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Semi-Periodic Sequences and Extraneous Events in Earthquake Forecasting: I. Theory

and Method, Parkfield Application

FIDENCIO ALEJANDRO NAVA PICHARDO,1 CLAUDIA BEATRIZ QUINTEROS CARTAYA,1 EWA GLOWACKA,1 and

JOSÉ DUGLAS FREZ CÁRDENAS
1

Abstract—We present a new method to identify semi-periodic

sequences in the occurrence times of large earthquakes, which

allows for the presence of multiple semi-periodic sequences and/or

events not belonging to any identifiable sequence in the time series.

The method, based on the analytic Fourier transform, yields esti-

mates of the departure from periodicity of an observed sequence,

and of the probability that the sequence is not due to chance. These

estimates are used to make and to evaluate forecasts of future

events belonging to each sequence. Numerous tests with synthetic

catalogs show that the method is surprisingly capable of correctly

identifying sequences, unidentifiable by eye, in complicated time

series. Correct identification of a given sequence depends on the

number of events it contains, on the sequence’s departure from

periodicity, and, in some cases, on the choice of starting and ending

times of the analyzed time window; as well as on the total number

of events in the time series. Some particular data combinations may

result in spectra where significant periods are obscured by large

amplitudes artifacts of the transform, but artifacts can be usually

recognized because they lack harmonics; thus, in most of these

cases, true semi-periodic sequences may not be identified, but no

false identifications will be made. A first example of an application

of the method to real seismicity data is the analysis of the Parkfield

event series. The analysis correctly aftcasts the September 2004

earthquake. Further applications to real data from Japan and

Venezuela are shown in a companion paper.

Key words: Seismic hazard, earthquake sequences, semi-

periodicity.

1. Introduction

Reid’s elastic rebound model of earthquake

generation (RICHTER 1958) postulates that strain

accumulates in the ground until the associated stress

surpasses the rock strength and the ground breaks

suddenly in an earthquake that releases the accumu-

lated strain, after which the strain begins again to

accumulate and the earthquake recurs after the stress

again surpasses the rock strength. The tectonic plate

paradigm (e.g., MORGAN 1968; COX 1973; RICHARDSON

et al. 1979) furnishes an acceptable strain source,

inter-plate motion, for the elastic rebound model, and

since this motion can be considered to have a con-

stant rate over thousands of years, the earthquake

cycle could be expected to be periodic.

This expectation led to forecasts based on studies

of recurrence times (e.g., LOMNITZ 1966; RIKITAKE

1976; and references therein) and on the popular time

predictable model (SHIMAZAKI and NAKATA 1980).

However, earthquakes have not generally shown the

expected periodicity, as illustrated by the Parkfield,

California, experiment in which, on the basis of a six

earthquake sequence with an apparent *21.9 years

periodicity, an M C 6 earthquake was expected to

occur in 1993 with 0.95 probability, but the expected

earthquake was 11 years late (BAKUN and LINDH

1985; BAKUN et al. 2005; SAVAGE 1993; LOMNITZ

1994; KAGAN 1997; JACKSON and KAGAN 2006). Later

on we will show a forecast for the Parkfield earth-

quake using our method.

The lack of periodicity does not mean that the

elastic rebound model or the constant stress rate

source assumption are wrong, but rather that seism-

ogenic zones are complex so that the model should

only be applied locally. Indeed, rocks are heteroge-

neous and strength varies spatially, cracks can range

from microscopic to regional faults, and the strength

and stress of a seismogenic region is determined, at

each point, by characteristics which may vary in time

and by stresses that depend in a non-linear fashion on
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the history of rupturing, giving rise to self-organized

criticality (BAK et al. 1988; BAK and TANG 1989; BAK

and CHEN 1991; TURCOTTE 1992). This self-organized

criticality together with the elastic rebound model,

indicate that semi-periodicity (also known as quasi-

periodicity) can be expected to occur, at least locally.

