 GPa, 360 MPa, and 36 MPa. Such a variation is an ideal-
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ized case where all properties are fixed except for μ0. Figure 155 shows that Q(dCS)SH

increase with the reduction in μ0. It is because of Q1(dCS)SH that, for the lower values

of μ0, is being affected by the saturated-frame relaxation peak at Ωβ. In contrast, the

value of Q2(dCS)SH is slightly affected by the change on μ0.
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Figure 43. Variation of quality factors Q
(dCS)
SH

and Q2(dCS)SH
with the shear modulus of the frame. The

quality factors are computed for three different stacks composed of one hundred porous layers, with
impermeable surface and the same properties, except the shear modulus of the solid frame that takes
the values 3.6 GPa, 360 MPa, and 36 MPa. The layer thickness is h = Λ.

7.3 Comparison of quality factor due to conversion scattering with that in

the Biot theory with JKD model

Since JKD model aims to account for the effect of the development of VBLs in the

Biot theory, this section contrasts its quality factor with Q2(dCS)SH , which accounts for

the generation of fluid vorticity in the dCS theory. For the case of a stack of plane

porous layers with the same properties and impermeable contacts, in the Biot theory,

with or without JKD model, the SH-waves do not suffer conversion scattering across the

interfaces of the stack. So, in this theory, the quality factor is given only by Q1(Biot)SH or

Q1(JKD)SH if the dynamic permeability is included.

Even though the quality factor in the Biot theory with the JKD model, Q(JKD)SH , has

only the term Q1(JKD)SH in this case, the dynamic permeability effect lumped within it

can be extracted out as
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1

Q1′(JKD)SH

=
1

Q1(JKD)SH

−
1

Q1(Biot)SH

, (156)

where Q1(Biot)SH is the quality factor in the Biot theory without the JKD model. Q1′(JKD)SH

can be viewed as the contribution of the development of VBLs to the quality factor. So

it can be contrasted with Q2(dCS)SH .

The values of Q1′(JKD)SH and Q2(dCS)SH are compared in Figure 44. Q2(dCS)SH is plotted for

three different layer thicknesses, whereas Q1′(JKD)SH is plotted only once because it is

the same in the three cases. Figure 44 shows that both quality factors appear only in

the high-frequency regime. It is because the vorticity, so the VBLs, are only developed

in that regime. It is observed that Q1′(JKD)SH is close to Q2(dCS)SH in the case that the layer

thickness is the same that the average pore-throat size (h = Λ = 23 μm). It means that

the JKD model accounts for the specific case where the fluid vorticity is developed at

each pore as if they were completely closed.
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Chapter 8. Discussion and conclusions

8.1 Proper representation of viscous boundary layers in a porous medium

Viscous boundary layers (VBLs) are the manifestation of the vorticity of Newtonian

fluids (Landau and Lifshitz, 1987). In porous media, any relative motion of the fluid

develops VBLs at pore interfaces. Although the fluid vorticity is an independent process

in Newtonian fluids, equation 38 shows that the fluid shear motion in the Biot theory

is not an independent process. Instead, it is proportional to the solid-frame motion.

This behavior does not change even after Biot’s viscodynamic correction factor (Biot,

1956b) or the dynamic permeability of Johnson et al. (1987) is introduced to account

for the emergence of viscous boundary layers (VBL). It is because Biot (1956b) and

Johnson et al. (1987) attempt to capture the dissipation within the VBLs by altering

the drag force resulting from the Darcy term in the equations of motion. However, a

complete description of it would require including the frictional force within the fluid

that counteracts the deformation restoration through viscous friction. This force is

precisely generated through the fluid viscous stress tensor, which is neglected.

Other authors have worked on incorporating the fluid viscous stress tensor into the

poroelastic theory. Applying the mixture theory, Katsube (1985) and Katsube and Car-

roll (1987a, 1987b) include the viscous stress tensor to the constitutive relations of

a porous medium. Katsube shows the equivalences with the Biot theory in the limit

of vanishing the viscous stress tensor and concludes that the effects of that tensor

are captured by the Darcy mobility term of the Biot theory. Pride et al. (1992) de-

scribe porous media by applying the volume averaging method, as in the dCS theory.

However, they neglect the viscous stress tensor from their formulation under the as-

sumption that its effect is negligible. Therefore, Pride et al. conclude that the viscous

forces are fully characterized by the Darcy mobility term of the Biot theory, as Katsube

did. This is plausible at a single heterogeneity where the effect is small, as Chapter 5

shows. However, this assumption is not valid in heterogeneous media where the gen-

eration of fluid vorticity at each contact causes a considerable reduction in amplitude

of the waves, as it is shown in Chapter 6.

