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Abstract The concept of Poisson renormalized entropy
is presented as an observable of background seismicity
with precursory possibilities. The usual way of estimat-
ing entropies evaluating probabilities directly from the
normalized number of incidences is shown to be lacking
in sensitivity and seriously subject to saturation. As an
example, the concept of Poisson renormalized entropy
and the associated method are applied to the seismicity
p r ev i ou s t o t h e 2011 Tohoku MW = 9 .1
megaearthquake, and shown to be able to identify pre-
cursory changes in the seismicity. Results are compared
with those from fractal dimension and Gutenberg-
Richter b-value studies.
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1 Introduction

In the endeavor to attain useful and reliable seismic
forecasts, essential for the diminution of seismic risk, it
is necessary to use seismic precursors, anomalies in

observables usually indicative of high-stress levels
(Evison 1999). To date, there is no instance of a perfect
precursor, i.e., one that appears if and only if a large
earthquake is to occurr in the near future. Furthermore,
precursors may be difficult to identify (e.g., Adamaki
and Roberts 2016, 2017), and the significance, reliabil-
ity, and other characteristics of proposed precursors are
poorly known; hence, it makes sense to try to use the
presence or absence of as many precursors as possible to
correctly estimate seismic hazard.

Among the commonly used precursors based on
background seismicity caracteristics are changes in frac-
tal dimension (e.g., Main 1996; Bressan et al. 2017); it
has been observed that fractal dimensions diminish; i.e.,
hypocenter clustering increases, before large earth-
quakes (e.g., Márquez et al. 2012); hence, we can expect
the spatial entropy of the system to be less than for the
case when events are distributed uniformly (Ling-ren
1988; Goltz,C., 1997; Turcotte 1997; Berrill and Davis
1980; Al-Kindy and Main 2003; Rundle et al. 2003,
Bressan et al. 2017).

Billio et al. (2015) use entropy as an indicator for
systemic risk. Main and Al-Kindy (2002) examined the
question of proximity of the global earthquake popula-
tion to the critical point, basing their analyses on the
entropy and energy of annual seismic frequency from
catalog data (but see also the comments by Chen and
Chang (2004), with reply by Main and Al-Kindy
(2004)). Goltz and Böse (2002) concluded that the
Earth’s crust is in a state of intermittent criticality,
supported by significant fluctuations of ±20% in con-
figurational entropy.
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We will explore the possibility of using a new mea-
sure of entropy, the Poissonian renormalized entropy,
as a precursory observable, because it has a greater
sensitivity than the entropy measure commonly used.

1.1 Information and entropy

Let there be a system comprised of a set of K discrete
states, let pj be the probability of the j th state, such that

∑
K

j¼1
pj ¼ 1 ð1Þ

The Shannon (1948) entropy of the system is defined
as

S ¼ −h ∑
K

j¼1
pj log2 pj; ð2Þ

where h is some conventional positive constant that
relates entropies calculated using logarithms with dif-
ferent bases; we will assume h = 1. Since the Shannon
(or surprise) information of the jth state is

I j ¼ −log2pj;

where use of the base 2 logarithm results in the
information having units of bits, it is clear from (2) that
the entropy is the expected value of the information over
the system.

S ¼ E Ið Þ ð3Þ
and will thus be expressed in bits.

Figure 1 illustrates the contribution of each pj to the
sum in (2), and shows that very high and very low
probabilities are the ones that contribute less to the
sum. In particular, the information from pj = 1 is zero
and, in spite of having infinite information, a state with
pj = 0 contributes nothing to the entropy.

1.2 Entropy and seismicity

We will now apply the concept of entropy to the char-
acterization of seismicity. Let the system be a seismic
region, and let the states be the K cells, 2D or 3D,
defined by a grid covering the observed region. The
probability of each state will be related to the number
of events, seismic epicenters or hypocenters, that locate
within the corresponding cell. The seismic events are a
sample from a seismic catalog for the region, which
usually lists the time, hypocentral location, and

magnitude of events. A sample consists of events oc-
curring within given space, time, and magnitude win-
dows. Here, we are concerned with the spatial distribu-
tion of events in a given time window; these events
constitute a point process in space, and the problem is
to relate this spatial distribution to a probability one, so
that the system entropy can be evaluated.

