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Abstract

The automatic identification of catalytic residues still remains an important challenge in structural bioinformatics. Sequence-
based methods are good alternatives when the query shares a high percentage of identity with a well-annotated enzyme.
However, when the homology is not apparent, which occurs with many structures from the structural genome initiative,
structural information should be exploited. A local structural comparison is preferred to a global structural comparison
when predicting functional residues. CMASA is a recently proposed method for predicting catalytic residues based on a
local structure comparison. The method achieves high accuracy and a high value for the Matthews correlation coefficient.
However, point substitutions or a lack of relevant data strongly affect the performance of the method. In the present study,
we propose a simple extension to the CMASA method to overcome this difficulty. Extensive computational experiments are
shown as proof of concept instances, as well as for a few real cases. The results show that the extension performs well when
the catalytic site contains mutated residues or when some residues are missing. The proposed modification could correctly
predict the catalytic residues of a mutant thymidylate synthase, 1EVF. It also successfully predicted the catalytic residues for
3HRC despite the lack of information for a relevant side chain atom in the PDB file.
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Introduction

The automatic annotation of protein functions is a challenging

problem in structural bioinformatics. The ambiguous definition of

protein function itself makes the problem even more complicated

[1,2]. Function considers many aspects: biochemical, physiologi-

cal, cellular, and medical. Given this complexity, it is practically

impossible to develop predictive models based on sequence,

structure, or any other descriptive characteristics of the protein for

a general case. Therefore, predictors that focus on specific aspects

related to function seems more promising.

Enzymatic functions are utilized in almost all biological

processes; these functions are usually related to a few catalytic

residues. The automatic identification of these relevant residues

has been approached from many contexts. When the sequence

identity between the query protein and some known enzyme is

high, sequence-based methods, such as BLAST [3], PSI-BLAST

[4], or PROSITE [5], may work. However, when there is not close

homology, structure-based methods should be used.

The Structural Genomics Initiative [6], which contributed more

than a thousand new structures to the PDB, has accelerated the

development of structure-based prediction methods for function in

general [7] and for catalytic residues in particular [8–11]. These

methods are based on the assumption that enzyme functions are

determined by a group of a few residues in the active site. Thus,

two proteins with similar functions should have similar local

patterns in the corresponding active sites, regardless of the

sequence or the global structure. These methods take a predefined

pattern associated with a particular function and search for this

pattern in the structure of the query protein. Our proposal falls

within this group of methods.

Most of these local structure-based methods use a database of

patterns that are assumed to be responsible for a specific function.

The methods search for these patterns and transfer the function

from the pattern that best matches the query protein. The patterns

in the database can be found using existing methods designed for

this search [12–15] or using experimentally obtained information

about the active sites, such as the information from the Catalytic

Sites Atlas (CSA) [16].

One of the first methods in this category was ASSAM [17]. In

this approach, a graph is built for the query protein structure, and

another is built for the pattern. Next, Ullman’s subgraph
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isomorphism algorithm [18] is used to determine whether the

pattern sub-graph is contained within the graph of the query

protein. To generate the graphs, each residue in the pattern and in

the protein is represented by two pseudo-atoms (S and E), which

indicate the start and end of the functional group of the side chain.

These atoms become the nodes of a 3D graph, and each node is

labeled with the amino acid type and the type of pseudo-center (S

or E). That is, the method considers the position, orientation, and

type of residue. However, a newer version [19] also accounts for

the solvent accessibility, the type of secondary structure of the

residue, and the disulfide bonds, among other improvements. The

method was easily able to find patterns of catalytic triads for some

serine proteases and other common patterns in enzymes.

TESS [20] uses geometric hashing to search for the common

structural patterns responsible for a function in all enzymes in the

PDB. Some of the identified patterns were catalytic triads and

active sites in ribonucleases and lysozymes. The method is divided

into two phases: preprocessing and template search. In the first

stage, all PDB structures are preprocessed. To achieve this aim,

each amino acid is represented by three atoms, and a hash key is

created for each pair of atoms that are within a threshold distance

of each other. In each slot of the table, the relative positions of

close atoms are stored. During the template search stage, all

patterns are checked against all entries in the table, and those

entries with the largest number of coincidences indicate the

presence of the pattern in the protein.

As an improvement to TESS, a method known as JESS [21]

was proposed. This procedure allows for the inclusion of arbitrary

geometric and chemical constraints in the definition of the

obtained templates from the database. This addition results in

more flexible models than those generated with TESS.

