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Abstract
Space–time seismic clusters, localized bursts of seismic activity, are a feature of back-
ground seismicity before the occurrence of large earthquakes, a feature that agrees
with observations of diminishing Gutenberg–Richter b-value, fractal dimension, and
entropy, and is therefore suggestive of high stress. However, identification and quan-
tification of these space–time clusters, particularly when they are small, is not an easy
task and requires a priori assumptions. A novel method for space–time cluster iden-
tification, based on an extension of the concept of apparent velocities, is proposed
because space–time clusters in the background seismicity have a particular signature
in the apparent velocity domain. The contents of histogram peaks due to clusters in the
apparent velocity histogram can be used to quantify the cluster activity compared with
null hypothesis levels. Identification of the earthquakes corresponding to the appar-
ent velocities in the peaks allows identification of cluster activity in time and space.
Apparent velocity peaks do appear in real catalog data for southern California and
northern Baja California before the Landers 1992 M = 7.3, Hector Mine 1999M =
7.1, El Mayor-Cucapah 2010 M = 7.2, and Ridgecrest 2019 M = 7.1 earthquakes,
and they appear only within 15 to 25 years before the occurrence of large earthquakes.
They are not observed either long before the large earthquakes or after them, and hence
could be related to high local states of stress and be of value as a possible precursory
observable.
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1 Introduction

Phenomena that occur before large earthquakes, commonly known as precursors, are
an important tool for seismic hazard estimation (Rikitake 1976; Evison 1999; Cicerone
et al. 2009) and are useful in narrowing the forecast time estimates. Many kinds of
precursors have been proposed—electromagnetic, chemical, geodetic, animal behav-
ior, and, of course, seismic—but most of the proposed precursors are not sufficiently
well documented, so it is impossible to assess their usefulness and reliability (Wyss
1991, 1997; Zechar and Zhuang 2010). Precursors are assumed to reflect, in different
ways, a state of high stress in a given region.

To date there is not a single instance of a perfect precursor, that is, one that occurs
if and only if there will be a large earthquake in the study region. Hence, it seems rea-
sonable to combine information from several precursors that measure different aspects
or characteristics of the seismic process (Aki 1981; Anderson 1982). In consequence,
it is important to identify and document possible precursors that can contribute to
reliable forecasts.

Among the seismic precursors that have been proposed are changes in the seismicity
rate and/or location, including increased seismicity, quiescence, and doughnut patterns
(Kanamori 1981; Chen et al. 1999; McGuire et al. 2005; Mignan 2014; Adamaki and
Roberts 2017), changes in theGutenberg–Richter b-value (Smith 1986; Enescu and Ito
2001; Wang et al. 2016), changes in the fractal dimensions of the spatial distribution
of seismicity (Goltz 1997; Enescu and Ito 2001; Márquez et al. 2012; Michas et al.
2015), and changes in other properties of the seismicity.

One seismic precursor that has been observed is clustering in the background seis-
micity, but the term earthquake, or seismic, cluster is used to mean different things:
catalogs are “declustered” to eliminate aftershocks (Zaliapin et al. 2008); epicentral
distributions that depart from usual distributions, such as doughnut patterns or fore-
shocks, are said to be clustered (Ogata et al.1995); Rikitake (1976) uses the term to
denote some kind of seismic station;many studies consider clusters as epi- or hypocen-
tral groupings in space only (Frohlich andDavis 1990; Ester et al. 1996; Lippiello et al.
2012; Czecze and Bondár 2019), while others also take into account the duration of
spatial clustering (Telesca et al. 2001; Vidale and Shearer 2006; Yang et al. 2009; Hall
et al. 2018). Zaliapin and Ben-Zion (2013) state that there is no formal definition of
a cluster, yet the same authors (Zaliapin and Ben-Zion 2016) define clustering as a
partitioning of seismicity into groups closer in space and time than expected in a purely
random distribution. This last definition of cluster is very much like the simplified one
that will be used in this paper.

Since clustering in this later sense seems to occur in conditions of high ambient
stress (Hall et al. 2018), as indicated by coincident diminutions in b-value, fractal
dimension, and entropy (Geilikman et al. 1990; Dimitriu et al. 2000; Main and Al-
Kindi 2002, Márquez-Ramírez et al. 2012; Nanjo et al. 2012; Nava et al. 2021),
identification and characterization of seismic clusters is an important task.

