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Earthquake hazard assessment in seismogenic systems through Markovian
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An earlier work (Herrera et al.: Earth Planets Space, 58, 973–979, 2006) introduced two new methods
for seismic hazard evaluation in a geographic area with distinct, but related, seismogenic regions. These two
methods are based on modeling the transition probabilities of states, i.e. patterns of presence or absence of
large earthquakes, in the regions, as a Markov chain. This modeling is, in turn, based on a straightforward
counting of observed transitions between states. The direct method obtains transition probabilities among states
that include events with magnitudes M ≥ Mr , where Mr is a specified threshold magnitude. The mixed method
evaluates probabilities for transitions from a state with M ≥ Mm

r to a state with M ≥ MM
r , where Mm

r < MM
r .

Both methods gave very good results when applied to the Japan area, with the mixed method giving the best
results and an improved magnitude range. In the work presented here, we propose other methods that use the
learning capacity of an elementary neuronal network (perceptron) to characterize the Markovian behavior of the
system; these neuronal methods, direct and mixed, gave results ∼7 and ∼6% better than the counting methods,
respectively. Method performance is measured using grading functions that evaluate a tradeoff between positive
and negative aspects of performance. This procedure results in a normalized grade being assigned that allows
comparisons among different models and methods.
Key words: Probabilistic seismic hazard assessment, neural networks, Markov chains.

1. Introduction
The term seismic hazard denotes the probability of occur-

rence of earthquakes in a given time, space, and magnitude
range. Seismic hazard assessment is one of the main goals
in seismology because it is a key factor in a correct and use-
ful assessment of seismic risk which, in turn, can diminish
the social, economic, and political impacts of the devastat-
ing effects caused by large earthquakes.

Seismic hazard estimations for large earthquakes can be
made from deterministic earthquake cycle models, from a
purely statistical analysis of seismicity, or from stochastic
models such as ours (Herrera et al., 2006) where we com-
bine a very simple physical model (embodied in the concept
of the system we use) with a statistical Markov chain analy-
sis of seismicity in the system. The main problem with haz-
ard estimations involving statistical analysis is the compar-
atively short span of available seismic catalogs compared
with the relatively longer average recurrence times of large
earthquakes. Thus, in order to test a seismic hazard esti-
mation method, the researcher needs a seismogenic region
with frequent large earthquakes and a reliable seismic cata-
log, i.e., a region such as Japan.

The Japan area has a particularly high level of seismic ac-
tivity and has often experienced large and destructive earth-
quakes. The tectonic regime of the Japan and surround-
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ing areas is a very complex system, with seismicity and
faulting related to the continuous NW motion on the NE
and SW Japan arc systems. Seismicity in Japan is cate-
gorized as intraplate or interplate depending on its tectonic
origin. Intraplate events are shallow events that occur on
land, while interplate events occur along major subduc-
tion zones, such as those between the Philippine, Pacific,
and North American plates. In Japan, earthquake recur-
rence for intraplate events is much longer than that for in-
terplate events (Shimazaki, 1976). Many large interplate
earthquakes have occurred in the Tohoku district of north-
ern Japan, suggesting strong seismic coupling on the plate
boundary (Kanamori, 1977). Ito et al. (1999, 2000) ap-
plied an inversion analysis of GPS measurements in order
to find the spatial distribution of the interplate coupling in
NW and SE Japan. Large earthquakes have occurred re-
peatedly along the Nankai through (Thatcher and Rundle,
1984). This high level of seismic activity is of major con-
cern, emphasizing the need for earthquake preparedness and
an updated seismic characterization of the area.

A variety of probabilistic models have been proposed for
seismic hazard assessment in the Japan area. The well-
known time-predictable recurrence model of Shimazaki and
Nakata (1980) is based on earthquakes and morphological
data from Japan. Utsu (1984) presented results from their
application of four renewal models—Weibull, gamma, log-
normal, and the double exponential probability density—
for the recurrence of earthquakes observed in several seis-
mic regions in Japan. In a number of cases, the lognormal
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model gave the best results. In his comprehensive review of
earthquake prediction efforts in Japan, Mogi (1985) noted
that recurrence times for the Tokyo area are exponentially
distributed. Wyss et al. (2007) and Katsumata and Kasahara
(1999) used the statistics of seismicity to evaluate seismic
quiescence before the Izu-Oshima 1990 and the Kurile 1994
earthquakes, respectively. Other efforts focused on improv-
ing earthquake prediction in Japan are described in Hirata
(2004). The model we propose here differs from the above-
mentioned models mainly in that we introduce the concept
of system and explore the possibility of it having a Marko-
vian behavior.