Sahay (2008) analyzes the behavior of S-waves in the dCS theory, which retains

the viscous stress tensor in the constitutive relation. Here it is shown that account-



99

ing for that tensor allows describing the fluid vorticity as an independent process, the

slow S-wave, as it was pointed out since the beginning of the dCS theory. The de-

scription of the fluid vorticity as a separate process shows a negligible effect on the

wave propagation in infinite homogeneous porous media. However, this is not the

case for heterogeneous media. From the problem of a porous half-space in contact

with a solid half-space presented in Chapter 4, it is shown that the lack of freedom of

the fluid vorticity impedes the proper description of the fluid motion at the interface.

While the Biot theory predicts an unphysical relative fluid motion at the contact, the

analysis in Chapter 4 shows that the mode conversion into the slow S-wave generates

an opposite movement of the fluid, which counteracts that caused by the fast S-wave

to ensure that the no-slip boundary condition holds.

Moreover, from the analysis of SH waves across a stack, it is shown that the fast

S-wave attenuation predicted with the Johnson et al. (1987) dynamic permeability

corresponds with the scattering into the slow S-wave at each pore, as it was shown in

randomly inhomogeneous porous media (Müller and Sahay, 2011b). However, it is not

the general case; it only happens in the case of layers with impermeable surfaces. If

the interfaces are permeable, the effect of slow-S wave scattering is smaller, causing

less attenuation. It means that the JKD model implies that the pores are not connected

in the direction of propagation. Additionally, for the case of non-normal angles, the

drop in amplitude is larger; thus, its attenuation must increase. Also, the scattering

into the slow S-wave causes a minor decrease in amplitude of the P- and SV-waves,

and that drop is angle-dependent. Therefore, the attempt to capture the development

of VBLs by a single term in the equation of motion is incomplete in a general case of

heterogeneous media because it cannot capture all these effects.

It demonstrates the importance of considering the fluid vorticity as an independent

process, the slow S-wave, that properly represents the development of VBLs at the

contact of discontinuities.

8.2 Implications of fluid viscous stress tensor on wave propagation across

discontinuities

The slow S-wave does not exist when the fluid viscous stress tensor is not part of

the constitutive equations. Hence propagating waves cannot be converted into this
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diffusion wave. By contrasting the solution of reflection and transmission problem in

the dCS and Biot theories, I find that the mode conversion into the slow S-wave not

only guarantees the no-slip condition at discontinuities, as it is shown in Chapter 4,

but it also affects the amplitude of scattered waves.

The reflection and transmission solution for fast SH-waves incident at an imperme-

able contact of two porous media with the same properties shows a change in the

amplitude of the scattered fast SH-waves, and such a change is related to the fluid

viscous stress tensor. It is because the relative fluid motion in the tangential direction

vanishes at the contact, as the no-slip conditions define. Thus, there is no strain rate

in the fluid, and, consequently, the viscous forces are null at the contact. It generates

a change in the total stress, which the fast SH-wave causes in a porous medium, that

induces scattering in the incident wave, reducing its amplitude and generating a re-

flected fast S-wave. To balance this perturbation in amplitude, which also affects the

energy carried by the fast S-waves, a reflected and a transmitted slow S-wave are gen-

erated at the contact. Although it is an idealized case, it shows that the fluid viscous

forces affect fast waves that travel across heterogeneities.

The effect of the fluid viscous stress tensor is not constrained to the SH-waves, but

this effect is present in the P- and SV-waves, too. The impact in SV-waves is compara-

ble to that in the SH-waves. In contrast, it is orders of magnitude smaller in the incident

P-waves. Even though it cannot be just ignored without analyzing the implications. As

it is shown in Chapter 6, the generation of the slow S-wave at multiple contacts, i.e.,

a stack of layers, enhances the effect of the fluid viscous stress tensor. Although it

is smaller than the effect of change in elastic properties, it must be considered in the

case of highly heterogeneous porous media.

