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Lenin Ávila-Barrientos 19 

https://orcid.org/0000-0001-7451-8636 20 

 21 

https://orcid.org/0000-0001-6778-2017
https://orcid.org/0000-0003-1494-2229
https://orcid.org/0000-0003-0277-3034
https://orcid.org/0000-0001-7451-8636


 2 

 22 

Abstract 23 

 The b-value, a crucial parameter in the Gutenberg-Richter magnitude distribution, 24 

plays a pivotal role in understanding seismic activity. Its significance stems primarily from 25 

its inverse correlation with stress levels in the Earth's crust, offering valuable insights into 26 

the underlying forces that drive earthquake occurrences. The case when a data sample 27 

contains events from two different populations having different b-values is considered, and 28 

how the G-R histogram will feature a change in slope that tends asymptotically to the 29 

smallest of the b-values is demonstrated. It is shown how, given enough data, the 30 

parameters of the two populations can be approximately recovered, and provide both 31 

numerical examples and applications to real data. 32 

Key words: Gutenberg-Richter b-value; Composite statistical populations; Recovering 33 

different b-values; Statistical seismology  34 

 35 

1 Introduction 36 

 A most important statistical tool widely used in seismological studies is the 37 

Gutenberg-Richter magnitude distribution (Ishimoto and Ida,1939; Gutenberg and 38 

Richter,1944; Richter, 1958) 39 

(1) 40 

where 𝑁(𝑀) is the number of magnitudes ≥ 𝑀, 𝑎 = log10 𝑁(𝑀𝑐) is the total number of 41 

sample data, b describes the proportion of large magnitudes to small ones (Richter, 1958), 42 

and 𝑀𝑐 is the completeness magnitude below which log10 𝑁(𝑀) ceases to behave linearly 43 

due to insufficient seismographic coverage (e.g., Wiemer and Wyss, 2002). 44 

 The b parameter is quite important for several reasons; not only does it help to 45 

estimate occurrence rates for different magnitudes (within limits that will be mentioned 46 

below), but it gives information about physical characteristics of the seismicity. Since the 47 

G-R distribution implies a power-law relationship for the seismic moment, b gives 48 

information about the scaling of the seismic sources (e.g., Rundle, 1989; Okal and Kirby, 49 

log10 𝑁(𝑀) = 𝑎 − 𝑏 (𝑀 − 𝑀𝑐);    𝑀 ≥ 𝑀𝑐 
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1995; Main et al, 2000; Fujii and Matsumura, 2001; Rundle et al., 2003; Madariaga, 2010; 50 

Amitrano, 2012). Further information about the spatial distribution of sources is the 51 

proposed relationship between b and fractal dimension (e.g., Aki, 1981; Hirata, 1989; 52 

Oncel et al., 2001; Wyss et al., 2004; Singh et al. 2009), and b and magnitude entropy 53 

(Mansinha and Shen, 1987; Main and Al-Kindy, 2002; Nava, 2024). 54 

 Probably, the most important feature of b is its inverse relationship with the stress 55 

level (Wyss, 1973; Frohlich and Davis, 1993; Enescu and Ito, 2001; Utsu, 2002; Wyss et 56 

al., 2004; Nuannin et al., 2005; Schorlemmer et al, 2005; Nanjo et al., 2012;  El-Isa and 57 

Eaton, 2014; Scholtz, 2015; Wang, 2016; DeSalvio and Rudolph, 2021; Li and Chen, 2021; 58 

Godano et al., 2024; Hu et al, 2024; and many others), which gives b a most important role 59 

in earthquake hazard estimation and forecasting. 60 

The G-R distribution does not contemplate an upper limit for M, but there are 61 

physical limits to how large a magnitude can be (e.g., Olsson, 1999; Kijko, 2004), and it 62 

has been proposed that the G-R distribution should be truncated or otherwise modified for 63 

extremely large magnitudes (e.g., Sornette et al., 1996; Sornette and Sornette, 1999; 64 

Burroughs and Tebbens, 2002). Below the megaquake level, discontinuities in the slope of 65 

the G-R distribution have been observed, and the changes to higher values of b occurring 66 

for M ~ 7.5 have been explained in terms of changes in source scaling due to characteristic 67 

sizes of the seismogenic regions (Scholz, 1982; Singh et al., 1983; Pacheco et al, 1992; 68 