As will be shown below, the measured entropy for a
given sample will depend on the number of cells (or,
conversely, on their size), so that there will be different
values of entropy for any given sample, and the problem
arises of which entropy value, or values, to use in order
to characterize the system. We will come back to this
problem later on.

1.3 The incidence entropy

It is common practice (e.g., Nicholson et al. 2000; Goltz
and Böse 2002) to consider that the probabilities asso-
ciated with the cells are

pIj ¼
nj

N
ð4Þ

where nj is the number of events in the jth cell and N is
the total number of earthquakes in the sample. Borel’s
Law of Large Numbers tells us that (4) will yield the true
probability for N → ∞, but for real seismic catalogs and
for time windows short enough to be useful, the typical
N values are not large enough to result in reliable
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Fig. 1. Top: information, I = − log2 p as a function of p; the
arrowhead indicates that information is infinite for p = 0. Bottom:
contribution to entropy of each term of (2) as a function of p; the
function has a maximum forp = 0.3679, and is zero for both p = 0
and p = 1
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probability estimates. We will call these probabilities
incidence probabilities, and the corresponding entropy
will be the incidence entropy S1:

SI ¼ − ∑
K

j¼1
pIj log2 p

I
j ð5Þ

According to (4), an empty cell has probability pIj=0,
and contributes nothing to the entropy. Thus, the sum-
mation in (5) can be restricted to the occuppied cells.

As K grows, the cells get smaller, so that, on the
average, the contents of each cell diminish and the
information of non-empty cells grows so that the inci-
dence entropy increases.

However, for a finite number of events, the incidence
entropy cannot increase indefinitely, because when the
cells are small enough there will be only one event per
cell (assuming that no locations are exactly alike), and
the incidence entropy will have a maximum value of

SImax≡S
I
X ¼ − ∑

K

j¼1

1

N
log2

1

N
¼ log2N ; ð6Þ

where m ranges over the indices of the N occupied cells
(m = j ∀ nj > 0). If events are spaced more or less

regularly, SIx will be attained soon after K ≥ N (we will
show some examples of this), but if some events are
extremely close together then some cells may contain
more than one event and SI will tend asymptotically to

SIx.

1.4 The uniform entropy

If we suppose that the entropy of an observed epicentral
(or hypocentral) distribution gives information about the
system, then it should be compared with the entropy
corresponding to the null hypothesis, which is the hy-
pothesis that events are distributed randomly with uni-
form probability in space.

For K cells with uniform probability

pUj ¼ 1

K
; ∀ j; ð7Þ

and the uniform entropy will be

SU ¼ − ∑
K

j¼1

1

K
log2

1

K
¼ log2K; ð8Þ

so that as K grows the uniform entropy increases indef-
initely. It is well-known that for any given number of

cells and events, the uniform distribution is the distribu-
tion having the maximum entropy (Shannon 1948).

Note that, while SU depends only on K (there is an
implicit assumption of an infinite number of events so
that there is always an equal number of events in each
and every cell), SI depends on both N and K but its
limiting value depends solely on N.

1.5 The Poisson entropy

Here we propose a measure of entropy based on how the
number and distribution of events differ from the null
hypothesis of a uniform distribution: a measure that can
complement the information from SI and SU.

For a totalN events, forK cells the average number of
events per cell is

λ ¼ N
K
; ð9Þ

if the events were distributed uniformly throughout the
region, the probability of finding nj events in the jth cell
would be given by the well-known Poisson distribution
(Figure 2)

Pr nj
� � ¼ λn j e−λ

nj!
¼ PP

j ; ð10Þ

Thus, for a given K, after determining the nj, the
probability for each cell will be computed according to
(10) instead of to (4) or (7). In order to consider relative
sizes among the probabilities and to satisfy (1), the
probability in each cell is renormalized as

pPj ¼
PP

j

∑K
j¼1P

P
j

ð11Þ
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Fig. 2. Some examples of Poisson probabilities for various values
of λ
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we will refer to these probabilities as Poisson
renormalized probabilities.

The Poisson entropy is calculated from (11) as

SP ¼ − ∑
K

j¼1
pPj log2 p

P
j ð12Þ

For K < N, empty cells have low probability and the
highest probabilities are for cells with nj ≈ λ, while
for K > N, empty cells have the highest probabilities
and large nj values have low probabilities (Figure 2),
which is a behavior opposite to that of the incidence
probabilities. Note that Poisson probabilities are always
non-zero and less than one, so that both empty and
occupied cells contribute to the Poissonian entropy.