Because the fluid viscous forces are linked to the fluid motion, a perturbation on

the fluid mobility must generate a scattering of the waves, not only the change in

elastic properties. It is observed in the case of waves that travel across a stack of

porous media with permeable contacts and a slight variation in porosity. Herein, the

amplitude of the transmitted waves shows a reduction because of the scattering at

each interface. Although the change in porosity also affects the density, the fluid

viscous stress tensor influences the amplitude of the scattered waves.
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Additionally, the case of impermeable surfaces, where the relative fluid motion

vanishes, has substantially affected the scattering even if all media have the same

properties. It is the fast SV-waves the more affected by the scattering (see Figure

21). The SV-waves incident at the impermeable contact is strongly scattered as the

incident angle increase. It causes that in a stack of layers with impermeable surfaces,

the fast SV-waves can not be transmitted at middle and high incident angles, even if

the material properties are very similar. It is illustrated in Figure 37, where, above 30

degrees, the fast SV-wave cannot be transmitted across a stack of one thousand Berea

sandstone layers. This behavior is not accounted to the fluid viscous stress tensor

because it is predicted even in the Biot theory. However, to my best knowledge, it has

not been reported before.

8.3 Relevance on seismic exploration

The results presented in this thesis have shown that the fluid viscous stress tensor

affects the wave propagation mainly at or above the Biot critical frequency. Therefore,

whenever the center frequency of a pulse is comparable or exceeds the Biot critical

one, this effect must be taken into account. Because the critical frequency is deter-

mined essentially by the kinematic viscosity (νf) divided by the permeability (κ), the

effects of viscous stress tensor matter in different scenarios depending on fluid and

porous frame properties. It is the laboratory setting where this poroelastic effect has

its primary importance since most wave propagation experiments are carried out with

ultrasonic transducers. Then, more often than not, the pulse frequency exceeds the

critical frequency for porous rocks saturated with water/oil. Moreover, it is not uncom-

mon in borehole acoustics that broadband sonic pulses probe a sequence of highly

permeable layers. In such a scenario, the pulse frequency may become comparable to

the critical frequency, and then, these effects come into play.

Furthermore, the highly heterogeneous media needed to observe a significant ef-

fect of the fluid viscous stress tensor are not hard to find in the subsurface. As it is

shown in Chapter 6, even a tiny change in porosity can induce a difference in the

scattering waves. These variations are common in sedimentary basins where the

compaction causes porosity gradients, as well as the change in erosion/deposition

rates can affect the porosity. Also, the case of an impermeable surface is not uncom-
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mon. It appears at macro-scale in the sandstone formations with interlayered shale

sequences. Also, the cementation/compaction can dispose of the clay content such

that there are impermeable zones at the scale of a few pores (North, 1985).

8.4 Conclusion

This thesis analyzes the role of the fluid viscous stress tensor in the poroelastic

wave propagation across discontinuities. Such discontinuities include changes in elas-

ticity, porosity, or fluid mobility (permeable or impermeable contacts). It is achieved

by (i) solving the reflection and transmission problem of incident fast waves at a planar

contact and (ii) computing the response of a stack of plane poroelastic layers with the

reflectivity method. To separate the effects of the fluid viscous stress tensor from that

generated without including this tensor, I contrast the results in the dCS theory with

those in Biot theory, which does not contain the fluid viscous stress tensor.

This analysis shows that the missing viscous stress tensor, in the Biot theory, causes

a relative fluid motion at the contact that violates the no-slip boundary condition of a

viscous fluid. This motion persists even after the dynamic permeability (JKD theory) is

incorporated. In contrast, by including the fluid viscous stress tensor into the poroelas-

tic constitutive relations, as it is in the dCS theory, the relative fluid motion vanishes at

the contact. This is because at the boundary, a slow S-wave, which manifests the fluid

vorticity at macro-scale, is generated through mode conversion. This diffusion wave

induces a relative motion of the fluid at the contact, which counteracts the movement

caused by the solid-frame field.

Along with the proper representation of the no-slip condition, the fluid viscous stress

tensor induces a change in the amplitude of the scattered waves. Such effect is more

evident in the S-waves, but it also exists in the P-waves. This effect shows that the

development of fluid vorticity is not adequately captured by a single term, as the

dynamic permeability. Still, it requires considering all the consequences involved in

the scattering. It highlights the need to describe fluid vorticity as an independent

process. It also implies that previous implementations of the viscous boundary layer

are not fully complete. Because the slow S-wave, which manifests the fluid vorticity

as an independent process, can only be described with the fluid viscous stress tensor,

the poroelastic description must include that tensor.
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Appendix A. Poroelastic properties

The poroelastic properties used to compute reflection-transmission coefficients and

the response of a stack of porous layers correspond with those of a sintered glass

beads porous medium and a Berea sandstone. The physical properties of the former

are reported by Bouzidi and Schmitt (2012). They are in Table 1.

