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Abstract—Among the schemes for earthquake forecasting, the

search for semi-periodicity during large earthquakes in a given

seismogenic region plays an important role. When considering

earthquake forecasts based on semi-periodic sequence identifica-

tion, the Bayesian formalism is a useful tool for: (1) assessing how

well a given earthquake satisfies a previously made forecast; (2) re-

evaluating the semi-periodic sequence probability; and (3) testing

other prior estimations of the sequence probability. A comparison

of Bayesian estimates with updated estimates of semi-periodic

sequences that incorporate new data not used in the original esti-

mates shows extremely good agreement, indicating that: (1) the

probability that a semi-periodic sequence is not due to chance is an

appropriate estimate for the prior sequence probability estimate;

and (2) the Bayesian formalism does a very good job of estimating

corrected semi-periodicity probabilities, using slightly less data

than that used for updated estimates. The Bayesian approach is

exemplified explicitly by its application to the Parkfield semi-pe-

riodic forecast, and results are given for its application to other

forecasts in Japan and Venezuela.

Key words: Earthquake forecasting, Bayesian probability,

semi-periodicity.

1. Introduction

An important approach to earthquake prediction is

the search for statistical regularities in the time oc-

currence of large earthquakes. Indeed, a simplified

application of the elastic rebound model (REID 1910,

as referenced in RICHTER 1958) with plate tectonics

(e.g., MORGAN 1968; COX 1973) as the (constant rate)

strain source, would lead one to expect periodic be-

havior (e.g., LOMNITZ 1966; RIKITAKE 1976; and

references therein).

However, seismic processes involve complex and

highly non-linear systems featuring feedback, thusly

depending heavily on its history. As such, this

process involves self-organized criticality (SOC)

(e.g., BAK et al. 1988; BAK and TANG 1989; BAK and

CHEN 1991; TURCOTTE 1992; MÁRQUEZ 2012) with

essentially random occurrences of small events and

semi-periodic occurrences of large events.

The occurrence times of a semi-periodic sequence

of K earthquakes are of the form:

tk ¼ t0 þ k sþ gk; k ¼ 1; . . .;K; ð1Þ

where s is the period and gk is a realization of a

random variable such that g � s.
Many studies have searched for semi-periodicity,

with mixed results. Of these, we will use as an example

the one by BAKUN and LINDH (1985) which predicted an

earthquake in the region of Parkfield, California, USA,

on the basis of recurrence times from a series of six

earthquakes, and missed the occurrence time of the

next earthquake by some 17 years.

NAVA et al. (2014) and QUINTEROS et al. (2014),

hereafter referred to as Paper I and Paper II, respec-

tively, realized that in a given seismogenic region

there may be more than one semi-periodic process, so

that the observed seismicity may contain more than

one semi-periodic sequence, and may also include

events from long-period sequences that cannot be

identified because of the limited observation time. As

a result, they can be considered to occur randomly.

Not all earthquakes that occur in a given seismogenic

region are necessarily part of a seismic sequence.

Paper I proposes a method to identify semi-periodic

sequences in earthquake occurrence time series,

assess their significance, and use the results for

earthquake forecasting; it also illustrates the method

by applying it to the Parkfield sequence. Paper II

addresses some aspects of catalogue processing and

presents applications to Japan and Venezuela; QUIN-

TEROS and NAVA (2013), hereafter referred to as Paper

III, presents the application to a recent event in
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Venezuela. We will use results from the abovemen-

tioned papers, where all details of the pertinent data

are given, to apply and illustrate the proposed

Bayesian estimation.

We will now briefly review the basic character-

istics of the semi-periodicity forecasting method.

The time series of large earthquake occurrence

times, considered as a point process in time, is

~t ¼ ftj; j ¼ 1; . . .;Ng; N �K;

from this series, a function is built as

f ðtÞ ¼
Xj2

j¼j1

dðt � tjÞ;

recognizing this function as a segment of an infinite

series, the analytic Fourier transform (e.g., BRACE-

WELL 1965)

FðsÞ ¼
Xj2

j¼j1

e�i 2p tj s

allows identification of dominant frequencies corre-

sponding to semi-periodic sequences within the point

process of earthquake occurrences in time. Figure 1

illustrates the Parkfield time series and the process of

sequence identification.

