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Abstract

Effects of geostrophic kinetic energy flux on the three-dimensional distribution of fish larvae

of mesopelagic species (Vinciguerria lucetia, Diogenichthys laternatus, Benthosema pana-

mense and Triphoturus mexicanus) in the southern Gulf of California during summer and

fall seasons of stronger stratification were analyzed. The greatest larval abundance was

found at sampling stations in geostrophic kinetic energy-poor areas (<7.5 J/m3), where the

distribution of the dominant species tended to be stratified. Larvae of V. lucetia (average

abundance of 318 larvae/10m2) and B. panamense (174 larvae/10m2) were mostly located

in and above the pycnocline (typically ~ 40 m depth). In contrast, larvae of D. laternatus (60

larvae/10m2) were mainly located in and below the pycnocline. On the other hand, in sam-

pling stations from geostrophic kinetic energy-rich areas (> 21 J/m3), where mesoscale

eddies were present, the larvae of the dominant species had low abundance and were

spread more evenly through the water column, in spite of the water column stratification.

For example, in a cyclonic eddy, V. lucetia larvae (34 larvae/10m2) extended their distribu-

tion to, at least, the limit of sampling 200 m depth below the pycnocline, while D. laternatus

larvae (29 larvae/10m2) were found right up to the surface, both probably as a consequence

mixing and secondary circulation in the eddy. Results showed that the level of the geo-

strophic kinetic energy flux affects the abundance and the three-dimensional distribution of

mesopelagic fish larvae during the seasons of stronger stratification, indicating that areas

with low geostrophic kinetic energy may be advantageous for feeding and development of

mesopelagic fish larvae because of greater water column stability.
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Introduction

Mesoscale structures, like eddies and upwelling, typically associated with processes of mixing,
convergence and divergence, are areas where the geostrophic kinetic energy is high [1–3].
Enrichment processes in these areas are enhanced by the triggering of primary and secondary
productivity as nutrients are introduced into the photic zone [4,5]. Numerous studies have
describedqualitative relationships betweenmesoscale eddies and phytoplankton [6–8], and
eddies with zooplankton [9–11]. Nevertheless, few studies have quantified and related the geo-
strophic kinetic energy and/or stratification with the distribution of planktonic organisms.

Piontkovski et al. [3] reported that the highest spatial heterogeneity of zooplankton biomass
is found in regions of the highest available potential energy, associated with mesoscale eddy
fields. Ladd et al. [12]. observed the highest chlorophyll a concentrations in areas influenced by
eddies with high eddy kinetic energy in the Gulf of Alaska, suggesting that kinetic energymay
be valuable for predicting phytoplankton blooms in this region. Nieto et al. [13] noted that
high values of eddy kinetic energy were favorable for the development of sardine eggs in waters
advected by eddies and filaments in the southern and central California.

The Gulf of California is a narrow, semi-enclosed and highly productive sea [14–16], which
connects at the south with the Pacific Ocean. The surface circulation reverses seasonally from
cyclonic in summer to anticyclonic in winter [17,18]. The Gulf is characterized by high stratifi-
cation during the summer and autumn vs a deep surfacemixing layer extending to about 100
m depth during winter and early spring [18,19]. The circulation has also a strong mesoscale
component, related to the common occurrence of cyclonic and anticyclonic eddies evident in
satellite infrared, color images and drifter trajectories [20–23].

Several authors [21,24,25] have described the mechanisms of eddy generation in the south-
ern Gulf of California. They reported that the interaction of the poleward-flowingMexican
Coastal Current with specific topographic irregularities (capes at Topolobampo and Cabo
Lobos), frequently generated eddies by inducing baroclinic instabilities and that this mecha-
nism could be strengthened by the arrival of coastal trapped waves of equatorial origin. This
suggests that the southern Gulf of California and the adjacent Pacific are energetic areas of
mesoscale activity. Until now, no multidisciplinary studies have examined the impact of geo-
strophic kinetic energy flux and/or strength of stratification, as indicated by potential energy
anomaly, on the planktonic organisms.

A good biological indicator for observing the role of the geostrophic kinetic energy flux and
potential energy anomaly on the zooplankton organisms may be the larvae of the common
mesopelagic species (Vinciguerria lucetia, Diogenichthys laternatus, Benthosema panamense
and Triphoturus mexicanus). Because of their high abundances and widespread distributions,
they are important components of the pelagic ecosystem in the Northeastern Pacific Ocean,
including the Gulf of California [26–28]. In the Gulf, these larvae have been found to have a
strongly heterogeneous distribution from the Midriff Archipelago Region to its southern
entrance [29–31].

Although there are few studies of their depth dependence, it has been seen that these species
tend to exhibit vertical gradients in abundance.V. lucetia and B. panamense larvae have higher
abundances in the surface layer, decreasing with depth and larvae of D. laternatus and T.mexi-
canus have higher abundance in the layer from ~ 200 to 100 m depth, decreasing toward the
surface [30,32–34]. These studies on the vertical distribution of fish larvae and of others on
mesoscale physical processes, like mesoscale eddies [21,24,25], indicate that when stratification
is strong (high potential energy anomaly), and geostrophic kinetic energy is low (absence of
mesoscale eddies), the vertical distribution of larvae of mesopelagic species will be stratified. In
contrast, where the geostrophic kinetic energy is high (presence of mesoscale eddies), the larvae
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will be spread through more of the water column by mixing processes and vertical advection
associated with secondary circulation within the eddies.

In this context, the goal of the present paper is to explore the effects of more energetic areas
on the three-dimensional distribution of fish larvae of the four abundant mesopelagic species
(V. lucetia, D. laternatus, B. panamense and T.mexicanus) in the southern Gulf of California
and its entrance during the summer/fall seasons of strongest stratification. A statistical com-
parison of the distribution of larvae of these four species in areas of low mesoscale activity, i.e.
geostrophic kinetic energy-poor areas, and of strong mesoscale activity, i.e. geostrophic kinetic
energy-rich areas in stratified conditions, was made. It seems likely that the effects of mesoscale
disturbance on the mesopelagic fish larvae here might be similar to those on other zooplankton
organisms in other marine regions.