THEMATICS [22] is a method that finds catalytic residues

when a protein has a known structure but does not show any

sequence or structure similarity to other proteins. It does not

require homology or any other extra information besides the

structure of the query protein. It is based on the physicochemical

properties of the residues and its neighbors.

PINTS [23] performs database searches for user-specified

patterns and provides a measure of the statistical significance of

the outcomes. Using PINTS, previously computed patterns can

Figure 1. Flowchart of CMASA and the proposed extension. The diagrams with a dashed background indicate added characteristics, the grey
shadowed regions correspond to the process of introducing the SM, and the dashed arrows indicate optional flow.
doi:10.1371/journal.pone.0108513.g001
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also be compared to databases of complete structures, databases of

entire structures, and databases of particular residues that are

likely to be functionally important, as is the case for catalytic

residues.

eF-Site [24] is a method that considers the electrostatic

potential, the geometry and the hydropathy on the protein surface

as criteria to measure the similarity between regions of local

structures. This method maintains a database with information

regarding the molecular surface of active sites with known

function. The method creates graphs for the structure and for

the pattern, where the vertices are points on the surface; the

vertices are labeled with the electrostatic potential and the

hydrophobicity, among other characteristics. From the two

graphs, a third graph is generated where the nodes are all pairs

of nodes in the structure pattern and in the query with similar

labels. These nodes are connected through an edge if the

corresponding distances are similar in both graphs. In the last

step, the Bron-Kerbosch algorithm is used to search for a

maximum clique [25]. The clique represents the largest common

structural pattern between the protein and the local structure. The

method was able to find local similarities beyond the global

structure.

SiteEngine [26] is also designed to find regions on the protein

surface similar to a specific binding site of a given protein. The

representation is the one proposed in CavBase [27]. In this

method, each residue is represented by generic pseudo-centers,

which codify the physicochemical properties that are important for

molecular interactions.

Query3d [28] is a method to find local structural motifs that are

commonly found in proteins. Query3d is also a database

management system. It can search for similar regions between

the following: two protein structures, a structure and all structures

in the PDB, and subsets of arbitrary amino acids within a

structure.

An accurate and fast method for the prediction of catalytic

residues is the one known as CMASA [29]. CMASA implements

an algorithm that compares a database of catalytic residues and

their 3D structure with the query protein. Each amino acid is

represented using information about the alpha-carbon atom (Ca)

and the side chain atom that is furthest from the Ca, denoted as fa.

These atoms are labeled with the amino acid type. The method

obtains its templates from the CSA and the PDB, and the pattern

is modeled as two distance matrices: one for all-pairs distances of

the Ca of all catalytic residues and the other for all pairs of the fa
atoms. Another recent approach that follows similar ideas is

CatSId [11]; both approaches use distance matrices to represent

the pattern. However, in CMASA two matrices are used, whereas

CarSId uses only the matrix of distances related to the Ca. The

main difference, however, is that CMASA is a similarity-based

approach and CatSId is a machine learning-based approach.

The work we propose here is an extension to CMASA to

efficiently account for single point substitutions or missing data in

the PDB entry. Although CMASA was designed to address single

Figure 2. Emulation of local structures in CMASA. The query protein Q is hypothetical; the template ti is associated with the catalytic site of
protein 1ADO to emulate the local structures. (A) Input to the method: Q is the sequence of residues in the query structure; ti (E, D, and K) is the
template used to emulate the local structures in Q. (B) Emulated structures of ti in Q; there are four possible combinations (lq1, lq2, lq3, lq4) that may
match the template ti.
doi:10.1371/journal.pone.0108513.g002
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point mutations by using a substitution matrix, we show that the

implementation does not work in many cases. The proposed idea

is simple and consists of extending the template library to consider

all n21 combinations of the n catalytic residues of each active site.

In this manner, the extension is able to recover the non-mutated

residues of the catalytic site without substantially degrading its

performance for non-mutated cases.

Figure 3. Computing the number of comparisons to handle single point mutations. Using the input shown in Figure 2 and the
substitution matrix approach, the residues of type H can be interchanged with E, D, and K. These substitutions generate the combinations shown in
(A). In contrast, xCMASA does not require additional information because the sub-templates are derived from ti, as shown in (B).
doi:10.1371/journal.pone.0108513.g003

Table 1. Replication from [29] for master templates and non-mutated queries.