Romanowicz and Rundle, 1993; Scholz, 1997; Main et al., 1999; Amitrano, 2003; 69 

Pisarenko and Sornette, 2004). 70 

 Sometimes G-R histograms feature another change in slope for magnitudes smaller 71 

than the above mentioned ones; some examples are: Singh et al. (1983), Okal and Kirby 72 

(1995), Triep and Sykes (1997), Wiemer and McNutt (1997), Wyss et al. (1997), Wiemer 73 

and Wyss (2002), Amorese (2007), Zhan (2017). A sharp change in slope occurring always 74 

at the same magnitude can be explained by different magnitude scales being used for two 75 

different magnitude ranges (e.g., Ávila-Barrientos and Nava, 2020), while gradual 76 

increases in slope can be caused by insufficient sampling. 77 

 In the present work, the possibility that a sample be taken from two different 78 

populations with different b-values will be considered, to see what changes such a mixture 79 

can cause in the G-R histogram, and a method to recover these values approximately will 80 
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be proposed. At first, the theoretical case is presented, then the results are justified through 81 

numerical simulation, which shows which ranges of b-values are identifiable under which 82 

sample sizes. Finally, two examples of application to real data from different tectonic 83 

regimes are presented. 84 

 85 

2 b-value estimation 86 

 For the distribution (1) b-values can be estimated directly from the slope of the 87 

linear range on the G-R histogram (e.g. Guttorp, 1987), but frequently b-values are 88 

estimated from the mean magnitude (Aki, 1965; Utsu, 1965; Tinti and Mulargia, 1987; 89 

Marzocchi and Sandri, 2003), using the Aki-Utsu maximum likelihood estimate 90 

  91 

(2) 92 

where �̅� is the observed mean of the data and 𝑚𝑐 = 𝑀𝑐 − ∆𝑀/2, ∆𝑀 is the rounding 93 

interval, and 𝑀𝑐 is the rounded magnitude of completeness.  (Aki, 1965; Utsu, 1965). 94 

 The G-R distribution (1) is a reverse cumulative histogram corresponding to an 95 

exponential magnitude probability density function,  96 

(3) 97 

where  98 

(4) 99 

and 𝜇 is the mean of the exponential distribution. 100 

3 Two bs  101 

 Suppose there is a region of interest where seismicity corresponds to two different 102 

populations with different b-values. This could be the case, for instance, when a largish 103 

earthquake has occurred within the region, but it was not large enough to liberate all 104 

stresses in the region, and it is not practical to try to discriminate between areas having 105 

𝑏 =
log10(e)

�̅� − 𝑚𝑐

 , 

𝑝(𝑚) = 𝛽 e−𝛽 (𝑚−𝑚𝑐);   𝑚 ≥ 𝑚𝑐 

𝛽 = 𝑏 ln(10) = 1/ (𝜇 − 𝑚𝑐) , 
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different stresses. Another instance would be when volcanic or geothermal activity 106 

associated with high b-values is present within a seismogenic region. 107 

 In such a region the population is a composite of two GR-distributed populations, 108 

one consisting of 𝑁1 elements distributed exponentially with parameter 𝛽1, and another 109 

with 𝑁2 elements and parameter 𝛽2. The total number of observed events, 𝑁𝑇 = 𝑁1 + 𝑁2, 110 

will be distributed as 111 

 112 

(5) 113 

 114 

and the corresponding pdf is 115 

 116 

(6) 117 

with mean 118 

                           From ∫ 𝑥e𝑐𝑥d𝑥 = e𝑐𝑥 (
𝑐𝑥−1

𝑐2 )  119 

∫ 𝑀𝛽1e−𝛽1(𝑀−𝑀𝑐)d𝑀 = 𝛽1e𝛽1𝑀𝑐 ∫ 𝑀e−𝛽1𝑀d𝑀 =
1

𝛽1
+ 𝑀𝑐

∞

𝑀𝑐

∞

𝑀𝑐

 120 

 121 

(7) 122 

 123 

 From (4) and (7),  124 

(8) 125 

 126 

so the observed  �̅� will have a value intermediate between �̅�1 and �̅�2. Hence, the b-value 127 

estimated from the Aki-Utsu relation (2), 𝑏𝑚, will have a value intermediate between 𝑏1 128 