Many of the models used for hazard estimation are based
on the analysis of the seismic history of a given area; these
include hazard analysis from recurrence-time estimates
based on the Gutenberg-Richter distribution (Gutenberg
and Richter, 1944), the numerous models based on Pois-
sonian seismicity models (e.g,, Brillinger, 1982; Lomnitz
and Nava, 1983), which model the earthquake recurrence as
an entirely random process, and those from Bayesian meth-
ods (e.g., Garcı́a-Fernández and Egozcue, 1989; Rüttener
et al., 1996), which provide a mathematical model to esti-
mate the distribution of random variables in the presence of
uncertainties and the semi-Markov process applied to lin-
ear zones (Patwardahan et al., 1980). Almost all seismic
hazard models including a causal physical component are
based, directly or indirectly, on the elastic-rebound model
(Reid, 1910; Richter, 1958). Among these models are those
for recurrence times based on seismotectonic arguments,
such as the time predictable or slip-predictable models of
Shimazaki and Nakata (1980), those based on the seismic
gap concept (e.g., Fedotov, 1965; McCann et al., 1979;
Kagan and Jackson, 1991), and those based on seismic mi-
gration (e.g., Richter, 1958; Mogi, 1968). However, these
determinations are not reliable enough, given the large num-
ber of implicit suppositions and unknown factors they con-
tain, over which there is as yet no control. New methods are
needed to overcome the limitations of these conventional
methods.

The artificial neural networks (ANN) approach has re-
cently been shown to have an enormous potential for solv-
ing a variety of problems in various fields, such as image
and signal processing (Kashyap, 1976; Mcllraith and Card,
1997), civil, electrical, and mechanical engineering (Chao
and Skibniewski, 1994; Karunanithi et al., 1994), and seis-
mology (Zhao and Takano, 1999). This approach does not
depend upon any assumptions on the distribution of the
data, it is capable of handling data having different pre-
cision levels, and it has a rapid data processing capability
(Dowla et al., 1990).

Nava et al. (2005) and Herrera et al. (2006) proposed
statistical methods for seismic hazard evaluation based on
modeling the transition probabilities between states, i.e.,
the geographical patterns of occurrence or non-occurrence
of large earthquakes in different regions of a given geo-
graphic area during a time interval, as a Markov chain.
These methods were based on the straightforward counting
of observed transitions between states. The direct method
obtained transition probabilities between states, where both
initial and final states consider events with magnitudes M ≥

Mr , where Mr is a specified threshold magnitude. The
mixed method evaluates probabilities for transitions from
a state with M ≥ Mm

r to a state with M ≥ MM
r , where

Mm
r < MM

r . The motivation for the mixed method is that
events with large magnitudes are relatively scarce, so that
adequate sampling of large events is severely limited by the
length of existing catalogs. This method explores the possi-
bility of smaller magnitudes yielding information on the oc-
currence of larger magnitude earthquakes. If the threshold
magnitude is too large, almost all observed states become
the zero state (no activity at all), and forecasting becomes
trivial but useless. By using different threshold magnitudes,
we extend the forecasting power of the direct method to
higher target magnitudes. Both methods gave very good
results when applied to the Japan area, with the best results
and an improved magnitude range being obtained using the
mixed method (Herrera et al., 2006).

The form in which the matrices for the Markovian tran-
sition probabilities are constructed in the straightforward
counting method, with each new considered transition mod-
ifying the previous probability estimates, can be thought of
as a learning process. Therefore, we considered the possi-
bility of applying other learning methods to the Markovian
seismic hazard evaluation problem, and the ANN were nat-
ural candidates for this objective. Here, we report on the
simplest type of neural network, called perceptron. Our
analysis revealed that the results from perceptron learning
are better than those from the counting methods. The as-
sessment criteria are discussed in the following sections.

2. System Seismic Hazard (Review)
We define a system as a geographic area that includes R

seismogenic regions. Given a seismic catalog and a starting
time during each successive time interval of �t , the state of
each region sr has one of two values, 0 or 1, corresponding,
respectively, to absence or presence of earthquakes with a
magnitude larger or equal than some threshold value Mr .
The total state of the system s is the sum of the regional
states:

s =
R−1∑
r=0

2r sr , (1)

and there are S = 2R possible system states. In binary for-
mat, s is simply the concatenation of the binary regional
states; it ranges from 00...00 to 11...11 and shows at a
glance which regions have earthquakes and which have not
for each state. Thus, the system seismic hazard is the prob-
ability of the system having a given state during a particu-
lar interval. In the following sections, we heuristically pro-
pose that the system is Markovian and assess whether the
assumption is correct by comparing the results with those
of memory-less models, such as the uniform or Poissonian
ones.