Materials and Methods

Sampling strategy and data base

The bulk of the data to be discussed here is from five research cruisesmade during August
2005, October 2007, July 2010, July 2011 and April-May 2012, in the southern zone of the Gulf
of California; periodswhere the stratification is high, except in April-May when the surface
mixed layer was weakening with the onset of annual stratification (Table 1). The CTD and bio-
logical sampling stations of transects analyzed in each cruise are shown in different symbols in
Fig 1a and 1b.

It is important to mention that the samples were not obtained in protected natural areas or
national parks; and the species that supporting this study are not endangered or protected spe-
cies in according to ComisiónNacional para el Conocimiento y uso de la BiodiversidadMéxico
(CONABIO) http://www.biodiversidad.gob.mx/especies/especies_enriesgo/buscador_especies/
espRiesgo.php.

The data supporting this manuscript come from a database created by a group of multidisci-
plinary researchers, led by the authors of this paper, mainly L. Sánchez-Velasco and E. Beier.
The data are not totally available because there are other postgraduate students who are work-
ing with them on other topics for their thesis project. However we supply supplementary mate-
rial with the data that supports the conclusions of this study, as PlosOne requires (S1 and S2
Tables). In addition, the basic data obtained in each cruisemay be consulted in http:/usuario.
cicese.mx/~mxcali/.

In the October 2007, July 2010 and July 2011cruises (Fig 1b), mesoscale eddies were
detected (see details in [30,32,34]). Their position was monitored for 3 months prior to the
start of each cruise, using daily satellite images of chlorophyll a concentrations from the
Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on board the Aqua
satellite (Satellite images come fromNASA Earth Observatory “public domain”: http://
earthobservatory.nasa.gov/). The images, with a spatial resolution of 1 km/pixel (Local Area
Cover (LAC)), were processed using Level 1B data by NASA (http://oceancolor.gsfc.nasa.gov
with July 2015 flag quality data) to Level 2 with SeaDAS, version 5.5, using the OC3M v4 algo-
rithm [35]. Level 3 imagery was constructed in the Universidad Autónoma de Baja California
with an equidistant cylindrical projection.

The hydrographic structure of transects made during these cruises has been documented
previously [30,32,34].With the aid of the satellite images, transects were divided into two sets
(Fig 1a and 1b). The first included all those that crossedmesoscale eddies (H1, H2 and H3),
while the second consisted of those with weak mesoscale influence (L1, L2, L3 and L4). Tran-
sect details (e.g., number of stations, periods and year) are shown in Table 1.
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At all sampling stations (Fig 1), temperature and conductivity profiles down to 1000 m (or
near the bottom if shallower) were measured with a factory-calibratedCTD (SeaBird SBE-911
plus), with primary and secondary sensors and a sampling rate of 24 Hz. Dissolved oxygen
(DO, mL/L) and fluorescence (mg/m3) sensors (SBE43 and SeaPoint, respectively) were also
included. The data were processed and averaged to 1 db as documented by Godínez et al.
[36,37]. ConservativeTemperature (Θ, °C), Absolute Salinity (SA, g/ kg) and Density Anomaly
(σΘ, kg/m3) were calculated from in situ temperature and practical salinity with the TEOS-10

Table 1. General information of the oceanographic cruises made in the southern Gulf of California.

Cruise date August 2005 July 2010 July 2010 April-May 2012 July 2011 July 2010 October 2007

Transects L1 L2 L3 L4 H1 H2 H3

Days sampling 2 2 3 3 4 2 4

Zooplankton sampling strata (m) 0–50 0–15 0–50 0–50 0–17 0–15 0–50

15–30 17–34 15–30

30–45 34–51 30–45

50–100 50–100 50–100 50–100 50–100 50–100 50–100

100–150 100–150 100–150 100–150 100–150 100–150 100–150

150–200 150–200 150–200 150–200 150–200 150–200 150–200

Zooplankton sampling stations 7 9 10 16 16 8 13

Mesoscale structure CE CE AE

CE, Cyclonic eddy; AE, Anticyclonic eddy

doi:10.1371/journal.pone.0164900.t001

Fig 1. Location of the study region showing sampling stations in selected transects during five cruises. (a) Stations with low geostrophic

kinetic energy flux (Transects: L1–L4) and b) stations with high geostrophic kinetic energy flux (Transects: H1–H3) in the southern Gulf of California.

Black squares, CTD data only. Red circles, CTD and zooplankton data.

doi:10.1371/journal.pone.0164900.g001
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(Thermodynamic Equation of Seawater-2010) software, which was downloaded from http://
www.TEOS-10.org [38,39].

The geostrophic velocity relative to the minimum common sampling depth of pairs of sta-
tions was calculated from objectively mappedΘ (°C) and SA distributions. A standard objective
mapping interpolation was used, using a classic Gaussian correlation functionwith relative
errors of 0.1, horizontal length scale of 70 km and vertical scale of 30 km. The horizontal scale
is about twice the internal radius of deformation for the region [40], which ensures that geo-
strophic flow is resolved by the smoothed hydrographic data. The ocean surfacemixed layer
depth was calculated following the methodologyof Kara et al. [41] which consists in a gradi-
ent-based criterion having a fixed temperature difference of 0.8°C.

Geostrophic Kinetic Energy flux [42](J/m3) can be understood as the mean geostrophic
kinetic energy flux between stations along each transect and it was calculated as:

KEg ¼
1

h

ð0

� h
rv2

g dz ð1Þ

where vg is the geostrophic velocity normal to each section, h is the depth as defined above, ρ is
the water density and dz is the distance between vertical samples. KEg can be understand as the
mean geostrophic kinetic energy flux at each cast along each transect and to 300m depth. Geo-
strophic Kinetic Energy flux includes the contribution of eddies, filaments and others meso-
scale processes [43], but we consider that when an eddy is present, the major part of the
Geostrophic Kinetic Energy flux results from the eddy dynamics.

Potential energy anomaly (φ), defined as the amount of work per unit volume required to
redistribute the mass in a complete mixing of a water column to a specifieddepth [44], was cal-
culated in J/m3.