Case Sn Acc Pr MCC

CMASA [29] 0.750 0.940 NA 0.820

Replication 0.795 0.981 0.907 0.840

doi:10.1371/journal.pone.0108513.t001
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Materials and Methods

The test sets
Before introducing the test sets, the concepts of template and

master template must be introduced. A template is defined as the

set of 3D coordinates of each alpha carbon (Ca) and the furthest

atom (fa) in the side chain of every catalytic residue of a given

enzyme. For a given family, a master template is defined as the

template that minimizes the following expression [29]:

SumRMSD(i)~
Xnr

j=i

RMSD(j,i) ð1Þ

Here, RMSD(i,j) is the RMSD between the ith and jth templates

in the rth family, and nr is the number of templates in the family.

Two test sets (A and B) are proposed. Each of these test sets

contains a positive group of proteins (i.e., proteins whose catalytic

residues are annotated in the CSA) and a negative group (proteins

that have no catalytic function and therefore do not have inputs in

the CSA). For both test sets, the negative group is the same. This

negative set is made of 10575 structures from the nrPDB, and it

was provided by the authors of CMASA. The test sets A and B

differ in the composition of their positive groups. To make the

document self-contained, we describe how the authors of CMASA

[29] generated their test set. This test set is equivalent to our test

set A and was generated as follows:

1. All proteins in the PDB were considered; then, using blastclust

(from BLAST), clusters that grouped proteins with a sequence

identity of 90% or more were generated. From each of these

clusters, the protein with the highest resolution was selected as

the representative of the cluster. The resulting set of proteins is

termed nrPDB.

2. The positive group is obtained from the intersection of nrPDB

and the proteins annotated in the CSA. This group is

composed of 868 proteins, and these proteins were grouped

according to their EC number.

3. Proteins in the nrPDB with no entries in the CSA compose the

negative group with 10575 structures.

Next, we describe the positive groups for test sets A and B.

Positive group in test set A. This positive group is taken

from the supplementary material of CMASA [29], which lists 868

proteins that have at least three catalytic residues each; these

proteins are distributed in 164 families. Starting from this set, we

recovered 744 proteins in 163 families. The 124 excluded proteins

show one of the following characteristics:

N Differences in the number of catalytic residues among

members of the same family and their master template. For

instance, in the supplementary material of CMASA [29], the

master template 1DXL (lipoamide dehydrogenase) has four

catalytic residues C45-C50-H449-E454; however, in the

database for the software [29], the 3D coordinates for five

residues C45-C50-T215-H449-E454 are given, i.e., residue

T215 is added. The following enzymes belong to the family of

1DXL: 1EBD, 1JEH, 1LPF, 1LVL, 1ZMC, 2A8X, and

3LAD; however, all of them have four catalytic residues in the

CMASA database but five residues in the master template.

Due to this difference in the number of atoms between the

master template and the members of the family, CMASA

associates each of these proteins with a different master

template (1GER) instead of matching them to the template of

1DXL.
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N Differences in amino acid types: The standard configuration of

CMASA performs an incorrect prediction when the master

template and the query protein belong to the same family but

have at least one different residue. For instance, the catalytic

residues of the master template 1E7P (fumarate reductase) are

H257-E294-R301-H369-R404. However, protein 1KF6,

which belongs to the same family, has the following residues

H232-G269-R287-H355-R390. Because of the difference

between the residues E294 and G269, CMASA is not able

to predict the catalytic site. Similar outcome results occur for

1NEK, a member of the same family.

The list showing each excluded protein and the reason for its

exclusion is given in Table S1, it also lists the 163 resulting families

with a total of 744 proteins.

Positive group in test set B. This group is composed of a set

of mutated proteins from the positive group in test set A (744

proteins). First, we filtered all proteins with three catalytic residues;

this process generated a group of 480 enzymes belonging to 108

families (from 163). Second, random point mutations were applied

to each catalytic site. The chosen residues were substituted by

alanine (alanine scanning). The computational mutagenesis of

residues to alanine is among the fastest methods to validate

hypotheses about protein function and test methods [30]. The set

of mutated proteins along with the residue that is mutated in each

protein are listed in Table S2.

Similarity measures and criteria for performance
evaluation

N CMAD (Contact Matrix Average Deviation) [29]: This is a

similarity measure for the distances of the nti atoms belonging

to a template ti and those belonging to the local structure lq.

Table 3. Examples of the predictions for catalytic sites that were evaluated as FNs by CMASA-SM and as TPs by xCMASA.