For K > > N K ≫ N i.e., extremely small λ,
unoccupied cells will have probabilities pPj ≅1, while
occupied cells will have probabilities pPj ≅0; and if K is

large enough so that there is no more than one event in
any occupied cell, then pPj ≅1= K−Nð Þ for the K − N
unoccupied cells and close to zero for the N occupied
cells. Hence, for very large K,

SP ¼ −∑
m

1

K−N
log2

1

K−N
¼ log2 K−Nð Þ; ð13Þ

where m ranges over the K − N indices of unoccupied
cells m ¼ j ∀ nj > 0Þ ), so that whenK → ∞ , Sp

→ Su.
After we began working with the Poisson entropy,

we found out that this name had already been used (in a
different context) in signal processing (Adell et al.
2010), but, to our knowledge, the concept has not been
used in seismology, nor renormalized, nor in conjuction
with the uniform entropy as will be described below.

2 Entropy estimation and conventions

Let the study region have lengths X and Y if working in
2D, or X, Y, and Z if in 3D, and let each length be
divided into k segments so that there will be K = k3

cells, each cell with area a = XY/k2 or volumev = XYZ/
k3, respectively.

We compute the abovementioned entropies for k
ranging from 2 (the smallest meaningful value) to

k ¼ ffiffiffiffiffiffiffi
3N

p� �
ork ¼ ffiffiffiffiffiffiffi

3N3
p� �

, so that the largest value
of K is ≈3N and the effects of saturation can be
clearly shown.

We will now illustrate the calculation of the entropies
described above, using a sample of 1000 events occuring
just before the MW = 9.1 great Tohoku earthquake oc-
curred in 2011 in theHonshu area of Japan. The particulars
of the space-time window containing the sample will be
discussed below in the section about application. We will
illustrate the process for 2D, because it is easy to visualize
only in two dimensions, and only a few steps in the process
will be shown for reasons of space.

Figure 3 shows the epicenters constituting the data, the
cell grids, and the pPj and p

I
j probabilities for K = 25 cells

and λ = 40.0 events/cell; note the completely different
distribution of values for the different probabilities.

Figures 4, 5, and 6 show the grids and the cell
probability matrices forK = 100, 225, and 1024 cells,
respectively; the last one is the closest approximation to
λ = 1.0, and illustrates the result that for K of the order
or greater than N, the Poisson and incidence probabili-
ties appear as a negative photograph of each other, i.e.
values for one are high where the values of the other are
low, and viceversa.

The entropy values obtained from the calculations for
all K values are shown in Figure 7, where, for large K, it
is clear that SP → SU while SI tends to the
abovementioned limit. This difference between SI and
SU begins quite early, for K ∼ N/4, and could be
interpreted as giving information about differences be-
tween the uniform and the observed distributions but, as
will be seen below, it is largely due to saturation effects.

Since direct plotting of S vs K does not allow to see
the details of what happens at lowK values (high λ), it is
better to uselog10K; and, in order to be able to compare
entropies from samples having different numbers of
events, we will normalize K by the number of events,

N, and S by the SIx limit, and plot S=SIx vs. log10(K/N)as
shown in Figure 8, where the differences between SUSI,
and SP can be clearly appreciated. It is evident that for
small K/N, SI does not differ very much from SU; i.e.,
SI is not very sensitive for small K/N and departs from
SU quite early and tends to its saturation value as K
increases. It remains to be seen whether this departure
from SUconveys useful information.

3 Null hypothesis and other distributions

It is essential to be able to determine whether the mea-
sured entropies are not due to chance variations of an
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otherwise informationless uniform spatial distribution.
In order to do this, we made tests on what we call null

hypothesis H0 distributions and on regularly spaced
distributions. H0 distributions are synthetic distributions
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Fig. 3. Epicenters of 1000 events
occuring just before the MW =
9.1 great Tohoku earthquake
occurred in 2011 in the Honshu
area of Japan and grid for K = 25
cells and λ = 40.0 events/cell
(top), and color-coded pPj and p

I
j

probabilities (bottom)

Fig. 4. Epicenters of 1000 events
occuring just before the MW =
9.1 great Tohoku earthquake
occurred in 2011 in the Honshu
area of Japan and grid for K =
100 cells and λ = 10 events/cell
(top), and color-coded pPj and p

I
j

probabilities (bottom)
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having the same spatial dimensions and the same num-
ber of events as those of the observed region, but events

are randomly distributed with uniform probability over
the whole space.