φ ¼
1

h

ð0

� h
ð�r � rÞgz dz; �r ¼

1

h

ð0

� h
rdz; ð2Þ

where z is the vertical coordinate (positive upwards), ρ (z) is the potential density calculated
from in situ densities in a water column of depth h. The anomaly of potential energy is positive
for a stably stratified water column and it is negative for an unstably stratified water column.
Physically, φ gives the amount of energy per volume necessary to bring about complete vertical
mixing over a specific depth interval. The specified depth h for this study is 300 m, to cover the
pycnocline at all locations and times of year within the study area. The potential energy anom-
aly of Simpson et al. [44] can be understood as a measure of water column stratification.

Transect-averaged values for these parameters range from 5–30 J/m3 for geostrophic kinetic
energy and 400–1000 J/m3 for potential energy anomaly (Table 2). “Low” and “high” therefore
are very different for the two variables, which clearly are not directly comparable even though
they are expressed in the same units.

Stratified zooplankton hauls were made during day and night in different depth strata
selected according to the hydrographic structure and the logistics available in each cruise (see
Table 1). During July 2010 (L2, H1 and H2) and July 2011 (H1), the hauls were made in every
17 m layer down to the thermocline, and in every 50 m layer from the thermocline down to
200 m depth. In August 2005 (L1), October 2007 (H3) and April-May 2012 (L4), the hauls
were every 50 m layer from the surface to 200 m depth. Opening–closing conical zooplankton
nets, with a 50 cmmouth diameter, 250-cm net length and 505μmmesh size were used (http://
www.generaloceanic.com).The closed net was situated at the bottom of the stratum to be sam-
pled, then it was opened with a manual brass messenger, and the haul was initiated. When the
top of the sampling layer was reached, the net was closed with another messenger and the haul
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ended. This system avoids sample contamination with organisms from other strata. To ensure
accurate sampling of each depth stratum, the depth of the net was calculated by the cosine of
the wire angle method following the standard specifications of Smith and Richardson [45].
This stratified sampling technique has been used successfully in previous studies (e.g., [34,46]).

The volume of filtered water was calculated using calibrated flowmeters placed in the
mouth of each net. Samples were fixed with 5% formalin buffered with sodium borate. Zoo-
plankton biomass, estimated by the displacement volume [47], was standardized to mL/1000
m3. Fish larvae were removed from all samples and the V. lucetia, D. laternatus, B. panamense
and T.mexicanus were identified as in Moser [48]. The developmental stage was determined in
relation to notochord flexion following the criteria of Kendall et al. [49] and only larval fish
pre-flexion were selected. Fish larval abundance was standardized to number of larvae per 10
m2 [45,50].

Data analysis

Two biologicalmatrices (not shown), one for each set of transects (Table 1), were constructed.
To assess the statistical significance of differences of the total larval abundance between day-
time and nighttime, the non-parametricMann–Whitney test was used [51,52]. A cluster analy-
sis based on a species abundance matrix vs samples [53] was applied to determine three-
dimensional larval fish habitats (or groups of samples), and their characteristic species
(Table A in S1 and S2 Tables). An agglomerative dendrogramwas constructed on the basis of
a triangular similarity matrix (Bray-Curtis dissimilarity measure; see [52]) using Flexible beta
(β = -0.25) linkage on fourth-root transformed larval abundance to minimize the effect of out-
lier values [54]. The scaling of the dendrogram is Wishart's objective function [55], which mea-
sures the information lost at each step in hierarchical cluster analysis. As groups are fused, the
amount of information decreases until all groups are fused and no information remains. The
objective function can be rescaled from 0% to 100% of information [56]. To detect significant
differences among the dissimilarity of the distinct larval fish habitats, a one-way ANOSIM
(analysis of similarities) was applied as a test of the significance of the habitats that had been
defined a priori by the Bray-Curtis dissimilarity measure The procedures use the difference
between average ranked values of Bray-Curtis measures of dissimilarity in abundances and
types of organisms among replicates between samples (rb) and within samples (rw) to give a
test statistic,

R ¼
rb � rw

1

4
½nðn � 1Þ�

ð3Þ

where n is the total number of replicates summed for the 2 samples. R is scaled to lie between

Table 2. Values of geostrophic kinetic energy flux and potential energy anomalies (J/m3) data referred to 300 m depth (see position of transects

in Figs 2–8).

Date of cruise Transects Mesoscale structure Geostrophic kinetic energy flux (J/m3) Potential energy anomaly (J/m3)

August 2005 L1 4.8 1074.0

July 2010 L2 5.2 775.8

July 2010 L3 7.2 799.4

April 2012 L4 6.9 422.65

July 2011 H1 Cyclonic eddy 33.2 928.03

July 2010 H2 Cyclonic eddy 21.3 744.19

October 2007 H3 Anticyclonic eddy 13.6 1097.68

doi:10.1371/journal.pone.0164900.t002
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-1 and +1, a value of zero representing the null hypothesis of no differences among samples of
the habitats [53,57].

The Olmstead–Tukey test determined hierarchies of the species in each larval fish habitat
(dominant, frequent, constant and rare species) (e.g., [11,58]). This test considered the average
relative abundance against the frequency of occurrence of each species [52]. Average similarity
and the percentage of contribution of specific species to the identity of each habitat were deter-
mined using the Similarity Percentage (SIMPER) routine. This analysis calculates the contribu-
tion of each species (or other variable) to the observed similarity between samples. It allows
identification of the species that are most important in the observedpattern of similarity. The
method uses the Bray-Curtis measure of similarity, comparing in turn, each sample in Group i
with each sample in Group ii. The Bray-Curtis method operates at the species level, and there-
fore the mean similarity betweenGroups i and ii can be obtained for each species (PRIMER v7;
[59]).

A canonical correspondence analysis [60] was run to define the relation between environ-
mental variables and larval fish distribution (S1 and S2 Tables), after fourth-root transforma-
tion of the standardized biological data and the matrix of environmental indicators. This
matrix contained the zooplankton displacement volume (mL/1000 m3) of each stratum and
the stratum-average values of ConservativeTemperature (Θ °C), Absolute Salinity (SA, g/kg),
chlorophyll a (mg/m3) and dissolved oxygen (mL/L).