However, most cluster identification methods are quite complicated and involve a
large number of a priori assumptions and parameters that have to be adjusted (Frohlich
and Davis 1990; Ester et al. 1996;Weatherill & Burton 2009; Rehman et al. 2014; Hall
et al. 2018; Czecze and Bondár 2019; Yang et al. 2019). The present paper proposes a
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completely different and novel approach to cluster identification and characterization,
based on a generalization of the concept of apparent velocity, that involves a minimum
of assumptions and only two non-critical parameters. The method is justified by its
results when applied to real data.

2 Apparent Velocities

The traditional concept of apparent velocity corresponds to the observation of the
arrival of a seismic wavefront at different stations, as illustrated in Fig. 1, where
triangles represent seismic stations. The red line is a wavefront traveling with speed β

in the direction of the arrow, r is the distance between the stations, and t1 and t2 are the
arrival times at the first and the second station, respectively. Let τ = t2− t1, and let the
measured velocity be v = r/τ (it should properly be called “speed” but is customarily
called “velocity”). When the wavefront travels parallel to the line between the stations
(Fig. 1A) τ = r/β and the measured velocity equals β, but when the wavefront forms
an angle γ with the line (Fig. 1B), then τ = d/β = r cos γ /β and becomes smaller as
γ grows, so that for γ = 90◦, τ = 0 and v = ∞. This measured velocity, ranging from
β to ∞, although having velocity (space/time) units, does not involve transmission
of mass or energy from one station to the other, so it is not a true velocity between
stations. It is an apparent velocity.

Let us extend the concept of apparent velocities to apparent occurrence velocities.
Consider an ordered set of earthquakes ei = (ti , xi , yi , zi , Mi ); i = 1, · · · , N , with
times ti ≤ t j for i < j , coordinates xi , yi , zi (in km), and magnitudes Mi , occurring
within a volume with limits [xmin, xmax], [ymin, ymax], and [zmin, zmax], during a time
interval [t1, tN ]. Let the difference in times between the occurrence of events i and j

Fig. 1 Apparent velocity. Triangles are seismic stations separated by a distance r, reached by a wavefront,
indicated by the thick red line, traveling with speed β in the direction indicated by the arrow, at times t1
and t2. The angle between the wavefront direction and the line between the stations is 0 in (A) and γ in (B)
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be

τi j = t j − ti , (1)

and let the distance between their hypocenters be

ri j =
√(

x j − xi
)2 + (

y j − yi
)2 + (

z j − zi
)2; (2)

then, the apparent occurrence velocity (henceforth simply called apparent velocity or
AV) is

vi j = ri j
τi j

. (3)

Only velocities vi j with i < j will be considered, because vi i = 0/0 and
v j i = −vi j , so velocities for j ≤ i do not contain further information. Thus,
Np = N (N − 1)/2 velocities, each corresponding to a pair of events, will be consid-
ered. AVs can take values ranging from zero, for events occurring at the same place
at different times, to infinity, for events occurring at different places at the same time.

3 Clusters

A simplified definition of cluster, very much like the one in Zaliapin and Ben-Zion
(2016), will be used for the cluster identification approach presented in this paper; the
definition serves to identify the object of study and to model what would be expected
from the AV study, but it sets no hard conditions on the data.

A seismicity space–time cluster, hereafter called simply cluster, is defined as a
localized burst of seismicity, which means many earthquakes within a small volume
and a short interval. Many, small, and short are not precise terms, and in some studies
their values have to be defined a priori, but in the AV approach, their values result
naturally from the study.

To form an idea of what can be expected from apparent velocities, a cluster can be
roughly modeled as a group of N1 earthquakes with hypocenters uniformly distributed
within a spherical volume with radius ρ and origin times distributed over a period of
length 2θ , as illustrated in Fig. 2; the cosine time distribution was chosen to mimic
activity starting and ending gradually. Of course, real clusters may have spatial and
temporal distributions that differ from those of this model, but, as will be shown when
considering real data, the actual distributions in real clusters do not change the main
features of the AVs, so the proposed model does appropriately illustrate the main
features of real cluster activity.