Fig. 5. Epicenters of 1000 events
occuring just before the MW =
9.1 great Tohoku earthquake
occurred in 2011 in the Honshu
area of Japan. Epicenters and grid
(above) and color-coded pPj and
pIj probabilities (below), for K =
225 cells and λ = 4.44 events/cell

Fig. 6. Epicenters of 1000 events
occuring just before the MW =
9.1 great Tohoku earthquake
occurred in 2011 in the Honshu
area of Japan. Epicenters and grid
(top) and color-coded pPj and p

I
j

probabilities (bottom), for K =
1024 cells and λ = 0.977 events/
cell. This is the closest instance to
λ = 1 in the process
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Figure 9 illustrates an H0 distribution corresponding
to the observed one in Figure 8, and the results for our
various entropy measures, results that are typical for all
H0 distributions. These results are very important, be-
cause they show that if the studied spatial distribution is
indeed uniform, SPrecognizes it as such and coincides
(within numerical error bounds) all the way with SU.

Thus, differences between SP and SU do measure depar-
tures from the null hypothesis of the uniform
distribution.

On the other hand, Figure 9 shows again that SI

deviates from SU quite soon, and it should not, because
the distribution is indeed uniform; for log10(K/N) larger
than approximately −0.6 (K ∼ 0.25N), SI is measuring
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low entropy, not because it is low, but because the
measure saturates. Let this be a caveat for people using
the incidence entropy for characterizing seismicity
distributions.

Figure 10 shows an example of the measured entro-
pies for a regularly spaced rectangular 2D distribution. It
is clear that all measured entropies agree with the

theoretical uniform one for small K/N, while for slightly
larger K/N values SI starts showing saturation and then

reaches SIx and stays there, while SP correctly identifies
the distribution as uniform and agrees with SU for allK/N.

For square grids (not shown here), SIcoincides with
SU all the way to K/N = 1 where SI ¼ SIx and then stays
at this maximum value. This indicates that the

Fig. 9. Example of a null
hypothesis uniform distribution
corresponding to the actual
distribution in Figures 3 to 9 (left),
and the corresponding 2D
entropies; conventions as in
Figure 8

Fig. 10. Example of entropy
measures for a rectangular evenly
spaced grid distribution;
conventions as in Figure 8
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departures of SI from SU shown in Figures 7 to 10 is
largely due to the differences in length of the sides of the
studied region and do not reflect actual departures from
the entropy of a uniform distribution.

In all cases, SI is less sensitive than SP and saturates
quite early, so that we will use only the Poisson entropy,
SP, to characterize the observed epicentral or hypocen-
tral distributions, and use for reference purposes only.

4 Cells and measure

Working with cells sets limitations on the number of
possible entropy observations, because the number of
partitions, k, on each side of the study region has to be
integer. k = 1gives no information at all, so that k = 2 is
the smallest meaningful number of partitions. On the
other hand, as illustrated above and below, for k such
that K is larger than N, SI SIis saturated and SPis closely
approaching SU, so that for K ≥ N the difference be-
tween these two last measures does not carry significant
information.

Hence, in what follows, we will plot entropies from k
= 2 to k ¼ ffiffiffiffiffiffiffi

3N
p� �

or k ¼ ⌈
ffiffiffiffiffiffiffi
3N3

p
⌉ in order to clearly

show the abovementioned saturations.
Now we address the problem of quantifying the

information given by SP. The entropy values change
with the number of cells, K, and there is no a priori
number to be used for reference; however, for each
number of cells, there is a natural reference entropy
measure: the uniform one, SU, that depends only on
the number of cells. Hence, we will measure the infor-
mation given by SP by comparing it withSU; the measure
will be related to the difference between these entropies,
shown in yellow in the preceding figures, for all the
useful K range.