Protein Master template Catalytic site
Mutation by alanine
scanning p-value CMASA-SM p-value xCMASA

1AHP 1A8I K533-R534-K539-T641 R534A NA 7.377E-06

2H12 1AL6 S242-H272-H313-D371 H272A 1.245E-03 3.544E-09

1B4K 1AW5 D127-S175-K205-K260 K205A NA 8.003E-06

1CSN 1CKI D131-K133-D135-N136-T181 K133A 1.326E-03 1.460E-09

1BHE 1CZF D202-D223-D224-H251 H251A 3.079E-03 4.088E-06

1KKT 1DL2 E122-R126-D267-E409 E122A 2.100E-03 7.518E-09

1A3H 1EDG N138-E139-H200-Y202-E228 Y202A 2.724E-01 2.680E-05

1F6D 1F6D D95-E117-E131-H213 E117A 6.296E-03 1.736E-05

1G8F 1I2D R197-H201-H204-R290 R290A NA 4.555E-05

1BS4 1LME G45-Q50-L91-E133 Q50A 1.060E-03 2.132E-08

doi:10.1371/journal.pone.0108513.t003

Figure 4. Performance measures as a function of CMAD. The graph shows the relations among the sensitivity, accuracy, and MCC of CMASA
and xCMASA for scenarios with and without single point mutations.
doi:10.1371/journal.pone.0108513.g004
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CMAD~
1

nti nti{1ð Þ
Xnti

j~1

Xnti

k~1

Dd ti½j�,ti½k�ð Þ{d lq½j�,lq½k�ð ÞD, ð2Þ

where d(ti[j], ti[k]) is the distance between atoms j and k from

template ti, and d(lq[j], lq[k]) is the distance between atoms j
and k from the local structure lq. For the algorithm to identify

the local structure of the query as a match for a given template,

the CMAD of their corresponding Ca and their fa atoms

should be smaller than or equal to a given threshold that can

be tuned by the user.

N Statistical significance: The p-value computation used in

CMASA was proposed by Stark et al. [31]. The idea is to

assess the statistical significance of finding a structural match

between the residues in the template and the corresponding

residues in the query. These residues in the template as well as

those in the query, are not necessarily adjacent in the protein

sequence. The significance p-value (see equation 3) is assessed

using an extreme value distribution (EVD), similar to the

assessment in database searches. The p-value is calculated

from an expectation function (EF(RM)) that estimates the

number of matches in the whole query structure that have a

score equal to or better than RM. In the case of CMASA, the

score is given by the RMSD that is computed between the

residues in the template and the residues in the query

structure. In EF (see equation 4), h is the product of the

percentage abundance of all residues. The constants in EF
were derived by Stark et al. [31] from an analysis of the

searches for a typical structure, as named by the authors,

against a background database composed of 723 folds from a

non-redundant structure database. The p-value gives the

probability of randomly obtaining an RMSD between a local

structure and the template that is less than or equal to the

RMSD between the template and the local structure predicted

by the method. A statistical significance threshold (p-

value = 1.0 E-4) and the exact match of all catalytic residues

in ti were the criteria used to assess the results obtained by our

proposed extension.

P RMSDƒRMð Þ~1{e{EF RMð Þ ð3Þ

EF RMð Þ~473 h � 0:4NRM
4:93N{5:88

� �
ð4Þ

N True positive (TP): a query protein of the positive type that

exactly matches a master template (ti) and has a p-value below

the threshold.

N False negative (FN): For a query protein of the positive type,

the prediction does not find a match to the same catalytic

residues of the query protein or the match site has a p-value

larger than the threshold.

N False positive (FP): For a query protein of the negative type,

the prediction indicates a match with any master template, and

the p-value for the match site is below the threshold.

N True negative (TN): For a query protein of the negative type,

the prediction does not find a match to any master template

with a p-value below the threshold.
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Figure 5. Comparison of local catalytic structures in 1EVF and 1BQ1. Residue number 167 in 1EVF is mutated from SER to THR, and the
proposed extension could detect all of the remaining catalytic residues, which were not detected by CMASA or CMASA-SM. Superposition of the
catalytic residues in the query 1EVF (colors by element with the identifiers underlined) and the residues of the associated templates 1BQ1 (the
elements are in grey, and the identifiers are not underlined). The similarity of the local structures of the non-mutated residues is shown.
doi:10.1371/journal.pone.0108513.g005

Figure 6. Comparison of local catalytic structures in 3HRC and 2OIC. The template of 2OIC has a catalytic site structure similar to that of
3HRC, with the exception of residue A315. The proposed xCMASA is able to detect the catalytic residues D205-K207-N210-T245. Superposition of the
catalytic residues in the query structure 3HRC (the colors differ for each element, and the identifiers are underlined) and the residues of the associated
20IC (the elements are in grey, and the identifiers are not underlined).
doi:10.1371/journal.pone.0108513.g006
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Based on these definitions we use the following performance

criteria:

N Sensitivity [32]:

N

Sn~
TP

TPzFN
ð5Þ

Accuracy:

N

Acc~
TPzTN

TPzFPzFNzTN
ð6Þ

Precision:

N

Pr ~
TP

TPzFP
ð7Þ

MCC: the Matthews correlation coefficient [33]:

MCC~

TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ TPzFNð Þ

p
TNzFPð Þ TNzFNð Þ

ð8Þ

Extending the CMASA method
The general flowchart for CMASA and the proposed extension

are shown in Figure 1. To better understand our contribution, we

must review some basic aspects of CMASA.

Emulation and structural comparison in CMASA. Given

a structural template of residues ti and a query structure Q,

CMASA selects the residues in Q that match residues in ti. The

local structures of Q are made of filtered residues. For instance, the

example in Figure 2(A) presents a query protein with residues E1,
E2, D1, K1, K2, H1, H2 and the template ti with residues E, D, K.

Then, filtering will eliminate residues H1 and H2, and the

remaining residues will be retained. Each possible combination of

the remaining residues is compared with that in ti; there are a total

of four local structures, lq1 to lq4, as illustrated in Figure 2(B). If

the pairwise distances are equivalent in both the local structure in

the query (lqj) and in the template ti, a tentative match is found.

The pairwise distances, i.e. the distance in the query and the

distance in the template, are equivalent if the difference between

them is less than or equal to the CMAD cutoff. The described

procedure is repeated for every template ti in the database to

determine the putative catalytic residues in Q. The matches are

defined by those structures that are geometrically similar to a given

template while the match itself has a low probability of being

produced at random, i.e., lower than a p-value threshold.

When the query protein has a hidden template ti but also has a

single point mutation, CMASA proposes the use of a Substitution

Matrix (SM) S in a scheme that we term CMASA-SM. Si,j is 1 if an

amino acid of type i is interchangeable with that of type j, where i,
j M [0, 19] represent the 20 amino acids. One of the disadvantages

of this approach has to do with the number of comparisons that

must be performed. For instance, let us assume that we have the

query shown in Figure 2. After the filtering process, the following

amino acids remain: E1, E2, D1, K1 and K2. Let us assume that

SM (S) will account for substitutions of the following type: H«E,

H«D, and H«K. Thus, in the first substitution, H1 and H2 in

the query can be replaced by E; therefore, we have four Es to

combine with one D and two Ks. This substitution thus adds 8

combinations. If we follow the same analysis, we will show that the

H«D replacement adds also 8 new combinations, and the H«K
substitution adds 4 new combinations. In the SM approach, we

can also consider simultaneous substitutions, such as H«[E,D],

H«[E,K] and H«[D,K]; these substitutions will add 2, 1, and 2

new combinations, respectively. The total number of combina-

tions, as shown in Figure 3 (A), will be 25. However, the use of

extended templates results in 4 original combinations plus 8 new

combinations added by the subtemplates. In Figure 3 (B), every

possible combination of two residues that will be a search term is

indicated by an edge that connects two nodes.

CMASA and mutated or missing residues. CMASA fails

to predict catalytic sites if the following conditions occur: i) there is

a difference in the number of residues between the template and

the query, i.e., the template has more residues than the query; ii)

Figure 7. Comparison of local catalytic structures in 3HRC and 1UU9. Although the proteins 3HRC (the colors differ by element, and the
identifiers are underlined) and 1UU9 have the variants with A209E (in grey, and the identifiers are not underlined), 3HRC lacks an atom in the side
chain (Oe2). CMASA fails in this situation, but xCMASA is able to detect the non-mutated residues.
doi:10.1371/journal.pone.0108513.g007
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the fa atom is missing in any catalytic residue of the query; iii)
there is a difference in the type of residues between the template

and the query. The latter implies that mutated sites will not be

recognized by CMASA; except in the case they are annotated in

the database. When the number of residues in the template ti is

smaller than the number of residues in catalytic site of the query,

CMASA will produce correct matches. However, if the number of

residues in ti is larger than in the number of residues in the query

pattern, CMASA will not produce a correct match. The proposed

extension is aimed at improving the prediction when any of these

situations occur. Although CMASA-SM offers a solution to case

iii), it cannot handle cases i) and ii).
In a previous paper [34], the site-directed mutagenesis of

disulfide isomerase (EC 5.3.4.1) was analyzed. The catalytic site of

this enzyme is composed of C-G-H-C; when this site is mutated to

S-G-H-C, the enzyme retains one of its functions. Similar cases

where one of the residues undergoes a mutation will not be

recognized by CMASA using an identity SM. As a proof of

concept, to show that CMASA may fail in the presence of single

point mutations, we mutated a catalytic residue in 1MEK (EC

5.3.4.1), which has a catalytic site of C36-G37-H38-C39; the in
silico mutagenesis of C36S was performed with Swiss-PdbViewer

[35]. With this variant, CMASA is unable to predict the catalytic

residues or even to associate the mutant with any enzymatic class.