Once a dominant frequency is identified in the

spectrum (Fig. 1), a periodic sequence in time (re-

ferred to as a ‘‘comb’’) is built based on the identified

spectral period s and phase. Events of the time series

possibly corresponding to comb ‘‘teeth’’ are identified

and the rest are eliminated. The process is repeated

three times using a stricter acceptance criterion dur-

ing each pass (in the last pass, acceptable occurrence

times tk have to differ from that of the corresponding

comb tooth tc
k by less than s=6). Goodness of fit is

measured as the root-mean-square (RMS) error of fit

between sequence and comb

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 ðtc

k � tkÞ
K � 2

s

: ð1Þ

For the Parkfield example, sp ¼ 36:36 year and

r ¼ 4:55 year.

Based on the estimated comb and the error, a

forecast can be made as

tf ¼ t0p þ Ks� qr; ð2Þ

where tf is the forecast time, t0p is the time of the

earliest comb tooth, determined from the phase and

the period, and q is a factor that can be set to give a

desired confidence interval to the forecast.

Figure 1
Example of sequence and comb determination for Parkfield (Paper

I). For each pass, a section of the (absolute) spectrum is shown on

top; the vertical continuous lines indicate the range of acceptable

frequencies, and the dotted vertical lines indicate the chosen

frequency (left) and some of its multiples. Below the spectra are the

occurrence time series (arrows); dotted arrows show ineligible

events. Below the time series the estimated comb (vertical lines).

Pass 3 is not shown because it is exactly like pass 2
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Considering q = 2, the forecast time of the Parkfield

example is tf ¼ 2005:63� 9:10 year (Paper I).

The sequence probability of non-randomness.

How significant an identified semi-periodic se-

quence is can be measured against the probability,

P0, of the null hypothesis that the observed se-

quence is a random occurrence, i.e., that earthquakes

occurring with uniform probability over the ob-

served interval ½0; T � could result in a sequence

having K elements with RMS error �q r, where a

factor q� 1 is introduced to ensure that P0 is not

underestimated. We will now describe how this

probability is estimated.

For a random occurrence with uniform prob-

ability, the distribution with the largest entropy, the

probability of occurrence of n events within an in-

terval h is Poissonian (e.g., LOMNITZ 1994; DALEY and

VERE-JONES 2002), given by

Pr ðnÞ ¼ ðkhÞn
e�kh

n!
;

where k ¼ N=T is the occurrence ratio of earthquakes

in the region.

In order to have exactly K elements over interval

½0; T �, a sequence may have a period between

T=ðK � 1Þ and T=K þ e, where e is a very small

quantity introduced to ensure that no more than K

elements fit within time T. We use the worst case that

results in the largest random probability by consid-

ering the shortest period for which at least one event

should occur, taking into account the uncertainty,

within an interval of length H ¼ T=K � eþ qr; at
least one event should occur in each of K � 1 inter-

vals of length h ¼ 2qr. Thus, the worst-case random

occurrence probability is

P0 ¼ 1� e�kH
� �

1� e�kh
� �K�1

: ð3Þ

Hence, the probability that the sequence did not

occur randomly is

Pc ¼ 1� P0: ð4Þ

It should be mentioned that the probabilities pre-

sented here, calculated according to (3) and (4), differ

slightly from those in our previous papers because, in

them, P0 was estimated approximately by a Monte-

Carlo scheme.

Considering that the actual occurrence times

should be distributed about the forecast time as some

pdf pðt � tf Þ with unit area, the probability of oc-

currence is given by Pc pðt � tf Þ, and the forecast can

be represented as in Fig. 2. In this forecast, we have

assumed a normal distribution pðtÞ ¼ Nðtf ; rÞ (see

Paper I for discussion).