Table 1. Physical properties of the sintered glass beads porous medium (Bouzidi and Schmitt, 2012).
The Biot critical frequency Ωi is calculated considering water as the saturating fluid.

Property Value Unit
Mineral Bulk modulus (Ks) 32.9 GPa
Mineral Shear modulus (μs) 23.1 GPa
Frame Bulk modulus (K0) 4.1 GPa
Frame Shear modulus (μ0) 6.9 GPa
Solid density (ρs) 2440 Kg/m3

Unperturbed porosity (η0) 0.39 -
Permeability (κ) 1.99 × 10−11 m2

Tortuosity (S) 1.44 -
Biot critical frequency
for water saturation (Ωi) 15 898 rad/s

The Berea sandstone is a well-characterized rock used in numerical and experimen-

tal studies. Its physical properties are presented in Table 2, and they are as reported

by Kuteynikova et al. (2014).

Table 2. Physical properties of the Berea sandstone ( Kuteynikova et al., 2014). The Biot critical fre-
quency Ωi is calculated considering water as the saturating fluid.

Property Value Unit
Mineral Bulk modulus (Ks) 43.5 GPa
Mineral Shear modulus (μs) 31.7 GPa
Frame Bulk modulus (K0) 7 GPa
Frame Shear modulus (μ0) 4.2 GPa
Solid density (ρs) 2650 Kg/m3

Unperturbed porosity (η0) 0.2 -
Permeability (κ) 6 × 10−13 m2

Tortuosity (S) 3 -
Biot critical frequency
for water saturation (Ωi) 114 400 rad/s
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The properties for the saturating fluid are in Table 3.

Table 3. Physical properties of the saturating fluid.

Property Value for water Unit
Fluid Bulk modulus (Kf) 2.25 GPa
Fluid Shear viscosity (μf) 10−3 Pa·s
Fluid Bulk viscosity (ξf) 3×10−3 Pa·s
Fluid density (ρs) 1000 Kg/m3
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Appendix B. Pseudocodes

This chapter presents the pseudocodes of functions used to compute the results

discussed in the thesis. Section B.1 describes the function used to compute the dis-

persion relation of the poroelastic waves. Section B.2 shows the pseudocode for the

reflection and transmission coefficients. After that, the pseudocode for the poroelastic

reflectivity method is in section B.3.

B.1 Dispersion relations

The dispersion relations for the poroelastic media are computed with the function

DispRel (algorithm 1). It calculates the compressional and shear velocity matrix. Then,

the velocities are computed with the eigenvalues formulas. As a side result, this func-

tion returns the eigenvector matrix for compressional and shear velocity matrices. The

pseudocode 1 is valid for velocities in the dCS and Biot theories.

Algorithm 1: Pseudocode of DispRel function for computing the dispersion
relation and associated eigenvector matrix of a porous medium.
1 Function DispRel(Propertes, ƒ reqency):

Input: Medium properties and frequency.
Output: Poroelastic velocities and associated eigenvectors.
/* Computation of K, mu, nu, xi, rho, and omega matrices. */

2 SET K = CalculateK(Propertes) ;
3 SET mu = CalculateMu(Propertes) ;
4 SET nu = CalculateNu(Propertes) ;
5 SET xi = CalculateXi(Propertes) ;
6 SET rho = CalculateRho(Propertes) ;
7 SET Omega = CalculateOmega(Propertes, ƒ reqency) ;

/* Computation of the alpha and beta velocity matrices. */
8 SET alpha = [rho * Omega ]−1 [K - ∗ ƒ reqency * xi ] ;
9 SET beta_Matrix = [rho * Omega]−1 [mu - ∗ ƒ reqency * nu ] ;

/* Computation of velocities and associated eigenvectors. */
10 SET vP=Eigenvalues(alpha) ;
11 SET vS=Eigenvalues(beta) ;
12 SET RP=Eigenvectors(alpha) ;
13 SET RS=Eigenvectors(beta) ;
14 SET V=[vP, vS] ;
15 return V, RP, RS
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The function DispRel is coded in MATLAB, composed of 117 lines of code.

B.2 Reflection and transmission coefficients

For the case of the reflection and transmission coefficients, the pseudocode that

describes their solution is in algorithm 2. It is valid for permeable and impermeable

contacts, and it works for both dCS and Biot theories. This function receives the poroe-

lastic properties of each porous half-space, and it returns a 8 × 8 matrix that contains

the reflection and transmission coefficients for all incident waves.

