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Abstract
We inferred the population densities of blue whales (Balaenoptera musculus) and short-

beaked common dolphins (Delphinus delphis) in the Northeast Pacific Ocean as functions

of the water-column’s physical structure by implementing hierarchical models in a Bayesian

framework. This approach allowed us to propagate the uncertainty of the field observations

into the inference of species-habitat relationships and to generate spatially explicit popula-

tion density predictions with reduced effects of sampling heterogeneity. Our hypothesis was

that the large-scale spatial distributions of these two cetacean species respond primarily to

ecological processes resulting from shoaling and outcropping of the pycnocline in regions

of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the

thermodynamic balance of the water column, decreasing its volume and thus the height of

the absolute dynamic topography (ADT). Biologically, they lead to elevated primary produc-

tivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed var-

iables, ADT provides information about the structure of the entire water column and it is also

routinely measured at high spatial-temporal resolution by satellite altimeters with uniform

global coverage. Our models provide spatially explicit population density predictions for

both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the
Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge). Interannual

variations in distribution during El Niño anomalies suggest that the population density of

both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica

Dome, and that their distributions retract to particular areas that remain productive, such as

the more oceanic waters in the central California Current System, the northern Gulf of Cali-

fornia, the North Equatorial Countercurrent thermocline ridge, and the more southern por-

tion of the Humboldt Current System. We posit that such reductions in available foraging
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habitats during climatic disturbances could incur high energetic costs on these populations,

ultimately affecting individual fitness and survival.

Introduction
Blue whales (Balaenoptera musculus) and short-beaked common dolphins (Delphinus delphis)
feed primarily on low-trophic-level prey [1] and have high energetic requirements [2]. Both
species numerically dominate the cetacean fauna in the most productive regions of the North-
east Pacific Ocean [2–4], despite having suffered the pressure of commercial whaling in the
case of the blue whale [5–7], and bycatch in fisheries in the case of the short-beaked common
dolphin [8,9]. Currently, better knowledge of the dynamics that drive their distribution is need-
ed in order to evaluate potential threats and to implement future conservation measures
[10,11]. Effective conservation policies for cetacean species, as with other groups of marine
megafauna, should be based on the identification of critical habitats and on the characteriza-
tion of the influence of extreme environmental changes, including the uncertainty associated
with each process [12], in a way that their effect can be measured, monitored, and predicted.
Additionally, approaches that include species-specific responses to changes in the oceanic envi-
ronment would be useful for interpreting and predicting population trends in the context of
climate change impacts [13].

During the summer-autumn of the Northern Hemisphere, blue whales forage at high lati-
tudes in cold, well-mixed waters modified by upwelling [14], mainly in the California Current
System [15,16], the Alaska Gyre, and the Aleutian Islands [17,18]. In winter-spring, they mi-
grate to breed and feed in lower latitudes, especially in the Gulf of California [19] and the Costa
Rica Dome. During this migration the species also uses other transitory areas to feed, such the
Frontal System off Baja California [20]. Blue whales from the Southern Hemisphere forage in
the southern Humboldt Current System and the Antarctic Circumpolar Current in summer-
autumn [21]. Some of them migrate in winter-spring to the northern Humboldt Current Sys-
tem [21,22], and the Equatorial Cold Tongue [23] for breeding. Although blue whales have
been recorded year-round at the Costa Rica Dome, it is not clear whether those animals come
from both hemispheres, or if at least some belong to a resident population [24]. In contrast,
short-beaked common dolphins do not have an evident seasonal migration pattern and are dis-
tributed year-round in equatorial and subtropical waters characterized by a shallow but weak
thermocline [25,26].

The cetacean survey dataset we used in this study has an extensive coverage of the Northeast
Pacific Ocean and is the largest in the world [27]. These data have allowed for the estimation of
regional and local abundances of various cetacean species [4,28–30], but the traditional dis-
tance sampling analysis [31,32] does not permit addressing trends of population densities ex-
plicitly in space and time. Alternative approaches have been adopted to predict spatially
explicit distributions of species based on their affinity to particular environmental conditions
measured concurrently, either in situ or using remotely sensed variables. Such studies have suc-
cessfully captured the patterns of spatial distribution for several species in the eastern tropical
Pacific [33,34] and in the California Current System [33,35]. Although some environmental
variables collected in situ, such as the mixed layer depth or the pycnocline depth, may contain
direct information on water-column dynamics, their sparse coverage in space and time limit
them as predictors of long-term, broad-scale spatial patterns.
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While most oceanographic variables obtained from remote sensing measurements typically
cover large spatial extents, they represent only a small portion of the vertical habitat, usually
from the surface to the first 10 m of the water column. Yet, it is well known that the distribution
of marine megafauna, including cetaceans, is greatly influenced by the physical structure of the
entire water column, especially in terms of the vertical displacements of the pycnocline, which
in some areas may reach the surface (i.e. “outcrop”) [36,37]. In the open ocean, the pycnocline
separates the water column into a warmer, less dense upper layer, and a colder, denser, and nu-
trient-enriched deeper layer. The pycnocline boundary can deepen, shoal, or even outcrop due
to a variety of forces. The most productive ecosystems in the Northeast Pacific Ocean occur in
regions of pycnocline shoaling and outcropping, as they are forced by intense wind stress and
eddy-like circulation [38,39]. In these regions, new nutrients enrich the euphotic zone, produc-
ing large phytoplankton blooms [40–42] that aggregate low-trophic-level prey, such as krill
(Crustacea: Euphausiacea) and small pelagic fish (i.e. sardine and anchovy) [14,43–49], which
represent nearly 100% and ~60% of the diets of blue whales [1,14] and short-beaked common
dolphins [1,50], respectively.