First, consider the AVs corresponding to ordered pairs of events all belonging to a
given cluster, i.e., intra-cluster AVs. Figure 3 shows a synthetic space–time cluster and
the corresponding r, τ , and v distributions. This cluster has N1 = 100 hypocenters dis-
tributed uniformly within a sphere with radius ρ = 1 km and times cosine-distributed
with θ = 0.1 year. The r values range from 0 to 2ρ, but most have values in the≈ 0.4ρ
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Fig. 2 Model of a space–time
cluster: uniform spatial
distribution within a spherical
volume with radius ρ (top), and
cosine temporal distribution over
a 2θ interval (bottom)

to ≈ 0.8ρ range, while small τ values are the most numerous over the 0 to 2θ range.
While velocities do have a wide range (this particular example had a maximum veloc-
ity of 55,858.09 km/year), most of the intra-cluster Np1 = N1(N1 − 1)/2 velocities
fall within the range shown in Fig. 3 (bottom), with an unimodal distribution typically
having its mode around v ∼ 0.8ρ/θ km/year in a peak that is quite narrow compared
to the possible infinite range of the velocities. This narrow, low-velocity peak in the
intra-cluster AV histogram, containingmost of the Np1 velocities, is typical of all clus-
ters modeled or observed so far, which means that clusters have a particular signature
in the AV histogram.

The units for all histograms shown in this paper are counts normalized by the total
number of velocities, and will be referred to as normalized counts (NCs), and the
histograms will be labeled as H.

In practice, clusters are never isolated, because a state of high stress is conducive to
having all types of seismicity. Thus, the next step is to consider AVs between events
in a cluster and an event outside it, as schematized in Fig. 4A, where the cluster is
represented as a sphere and the external event as an asterisk.

The distance between the outside event and the center of the cluster is R, and the
time between the origin time of the external event and the middle time of the cluster
is T ; hence, if the cluster has N1 events, for each external event there will be N1 AVs
ranging from Vmin to Vmax, where

Vmin = R − ρ

T + θ
, Vmax = R + ρ

T − θ
. (4)
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Fig. 3 A single cluster (top) and its corresponding r, τ , and v distributions, indicated by Hr , Hτ , and H,
respectively; �r , �τ , and �v are the class widths (in the appropriate units), and the total number of
velocities in this example is Np1

Fig. 4 A A single external event and a cluster. B Two clusters, in both space (top) and time (bottom)
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In high-stress regimes it is not uncommon to have more than one cluster in a given
seismicity sample. For an approximate estimate of the AVs that can be expected from
a pair of clusters, let the clusters be represented as spheres (Fig. 4B, top) with radii
ρ1 and ρ2, and let the distance between the centers of the spheres be R. Now let
the occurrence times of events in each cluster be cosine-distributed around a central
value, within bands 2θ1 and 2θ2 wide, and let the time between the central times of
the clusters be T (Fig. 4B, bottom). Now, the distances between hypocenters and the
intervals between occurrence times of pairs of events, each event in a pair belonging
to a different cluster, will be within small ranges.

The AVs for events located at the center of the clusters and occurring in the middle
of the time ranges will be

V = R/T , (5)

and, if the clusters have N1 and N2 events, respectively, they will result in Np12 =
N1N2 apparent AVs that will range from Vmin to Vmax, where

Vmin = R − ρ1 − ρ2

T + θ1 + θ2
, Vmax = R + ρ1 + ρ2

T − θ1 − θ2
. (6)

When R and T are large with respect to ρ and θ , respectively, the inter-cluster AVs
of these pairs will be within a small range and will appear as a narrow peak in the AV
histogram. However, when T is not large with respect to θ , the denominator in Vmax
can become very small or zero, and the apparent velocities will have a large spread
and consequently the histogram peak will have small amplitude.