Actually, Fig. 2 shows an aftcast, i.e., a forecast

for an event that has already occurred, based on in-

formation previous to it. The first four arrows show

the identified sequence, and the curve is the forecast

probability density function, while the fifth arrow

indicates the occurrence of the forecast earthquake. It

is evident that the actual occurrence agrees very well

with the forecast, which had Pc ¼ 0:858, but how

exactly does the occurrence (or non-occurrence) of

earthquakes after the forecast was made support or

contradict the forecast and, hence, the hypothesis of

semi-periodicity?

2. Bayesian Probability of Semi-Periodicity

We will now apply the Bayesian formalism to

derive quantitative information from the occurrence

or non-occurrence of the forecast earthquake, as well

as from the accuracy of the forecast, i.e., the differ-

ence between forecast and occurrence time Dt.

Figure 2
Forecast for the Parkfield data (Paper I). Arrows indicate best fitting earthquake occurrences, and dashed vertical lines are the comb teeth

series; the curve is the forecast pdf pðtÞ. The latest arrow (dotted) marks the forecast event occurrence on to ¼ 2004:742
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2.1. Estimation of the Bayesian Probability

Let A be a semi-periodic earthquake sequence in

the study region (evidence of a semi-periodic

process), and let Pr(A) be the prior estimation of the

probability of A.

Let B be an earthquake that occurs after the

forecast has been made, at time t0. Event B can be

used to revise the probability of A by applying Bayes’

formula:

Pr AjBð Þ ¼ Pr BjAð Þ Pr Að Þ
Pr BjAð Þ Pr Að Þ þ Pr Bj�Að Þ Pr �Að Þ ; ð5Þ

(e.g., PARZEN 1960; WINKLER 2003). We will now

calculate the various probabilities needed to apply

(5).

The total forecast probability, Pc, is distributed in

time according to some pdf pðtÞ; thus, in order to

have a finite probability for the occurrence of B at a

given time, Pw, it is necessary to consider the

probability of occurrence within a window of finite

length w centered on the occurrence time t0:

Pw ¼ Pc

Ztoþw=2

to�w=2

pðtÞ dt: ð6Þ

The effect of the length of the time window will

be discussed below. For the case pðtÞ ¼ Nðtf ; rÞ,
illustrated in Fig. 3,

Pw ¼ Pcffiffiffiffiffiffi
2p

p
Zt2

t1

e�x2=2dx

¼ Pc sgnðt2Þerf jt2j=
ffiffiffi
2

p� �
� sgnðt1Þ erf jt1j=

ffiffiffi
2

p� �n o

ð7Þ

where t1 ¼ ðtf � to � w=2Þ=r and t2 ¼ ðtf � to

þw=2Þ=r.

Hence, the probability of B, given A, the occur-

rence of at least one earthquake within window w, is

the abovementioned probability of having an earth-

quake from the sequence, plus the Poissonian

probability of having at least one earthquake that

does not belong to it p�1þ ¼ 1� e�w ðN�KÞ =T :

PrðBjAÞ ¼ Pw þ p�1þ � Pwp
�
1þ; ð8Þ

since ðN � KÞ=T is the occurrence ratio of earth-

quakes not belonging to the given sequence.

If �A, then the probability of B is strictly

Poissonian:

PrðBj�AÞ ¼ 1� e�w N=T ð9Þ

and, obviously,

Prð�AÞ ¼ 1� PrðAÞ: ð10Þ

It only remains to assign a value to Pr(A), the prior

probability of there being a semi-periodic sequence.

Since P0 is the (Poissonian) probability of the

observed semi-periodic sequence being due to

chance, and the only alternative to this is that the

semi-periodic sequence is not due to chance, it

follows that

PrðAÞ ¼ 1� P0 ¼ Pc: ð11Þ

Assuming w ¼ r=40 (see discussion about w be-

low), the quantities estimated from (6) to (11) can be

applied in (5).