We do not expect repetitions of so-called char-

acteristic earthquakes (JACKSON and KAGAN 2006), but

systems with self-organized criticality, while having

essentially random activity for small events, do

exhibit semi-periodic behavior for large events, and

there may be characteristic rupture lengths in a given

region (LOMNITZ 1994).

Thus, we can expect large to mega earthquakes to

be the best candidates to exhibit semi-periodic

behavior; and it is precisely these earthquakes that are

the ones that cause more damage and the ones that it

is important to forecast.

Usual periodicity studies simple-mindedly assume

that all earthquakes above a given magnitude

threshold are due to a single process, and do not

consider the possibility of the seismicity being caused

by more than one semi-periodic processes and/or

having extraneous earthquakes, i.e., events unrelated

to the observed semi-periodic processes, whose

occurrence times may be considered random. It is

evident that recurrence (inter-event) times from a

series incorporating events from different co-existing

sequences plus extraneous events will be absurdly

short. Besides, the usual studies do not use the

observed departures from periodicity to estimate the

probabilities of their periodicity results being due to

chance.

We propose a semi-periodicity analysis method

that takes into account all the above mentioned fac-

tors and may be useful as a factor in seismic hazard

estimates.

In the present paper we present the theory and the

computational scheme, illustrated by the analysis of a

synthetic catalog. Tests with synthetic catalogs are

very important because, with these catalogs, it is

possible to tell if sequences and extraneous events are

correctly identified; also, numerous analyses of syn-

thetic catalogs shed light upon the limitations and

capabilities of the method. We also present the

application of our method to the Parkfield data and

the corresponding forecast.

In the companion paper by QUINTEROS et al.

(2013), we present our scheme for preparing real

catalogs for analysis, which diminishes the problem

of ignoring earthquakes below some threshold mag-

nitude, and applications of the method to data from

Japan and Venezuela.

2. Method

2.1. Theory

Earthquake occurrence can be considered a point

process (DALEY and VERE-JONES 2002) in which the

times of observed earthquakes constitute a series

tE ¼ ftj; j ¼ 1; . . .;Kg:

If the series corresponds to a periodic process,

with recurrence period s, then the occurrence times,

which constitute a sequence, are expressible as

tj ¼ t0 þ j s;

where t0 is some initial time, and in this case there is

no problem at all in determining sj ¼ tj � tj�1 ¼ s:
A process and its related sequence are semi-

periodic if:

tj ¼ t0 þ j sþ hj; ð1Þ

where hj is a realization of a random variable h such

that jhj\\s (we will assume it smaller than � 0:2 s; Þ
in this case it is still possible to estimate s through the

mean and standard deviation of inter-event times. sj ¼
tj � tj�1 ¼ sþ hj � hj�1 which, depending on the

signs of the random variations, may differ from s by as

much as ± the sum of the h absolute values.

In practice the semi-periodic tE sequence may be

‘‘contaminated’’ by R extraneous events, whose times

are arbitrary, so that the resulting observed series is

tE ¼ ftk; k ¼ 1 : Ng;

where N = K ? R and K of the tk’s will correspond

to tj’s and R of them will not, but we do not know

which are which.

Another possibility is that the observed series

could be a combination of two (or more) sequences

from semi-periodic processes having different recur-

rence and initial times, plus extraneous events, in

which case N ¼ K1 þ K2 þ � � � þ R:

F. A. N. Pichardo et al. Pure Appl. Geophys.
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Fourier analysis is an obvious tool to look for

periodicities or, in the present case, semi-

periodicities.

Using the discrete Fourier transform (DFT) to

analyze a discrete time series constructed from the

observed seismicity presents the serious problem that

the DFT only recognizes periods which are submul-

tiples of the total observation time, and the

appropriate T, multiple of the unknown period(s)

we are looking for is not known! If the right T is not

chosen, the periodic component will be ‘‘smeared’’

all over the spectrum; the problem is particularly

difficult because sequences corresponding to large

earthquakes are usually short, so that the frequency

intervals Ds ¼ T�1 are large. Thus, for the DFT,

various total times must be tried to look for the best

definition, and in the case where two or more

different recurrence periods are involved, it may be

impossible to find a given T that will allow correct

identification of all of them.