The difference between SUand SPshown in yellow in
the figures, corresponds to entropy values for K ranging
from

K1 ¼ 22orK1 ¼ 23

corresponding to index j = 1, to

Kmax ¼
ffiffiffiffi
N

pl m2
or Kmax ¼

ffiffiffiffi
N3

pl m3
ð14Þ

for which Kmax ≈ N, corresponding to indexj = jN.
One measure is the average difference over the whole

range

ΔSN ¼ 1

jN
∑
j¼1

jN

SPj −S
U
j

� �
ð15Þ

but, due to the fact that differences tend to get smaller as
j increases, we will also use the more sensitive measure
of the average over the first half of the j range:

ΔSH ¼ 1

jH
∑
j¼1

jH

SPj −S
U
j

� �
ð16Þ

where jH is the index for which K is closest to N/2.
Let us remember that each entropy, besides being a

measure of the orderliness of the system, is the expected
surprise information at the corresponding K; thus, a
Poisson renormalized entropy smaller than the correspond-
ing uniform entropy, i.e., ΔS < 0, besides identifying a
more orderly distribution, is a measure in bits of the
decrease in the expected surprise information of the
system.

5 Application example

As an example of application, we will apply the measure
to the seismicity associated with the MW = 9.1 great
Tohoku (or Tohoku-Oki) earthquake occurred in 2011
in the Honshu-Hokkaido region in Japan. We chose that
region because of its high seismicity, excellent seismo-
graphic coverage, and reliable hypocentral locations. For
reasons of space, we will not delve in this work into the
complicated tectonic setting that causes the high seismic-
ity of Japan; a succint coverage of the theme can be found
in the NUMO-TR-04-04 report (NUMO 2004).

A working catalog, containing 632,777 M ≥ 1.5
earthquakes, ocurred between 1960 and 2016 was made
from data reported in the catalogs published by the
Japan Metereological Agency (JMA) and the Interna-
tional Seismological Centre (ISC), taking care to include
all events while eliminating repeated ones. When mag-
nitudes did not agree, those reported by the JMA were
used; actually, magnitudes were used only for determin-
ing catalog completeness, but do not play an explicit
role in entropy determinations.

The method was illustrated above with a 2D epicen-
tral analysis of one time window (we will return later to
2D analyses); now the application examples will be 3D
hypocentral analyses, as appropriate for seismicity dis-
tributed within a volume. The relationship between the
3D and 2D analyses will be discussed later.
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The idea behind this analysis is to see whether the
entropy in a volume located around the hypocenter of a
large earthquake changes as the time to the earthquake
occurrence approaches, so that the entropy measures
could be used as a forecasting factor.

The data used for the analysis are the hypocenters
within a 3D spatial window around the hypocenter of a
main event (for retrospective analysis) or a spatial win-
dow that represents a target area; the window is chosen
small enough so that the processes of organization may
be considered to affect all events within it, but large
enough to have enough data to work with. For the
seismicity within the spatial window, several time win-
dows are chosen so that they represent different stages in
the earthquake preparation process while containing
enough events for entropy estimation. Different sizes
and locations of the space window can be tried and the
one resulting in the most sensitive and stable results
chosen for the final analysis.

5.1 The March 11, 2011, MW = 9.1 earthquake

This megaearthquake, known as the Great Tohoku (or
Tohoku-Oki) earthquake, which we will refer to as M9,

was a relatively shallow, 29.0-km-deep (USGS 2011),
thrust earthquake, which caused a large number of fa-
talities, extensive damage, and a large tsunami that also
caused further damage that included a meltdown at the
Fukushima nuclear power plant. This earthquake has
been amply studied (e.g., Iinuma et al. 2011; Ito et al.
2011; Lee et al. 2011; Meng et al. 2011; Suzuki et al.
2011; Hayes et al. 2017), so that we will not go into the
process or consequences of the earthquake, but will only
mention references that are relevant to the application of
our proposed method.

This earthquake was chosen because it seemed an
ideal example of stress accumulation, since no earth-
quakes larger than M ≥ 7.4 had ocurred in the region
since the September 25, 2003, MW = 8.0 Hokkaido
earthquake that occurred some 401km NNE of M9;
none of the other M ≥ 7.5 earthquakes that occurred
before in the region (Figure 11) were close enough to the
hypocenter of M9 to substantially decrease the accumu-
lated stress in the hypocentral region.

Figure 11 shows the seismicity for M ≥ 2.5 in the
Honshu-Hokkaido region of Japan from 1960 to 2016;
(yellow) stars indicate earthquakes with M ≥ 7.5, with
symbol sizes proportional to the magnitude.