In order to visualize how realistic seismicity would appear in the AV analysis
and how this analysis is carried out, a synthetic realization involving three clusters,
seismicity distributed uniformly along a band (such as seismicity from a fault system),
and completely random uniformly volume-distributed events is presented (Fig. 5). The
clusters are numbered sequentially: cluster 2 occurs 2 years after cluster 1, and cluster
3 occurs 2.5 years after cluster 2; they have 70, 60, and 65 events, respectively. The
r distribution shows four peaks: one around 0.5 km corresponding to all the intra-
cluster distances, and three each corresponding to a cluster pair. Time differences
show smoother peaks, with small intra-cluster differences and overlapping ones for
two cluster pairs. AVs show two main peaks, one corresponding to those from the 1–3
cluster pair, and, as will be shown later, most of the intra-cluster velocities. Another
smaller andwider peak contains velocities from the 1–2 and 2–3 cluster pairs. It should
be mentioned that the largest AV was 609,038 km/year but, as can be seen in the plot,
the number of velocities in each �v = 0.1 km/year class is negligible above 15 to
20 km/year, so the part of the histogram above these velocities will not be shown.
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Fig. 5 Hypocentral distribution of three clusters, plus banded (asterisks) and whole-volume uniformly dis-
tributed events (crosses) (top); r, τ , and v distributions, indicated by Hr , Hτ , and H, respectively; �r , �τ ,
and �v are the class widths (in the appropriate units), and the total number of velocities in this example
is Np . Dashed vertical lines indicate R, T , and V for each pair of clusters identified by numbers on each
side. In the title, C indicates the number of events in each cluster, BR is the number of events distributed
randomly with uniform probability within a band, and R is the number of events distributed randomly with
uniform probability over the whole space

4 The Apparent Velocity Histogram Analysis and Null Hypotheses

The search for space–time clusters in a given region of interest will be done by com-
puting the AVs for events within a chosen time window, building the histogram for a
reasonable range of velocities, and looking for significant peaks in it.

Figure 6 (top) shows the result of the AV histogram (AVH) analysis as applied to the
synthetic example shown in Fig. 5, as if it were an observed data set, that is, without
a priori knowledge of what peaks, if any, are due to. The H distribution shown as a
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Fig. 6 Top: H and H0, observed and null hypothesis AV histograms. Bottom: non-negative part of H − H0.
Thin lines indicate four null hypothesis standard deviations s0

thick blue line, is, of course, the same shape as that shown in the bottom picture of
Fig. 5.

Significant peaks were mentioned above, so some criterion is needed to decide
whether a peak is significant or not; a peak will be considered significant if it has
small probability of having occurred by chance. Since peaks are supposed to be due
to space–time clustering, it is necessary to see how likely they are to occur when
seismicity is not space–time-clustered (the null hypothesis).

The simplest null hypothesis comparison would be to compare the observed (real
or synthetic) AV distribution with that resulting from a population having the same
number of events distributed uniformly over the same spatial volume and the same
time duration as the sample. However, as mentioned above, real seismicity in environ-
ments like southern California and northern Baja California (where the method will be
applied) is not distributed uniformly in space, but tends to concentrate around faults
(Hauksson 2011), so amore realistic null hypothesiswould be to consider the same spa-
tial distribution as the observed one and generate random uniformly distributed times.
A more stringent test is to keep the observed hypocenters and the observed times,
but shuffle (randomly redistribute) the times among the events. In this null hypothesis
scheme, H0TS, the distributions of ri j and τi j remain the same, but the coincidences
among distances and times have been changed. Since the H0TS null hypothesis is the
most stringent and realistic, it is the one that will be used as a reference level in what
follows.

H0, themean of the 100 histograms fromMonteCarlo realizations ofH0TScatalogs
derived from the observed one, is shown in Fig. 6 (top) as a thick (black) line. The
figure also shows, as thin red lines, H0 ± 4s0, where s0 is the standard deviation for
each H0 value.
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Observed AVs with NCs above H0 + 4s0 will be considered significant because,
according to the Chebyshev inequality (Parzen 1960), they have very small prob-
abilities ≤ 0.03125 of having occurred by chance from a population that is not
space–time-clustered. The measure of the total amount of nonrandom space–time
clustering of the H distribution is the total number of NCs above H0 + 4s0, denoted
by A, while α denotes the number of NCs above H0 + 4s0 for individual peaks.

In order to make the relation between H and H0 easier to see, the non-negative
part of H − H0 is plotted in Fig. 6 (bottom) together with the 4s0 curve; the areas
above 4s0 have been shaded in the figure. It is in this plot that significant peaks are
identified; a given peak spans from v1 to v2, which are the first and last velocities to
have histogram values above the 4s0 level on each side of the velocity corresponding
to the highest H − H0 value in the histogram peak.