CMASA-SM can determine the site when every possible mutation

of C to a polar residue is accounted for in the applied SM.

However, if the SM accounts for changes of C to any other amino

acid, the CMASA-SM software does not return any significant

putative site because the abundance of residues increases, and the

p-value becomes larger than the threshold. Furthermore, as we

will show later, there may be cases where even if we tell CMASA-

SM the specific residue to mutate, the software can still output a

wrong result.

Perhaps the strongest limitation of CMASA is the use of the

substitution matrix mechanism to address mutations. This

mechanism is limiting for the following reasons: given a query,

the possible substitutes are not known beforehand; therefore, SM

should be applied to the template and not to the query. If we apply

an SM that is based on the template, then each catalytic residue in

ti should be dealt with separately to minimize the computational

cost. However, even if we deal with the residues of ti one by one,

the number of comparisons will be large. As an illustrative

example, in Figure 3, the catalytic residues E, D, K are allowed to

mutate to H, i.e., a single interchange per catalytic residue.

However, in a real case, each catalytic residue will be substituted

by a set of equivalent residues, i.e., every catalytic residue will

contribute a particular SM, which will increase the number of

comparisons. Another limit of CMASA-SM is that the abundance

of residues will increase the p-value, as indicated by equations 3

and 4.

Although CMASA-SM is able to recover mutated and non-

mutated residues, xCMASA recovers only the non-mutated ones.

Extended CMASA: xCMASA. The limitation introduced by

the SM can be overcome. One method starts from each template ti
of nti residues and generates all subtemplates of nti-1 residues;

these subtemplates are used to extend the library of templates.

This idea can be extended to generate all subtemplates of nti-k
residues; however, as k approaches nti/2, the number of

subtemplates increases exponentially. Fortunately, single point

mutations (k = 1) will be the most abundant for a biological point

of view. Another option can be to check for the subtemplates when

the local structures of the query are compared with the templates.

Due to the implementation simplicity, we choose the first option;

however, both options are equivalent. The details for the selected

option are given next.

The proposed extension includes three main components:

1. Generation of new templates from the ones in T. Given a

template ti, the number of new templates will be
nti

nti{1

� �

because each new template is a combination of nti - 1 residues.

That is, from each template ti, nti new subtemplates will be

generated and added to the library. The exclusion of a single

residue from ti allows the recovery of the non-mutated residues

of ti. If nmax is the maximum number of residues that a

template may have and there are NT templates, then the size of

the library of templates will be increased by, at most, NT6nmax

elements.

In case of the SM, a single replacement strongly affects the

number of combinations with residues to form local structures,

as shown in the example of Figure 3.

2. CMAD Tuning. Adding smaller templates (fewer catalytic

residues) increases the chances of random matches between the

subtemplates and the local structures of the query. Tuning the

threshold for CMAD can overcome this problem. This tuning

will be described in the Results and Discussion section.

3. Postprocessing. The matches involving extended templates are

filtered when the original template from which they were

derived is also present in the match. The only goal of this part

is to avoid excessive redundant information in the output file,

and this step does not affect the efficiency of the proposed

algorithm.

The implementation of xCMASA is based on the CMASA

code, which is publicly available at http://159.226.149.45/

other1/CMASA/CMASA.htm, under a GNU license.

The authors will provide xCMASA upon request.

Results and Discussion

Design of Computational Experiments
The computational experiments are divided into four scenarios.

The first scenario is aimed at reproducing the results reported in

[29]. The second scenario assesses the predictions obtained by

xCMASA in the case when there are not mutations. The third

scenario assesses the CMASA performance when a single point

mutation is applied to the catalytic sites. The fourth scenario

analyzes the performance of xCMASA when mutated proteins are

the queries for the method. All scenarios were evaluated with a

default CMAD value of 1.2.

1. NoM_MT (No Mutation and Master Templates)

scenario. This scenario used the test set A, which is described

in the Materials and Methods section. The experiments presented

in [29] were reproduced, and the results are shown in Table 1. We

can observe an improvement over the results obtained in [29],

mainly because we performed filtering of the test instances. The

filtering eliminates some instances where CMASA fails.

