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lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo o titular de los

Derechos Autor.

CICESE © 2022, Todos los Derechos Reservados, CICESE





Tesis defendida por

Ricardo Miguel Ruvalcaba Briones

y aprobada por el siguiente Comité
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Abstract of the thesis presented by Ricardo Miguel Ruvalcaba Briones as a partial requirement to obtain
the Master of Science degree in Nanosciences.

First principles studies applied to Mn-Ga alloys: magnetism and surface reconstructions

Abstract approved by:

Dr. Jonathan Guerrero Sánchez

Thesis Director

This thesis presents the results of an extensive set of first-principles calculations via Density Functional
Theory to characterize the structural, electronic, and magnetic properties of the bulk and (001) surface
structures of three Mn-Ga alloys: α-Mn, D022-Mn3Ga, and L10-MnGa. Their bulk properties were
characterized, and their most stable surface reconstructions were determined. The first-ever theoretical
models for the complex α-Mn surfaces are proposed, and the behavior of the magnetic moments at the
most stable surface is discussed. Experimental and theoretical STM images of the row- and square-
reconstructions are compared and are found in excellent agreement. Also, the role of C diffusion on
the magnetic enhancement of D022-Mn3Ga surfaces was examined. It is discussed in terms of the
surface effect, the magnetoelastic effect, the superexchange interaction, and the Density of States of
each atom. Finally, two 1× 2 Ga-terminated surface reconstructions of L10-MnGa were studied. Their
magnetic properties are discussed in terms of the surface effect, the Densities of States of each atom,
and magnetization density. It was determined that the Cu-substituted reconstruction could behave like
a magnetic Single-Atom Alloy Catalyst.

Keywords: Density Functional Theory, surface reconstructions, electronic structure, magnetic
anisotropy
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Resumen de la tesis que presenta Ricardo Miguel Ruvalcaba Briones como requisito parcial para la
obtención del grado de Maestro en Ciencias en Nanociencias.

Estudios de primeros principios aplicados a aleaciones de Mn-Ga: magnetismo y
reconstrucciones superficiales

Resumen aprobado por:

Dr. Jonathan Guerrero Sánchez

Director de tesis

En esta tesis se presentan los resultados de un gran conjunto de cálculos de primeros principios a través
de la Teoŕıa del Funcional de la Densidad para caracterizar las propiedades estructurales, electrónicas
y magnéticas de los bultos y las superficies (001) de tres aleaciones de Mn-Ga: α-Mn, D022-Mn3Ga
y L10-MnGa. Se caracterizaron sus propiedades en bulto y se determinaron sus reconstrucciones de
superficie más estables. Se proponen los primeros modelos en existencia de las complejas superficies del
α-Mn y el comportamiento de los momentos magnéticos de la superficie más estable es discutido. Se
compararon imágenes de STM experimentales y teóricas de las reconstrucciones de filas y cuadros y se
encontró que están en excelente acuerdo. También se examinó el papel que juega la difusión de C en
el incremento magnético de las superficies de D022-Mn3Ga. Se discute esto en términos del efecto de
superficie, el efecto magnetoelástico, la interacción de superintercambio y la Densidad de Estados de cada
átomo. Finalmente, se estudiaron dos reconstrucciones de superficie del L10-MnGa con periodicidades
1× 2 terminadas en Ga. Se discuten sus propiedades magnéticas en términos del efecto de superficie, la
Densidad de Estados de cada átomo y la densidad de magnetización. Se determinó que la reconstrucción
terminada en Cu podŕıa fungir como un catalizador de Aleación de un Sólo Átomo magnético.

Palabras clave: Teoŕıa del Funcional de la Densidad, reconstrucciones de superficie, estructura
electrónica, anisotroṕıa magnetica
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A mi mamá, por formarme.
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Spanish), in particular to Dr. Noé Fernández, Dr. Rodrigo Ponce, Dr. Noboru Takeuchi, and my thesis

advisor and friend Dr. Jonathan Guerrero, for their willingness to share their knowledge with me, answer

questions, and allow me to be part of the research group. Without your support this project would not

have been possible.



vi

From the research carried out in this thesis, there are two manuscripts and one published article

(https://doi.org/10.1016/j.apsusc.2022.153514). The results have been presented at the following con-

ferences: Fall Meeting 2021 of the Materials Research Society and the APS March Meeting 2022.



vii

Table of contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract in Spanish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 General objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Theoretical framework
2.1 The Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Variational principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Hartree and Hartree-Fock approximations . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Electron density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Hohenberg–Kohn theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Kohn-Sham formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Exchange-correlation approximations . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Spin-Dependent DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 Hubbard-U scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.11 Electron Localization Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.12 Electrostatic Potential Isosurface . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 3 Methodology
3.1 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Bulk calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Surface relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 α-Mn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 D022-Mn3Ga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 L10-MnGa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Surface stability and post-processing . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 4 Results and Discussions
4.1 α-Mn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



viii

Table of contents (continuation)

4.1.1 Surface stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Structural and STM analysis . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Magnetic properties analysis . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 D022-Mn3Ga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Surface stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Magnetic properties analysis . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Electronic properties analysis . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 L10-MnGa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Surface stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Structural and STM analysis . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.3 Magnetic properties analysis . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.4 Electronic properties analysis . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 5 Conclusions

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Annex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



ix

List of figures

Figure Page

1 Magneto-crystalline structure of α-Mn. The atoms in non-equivalent sites are represented
with different colors: MnI (dark blue), MnII (clear blue), MnIIIa (turquoise), MnIIIb
(green), MnIVa (yellow) and MnIVb (orange). Image based on the article by Hobbs et al.
(2003). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Representation of various Mn-Ga alloys: (a) Mn-Ga phase diagram and magneto-crystalline
structures of (b) D022-Mn3Ga and (c) L10-MnGa. The atoms are represented with dif-
ferent colors in the different models: Ga (turquoise), Mnx (purple), and Mny (dark blue)
for the D022-Mn3Ga; and Ga (turquoise) and Mn (purple) for L10-MnGa; respectively.
The phase diagram was adapted from the article by Hao and Xiong (2020). . . . . . . . 3

3 Different magnetic orders for the α-Mn structure: (a) CL-AFM and (b) NCL-AFM. The
atoms placed in nonequivalent sites are represented with the same colors as in Figure 1.
The values of the magnetic moments in (a) were taken from (Oberteuffer et al., 1968)
and in (b) from (Lawson et al., 1994), respectively. . . . . . . . . . . . . . . . . . . . . 4

4 Front and top views of some α-Mn surfaces. (a) Shows the layer numeration. The relaxed
structures of the most stable reconstructions are shown in (b) unreconstructed and (c)
reconstructed models in layer 6. The atoms in purple represent Mn atoms in general and
the rest of the atoms follow the same coloring system as Figure 1. . . . . . . . . . . . . 22

5 Different views of the some surface reconstructions of D022-Mn3Ga. The base recon-
structions are (a) model A and (b) model B. Surface nomenclatures adopted for the
adsorption (sites a1,2,3) and substitution (s1,2) sites are shown. Model (c) B.Ga.s2 is
based on model B and has a Ga atom substituted in position s2. Figures (b) and (c) also
show the number assigned to each layer. Model (d) B.Ga.s2-2a2 models a C incorporation
in the second layer. The purple, dark blue, turquoise, and black colors represent the Mnx,
Mny, Ga, and C atoms, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Front and top views of the (a) 1 × 1 and most stable surfaces of L10-MnGa calculated
on both (a,b,c) DFT and (d,e) DFT+U frameworks. Positions for the adsorption in both
the 1×1 (sites A1,2) and 2×1 (sites A1,2,3,4,5,6) reconstructions are shown in (a) and (d),
respectively. Models labeled “Mn” are equivalent to the 1 × 2 reconstruction reported
in Corbett et al. (2017) and models labeled “Cu” are equivalent to model Cu/Mn1(S1)
in Section 4.3. The purple, turquoise, and brown colors represent the Mn, Ga and Cu
atoms, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Stabilities of the α-Mn bulk (in all of its possible magnetic orders) and surface recon-
structions: (a) Final energy vs. unit cell volume graph and (b) Surface Formation Energy
graph. Circles represent the unreconstructed models and squares represent the most
stable reconstructed models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Experimental and theoretical STM images of the α-Mn surface. (a) Experimental STM
image showing the two reconstructions. Atomic contrast was enhanced by Laplacian
filtering. Image also includes zoomed views of the experimental (b) square- and (d) row-
structures, as well as theoretical TH-STM images of (f) unreconstructed-layer-6 model
showing a square-structure and (h) reconstructed-layer-6 model showing a row-structure
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Chapter 1. Introduction

The study of the properties of the elements that make up the universe is one of the main objectives of

the physical-chemistry. One of the most outstanding achievements of this branch of science was done by

Dimitri Mendeleev during the second half of the XIX century, when he presented his table to organize the

elements periodically according to their properties (Hargittai and Hargittai, 2019). This table allows us

to predict properties of interest of the elements, such as the metallic character, electronic configuration,

magnetic behavior, or even the crystal structure.

From a structural point of view, manganese (Mn) is possibly the most complicated element in existence.

It is located in the d-block and VII-group of Mendeleev’s periodic table, and due to this, we could be

tempted to think that it has either an HCP, FCC, or BCC crystal structure, like any of its neighbor

elements (Preuss et al., 1974, pp. 29—45). However, all of these assumptions are entirely wrong. In

fact, Mn has a unique and complex crystal structure that is illustrated in Figure 1 and will be explained

later in this thesis.

Mn is the twelfth most abundant element in Earth’s crust (Emsley, 2011, pp. 249–253) and it is

mainly mined in South Africa, Australia, China, Brazil, and India (Elliott et al., 2018). It finds its main

application in the metallurgic industry, where approximately 85 % of the world’s Mn is used for the

fabrication of steels (Zhang and Cheng, 2007). Two prime examples of this are Mushet’s and Hadfield’s

steels, which were named after their discoverers. They are types of alloy steels with small amounts of Mn

that are more malleable and much more tolerant to strains in comparison to other steels, respectively (H.

W. H., 1927). Manganese’s second most popular application is also found in the metallurgic industry

for aluminum alloys. Aluminum with a Mn-percentage between 0.8 and 1.5 % presents greater corrosion

resistance and is used to fabricate cans for beverages. It is estimated that by the year 2000, around

16,000 tons of Mn had been used for this purpose (Kaufman, 2000, pp. 93–94).

There are several other applications for Mn in different compounds. For example, manganese oxide

(IV) is used as a catalyst, as an additive in rubber and fertilizers, and as a reagent in textile printing

(Encyclopedia Britannica, 2010; Wirth, 2013). Manganese sulfate is added to soils to promote plant

growth, especially in citrus crops. It is an excellent reducing agent, particularly useful in the manufacture

of paint and varnish dryers (Royal Society of Chemistry, 2021). Etc.

However, let us shift our focus back to the metallurgic applications of Mn, specifically towards the

manganese-gallium (Mn-Ga) alloys. By combining these two elements, we obtain materials with prop-
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erties suitable for applications in spintronic devices. Spintronic devices — which distinguish between

spin-up and spin-down carriers — are very much like electronic devices, only that they have an added

degree of freedom, which, until now, has barely been technologically exploited to our advantage. For

instance, Mn-Ga alloys can be used to create Magnetic Tunnel Junctions (MJTs). These are typical

spintronic devices that consist of a non-magnetic (NM) insulating barrier separating two ferromagnetic

(FM) or ferrimagnetic (fM) metal electrodes that exhibit a large resistance change depending on magne-

tization states of the electrodes (Ma et al., 2014). Mn-Ga alloys are typically FM and exhibit properties

that make them appealing to be the metal electrodes on MJTs. There are several other important

technologies based on MJTs — such as Hard Disk Drives (HDD) and Magnetoresistive Random-Access

Memories (MRAM) — which have existed for a while, but are still being researched because they are

proposed to surpass competing technologies and become a universal memory (Åkerman, 2005). Even

so, the implementation of Spin-Transfer Torque (STT)-MRAM technology in the main and low-level

memories of computers is predicted to allow the creation of revolutionary instant-on and normally-off

computers (Ando et al., 2014).

Figure 1. Magneto-crystalline structure of α-Mn. The atoms in non-equivalent sites are represented with different colors:
MnI (dark blue), MnII (clear blue), MnIIIa (turquoise), MnIIIb (green), MnIVa (yellow) and MnIVb (orange). Image based
on the article by Hobbs et al. (2003).

Seeking different materials which will fit these applications is not only for the sake of curiosity. It

was speculated by Lewis and Jiménez-Villacorta (2013) that governments will likely exercise tighter

restrictions on rare earth exports (the most commonly used elements for MRAM applications) in an

attempt to clean up existing environmental issues and attend to their domestic economic priorities.
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Mn-Ga alloys find another application in the creation of semiconductor-magnetic hybrid devices. Inside

these devices, the magnetic field affects the electrons in the semiconductor by either shifting the energy

of electronic levels or acting directly on the carriers. This effect could be harnessed for the creation of

magneto-electronic devices, such as notch filters or spin injection devices (Prinz, 1990); or the creation

of magneto-optical devices such as spin light-emitting diodes (Wang et al., 2009; Grunebohm et al.,

2009).

In this sense, Heusler-like D022-Mn3Ga and L10-MnGa alloys are very attractive due to their versatile

magnetic properties. They are alloys with approximately 25 and 50 % Ga concentration in the Mn-Ga

phase diagram (see Figure 2(a)), respectively. At the left extreme of Figure 2(a) is located the α-Mn

phase, with 0 % Ga content. Both D022-Mn3Ga and L10-MnGa alloys possess a high Curie temperature,

spin polarization, coercivity, and Perpendicular Magnetic Anisotropy (PMA) (Ma et al., 2013, 2014),

which make them excellent candidates for fabricating rare-earth-free magnets and spintronic devices

(Katine and Fullerton, 2008; Yuasa et al., 2013).