Results

Hydrographic structure and circulation

Transects with little evidenceof mesoscaleeddies. Sections of all properties are plotted
to the depth of 220 m, just below the maximum fish larvae sampling depth.

In the August 2005 section L1 (Fig 2a), the geostrophic velocities were< 0.1 m/s, except in
an apparent coastal current near the Baja California peninsula (Fig 2b). The pycnocline was
defined as the layer of strongest vertical density gradient between the 25 and 23 kg/m3 isopyc-
nals at ~ 50 m depth, beneath the surface mixed layer, which fluctuated between ~ 10 and 25 m
depth (Fig 2c). The thermal structure (Fig 2d) revealed a shallow thermocline between the 25
and 20°C isotherms, coinciding with the pycnocline. The geostrophic kinetic energy flux (View
Eq (2)) had an average value of 4.8 J/m3 (Table 2), showing low values along the transect (Fig
2e), except near to the peninsula coast (~ 10 J/m3). The average of the potential energy anomaly
was of 1074 J/m3 (Table 2) being> 900 J/m3 along of the transect (View Eq (3)) (Fig 2f).

Both transectsmade during July 2010, L2 and L3 respectively, indicate the pycnocline lay
between the 25 and 23 kg/m3 isopycnals at ~ 40 m depth with surfacemixed layer between ~
15 and 20 m deep (Figs 3c and 4c), but in L3, the pycnocline and the surface mixing layer deep-
ened to ~ 50 m depth near to the mainland coast. The thermocline, located between the 26 and
18°C isotherms, coincidedwith the pycnocline (Figs 3d and 4d). The geostrophic velocities
were� 0.1 m/s everywhere except in the line L3 near to the peninsular coast, where the speeds
reached up to 0.2 m/s, possibly a jet associated with upwelling at the near-shore stations (Fig
4b). The values of geostrophic kinetic energy flux were low along both lines, with an average of
5.2 and 7.2 J/m3 respectively (Table 2), with a slight increase where the geostrophic velocities
were� 0.1 m/s (Figs 3e and 4e). In contrast, the potential energy anomaly values were high
along of both transects,mostly> 700 J/m3 (Figs 3f and 4f).

In the transect sampled during April-May 2012 L4 (Fig 5a), the geostrophic velocities were
again weak� 0.1 m/s (Fig 5b), the pycnocline was situated between the 25.5 and 25 kg/m3 iso-
pycnals at ~ 40 m depth, and a surfacemixed layer was ~ 10 m thick (Fig 5c). The thermocline
lay between the 22 and 18°C isotherms, following the depth of the pycnocline (Fig 5d). The
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Fig 2. Three-dimensional distribution of fish larvae in low geostrophic kinetic energy flux transect (L1) (August,

2005). (a) Sea surface Chlorophyll a concentrations (MODIS-AQUA LAC) on August 17, 2005. Dots represent the stations

sampled. (b) Vertical section of geostrophic velocity (m/s). (c) Vertical distribution of Vinciguerria lucetia larvae (larvae/

10m2) on the density anomaly (kg/m3). (d) Diogenichthys laternatus larvae (larvae/10m2) on the thermal structure (Θ˚C). (e)

Graphs of the geostrophic kinetic energy flux (J/m3) and (f) potential energy anomaly (J/m3). The heavy red curve in Fig 2c

and d, marks the surface mixed layer depth. Figures are drawn with west at the left hand side.

doi:10.1371/journal.pone.0164900.g002
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Fig 3. Three-dimensional distribution of fish larvae in low geostrophic kinetic energy flux transect (L2) (July,

2010). (a) Sea surface Chlorophyll a concentrations (MODIS-AQUA LAC) on July 11, 2010. Dots represent the stations

sampled. (b) Vertical section of geostrophic velocity (m/s). (c) Vertical distribution of Vinciguerria lucetia larvae (larvae/

10m2) on the density anomaly (kg/m3). (d) Diogenichthys laternatus larvae (larvae/10m2) on the thermal structure (Θ˚C). (e)

Graphs of the geostrophic kinetic energy flux (J/m3) and (f) potential energy anomaly (J/m3). The heavy red curve in Fig 3c

and d, marks the surface mixed layer depth. Figures are drawn with west at the left hand side.

doi:10.1371/journal.pone.0164900.g003
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Fig 4. Three-dimensional distribution of fish larvae in low geostrophic kinetic energy flux transect (L3) (July,

2010). (a) Sea surface Chlorophyll a concentrations (MODIS-AQUA LAC) on July 11, 2010. Dots represent the stations

sampled. (b) Vertical section of geostrophic velocity (m/s). (c) Vertical distribution of Vinciguerria lucetia larvae (larvae/

10m2) on the density anomaly (kg/m3). (d) Diogenichthys laternatus larvae (larvae/10m2) on the thermal structure (Θ˚C). (e)

Graphs of the geostrophic kinetic energy flux (J/m3) and (f) potential energy anomaly (J/m3). The heavy red curve in Fig 4c

and d, marks the surface mixed layer depth. Figures are drawn with west at the left hand side.

doi:10.1371/journal.pone.0164900.g004

Geostrophic Kinetic Energy Flux on Mesopelagic Fish Larvae Distribution

PLOS ONE | DOI:10.1371/journal.pone.0164900 October 19, 2016 10 / 27



Fig 5. Three-dimensional distribution of fish larvae in low geostrophic kinetic energy flux transect (L4) (May, 2012).