2. M_MT (Mutation and Master Templates)

scenario. This scenario used the test set B and is set to evaluate

the performance of CMASA when mutated proteins are intro-

duced as queries. As shown in Table 2, with the exception of

accuracy, the other performance criteria decreased considerably

(M_MT) in this scenario relative to those from the previous

scenario (NoM_MT). Notice that although the accuracy does not

decrease, the method can only identify 3 proteins out of 744; these

proteins matched with smaller master templates from different

families. To address mutations, CMASA proposes the use of SM.
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To analyze the limitations of this approach, we select a set of ten

instances, which are shown in Table 3. In all of these cases, we

used an SM with the knowledge that the residues will undergo a

single point mutation. Even in this case, CMASA-SM only

produced matches that were above the p-value threshold. In three

cases (1AHP, 1B4K, and 1G8F), no matches were generated. With

the exception of these three cases, all others, except 1A3H, are the

first matches that have a p-value that is above the threshold. One

can think that a solution to this problem will be to change the p-

value threshold; however, the correct match for 1A3H appears in

the 6th position; therefore, tuning the p-value will not solve these

types of cases. More importantly, increasing the p-value threshold

will increase the number of FPs for the cases with no mutations.

3. NoM_ET (No Mutation and Extended Templates)

scenario. This scenario used test set A, which is generated

using the extended templates, i.e., 744 proteins from the positive

group and 10575 from the negative group. The scenario was

proposed to assess xCMASA using non-mutated query structures.

The results of this scenario differ from the results obtained using

the NoM_MT scenario and the original CMASA because of the

number of FPs, as shown in Table 2. Although CMASA has 60

FPs (NoM_MT and M_MT), xCMASA generates 237 FPs

(NoM_ET and M_ET), mainly because the smaller extended

templates increase the probability of generating random matches

that are below the CMAD threshold. This situation can be

improved by tuning the threshold for CMAD, as we will show

shortly. It is interesting to note that several catalytic sites were

partially identified by xCMASA, e.g., the site for the 1AHP

protein, even when CMASA classified the site as an FN (Table 3).

4. M_ET (Mutation and Extended Templates)

scenario. This scenario used the test set B, and its goal was to

assess the performance of the proposed extension when the queries

are entirely composed of mutated proteins; only single point

mutations are considered. The obtained results were 0.967

accuracy, 0.744 sensitivity, and 0.652 MCC (Table 2 (M_ET)).

Notice that the main difference with the performance using test set

A is that the proportion of FNs generated by xCMASA is larger

using this test set.

The second and fourth scenarios demonstrated that xCMASA

produced a larger number of FPs than CMASA did. This is

tailored to the new added templates. The smaller templates

increase the coincidences with local structures while querying

proteins in the negative group (i.e., the proteins that do not have a

catalytic function). One way to decrease this effect is to reduce the

CMAD threshold. However, small CMAD values increase the

number of false negatives because the mutated local structures are

discriminated (see the sensitivity curve for scenario M_ET in

Figure 4). A CMAD value of 0.4 is selected as a good tradeoff

between not too many FPs for non-mutated instances and too

many FNs for the mutated cases. In addition, CMAD = 0.4 gives

the highest value for the sum of all performance criteria for

xCMASA when using test set B. Table 4 shows the performance

measures for xCMASA using mutated and non-mutated instances

and a CMAD value of 0.4.

The sensitivity of CMASA varies as a function of the CMAD

threshold, i.e., if we decrease the cutoff to a value below 1.2, the

sensitivity decreases. For instance, the sensitivity is 0.795 for a 1.2

CMAD cutoff, 0.718 for a 0.4 cutoff, and 0.601 for a 0.1 cutoff;

however, the sensitivity of xCMASA does not change as a function

of the CMAD threshold for non-mutated instances (as shown in

Figure 4). This behavior occurs because the templates in

xCMASA are smaller. Thus, whenever a match is found between

these extended templates and the input structures, the computed

CMAD values are less than 0.1. Therefore, xCMASA has the

same sensitivity for all CMAD cutoff values, i.e., values from 1.2 to

0.1.

In addition to the alanine scanning approach to evaluate the

extension, the performance for a set of real cases was also

analyzed. In this scenario, two study cases were proposed.