(a) (b) (c)

Figure 2. Representation of various Mn-Ga alloys: (a) Mn-Ga phase diagram and magneto-crystalline structures of (b)
D022-Mn3Ga and (c) L10-MnGa. The atoms are represented with different colors in the different models: Ga (turquoise),
Mnx (purple), and Mny (dark blue) for the D022-Mn3Ga; and Ga (turquoise) and Mn (purple) for L10-MnGa; respectively.
The phase diagram was adapted from the article by Hao and Xiong (2020).

In the present thesis, first-principles computational simulations were performed to study the structural,

electronic, and magnetic properties of the three aforementioned Mn-Ga alloys — α-Mn, D022-Mn3Ga,

and L10-MnGa — under different conditions using Density Functional Theory (DFT).
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1.1 Background

One of the most important characteristics of Mn is its electronic configuration since all of the electrons

in its 3d orbitals are unpaired. This allows Mn (in principle) to have a larger magnetic moment than any

other element and is one of the key factors in explaining its crystal structure (Hobbs et al., 2003). In fact,

once the crystal structure of α-Mn was discovered, several researchers took upon the task of completing

the description of this crystal by studying its magnetic behavior. Bradley and Thewlis (1927) discovered

that elemental Mn has three crystal structures, which they baptized as α, β and γ — being α-Mn the

most stable one. It belongs to the I43m space group and has a unit cell with 58 atoms placed in 6

nonequivalent magnetic sites (see Figure 1). Later on, three articles were published reporting neutron

diffraction measurements at different temperatures and synthesis conditions (Shull and Wilkinson, 1953;

Kasper and Roberts, 1956; Oberteuffer et al., 1968), in which the magnetic moments of the Mn atoms

were estimated erroneously assuming a collinear antiferromagnetic model (CL-AFM) with only 4 types

of atoms in the α-Mn cell (see Figure 3(a)).

(a) (b)

Figure 3. Different magnetic orders for the α-Mn structure: (a) CL-AFM and (b) NCL-AFM. The atoms placed in
nonequivalent sites are represented with the same colors as in Figure 1. The values of the magnetic moments in (a) were
taken from (Oberteuffer et al., 1968) and in (b) from (Lawson et al., 1994), respectively.

A couple of years later, the first systematic investigation of the Mn-Ga phase diagram over the whole

composition range was performed by Meissner et al. (1965). They reported 10 intermetallic compounds

— among them the α-Mn, Mn3Ga, and MnGa — and determined that the strukturbericht designation of

MnGa is L10. In the same year, Wachtel and Nier (1965) also determined the Mn–Ga phase diagram but
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determined the limits of the phases based on the measurement of the magnetic susceptibility. Further

studies were performed on the Mn-Ga phase diagram giving consistent results for the three structures

mentioned above (Masumoto et al., 1978; Lu et al., 1980; Minakuchi et al., 2012; Tillard and Belin,

2012).

Then, in the quest for characterizing the magnetic moments of the α-Mn structure with the highest

possible precision, Kunitomi et al. (1969); Yamada et al. (1970) published a couple of reports where they

synthesized α-Mn mono-crystals and took neutron diffraction measurements of them. They compared

their results with the theoretical values of intensities based on the collinear model for the magnetic

moments and found that this model did not correctly explain the experimental measurements. So

they proposed a model with 6 magneto-crystallographically distinct atoms (see Figure 3(b)) and a

noncollinear antiferromagnetic (NCL-AFM) behavior of the magnetic moments. The validity of this

model was confirmed by Yamagata and Asayama (1972), where they used nuclear magnetic resonance to

study the α-Mn structure. In addition, Lawson et al. (1994) performed time-of-flight neutron-diffraction

measurements (a method derived from regular neutron diffraction) and arrived at the same conclusion.

With the evolution of computational technology and the development of methods based on first-

principles, more tools became available to study these types of systems. To mention some examples,

Sliwko et al. (1994) reported the electronic properties of α-Mn by applying DFT, and Hobbs et al.

(2003) also used DFT to study, among other things, the relationship between the magnetic moment of

the atoms with other properties of α-Mn. There is a cornucopia of theoretical and experimental articles

researching both the crystallographic and magnetic properties of the D022-Mn3Ga and L10-MnGa alloys.

To mention some, D022-Mn3Ga belongs to the I4/mmm space group (Krén and Kádár, 1970), is fM

(see Figure 2(b)), has a Courie temperature above 730 K (Balke et al., 2007), and its coercivity can be

as large as 18.2 kOe (Wei et al., 2014). L10-MnGa belongs to the P4/mmm space group (Mix et al.,

2015), is FM (see Figure 2(c)), and its PMA constant can reach values as high as 22− 27 Merg/cm3

(Al-Aqtash and Sabirianov, 2015), which are also tunable by an appropriate choice of substrate and

growth conditions (Zha et al., 2011; Zhu et al., 2012, 2013).

As attractive as the magnetic properties of D022-Mn3Ga and L10-MnGa are, they are not good enough

by themselves to successfully be applied to new devices. Several strategies have been attempted to

“improve” their magnetic properties for this end. Brown et al. (2016a) applied a magnetic field during

the heat treatment process of D022-Mn3Ga and found that this process increased the remanence up to

50 % over the non-magnetic field annealed system and increased the coercivities up to 19.4 kOe (the

highest coercivity reported in bulk Mn-Ga samples). Brown et al. (2016b) tested the effect of doping the
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structure with Bi, Al, Fe and B atoms, finding high coercivities up to 16.6 kOe and remanence increased

by 115 % over the binary system. Thin films of L10-MnGa have also been thoroughly studied. Ma et al.

(2013) characterized the structural and magnetic properties of the MnGa-based MTJs and discussed the

dependence of composition and interlayer thickness on the magnetoresistance ratio with different core

structures. Also, the effect of inserting a Mn layer with a MgO barrier on the magnetoresistance ratio

of MnGa MTJs was evaluated (Suzuki et al., 2018). Mao et al. (2017) reported that the addition of

Co2MnSi interlayers fully perpendicularize the MnGa/MgO MTJs by solving the lattice mismatch and

surface energy restrictions. These are just different approaches to the same problem: make these alloys

more applicable.

1.2 Justification

The previously mentioned studies have contributed to the scientific heritage of Mn-Ga alloys, but there

is still much room for research in this area. There are virtually no articles that focus on the surface

properties of the α-Mn structure. Wulfhekel and Gao (2010) published a review article in which they

discuss the differences between the Scanning Tunneling Microscopy (STM) methods for FM, CL-AFM,

and NCL-AFM materials. Although the STM images and the behavior of the magnetic moments on the

(001) surface of α-Mn are analyzed in this article, nothing is said there nor in the rest of the literature

about the possible surface reconstructions nor the rest of their properties.

In addition, it is worth mentioning that there also exist several databases obtained from DFT calculations

that contain many properties of the α-Mn structure. The most prominent example of this is the Materials

Project (Jain et al., 2013; Materials Project, 2013a) website, which includes properties such as the Surface

Formation Energy (SFE) and the Wulff shape of this material (Tran et al., 2016). However, no database

shows a comprehensive analysis of the properties of element surfaces. The motivation for this part of

the project is that (thanks to a collaboration) our research group possesses experimental STM images

of α-Mn surfaces. Because of this, we performed the computational part of a theoretical-experimental

study that characterizes them for the first time.

On the other hand, there are some recent studies on D022-Mn3Ga and L10-MnGa of particular inter-

est for the present thesis. Gutiérrez-Pérez et al. (2017); Holgúın-Momaca et al. (2019) performed two

theoretical-experimental studies evaluating the effect of interstitial carbon (C) atoms in the electronic

and magnetic properties of D022-Mn3Ga bulks. The present thesis presents a theoretical study on the

effect of C in this structure, but this time taking into consideration the different (001) surface recon-
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structions. Regarding L10-MnGa, Corbett et al. (2017) studied its surface reconstructions and described

a 1×2 Ga-terminated surface with a Mn-by-Ga substitution, driving to a row structure orthogonal to the

[001] axis. This thesis proposes a Cu-induced surface reconstruction of that structure that potentially

adds yet another item to the list of applications to Mn-Ga alloys: heterogeneous catalysis. The main

goal of studying these two materials is to provide more information regarding their properties and get

closer to innovating the previously-mentioned technologies with the application of these materials.

1.3 Hypothesis

“The surface reconstructions of Mn-Ga alloys exhibit different electronic and magnetic properties than

the bulk.”

1.4 Objectives

1.4.1 General objectives

Perform first-principles calculations to characterize the structural, electronic, and magnetic properties of

the most stable surface reconstructions of the α-Mn, D022-Mn3Ga, and L10-MnGa.

1.4.2 Specific objectives

• Perform a structural optimization of the bulks in different magnetic orders of the three Mn-Ga

alloys.

• Propose different surface reconstructions in the (001) surface of the three Mn-Ga alloys.

• Determine the most stable reconstructions of the three Mn-Ga alloys by comparing their surface

formation energies.

• Obtain theoretical STM images of the most stable surface reconstructions of the α-Mn and L10-

MnGa.

• Calculate the electronic density of states of the most stable reconstructions of the D022-Mn3Ga

and L10-MnGa.
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• Analyze the behavior of the magnetic moments of the most stable reconstructions of the three

Mn-Ga alloys.

• Compare results with existing literature.
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Chapter 2. Theoretical framework

Nowadays, DFT is the standard quantum mechanical tool to perform computational simulations of mate-

rials. It provides a method to describe the electron interactions in any material and predict its properties

based solely on first principles. This compelling theory is based on several pillars of quantum mechanics,

which shall be reviewed:

2.1 The Schrödinger equation

The Schrödinger equation is one of the pillars of quantum mechanics. It allows its user to find the

energies (E) and wave functions (Ψ) of any quantum system, which are defined as orthonormal for

simplicity. Considering a system with M nuclei and N electrons, this equation can be expressed as:

ĤΨ(r1, s1, · · · , rN , sN ,R1, · · · ,RM ) = EΨ(r1, s1, · · · , rN , sN ,R1, · · · ,RM ) (1)

where Ĥ is the Hamiltonian operator, rk (and sk) represent the spatial (and spin) coordinates of the kth

electron, respectively (bold symbols represent a vector entity), and Rk represents the spatial coordinates

of the kth nucleus (Koch and Holthausen, 2001, p. 1). Ĥ can be expressed (in atomic units) in terms

of different energy contributions as follows:

Ĥ = −1

2

N∑

i=1

∇i
2 − 1

2

M∑

A=1

∇A
2

MA
−

N∑

i=1

M∑

A=1

ZA

|ri −RA| +
N∑

i=1

N∑

j>i

1

|ri − rj |
+

M∑

A=1

M∑

B>A

ZAZB

|RA −RB| (2)

where the different terms (in order of appearance) describe the kinetic energies of the electrons (T̂e) and

the nuclei (T̂n), the electrostatic energy due to electron-nucleus attraction (V̂ne), due to electron-electron

repulsion (V̂ee), and due to nucleus-nucleus repulsion (V̂nn). ∇
2 represents the Laplacian operator and

A,B count through the nuclei while i, j do it through the electrons in the system.

Equation (1) can only be solved analytically for a minimal number of cases (Hodgson, 2021; Scott and

Zhang, 2015; Sever et al., 2008; Busch et al., 1998; Ishkhanyan, 2015; Sinitsyn and Chernyak, 2017). For

most physical and chemical systems, the Schrödinger equation becomes impossible to solve. However,

this has not halted researchers from solving more complex quantum systems. The general approach is to

perform some mathematical approximation to the Schrödinger equation that will result in a satisfactory

degree of accuracy.
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2.2 Variational principle

Before going over approximations that lead to the current state of DFT, let us talk about the variational

principle. It is a tool borrowed from the calculus of variations, which involves finding functions that

optimize the values of quantities that depend on those functions. Particularly in quantum mechanics,

what we mean by “solving” the Schrödinger equation is to find its eigenvalues and eigenfunctions at the

ground state (E0,Ψ0). However, one must remember that equation 1 holds for any orthonormal wave

function, not just the ground state. All the other wave functions (Ψ) are considered excited states of

the system, and their energies (E) are upper bounds to the ground-state energy (Griffiths, 1995, pp.

256, 261). This is, in essence, the variational principle; and can be mathematically stated as follows:

〈
Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉
= E > E0 =

〈
Ψ0

∣∣∣Ĥ
∣∣∣Ψ0

〉
(3)

With the help of the variational principle, the Schrödinger equation can be solved iteratively until reach-

ing a satisfactorily close solution. Even if Ψ has no relation to the actual wave function, one often gets

miraculously accurate values for E (Griffiths, 1995, p. 261). But of course, if you have some way of

guessing a realistic wave function (which we shall see in this chapter), the better.

2.3 Born-Oppenheimer approximation

This is the first and most simple approximation for solving the Schrödinger equation. It is also known

as the “clamped-nuclei approximation” and stems from two facts:

• The charges of the electrons and protons have the same magnitude; therefore the electrostatic

forces experienced by nuclei and electrons must have the same magnitude.

• The mass of the electron is much smaller than that of the nucleus — 1836 times for the H atom

and more for the other atoms.

By taking together the previous statements, it follows that the speed of the nuclei must be much

smaller than that of the electrons. The Born-Oppenheimer approximation consists in actually neglecting

the speed of the nuclei and considering them fixed in space (Koch and Holthausen, 2001, pp. 4–

5). That means that the kinetic energy term of the nuclei becomes zero (T̂n → 0) and the repulsive
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potential among the nuclei becomes a constant (V̂nn → Vnn). Furthermore, it is grouped with V̂ne

and any external electromagnetic fields in the so-called external potential (V̂ext). This approximation

also eliminates the nuclei dependence of the wave function: Ψ(r1, s1, · · · , rN , sN ,R1, · · · ,RM ) →
Ψ(r1, s1, · · · , rN , sN ). Considering all of this, equation (1) can be expressed as:

Ĥ |Ψ⟩ = (T̂e + V̂ee + V̂ext) |Ψ⟩ = E |Ψ⟩ (4)

This approximation, although very simple, enables solving the Schrödinger equation for more complex

systems, but other approximations are further required to reach the current state of the art.