Although the analytical solution for incident fast SH waves is developed, the pseu-

docode 2 is used to compute the solution for all kinds of incident SH-waves. In this

case, the function returns a 4 × 4 matrix.

Algorithm 2: Computation of the reflection and transmission coefficients, at
the contact of two porous half-spaces, with respect to the angle and frequency
of the incident wave.
1 Function RTCoeff(Med1, Med2, nge, ƒ reqency):

/* Media1 and Media2 contain the properties of each porous
media. */

Input: Properties of porous media, incident angle, and frequency.
Output: Reflection and transmission coefficients.
/* Computation of velocities (V) and the associated

eigenvectors (RP and RS). */
2 CALL DispRel(Med1, ƒ reqency) RETURNING V_1, RP_1, RS_1 ;
3 CALL DispRel(Med2, ƒ reqency) RETURNING V_2, RP_2, RS_2 ;

/* Computation of displacements and stresses */
4 SET displacements= CalculateDisplacements(Media1, V_1, RP_1, RS_1,

Media2, V_2, RP_2, RS_2, nge) ;
5 SET stresses= CalculateStresses(Media1, V_1, RP_1, RS_1, Media1, V_2,

RP_2, RS_2, nge) ;
/* Set up the coefficient matrices for the scattered (A) and

incident (B) waves. */
6 SET A=CalculateA(displacements, stresses) ;
7 SET B=CalculateB(displacements, stresses) ;

/* Solution of reflection and transmission coefficients. */
8 SET rt = Gauss_Jordan_Solution(A,B) ;
9 return rt

The function RTCoeff is coded in MATLAB. It is composed of 119 lines of code for the

SH-wave case and 178 lines for the P- and SV-waves case. Both cases are available to
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compute the solution for permeable and impermeable contacts.

B.3 Poroelastic reflectivity method

The pseudocode for the poroelastic reflectivity method is presented in algorithm 3.

This function is used to compute the case of poroelastic layers with permeable and

impermeable contacts in both Biot and dCS theories.

The algorithm 3 is defined for P and SV-waves. Even so, it is valid for the SH-waves,

for which the reflection and transmission coefficients (rt) are a 4 × 4 matrix. Thus, the

sub-matrices rD = rt(1:2, 1:2), tD = rt(1:2, 2:3), rU = rt(3:4, 2:4), and tU = rt(1:2, 3:4)

are 2 × 2 matrices for the SH-waves.

The function Reflectivity is coded in MATLAB and C language. MATLAB code com-

prises 175 lines for the SH-waves and 236 lines for P- and SV-waves. The function

in C language contains 155 lines of code for the SH-waves and 223 lines for P- and

SV-waves. Moreover, the DispRel and RT functions are implemented in C language as

a part of the Reflectivity code.
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Algorithm 3: Computation of the reflectivity method for a stack of N plane
porous layers.
1 Function Reflectivity(Stck, nge, ƒ reqency):

/* Stack is an array that contains the N properties,
velocities, eigenvectors, and thickness of each layer. */

Input: Properties of the stack, incident angle, and frequency.
Output: Total reflection and transmission amplitudes.

2 SET nl= number of layers in the stack ;
3 SET h=layer thickness ;

/* R/T coefficients in the lowest contact. */
4 CALL RTCoeff(Stck(nl-1), Stck(nl), nge, ƒ reqency) RETURNING rt ;

/* Sub-matrices of the 8X8 rt matrix. */
5 SET rD = rt(1:4, 1:4) ;
6 SET tD = rt(4:8, 1:4) ;
7 SET rU = rt(4:8, 4:8) ;
8 SET tD = rt(1:4, 4:8) ;

/* Computation of the total reflection (RD) and transmission
(TD) amplitudes. */

9 for yer ← nl−1 TO 1 STEP −1,  do
10 SET ED = CalculatePhase(Stck.V(), h) ;
11 SET R’D = ED*rD*ED ;
12 SET T’D = tD*ED ;
13 CALL RTCoeff(Stck(l-1), Stck(), nge, ƒ reqency) RETURNING rt;
14 SET rD = rt(1:4, 1:4) ;
15 SET tD = rt(4:8 , 1:4) ;
16 SET rU = rt(1:4 , 4:8) ;
17 SET tD = rt(4:8 , 4:8) ;
18 SET RD = rD + tU*R’D*[ I - rU*R’D ]*tD ;
19 SET TD = T’D*[ I - rD*R’D ]* tD ;

20 end for ;
21 return RD,TD ;
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