and 𝑏2, 129 

  130 

(9) 131 

 132 

𝑓(𝑀) =
𝑁1

𝑁𝑇
𝛽1e−𝛽1(𝑀−𝑀𝑐) + 

𝑁2

𝑁𝑇
𝛽2e−𝛽2(𝑀−𝑀𝑐) , 

𝑛(𝑀) = 𝑁1𝛽1e−𝛽1(𝑀−𝑀𝑐) + 𝑁2𝛽2e−𝛽2(𝑀−𝑀𝑐) , 

�̅� = E[𝑓(𝑀)] =
𝑁1 

𝑁𝑇
(

1

𝛽1
+ 𝑀𝑐) +

𝑁2 

𝑁𝑇
(

1

𝛽2
+ 𝑀𝑐) , 

�̅� =
𝑁1

𝑁𝑇
�̅�1 +

𝑁2

𝑁𝑇
�̅�2 , 

1

𝑏𝑚
=

𝑁1

𝑁𝑇

1

𝑏1
+

𝑁2

𝑁𝑇

1

𝑏2
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Figure 1 shows an example of how 𝑏𝑚 varies with the fraction 
𝑁1

𝑁𝑇
 for given 𝑏1 = 0.8 and 133 

𝑏2 = 1.2; note that for 𝑁1 = 𝑁2 the observed 𝑏𝑚 = 0.960 ≠ (𝑏1 + 𝑏2)/2. 134 

 135 

 136 

Fig. 1 Measured 𝑏𝑚  value for 𝑏1 = 0.8  and 𝑏2 = 1.2  for different relative values of 137 

𝑁1 𝑁𝑇⁄ . 138 

 139 

  140 

Knowing only 𝑁𝑇  and 𝑏𝑚 , can the parameters of the original populations be 141 

recovered? In principle, yes, if recourse to the G-R histogram of the observed data is taken; 142 

as explained below. 143 

 144 

 The measured G-R distribution is the logarithm of the reverse cumulative of the pdf, 145 

thus from (6)  146 

(10) 147 

 148 

and 149 

 150 

𝐹(𝑀) = ∫ 𝑓(𝑚) d𝑚

𝑀

𝑀𝑐

=
𝑁1

𝑁𝑇
(1 − e−𝛽1(𝑀−𝑀𝑐)) +  

𝑁2

𝑁𝑇
(1 − e−𝛽2(𝑀−𝑀𝑐)) 

𝐹𝐺𝑅(𝑀) = 1 − 𝐹(𝑀) = 1 −
𝑁1

𝑁𝑇
 −

𝑁2

𝑁𝑇
+

𝑁1

𝑁𝑇
e−𝛽1(𝑀−𝑀𝑐) +

𝑁2

𝑁𝑇
e−𝛽2(𝑀−𝑀𝑐) 
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 151 

 152 

so that 153 

(11) 154 

which is the G-R distribution resulting from the mixing of two samples from different 155 

populations. 156 

 Choosing 𝛽1 < 𝛽2, let (11) be written as 157 

 158 

 159 

and taking logarithms 160 

log10 𝑁(𝑀) = 𝑎1 − 𝑏1(𝑀 − 𝑀𝑐) +  log10 [1 +
𝑁2

𝑁1
e−(𝛽2−𝛽1)(𝑀−𝑀𝑐)] , 161 

 162 

where 𝑎1 = log10 𝑁1, and may be written as 163 

(12) 164 

 165 

where 166 

(13) 167 

 168 

 Equation (12) tells that the observed G-R histogram for the combined populations, 169 

called henceforward GR, can be seen as the G-R histogram of the 𝑏1 population, 𝑎1 −170 

𝑏1(𝑀 − 𝑀𝑐), which will be called GR1, plus the 𝛤 term. 171 

 172 

 Figure 2 shows GR, GR1, and the G-R histogram of the 𝑏2  population, 𝑎2 −173 

𝑏2(𝑀 − 𝑀𝑐), where 𝑎2 = log10 𝑁2, which will be called GR2. It also shows the 𝛤 term and 174 

the straight line 𝑎𝑚 − 𝑏𝑚(𝑀 − 𝑀𝑐) , which will be referred to as GRm, where  175 

𝑎𝑚 = log10 𝑁𝑇 and  𝑏𝑚 is the slope estimated from the mean magnitude (8).  176 

 177 

𝐹𝐺𝑅(𝑀) =
𝑁1

𝑁𝑇
e−𝛽1(𝑀−𝑀𝑐) +

𝑁2

𝑁𝑇
e−𝛽2(𝑀−𝑀𝑐) 