Fig. 11. Circles and stars
represent the seismicity for M ≥
2.5 in the Honshu-Hokkaido re-
gion of Japan from 1960 to 2016;
stars indicate earthquakes withM
≥ 7.5, with sizes proportional to
the magnitude. The study area for
the earthquake used as example,
which is a rectangle when plotted
in kilometers, is shown as a
polygon
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5.2 Space and time windows

For all events in the hypocentral region of the main
event to be studied, M9 in this case, longitudes and
latitudes are transformed to distances (in km) referred
to the hypocenter of the main event, and then theX and Y
coordinate axes are rotated so that the chosen volumes
are rectangular boxes having their vertical sides parallel
or perpendicular to the local direction of the trench.
Figure 12 shows how the study rectangular area was
chosen so as to try to avoid large lacunae in the epicen-
tral distribution. See Figure 11 for the horizontal projec-
tion of the study volume in geographic coordinates.

Next, the cumulative number of earthquakes in the
volume, Nc, is plotted vs. time, and the minimum mag-
nitude threshold is gradually increased until the long-
term slopes in the cumulative havemore or less the same
slope, which indicates sampling homogeneity over time
(for low thresholds, slopes increase with time, reflecting
monitoring improvements). We achieved reasonable
homogeneity for threshold magnitude M = 2.3
(Figure 13).

In order to see how the entropy changes with time,
time windows are chosen, each window extends

backwards in time until it contains a given number of
earthquakes, N, so that results from each window can be
compaired easily; we usedN = 1,000. The first window
begins just before the occurrence of the main event, and
each following window begins a given time, Δt, before
the beginning of the previous one; in this example, we
used time shifts Δt = − 2yr. The time windows we
chose for this example are shown in Figure 13, where
vertical continuous lines indicate the beginning of each
window and the number right to the left of it identifies
the window; succesive vertical dashed lines indicate
where windows end. Note that the two last windows
(7 and 8) have much larger durations than the other
windows, which means that small magnitude coverage
is not as good before about year 2000.

5.3 Poisson renormalized entropy 3D analysis

The events in each window file were analyzed as de-
scribed above; for reasons of space, only the analyses
for windows 1, 2, 4, and 6 are printed in Figures 14,
Figures 15 16, 17 and 18; the figures showing the
analyses for the other windows are presented as Online
Resources 1 to 4 (Files ESM_1.pdf, ESM-2.pdf,

Fig. 12. Study region (rectangle)
and M9 epicenter (star); crosses
represent epicenters

J Seismol



ESM_3.pdf, and ESM_4.pdf) and folllow the same
conventions as in Figure 8.

Figure 15 shows the analysis of the H0 distribution
corresponding to the observed one in the first window,
and it is clear when compared to the analyses of the
observed distribution that SP can correctly identify a
uniform distribution, while SIsaturates.

The results of the analysis are summarized in Table 1
and Figure 19. In this figure, the extension of each
horizontal thick line indicates the duration of the corre-
sponding time window and its vertical position indicates
the value of ΔSH; the vertical dashed lines indicate the
middle time of each window, and the numbers above
them identify each window; the inverted triangles joined
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Fig. 13. Cumulative number of
earthquakes in the study region
vs. time (top) and the corre-
sponding cumulative seismic mo-
ment vs. time (bottom). Both
graphs show the time windows
before the 2011M9 earthquake
(star); each window starts at the
time of the vertical continuous
line immediately to the right of
the window number, and extends
backwards in time until it contains
1,000 events (dashed vertical
lines)

Fig. 14. 2011M9 Window no. 1.
On the left is shown a view of the
hypocentral spatial distribution as
seen from 80° azimuth and 35°
elevation; on the right, the
corresponding entropy analysis
described above is shown for the
three entropies. The (yellow)
shaded area indicates the differ-
ence between SU andSP; conven-
tions as in Figure 8
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to the horizontal lines by a thin vertical one indicates the
corresponding ΔSN entropy change. The occurrence
time of the M9main event is indicated by a thich dashed
vertical line and a star.