At the scale of an ocean basin, shoaling and outcropping of the pycnocline reduce the
amount of warmer and less dense water in the water column, decreasing the total volume and
thus the height of the absolute dynamic topography (ADT) of the ocean’s surface [51–53]. At a
given location, this elevation is calculated by summing the sea level anomalies (SLA), which
correspond to the deviations from the historical mean of the sea surface height (SSH) [54], plus
the mean dynamic topography, which is the part of mean SSH due to permanent currents (that
is, the mean SSH minus a geoid of reference). In regions with a deep pycnocline, there is more
warm water in the upper layer, which increases the volume and the total height of the water
column. Thus, pycnocline shoaling decreases the ADT, whereas pycnocline deepening in-
creases it [52,55]. In mid-latitude regions, wind-curl-forced Ekman pumping causes the pycno-
cline to outcrop, such that the two-layer configuration described above breaks down [55].
However, since in that case cold water occupies a large portion of the mixed upper water col-
umn, the ultimate result is also a decrease in volume, and thus in the ADT. Therefore, low
ADTs reveal the physical structure of the most productive habitats throughout the Northeast
Pacific Ocean (Fig. 1), regardless of the surface or subsurface phenomena forcing them because
this measurement includes information on both permanent currents as well as mesoscale phe-
nomena [56,57]. Given this context, remotely sensed ADT is a variable particularly well-suited
to infer the distribution of blue whale and short-beaked common dolphin population densities,
especially in the northeastern tropical Pacific, where other surface variables do not consistently
capture subsurface features such as the Costa Rica Dome or the North Equatorial Countercur-
rent thermocline ridge. The advantage of using ADT over other surface variables has already
been demonstrated in a coastal wind-forced upwelling area for inferring the spawning of
low-trophic-level fish [58].

When eddy-like circulation forces the pycnocline upwards, the latter does not typically out-
crop, but only shoals to a certain depth [59,60], enough in some cases to reach the euphotic zone,
where nutrients can be taken up by phytoplankton [61]. The effects of this pycnocline shoaling
cannot always be inferred from changes in surface conditions such as temperature or
chlorophyll-a concentration [62,63]. The Costa Rica Dome (Fig. 1) features this type of eddy-like
forcing [59,62] and sustains blue whales and short-beaked common dolphins year-round
[24,36]. The North Equatorial Countercurrent thermocline ridge (Fig. 1) [60,62] is also inhabited
year-round by short-beaked common dolphins [25,64], while blue whales have been reported
there occasionally [36,65,66]. The force acting on the upper layer in the mid latitudes is different.
There, upwelling is usually driven by strong coastal winds that produce pycnocline outcropping,
instead of just shoaling [67]. As a consequence, the upper water column mixes, making new

Bayesian Inference of Cetacean Distribution

PLOS ONE | DOI:10.1371/journal.pone.0120727 March 18, 2015 3 / 23



nutrients available over a thicker layer and allowing the phytoplankton to distribute itself more
evenly in the euphotic zone [38]. In these regions, the processes of cold water intrusion and ele-
vated biological production are readily detected by traditional surface variables such as sea sur-
face temperature and chlorophyll-a concentration [68], which can be measured remotely or in
situ. The California Current and the Humboldt Current are typical mid-latitude upwelling sys-
tems that sustain the highest biological productions in the eastern Pacific (Fig. 1) [69,70].

Fig 1. Study area, survey effort, and sightings. A) Main features of low absolute dynamic topography
(ADT) in the Northeast Pacific Ocean: the California Current System (CCS), the Frontal System off Baja
California (FSBC), the Gulf of California (GC), the North Equatorial Countercurrent thermocline ridge
(NECCTR), the Costa Rica Dome (CRD), the Gulf of Panama and off Colombia (GPOC), the Equatorial Cold
Tongue (ECT), and the Humboldt Current System (HCS). B) Blue whale and short-beaked common dolphin
sightings (dots colored), and survey effort (thin red lines) across the Northeast Pacific Ocean, collected
during summer-autumn (July-December) at 18 yearly surveys, spanning the period 1986–2009.

doi:10.1371/journal.pone.0120727.g001
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Our goal was to infer the population densities of blue whales and short-beaked common
dolphins in the Northeast Pacific Ocean from the remotely sensed ADT, based on the hypothe-
sis that their distributions in space and time respond to the availability of low-trophic-level
prey, which, in turn, is abundant in regions of pycnocline shoaling and outcropping. Despite
the disparity that exists between a migrating and a non-migrating species in terms of habitat
use, we expected that their relationship with the physical structure of the water column would
be similar because of their need to feed constantly on low-trophic-level prey, regardless of the
season, and because we were only evaluating the portion of the blue whale migration occurring
in the summer-autumn period. Therefore, potential changes in the habitat requirements of this
species during their winter-spring migration period were not included in the analyses of this
study (see Materials and Methods below).