(a) Sea surface Chlorophyll a concentrations (MODIS-AQUA LAC) on May 03, 2012. Dots represent the stations sampled. (b)

Vertical section of geostrophic velocity (m/s). (c) Vertical distribution of Vinciguerria lucetia larvae (larvae/10m2) on the

density anomaly (kg/m3). (d) Diogenichthys laternatus larvae (larvae/10m2) on the thermal structure (Θ˚C). (e) Graphs of the

geostrophic kinetic energy flux (J/m3) and (f) potential energy anomaly (J/m3). The heavy red curve in Fig 5c and d, marks the

surface mixed layer depth. Figures are drawn with west at the left hand side.

doi:10.1371/journal.pone.0164900.g005
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geostrophic kinetic energy flux had an average of 6.9 (J/m3) (Table 2), showing low values
along the transect, except in locations of strongest geostrophic velocity (Fig 5e), while the
potential energy anomaly was relativity low and constant throughout the transect with val-
ues ~ 450 J/m3 (Fig 5f).

Transects with evidenceof mesoscaleeddies. In transects with evidence of mesoscale
eddies the sections of geostrophic velocity and hydrographic structure across mesoscale eddies
observed in the Gulf are shown in Figs 6–8.

A clearly defined eddy was detected by satellite images during the July 2011 sectionH1 (Fig
6a). The geostrophic velocities revealed a cyclonic eddy of diameter ~ 150 km extending
to> 300 m depth, with azimuthal velocities> 0.35 m/s (Fig 6b). The pycnocline, observed at ~
50 m depth between ~25.5 and 22 kg/m3 isopycnals, was compressed between stations A08 and
A14, where the surfacemixed layer was ~ 20 m deep (Fig 6c). The isopycnals below the pycno-
cline presented a dome in the central part (stations A08 and A14) of the section, at all depths
down to 300 m. The thermocline, defined between the 16 and 28°C isotherms showed a similar
distribution to the pycnocline (Fig 6d). Details of the eddy are presented in Sanchez-Velasco
et al. (2013). The average of geostrophic kinetic energy flux was the highest observedduring
our cruises (33.2 J/m3) (Table 2). The greatest values occurredwhere the geostrophic velocity
was� 0.3 m/s (Fig 6e). The potential energy anomaly with an average of 928 J/m3 was high all
along the transect (Fig 6f).

In the Line H2 of July 2010, part of an eddy was sampled, as evident in Fig 7a. The geo-
strophic velocities (Fig 7b) showed rotation with azimuthal velocities> 0.1 m/ s, indicating the
presence of a weak cyclonic eddy. The diameter of the eddy was ~ 60 km (betweenC04 and
C07) and its depth was> 300 m. The pycnocline, observedbetween the 25 and 23 kg/m3 iso-
pycnals, was depressed and the surfacemixed layer was thickened, from ~ 25 m (C01 and C02)
to ~ 50 m depth (C06 and C08). However, the 26.5 kg/m3 isopycnal below the pycnocline was
strongly domed between stations C05 and C07, showing an elevation from 290 m at C01 to 190
m at C06 (Fig 7c). The thermal structure in Fig 7d, was similar to the isopycnals distribution
and the 12°C isotherm rose from 260 m to 180 m. A more detailed hydrographic description of
this eddy is provided in Contreras-Catala et al. (2015). The geostrophic kinetic energy flux pre-
sented a high average value (21.3 J/m3) (Table 2), with maximum values where the geostrophic
velocity was highest (Fig 7e). The potential energy anomaly was high with an average of 744.19
J/m3 (Table 2), showing a slight increase to mainland coast (Fig 7f).

A small eddy was detected in the satellite image (Fig 8a) near the date of the October
2007 sectionH3. The geostrophic velocities (Fig 8b) showed rotation reaching azimuthal
velocities> 0.25 m/s, indicating an anticyclone of ~ 90 km diameter and 70 m depth in its cen-
ter. The pycnocline extended from the 25 to 23 kg/m3 isopycnals (Fig 8c), and the thermocline
was found between the 26 and 18°C isotherms (Fig 8d). Both pycnocline and thermocline
showed a central depression (betweenA02 and A11), where the surface mixed layer increased
from ~ 20 m in the edge to 50 m depth in the center. A detailed description of this eddy can be
seen in Contreras-Catala et al. (2012). The geostrophic kinetic energy flux had an average value
of 13.6 J/m3 (Table 2), showing the lowest values in the eddy center (Fig 8e). In contrast, the
potential energy anomaly showed the highest values in the center of the eddy ~ 1100 J/m3,
decreasing in the margins, mainly on the side of the continental coast (Fig 8e).

Three-dimensional distribution of mesopelagic fish larvae

Transects with little evidenceof mesoscaleeddies. In this section the statistical results
applied to a matrix of fish larvae abundance from the transects with low mesoscale activity are
presented. There were no statistically significant differences in the larval abundance between
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Fig 6. Three-dimensional distribution of fish larvae in high geostrophic kinetic energy flux transect (H1) (July,

2011). (a) Sea surface Chlorophyll a concentrations (MODIS-AQUA LAC) on July 29, 2011. Dots represent the sampling

stations in a high energy Line (H1). (b) Vertical section of geostrophic velocity (m/s). (c) Vertical distribution of Vinciguerria

lucetia larvae (larvae/10m2) on the density anomaly (kg/m3). (d) Triphoturus mexicanus larvae (larvae/10m2) on the thermal

structure (Θ˚C). (e) Graphs of the geostrophic kinetic energy flux (J/m3) and (f) potential energy anomaly (J/m3). The heavy

red curve in Fig 6c and d, marks the surface mixed layer depth. Figures are drawn with south at the left hand side.

doi:10.1371/journal.pone.0164900.g006
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Fig 7. Three-dimensional distribution of fish larvae in high geostrophic kinetic energy flux transect (H2) (July,

2010). (a) Sea surface Chlorophyll a concentrations (MODIS-AQUA LAC) on July 11, 2010. Dots represent the sampling

stations. (b) Vertical section of geostrophic velocity (m/s). (c) Vertical distribution of Vinciguerria lucetia larvae (larvae/

10m2) on the density anomaly (kg/m3). (d) Diogenichthys laternatus larvae (larvae/10m2) on the thermal structure (Θ˚C).