Our results clearly show entropy decrease be-
fore the 2011M9 event; the Poisson renormalized

entropy measure ΔSH in window no. 7 was about
0.927 bit lower than that of the previous no. 6
window, and −1.029 bit lower than the previous,
but less reliable, no. 8 window. with respect to the
level it had from about twenty and a half to ten
years before the M9 earthquake. The ΔSH and ΔSN

Fig. 15 2011M9 window no. 1
H0 distribution. On the left is
shown a view of the hypocentral
spatial distribution as seen from
80° azimuth and 35° elevation; on
the right, the corresponding
entropy analysis described above
is shown for the three entropies.
The (yellow) shaded area indi-
cates the difference between SU

andSP; conventions as in Figure 8
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Fig. 16. 2011M9 window no. 2.
On the left is shown a view of the
hypocentral spatial distribution as
seen from 80° azimuth and 35°
elevation; on the right, the
corresponding entropy analysis
described above is shown for the
three entropies. The (yellow)
shaded area indicates the differ-
ence between SU andSP; conven-
tions as in Figure 8
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values are just slightly higher for window no. 2
than for window no. 3, and are somewhat a higher
value for window no. 7 than for window no. 8
(both of these not quite reliable), but the entropy
decreases before the 2011M9 event is quite clear.

5.4 Poisson renormalized entropy 2D analysis

The 2D analysis for the first time window is shown in
Figure 9 illustrating the method; for reasons of space,
we will not show here the 2D analyses for the other
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Fig. 17. 2011 M9 window no. 4.
On the left is shown a view of the
hypocentral spatial distribution as
seen from 80° azimuth and 35°
elevation; on the right, the
corresponding entropy analysis
described above is shown for the
three entropies. The (yellow)
shaded area indicates the differ-
ence between SU andSP; conven-
tions as in Figure 8
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Fig. 18. 2011M9 window no. 6.
On the left is shown a view of the
hypocentral spatial distribution as
seen from 80° azimuth and 35°
elevation; on the right, the
corresponding entropy analysis
described above is shown for the
three entropies. The (yellow)
shaded area indicates the differ-
ence between SU andSP; conven-
tions as in Figure 8
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windows; they are available as electronic supplement
Figures ESM_5 to ESM_11; here, we show only the
results of the analysis in Figure 20.

This figure is very important, because it clearly
shows that, although less sensitive than the 3D analy-
sis, the 2D analysis also measures the entropy de-
crease in time before the occurrence of the 2011M9
earthquake; and its importance lies in that a serious
limitation for the 3D analysis is the correct determina-
tion of hypocentral depths. Of course, a single example
is not enough to guarantee that that 2D analysis will be
effective in all cases, but it suggests that, if confirmed,
Poissonian entropy analysis could be applicable tomany
catalogs with unreliable depth determinations.

6 Comparison with results from fractal dimension
and G-R b-value

Since the entropy, the fractal dimension, and the
b-value are supposed to be related to the stress
level in a region (e.g., Scholtz 2015), we estimated
these last two parameters for the data in our time
windows. For reasons of space, the figures from
the analyses of fractal dimensions and b-value will
be relegated to the electronic supplement as
F i g u r e s ESM_12 . p d f a n d ESM_13 . p d f ,
respectively.

6.1 Fractal dimensions

Fractal dimensions and entropy are related (Rényi
1959); fractal dimensions indicate organization and
clustering, and have been observed to decrease before
some large earthquakes (e.g., Goltz 1996, 1997; Rundle
et al. 2003).

Fractal dimensions D0, D1, and D2 were esti-
mated for each of the space-time windows used
for entropy estimations, using the correlation meth-
od of Grassberger and Procaccia (Grassberger and
Procaccia 1983; Grassberger 2007) as described in
Márquez et al. (2012), from
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Fig. 19. 3D Poisson
renormalized entropy measures
vs. time before the 2011M9
earthquake. Thick (blue) horizon-
tal lines indicate the duration of
each time window identified by a
dotted vertical line passing
though its center and a number;
the vertical position of each hori-
zontal line indicates the ΔSH val-
ue, while the corresponding ΔSN
value is shown as an inverted tri-
angle. The occurrence time of the
2011M9 earthquake is shown by
a thick, dashed vertical line and a
star on top of it

Table 1 Starting and ending times, and measured entropy differ-
ences for each time window

Window no. tstart,tend ΔSH ΔSN

1 2001.65, 2011.18 −2.265 −1.378
2 2000.74, 2009.18 −2.009 −1.233
3 1999.87, 2007.18 −2.029 −1.245
4 1995.89, 2005.19 −1.777 −1.108
5 1994.30, 2003.19 −1.510 −0.955
6 1990.69, 2001.18 −1.338 −0.854
7 1978.86, 1999.19 −1.147 −0.738
8 1977.57, 1997.17 −1.236 −0.786
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Electronic supplement Figures ESM_12 and ESM_13
show the estimation of the fractal dimensions for the
several time windows.