The answer is to obtain the analytical Fourier

transform (FT) by building a function

f ðtÞ ¼
Xj2

j¼j1

dðt � tjÞ; ð2Þ

and recognizing it as a section of the function cor-

responding to the infinite series:

f1ðtÞ ¼
X1

j¼�1
dðt � tjÞ;

so that

f ðtÞ ¼ f1ðtÞ P
t � tc

T

h i
; ð3Þ

where PðtÞ is the boxcar function centered at time

tc ¼ ðtb þ teÞ=2 and T ¼ te � tb; where tb and te are

the times where our catalog begins and ends,

respectively.

The analytical FT of (3) is

FðsÞ ¼
Z1

�1

f ðtÞe�i 2p t s dt ¼
Xj2

j¼j1

e�i 2p tj s

¼ F1ðsÞ � T sincðT sÞ e�i 2p tc s; ð4Þ

and it is possible to evaluate F(s) for any frequency

s whatsoever. As will be shown below, the important

components of the spectrum F?(s) can usually be

identified properly in spite of the convolution with

the sinc function.

What should we expect to find in the frequency

domain? For a strictly periodic series,

f ðtÞ ¼ Rðt=sÞ � FðsÞ ¼ s Rðs sÞ

where the shah function RðxÞ ¼
P1

j¼�1
dðx� jÞ; j 2 Z

(e.g., BRACEWELL 1965). For semi-periodicity the

spectrum will differ from the shah depending on the

actual values of the hi, and extraneous events make

F(s) depart further from the periodic case. Relatively

small random variations from periodicity cause large

phase shifts for high frequencies, but small shifts for

low ones, so the periods of interest, commensurable

with T, are recognizable in most cases. Extraneous

events cause phase shifts at all frequencies, but since

they are not periodic, the Fourier transform is usually

able to identify, although sometimes only approxi-

mately, the underlying semi-periodicities. These

approximate identifications are then refined as

described below.

A sample periodic sequence with unit amplitudes

and s = 100 years, spanning T = 400 years (top left)

is shown in Fig. 1; also shown is a segment of its

analytic Fourier amplitude spectrum (middle left)

which is the shah convolved with the sincðT sÞ
function shown at bottom left. Figure 1 also shows

three examples of amplitude spectra for the same

sequence after random variations of hj, to show the

effect of variations on the spectrum; normal devia-

tions with rh = 5 years (top right) yield a perfectly

identifiable spectral replicated peak; for deviations

with rh = 10 years (middle right) the peak is still

identifiable; and for deviations with rs = 15 years

(bottom right) the peak is still identifiable, but is

barely replicated and a larger, spurious, peak can be

seen on its right.

2.2. Spectral Analysis

In this section we will describe the proposed

method of semi-periodic sequence identification,

using as illustration a synthetic series (Fig. 2) con-

sisting of two semi-periodic sequences, one having

five events with s(1) = 75 years and normal random

Semi-Periodicity in Earthquake Sequences I
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variations with r(1) = 4.0 years, and the other having

three events with s(2) = 120 years and variations

with r(2) = 3.5 years, and two extraneous events

with random occurrence times; we will suppose the

catalog spans from tb = 10 to te = 310 years.

That sequences within a given time series can be

very difficult to identify by eye is illustrated in Fig. 2.

Indeed, Poisson-distributed seismicity has exponen-

tially distributed intervals Dti ¼ tiþ1 � ti; so that, for

Poisson seismicity, the ratio q ¼ E ½Dt�=Standard

deviation ½Dt� � 1 (for very large N). For N = 10

events the most probable q value (estimated by

Monte Carlo methods) is qmax� 1:093 for our

example series qE ¼ 1:170 and Prðqmax	 q	 qEÞ ¼
0:102 which illustrates that series composed of semi-

periodic sequences plus extraneous events can appear

quite Poissonian, which is why the sequences may be

indiscernible to the eye.