Since El Niño-Southern Oscillation (ENSO) anomalies modify considerably the pycnocline
structure in the eastern Pacific [71], we expected to infer the response of both species to these
anomalies in terms of inter-annual re-distributions of population density. We chose a hierar-
chical modeling approach [72,73] because it allowed for the incorporation of the observational
stochastic processes that generated the data (i.e. species detectability and the areas effectively
sampled) as well as the ecological processes (i.e. the response of the species’ distribution to the
physical structure of the habitat) as connected sub-models [13,72,74]. The analysis of these
models was carried out in a Bayesian framework, which propagated the uncertainty related to
those separate processes in a two-way feedback among sub-model parameters. Also, the Bayes-
ian philosophy acknowledges the non-experimental nature of ecological studies, allows for the
inclusion of previous knowledge on the parameters, and provides their estimations in terms of
probabilities, instead of fixed quantities [75–79]. This type of approach has served recently to
estimate trends in abundance of various cetacean species with improved accuracy [80–83], but
this is the first time it is used for the inference of their spatial distribution.

Materials and Methods
The fieldwork was carried out with permits under the US Marine Mammal Protection Act and
the Endangered Species Act, issued to the Marine Mammal and Turtle Division of the South-
west Fisheries Science Center (SWFSC), La Jolla, California. Research clearances from the gov-
ernments of Peru, Ecuador, Colombia, Panama, Nicaragua, El Salvador, Guatemala, Honduras,
Costa Rica, France, and Mexico were obtained to collect data in the Exclusive Economic Zone
waters of each country for each year of the eastern tropical Pacific surveys. Line-transect effort
and cetacean sightings were used to estimate the population densities of blue whales and short-
beaked common dolphins, following distance sampling techniques [31,32]. The data were col-
lected during 19 annual ecosystem surveys made across the Northeast Pacific Ocean by the
SWFSC during the summer-autumn in the Northern Hemisphere (July-December), spanning
the period 1986–2009 (Fig. 1; S1 Fig.). The survey followed zig-zag arrangements of transects
designed to evenly cover specific strata [84]. The effectively sampled strip half-width along the
track lines was inferred for each species as a function of the perpendicular distance between
the groups of animals and transects. We used Beaufort sea state and the size of the groups as
the most important covariates affecting the detection distance [85–87]. This allowed us to esti-
mate the area effectively sampled, and thus, the population density in individuals per unit of
area (ind. km-2).

The ADT variable was produced by the Segment Sol multimissions d'ALTimétrie, d'Orbito-
graphie et de localisation precise and the Data Unification and Altimeter Combination System
in France. Access to ADT weekly means at a spatial resolution of 1/3 x 1/3-degree cells, span-
ning the period 1992–2013, was granted by the Archiving, Validation, and Interpretation of
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Satellite Oceanographic Data program (AVISO; http://www.aviso.oceanobs.com/en/). All the
daily survey effort and sightings data were gridded into cells of the same size as the ADT’s spa-
tial resolution. This produced a series of very short transects inside each cell (~22 km), which
helped to reduce the variance due to the spatial heterogeneity of the sampling effort [88], and
to meet the assumption that the probability of group counts in the transects was Poisson-
distributed by reducing the variance of encounters among cells (see model description below).
Each cell surveyed had a corresponding weekly value of ADT. S1 Fig. shows the frequency dis-
tribution of the main variables used in our models.

The hierarchical models, comprising the observational and the ecological processes, were
written in an algebraically explicit manner using the OpenBUGS software (http://www.
openbugs.info/) (S1 Text), which is an implementation of the BUGS language [89,90] that per-
forms Bayesian inference using the Gibbs sampler algorithm [91,92] to sample from the poste-
rior distributions of the parameters through a Markov Chain Monte Carlo procedure. We ran
10,000 iterations with a burn-in phase of 2,000 samples, and retained every tenth value, for a
posterior sample of 800. Priors for all the stochastic parameters were non-informative, except
for the probability of detecting the species on the track line (see description below). The pack-
age R2WinBUGS [93] was used as interface with OpenBUGS to perform all the analyses from
R [94]. The observational process began by defining the likelihood of the perpendicular dis-
tances (x) from the transect line to the groups, collected at each sighting (j). This was based on
the assumption that the probability of detecting the species at sea decreased when the animals
were far from the observers [31,32]. Conditional on the sighting covariates, distances were as-
sumed to be half-normally distributed:

xjeNð0; s2
jÞ ð1Þ

The standard deviation of this likelihood defined the effective strip half-width (w) at which the
groups of animals were effectively sampled [95]:

sj ¼ wj

ffiffiffi
2

p

r
ð2Þ

This width wmay increase or decrease exponentially depending on covariates that might affect
the detectability of animals [96]. We chose the Beaufort sea-state (b) because it has been re-
ported as one of the most important external conditions affecting the detectability of cetaceans
[85,95]. Sea state was recorded on all effort segments and for each sighting. We also used the
group size (s) as a covariate because large groups are expected to be more detectable than small
groups [85]. Group sizes for blue whales were assumed to follow a discrete Poisson distribution
with a single predicted group size parameter (λ) because they were very small,

sjePoisðlðsÞÞ ð3Þ

whereas group sizes of short-beaked common dolphins were assumed to follow a continuous
log-normal distribution, because they were large with a skewed frequency distribution:

sjelogNðmðsÞ; s
2
ðsÞÞ ð4Þ

A polynomial function with parameters α [96] was used to model effective strip half-width as a
function of group size and sea state. A normal likelihood with mean 0 was assumed for all
random-effects parameters ε (i.e. residuals) [72,74]:
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Blue whales:

wj ¼ eða0þða1bjÞþða2sjÞþe0Þ ð5Þ

Short-beaked common dolphins:

wj ¼ eða0þða1bjÞþða2 lnðsjÞÞþe0Þ ð6Þ

The posterior distributions of the parameters α were also used for inferring the effective strip
half-width in each 1/3°-degree cell (i). For that model, we used the effort-weighted Beaufort sea
state (B) and the predicted mean group sizes as covariates. For blue whales, mean group size
was the parameter of the Poisson likelihood (λ(s)) in Eq. 3, whereas for short-beaked common
dolphins, mean group size was estimated from the parameters of the log-normal likelihood
in Eq. 4, as:

~S ¼ mðsÞ þ
s2
ðsÞ
2

ð7Þ

The mean group sizes were fitted using only the sightings’ information. This was done because
the procedure of gridding the database into 1/3-degree cells loses information on group
size variability.

Blue whales:

wi ¼ eða0þða1BiÞþða2lðsÞÞþe1Þ ð8Þ

Short-beaked common dolphins:

wi ¼ eða0þða1BiÞþða2~SÞþe1Þ ð9Þ

Also, we did not estimate an independent predicted group size for each cell because there is
evidence that dolphin group sizes in the eastern tropical Pacific are highly variable, do not have
well-defined spatial patterns, and do not appear to respond to environmental characteristics at
the large scales of these surveys [97]. Instead, group size patterns of dolphins in the Northeast
Pacific Ocean are more likely to be related to diurnal aggregation dynamics [98], and as such,
grouping behavior does not appear to be linked to the species-habitat relationships that we
aimed to evaluate from the population density.

Conditional on sea state, group size, and ADT, the number of groups (n) observed within
each cell i was assumed to be Poisson-distributed for both species:

niePoisðliðnÞÞ ð10Þ

Since this predicted group counts λi(n) was a key parameter that determined the population
density estimations and was affected by both the observational process and the relationship of
the species’ with the ADT, we performed a posterior predictive check on its Poisson likelihood,
by computing a Bayesian p-value, based on the posterior predictive distribution of a goodness-
of-fit statistic, in this case, a sums-of-squares type discrepancy [99,100].

The density estimate (d^) was derived from the predicted group counts, since the encounter
rate of groups was assumed to depend on the density of animals [32]:
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Blue whales:

liðnÞ ¼
2wiLid̂ iĝð0Þ

lðsÞ
ð11Þ

Short-beaked common dolphins:

liðnÞ ¼
2wiLid̂ iĝð0Þ

~s
ð12Þ

where Li was the line-transect effort at cell i in kilometers, and ĝ ð0Þ was the probability of de-
tecting a group when it was directly on the track line. Previous knowledge on this parameter
for both species was included in the model as a beta prior distribution from a conditionally de-
pendent observer design [4], whose parameters a and b were derived from the mean and the
coefficient of variation reported in a previous study [101]. For blue whales μg(0) = 0.921 and
CVg(0) = 0.023, whereas for short-beaked common dolphins μg(0) = 0.970 and CVg(0) = 0.017:

ĝð0ÞeBetaða; bÞ ð13Þ

a ¼ cmgð0Þ ð14Þ

b ¼ cð1� mgð0ÞÞ ð15Þ

c ¼ mgð0Þð1� mgð0ÞÞ
ðmgð0ÞCVgð0ÞÞ2

" #
� 1 ð16Þ

The population density in each cell, derived from the group count model (Eqs 11 and 12), was
modeled as a log-linear polynomial function of the ADT. For this purpose, the original ADT
values were rescaled by subtracting the mean and dividing it by 100, which did not affect the es-
timations, but improved the Markov Chain Monte Carlo mixing [76]. We tested second-order
(ω parameters) and third-order (θ parameters) polynomials, as well as an average of them
using a mixing parameter ϑ [102]. Although model selection is still a difficult issue for hierar-
chical models [103], we used the Deviance Information Criterion (DIC) [104] for choosing the
best model among the alternative functions tested. DIC has been criticized when used with
complex hierarchical models [105], but it was the only criterion we were able to apply for
choosing among these functions:

Second-order polynomial:

d̂ ið2nd�orderÞ ¼ eðo0þðo1ADTÞþðo2ADT
2Þþe2Þ ð17Þ

Third-order polynomial:

d̂ ið3rd�orderÞ ¼ eðy0þðy1ADTiÞþðy2ADT2
i Þþðy3ADT3

i
Þþe2Þ ð18Þ

Model average:

d̂ iðAverageÞ ¼ Wd̂ ið2nd�orderÞ þ ð1� WÞd̂ ið3rd�orderÞ ð19Þ

Finally, the quantiles 0.025, 0.975 (i.e. the limits of the 95-% credible intervals), and the median
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from the parameter posteriors were used to convert all available original ADT values to in-
ferred population densities to describe their mean spatial distributions and to compare them
during El Niño and La Niña years. For this purpose, we assigned a mean value of the Multivari-
ate ENSO Index (MEI) [106,107] to each year, using only values from the period July to De-
cember. The MEI was obtained from the Physical Sciences Division of NOAA’s Earth System
Research Laboratory (http://www.esrl.noaa.gov/psd/enso/mei/data).

Results and Discussion
Blue whales and short-beaked common dolphins are consistently distributed in regions with
persistent aggregations of low-trophic-level prey because of their high energetic requirements.
At the scale of this study, these aggregations can only occur as a result of major wind-driven
upwelling and eddy-like circulation processes. We therefore proposed that the physical struc-
ture resulting from these processes is conceptually the factor forcing the long-term distribu-
tions of these two cetacean species. Given the high mobility of the animals, we also expected
that such spatial distributions would respond relatively rapidly to structural changes in
the water column. Other surface environmental predictors, particularly temperature and
chlorophyll-a, are indirect consequences of the structure produced by the pycnocline dynamics
on the upper water column [108] and further, none of those conditions can be interpreted as to
be mechanistically linked directly to cetaceans. Instead, they may simply indicate favorable
conditions for prey aggregation and/or other biological needs.

From its conception, this was a hypothesis-driven study [109] instead of a data mining pro-
cess. We wanted to explore the degree to which one variable (ADT) that strongly determines
ecosystem structure in the open ocean can be used to make hypothesis-based inferences, in
contrast to a common objective in statistical modeling of increasing predictive ability by incor-
porating multiple environmental variables, even when the exact mechanisms or processes that
they drive are unknown. The latter approach can lead to the quandary of having to choose the
best model among all possible combinations of environmental predictors available without a
strong ecological basis. Given the current difficulties that exist for choosing among complex hi-
erarchical models [74,105,110], it is desirable that predictors in ecological studies be carefully
chosen following a clear hypothesis [13,103,111].

The second-order polynomial function (Eq. 17) was selected for both species as the best al-
ternative model of the population density as function of ADT, based on the lowest DIC. The
posterior distributions of the three coefficient parameters and the residuals of this function are
described in Table 1, as well as the rest of the parameters and statistics used for model evalua-
tion. The assumption that group encounters in cells was Poisson-distributed was critical for
evaluating the overall adequacy of the model because it was the parameter that linked the ob-
servational process to the ecological process. The mean of the posterior Bayesian p-value for
evaluating such model assumption was close to 0.5 for both species, indicating good model fit-
ting given the data [99]. The Markov chains’ histories converged and the Monte Carlo (MC)
error was very close to 0 for all model parameters (Table 1), indicating that the number of itera-
tions was sufficient to characterize the posterior distributions [89]. As expected, the coefficient
parameters that defined the relationship between the population densities and the ADT had
the highest MC errors, since ecological processes often involve higher uncertainty than obser-
vational ones [112]. There was good convergence of the three chains for all the parameters, as
was indicated by R̂ statistics close to 1 (Table 1), although the coefficients of the ecological pro-
cess had the lowest values, also indicating a higher uncertainty.