To give an idea of the relative sizes of the α and A quantities, from the total unit
area of eachH and H0, in the velocity range v ≤ 30 km/year shown in Fig. 6, the total
NC of H is 0.8579 and that of H0 is 0.7883; the total NC of H above H0 is 0.2691,
and that above H0 + 4s0 is 0.1886.

This AV identification and evaluation of space–time clustering in background seis-
micity is easily implemented for routine monitoring and, as will be shown in the
application, can be used for identification of precursory activity. Before proceeding
to the application, it will be shown how AVs can yield other information about the
location and times of space–time clustering.

5 The Apparent Velocity Matrix Temporal and Spatial Analysis

The next step in the analysis is to try to determine what events cause the observed
velocity histogram peaks.

After selecting a NC peak and its corresponding velocity range above H0 + 4s0,
velocities within the v1 ≤ vi j ≤ v2 range are plotted as a color-coded symbol in
ti ⊗ t j space, in what will be called an AV time picture (AVTP), as exemplified in
Fig. 7 for the highest peak of Fig. 6. AVs in the chosen range are usually distributed
over the entire space, but those associated with space–time clusters appear as groups
where velocities diminish from upper left to bottom right. Groups at the diagonal are
due to intra-cluster velocities, while other groups are due to inter-cluster velocities
or to cluster-individual event velocities. For this example, only two groups will be
studied: the group identified by number 1 corresponding to inter-cluster AVs between
elements of clusters 1 and 3, and group 2 that is due to intra-cluster velocities from
cluster 2. Colored alignments represent velocities between a cluster and individual
non-clustered events.

Once groups have been identified in the AVTP (Fig. 7), starting and ending times
for each cluster can be read directly from the figure, and it is easy to identify the events
contributing to the group; if these are plotted in space, spatial features (if any) related
to cluster activity can be identified. Figure 8 shows the events identified as contributing
to the two groups in Fig. 7, the earlier events of each pair are shown as triangles and
later events are shown as circles.
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Fig. 7 AVTP: AVs in the v1 = 2.50 km/year to v12 = 3.00 km/year range in ti ⊗ t j space, colored according
to the velocity color code at right. Selected groups are shown as squares with an identification number on
top

Fig. 8 Spatial location of events contributing to the AVTP groups 1 (inter-cluster, left) and 2 (intra-cluster,
right)

TheAVTP analysis of the other peaks in Fig. 6will not be shown here, but it presents
two easily identifiable inter-cluster groups.
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6 Application to Real Seismicity Data

Having explained the proposed methods of AV identification of space–time clusters
and of AVTP analysis, examples of application to real seismicity and to precursory
behavior identification will be shown. It should be pointed out that the analyses that
follow do not depend at all on the models shown before, which were for illustration
only; the results will be due only to the natural AV distributions in the real data. Only
two parameterswill be used to conduct the analysis, theminimum thresholdmagnitude
and the time window length, and neither of these is critical, since changing them does
not give very different results. A reference value of H0 + 4s0 is used, but any other
reference value may be substituted.

In order to test whether real seismicity features peaks in theAVhistogram that could
be related to the future occurrence of large earthquakes, four large (M > 7.0) earth-
quakes that occurred in southern California and northern Baja California from 1981
to 2019 between longitudes 118.0°W and 114.8°W and latitudes 32.00°N and 36.0°N
were studied: Landers 1992 M7.3 (L73), El Mayor-Cucapah 2010 M7.2 (EMC72),
Hector Mine 1999 M7.1 (HM71), and Ridgecrest 2019 M7.1 (R71). Only a sam-
ple analysis for the largest event, L73, and overall results for all earthquakes will be
presented here.

The data are hypocenters from the Southern California Seismic Network (SCSN)
catalog. Figure 9 shows the epicenters of events M ≥ 2.5 that occurred in southern
California and northern Baja California within the abovementioned space and time
windows; the stars indicate the epicenters of the four largest earthquakes in the period.

The epicenters of seismicity associated with these four major events appear to be
distributed in elongated groups or patches, and the proposed velocity determination
scheme was applied to hypocenters belonging to the groups that include the major
events. The seismicity was separated into time windows to test whether identifiable
velocity peaks were present all the time or appeared only before large earthquakes.

All four major earthquakes have been studied extensively elsewhere, so their char-
acteristics, effects, or tectonics will not be discussed here; suffice it to say that all were
predominantly strike-slip events, and that their respective epicentral groups appear to
be separate from neighboring activity.