The analysis is made through several passes of

spectral peak, and corresponding sequence, identifi-

cation. After each sequence identification (except for

the last one), events which do not belong to the

sequence are kept or rejected as possible options for

the next pass, according to a criterion which grows

more stringent with each pass. The last pass is made

using only the events belonging to the sequence

identified in the previous pass in order to have refined

estimates of period and phase. For the example we

are using four passes with acceptance criteria being

1/4, 1/4.5, 1/5, and 1/6 of the measured periods,

respectively. We tried different criteria, and the one

chosen here gave good results and was easy to

remember; but other criteria may be used.

The function f(t) (Eq. 2) is built from the total N

event occurrence times (N = 10 in this example) and

the total observation time is calculated from the times

declared as the beginning and ending times of the

catalog: tb = 10 and te = 310 years. Mean inter-

event times and the corresponding standard deviation

are evaluated and printed. The FT is computed, using

the sum of exponentials in Eq. (4), and its absolute

value is plotted (Fig. 3); rough guides for acceptable

semi-periodicity frequencies smin and smax are indi-

cated on the spectrum. Since there must be an

absolute minimum of three events corresponding to a

given period in order to identify it, the minimum

frequency to be considered is smin � 2=T : On the

other hand, the smallest period that can be identified

from the observed series cannot be much smaller

(considering possible departures from periodicity, not

known yet) than the largest observed inter-event time

Dtmax so the largest observable frequency is approx-

imated by smax � 1:25=Dtmax: As mentioned above,

both smin and smax, are only rough guides to the

acceptable frequency range, and the results do not

depend on their exact values. The part of the

Figure 1
Example showing a periodic sequence with s = 100 years (top

left), its analytic FT (middle left), and the convolved sinc function

(bottom left). Spectra of the same series after random normal

variations h, with standard deviations r = 5 years (top right),

r = 10 years (middle right), and r = 15 years (bottom right).

Dotted lines indicate the frequency 1=s; and its first harmonic

Figure 2
Synthetic series for example of an application. Top the five solid

(blue) and the three dot-dash (red) arrows indicate the members of

the first and second semi-periodic sequences, respectively, while

the dotted lines close to each arrow denote the occurrence times if

the sequences were completely periodic. The dashed (black)

arrows represent the two extraneous events. Triangles show tb and

te. Bottom example series as seen without identifying characteris-

tics; note how difficult it is to estimate any kind of periodicities in

this series

F. A. N. Pichardo et al. Pure Appl. Geophys.
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spectrum shown will range from s1 ¼ 0:5 smin to s2 ¼
2:2 smax in order to be able to identify long periods,

frequencies somewhat larger than 1=D tmax and pos-

sible replications of spectral peaks.

To determine possible sequence periods, a spec-

tral peak located between smin and smax (or not too far

from one of them) is chosen, and the corresponding

frequency sp (indicated by the first dashed vertical

line on the left) is noted (Fig. 3, top). From this

frequency, a ‘‘comb’’, c(t), having K ‘‘teeth’’ evenly

separated by sp ¼ 1=sp and starting time t0p ¼
�/p=2p sp; where /p is the spectral phase corre-

sponding to sp, is built (Fig. 3, bottom). For each

tooth the closest observed earthquake time is iden-

tified, in order to determine which events could be

part of a sequence having these particular periods and

starting times; if for some tooth, no earthquake time

is found that differs by less than the pass criterion,

then that particular sp is rejected as being a construct

of the FT, and some other spectral maximum is tried.

Medium to high frequency peaks should be tried first,

because when there are many events in a series the

comb corresponding to a spurious spectral peak may

be artificially well fit.

The goodness of fit is estimated from the differ-

ences between the time of each teeth tc
i and the

occurrence time of the corresponding earthquake ti,

as

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
i¼1 ðtc

i � tiÞ2

K � 2

s

¼ r; ð5Þ

which takes into account that the data have been used

to estimate two parameters. This standard error is also

designated as r because, if we suppose the deviations

from periodicity to be normally distributed (and there

is no basis to suppose otherwise) then this error is the

best estimate of the distribution’s standard deviation.