2.4 Hartree and Hartree-Fock approximations

The Hartree approximation assumes beforehand that the wave function of the system is a product (also

known as Hartree product) of N one-electron wave functions (ψ1, ψ2, ..., ψN ), as follows:

Ψ(r1, s1, · · · , rN , sN ) = ψ1 (r1, s1)ψ2 (r2, s2) · · ·ψN (rN , sN ) (5)

By substituting equation (5) in (1) one can implement the separation-of-variables method to derive a

set of N coupled differential equations. The solution of these equations yields the Hartree wave function

and energy of the system. However, there is one fundamental flaw with Hartree’s model: it does not

consider Pauli’s exclusion principle. This principle says that particles of half-integer spin must have

antisymmetric wave functions so that they vanish if two particles occupy the same state (Nave, 2000).

This consideration was implemented in the Hartree-Fock approximation. Instead of the Hartree product,

the wave function has the shape of a Slater determinant:

Ψ(r1, s1, · · · , rN , sN ) =
1√
N

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 (r1, s1) ψ2 (r1, s1) · · · ψN (r1, s1)

ψ1 (r2, s2) ψ2 (r2, s2) · · · ψN (r2, s2)
...

...
. . .

...

ψ1 (rN , sN ) ψ2 (rN , sN ) · · · ψN (rN , sN )

∣∣∣∣∣∣∣∣∣∣∣∣

(6)

The proposed wave function complies with the principle of antisymmetry because it is a property of the

determinants that exchanging rows or columns changes the sign of a determinant (Schay, 2012, pp.

223–224).
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2.5 Electron density

So far, we have a Schrödinger-like equation stating the wave function explicitly. This function is a close

approximation and can now be solved. However, this is easier said than done. Even a one-electron wave

function is a function of the electron’s three spatial coordinates and three spin coordinates. If we add a

couple of tens or hundreds of electrons (something very reasonable if you want to model anything larger

than an atom), then this function becomes unbearably complex and its solution, although is technically

possible, becomes computationally impossible. Just to put things in perspective, if we wanted to write

the wave function of an aluminum atom, in real space, on a computer file, considering only the electronic

degrees of freedom and a coarse real space grid of only 100 points in each dimension, a hard disk the

size of the milky way would not be big enough (Sottile and Reining, 2021b).

The electron density provides us with a miraculous solution to this problem since it only depends on the

three spatial coordinates of the system (Koch and Holthausen, 2001, pp. 29–31). It is related to the

wave function as follows:

ρ (r) = ρ (r1) = N

∫
· · ·
∫

|Ψ(r1, s1, · · · , rN , sN )|2 ds1dr2ds2 · · · drNdsN (7)

where ρ (r) gives us the probability of finding an electron in the volume element dr1 with an arbitrary

spin. Strictly speaking, ρ (r) is a probability density, but it is commonly called an electron density.

Also, it is worth noting that the electron density can provide us with all the information needed to fully

describe the Hamiltonian of any system. This is because we can obtain the number of electrons and

the atomic number from ρ (r) by performing an inner product in equation (7) — and remembering that

the wave functions are orthonormal — and thanks to Kato’s cusp condition (Kato, 1957; March, 1986),

respectively. These go as follows:

∫
ρ (r) dr1 =

∫
ρ (r1) dr1 = N

∫
· · ·
∫

|Ψ(r1, s1, · · · , rN , sN )|2 dr1ds1 · · · drNdsN = N (8)

∂ρ (r)

∂r

∣∣∣∣
r→R

= −2Zρ (R) (9)
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2.6 Hohenberg–Kohn theorems

Hohenberg-Kohn’s (HK) theorems laid the foundation for creating DFT. The first theorem of Hohenberg

and Kohn (1964) formally describes the total energy as a unique functional of the electron density. This

is extremely important since it means that the wave function and all its observables can also be expressed

in terms of electron density, rendering the solution of the Schrödinger equation computationally solvable.

The first HK theorem is mathematically expressed as follows:

Ĥ [ρ (r)] =

∫
ρ (r)Vext (r) dr + T̂e [ρ (r)] + V̂ee [ρ (r)] (10)

where the external potential operator (V̂ext) is expressed explicitly in terms of the electron density.

Notice how the Hamiltonian is a function of the electron density, which is a function of the position.

This function of a function is mathematically called a functional (Weisstein, Eric W., 2022). Being all of

the observables functionals of the electronic density, this is where the name of the theory comes from:

Density Functional Theory.

The second HK theorem demonstrates that the variational principle holds with the density functional as

the primary variable. In equation form, this theorem can be written as:

E [ρ (r)] > E [n0 (r)] (11)

Basically, equation (11) states that the electron density that minimizes the energy of the global functional

is the exact ground-state electron density, corresponding to the complete solutions of the Schrödinger

equation (Frijns et al., 2021). HK’s theorems establish the base for what DFT is, but they are not

enough because they are still not analytically solvable. The expressions for the second and third terms

in equation (10) are still not known to date, rendering the analytical solution still impossible.

2.7 Kohn-Sham formulation

Thanks to the Kohn-Sham (KS) formulation, solving the Schrödinger equation for complex systems finally

became possible (Sottile and Reining, 2021a). In it, Kohn and Sham (1965) introduced a fictitious

supporting system of non-interacting electrons that has the same electron density as the interacting

system. Their article demonstrated that this statement indeed makes sense and provided the expressions

to find the electron density. KS introduced an expression for the Hamiltonian in equation 10 that
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separates the known interactions from the unknown contributions of an interacting system of electrons.

It defines the Hamiltonian of the system as follows:

Ĥ [ρ (r)] =

∫
ρ (r)Vext [ρ (r)] dr +

1

2

∫ ∫
ρ (r) ρ (r′)

|r − r
′| drdr′ + T̂s [ρ (r)] + ÊXC [ρ (r)] (12)

where the first term is the external potential (V̂ext), the second term is the classical electrostatic Hartree

energy of the non-interacting electrons (V̂H), T̂s is the kinetic energy of a system of non-interacting

electrons, and ÊXC is the exchange and correlation energy of an interacting system — which accounts

for the contribution of all the complex interactions among electrons. Its expression in terms of the energy

contributions established in equation 10 is:

ÊXC [ρ (r)] = T̂e [ρ (r)]− T̂s [ρ (r)] + V̂ee [ρ (r)]− V̂H [ρ (r)] (13)

No analytical expression for the exchange-correlation energy exists. Some of the existing approximations

and their applications will be covered in the next section. Finally, after performing a variational opti-

mization via Lagrange multipliers in equation (12), we can obtain the famous KS equations. These are

a set of N Schrõdinger-like equations for non-interacting electrons that together give the exact electron

density of the interacting system. The KS equation for the ith electron is:

(
−1

2
∇

2 + Vext (r) +

∫
ρ (r′)

|r − r
′|dr

′ +
∂ÊXC [ρ (r)]

∂ρ (r)

)
ψi (r, si) = ϵiψi (r, si) (14)

where the last three terms inside the parenthesis are often called the effective or KS potential (V̂KS). This

equation yields the exact same electron density as the real interacting system, which can be expressed

as:

ρ (r) =

N∑

i

fi ⟨ψi (r, si) |ψi (r, si)⟩ (15)

where fi is the occupation of the ith orbital (Capelle, 2006).

Now, in equation (14) we can see that V̂KS depends on ρ, which we know thanks to equation (15) that

depends on ψi. But wait a minute, finding the expressions for ψi is the same as solving equation (14),

for which we must know the expression for V̂KS . We have come back to the beginning. This means that

solving the KS equations is a cyclical problem. The usual way of solving it is called the “self-consistency

cycle.” It consists of making an initial guess for ρ (r) (usually using a Slater determinant), calculating

the corresponding V̂KS [ρ (r)], and then solving equation (14) for the ψi. From these, we calculate a new

electron density using equation (15), and start again, repeating the process until reaching convergence.
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By “reaching convergence” we mean that, thanks to the variational principle, the results can be as precise

as your computer systems allow you to, but they will never reach the exact ground state. Therefore a con-

vergence threshold is established. Once the energy varies no more than 10−4 eV and the forces no more

than 10−3 eV/Å between each step of the calculation is one of the standards (Kresse and Furthmüller,

2022a,b). However, one can choose among many different criteria (Nemec and Hofmann, 2014): fi-

nal energy, electron density, force, sum of eigenvalues, etc. With a correct selection of parameters, the

calculations rarely require more than a couple of dozen iterations to achieve convergence (Capelle, 2006).

2.8 Exchange-correlation approximations

Several approximations have been developed for the exchange-correlation term of the KS potential,

namely, the Local Density Approximation (LDA), Generalized Gradient Approximation (GGA), exten-

sions of it (meta-GGA and hyper-GGA), and hybrid functionals (Harun et al., 2020). Each of these

approximations has a different approach to the exchange-correlation term and is thus suitable for a

specific type of material. Generally speaking, LDA and GGA are the most widely used types of approx-

imations for DFT. Roughly speaking, they are similar to a Taylor series of a function. They seek to

approximate the exchange-correlation term using differential operators of different orders at a certain

point. The LDA functionals depend only on the electron density, while the GGA ones depend on both

the density and its first-order differential operator (Capelle, 2006). There are dozens of variations of

those two expressions, but they can be expressed in general as:

ÊLDA
XC [ρ (r)] =

∫
ρ (r) ϵLDA

XC [ρ (r)] dr (16)

ÊGGA
XC [ρ (r)] =

∫
ρ (r) ϵGGA

XC [ρ (r) ,∇ρ (r)] dr (17)

where ϵLDA
XC and ϵGGA

XC are the exchange-correlation energies per particle of a homogeneous electron gas.

Hybrid functionals are a linear combination of the exact exchange energy from Hartree-Fock theory

with the rest of the exchange-correlation energy coming from other sources. Different proportions of

different functionals mean a different behavior. Not surprisingly, calculations with these functionals are

computationally more expensive, hence why they are only used when absolutely necessary, such as in

semiconductor systems (Flores et al., 2018) or to study the organic thermochemistry and reactivity (Lu

et al., 2013). Particularly for magnetic metals, the Perdew–Burke–Ernzerhof-GGA (PBE-GGA) is very

widely used (Corbett et al., 2017; Ruvalcaba et al., 2021; Maldonado-Lopez et al., 2021) because it gives
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consistent results with experimental data. However, there are still some adjustments to the standard

DFT needed to model these systems correctly.

2.9 Spin-Dependent DFT

Up to this point, DFT has been discussed in terms of electron density as the fundamental variable.

This is the original formulation of DFT, but it is not the most complete nor even the most widely used

DFT in practical applications. For instance, spin-polarization is crucial for the modeling of spin probes in

organic radicals in biomolecules (Jeschke and Polyhach, 2007), magnetic materials, and spintronic devices

(Herrmann et al., 2010). All of these systems require the Spin-Polarized-DFT (SP-DFT) formulation,

that employs one density for each spin — ρ↑ (r) and ρ↓ (r) — i.e., works with two fundamental variables.

These are used to define the total electron density of the system as a linear combination of the two of

them (Jacob and Reiher, 2012):

ρ (r) = N

∫
· · ·
∫ ∣∣∣∣Ψ

(
r1,+

1

2
, · · · , rN , sN

)∣∣∣∣
2

dr2ds2 · · · drNdsN

+N

∫
· · ·
∫ ∣∣∣∣Ψ

(
r1,−

1

2
, · · · , rN , sN

)∣∣∣∣
2

dr2ds2 · · · drNdsN

= ρ↑ (r) + ρ↓ (r)

(18)

Similarly, the magnetization density can be defined as the difference between the two spin-polarized

densities:

ξ (r) = ρ↑ (r)− ρ↓ (r) (19)

Almost the entire further development of the HK theorem and the KS equations can be immediately

rephrased for SP-DFT just by attaching a suitable spin index to the densities. There are some exceptions

to this rule. For example, the exchange-correlation functional gets “spin-scaled” (Capelle, 2006):

ÊSP−DFT
XC

[
ρ↑ (r) , ρ↓ (r)

]
=

1

2

(
ÊDFT

XC

[
2ρ↑ (r)

]
+ ÊDFT

XC

[
2ρ↓ (r)

])
(20)

It is worth noting that there is no fundamental difference in the calculation of systems with collinear

versus noncollinear magnetic moments, even though it is directly related to the spin. All that’s needed

is the converged wave function after a KS calculation to calculate the magnetic moment (m (r)) as
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follows:

m (r) = N ⟨Ψ|βσ̂(4) |Ψ⟩ (21)

where β is one of the parameters that defines the Dirac matrices, and σ̂
(4) is a vector containing the

Pauli spin matrices σx, σy, and σz (Jacob and Reiher, 2012).

In equation (21) the magnetic moment of the non-interacting reference system does not agree with the

true interacting system (Jacob and Reiher, 2012). To calculate those properties we must impose the

restriction that either the z-components of the magnetic moment mz (r) or the lengths of the magnetic

moment at each point |m (r)| must agree between the interacting and non-interacting systems. The

former is called a collinear model and the latter a noncollinear model for the magnetic moments. Jacob

and Reiher (2012) provide an in-depth discussion of the exact theory regarding SP-DFT. In the present

thesis, the spatial components of the coordinates are labeled x, y, z or a, b, c interchangeably.