6.1 Landers 1992 M = 7.3 Earthquake

The largest earthquake in the catalog is the Landers 1992 M = 7.3 (L73) event, occur-
ring on May 28, 1992 (1992.4904325) at longitude 116.4315°W, latitude 34.2032°N,
and depth D = 2.79 km (Figs. 9 and 10). Figure 10 (top) shows epicenters of events
occurring before the April 23, 1992,M = 6.1 Joshua Tree earthquake, and belonging
to the L73 patch which has a narrow, somewhat S-shaped spatial distribution. The L73
epicenter is shown as a yellow star, and the yellow diamond is the epicenter of the
Joshua Tree earthquake.

To seewhether theAVdistribution varied through time, the seismicitywas separated
into time windows, shown in Fig. 10 together with the cumulative number of events
(bottom). Window length has to be a tradeoff between good temporal definition and
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Fig. 9 Epicenters in southern California and northern Baja California from the SCSN catalog. Stars indicate
earthquakes with M ≥ 7.0, with symbol sizes proportional to their magnitudes: L73 is the Landers M7.3
earthquake, EMC72 is the ElMayor-CucapahM7.2 earthquake, HM71 is theHectorMineM7.1 earthquake,
and R71 is the Ridgecrest M7.1 earthquake. A diamond SSE of L73 is the M6.1 Joshua Tree earthquake,
and the diamond west of L73 is the M6.5 Big Bear earthquake. The diamond SE of R71 is the July 4, 2019,
Searles Valley MW = 6.4 earthquake. Thin lines indicate the coastline and the Mexico–USA border

having a span long enough to contain clusters well separated in time to give good inter-
cluster AV peaks (if there are any clusters); after several trials, 4 years was chosen as
a convenient window length.

Time windows are related to the main event occurrence time. The first of the ten
windows prior to L73 was set to end in 1992.30 (April 20, 1992) just before the Joshua
Tree event, so that it did not include either the M6.1 Joshua Tree earthquake or its
aftershocks, because if there had been monitoring before this earthquake, only data
before these events would have been used. Any anomalous activity may be considered
to have been a precursor to both the Landers and the Joshua Tree earthquakes.
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Fig. 10 (Top) Epicenter groups before the L73 earthquake; L73 is indicated by a star and the Joshua Tree
earthquake is shown as a yellow diamond. (Bottom) Cumulative number of earthquakes, Nc , as a function
of time shown as a thick blue line (bottom). For windows before L73, vertical lines indicate the ending of
each time window, and vertical dashed lines indicate the corresponding beginnings; the number or letter
at the end of each window is its identification in the text that follows. Window P begins after activity has
returned to background level and extends forward in time

The ending time of each consecutive window is shifted by �t = −2 years from
that of the previous one, and each widow extends backwards in time for 4 years; thus,
time windows overlap by 2 years, so that clusters occurring within 2 years are not
artificially separated. Windows will be identified as L73 dash the window number
shown in Fig. 10. Another window, labeled P in Fig. 10, was chosen in order to sample
the seismicity after themain event and aftermost of the aftershock activity has occurred
and stress is expected to be low.

Results will be shown starting with the third window, L73-3, because it contains
the largest signal and will be the reference for judging the results from other windows.
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For reasons of space, full details of the analysis will be shown only for the sample
window.

7 Window L73 -3

Window 3 before L73 spans 4 years, from 1984.309 to 1988.3092, and includes N =
497 events with M ≥ 2.2 shown in Fig. 11 together with the r and τ distributions.

The AVH is shown in Fig. 12 together with H0 and H0 ± 4s0 (top), and H − H0
together with 4s0 (bottom). In this last plot seven peaks reach above the 4s0 level,
and the three largest ones have been shadowed and the corresponding velocities and

Fig. 11 Hypocenters of the L73 patch for the L73-3 timewindow (top). Distributions (histograms normalized
by the total number of pairs Np) for r and τ (bottom). The main and the Joshua Tree events are shown for
comparison
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Fig. 12 Window 3 before L73. Velocity histograms; same conventions as in Fig. 6

NCs above 4s0 and α, respectively, are shown in the plot; the total NC above 4s0 is
A = 0.093.