The upper half of Fig. 3 shows the first sequence

identification pass from the time series shown in the

bottom of Fig. 2. The chosen frequency is

sp = 0.0141 year-1, corresponding to period sp ¼
1=sp ¼ 71:09 years; a comparison with Fig. 2 shows

that one five-element sequence has been cor-

rectly identified. The fit standard deviation is

r = 8.35 years.

If the comb is adequately fit, the identification is

refined by repeating the process after eliminating

those events that could not possibly belong to the

comb, being more than sp=4 away from any tooth.

The spectrum thus obtained is usually clearer than the

first one (Fig. 3, lower half); again, a peak is chosen

and events belonging to the new comb are identified,

with sp=4:5 as the new acceptance criterion. The new

identified period in the example is sp ¼ 70:75 years

with r ¼ 6:10 years:

Figure 3
First two passes of sequence identification. For each pass (top)

Fourier spectrum of the series shown in the middle picture, the

solid vertical (green) lines are the guideline frequencies smin and

smax, the vertical dashed lines indicate the chosen frequency and its

multiples; (middle) Earthquake series with events shown as dashed

(red) arrows, with those identified as corresponding to the

sequence with period sp ¼ 1=sp overdrawn by solid (blue) arrows;

the corresponding comb teeth are shown by solid lines in the

bottom picture. The short vertical line near 0.02 years-1 in the first

pass indicates that the corresponding peak was rejected as a viable

option
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After events separated by more than sp=4:5 are

eliminated; a third pass is made (Fig. 4, upper half)

with sp=5 acceptance criterion; for the example this

pass yields a new period sp ¼ 70:76 years with r ¼
6:10 years: Finally, a fourth pass is made using only

the events which were identified as corresponding to

the comb (Fig. 4, lower half). Usually, at this stage

the spectral peaks are clearly identifiable; the comb

resulting from these final, refined, estimates of sp and

s0p is accepted or rejected using sp=6 as the final

acceptance criterion. The final identified period is

sp ¼ 73:17 years with r ¼ 2:91 years:

Once a sequence and the corresponding comb

have been determined, the significance estimation

and forecast are carried out as described in the next

sections.

Next, the events belonging to the identified

sequence are eliminated, and the analysis is applied

to the remaining events, as shown in Fig. 5 (for

reasons of space, we show only the first and fourth

steps in the analysis. The first-pass identified period is

sp ¼ 110:21 years with r ¼ 15:50 years; and the final

result is sp ¼ 120:97 years with r ¼ 4:95 years).

The events belonging to the new identified

sequence are eliminated, and the process continues

until no more semi-periodicities are present in the

remaining series, at which point the analysis ends.

Analysis of numerous realizations of synthetic

time series, from strictly periodic where we know

which events belong to which sequences and which

are extraneous, to completely random, show that the

FT is surprisingly capable of identifying underlying

Figure 4
Third and fourth passes of sequence identification. Same conven-

tions as in Fig. 3

Figure 5
First and fourth passes in the identification of the second sequence

in the synthetic catalog. Same conventions as in Fig. 3

F. A. N. Pichardo et al. Pure Appl. Geophys.
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semi-periodicities within a series. Correct identifica-

tion of sequences depends on the number of events in

each sequence, on each sequence’s deviations from

strict periodicity, and, in some cases, on the choice of

starting and ending times of the analyzed time

window; identification also depends, of course, on

the amount of ‘‘noise’’, i.e., events that do not belong

to the particular sequence to be identified. Rarely,

some particular values of the variations, combined

with the relative times of different sequences and

extraneous (random) events may result in spectra

where significant periods are obscured by large

amplitudes artifacts of the transform; however, arti-

facts can be usually recognized because they lack

harmonics; thus, in most of these cases, true

sequences may not be identified, but no false

identifications will be made.

2.3. Significance

Events occurring at random can, of course,

generate semi-periodic sequences spanning a given

observation time, and these cannot be distinguished

from sequences generated by a semi-periodic process.