(e) Graphs of the geostrophic kinetic energy flux (J/m3) and (f) potential energy anomaly (J/m3). The heavy red curve in Fig

7c and d, marks the surface mixed layer depth. Figures are drawn with west at the left hand side.

doi:10.1371/journal.pone.0164900.g007
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Fig 8. Three-dimensional distribution of fish larvae in high geostrophic kinetic energy flux transect (H3) (October,

2007). (a) Sea surface Chlorophyll a concentrations (MODIS-AQUA LAC) on October 15, 2007. Dots represent the

sampling stations. (b) Vertical section of geostrophic velocity (m/s). Vertical distribution of (c) Vinciguerria lucetia larvae

(larvae/10m2) on the density anomaly (kg/m3). (d) Triphoturus mexicanus larvae (larvae/10m2) on the thermal structure

(Θ˚C). (e) Graphs of the geostrophic kinetic energy flux (J/m3) and (f) potential energy anomaly (J/m3). The heavy red curve

in Fig 8c and d, marks the surface mixed layer depth. Figures are drawn with west at the left hand side.

doi:10.1371/journal.pone.0164900.g008
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day and night hours (with 95% confidence level). The Bray-Curtis dissimilarity measure
defined two larval fish habitats to a cut of 13% of the information remaining of the data set (Fig
9). These habitats were significantly different (ANOSIM: R = 0.4, with 95% confidence level)
and were named according to their location in the water column as “Surface larval fish habitat”
(grey shaded in Fig 9) and “Subsurface larval fish habitat” (unshaded in Fig 9).

The “Surface larval fish habitat”, located in and above the thermocline, was formed by 325
samples and had the highest larval average abundance with 91 larvae/10m2. The dominant
species were V. lucetia and B. panamense, species with a known affinity to the surface layer,
with a contribution of 56 and 29% respectively in the habitat conformation (Table 3). The dis-
tribution of V. lucetia was observed in the Figs 2c, 3c, 4c and 5c. Its highest abundance was
from the thermocline to the surface associatedmostly with stations of low geostrophic kinetic
energy, except in August 2005 (Fig 2c), when few larvae were observed.B. panamense larvae
showed a similar distribution to V. lucetia larvae in most of the transects, but in August 2005
presented high abundance throughout the sampled water column (not shown).

Fig 9. Dendrogram of larval fish samples defined by Bray-Curtis dissimilarity derived from low geostrophic kinetic energy flux transects.

Fish larvae data collected in the southern of the Gulf of California.

doi:10.1371/journal.pone.0164900.g009

Table 3. Olmstead–Tukey test, One-way ANOSIM (View Eq (3)) and SIMPER analyses between larval fish habitats (LFH) classified according to

the Bray-Curtis measured in lowest geostrophic kinetic energetic zone.

Habitat Surface Subsurface

Number of samples 235 207

Mean zooplankton biomass (mL/1000m3) 358.5 241.2

Mean larval abundance (larvae/10m2) 91 57

Taxa H X %F %S H X %F %S

Vinciguerria lucetia D 318 86 56 C 13 59 27

Diogenichthys laternatus R 60 50 4 D 24 48 25

Benthosema panamense D 174 76 29 D 18 55 32

Triphoturus mexicanus R 45 65 11 R 14 48 16

R = 0.40, value in ANOSIM (Analysis of similarities); SIMPER, Similarity percentages.

H, hierarchy; X, mean abundance; %F, percentage of occurrence; %S, Similarity percentage (%Contribution); D, dominant; C, constant; F, frequent; R,

rare.

doi:10.1371/journal.pone.0164900.t003
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The “Subsurface larval fish habitat” was locatedmainly in the thermocline and below it.
This habitat was defined by 207 samples, with a larval average abundance of 57 larvae/10m2.
D. laternatus and B. panamense were the dominant species, which had a contribution� 25%
in the habitat conformation (Table 3). The D. laternatus larvae were located throughout the
sampled water column, but with highest abundance below the thermocline and particularly
with low geostrophic kinetic energy flux. In August 2005, they were completely absent (Figs 2d,
3d, 4d and 5d).

The definitions of these two larval fish habitats were apparently detected by the CCA (Fig
10), with a high correlation between variables (Pearson correlation 0.72) (Table 4). The eigen-
values of axis 1 (horizontal) and axis 2 (vertical) were 0.37 and 0.11, respectively; the eigenvalue
of the axis 3 (not displayed) was 0.009. The “Surface larval fish habitat”, although present in all
quadrants of the triplot, had higher frequency in the lower quadrants. This habitat was corre-
lated with high levels of dissolved oxygen, ConservativeTemperature, Absolute Salinity and
zooplankton displacement volume, associating with high larval abundance of V. lucetia and B.
panamense; this last species was especially correlated with the highest values of temperature.
While the “Subsurface larval fish habitat” showed an inverse correlation with the environmen-
tal variables mentioned above, it was associated with high larval abundance of D. laternatus.

Transects with evidenceof mesoscaleeddies. In samples with high geostrophic kinetic
energy flux affected by mesoscale eddies, total larval abundance again demonstrated no statisti-
cally significant differences between day and night (with 95% confidence level). The Bray-Cur-
tis dissimilarity measure defined two larval fish habitats to a cut of 13% of the information
remaining of the data set (Fig 11), which were significantly different (ANOSIM: R = -0.23, with
95% confidence level; View Eq (3)). In contrast with the low energy data set, the negative value
in ANOSIM showed great variability within the habitats. The first habitat clustered most sam-
ples of the cyclonic eddy 2010 (Grey shaded in Fig 11); and the second habitat, clustered mainly
samples from the anticyclonic eddy 2007 and the cyclonic eddy 2011 (Unshaded in Fig 11).

The first larval fish habitat, i.e. the cyclonic eddy 2010 Line H2, had the lowest larval average
abundance of the study (25 larvae/10m2) and was formed by 50 samples (Table 5). The domi-
nant species were V. lucetia (surface affinity) and D. laternatus (depth affinity), which contrib-
uted with ~ 69% and 25% respectively. Both species were relatively abundant throughout the
water column tending to avoid stations with the highest geostrophic kinetic energy (Fig 7c
and 7d).