To show an example of event identification, the AVTP for velocities around those of
the main peak of L73-3 is shown in Fig. 13, and two sample groups have been marked
for analysis. Group 1 corresponds mainly to inter-cluster velocities, while group 2 is
an example of intra-cluster velocities. After a group is chosen, the events contributing
to it are identified and can be plotted (Fig. 14) to locate the site of the participating
clusters and possibly relate them to some seismotectonic feature or to previous cluster
activity.

Now, it remains to be seen whether significant peaks appear in other time windows.
For reasons of space, the detailed analysis for each window will not be shown, but the
time behavior of clustering can be clearly seen in Fig. 15, which shows H − H0 for
all windows, and the behavior of A with time can be compared with that before other
earthquakes in Fig. 22.

Figure 15 clearly shows the largest A values for the third window before L73, L73-
3; A values are consistently small for the windows 16 or more years before L73, as
well as for the P window that serves as low-stress regime reference.

7.1 2010 MW = 7.2El Mayor-Cucapah Earthquake

The El Mayor-Cucapah MW = 7.2 (EMC72) earthquake occurred on April 4, 2010
(2010.2573) at 115.2927°W, 32.2617°N.
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Fig. 13 AVTP AVs in the 9.75 to 10.75 v range in ti ⊗ t j space, colored according to the velocity color code
at right. Example groups are shown as squares with an identification number on top

Fig. 14 Spatial location of the earthquakes constituting the groups identified in Fig. 13; group 1 (left) clearly
shows two clusters plus a few external events, while group 2 (right) comprises mostly elements belonging
to one cluster. The main event and Joshua Tree hypocenters are shown as a star and a diamond, respectively,
for comparison

Figure 16 shows the epicentral space distribution of the EMC72 cluster and the
time windows defined over the cumulative number of events graph; a star marks the
position in space and time of the EMC72 earthquake. The first window ends right
before the occurrence time of EMC72; all numbered windows are 4 years long, and
their ending times are shifted backwards in time 2 years. The P low-stress reference
window starts when aftershock activity has decreased to background level and is also
4 years long.
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Fig. 15 L73 H − H0 (thick blue line) and 4S0 distributions (thin red line) for the time windows indicated
on each plot; classes with H − H0 > 4s0 (thin red line) have been shadowed, and the total fraction above
4s0 in these classes, A, is written on each plot

The H − H0 and 4s0 curves for all windows are shown in Fig. 17 together with
the corresponding A values. It is clear that for EMC72, the largest clustering occurred
in window EMC72-1 just before the main event. Again, A values for times more than
10 years before EMC72 are either very small or zero, and the low-stress reference
window EMC72-P has A = 0.000.

7.2 Hector Mine 1999M = 7.1 Earthquake

The Hector Mine M = 7.1 earthquake (HM71) occurred on October 16, 1999
(1999.7901574) at 116.2687°W, 34.5957°N, and 20 km depth (Fig. 18, top). The
cumulative number of events shown in the same figure indicates that the catalog does
not have many events before HM71. On the other hand, there was no problem in
selecting a window to explore the apparent velocities after the HM71 earthquake
when seismicity was stabilized after most of the aftershocks; time windows are shown
in Fig. 18 (bottom) and each is 4 years long.
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Fig. 16 Epicenter groups associated with the EMC72 earthquake (top), and cumulative number of earth-
quakes and time windows. Conventions are the same as in Fig. 10

The H − H0 and 4s0 curves, together with the corresponding A values for all
windows, are shown in Fig. 19. It is clear that for HM71, the largest clustering occurs
in windows 3 and 2, a behavior closely resembling that of L73. Numbered windows
more than ~12 years before HM71, as well as the low-stress reference window P, all
show negligible A values.
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Fig. 17 EMC72 H −H0 (thick blue line) and 4s0 (thin red line) distributions for the time windows indicated
on each plot; classes with H − H0 > 4s0 have been shadowed, and the total fraction above 4s0 in these
classes, A, is written on each plot

7.3 Ridgecrest 2019 Mw = 7.1 Earthquake

The July 6, 2019, Ridgecrest Mw = 7.1 earthquake occurred at −117.599°W and
35.770°N at 8.00 km depth; this earthquake will be henceforth referred to as R71.