2.10 Hubbard-U scheme

This is a correction to the KS Hamiltonian commonly added to systems that have atoms with partially

filled d or f orbitals, which typically have a strong correlation (Dudarev et al., 1998). The idea behind

DFT+U is quite simple: describing the “strongly correlated” electronic states of a system using the

Hubbard model — which describes the transition between conducting and insulating systems (Hubbard,

1963) —, whereas the rest of the valence electrons are treated at the level of “standard” DFT functionals

(Himmetoglu et al., 2014). In this scheme, the total energy ÊDFT+U of a system can be written as:

ÊDFT+U [ρ (r)] = ÊDFT [ρ (r)] + ÊHub [ρ (r)]− Êdc [ρ (r)] (22)

where ÊDFT represents the DFT total energy functional, ÊHub is the Hubbard Hamiltonian that models

correlated states, and Êdc is the “double-counting” term. It is subtracted because the Hubbard term

was added explicitly, so the energy contribution of the orbitals included in the DFT functional must

be removed in order not to count twice their contributions (Côté, 2008). This scheme was described

more than two decades ago by Anisimov et al. (1991) and (Solovyev et al., 1994). A simplified explicit

expression for the Hubbard and the double-counting term is:

ÊDFT+U [ρ (r)] = ÊDFT [ρ (r)] +
U

2

∑

i ̸=j

n̂in̂j −
U

2

(
∑

i

n̂i

)(
∑

i

n̂i − 1

)
(23)
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where n̂i is the number operator of the electron at site i and U is a manually-defined parameter. Equa-

tion (23) is only defined for an orthonormal single-particle basis with localized orbitals, representing the

strongly correlated electrons (Anisimov et al., 1991).

2.11 Electron Localization Function

The Electron Localization Function (ELF) is a quantum chemistry tool created by Becke and Edgecombe

(1990) to help determine the nature of the bonding present at different molecules. This is especially

important because, although the electron density is easily obtained via DFT calculations, by itself it

does not easily reveal the consequences of the Pauli exclusion principle on the bonding (Silvi and Savin,

1994). In simple terms, the electron density represents the probability density of finding an electron in

space, while the ELF measures the probability of finding another electron with the same spin near that

reference electron (Koumpouras and Larsson, 2020). For DFT, the general expression was given by Silvi

and Savin (1994):

ELF =
1

1 +
(

D
Dh

)2 (24)

with

D =
1

2

∑

i

|∇ψi (r)|2 −
1

8

|∇ρ (r)|2
ρ (r)

(25)

Dh =
3

10

(
3π2
)5/3

ρ5/3 (r) (26)

The ELF has values between 0 and 1, where 1 corresponds to perfect localization — such as in lone

pairs or covalent bonds. Koumpouras and Larsson (2020) report that the ELF in metallic bonds has

regions with a non-nuclear maxima, with values always lower than 0.7, and with big and extended basins

of uniform localization connecting the atoms of the crystal.

2.12 Electrostatic Potential Isosurface

The electrostatic potential of any system can be represented in maps that illustrate the charge distri-

butions of the atoms. They are most commonly used in quantum chemistry to predict the behavior

of molecules because they allow to visualize variably charged regions of a molecule (Bottyan, 2020),

although they obviously can provide useful information for other types of systems. They are most com-

monly represented in 2D cuts of the system or as isosurfaces. The former is called an Electrostatic
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Potential Isosurface (EPI), which by definition represents all the points in space with equal values of

electrostatic potential.

In DFT calculations, the way these are created is by generating isosurfaces of the electronic density

of your system and then coloring the surface with the electrostatic potential, which is given by all the

non-kinetic terms of the KS-Hamiltonian (Kresse and Furthmüller, 2022c):

V̂POT [ρ (r)] =

∫
ρ (r)Vext [ρ (r)] dr +

1

2

∫ ∫
ρ (r) ρ (r′)

|r − r
′| drdr′ + ÊXC [ρ (r)] (27)
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Chapter 3. Methodology

3.1 Computational details

The calculations were performed using the Projector Augmented Wave (Blöchl, 1994; Kresse and Jou-

bert, 1999) implementation of DFT in the Vienna Ab initio Simulation Package (VASP) (Kresse and

Furthmüller, 1996) version 5.4.4. The exchange-correlation energy was described with the PBE-GGA

functional (Perdew et al., 1996). The Mn, Ga, C, and Cu atoms were all represented by ultrasoft pseu-

dopotentials (Vanderbilt, 1990). Structural optimizations were performed using the conjugate gradient

method until the net force on every atom was smaller than 0.001 eV/Å and the total energies between

two steps were different by no more than 10−4 eV . The Brillouin zone integrations were performed

using a Monkhorst-Pack (Monkhorst and Pack, 1976) k-point grid and a Methfessel-Paxton smearing

(Methfessel and Paxton, 1989) of the second-order of the Fermi–Dirac distribution function. The cutoff

energies for the plane-wave basis were set to 300, 400, and 550 eV for the α-Mn, D022-Mn3Ga, and

L10-MnGa, respectively. The k-point densities used were 4 × 4 × 4, 10 × 10 × 10, and 8 × 8 × 8 for

the α-Mn, D022-Mn3Ga, and L10-MnGa bulks, respectively. On the supercells, k-point densities used

were 4× 4× 1, 5× 5× 1, and 4× 8× 1 for the α-Mn 1× 1, D022-Mn3Ga 2× 2, and L10-MnGa 2× 1

surfaces, respectively. The surfaces were modeled in a supercell generated by periodically repeating slabs

with several atomic planes along the [001] direction and a vacuum larger than 10 Å. The optimized

atomic positions were taken for the post-processing calculations, and the k-point densities were tripled.

Particularly for the densities of states, the smearing was switched to the tetrahedron method with Blöchl

corrections (Blöchl et al., 1994).

On the L10-MnGa calculations, a DFT+U corrective functional (Dudarev et al., 1998) with an effective

on-site Coulomb interaction U = 5 eV was used on the Mn and Cu atoms to improve the description of

electronic correlation and localization. The results obtained using the DFT+U functional were compared

with calculations that did not include it (hereby referred to as just DFT calculations). The illustrations

of the crystal structures, theoretical STM images, and graphical plots presented in this thesis were

generated using VESTA (Momma and Izumi, 2011), Critic2 (de la Roza et al., 2014), and Matplotlib

(Hunter, 2007) softwares, respectively. The STM images were simulated using the incorporation of the

Tersoff-Hamann theory (Tersoff and Hamann, 1985) to DFT.
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3.2 Bulk calculations

Following the order of the objectives presented in Section 1.4 and the standard methodology for the

DFT simulations, firstly the unit cells were generated (as showcased in Figures 3(b), 2(b), 2(c)) based

on the data files reported in Materials Project (2013a,b,d). Then, an optimization of the internal pa-

rameters of the calculations — cutoff energy for the plane-wave-basis set and k-point density — was

performed. The final step was a structural relaxation and optimization of the lattice parameter in the

bulks. This combination of parameters was used throughout the rest of the calculations, except for the

k-point density, which is rounded to the closest even number after dividing it by the multiplicity of the

supercell to increase computational efficiency. All the possible magnetic configurations were tested on

each Mn-Ga alloy, and their stability was determined. α-Mn is the only structure that was simulated

with non-collinear magnetic moments. The other Mn-Ga alloys were simulated only collinearly. Finally,

with the energies obtained from these calculations, the enthalpy of formation was calculated, which was

later applied in the SFE formalism (see Annex 1).

3.3 Surface relaxations

The surface models were defined in supercells based on the unit cells of the bulks. For example, to

generate a n × m-model one must repeat the unit cell n times in the a direction, m times in the b

direction, then as many times in the c dimension (which matches the [001] direction) as to obtain the

desired number of atomic layers, and then provided with a portion of empty space. This vacuum must be

greater than 10 Å so as to prevent Van deer Waals interactions due to the periodic boundary conditions

(Ruvalcaba et al., 2021; Maldonado-Lopez et al., 2021).

3.3.1 α-Mn

The α-Mn supercells were generated by repeating the optimized bulk two times in the c dimension and

adding a vacuum of 10.15 Å. Afterwards, the atomic layers were numbered as shown in Figure 4(a).

Because the α-Mn structure is a BCC structure, it has inversion symmetry, which is reflected in labeling

the bottom half of the atoms in the unit cell as negative numbers. The atoms’ position in negative layers

corresponds to a 90◦ rotation in the ab-plane around the center of the cell. The unreconstructed models

have the same atomic positions as in the bulk (before the surface relaxation) but with the corresponding
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layer number at the surface, and reconstructed models have atom vacancies at the surface according to

the number of atoms in their corresponding layer.

(a) (b) (c)

Figure 4. Front and top views of some α-Mn surfaces. (a) Shows the layer numeration. The relaxed structures of the
most stable reconstructions are shown in (b) unreconstructed and (c) reconstructed models in layer 6. The atoms in purple
represent Mn atoms in general and the rest of the atoms follow the same coloring system as Figure 1.

Layer 1 only has one atom, so adding an atomic vacancy equals having the layer-2-unreconstructed

model. Therefore, layers 1 and 0 do not have a first-layer reconstructed model. Layer 2 has two atoms,

so creating an atomic vacancy leads to two possible surface reconstructions, one for each position of

the MnIIIa. However, both positions are magneto-crystallographically equivalent, so only one model was

necessary to be simulated. All the possible permutations of one, two, and three vacancies were modeled

on layers with four atoms. All the unreconstructed models and their most stable reconstructions are

shown in Figure 19 in Annex 2. Since the surface calculations were performed on the CL-AFM ordering,

it can be observed in Figure 3(a) that atoms in layers of the same sign and color — layers 2 and 11,

layers 3 and 10, layers 4 and 9, layers 5 and 8, and layers 6 and 7 (likewise for the negative numbers) —

have their magnetic moments oriented in opposite directions. Because of this and the 90◦ rotation in the

ab-plane around the center of the cell, it was determined that all the negative layers will yield the same

surface patterns but rotated 90◦. Therefore, only layers 0–11 were simulated. Figures 4(b),4(c) show
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the final relaxed structure of the two models in layer 6. All of these models were generated looking for

the atomic arrangements that explained the experimentally observed row- and square- reconstructions

shown in Figure 8.

3.3.2 D022-Mn3Ga

The D022-Mn3Ga supercells were generated by repeating the optimized bulk 2.5 times in the c dimension

and then adding a vacuum of 11.81 Å. This process generated the Mny-Ga-terminated model B (Figure

5(b)) and by taking the last atomic layer off, a Mnx-Mnx-terminated model A (Figure 5(a)) was

created.

(a) (b) (c) (d)

Figure 5. Different views of the some surface reconstructions of D022-Mn3Ga. The base reconstructions are (a) model A
and (b) model B. Surface nomenclatures adopted for the adsorption (sites a1,2,3) and substitution (s1,2) sites are shown.
Model (c) B.Ga.s2 is based on model B and has a Ga atom substituted in position s2. Figures (b) and (c) also show the
number assigned to each layer. Model (d) B.Ga.s2-2a2 models a C incorporation in the second layer. The purple, dark blue,
turquoise, and black colors represent the Mnx, Mny, Ga, and C atoms, respectively.

The nomenclature for these surface reconstructions goes as follows: (model on which it is based).(metal

added).(position of adsorption/substitution). Therefore, model B.Ga.s2 is based on model B and has a
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Ga atom substituted in position s2. The rest of the surface models are shown in Figure 20 in Annex 2.

Once the most stable surface reconstructions were determined, the C diffusion was evaluated in 2 × 2

supercells such as the B.Ga.s2-2a2, which is based on model B.Ga.s2 but with a C atom adsorbed in layer

2 in position a2 (see Figure 5(d)). These larger supercells allowed to model also the properties of the

D022-Mn3Ga with a 1.12 % C layer-uniform doping. Doping ranging from 0.06–1.18 % was previously

studied experimentally and theoretically by Gutiérrez-Pérez et al. (2017); Holgúın-Momaca et al. (2019),

but only focusing on the properties of the material in bulk.

3.3.3 L10-MnGa

The L10-MnGa supercells in Figure 6 were generated by repeating the optimized bulk 4 times in the c

dimension and then adding a vacuum of 16.62 Å. The models were simulated using DFT, and then the

most stable ones were also simulated using DFT+U.

(a) (b) (c) (d) (e)

Figure 6. Front and top views of the (a) 1 × 1 and most stable surfaces of L10-MnGa calculated on both (a,b,c) DFT
and (d,e) DFT+U frameworks. Positions for the adsorption in both the 1 × 1 (sites A1,2) and 2 × 1 (sites A1,2,3,4,5,6)
reconstructions are shown in (a) and (d), respectively. Models labeled “Mn” are equivalent to the 1 × 2 reconstruction
reported in Corbett et al. (2017) and models labeled “Cu” are equivalent to model Cu/Mn1(S1) in Section 4.3. The purple,
turquoise, and brown colors represent the Mn, Ga and Cu atoms, respectively.

The 1× 1 (see Figure 6(a)) and Mn (see Figures 6(b), 6(d)) surface models were based on the study

of Corbett et al. (2017). A more detailed explanation on the definition of all the models can be found
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in Section 4.3.1. The names of the 1 × 2 models in Figure 6 are given by the substituted atom at

the surface layer and the rest of the modeled surface reconstructions are shown in Figure 21 in Annex 2.

3.4 Surface stability and post-processing

Once the surface models were all defined and calculated, the next step was to determine their stability.

The total energy of the systems cannot be compared because the number of atoms of each element

varied for each reconstruction. In this instance, the SFE formalism was adapted from the article of Qian

et al. (1988) to determine the stability of the different reconstructions and determine the most stable in

each alloy. A more detailed development of this formalism is shown in Annex 1.

Finally, once all of the wave functions of the most stable reconstructions are calculated, they are further

studied in a stage known as post-processing. This consisted of shorter calculations to obtain the prop-

erties of interest of the surfaces (see Chapter 4). The theoretical STM images (TH-STM) of the most

stable reconstructions for α-Mn and L10-MnGa were obtained. The simulations were done by positioning

the tip at distances between 3 and 4 Å with the same bias voltage used in the experimental analyses.