𝑁(𝑀) = 𝑁𝑇𝐹𝐺𝑅(𝑀) = 𝑁1e−𝛽1(𝑀−𝑀𝑐) + 𝑁2e−𝛽2(𝑀−𝑀𝑐) . 

log10 𝑁(𝑀) = 𝑎1 − 𝑏1(𝑀 − 𝑀𝑐) +  𝛤 , 

 𝛤 ≡ log10 [1 +
𝑁2

𝑁1
e−(𝛽2−𝛽1)(𝑀−𝑀𝑐)]  . 

𝑁(𝑀) = 𝑁1e−𝛽1(𝑀−𝑀𝑐) [1 +
𝑁2

𝑁1
e−(𝛽2−𝛽1)(𝑀−𝑀𝑐)], 
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178 

Fig. 2 Magnitude G-R distributions for data from two populations with 𝑏1 = 0.8 and 𝑏2 =179 
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1.2 for different number of events corresponding to each population. The blue and green 180 

lines indicate the distributions for 𝑏1 and 𝑏2, respectively; the thick red line is the G-R 181 

distribution for the combined data, and the dotted black line shows the distribution inferred 182 

from the measured 𝑏𝑚; the black line shows the 𝛤 function (13). Panels (A), (B), and (C) 183 

show results for 𝑁1 > 𝑁2, 𝑁1 = 𝑁2, and 𝑁1 < 𝑁2, respectively. Arrows above the 𝛤 and 184 

GR histograms indicate the magnitudes for which 𝛤, is smaller than log10 𝑁𝑇 by a factor 185 

of 0.01. 186 

 187 

4 Recovery of the individual distributions 188 

 The observed GR graph is not a straight line; for small magnitudes it is well fitted 189 

by GRm, but differs from it as its slope diminishes for higher magnitudes, as will be 190 

discussed below. Here is a caveat for b estimations based on small samples that do not 191 

show clearly the change in slope, which is not seen or is attributed to a random superavit 192 

of large magnitudes. 193 

 As shown in Figure 2, the 𝛤 term is maximum for 𝑀 = 𝑀𝑐, where its value depends 194 

on the ratio 𝑁2/𝑁1. Now, if 𝑁1~𝑁2 is assumed, because if one of the populations is much 195 

smaller than the other then its contribution to (5) will not be significant and can be ignored, 196 

then the ratio will be in the ~0.5 to ~2.0 range, and a 𝛤 maximum in the ~0.176 to ~0.477 197 

range can be expected. The 𝛤  term diminishes as magnitudes increase at a ratio that 198 

depends on ∆𝛽 = 𝛽2 − 𝛽1.  Thus, the GR histogram tends asymptotically to GR1 for large 199 

magnitudes, and although 𝛤 will not be strictly zero within the practical magnitude range, 200 

it can attain values much smaller than log10 𝑁𝑇 . Arrows above the 𝛤 and GR histograms 201 

indicate the magnitude for which Γ ≤ 𝛾 log10 𝑁𝑇 = log10 𝑁𝑇
𝛾
, for a factor 𝛾 = 0.01, and it 202 

can be seen that, from that magnitude on, 𝛤  decreases quite slowly and becomes 203 

approximately parallel to GR1, so that a fit of a straight line to the tail of the distribution 204 