Study Cases
To select each of these cases, the following procedure was

performed. First, a literature review identified a family of mutated

proteins that have a small number of representatives in CMASA

(CMASA includes 15341 templates). Second, some proteins with

mutation in the catalytic site of interest were identified from a

structural comparative analysis with different elements in the

family. The web service PDBeFold [36] was used for this analysis.

The study cases were designed to evaluate the capability of the

original CMASA, CMASA-SM, and xCMASA of identifying the

catalytic residues in the following situations: a protein with actual

mutations or a protein whose PDB entry is missing relevant

information.

N The role of residue S167 in the catalytic function of

Escherichia coli thymidylate synthase (EC 2.1.1.45) was

analyzed previously [37]. The structure 1EVF contains the

variant S167T (see Figure 5), and the annotated catalytic

residues in CSA for this protein are E58-W80-Y94-C146-

R166-D169-N177. This protein does not have a template in

the CMASA database, although there are a series of

thymidylate synthase mutants at the serine 167 residue

(1EV5 corresponds to S167A and 1EVG corresponds to

S167T). For both, the catalytic residues are Y94-C146-R166-

D169-N177, which have the same residues as in 1EVF.

However, because of the change in serine 167, CMASA

cannot detect the other catalytic residues that remain

unchanged: the program outputs no matches below the p-

value threshold, and the matches over the threshold do not

belong to the same family of enzymes. CMASA-SM was tested

for the case in which SM accounts for all possible substitutions

of S by polar residues, i.e., S«[T, Y, H, C, N, Q, W]. The first

match identified by CMASA-SM is 1QQQ, which has the

putative residues E58-T167-D169-N177-H207. In this case,

T167 and H207 are not annotated residues. Notice that this is

an optimistic scenario for CMASA-SM because the proper

substitution matrix is not known beforehand for a query

protein, in this case 1EVF. In contrast, xCMASA was able to

determine the similarity even in this case, i.e., xCMASA

identified the matching residues as Y94-R166-D169-N177, a

sub-template of 1EV5; the p-value was 0.0, and the CMAD

was 0.1 for this first hit.

N We analyzed 3HRC as our first example of missing data; this

protein kinase domain belongs to the transferase family, it has

D205-K207-E209-N210-T245 as catalytic residues, and its

E.C. number is 2.7.11.1. The CMASA database has many

templates that match 3HRC in terms of geometry, amino acid

types and enzymatic classification. For instance, the structure

of 2OIC has the following catalytic residues: D311-K313-

A315-N316-T351. Similarly to 3HRC, 2OIC is annotated as a

transferase with the EC number 2.7.11.1 and differs from

3HRC in the residues E209-A315 (see Figure 6). In this case,

even if we provide CMASA-SM with the correct residue to

mutate (E by A), CMASA-SM does not identify a match that is

below the threshold because of the missing atom. In contrast,

xCMASA was able to identify the residues D205-K207-N210-

T245 with a p-value of 2.2610216 and a CMAD of 0.114, and
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the proteins associated with the prediction belong to the same

enzymatic class.

We also consider 3HRC again with the template of 1UU9 and

the catalytic residues D205-K207-E209-N210-T245 for another

example of missing data; the catalytic residues in 1UU9 are the

same as those in 3HRC. However, CMASA fails to predict all

residues because 3HRC does not contain the atom Oe2 in residue

E209 (see Figure 7). This is the furthest atom in the side chain for

this residue; thus, the residue is not represented by the method,

and the local structure emulation and evaluation processes

disregarded all matching templates. In contrast, xCMASA lists

1UU9 as the third match (after 2OIC and 20IB) when 3HRC is

the query. Incomplete information in a PDB entry is not a rare

event, and this missing information can affect the prediction in

CMASA or CMASA-SM. However, when an atom is missing, a

non-trivial preprocessing of completing the PDB entry can solve

the problem. In the described study case, an SM was used.

However, CMASA halts after some computations because it

cannot handle the large number of candidate matches. This

number becomes large because every E in the query protein is

replaced by the other 19 amino acids, and each of the 19 amino

acids in the query is replaced by E.

Conclusions
xCMASA has been proposed as an extension of the CMASA

method. The extension is based on the generation of a set of sub-

templates. The proposed variant allows CMASA to account for

pointwise mutations in an efficient manner. xCMASA preserves

the prediction power of CMASA in cases without mutations at an

additional cost bounded by the product of the maximum number

of residues among the templates times the number of templates.

xCMASA overcomes the CMASA-SM limitation of having to

provide an SM with the correct substitutions. The method not

only simplifies the process of adjusting the substitution matrix but

also identifies catalytic sites even when the furthest atom is missing

in a single catalytic residue.
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