However, the probability that the identified sequence

could result from purely random occurrence of the

observed events, P/ can be estimated, as described

below. Thus, Pc ¼ 1� P/ is the probability that the

sequence did not result by chance, and this estimate is

a measure of how significant a given identification is;

clearly, a sequence having a large probability of

occurring by chance is not a good basis for any sort of

forecast.

Let us assume that we have identified, from

among N events occurring over a time T, a sequence

having K elements with r rms deviation from the

comb teeth; the actual values of the period and

starting time, while extremely important for forecast-

ing, can be considered as a byproduct of having found

a sequence with the above mentioned characteristics.

Thus, we will consider P/ to be the probability of N

Poisson-distributed events resulting in a similar

sequence (same T and K) with rms deviation

e	 q r; where q ([1) is a safety factor, introduced

because for forecast purposes it is better to be

pessimistic (we use q = 1.25). We estimate P/ using

a Monte Carlo method, where we generate a large

number of random series, discard those that cannot

result in a similar sequence, for each eligible

sequence adjust comb period and starting time by

least-squares, compute the rms deviation between

events and comb teeth, and consider one success each

time this rms deviation is Be; finally, P/ is estimated

by dividing the number of successes by the total

number of series.

Figure 6 shows how P/ varies with r=T; and K,

for typical values of K and N. For given T, all P/

probabilities increase significantly as the uncertainty

r increases; but sequences with only three events can

have significant values of P/ even for small r.

Now, since a semi-periodic sequence consists of a

periodic part (the comb) plus random variations

around the associated comb teeth, characterized by r,

it follows that Pc also is the probability that the next

comb tooth, tooth number K since teeth are numbered

from 0 to K - 1, will indicate, within the uncertainty

associated with the semi-periodic behavior, the

occurrence time of the next (future) earthquake in

the sequence. Pc = 1 would mean absolute certainty

as to the occurrence of the next earthquake around the

Figure 6
Illustration of the dependence of P/ on r=T and K for three typical

values of N
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time of the next comb tooth, while the usual Pc \ 1

indicates that there is a possibility that the forecast of

a future event may be a false alarm (because the

observed sequence has occurred by chance). For the

first sequence in our sample, using q = 1.25 and

50,000 realizations, for T = 300 years, N = 10,

K = 5, and r = 2.91 years, P/ ¼ 0:021 and Pc =

979.

2.4. Forecasts

The whole object of identifying semi-periodic

sequences is to be able to forecast the future

occurrence of comparable events. According to a

given identified comb, with period sp, initial time s0p,

K teeth (each identified with an observed event, and

the first one occurring at the initial time), and h
characterized by its standard deviation r, the next

event should occur at time

tf ¼ t0p þ K sp 
 q r; ð6Þ

where q is a factor that can be set to give a desired

confidence interval to the forecast. This forecast time

for our example, for q = 2 and 95.45 % confidence

level, is tf ¼ 379:53
 5:82 years:

Of course, the actual distribution of variations

from periodicity cannot be assessed from the number

of occurrences to be expected in real-life applications

of the method; however, considering that a large

amount of processes and factors are involved in

bringing about the rupture initiation, i.e., the occur-

rence time, of a large event, we can invoke the

Central-limit theorem to approximate the unknown

probability density distribution by a normal one,

centered at tf, with standard deviation r, truncated at

the time of the most recent event and normalized to

have total area pc. The forecast method is not

dependent on the variation distribution being normal,

so that anyone who considers some other distribution

more appropriate can substitute it for the normal one

in what follows.

Other measures of the significance of our results

are given by the probability and information gains

(VERE-JONES 1998; HARTE and VERE-JONES 2005) over

the background Poisson probability estimate of

having at least one earthquake during a given interval

ðtf � qr; tf þ qrÞ around the forecast time. For such

an interval, the probability of having a comb event is

Pcq ¼ Pc erfðqÞ the Poisson probability of having at

least one event is p1þ ¼ 1� e�k 2 q r with k ¼ N=T;

and the Poisson probability of having an event not

belonging to the comb is p�1þ ¼ 1� e�k� 2 q r with

k� ¼ ðN � KÞ=T; thus, the probability of having a

comb event and/or a non-comb event is Pcq þ p�1þ �
Pcqp�1þ; so that the probability gain is

PG ¼
Pcq þ p�1þ � Pcqp�1þ

p1þ
:

The information gain is the difference between

the self-information (FANO 1961) or entropy score

(HARTE and VERE-JONES 2005) of the comb forecast

and that of the background probability,

IG ¼ log2ðPGÞ;

expressed in bits.