can estimate both 𝑏1 and, approximately, 𝑁1. 205 

 Figure 3 shows how 𝑀𝛾 , the magnitude at which  𝛤 = 𝛾 log10 𝑁𝑇 , varies for 206 

different values of 𝑁2/𝑁1 and 𝑏2 − 𝑏1 for 𝛾 = 0.01 and 𝑁𝑇 = 14,000. 207 

 208 
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𝛤 ≡ log10 [1 +
𝑁2

𝑁1
e−(𝛽2−𝛽1)(𝑀−𝑀𝑐)] = 𝛾 log10 𝑁𝑇 209 

𝑀𝛾 − 𝑀𝑐 = − ln [
𝑁1

𝑁2
(𝑁𝑇

𝛾
− 1)] /[(𝑏2 − 𝑏1) ln 10] 210 

 211 

 212 

Fig. 3 Variation of  𝑀𝛾 for different values of 𝑁2/𝑁1 and 𝑏2 − 𝑏1. 213 

 214 

 215 

 216 

 From 𝑁1 and 𝑁𝑇,  217 

(14) 218 

can be easily estimated, so it only remains to estimate 𝑏2. 219 

 From (4) and (8) 220 

 221 

 222 

so that 223 

(15) 224 

 225 

and all parameters have been approximately estimated. 226 

𝑁2 = 𝑁𝑇 − 𝑁1 

(
log10 e

𝑏𝑚
+ 𝑀𝑐) =

𝑁1

𝑁𝑇
(

log10 e

𝑏1
+ 𝑀𝑐) +

𝑁2

𝑁𝑇
(

log10 e

𝑏2
+ 𝑀𝑐) 

𝑏2 = 𝑁2 (
𝑁𝑇

𝑏𝑚
−

𝑁1

𝑏1
)

−1

 , 
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 227 

 228 

5 Numerical example 229 

 Next, it will be shown whether synthetic sets consisting of exponentially distributed 230 

magnitudes randomly generated for two exponential populations with different b-values 231 

and different sizes do distribute according to (12) and exhibit the features seen in the 232 

analytic treatment. Simulations are useful because they can help to identify possible 233 

limitations and problems in treating with data, that do not appear for the analytic treatment. 234 

 235 
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 236 

Fig. 4 Exponential distributions for two synthetic exponentially distributed populations 237 

with 𝑏1 = 0.8,  𝑏2 = 1.3, respectively, and their sum for 𝑀𝑐 = 4.0 (A). The corresponding 238 

G-R distributions as identified in the legend and, in the same color, the straight lines for 239 

each of the populations (B), showing the measured 𝑏𝑚  and an arrow indicating the 240 

magnitude corresponding to 𝛾 = 0.005. 241 

 242 

 243 
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 Figure 4 shows an example of a synthetic realization; on top (A) are shown the 244 

exponential distributions for the two populations with different b-values and the 245 

distribution resulting from considering the two populations as one, and below (B) are 246 

shown the G-R histograms for each of the populations, GR1 and GR2, and for the combined 247 

population, GR, together with the straight lines for to the individual populations and for 248 

the Aki-Utsu analysis of the combined population. 249 

 The figure shows expected behavior and other plausible features. It also shows the 250 

effects of the main limitation of this and other statistical studies: i.e., scarcity of data for 251 

large magnitudes. 252 

 253 

 254 

Fig. 5 Close-up of Figure 4. 255 

 256 

 257 

 Figure 5 again illustrates the major problem in recovering the distribution 258 

parameters: even though this example has an unrealistic large number of data, large 259 
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magnitudes are not numerous enough for the histogram to approach the  slope, so this 260 

parameter will be overestimated. The problem is, of course, worse for smaller samples. 261 

 The strategy to follow is to look for the magnitude range that, when fitted by least-262 

squares, results in the smallest  value. Results are not bad: in this example, it is possible 263 

to identify this parameter with an error of less than 6%. 264 

 This overestimate, however, also results in an overestimate of  so that b2 from 265 

(15) is oversestimated and N2 from (16) is underestimated; however, the actual value of 266 

these parameters is not very important, because for precursory purposes it is important to 267 

detect the underlying low b values. 268 

 269 

6 Application  270 

 As a first illustration of the application to real data, data from the RESNOM 271 

network for northern Baja California will be used. Figure 6 shows the study area, the 272 

epicenters for events 𝑀 ≥ 2.5 for 2012 to mid 2024, the main faults, the international 273 

Mexico/US border, and the location of the El Mayor-Cucapah (EMC) 𝑀𝑊 = 7.2 274 

earthquake of April 4, 2010. 275 

Earthquakes occurring close to the rupture area of the EMC event can be expected 276 

to have a high b-value corresponding to a stress-depleted volume, but it is very hard to 277 

separate these earthquakes from the surrounding seismicity, hence the method presented 278 

above will be applied to the whole seismicity. 279 

The analysis is shown in Figure 7, where the G-R line shows a discontinuity around 280 

𝑀 = 4.3 to 4.4 and an apparent 𝑏𝑚 = 0.990, the change in slope occurs around magnitude 281 