The magnetic properties of the alloys were also calculated — such as the direction of the magnetic

moments on the surface of α-Mn or the magnetic moments per atom in the more stable surfaces of

D022-Mn3Ga and L10-MnGa — the latter being compared with their bulk counterparts. The Projected

Densities Of States (PDOS) of D022-Mn3Ga and L10-MnGa were calculated. On the L10-MnGa a more

profound study was performed. The ELF was calculated, as well as the magnetization density and the

EPI.
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Chapter 4. Results and Discussions

4.1 α-Mn

Firstly the results of the calculations on the bulk cells are presented. Figure 7(a) shows the energy

versus unit cell volume graph of the α-Mn structure. Only the NM, the CL-AFM, and the NCL-AFM

orders reached stability in this alloy. The FM configuration was tested, but the magnetic moments

quickly returned to an AFM order. It is clear that α-Mn’s NM structure is less stable than any of the

AFM ones. The optimal cell volume varies with the magnetic order due to variations in the atoms’

internal forces caused by their magnetic interactions. Within the chosen framework, the most stable

configuration is a CL-AFM with a unit cell volume of 11.21 Å3/atom, which equals to the lattice

parameters a = b = c = 8.66 Å. This value matches the experimental result of 8.894 Å from Bradley

and Thewlis (1927) with an error of 2.63 %. The ground state energy of α-Mn is −524.72 eV/cell,

with a difference of 2.86 eV/cell with the NM configuration.

(a) (b)

Figure 7. Stabilities of the α-Mn bulk (in all of its possible magnetic orders) and surface reconstructions: (a) Final energy
vs. unit cell volume graph and (b) Surface Formation Energy graph. Circles represent the unreconstructed models and
squares represent the most stable reconstructed models.

According to Figure 7(a) the α-Mn structure behaves interestingly under strain: it is a CL-AFM under

compressing strain, at its ground state, and up until a stretching strain of 2.30 %. Then as the cell
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gets further stretched, the magnetic symmetry is broken, and the magnetic moments shift to a NCL

configuration. The shifting of the magnetic moments is given at 12.1 Å3/atom (a = b = c = 8.89 Å),

almost exactly the experimental value (Lawson et al., 1994). This value does not stray far from the 12.0

Å3/atom value reported by Hobbs et al. (2003) for the same behavior. However, the surface calculations

were performed with the CL-AFM structure since it is the ground state within the chosen framework.

That said, the present results may be tested with experimental studies on the α-Mn surfaces to verify

their exactitude or show the need for further corrections on the DFT description.

Table 1. Calculated atomic positions and magnetic moments of the optimal and the NCL-AFM bulks of α-Mn.

Atom
type

Number Crystal coordinates

MnI 2 (0, 0, 0) ,
(
1

2
, 1
2
, 1
2

)

MnII 8 [(x, x, x) , (x,−x,−x) , (−x, x,−x) , (−x,−x, x)]
+
[
(0, 0, 0) ;

(
1

2
, 1
2
, 1
2

)]
, x(II) = 0.319

MnIIIa 8 [(x, x, z) , (x,−x,−z) , (−x, x,−z) , (−x,−x, z)]
+
[
(0, 0, 0) ;

(
1

2
, 1
2
, 1
2

)]
, x(IIIa) = 0.356, z(IIIa) = 0.035

MnIIIb 16 [(x, y, x) , (x,−y,−x) , (−x, y,−x) , (−x,−y, x) , (y, x, x) ,
(y,−x,−x) , (−y, x,−x) , (−y,−x, x) +

[
(0, 0, 0) ;

(
1

2
, 1
2
, 1
2

)]
,

x(IIIb) = 0.356, y(IIIb) = 0.035

MnIVa 8 [(x, x, z) , (x,−x,−z) , (−x, x,−z) , (−x,−x, z)]
+
[
(0, 0, 0) ;

(
1

2
, 1
2
, 1
2

)]
, x(IVa) = 0.089, z(IVa) = 0.283

MnIVb 16 [(x, y, x) , (x,−y,−x) , (−x, y,−x) , (−x,−y, x) , (y, x, x) ,
(y,−x,−x) , (−y, x,−x) , (−y,−x, x) +

[
(0, 0, 0) ;

(
1

2
, 1
2
, 1
2

)]
,

x(IVb) = 0.089, y(IVb) = 0.283

Atom
type

|mz|
(µB)

|mx|
(µB)

|my|
(µB)

|mz|
(µB)

MnI 2.94 0.00 0.00 3.23

MnII 2.38 0.02 0.02 2.83

MnIIIa CL-AFM 1.34 NCL-AFM 0.45 0.44 1.82

MnIIIb1 11.21 1.35 12.1 0.04 0.45 1.88

MnIIIb2 Å3/cell 1.35 Å3/cell 0.45 0.04 1.88

MnIVa 0.02 0.53 0.52 0.02

MnIVb1 0.03 0.54 0.01 0.01

MnIVb2 0.03 0.01 0.54 0.01

Table 1 gives the positions and magnetic moments of the α-Mn structures. Only the magnitudes of

the magnetic moments are given, and the direction can be obtained by looking at Figure 3(b). On the

NCL-AFM structure, the MnIIIb and MnIVb atoms can be further categorized into the two subgroups
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b1 and b2. This was also proposed by Yamagata and Asayama (1972) based on their nuclear magnetic

resonance data and by Hobbs et al. (2003) in their theoretical study. The magnetic moments of the

atoms in these two subgroups only differ in orientation, as they have almost the same magnitude.

4.1.1 Surface stability analysis

The SFE formalism was applied to all the simulated models. As mentioned in the previous chapter, only

layers 0–11 of the top cell in the supercell were simulated since all of the other layers would yield the same

patterns but rotated 90◦. Figure 7(b) shows the SFE graphs of the models. Models based on layers 3,

4, 9, and 10 only are presented with their most stable reconstruction since they have four atoms in their

corresponding layer and have a total of 5 different reconstructions. It is clear that the unreconstructed-

layer-1 model has the smallest SFE (0.337 eV/Å2), hinting that it is the most stable one and the most

likely to be present experimentally. However, as mentioned before, layer-1 and layer-0 models do not

possess a first-layer reconstruction. Therefore they cannot yield the two different reconstructions that

are being searched. Also, it is worth noting that the SFE formalism points at the model that is most

easily synthesized. Any other model could be induced experimentally with an extra input of energy via

any method that allows controlling the stoichiometry of each atomic layer — such as Chemical Vapor

Deposition, Atomic Layer Deposition, or Molecular Beam Epitaxy (Xu et al., 2022).

Now, our collaborator, Dr. Perry Corbett, reported that both surface terminations appear on the same

atomic terrace (see Figure 8(a)). So, another criterion was if the theoretical STM images generated by

the models of each layer could generate both the row- and square- reconstructions. As it turns out, only

layers 6, 8, and 10 generate both square- and row- reconstructions, and among these three, the most

stable one is layer 6, with its lowest SFE value at 0.352 eV/Å2, against 0.357 and 0.353 eV/Å2 for layers

8 and 10, respectively. However, the difference in formation energies is quite small. A Fourier analysis

of the theoretical STM images was performed on these three layers and compared with experimental

images to further determine the model with the greatest match to the experiment, which leads us to the

next section.

4.1.2 Structural and STM analysis

Figure 8 shows the comparison of theoretical and experimental STM images of the two models in layer 6

in real and reciprocal space. Figure 8(a) shows the experimental STM image portraying the two analyzed
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reconstructions: the 1 × 1 square-reconstruction and the row-reconstruction. Our Dr. Corbett reports

that a third large-row-vacancy-reconstruction is present (not shown herein), that all three terminations

can appear on the same atomic terrace, and that when they do not, they are rotated 90◦. The first of

these three statements is sadly out of the scope of this work, but there certainly is something we can do

about the last two. Given our model for the α-Mn surface reconstructions, the rotated zones belong to

layer −7 and have a height difference of an integer multiple of c/2. This means that in a single terrace,

the different structures can grow from the same underneath layer, as displayed by Wulfhekel and Gao

(2010).

Figure 8. Experimental and theoretical STM images of the α-Mn surface. (a) Experimental STM image showing the two
reconstructions. Atomic contrast was enhanced by Laplacian filtering. Image also includes zoomed views of the experimental
(b) square- and (d) row- structures, as well as theoretical TH-STM images of (f) unreconstructed-layer-6 model showing
a square-structure and (h) reconstructed-layer-6 model showing a row-structure (V = −0.5V , d = 4 Å). Images (c,e,g,i)
display the Fast Fourier Transforms of the experimental and theoretical STM images in (b,d,f,h), respectively. Experimental
and FFT images were provided by collaborator Dr. Perry Corbett.

By analyzing the experimental Figures 8(b,d) it is estimated that there is a separation of 8.6 ± 0.5

Å between each point in the square-reconstruction and 6.4 ± 0.5 Å between each row in the row-

reconstruction. The theoretical TH-STM images obtained are almost identical in appearance to the

experimental images. The estimated distances for the theoretical square- and row- reconstructions are

8.66 Å and 6.12 Å, respectively, well inside the standard deviation. The unreconstructed-layer-6 model

generates a square-pattern and the reconstructed-layer-6 model generates the row-pattern, as shown in

Figures 8(f,h). In the square-reconstruction (Figure 8(f)) each contiguous pair of atoms generates a

high-contrast zone at the selected bias and distance. It is worth noting that layers 6 and 7 are located

at almost the same height after the surface relaxation. In the row-reconstruction (Figure 8(h)), the

high-contrast areas are generated by the pair of atoms in layer 7, whilst the lone atom in layer 6 generates
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the lower-contrast region in between them.

Now, by comparing the Fast Fourier Transforms (FFTs) of all unreconstructed layers to the experimental

FFT, the unreconstructed-layer-6 model best fits both the square- and row- lattices. The fit is based

on the arrangement and intensity of the first- and second-order k-points (see Figures 8(c,g)). The

first-order k-points are of equal intensity in a square array, followed by a rotated square lattice of equal

intensity second-order k-points. The FFTs of layers 8 and 10 contained unequal intensity first- and

second-order k-points, which did not match the experiment. Also, the reconstructed-layer-6 model is

the only one to have a FFT with pair of high-intensity second-order points corresponding to the row

structure. Additionally, weaker first- and second-order k-points forming a square are observed in both

experiment and theory (see Figures 8(e,i)). This gives the best match for coexistence on a single layer,

correctly modeling the experimental observations.

4.1.3 Magnetic properties analysis

At the surface there is a breaking of the symmetry of the crystal structure. This leads to the creation

of dangling bonds and the relaxation of the atomic positions. These factors create a surface effect that

influences the electronic and magnetic properties of the atoms close to the surface. A prime example of

this is shown in Figure 9, where a NCL behavior of the magnetic moments is presented at the surface

layers.

The magnetic moments in the unreconstructed-layer-6 model present canting at the surface. The net

magnetic moment of the supercell is m = (1.546,−0.015, 0.506)µB, as opposed to the zero-value of

the bulk. However, as one may observe on Figures 9(a,b), every atom at the surface has its pair with

an opposite component in the ab-plane. The value of mx = 1.546 is mainly due to the atom at the

bottom of the supercell. This atom should have its magnetic moment collinear such as in the bulk, but

instead got projected onto the ab-plane. This does not affect the behavior of the magnetic moments at

the surface and got caused because of the surface effect of the vacuum on the bottom of the cell due to

the imposed symmetry of the calculations. There is a net value in the c-component of m because of the

way the supercells were defined. There is a complete unit cell at the bottom, and then another one with

atomic layers 1–5 removed. With this unit cell on top incomplete, there is a net magnetic component

in the c-direction.

On flip side, the magnetic moments in the reconstructed-layer-6 model (see Figures 9(c,d)) present a
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complete projection of the magnetic moments onto the surface plane. The net magnetic moment of

the supercell is m = (1.676,−1.676,−2.124)µB. Again, the magnetic component in the c-axis is due

to how the supercells were described. The lone atom in layer 6 causes the net magnetic moment in

the ab-plane since it is the only atom that does not possess a partner to cancel out with. Interestingly

enough, the spin distribution map reported by Wulfhekel and Gao (2010) strongly resembles the pattern

shown at both surfaces, with magnetic moments oriented diagonally along the unit cell.

(a) (b) (c) (d)

Figure 9. Graphical representation of the magnetic moments per layer of the (a) top and front and (b) isometric views of
the unreconstructed-layer-6 model and the the (c) top and front and (d) isometric views of the reconstructed-layer-6 model
of the α-Mn.

4.2 D022-Mn3Ga

As for D022-Mn3Ga, Figure 10(a) shows that more magnetic configurations were possible for this

structure, mainly because of the crystal symmetry of the unit cell. In both this and the L10-MnGa

structures, all magnetic orders were collinear as no report exists of these structures displaying a non-

collinear behavior. Therefore the prefixes CL- and NCL- are dropped henceforth. This structure shows

a fM ground state with the magnetic moments of Mnx atoms coupling in the opposite direction to the

ones of the Mny atoms (see Figure 2(b)). The final energy of this configuration is −60.52 eV/cell.

The FM, AFM, and NM structures are less stable by 0.78 eV/cell, 0.87 eV/cell, and 1.84 eV/cell,
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respectively.

(a) (b)

Figure 10. Stabilities of the D022-Mn3Ga bulk (in all of its possible magnetic orders) and surface reconstructions: (a) Final
energy vs. unit cell volume graph and (b) Surface Formation Energy graph.