The maximum population densities predicted by our models at the limits of the 95-% credi-
ble intervals suggested optimum habitats at ADT values of 48.7 to 50.7 cm for blue whales and
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43.7 to 50.7 cm for short-beaked common dolphins (Fig. 2). A decrease in population density
at both very low and very high ADT was well supported by the observations, approaching to
zero in areas of deep pycnocline (> 80 cm of ADT for blue whales and> 90 cm for short-
beaked common dolphins). Predicted densities also decreased in areas of shallow pycnocline
that are below the ADT optimum. In the case of blue whales the model predicted a decrease in
density at very low ADT values almost as steep as with that of the high values but with higher
uncertainty. The decrease in density of short-beaked common dolphins when ADT values
were below the optimum was less marked, suggesting a broader habitat preference (Fig. 2). It is
intuitive that a deep pycnocline (i.e. high ADT values) would not be suitable for the aggregation
of low-trophic-level prey for blue whales or short-beaked common dolphins, because of the
low biological production in these areas, but it is less clear how very low ADT values would
also decrease the habitat suitability. This may be related to the well-known fact that the most
important aggregations of biomass do not occur at the core of upwelling or eddy-like circula-
tion features, but downstream, where the material can be retained and both phytoplankton and
primary consumers can grow and aggregate [113–115]. This has been reported for rorqual
whales (Mysticeti: Balaenopteridae) in the Gulf of Saint Lawrence, Canada, where the different
species are distributed at particular distances from the core of thermal fronts, according to the
relative trophic level of their main prey [116]. This would explain why blue whales have a nar-
rower optimal habitat than short-beaked common dolphins (Fig. 2). Since krill, the primary
prey of the blue whale, has relatively limited capacity for horizontal displacement, its distribu-
tion is strongly linked to areas of phytoplankton blooms and enhanced biomass retention. In
contrast, low-trophic-level fish such as sardine, the main prey of short-beaked common

Table 1. Posterior parameter statistics.

Parameter Symbol Equations Mean SD Low 2.5% Median Hi 97.5% MC error

Blue whale

Predicted group size λ(s) 3, 8, 11 1.802 0.5659 1.69 1.801 1.918 0.001096

Coefficient parameters of the H-ESW model α0 5, 8 1.111 0.13790 0.84170 1.112 1.39 0.005304

α1 5, 8 -0.008098 0.03459 -0.07952 -0.007888 0.05809 0.0010360

α2 5, 8 0.02194 0.02749 -0.02688 0.02068 0.08075 0.0007942

Bayesian p-value (Poisson likelihood of group counts) - 10 0.4825 0.49970 - - - 0.01016

Detection probability on the transect line g^ð0Þ 13 0.9207 0.02362 0.86720 0.9234 0.9596 0.0008135

Second-order polynomial coefficient parameters ω0 17 -9.973 0.2149 -10.42 -9.959 -9.572 0.01782

ω1 17 -16.2 1.35 -18.98 -16.14 -13.65 0.06797

ω2 17 -46.88 7.459 -61.32 -47.1 -32.56 0.3933

Short-beaked common dolphin

Mean predicted group size S
~ 7, 12 258.7 12.34 236.4 258.2 284.5 0.2618

Coefficient parameters of the H-ESW model α0 6 0.1720 0.1141 -0.05129 0.1698 0.4043 0.0066740

α1 6 -0.1554 0.01904 -0.1932 -0.1555 -0.1161 0.0007586

α2 6 0.2740 0.02090 0.2328 0.2749 0.3153 0.0012290

Bayesian p-value (Poisson distribution of group counts) - - 0.4783 0.49950 0 0 1 0.0113800

Detection probability on the transect line g^ð0Þ 13 0.9672 0.01959 0.9178 0.9705 0.9937 0.0005652

Second-order polynomial coefficient parameters ω0 17 -3.1680 0.11460 -3.392 -3.1660 -2.9510 0.0078660

ω1 17 -10.1400 0.7558 -11.66 -10.1100 -8.6690 0.03139

ω2 17 -28.9100 5.40600 -40.36 -28.7400 -19.4 0.2927

Only results from the models chosen are shown.

doi:10.1371/journal.pone.0120727.t001
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dolphins, have much more mobility [117,118] and can move between and around
phytoplankton blooms.

Our results predicted densities above the mean for both species in the central area of the
Northeast Pacific Ocean, especially in the Costa Rica Dome and the North Equatorial Counter-
current thermocline ridge, and suggested a broader range of distribution for the short-beaked
common dolphin, compared to that of the blue whale in those areas. Nevertheless, the Califor-
nia Current System, the Humboldt Current System, and the Equatorial Cold Tongue remained
as the most important habitats for both species (Fig. 3). The latter is especially important for
short-beaked common dolphins. In the California Current System, blue whales were predicted
nearest to the coast while short-beaked common dolphins were distributed in more oceanic
waters. This was in agreement with modeled distributions predicted by previous studies
[35,119]. Likewise, in the Frontal System off Baja California, high densities of blue whales were
predicted in a narrow corridor compared to the area that would be occupied by short-beaked
common dolphins (Fig. 3). Since krill has a lower position in the trophic web compared to that

Fig 2. Inferred population densities of blue whales and short-beaked common dolphins in the
Northeast Pacific Ocean, as functions of the absolute dynamic topography (ADT) during summer-
autumn (July-December). Filled areas represent the 95-% credible intervals. Solid lines represent the
median. Black rug lines at the bottom represent values of ADT where there was any survey effort. Color rug
lines at the top represent values of ADT where the species were encountered. Red dashed vertical lines
represent the optimum habitat in terms of ADT values for each species, where maximum population densities
were predicted (red dots) at the lower limit, median, and upper limit of the 95-% credible intervals.