For the first sequence of our example, with N = 10,

T = 300 years, K = 5, sp ¼ 73:171 years; the comb

probability is pc = 0.979; the occurrence rates are

k = 0.0333/years, and k� ¼ 0:0167=years; so for three

intervals centered on the forecast time, forecast and

Poisson probabilities, and the resulting probability and

information gains are as shown in Table 1.

The forecast pdf, p(t), is presented graphically in

Fig. 7 (top) together with the identified sequence, the

comb c(t), and ±2r (q = 2) uncertainty ranges.

Figure 7 (middle) shows a close-up of pðtÞ;
together with other functions that help to visualize

some consequences of the forecast. The survivor

function

SðtÞ ¼ Prðx [ tÞ ¼ 1� PðtÞ ¼
Z1

t

pðxÞ dx;

where x is occurrence time, P(t) is the cumulative of

p(t), is the probability of not having had an earth-

quake at a given time t. For Pc\ 1, S(t) does not tend

Table 1

Probabilities and probability and information gains for the first

sequence in the example

q Pcq p1? p�1þ PG IG (bits)

1 0.668 0.176 0.092 3.967 1.988

2 0.935 0.3215 0.1765 2.944 1.558

3 0.976 0.441 0.252 2.228 1.156
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to zero, but tends to P/, the probability of a false

alarm.

Also shown is the future lifetime

UðtjcÞ ¼ Prðx	 t j x [ cÞ ¼ Prðc\x	 tÞ
Prðx [ cÞ

¼ PðtÞ � PðcÞ
SðcÞ ;

which gives, for times t greater than a given time c,

the probabilities that the earthquake will occur at

some time x before or at t, given that the earthquake

has not yet occurred by time c. The dotted lines show

UðtjcÞ for various c; for c before the significant part

of pðtÞ the future lifetimes grow more rapidly as c
increases, attaining similar maximum values �Pc:

For Pc = 1 the same limiting value is attained for all

c, but for Pc \ 1 the maximum value decreases with

increasing c, and tends to zero for survival times later

than the significant part of p(t); i.e., for these times

the earthquake occurrence probabilities tend to zero.

Figure 7 (bottom) shows the hazard function

hðtÞ dt ¼ Prðt\x	 t þ dt j x [ tÞ;

where x is occurrence time, which describes how,

given that the event has not occurred at time t, (the

remaining part of) p(t) should be renormalized:

hðtÞ ¼ pðtÞ
1� PðtÞ ¼

pðtÞ
SðtÞ :

For Pc \ 1 the survivor function SðtÞ does not

tend to zero, so the hazard function does not increase

indefinitely, but instead attains a maximum at some

time later than that of the maximum of pðtÞ; and then

decreases to zero.

3. Parkfield

We will now apply our method to analyze the

time series (Table 2) used by BAKUN and LINDH

Figure 7
Top example of forecast based on the sequence identification shown in Fig. 5; earthquakes are (blue) arrows and comb teeth are dashed thick

(red) lines (line heights have no meaning); the forecast pdf p(t) is shown by the thick (red) curve and the dotted line at its center indicates tf
while the short vertical lines on both sides of the teeth and the forecast indicate ±2r. Middle close-up of p(t) thick (red) line with tf indicated

by a short dotted vertical line; also shown are S(t) dot-dash (green) line and UðtjcÞ for several c values dotted (black) lines
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(1985) to predict the occurrence of an M� 6:0

earthquake near Parkfield, California, on December

1987 ±0.7 year.