4.2, and the minimum slope, corresponding to 𝑏1 = 0.709 , is found for magnitudes 282 

between 4.4 and 4.7, and 𝑏2 = 1.207 would correspond to the low-stress population. 283 

 284 

b
1

b
1

N
1



 15 

 285 

Fig. 6 Seismicity for the region around the EMC earthquake is indicated by the yellow 286 

hexagon; blue circles are epicenters, and thin lines indicate the principal local faults and 287 

the Gulf of California coastline. The thick, straight line is the international Mexico-USA 288 

border. 289 

 290 
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 291 

Fig. 7 G-R distribution corresponds to the seismicity of Fig. 6 (blue circles) and the non-292 

cumulative distribution (red circles); the green line indicates 𝑀𝑐. The dashed line is the fit 293 

to the smaller magnitudes’ distribution resulting in 𝑏𝑚 = 0.99, and the thick black line is 294 

the fit to the 𝑏1 slope. 295 

 296 

 297 

 As a second illustration, earthquakes in northern Chile (Fig.8) between August 1, 298 

2000 and August 8, 2024 in a region that comprises the site of the September 2015 MW 8.3 299 

earthquake, and a region to the North where no large earthquakes have occurred recently 300 

will be considered. Data were downloaded from the USGS Search Earthquake Catalog 301 

https://earthquake.usgs.gov/earthquakes/search/ 302 
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 303 

Fig. 8 Seismicity for the region around the 2015 MW 8.3 earthquake is indicated by the 304 

yellow hexagon; blue circles are epicenters, and the black line indicates the Pacific Ocean 305 

coastline. 306 

 307 

 308 

 The corresponding analysis is shown in Figure 9, where the apparent  𝑏𝑚 = 1.17, 309 

a change in slope can be seen around 𝑀 = 5.6, which leads to 𝑏1 = 0.841 and 𝑏2 = 1.719. 310 

 311 

 312 

 313 
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 314 

Fig. 9 G-R distribution corresponds to the seismicity of Fig. 8 (blue circles) and the non-315 

cumulative distribution (red circles); the green line indicates 𝑀𝑐. The dashed line is the fit 316 

to the smaller magnitudes’ distribution resulting in 𝑏𝑚 = 1.17,  and the thick black line is 317 

the fit to the 𝑏1 slope. 318 

 319 

  320 

Besides giving the important values of 𝑏1 and 𝑏2, the estimated values of 𝑁1 and 321 

𝑁2  are also important, because dividing them by the total observation time yields the 322 

activity rates of both processes, which can be used to obtain estimates of Poissonian 323 

occurrence probabilities for given time intervals. The relative sizes of 𝑁1 and 𝑁2 clearly 324 

show which process is more active; the results from Figure 7 indicate that for the data from 325 

Baja California the process corresponding to 𝑏1 is only about half (0.45) as active as that 326 

corresponding to 𝑏2, while for Chile (Fig. 9) the ratio 𝑁1 𝑁2⁄ = 0.80 shows both processes 327 

to be approximately equally active. 328 

 329 

7 Discussion and Conclusions 330 

 The case of catalog data being a mixture of two GR distributed populations with 331 

different b-values has been considered, and it has been shown that in some cases it may be 332 
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possible to identify approximately the b-values and number of events in each population. 333 

This setup is not rare and may be due to aftershocks of large events being included in the 334 

data or including data from volcanic or geothermal sources together with data from tectonic 335 

earthquakes. 336 

 Whatever the b-values and the relative population sizes, as long as these are large 337 

enough, the observed change in slope is always from larger to smaller as magnitudes 338 

increase. Thus, changes in slope from smaller to larger must be due to some other 339 

mechanism like the one mentioned above for magnitudes ~7.5. 340 

 The main problem in the application is (as always for statistical studies) having 341 

enough data, because if any or both of the populations do not have enough events above 342 

the magnitude where 𝑏1  could be identified, then the distribution will appear to be a 343 

standard distribution with one slope 𝑏𝑚. If this is the case, extrapolation of rates for large 344 

magnitudes will be underestimated (e. g., Singh et al., 1983). 345 

 If two slopes are identified, then there are two G-R distributions to base estimates 346 

of future activity on, but since the one for 𝑏1corresponds to the largest regional stress, it 347 

should be the one appropriate for the highest occurrence rate of large magnitudes, and 348 

hence the one to be used for hazard studies.   349 
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