The magnetic moments of the Mn atoms in the FM configuration are all pointing in the same direction,

and in the NM configuration, their magnitude is zero. In the AFM structure, the magnetic moments

of the Mn atoms of the top half of the cell are pointing in the opposite direction as the bottom half

to cancel out in total. It is worth mentioning that the Ga atoms do not significantly contribute to the

magnetism of the structure. The fM structure possesses a unit cell volume of 12.58 Å3/atom, with

respective lattice parameters a = b = 3.77 Å and c = 7.10 Å; which are well within an error of 3.5 %

with other theoretical (Balke et al., 2007) — a = b = 3.77 Å and c = 7.16 Å — and experimental

(Krén and Kádár, 1970) — a = b = 3.90 Å and c = 7.12 Å — reports. The magnetic moments of

the atoms calculated for this magnetic configuration are: mMnx = 2.30µB, mMny = −2.82 µB, and

mGa = −0.06 µB, which result in a total magnetization of 3.45 µB/unit cell. These values match

almost perfectly the theoretical results of Balke et al. (2007): mMnx ,mMny = 2.36,−2.90 µB. The

same holds for the experimental report, except for the mMnx , which Krén and Kádár (1970); Niida et al.

(1996) reported to be around 1.6±0.3 µB. This discrepancy affects the numerical value of the magnetic

moment, but not its behavior when interacting with the surface or the C, as shall be seen in upcoming

sections.
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4.2.1 Surface stability analysis

The locations of the Mnx, Mny, and Ga atoms in the unit cell of the D022-Mn3Ga in fractional

coordinates are:
[(
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, respectively. Therefore, the D022-Mn3Ga structure only has two possible

surface terminations: Mnx-Mnx and Mny-Ga, further referred to as A and B, respectively (see Figures

5(a,b)). Zhang et al. (2021) previously studied the stability of these two pristine surfaces via the SFE

formalism, but did not consider all the possible first-layer reconstructions. The surface reconstructions

were defined based on the adsorption and substitution of atoms on the first layer on surfaces A and

B. Surface A has substitution site s1, in which a Mnx atom of the first layer can be replaced by a Ga

atom. This is model A.Ga.s1. It also has adsorption sites a1 and a2, which are located on top of the Ga

and Mny atoms of the second layer, respectively. From these sites four models are stemmed: A.Mn.a1,

A.Mn.a2, A.Ga.a1, A.Ga.a2. Similarly, surface B has adsorption site a3, on top of the Mnx atom of

the corresponding second layer. It also has substitution sites s2 and s3, in which either a Mny or a

Ga atom of the first layer can be replaced by a Ga or Mny atom, respectively. All models follow the

same nomenclature and are displayed in Figure 20 in Annex 2. Substituted and adsorbed Mn atoms

always prefer to keep the spin alignment of their corresponding layer, which is why model names do

not differentiate between Mnx and Mny. The only exception to this is the B.Mn.a3 model, in which

the Mn atom adsorbed at the surface is located in a Mnx-Mnx layer but couples ferromagnetically to

the Mny on the surface. This is a surface effect due to the adsorbed Mn atom having no neighbors

other than the Mny and the Ga atoms at the surface. The Goodenough-Kanamori-Anderson (GKA)

rules dictate that a superexchange interaction at 180° along the d–p–d orbitals in an octahedron exhibits

a strong AFM coupling, while interaction at 90° is FM (Kanamori, 1959). They also dictate that the

expectancy-value of a FM coupling depends on the cosine of half the angle, while the expectancy-value

for an AFM depends on the sine of the same argument (Goodenough, 2008). There is a coupling angle of

approximately 60◦ bridging of the two magnetic Mn atoms to the non-magnetic Ga, which according to

the GKA rules, dictates a FM coupling is more likely. The adsorbed Mn atom in similar reconstructions

such as A.Mn.a1 and A.Mn.a2 still has an AFM coupling because there is no Ga at the surface, as there

must be a non-magnetic anion to carry out the superexchange interaction. Figure 10(b) shows the SFE

graph of the aforementioned models.

Models A and B show the same behavior and agree with the SFE values reported in the previous study by

Zhang et al. (2021). Interestingly, the two most stable surface models stem from a Mny-Ga termination:

B.Ga.s2 for Ga-rich conditions and B for Mn-rich conditions. They are the most stable because they have
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the lowest SFE values of all the proposed models. The models with a Ga substitution or adsorption follow

in stability, which suggests that Ga increases the stability of the reconstructions it is added on. The

opposite is true for the reconstructions with either a Mn adsorption of substitution: they are the least

stable. This trend has been observed on other Ga-based compounds such as CoGa (Pan et al., 2001),

MnGa (Corbett et al., 2017), and Fe3Ga (Ruvalcaba et al., 2021). Furthermore, model B.Ga.s2 has a

Ga-mono layer termination, and it is the most stable reconstruction on most of the growth conditions.

Now its turn to focus on the adsorption of C atoms on the surfaces of the most stable models (B.Ga.S2

and B) and their diffusion towards the bulk. The C incorporation was simulated only in interstitial

octahedral positions because the ratios of the atomic radius of C (= 0.70 Å) to those of Mn (= 1.40

Å) and Ga (= 1.30 Å) (Slater, 1964) are always less than 0.59, therefore favoring an interstitial alloy

(Goldschmidt, 1967, p. 14). Gutiérrez-Pérez et al. (2017); Holgúın-Momaca et al. (2019) also found

that substitutional positions are unstable. The position of the C atoms relative to the surface was given

as follows: each atomic layer was numbered according to their position from the vacuum. Layer 1 is

the closest one to the vacuum, and layer 0 is the position of an imaginary layer at the vacuum level to

simulate the incorporation of C atoms to the D022-Mn3Ga structure. Some C atoms were positioned in

positions a1 and a2, and some others in position a3, depending on the layer they are located in (see Figure

5 for graphical representation of these positions). Figure 11 shows the energies of each C-adsorption

model relative to the most stable configuration of each reconstruction (B-6a2 and B.Ga.s2-2a2).

(a) (b)

Figure 11. Relative energy vs carbon position graphs of the (a) B and (b) B.Ga.s2 models. The energy is measured in
relation to the most stable adsorption configuration of each model. Adsorption site of each C atom on every layer is labeled
next to its corresponding dot. The color represents the type of atom the C atom is laying on.

It is clear that as the C atom diffuses towards the bulk, the structure becomes more stable. The most

stable positions for the C atoms are the adsorption sites a2 in layers 6 and 2 for the B and B.Ga.s2

reconstructions, respectively. Both of them belong to an even-numbered layer, which is formed by Mnx
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atoms. This is exactly the same result reported by Holguin-Momaca, et al Gutiérrez-Pérez et al. (2017);

Holgúın-Momaca et al. (2019) when they studied the bulk structure. The least stable adsorption po-

sitions are in layer 0, followed by odd-numbered layers; where the C atom just adheres to the atoms

at the surface or lies in a Mny-Ga layer, respectively (see the side views of Figure 13 for a graphical

representation).

4.2.2 Magnetic properties analysis

As mentioned above, D022-Mn3Ga is fM, which means that the magnetic moments of Mnx atoms are

aligned in the opposite direction and with a different magnitude than Mny and Ga atoms — the latter

ones with a minimal contribution. Figure 12 shows the magnetic moments of each atom in each atomic

layer of the two reconstructions from the surface layer (on the left) to the bulk (to the right). The values

of the magnetic moments of the Mnx, Mny, and Ga atoms obtained from the calculations in the bulk

are included as horizontal lines for comparison. It is worth noting that the C atoms also have a tiny

contribution to the total magnetic moment, of approximately 0.03 µB. It is also worth recalling that,

since the C atoms are adsorbed in octahedral sites of the structure, they are surrounded by 6 atoms at

all times — except for when the C is at the surface. These atoms that act as the octahedron’s vertices

that contain the C atom are represented with a black border.

All the subfigures in Figure 12 show the surface effect on the magnetic moments. In the models based on

the B reconstruction (Figures 12(a-f)), the first layer has the magnetic moment of the Mny increasing

in magnitude to about −3.3 µB and the Mnx decreasing in magnitude to about 2 µB. The Ga atoms

on the surface revert their sign, but their magnitude remains close to zero. This surface phenomenon

affects the monolayers closest to the surface and becomes negligible after the second layer. Also, the

further the layers are from the surface, the more they will behave like the bulk structure, with the bulk

values as an asymptote. The atoms at the bottom layer deviate from the asymptote due to the vacuum

being next to them, in a similar manner to what was observed in Section 4.1.3.

The behavior of the magnetic moments of Mn atoms is dictated by an interaction between the surface

effect, the magnetoelasticity due to the lattice deformation caused by the C, and the superexchange

interaction. Gutiérrez-Pérez et al. (2017) proposed that when doping the material, there is a 90◦

superexchange interaction between the d orbitals of the Mnx and Mny atoms and the d orbital of the

C, which enhances the magnetization of the material. They also reported a 450 % increment of the

total magnetic moment of a bulk doped with 6.25 % C via a DFT calculation compared to experimental
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undoped measurements. The total magnetic moments of the 2 × 2 supercells of undoped models B

and B.Ga.s2 were 20.662 and 33.987 µB, respectively. The magnetic moments of the doped models

were 19.969, 19.000, 18.420, 18.666, 18.678, and 18.946 µB for the B models with C in layers 1–6,

respectively. For the B.Ga.S2 models with C in layers 1–6 the total magnetic moments were 33.203,

32.367, 34.230, 32.117, 32.529, 32.054 µB, respectively. The total magnetic moments of the doped

supercells decreased in almost all cases. This apparent contradiction with previous reports is explained

by noting that the incorporation of C atoms has a local effect on the magnetic moments.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Analysis of the surface magnetic moments per layer of the D022-Mn3Ga. The information of model B with a C
atom in the most stable positions in layers (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6; as well as on model B.Ga.s2 in layers
(g) 1, (h) 2, and (i) 3 is shown. Dots with a black border represent the first neighbors to the adsorbed C-atom. The rest
of the dots follow the coloring system given in Figure 5.

The C atom affects differently the magnetic moment of the Mn atoms as it makes its way to the
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bulk: it reduces the magnetic moment of the first-neighbor atoms and increases the magnetic moment

of the second neighbors. In the surface layers shown in Figures 12(a,b,g,h) this effect is almost

negligible in comparison to the surface effect. On the models where the C atom is in odd layers (Figures

12(a,c,e,g,i)), the magnetic moments of the Mnx atoms right on top and bottom of the C atom get

reduced to less than 2 µB, whilst the magnitude of the magnetic moments of the Mny atoms in the

same atomic plane as the C atom also gets reduced, but by less than 0.1 µB. The second-neighbor

Mnx-atoms experience an increment of their magnetic moment of up to 0.3 µB.

We should pay more attention to the models where the C atom is in even layers (Figures 12(b,d,f,h)),

however, since those were found to be the most stable (see Section 4.2.1). In these models, the

magnetic moment of the Mny atom on either top or bottom of the C atom is significantly reduced by

approximately 0.9 µB in all cases. Meanwhile, the 4 Mnx atoms surrounding the C atom experience a

slight reduction in their magnetic moment, while the second neighbors are increased by approximately 0.2

µB. It is expected that with a more uniform doping along the whole supercell the enhancement observed

in the magnetic moments of second neighbors would become global and reach the values reported by

Gutiérrez-Pérez et al. (2017); Holgúın-Momaca et al. (2019).

4.2.3 Electronic properties analysis

Figure 13 shows the PDOS by layer of the two stable reconstructions. Only layers 1 to 6 are shown,

since the remaining present the same bulk-like behavior. It is clear that the 3d orbitals of the two

types of Mn atoms are the main contributors to the states and the magnetism of the structure. Some

background states are coming from the Mn 4s, 4p; C 4s, 4p; and Ga 4s, 4p states, but their contribution is

insignificant compared to the Mn 3d states. Observe that there is no band gap between the occupied and

unoccupied states, revealing the metallic nature of the D022-Mn3Ga. The adsorbed C atom hybridizes

with the Mn atom in its same atomic plane at around −6eV .

In all cases, it is observed that the Mnx atoms have most of their spin-up states occupied and the spin-

down states unoccupied. This asymmetry with the spin-down states is characteristic of a FM coupling.

Nevertheless, it is also observed that the Mny atoms have most of their spin-up states unoccupied and

the spin-down states occupied, opposite to the Mnx atoms. This gives us another FM coupling among

all the Mny atoms but in the opposite sense as the Mnx ones. The result is that the number of Mnx

ions dominates and yields as a final result a net spin-up magnetic moment, i.e. a fM coupling.
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Finally, there is not much difference between the B models in Figures 12(a-f) and the B.Ga.s2 ones in

Figures 12(g-i) other than the states at the surface are exclusively generated by Ga atoms in the latter.

It can be appreciated in Figures 12(b,h) the effect of the surface relaxation and the lattice deformation

due to the C incorporation to the surface. The deeper the C atom goes into the surface, the less this

point defect disturbs the crystal symmetry.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13. PDOS by layer of the most stable models in D022-Mn3Ga. The information of model B with a C atom in the
most stable positions in layers (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6; as well as on model B.Ga.s2 in layers (g) 1, (h)
2, and (i) 3 is shown. Purple, turquoise, dark blue, and black represent the Mnx(d), Ga(p), Mny(d), and C(p) orbitals
contributions’ to the DOS, respectively.

4.3 L10-MnGa

Finally, Figure 14(a) shows the final energy vs. unit cell volume of the L10-MnGa structure. The

locations of the Mn and Ga atoms of the L10-MnGa structure in fractional coordinates are
(
1

2
, 1
2
, 1
2

)
and

(0, 0, 0), respectively. In this final structure only two possible magnetic orders exist: the FM ground-state

and a NM structure. The unit cell volume of the FM structure is 13.40 Å3/atom, with lattice parameters
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a = b = 2.70 Å and c = 3.68 Å on the DFT model. The ground state energy is −12.15 eV/cell, with a

difference of 0.53 eV/atom with the NM configuration. The optimized cell was then taken as a starting

point for the DFT+U model with all of the degrees of freedom unconstrained for the calculation and

optimization of the stress tensor. The corresponding lattice parameters were a = b = 2.95 Å and c = 4.05

Å. The calculated magnetic moments of the Mn atoms are: mDFT = 2.65µB and mDFT+U = 4.41 µB.