Figure 21 shows the values for the time windows for
D0,D1, andD2;D2 behaves somewhat erratically, but
the other two more reliable dimension estimators
are seen to decrease in time and reach a minimum
for the next-to-last time window before the main
event. It may be speculated whether, if this behav-
ior, different from those of the entropy and the b-
value, is observed before other large earthquakes,
could have precursory value.

6.2 G-R b-value

Several studies have reported b-value decreases before
large earthquakes (e.g., Nanjo et al. 2012), and, as
mentioned above, changes in the Gutemberg-Richter
b-value are commonly interpreted as related to changes
in the stress of state in the region (Aki 1981). De Santis
et al. (2011) showed that the entropy of the magnitude
distribution decreases when b increases. We calculated
the most likely source b-value, bx, for the time windows
from the Aki-Utsu estimate

bm ¼ log10e

M− Mc−0:05ð Þ
;

where M is the mean observed magnitude and is the
completeness magnitude (rounded to 0.1), together with
the number of observations and the range of linearity,
using the technique described in Nava et al. (2018).

We present here the results for the first six time
windows before M9 (Figure 22), because small magni-
tude coverage was not adequate for the earliest two
windows. A figure showing the G-R distributions and
the source b histograms can be found as electronic
supplement Figure ESM_14.

Figure 22 shows the behavior of bx before M9, the
thick horizontal lines show the time window and the
values of bx, and the minimum and máximum limits for
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Fig. 20. 2D Poisson
renormalized entropy measures
vs. time before the 2011M9
earthquake. Thick (blue) horizon-
tal lines indicate the duration of
each time window identified by a
dotted vertical line and a number;
the vertical position of each hori-
zontal line indicates the ΔSH val-
ue, while the corresponding ΔSN
value is shown as an inverted tri-
angle. The occurrence time of the
2011M9 earthquake is shown by
a thick, dashed vertical line and a
star on top of it
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90% confidence are shown as triangles and inverted
triangles, respectively.

For our example, the bx values do decrease as
the time windows approach the time of the main
event, indicated by a dashed thick line and a star;
a behavior that completely agrees with that
observed by Nanjo et al. (2012) and with that of
our entropy estimates.

7 Discussion and conclusions

The proposed renormalized Poisson entropy is
more sensitive and stable than the usual incidence
entropy. It clearly identifies uniform distributions
and does not saturate as incidence entropy does.

As shown by our example, the difference between
uniform and renormalized Poisson entropy appears to be
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Fig. 22. Temporal variation of
the G-R b-value for the time win-
dows before M9. Each horizontal
line represents the time window,
and its vertical location indicates
de corresponding most likely
source b value, while the triangles
joined by thin vertical lines rep-
resent the corresponding uncer-
tainty. The occurrence time of the
2011M9 earthquake is shown by
a thick, dashed vertical line and a
star on top of it
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line. The occurrence time of the
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J Seismol



sensitive to differences in the stress level in a region
where a large earthquake is close to occurr. Hence,
renormalized Poisson entropy appears to have precusory
value and, together with other indicators of stress levels,
such as fractal dimension or G-R b-value, could be used
for earthquake forecasting. The renormalized Poisson
entropy analysis requires less data than either fractal or
b-value studies, so that its role in seismic hazard studies
may be more than complementary.

The main limitations in using renormalized Poisson
entropy are length and homogeneity of catalogs, which
are also limitations for all other statistical methods.
Another limitation is hypocentral location accuracy,
but in regions where depth determinations are uncertain
but epicentral accuracy is acceptable, 2D analysis can be
used; 2D analysis is not as sensitive as 3D analysis but
gives acceptable results.

We tried the idea of using the renormalized Poisson
entropy to detect entropy changes before a large earth-
quake in the retrospective analysis presented here, and
in some other retrospective analyses, not shown here,
where it also gives good results; however, it needs to be
tested through prospective analyses (e.g., Rhoades et al.
2011; Schorlemmer et al. 2018; Taroni et al. 2013) to
assess its reliablity and ultimate usefulness.
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