doi:10.1371/journal.pone.0120727.g002

Bayesian Inference of Cetacean Distribution

PLOS ONE | DOI:10.1371/journal.pone.0120727 March 18, 2015 11 / 23



of low-trophic-level fish, it was expected that blue whales would occur closer to the thermal
fronts than short-beaked common dolphins [116]. In the Gulf of California, the model pre-
dicted low densities of blue whales, which agrees with the well-known summer-fall migration
to the feeding grounds in the California Current System and farther to the north [19,65]. Only
few blue whales have been recorded during summer-autumn in the northern Gulf of California,
around Canal de Ballenas [120,121], which is where our model predicted the highest densities
of both species. In the Costa Rica Dome, blue whales seemed to be distributed in high densities
closer to the Dome’s core, whereas short-beaked common dolphins occupied practically the
entire area under the Dome’s influence (see Figs. 1 and 3), and extending into the Gulf of Pana-
ma and off Colombia, where blue whales were virtually absent.

Given the observed and modeled distributions, the North Equatorial Countercurrent ther-
mocline ridge was an important habitat for short-beaked common dolphins, but less so for
blue whales. Despite the model’s prediction of slightly above average blue whale densities with-
in this feature (Fig. 3), there were no sightings of the species during the surveys. However, ob-
servations from other studies reporting blue whales [36,65] as well as large krill aggregations
[49] in the North Equatorial Countercurrent thermocline ridge support our model predictions
of suitable habitat within this feature. As with the Costa Rica Dome, we do not know if blue

Fig 3. Mean summer-autumn (July-December) distribution of blue whale and short-beaked common dolphin inferred population densities, as
functions of the absolute dynamic topography in the Northeast Pacific Ocean.Colored dots represent cells with encounters of the species and gray
lines represent the survey effort.

doi:10.1371/journal.pone.0120727.g003
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whales visiting the North Equatorial Countercurrent thermocline ridge come only from the
Northern Hemisphere [65], or if there are some animals using this system year-round [24].
Habitat models based on the routes revealed by satellite-tagged individuals that have been
tracked to this remote area [65] would help address this gap in knowledge.

The latter result of blue whale predictions in an area where there were no sightings during
the surveys underscores the issue of the biases in the detections and of survey coverage, both in
time and space. Field observations were limited by budget and weather conditions, and the sur-
veys did not cover evenly the study area. Instead, they were intended to cover particular strata
in each year. Although this was certainly a limitation in data coverage, our habitat-based esti-
mates of population density reduced the effect of such spatial heterogeneity in search effort by
introducing information on the probability that the species was present, regardless of whether
it was detected or not [76]. The lack of sightings during the surveys could be attributed to insuf-
ficient effort to detect the species, to effort under conditions of low detectability, or to habitat
that was insufficiently suitable to produce a detectable spatial increase in the population density
at the time the surveys were made [76] (Figs. 4 and 5).

The North Equatorial Countercurrent thermocline ridge as potential habitat for blue whales
was not the only case in our results that differed from the observations. The models suggested
high densities of both species at the high latitude ends of the study area in the California Cur-
rent and the Humboldt Current Systems, where there were few encounters of the species. Low
effort coverage may explain the few observations in the Humboldt Current System but not in
the California Current System. Instead, the observations strongly indicate that the species have
diminished occurrence at those latitudes, which can be interpreted as a spatial boundary for
their distribution. In this case, what the models are likely suggesting is that the physical habitat
continues to be suitable for both species in these areas, but that there could be other eco-
physiological factors restricting their occurrence. For example, differences in light penetration
and heat balance at high latitudes may lead to the development of different types of low-
trophic-level prey [49,122], attracting other cetacean species better adapted to forage on them.
We note, however, that while most of the blue whales in the Northeast Pacific Ocean feed in
the California Current System [123], they also feed at higher latitudes in waters off Oregon and
Washington [65,124] as well as in the Alaska Gyre and around the Aleutian Islands [17].

There was also some disparity between the few observations and the model results in the
northern Humboldt Current System. It is important to clarify that blue whales from the South-
ern Hemisphere are a different population from those of the north [22] and that their numbers
are still low because they are in a process of slow recovery form whaling that drove them to
near extinction [82]. They migrate to mid and low latitudes during the summer-autumn of the
Northern Hemisphere (i.e. winter-spring of the Southern Hemisphere) to reproduce and feed
[21]. Therefore, we would expect that the higher whale densities during this period are concen-
trated in the South Equatorial Countercurrent and the northern Humboldt Current System,
where higher temperatures would be more suitable for calving and where prey aggregations re-
main high. Also, similar to the North Equatorial Countercurrent thermocline ridge, a very low
survey effort in this area could lead to a low number of sightings.