The magnitude of the magnetic moments increases in the DFT+U method because the orbital-dependent

term introduced in the +U correction induces strong interactions for the localized Mn(d) states, which

are the main responsible for the magnetic properties of the system, as shall be discussed in Section

4.3.4.

(a) (b)

Figure 14. Stabilities of the L10-MnGa bulk (in all of its possible magnetic orders) and surface reconstructions: (a) Final
energy vs. unit cell volume graph and (b) Surface Formation Energy graph.

The DFT lattice parameter and magnetic moments match almost perfectly other theoretical results, such

as the report by Yang et al. (1998). On the experimental side, Xue-Shan et al. (1979) reported lattice

parameters a = b = 2.758 Å and c = 3.676 Å. Corbett et al. (2017) performed a theoretical-experimental

study and reported lattice parameters a = b = 2.83 Å and c = 3.68 Å; and a magnetic moment on the

Mn atoms of mDFT = 2.9µB. These values have an error smaller than 5 % with both of the calculated

models reported in this thesis. The DFT lattice parameters and magnetic moments seem to fit better

the data reported in the literature. However, let us keep in mind that the DFT+U models improve the

description of the electronic correlation, which will be important for evaluating the electronic properties.
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4.3.1 Surface stability analysis

Now is the turn to analyze the adsorption and incorporation of Cu atoms on the most stable L10-MnGa

surfaces. As previously reported by Corbett et al. (2017), L10-MnGa has two surface terminations: the

ideal Ga-terminated 1 × 1 and the 1 × 2 row reconstruction with a Mn-by-Ga substitution on the first

layer. Considering that both structures are present in the experiment, they were used as the substrates

to adsorb and incorporate Cu atoms. The ideal Ga-terminated 1× 1 surface was considered first. Model

Cu(A1) is defined containing a Cu atom adsorbed on top of the second-layer Mn atom (position A1), as

labeled in Figure 6(a). Analogously, model Cu(A2) has a Cu atom adsorbed on top of the first-layer Ga

atom (position A2). Upon comparing the total energy of these sites in Table 2, it is evident that Cu(A1)

is more stable than Cu(A2) by 3.29 eV. Then we consider having atomic exchanges with the first- and

second-layer surface atoms. The first case considers Cu atoms incorporated into the first layer. In model

Cu(S1)−Ga(A1) Ga atoms are kicked out and adsorbed on (A1) site. Here Cu(S1) defines a Cu atom

substituting a Ga atom of the first surface layer. It is important to remember that only A1 is considered

because it is the most stable surface adsorption site. In the second model (Cu(S2) −Mn(A1)), the

Cu atom takes the place of a second-layer Mn atom, and the ejected Mn adsorbs on the A1 site.

Cu(S2) stands for a Cu atom substituting a second-layer Mn atom. Considering that Cu(A1), Cu(A2),

Cu(S1) − Ga(A1), and Cu(S2) − Mn(A1) have the same number of atoms, we can compare their

relative stability through total energies, which are summarized in Table 2. Also, all of the models are

illustrated in Figure 21 of the Annex 2.

The Cu(S1) − Ga(A1) model is more stable than Cu(S2) −Mn(A1), Cu(A2), and Cu(A1) by 0.90

eV, 3.52 eV, and 0.23 eV, respectively. Finally, we consider the possibility of a direct atom-by-atom

substitution via the ejected atoms leaving the surface. Such effect has been experimentally and theo-

retically observed in other magnetic systems (Guerrero-Sánchez et al., 2015, 2016). Therefore, it exists

the possibility in which Cu(S1) −Ga(A1) becomes Cu(S1) and Cu(S2) −Mn(A1) becomes Cu(S2).

The SFE formalism was applied just as in the previous alloys.

Following a similar reasoning, we analyze the possibility of adsorbing and incorporating Cu atoms into the

1× 2 row reconstruction. Since a surface Mn atom reconstructs the surface, there are more adsorption

sites. These are: Cu − A1, Cu − A2, Cu − A3, Cu − A4, Cu − A5, and Cu − A6, as showcased in

Figure 21 of the Annex 2. By comparing the relative energies of all these models (see Table 2), we

notice that the most stable model is Cu−A1. Here the Cu atoms adsorb on top of the second-layer Mn
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Table 2. Relative energies of the L10-MnGa models that have the same number of atoms as the pristine 1× 1 and 1× 2

surfaces.

Model Relative energy (eV)

1× 1

Cu(A1) 0.23
Cu(A2) 3.52

Cu(S1)−Ga(A1) 0.00
Cu(S2)−Mn(A1) 0.90

1× 2

Cu−A1 0.36
Cu−A2 1.24
Cu−A3 1.30
Cu−A4 0.40
Cu−A5 0.37
Cu−A6 1.19

Cu(S1 − f −Mn1)−Ga(A1) 0.00
Cu(S1 − f −Mn1)−Ga(A2) 0.76
Cu(S1 − f −Mn1)−Ga(A3) 0.53
Cu(S1 − f −Mn1)−Ga(A4) 0.25
Cu(S1 − f −Mn1)−Ga(A5) 0.18
Cu(S1 − f −Mn1)−Ga(A6) 0.60
Cu(S1 − n−Mn1)−Ga(A1) 0.18
Cu(S2 − n−Mn1)−Mn(A1) 1.37
Cu(S2 − f −Mn1)−Mn(A1) 1.32
Cu/Mn1(S1)−Mn1(A1) 2.65
Cu/Mn1(S1)−Mn1(A2) 3.97
Cu/Mn1(S1)−Mn1(A3) 1.83
Cu/Mn1(S1)−Mn1(A4) 0.95
Cu/Mn1(S1)−Mn1(A5) 0.83
Cu/Mn1(S1)−Mn1(A6) 3.89

atoms and near the first-layer Mn atom. Models that arise from considering Cu atomic incorporation as

combinations of atomic exchanges were also defined. For example: in model Cu(S1−f−Mn1)−Ga(A1)

the Cu atom takes the place of a Ga atom far from the Mn in the first layer, and the ejected Ga atom

adsorbs on position A1. Letters “f” and “n” stand for “far from” or “near from” the first-layer Mn

atom, respectively. The other models are: Cu(S1−n−Mn1)−Ga(A1), Cu(S1−f −Mn1)−Ga(A2),

Cu(S1 − f −Mn1)−Ga(A3), Cu(S1 − f −Mn1)−Ga(A4), Cu(S1 − f −Mn1)−Ga(A5), Cu(S1 −
f −Mn1)−Ga(A6). The relative energies of these systems are presented in Table 2. Based on these

results, the most stable atomic exchange at the first surface layer is Cu(S1 − f −Mn1)−Ga(A1).

Considering that the atomic exchange of Mn by Cu is not stable in the 1 × 1 surface (see Table 2),

some sites in the 1× 2 reconstruction were considered. These are: Cu(S2 − f −Mn1)−Mn(A1) and

Cu(S2 − n −Mn1) −Mn(A1). The former represents an atomic substitution of a second-layer Mn
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far from the first-layer Mn by Cu, and the ejected Mn atom adsorbed on position A1. The latter is

similar, but the exchanged Mn atom is originally located near the first-layer Mn atom. The total energy

of these systems is 1.32 eV and 1.37 eV larger than the one most stable energy for S1 atomic exchange,

respectively. This hints that atomic exchanges are less likely and are therefore not considered for the

stability analysis.

One more possibility that was considered is that the Cu atom takes the place of the first-layer Mn. The

atomic models are: Cu/Mn1(S1)−Mn1(A1), Cu/Mn1(S1)−Mn1(A2), Cu/Mn1(S1)−Mn1(A3),

Cu/Mn1(S1)−Mn1(A4), Cu/Mn1(S1)−Mn1(A5), and Cu/Mn1(S1)−Mn1(A6). In the Cu/Mn1(S1)−
Mn1(A1) model, the first-layer Mn atom is replaced by a Cu atom, and then it adsorbs on position A1.

The remaining models hold similar descriptions. By comparing the energies of these models, it is clear

that the first-layer Mn/Cu atomic exchange is not stable if the Mn atom adsorbs on the surface, following

the trend mentioned in Section 4.2.1. All calculated models are larger in energy (see Table 2). All

previously discussed adsorption and incorporation models hold the same number of atoms; therefore,

they can be compared directly. The most stable of these models is Cu(S1 − f −Mn1)−Ga(A1).

Finally, other structures were considered in which we take the most stable S1 and S2 models — Cu(S1−
f −Mn1) − Ga(A1), Cu/Mn1(S1) −Mn1(A5), and Cu(S2 − n −Mn1) −Mn(A1) — and remove

the adsorbed atoms to generate one–by–one atomic substitutions. These models are Cu/Mn1(S1),

Cu(S1 − f −Mn1), Cu(S2 − n−Mn1), and Cu(S2 − f −Mn1); in which the Cu atom replaces the

first-layer Mn atom, a Ga atom far from the first-layer Mn atom, a second-layer Mn atom that is near

to the first-layer Mn atom, and a second-layer Mn atom far from the first-layer Mn atom, respectively.

These three models have a different number of atoms compared to the previously discussed models, so

the stability of these models cannot be described through total energy differences. In this instance, it

is necessary to use the SFE formalism. Considering that the MnGa surfaces are already well described

experimentally and theoretically by Corbett et al. (2017), the ideal Ga-terminated 1 × 1 surface was

taken as a reference. Upon including the Mn-induced 1 × 2 reconstruction to the SFE plot in Figure

14(b), it is clear that this structure is more stable than the ideal Ga-terminated 1×1 surface for Mn-rich

conditions, as previously observed by Corbett et al. (2017). Once demonstrated that the stability analysis

is correct, some Cu-containing models were included (see Figure 21 of the Annex 2 for their graphical

representation). The SFE analysis showcases two Cu-containing surfaces as stable. For Mn-rich and

intermediate growth conditions, a new 1 × 2 Cu-induced surface reconstruction — Cu/Mn1(S1) —

appears as stable, whereas for Ga-rich conditions, a 1 × 1 surface with Cu atoms incorporated in the

second surface layer — Cu(S2) — achieves stability.
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Notice that the new Cu-induced 1× 1 surface is Ga-terminated. Although this is a new surface, it will

not be discussed further since the 1 × 2 surface has the potential to be catalytically active due to its

Cu atom located in the surface-most layer. Upon increasing the Cu coverage, it is also expected that

new stable structures will appear, but that study is beyond the scope of this work. The stability of the

surfaces in terms of the Cu coverage is a matter of a separate study. For the rest of this chapter, we

will study and compare the properties of both Mn- and Cu- 1 × 2 single atom surface reconstructions

(hereby referred to as Mn and Cu models, respectively).

4.3.2 Structural and STM analysis

Figures 15(a-h) illustrate the top and side views of the four presented models. The difference between

the lattice parameter c of the DFT+U and the DFT calculations is clear. Figure 15(m) illustrates the

surface effect on the relaxation of the modeled structures. The generated surface effect also affects

the magnetic and electronic properties, as will be discussed in the coming sections. It is clear that the

outermost layer’s lattice parameter is different from that of the bulk layers on all models. On the Mn

(DFT+U) model, layer 1 expands by 0.5 Å in the [001] direction. Layer 1 contracts by 0.1 Å on the

other models. Interestingly, the Mn atom substituted in layer 1 protrudes slightly from the surface, while

the Cu atom slightly sinks into it in the DFT+U models. The surface relaxation effect is less noticeable

for the DFT models.

Now, Figures 15(i-l) show the simulated TH-STM images with a tip distance of 3 Å for occupied

states of the four models. The same tip distance and bias were used in the previous study conducted

by Corbett et al. (2017). In the Mn-substituted models, the DFT+U surface shows a wavy row-like

reconstruction with a high concentration of occupied states around the Ga atoms forming the row. This

model has good agreement with the previous report by Corbett et al. (2017). On the other hand, the

DFT model of the Mn-substitution does not maintain stable row-like atomic features but forms an array

of a square and a rectangular lattice, which was not previously observed experimentally. This showcases

the importance of the +U correction for the correct description of these properties of the system. Both

Cu-substituted models exhibit that most occupied states are located around the Ga atoms in a roughly

row-like periodicity. The DFT+U model shows repeated rows of a centered square array of Ga atoms of

nearly equal contrast. Conversely, the center Ga of the central square array exhibits significantly higher

contrast in the DFT model.
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Figure 15. Results from the L10-MnGa structural relaxation calculations. Top, side and STM (V = −0.71V , d = 3

Å) views of the (a,e,i) Mn-substituted DFT+U model, (b,f,j) Cu-substituted DFT+U model, (c,g,k) Mn-substituted DFT
model, and (d,h,l) Cu-substituted DFT model, respectively. (m) shows quantitative data on the surface relaxation of the
models.

4.3.3 Magnetic properties analysis

The L10-MnGa(001) structure presents a FM behavior with its main contributions coming from Mn

atoms. Ga and Cu atoms on the surfaces make an almost-zero contribution in the opposite direction.

Figure 16 shows the magnetic moment analysis per surface layer, from the surface to the bulk, for the

four studied surfaces. The values of the bulk magnetic moments are also included for comparison, as

horizontal purple (Mn) and turquoise (Ga) lines, respectively.