In the second larval fish habitat, i.e. the cyclonic eddy 2011 and the anticyclonic eddy 2007;
Lines H1 and H3 respectively, the larval average abundance was only slightly higher at 33 lar-
vae/10 m2 in 77 samples. Even thoughV. lucetia larvae were dominant as in the first habitat,
B. panamense and T.mexicanus larvae were also important here, marking the difference with
the first habitat. The contribution of each of the three species was> 26% (Table 5). V. lucetia
(Figs 6c and 8c) was distributed throughout the sampled water column, as in the first habitat.
Similarly T.mexicanus larvae (Figs 6d and 8d) and B. panamense larvae (not shown) were
located at all depths sampled, but tended to avoid stations with the highest geostrophic kinetic
energy, and T.mexicanus showed its highest abundance in the first 100 m depth.

The definitions of these two larval fish habitats were also identified by the CCA (Fig 12),
with a relativity high relationship between variables (Pearson correlation 0.67) (Table 4). The
eigenvalues of axis 1 (horizontal) and axis 2 (vertical) were 0.21 and 0.15, respectively; the
eigenvalue of the axis 3 (not displayed) was 0.01. The most samples of the first larval fish habi-
tat (cyclonic eddy 2010) corresponded to negative levels of temperature and dissolved oxygen
and intermediate salinity, associatingmainly with high larval abundance of D. laternatus and
V. lucetia. On the other hand, most samples of the second larval fish habitat (cyclonic eddy
2011 and anticyclonic eddy 2007) were corresponded to positive values of temperature,
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Fig 10. Triplot based on a Canonical Correspondence Analysis (CCA) ordination diagram from low geostrophic kinetic energy flux

transects. Biological samples (squares and circles), larval fish habitat centroids (red symbols), species centroids (stars) and environmental data

(arrows); first axis is horizontal and second axis vertical. Data collected on five cruises in southern Gulf of California and adjacent Pacific. Sal:

Absolute salinity; ZB: zooplanktonic displacement volume; Fluo: fluorescence; Temp: Conservative temperature; DO: dissolved oxygen.

doi:10.1371/journal.pone.0164900.g010
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fluorescence and dissolved oxygen (with a correlation of 51.7%, 46% and 28% respectively) and
associated with high larval abundance of T.mexicanus and B. panamense.

Discussion

This study examines the relation of geostrophic kinetic energy levels on the distribution of
mesopelagic fish larvae (V. lucetia, D. laternatus, B. panamense and T.mexicanus) during the
period of year with stronger stratification. Geostrophic kinetic energy-rich areas associated
with mesoscale eddies were compared with energy-poor areas where the structure of the water
column is more stable. Evidence was found of statistical relationships between larval fish abun-
dance, their three-dimensional distribution, and the structure of the water column.Most previ-
ous studies (e.g. [61,34,62]) suggested relationships qualitatively, but did not make a statistical
comparison of geostrophic kinetic energy-rich and energy-poor areas.

Becausemost of the samples were in the summer and early fall, the water column had rela-
tively high values of the potential energy anomaly in all transects analyzed, as expected from
previous work [63]. The present study considered a prior classification of the transects ana-
lyzed: i) those with little evidence of mesoscale activity, where the geostrophic kinetic energy
was low (< 10 J/m3), with generally horizontal isotherms and isopycnals and geostrophic
velocities< 0.1 m/s; and ii) transects with evident mesoscale activity exemplified by high geo-
strophic kinetic energy> 12 J/m3, and the presence of cyclonic and anticyclonic eddies, where
the geostrophic velocities were> 0.1 m/s. In the first case (energy-poor areas), two larval fish
habitats (with 95% confidence level) were statistically defined (Fig 9). One of them was domi-
nated by larvae of V. lucetia and B. panamense locatedmostly in and above the pycnocline
(typically located ~ 40 m depth); while the second habitat was characterized by larvae of D.
laternatus mainly located in and below the pycnocline (Figs 2–5). This result coincides with
previous qualitative observations of their vertical distribution (e.g. [31,34]). The statistical cor-
roboration provided by the present study suggests that the V. lucetia and B. panamense larvae
tended to congregate in the surface layer, while theD. laternatus larvae concentrated in the
subsurface layer. The opposed depth distributions of the larvae of these mesopelagic species
may imply different physiological adaptations to the environment, such as V. lucetia and B.
panamense larvae preferring warm and productive water (> 20°C and> 1.5 mg/m3), whileD.
laternatus tolerates hypoxic (< 1 mL/L) conditions, as has been suggested in previous studies
[29,64]; probably being an adaptive advantage of predator avoidance.

Despite this separation of larval fish habitats, all mesopelagic larvae coincided in the pycno-
cline, where chlorophyll maximums have been recorded in stratified conditions in different

Table 4. Contribution percentage of the explanatory variables by the canonical correspondence analysis.

Variable in the zone with lowest geostrophic kinetic energetic zone Explained variance % Relative contribution (%)

Conservative temperature 14.6 39.7

Dissolved oxygen 17.7 48.3

Absolute Salinity 2.8 7.5

Zooplankton displacement biomass 0.8 2.3

Fluorescence 0.8 2.2

Variable in the zone with highest geostrophic kinetic energetic zone Explained variance % Relative contribution (%)

Conservative temperature 19 51.7

Dissolved oxygen 16.9 46

Absolute Salinity 10.3 28

Fluorescence 2.8 7.7

Zooplankton displacement biomass 2.2 6.1

doi:10.1371/journal.pone.0164900.t004
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oceans [65]. Lasker et al. (1975) [65] related the presence of the chlorophyll maximum layer
with the successful first feeding of larvae of epipelagic species (anchovy larvae). It is possible
that the pycnocline and chlorophyll maximum layer also play an important role in the larval
feeding of mesopelagic species, indicated in this study by their high abundance and frequency
in that layer. Larvae associated with the “Surface larval fish habitat” migrate mainly in the mix-
ing layer, between the chlorophyll maximum and surface, and in contrast, the species associ-
ated to the “Subsurface larval fish habitat”, migrate mainly between the deep layer and
chlorophyll maximum. In both cases, the verticalmigrations were confined to the sampled
layer, which explain why there were no significant day-night differences in abundance.