For short-beaked common dolphins, there are almost no sightings despite the intensive sur-
vey effort in the northern California Current System. The most extreme geographic records of
the species coincide with the limits of the sardine distribution [122]. This latitudinal limit
could be driven by competition with other species better adapted to exploit different types of
low-trophic-level fish and squid in those areas, such as the Pacific white-sided dolphin (Lagen-
orhynchus obliquidens), whose size and diet are similar to those of the short-beaked common
dolphins [1]. This result exemplifies why we should not expect ADT, or any other habitat vari-
able for that matter, to predict a species’ distribution faithfully, especially outside the limits of a
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study area, where additional ecological knowledge is necessary to understand failures in
the models.

Predicted densities for both species responded negatively to strong El Niño anomalies in all
regions (Figs. 4 and 5), but especially in the South Equatorial Countercurrent, which is directly
influenced by downwelling Kelvin waves that deepen the pycnocline. The model suggested that
both species would have abandoned that region during the extreme 1997 El Niño in response
to the generalized increase of ADT (i.e. pycnocline deepening and enhanced stratification), re-
stricting their distribution to the core of the remaining productive habitats. The cores of the

Fig 4. Inter-annual spatial fluctuations of blue whale population densities, inferred from ADT during summer-autumn (July-December). Each year
label has a color according to the mean Multivariate ENSO Index (MEI) during that period. Predictions in years with effort are based only in mean ADT values
from the months surveyed. The rest are from July-to-December means. Magenta dots represent sightings and gray lines represent the survey effort.

doi:10.1371/journal.pone.0120727.g004
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Frontal System off Baja California and the Costa Rica Dome remained with densities slightly
above the mean, as did the northern Gulf of California, which has been described as a refuge
for rorqual whales during El Niño anomalies [120]. The species also appeared to concentrate in
the central and northern California Current System, and in the North Equatorial Countercur-
rent thermocline ridge, where the pycnocline does not deepen as much. These results suggest
that ENSO anomalies can reduce or expand the extent of favorable foraging habitats for blue
whales and short-beaked common dolphins. The concentration of short-beaked common

Fig 5. Inter-annual spatial fluctuations of short-beaked common dolphin population densities,
inferred from ADT during summer-autumn (July-December). Each year label has a color according to the
mean Multivariate ENSO Index (MEI) during that period. Predictions in years with effort are based only on
mean ADT values from the months surveyed. The rest are from July-to-December means. Magenta dots
represent sightings and gray lines the survey effort.

doi:10.1371/journal.pone.0120727.g005
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dolphins off central California in response to the 1997 El Niño has already been described
[125]. We can also speculate that blue whales migrating from high latitudes in the Southern
Hemisphere might not be able to forage successfully in the South Equatorial Countercurrent
and the northern Humboldt Current System during extreme El Niño years, being forced to re-
main further to the south. Unfortunately, there were no surveys during the strong 1997 El
Niño to compare with the model predictions. Nevertheless, the spatial distribution of the ob-
servations during more moderate El Niño anomalies in 1992, 1993, and 2006 agrees with the
model results for both species (Figs. 4 and 5).

The reduced spatial coverage of the predicted population densities during 1997 El Niño, the
strongest in the last 20 years, suggest that the population numbers of both species could have
declined dramatically. Although such decrease in habitat availability would result in a re-
distribution of the populations to areas remaining highly productive (even outside our study
area, as already discussed), we cannot underestimate the potential of those phenomena to affect
considerably the survival of species with high energetic requirements, especially for new born
calves or weak adults. Based on our results of the redistribution of blue whales and short-
beaked common dolphins during El Niño events, and the corresponding decrease in popula-
tion density in several areas of the Northeast Pacific Ocean, long-term negative effects on their
populations might be expected if there is an increase in the frequency and intensity of such
events arising from climate change, as some studies have suggested [126–128]. In the case of La
Niña anomalies, the density responses were not as dramatic as those described for El Niño
(Figs. 4 and 5). Both species had similar distributions and population density values to those of
the mean conditions (Fig. 3). This is because the magnitude of pycnocline shoaling during La
Niña is not equivalent to its deepening during El Niño [71,129]. The processes driving these
phenomena are not linearly related and we cannot expect them to have equal but opposite ef-
fects, either physical or biological [130].

The consistent relationship between the population density of cetaceans with environmental
conditions measured by satellite sensors allow for broad-scale predictions of abundance and
open the possibility of forecasting population trends and distribution into the future [35]. This
is especially true for ADT, for which near-real-time, global products are readily available. The
availability of high-quality altimetry products is particularly appealing for applications involv-
ing proposals for spatially explicit conservation areas for species whose distributions have clear
associations with the structure of the water column. Nevertheless, our results also indicate that
model predictions are only reliable in areas where adequate spatio-temporal survey coverage is
available to derive robust relationships and where sufficient ecosystem information exists to
facilitate interpretation.
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