The Parkfield earthquake series used for the semi-

periodicity analysis in Paper I consists of six earth-

quakes with magnitudes between 6.0 and 7.9, among

which a sequence of four events is identified (Fig. 2).

The parameter values for this example and the results

of the Bayesian appraisal are shown in the first row of

Table 1; for Pr Að Þ ¼ Pc ¼ 0:858 and tf ¼ 2005:63,

the occurrence of the forecast event on to ¼ 2004:742,

so that Dt ¼ jtf � toj ¼ 0:888 year yields

Pr AjBð Þ ¼ 0:952, i.e., a probability gain (DALEY and

VERE-JONES 2003) Pr AjBð Þ ¼ 0:952.

Table 1 also shows values and results for aftcasts

from Papers II and III. The aftcast of the last event in

the J1 sequence in Japan is based on a sequence of

K ¼ 3 events among a series of N ¼ 8 events with

magnitudes ranging from 8.0 to 8.7; that of the last

event in the R2 K ¼ 4 sequence in Venezuela

involves a series of N ¼ 13 with magnitudes in the

−5 −4 −3 −2 −1 0 1 2 3
0
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p
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t f 

] /
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Figure 3
Forecast probability pdf pðtÞ for normalized time

200 F. Nava et al. Pure Appl. Geophys.



5.6–7.4 range. Finally, the aftcast of the recent 2013

Venezuela M ¼ 6:5 earthquake is based on a K ¼ 6

event sequence among an N ¼ 20 event series with

magnitudes ranging from 5.9 to 6.9.

Bayes formalism allows testing other prior esti-

mates or suppositions about possible semi-

periodicity. Someone who does not like condition

(11) and says that semi-periodicity may or may not

occur would use Pr ðAÞ ¼ 0:5, and, for our Parkfield

example, would obtain Pr ðAjBÞ ¼ 0:767

PG ¼ 1:534ð Þ. Someone who is skeptical and be-

lieves there is only a small probability of there being

semi-periodicity could use, say, Pr ðAÞ ¼ 0:1, and

would obtain Pr ðAjBÞ ¼ 0:268 PG ¼ 2:676ð Þ, a

probability not large enough to be conclusive in

favor of semi-periodicity, but certainly suggestive of

it. Results for these hypothetical choices for the other

aftcasts are shown in Table 1; note that, for our

examples, the smaller prior probabilities result in

larger probability gains. Of course Bayesian reason-

ing is useless for someone who firmly believes that

semi-periodicity cannot exist, so that Pr ðAÞ ¼ 0,

because the question becomes a matter of faith.

2.2. Bayesian Probability and the Length of w

Since forecasts are given as probability distribu-

tion functions in time, in order to work with finite

probabilities, it is necessary to consider probabilities

over some finite time interval, which we have called

w. Probabilities (6–11) all increase with w, but since

both the numerator and the denominator increase in

(5), for w� r=4, the results change only in the fourth

decimal place, and tend to a limit for small w. Thus,

for practical purposes, results for w� r=10 can be

considered independent of w. We used w ¼ r=40 in

the results presented here.

2.3. Bayesian Probability and Forecast Accuracy

Among the probabilities used to calculate

Pr ðAjBÞ, only Pw depends on the time difference

between the forecast time tf and the actual occurrence

time t0, and attains its maximum when both times

coincide, i.e., when the forecast is exact.

All aftcasts we have made so far are good enough

such that the Bayesian estimates give enhanced semi-

periodicity probabilities. However, this might not

have been the case had the forecast earthquake

occurred at a time very different from that of the

forecast.

Figure 4 illustrates the behavior of Pr ðAjBÞ as a

function of Dt ¼ jtf � toj for the Parkfield example

with Pr ðAÞ ¼ Pc (top) and Pr ðAÞ ¼ 0:5 (bottom). In

both cases, the Bayesian probability is maximal for

Dt ¼ 0, but there also is a Dt above which the

Bayesian probability is smaller than the prior one,

and clearly tells that, above this value, event B is

evidence against semi-periodicity. Note that the

smaller the prior estimate, the better the coincidence

between actual and forecast times has to be in order

to be convincing.