The surface effect previously mentioned decreases the magnetic moment of the Mn atoms. In Figures

16(a,b) the difference is less than 0.1 µB/atom, while it is more appreciable in Figures 16(c,d) (DFT

models) with a difference of up to 0.4 µB/atom in comparison to the bulk. This surface phenomenon

is negligible after the second layer. The magnetic moments of the Ga atoms in layer 1 also experience

a reduced moment down to nearly zero. The Mn atom substituted onto the Ga layer at the surface

couples antiferromagnetically with a magnetic moment of almost the same magnitude as the bulk, as it

has been reported Corbett et al. (2017). Interestingly, the magnetic moment of the Cu atom substituted

onto the surface shifts to a positive value, but its magnitude remains close to zero.
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It is worth recalling that the DFT+U method improves the description of strongly localized electrons

by introducing an orbital-dependent term known as the on-site Coulomb repulsion energy (U) into the

exchange-correlation term. The interactions derived from this term are particularly strong for localized

d and f electrons, such as those in Mn(d) and Cu(d) states, the former of which are the main ones

responsible for the magnetic properties of the system. This causes the difference in the magnitudes of

the Mn magnetic moments between the DFT and DFT+U models. This is a well-known phenomenon

that has been reported, for instance, in Fe and Ni monoxides, Fayalite, and (in a more related fashion

to the materials in the present study) metallic Fe, Ni, and Ce (Cococcioni and de Gironcoli, 2005;

Himmetoglu et al., 2014). However, by improving the description of strongly localized electrons, the

DFT+U method allows us to describe their properties more closely to reality. Particularly in this thesis,

the +U correction was used to compare its effect on the potential catalytic behavior of Cu. It is found

that both DFT and DFT+U frameworks show the same behavior and lead to the same conclusions.

Figure 16. Analysis of the surface magnetic moments per layer of the (a) Mn-substituted DFT+U model, (b) Cu-substituted
DFT+U model, (c) Mn-substituted DFT model, and (d) Cu-substituted DFT model. Horizontal solid lines show the values
of the magnetic moments from the bulk calculations of the Mn and Ga atoms, respectively.
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4.3.4 Electronic properties analysis

Figure 17 shows the PDOS of each atomic layer of the four calculated structures. Only layers 1 to 4 are

shown, as the remaining present the same bulk-like behavior. In all models, the width of the spin-up band

is narrower than the spin-down band, as reported by Yang et al. (1998), which is associated with a less

strong bonding of the spin-down electrons and thus a stronger interaction among themselves. Analysis

of the PDOS reveals that the Mn 3d states govern the electronic states and the magnetic structure at

the Mn-layers. These states generate the characteristic peak structures of L10-MnGa (Jain et al., 2020;

Garcia-Diaz et al., 2017). Some background states are coming from the Mn 4s and Ga 4s, 4p states,

but their contribution is not significant compared to the Mn 3d states. The Ga-layers do not contribute

significantly to the DOS of any structure.

(a) (b)

(c) (d)

Figure 17. PDOS by layer of the most stable models in L10-MnGa: (a) Mn (DFT+U), (b) Cu (DFT+U), (c) Mn
(DFT), and (d) Cu (DFT). Purple, turquoise, and brown represent the Mn(d) orbitals, Ga(p) orbitals, and Cu(d) orbitals
contributions’ to the DOS, respectively.

Compared to the DFT models, the DFT+U models show a shift of the occupied and unoccupied states

away from the Fermi level. This occurs because the incorporation of the Hubbard correction results in

an overestimation of the binding energy in the d-state, which results in under-hybridization with the
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valence states (Harun et al., 2020). This effect has been previously reported (Ryee and Han, 2018;

Musa Saad H.-E. and Anwar K Abdelhalim, 2020). However, it is worth noting that all MnGa models

possess metallic behavior. In the DFT+U models, the y-axis was zoomed on layers far from the surface

in order to appreciate the DOS near the Fermi level. The metallic behavior of all models is confirmed by

analyzing the ELF’s 2D cuts displayed in Figure 18 for both spin-up and spin-down states of the front

and middle sections of the slabs.

Figure 18. Atomic model, ELFs, magnetization density and EPI (isosurface value = 0.05 e/a.u.3) of the front and middle
sections of all the simulated slabs.

The metallic behavior is reflected when noticing that on all subfigures, there is a region where the ELFs

have a constant-like behavior, as stated by Koumpouras and Larsson (2020). Also, by considering the

bonding localization window for each image, it is clear that all of them have a value < 0.7, falling into

the metallic category. Interestingly, the symmetry breaking from the surface leads to high localization of

spin-up electrons on top of the Ga atoms at the surface, which is consistent with the previously analyzed

STM images.

The magnetization density (defined in Section 2.9) is shown in Figure 18. It reaches a minimal value

at the empty space between atoms and the location of the Ga and Cu atoms, demonstrating their

diamagnetic nature. It also displays a positive value for all Mn atoms except for the one substituted at

the surface, which has a negative one. This is a visual representation of the already previously examined

antiferromagnetic coupling of this atom with the rest of the structure. Finally, Figure 18 shows the EPI
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at a value 0.05 e/a.u.3. It is clear that the substituted Cu atoms have a highly positive charge distribution

on both models i.e. they are electronegative. This particular surface structure could potentially interact

with electropositive sites of molecules at Cu ends — since Cu will have a tendency to attract electrons

— and electronegative sites of molecules at Ga ends — since these sites of the molecules will attract

the localized electrons at the surface above Ga. This creates ideal conditions for catalytic reactions to

be carried out at the surface, making this structure a Single-Atom Alloy Catalyst.

There are some instances of the use of metallic Ga as catalysts. For example, Qin and Schneider

(2016) reported the use of elemental Ga as a catalyst for the formation of saturated bonds with high

chemoselectivity. Toyir et al. (2001a,b,c) conducted a series of studies on a highly effective conversion

of CO2 to methanol over Ga-promoted Cu-based catalysts. Furthermore, with the L10-MnGa being a

ferromagnet, its intrinsic magnetic field could further boost its catalytic properties by interacting with

the spin state of the reactants and favorably influencing the energy levels of their atomic species.
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Chapter 5. Conclusions

Throughout this thesis, the results of a series of first-principles DFT calculations were presented, seeking

to characterize the structural, electronic, and magnetic properties of the bulk and the (001) surfaces

of three Mn-Ga alloys. In the α-Mn, atomic coordinates and magnetic moments of a CL-AFM order

at the ground and a NCL-AFM state under stretching strain were characterized. A surface analysis

was performed to match all the possible theoretical (001) surface reconstructions to experimental STM

images. It was determined that only layers 6, 8 and 10 can reproduce the experimentally-observed

square- and row- reconstructions. The two models based on layer 6 explained the experimental data

most correctly, as they have the lowest surface formation energies of the aforementioned models and are

the only ones with the same Fast Fourier Transform patterns as the experimental images. An analysis

of the magnetic moments of these two models revealed spin canting at the square-reconstruction and a

total projection of the spins onto the surface plane for the row-reconstruction, which are entirely due to

the surface effect and strongly resembled previous experimental studies. Further theoretical studies are

required to characterize the third large-row-vacancy-reconstruction observed experimentally and possibly

simulate the proposed surfaces with a NCL-AFM bulk configuration.

Also, a comprehensive analysis of the D022-Mn3Ga structure was performed. It was determined that the

structure behaves as a fM and its magnetic behavior was dependent on the Mn atoms. Each atom’s

positions and magnetic moments were determined and found in good agreement with previous studies.

All the possible first-layer (001) surface reconstructions were examined, and it was determined that two

1× 1 reconstructions (one Mny-Ga-terminated and the other Ga-terminated) were the most stable. The

surface effect strongly affected the magnetic moments of the surface-most two layers, and a very localized

effect of the C doping on the magnetic moments was observed decreasing the magnetic moments of

the first-neighbor Mn atoms and increasing the magnetic moments of the second-neighbor Mn atoms.

The experimental enhancement of the magnetization of the structure due to C doping was explained in

terms of a superexchange interaction among the two Mnx atoms and a C atom incorporated in the most

stable octahedral positions. The PDOS revealed the nature of the fM behavior and its enhancement.

Finally, the most stable L10-MnGa(001) surface reconstructions with Mn and Cu were presented. A

study on the bulk structures determined that this alloy is FM and also its lattice parameters. The most

stable structures were 1 × 1 and 1 × 2 Cu-substituted models, but only the 1 × 2 reconstruction was

studied because of the potential catalytic applications due to its Cu atom located in the surface-most

layer. The properties of another previously reported 1 × 2 reconstruction were compared. It was found
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that both surfaces display a row-like pattern when observed via STM images. It was also shown that

the surfaces behave very similarly to the bulk, except for when a Mn atom is substituted at the surface,

in which case it is coupled in an AFM fashion. The newfound 1× 2 Cu-substituted structure is a good

candidate for heterogeneous catalysis thanks to its surface behavior: it has a high localization of spin-up

electrons above the Ga atoms and the Cu atom behaves electronegatively. The surfaces were studied

with both DFT+U and DFT theories and the results lead to the same conclusion regarding the potential

for catalysis. Further studies are required to test the catalytic potential of this surface and characterize

the properties of the 1× 1 and other surfaces richer in Cu.
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Annex

Annex 1. Surface Formation Energy Formalism

As explained in Chapter 2 the total energies outputted by DFT calculations depend on the electron

density, which also depends (among other things) on the number of electrons in the system. Therefore the

energies of systems with different numbers of atoms are not comparable. Therefore, another criterion is

needed to compare the stabilities of surface reconstructions with different numbers of atoms and different

elements. This tool is the Surface Formation Energy (SFE) formalism, which was firstly described by

Qian et al. (1988) and has been applied on several articles ever since (Corbett et al., 2017; Ruvalcaba

et al., 2021). Applying this formalism to the present systems goes as follows: first, we must consider

that the whole supercell is in thermodynamical equilibrium. Under this consideration, any change in the

energy will be given by a change in the number of atoms in the system, i.e. their corresponding chemical

potentials. Considering any system with less than three elements, such as a Mn-Ga alloy, the previous

statement can be mathematically expressed as:

Eb = Aσ + nMnµMn + nGaµGa (A.1)

where Eb is the total energy of the supercell, A is the cross-sectional area of the surface, σ is the SFE,

n is the number of atoms in the unit cell (in α-Mn nGa = 0) and µ is the chemical potential. The

subscripts represent the elements to which each parameter is associated. If the SFE of the previous

equation is cleared, we obtain:

σ =
Eb − nMnµMn − nGaµGa

A
(A.2)

The enthalpies of formation of the bulk (µbk) and the surface reconstructions (∆Hf ) are defined as

follows:

µbk = xMnµMn + xGaµGa (A.3)

∆Hf = µbk − xMnµ
bk
Mn − xGaµ

bk
Ga (A.4)

where x represents the number of atoms of each element in the general formula of the alloy: in α-Mn

xMn, xGa = 1, 0, in D022-Mn3Ga xMn, xGa = 3, 1, and in L10-MnGa xMn, xGa = 1, 1. In addition, µbk,

µbkMn and µbkGa are the final energies of the alloys, the Mn and the Ga bulks outputted by the calculation.

µbkMn and µbkGa are equal to −9.01 eV/atom and −2.91 eV/atom, respectively. They were obtained

following the same methodology described in Section 3.2. The crystal structure of Mn is the α-Mn,

and the crystal structure of Ga was taken from Materials Project (2013c). According to its definition,
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the enthalpy of formation ∆µ is negative when the alloy is more stable than the separate metals and

positive when it is less stable. Next, another auxiliary parameter ∆µ is defined as:

∆µ = xMnµMn − xGaµGa (A.5)

By solving the system of equations generated by (A.3) and (A.5) we find that:

µMn =
µbk +∆µ

2xMn
(A.6)

µGa =
µbk −∆µ

2xGa
(A.7)

Then, by substituting equations (A.6) and (A.7) in (A.2) and grouping similar terms we obtain:

σ =
1

2A

[
2Eb − µbk

(
nMn

xMn
+
nGa

xGa

)
−∆µ

(
nMn

xMn
− nGa

xGa

)]
(A.8)

All the values in equation (A.9) are known, except for ∆µ. We are not interested in the region in

which the Mn bulk is formed
(
µMn < µbkMn

)
and the same goes for the Ga

(
µGa < µbkGa

)
. Therefore the

domain of ∆µ is defined as:

xMnµ
bk
Mn − xGaµ

bk
Ga −∆Hf < ∆µ < xMnµ

bk
Mn − xGaµ

bk
Ga +∆Hf (A.9)

According to equation A.5, when the chemical potential of Ga dominates, the last two terms on the

left have a negative sign, and ∆µ reaches its minimum value at the lower limit. This is referred to as

Ga-rich conditions. On the contrary, Mn-rich conditions are met when the chemical potential of Mn

dominates, reaching its maximum value at the upper limit. Finally, in Figures 10(b),14(b) is plotted

the SFE — defined in equation (A.8) — vs ∆µ for every proposed surface reconstruction of D022-Mn3Ga

and L10-MnGa.

In the case of α-Mn, since there is no Ga in the structure, all terms related to Ga in equation (A.8)

become zero, and ∆µ is only plotted in one point: µbk. After performing these simplifications, we get

the expression for the SFE plotted in Figure 7(b):

σα-Mn =
1

A

(
Eb − nMnµ

bk
Mn

)
(A.10)
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Annex 2. Analyzed surface reconstructions

This section shows the least-stable surface models of all three Mn-Ga alloys.

Figure 19. Top and front views of the α-Mn models analyzed with the SFE formalism. See nomenclature in Section 3.3.1.
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Figure 20. Top and front views of the D022-Mn3Ga models analyzed with the SFE formalism. See nomenclature in Section
3.3.2.
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Figure 21. Top and front views of the L10-MnGa models analyzed with the SFE formalism. Brown spheres represent Cu
atoms. S1 and S2 stand for substitution of the respective atoms in the first or second layers, respectively. “A” stands
for adsorption according to Figure 6 Letters “f” and “n” stand for “far from” or “near from” the first layer Mn atom,
respectively. On the 1× 2 reconstructions only the surface-most two layers are shown.
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