Figure 8 shows the semi-periodicity analysis of

the time series consisting of the first six times shown

in Table 1, with tb ¼ 1; 850 and te ¼ 1; 970

(T ¼ 120 years). For the first pass (top), the small

vertical line around 0.0365 years-1 indicates that this

frequency was rejected by the program; the

0.0268 years-1 is acceptable and yields a comb with

four events, the solid arrows above the tentative comb

lines show the best-fitting events. The 1881 event is

discarded and the second pass (middle) shows now a

single dominant spectral peak around 0.0277 years-1,

and the 1922 event is again identified as a bad fit. The

1922 event is discarded and the third and fourth

passes (third not shown, because it is identical with

the fourth) identify a clear spectral peak at

0.0275 years-1, corresponding to sp ¼ 36:36 years

with r ¼ 4:55 years which results in the aftcast of an

earthquake around tf ¼ 2005:63
 9:10 years with a

high Pc ¼ 0:894 (Fig. 9). The corresponding proba-

bility and information gains are presented in Table 3.

The large aftcast probability is due to the relatively

small N = 6 for K = 4, in spite of the large r: In any

case, as can be seen in Fig. 9, the aftcast predicts very

well the occurrence time of the September 2004

earthquake (dotted arrow).

SAVAGE (1993) states that the problem with the

Parkfield prediction was that it did not consider alter-

native hypotheses, and presents other two hypotheses

based on the same time series. We propose the new

alternative hypothesis that not all earthquakes in a given

series need belong to the same sequence.

4. Discussion

We present a method to look for semi-periodic

sequences within a series of occurrence times, which

takes into account the possible presence of more than

one sequence and of event times, which do not belong to

the sequences. Many trials with synthetic data sets,

show that the method is surprisingly capable of iden-

tifying semi-periodicities, although some combinations

of events result in spectra without recognizable maxima

Table 2

The first six lines (1857 to 1966) contain the set of occurrence times

used by BAKUN and LINDH (1985) to predict an earthquake near

Parkfield around December 1987; the last line gives the time of

actual earthquake occurrence

Year/month/day M t

1857/01/09 7.9 1,857.02339

1881/02/02 *6.0 1,881.08904

1901/03/03 *6.0 1,901.16849

1922/03/10 6.0 1,922.18767

1934/06/08 6.0 1,934.43425

1966/06/28 6.0 1,966.48767

2004/09/28 6.0 2,004.74240

Figure 8
Semi-periodicity analysis of the Parkfield series. Same conventions

as in Fig. 3
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or with maxima that are artifacts of the transform, but

these maxima are usually recognizable because they

lack harmonics. We also propose measures to evaluate

the significance of the identifications, i.e., the proba-

bility that they are not occurring by chance, and use

these to forecast future events.

A very large success ratio in identifying known

sequences within synthetic data sets, prompted the

application of the method to real seismicity data sets;

the first application considers the Parkfield prediction

data set, and results in a quite accurate aftcast. Other

results from application to data from Japan and

Venezuela, are given in the companion paper by

QUINTEROS et al. (2013).

The main limitation in the application of the

method is that, given that it is a purely statistical

method, there is no assurance that the identified

sequences correspond in effect to physical semi-

periodic processes that may be expected to produce,

semi-periodically, future earthquakes. Thus, the

forecasts from the method cannot be considered as a

basis for concern or preventive action until their

reliability is confirmed by further studies; however

they could be useful as a factor when considering

hazard estimates.
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Figure 9
Forecast for the Parkfield sequence. Same conventions as in Fig. 7, plus actual occurrence of the 2004.74 earthquake shown as a dotted arrow.

The forecast pdf in the middle plot can barely be seen because of the very large r , but how close the actual earthquake occurrence time is to

the forecast time tf can be clearly appreciated in the top and bottom plots

Table 3

Probabilities and probability and information gains for the

Parkfield sequence

q Pcq p1? p�1þ PG IG (bits)

1 0.611 0.366 0.141 1.820 0.864

2 0.854 0.598 0.262 1.493 0.578

3 0.892 0.745 0.366 1.251 0.323
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