A common problem in evaluating forecasting

performance is that it is sometimes difficult to decide

whether a given event fulfills a forecast or not,

particularly if it occurs with relatively low

Table 1

Quantities used in the Bayesian appraisal and results of the same for all examples mentioned in the text

Example T (year) N K r (year) tf Pc to Pr ðAjBÞ
PG

PU
c

Pr ðAÞ ¼ Pc Pr ðAÞ ¼ 0:5 Pr ðAÞ ¼ 0:1

Parkfield 120 6 4 4.55 2005.630 0.858 2004.742 0.952 0.767 0.268 0.952
1.110 1.534 2.676

Japan J1 90 8 3 0.228 2003.090 0.994 2003.734 0.996 0.575 0.131 0.997
1.002 1.150 1.306

Venezuela R2 196 13 4 1.41 2010.230 0.967 2009.951 0.996 0.893 0.480 0.994
1.031 1.785 4.800

Venezuela 2013 91 20 6 1.525 2014.670 0.785 2013.778 0.892 0.694 0.202 0.861
1.137 1.389 2.015

The updated comb probability PU
c is also shown for comparison.
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probability. Everyone knows of cases where fore-

casters claim that some event remotely resembling

their forecast is an actual fulfillment. This problem

need not arise for semi-periodicity forecasts when

viewing each new occurrence in the light of Bayesian

estimates, because any event resulting in PG\1 is

clearly not fulfilling the forecast, so that PG is a good

estimator of how well an event fulfills a forecast.

2.4. Bayesian vs. Updated Probabilities

After a forecast (or aftcast) has been made, the

occurrence of an event allows reevaluation of the

prior probability, but it also results in a new (or

updated) sequence of K ? 1 earthquakes. Conditions

are not the same for the new sequence: the number of

earthquakes in the sequence has increased by one, but

other ‘‘unrelated’’ events may have also occurred, i.e.,

N may be larger by more than one, and the total time

T has increased by about one sequence period. Based

on the new conditions, a new, updated, sequence

probability PU
c can be evaluated (the probability that

would be used for a new forecast, and it is interesting

to compare the updated probabilities for our exam-

ples with the corresponding Bayesian probabilities.

Table 1 shows that, for our aftcast examples, the

Bayesian Pr ðAjBÞ estimates for Pr ðAÞ ¼ Pc agree

extremely well with the corresponding updated PU
c

values. We believe that two conclusions are derivable

from this agreement: first, that the choice of Pc as the

prior probability is correct; and second, since longer

sequences involving larger numbers of earthquakes

that occurred semi-periodically are, naturally, better

and more convincing evidence of semi-periodic

behavior; the Bayesian formalism does a very good

job of estimating corrected semi-periodicity prob-

abilities, using slightly less data than that used for

updating.

3. Discussion and Conclusions

The real measure of the goodness of a forecast is

whether an earthquake occurs around the forecast

time and, given the occurrence, how small the abso-

lute difference is between the forecast and the actual

occurrence times (judged in terms of the period and

the standard deviation of the semi-periodic se-

quence). Hence, the Bayesian estimation of the

probability of a sequence being semi-periodic, given

the occurrence of a given earthquake, is a measure of

both whether the earthquake may be considered to

fulfill the forecast and, if so, of the forecast goodness.

For the examples shown here, the agreement of

the Bayesian estimates based on the non-randomness

probability of the sequence used for the forecast, Pc,

with the updated non-randomness probability of the

new, longer sequence suggests that Pc is a good es-

timator of the probability of existence of a semi-

periodic sequence.

The Bayesian estimates, together with the updated

non-randomness probabilities, are a good basis upon

which to support or reject the existence of semi-pe-

riodic sequences in earthquake occurrence time series.
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