Figure 20 (top) shows the epicenter of R71 as a star, together with its associated
patch of seismicity (circles), and the epicenter of the July 4, 2019, Searles Valley
Mw = 6.4 earthquake that can be considered a foreshock to R71 (diamond). The figure
also shows (bottom) the time windows used for the AV analysis; the first window ends
right before the occurrence of the Searles Valley earthquake; each window spans 4
years, and ending times are shifted 2 years from the previous one. This being a recent
earthquake, there was no time for a P window (Fig. 21).

7.4 Overall A versus Time for All Events

The A value versus time for all the studied earthquakes is summarized in Fig. 22. It
is apparent that space–time clustering, as identified by the apparent velocity analysis
A values, increases as time approaches that of the main earthquake and, with the
exception of EMC72, decreases somewhat just before the earthquake.
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Fig. 18 Epicenter groups associatedwith theHM71 earthquake (top), and cumulative number of earthquakes
and time windows. Conventions are the same as in Fig. 10

The high space–time clustering indicated by the high A values in the ~15 years
before each large earthquake is interpreted as indicative of high-stress regimes, and
the lowvalues both longbefore themain earthquakes and after them in thePwindows as
indicative of low-stress regimes. For all earthquakes except EM72, clustering attains
its largest value between 6 and 8 years before the main event, which occurs after
clustering has decreased but not reached the background level. The EM72 main shock
occurs right after the window with the highest value.

8 Discussion and Conclusions

The new method for space–time cluster identification and characterization using the
occurrence of apparent velocities (AVs) presented in this paper is quite simple to
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Fig. 19 HM71 H − H0 (thick blue line) and 4S0 (thin red line) distributions for the time windows indicated
on each plot; classes with H − H0 > 4s0 have been shadowed, and the total fraction above 4s0 in these
classes, A, is written on each plot

implement and use and avoids the complications and a priori assumptions needed by
most of the methods currently in use. The method is justified by the results from its
application to seismicity before four large earthquakes in southern California and Baja
California: large clustering in the 15 to 20 years before the mainshocks that reaches a
maximum some 2 to 8 years before them, and no or negligible clustering long before
the mainshocks or after them. When so desired, it is possible to locate the seismic
clusters in time and space, so that the size and duration of the clusters are a result of
the analysis and do not have to be estimated a priori.

Absolute errors in hypocentral locations using digital data from a well-distributed
network can be of the order of hundreds of meters for epicenters and of kilometers
for source depths; however, for pairs of events that are close in space and time, so
that their waves follow similar paths to the seismic stations and their locations share
the systematic errors from the velocity model and the location procedure, these errors
will cancel when estimating the distance between each pair. Hence, one can expect
events within each cluster to be well located relative to each other, so that intra-cluster
velocities are not affected. Peaks due to inter-cluster velocities may appear at some
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Fig. 20 Epicenter groups associated with the R71 earthquake (top), and cumulative number of earthquakes
and time windows. Conventions are the same as in Fig. 10

velocity different from the one that would result from correct absolute locations, but
the actual velocity at which peaks occur is immaterial, so this would not affect the
peak appearances or the time–space cluster identification.

Is there a magnitude threshold limitation? Several windows from different earth-
quakes using different threshold magnitudes were tried (Reynoso 2019) and resulted
in almost identical A values; hence, it is not necessary to have data complete to very
small magnitudes and, coming back to the location limitations, themost poorly located
events, the smallest ones, are not critical for clustering.
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Fig. 21 R71 H − H0 (thick blue line) and 4s0 (thin red line) distributions for the time windows indicated
on each plot; classes with H − H0 > 4s0 have been shadowed, and the total fraction above 4s0 in these
classes, A, is written on each plot

While full AVTP matrix analysis can be useful for locating active features, the
authors think that the principal application of AV would be detecting precursory clus-
tering, and this feature can be easily automated and implemented. The background
seismicity in regions of interest can be sampled periodically, and if A values climb
above a given level, determined for each region on the basis of analyses of seismicity
before previous large earthquakes, the monitoring program can call attention to itself
for seismologists to use this information for detailed analysis, search for foreshocks,
and other activities that can contribute to reliable seismic hazard estimates.
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Fig. 22 A vs. time for all studied earthquakes. A is indicated by large stars, the largest single peak α, αmax ,
by small stars. Each symbol is located in time at the middle of the respective time window, and all times
refer to the corresponding main event indicated by a thick vertical line
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