Exceptions to these larval patterns were recorded in August 2005, when despite low geo-
strophic kinetic energy levels, the larvae of B. panamense and V. lucetia were distributed
through the entire water column sampled, and no larvae of D. laternatus were found (Fig 2d).

Fig 11. Dendrogram of larval fish samples defined by the Bray-Curtis dissimilarity derived from high geostrophic kinetic energy transects.

Fish larvae data collected in samples from high energy zones in the southern Gulf of California.

doi:10.1371/journal.pone.0164900.g011

Geostrophic Kinetic Energy Flux on Mesopelagic Fish Larvae Distribution

PLOS ONE | DOI:10.1371/journal.pone.0164900 October 19, 2016 20 / 27



This circumstance was associated with positive anomalies of temperature corresponding to an
El Niño event (http://www.esrl.noaa.gov/psd/enso/mei/) that apparently increased spawning of
B. panamense and reduced that of D. laternatus. Although there is no literature specific to this
issue, these changes in fish larvae abundance in August 2005 have been noted incidentally [66].

Two larval fish habitats were also statistically defined (with 95% confidence level) in sam-
pling stations from geostrophic kinetic energy-rich areas, where mesoscale eddies were
detected (Fig 11). In both habitats, the larval abundance of the dominant species was lower
than in areas with low energy, and the larvae were more spread throughout the water column.
One of the habitats was formed by samples from a cyclonic eddy (July 2010), where the geo-
strophic kinetic energy was relativity high, and V. lucetia and D. laternatus larvae had the low-
est larval abundance of the study (Fig 7). The second habitat clustered mainly samples from
transects influenced by the other cyclonic eddy (July 2011) and the anticyclonic eddy (October
2007), where the highest geostrophic kinetic energy of the study (> 12 J/m3) was recorded. In
this last cluster, althoughV. lucetia was the dominant species,B. panamense and T.mexicanus
were also important, in contrast to the cyclonic eddy (July 2010). Therefore the separation of
the two clusters from geostrophic kinetic energy-rich areas correspondedmore to changes in
larval fish abundance, product of the intensity of spawning of each species, than to possible
effects of the eddy rotation on the larval distribution.

The rotation of the eddy, regardless of its direction,might generate mixing by convergence
and divergence, resulting in less stable conditions that favor both larval survival and subse-
quent recruitment, but vertical dispersal will decrease the availability of food for larvae, as men-
tioned Lasker et al. [65] for sardine larvae in the California Current.

The effect of the eddies on the zooplankton organisms is complex because eddies evolve
over time as a result of processes such as diffusion and interaction with the wind [9,67]. More-
over, submesoscale processes like ageostrophic secondary circulation and mixing can modulate
the plankton community distribution/structure through localized vertical fluxes at the eddy
periphery [67–70]. Therefore more detailed observations and modelling will be required to
fully understand the interaction of the zooplankton organisms with the eddy dynamics.

The physical phenomena that affect zooplankton occur at many scales simultaneously and
may have synergistic effects that are difficult to measure [5,71–73]. It is considered that the
mixing and convergence/divergence processes that occur in eddies are important in fertiliza-
tion of surface waters of the ocean, and thus the subsequent enrichment of food webs [74].

Table 5. Olmstead–Tukey test, One-way ANOSIM (View Eq (3)) and SIMPER analyses between larval fish habitats (LFH) classified according to

the Bray-Curtis measured in highest geostrophic kinetic energetic zone.

Habitat LFH I LFH II

Number of samples 50 77

Mean zooplankton biomass (mL/1000m3) 467 206

Mean larval abundance (larvae/10m2) 25 33

Taxa H X %F %S H X %F %S

Vinciguerria lucetia D 34 88 69 D 47 72 26

Diogenichthys laternatus D 29 63 25 R 24 49 10

Benthosema panamense R 18 21 4 D 29 80 36

Triphoturus mexicanus R 7 44 2 D 30 75 27

R = -0.23, value in ANOSIM (Analysis of similarities); SIMPER, Similarity percentages.

H, hierarchy; X, mean abundance; %F, percentage of occurrence; %S, Similarity percentage (%Contribution); D, dominant; C, constant; F, frequent; R,

rare.

doi:10.1371/journal.pone.0164900.t005
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Fig 12. Triplot based on a Canonical Correspondence Analysis (CCA) ordination diagram from high geostrophic kinetic energy flux

transects. Biological samples (squares and circles), larval fish habitat centroids (red symbols), species centroids (stars) and environmental data

(arrows); first axis is horizontal, second axis vertical, collected in transects with high energy zones in southern of Gulf of California. Sal: Absolute

salinity; ZB: zooplanktonic displacement volume; Fluo: fluorescence; Temp: Conservative temperature; DO: dissolved oxygen. LFH: Larval fish

habitat.

doi:10.1371/journal.pone.0164900.g012
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However the results obtained in this work, in spite of the low resolution sampling, indicate that
for primary consumers of the food chain, e.g., the mesopelagic fish larvae, the eddies may not
provide the optimal conditions for larval development. Holliday et al. [75], Nieto et al. [13]
and Song et al. [76], with different arguments, have suggested that the possibility of eddies not
always being favorable for the development of fish eggs and larvae should be pursued in future
multidisciplinary studies. It may be, however, that stratification of the water column is one of
the most significant factors in the formation and maintenance of habitats of some zooplank-
tonic organisms [77], including the mesopelagic fish larvae.

The results of this work in the southern Gulf of California, based on transects influenced by
mesoscale eddies (geostrophic kinetic energy-rich areas) and on transects with weak mesoscale
activity (energy-poor areas), during the seasons of strongest stratification, suggested that the
level of the geostrophic kinetic energy affects the abundance and three-dimensional distribu-
tion of the mesopelagic fish larvae. As the highest larval abundance was correlated with low
geostrophic kinetic energy flux, and the larval congregation was higher in samples from low-
energy areas, it appears that geostrophic kinetic energy-rich areas do not provide the best con-
ditions for mesopelagic larval development. Although there are relatively few observationswith
which to generalize, and more extensive statistical analyses are desirable, it is tempting to spec-
ulate that this result could well apply to other regions.
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