3. The Perceptron and State Coding
A Markovian model, for which the state probability over

a time interval depends only on the immediately previous
state, allows use of the simplest type of ANN, the percep-
tron, which consists of a set of input units [z] = {zi ; i =
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Fig. 1. Perceptron. The circles with the summation sign represent the
neurons.

1, 2, ..., n}, followed by a layer of neurons that calculate
a weighted sum of the inputs and a set of output units
[o] = {o j ; j = 1, 2, ..., n} where the result of the com-
putation is read off (Fig. 1).

To the input [z], corresponds the output [o], whose j th
element is

o j = f

(
n∑

i=1

wi j zi + bi

)
, (2)

where the wi j are weighted paths connecting each input unit
to each node, and f is an activation function that determines
the form of each output. A constant input [b], known as the
“bias”, is frequently added to the set of weights in order to
give greater stability to the system.

The weights are chosen so that, for a given input, the
network produces a given desired output, but these weights
generally are not known a priori. The most important char-
acteristic of an ANN is that it can learn, i.e., given pairs of
input/target output values, the perceptron can use a learning
scheme, such as the simple Hebb’s rule (Rosenblatt, 1958,
1962), based on the residuals of target minus actual outputs,
to modify an initial set of weights and thus achieve a better
match to the desired output:

wk+1
i j = wk

i j + �wk
i j

�wk
i j = η

(
dk

j − ok
j

)
zk

i ,
(3)

where η, the learning rate, is a damping factor that controls
how strongly the residuals modify the weights.

For our Markovian system, we will ask the perceptron to
output the state for interval j +1, as response to the input of
the state for interval j . Thus, each couple of successive sys-
tem states (Sj , Sj+1) corresponds to an input/target output
pair.

For the perceptron to function correctly, we need an or-
thogonal representation for the various states of the system.
Accordingly, each state will be coded as a binary word of
S bits, with only bit number j + 1 (where j corresponds

to the state number) different from zero. We will denote a
state thus coded by z. For example, for a system with four
regions and S = 16, state 10 (activity in the regions 1 and
3, s = 1010) is coded as z = 0000000000100000. This
orthogonal representation ortho-normalizes the states in S
dimensions.

4. Markovian Perceptron: Direct and Mixed
Methods

From the catalog, given t0 and �t , we tried both the direct
and the mixed methods described above.

For the direct method, one list of coded states z j is ob-
tained for M ≥ Mr , and the perceptron is made to learn
from input-output pairs {z j , z j+1}.

For the mixed method, two lists of coded states are
used—zm

n for M ≥ Mm
r , and zM

n for M ≥ MM
r , where

Mm
r < MM

r —and the perceptron is made to learn from
input-output pairs {zm

j , zM
j+1}, so that once the perceptron

has been trained, the current system state for M ≥ Mm
r

can be input to obtain a forecast of the coming state for
M ≥ MM

r .

5. Parameter Choice
A first, tentative choice of the system parameters is made

so as to obtain optimal definition and coverage within the
limits set by the catalog length (and, in some degree, by its
accuracy). This choice is conducted in manner described
below.

The seismic hazard spatial bounds are the boundaries of
interrelated seismogenic regions, which together constitute
a system. The term interrelated regions denotes regions
which may be considered separate from a tectonic or struc-
tural point of view, yet are close enough to each other so
that the stress changes caused by large earthquakes and the
corresponding plate motions in one region may influence
seismicity in other regions. Because of location uncertain-
ties, regions are separated by “no man’s land” strips with
widths corresponding to the uncertainties.

The choice of the threshold magnitudes, denoted by Mr ,
is governed by three factors: (1) Mr should be large enough
for useful hazard estimations, i.e., should correspond to
potentially damaging earthquakes; (2) Mr should be large
enough so that its occurrence should be largely influenced
by the overall regional stress state; (3) Mr should be small
enough to allow a sufficient statistical sample, but it should
not be so small as to appear in all or most of the considered
intervals, since then its forecast would be of no interest.

The choice of the time interval is governed by five fac-
tors: (1) �t should be small enough for hazard estimations
to be useful; (2) for too small �t , state 0 (no earthquakes
in any region) will be the most frequent one, so that the 0
to 0 transition will be dominant, and other probabilities dif-
ferent from p00 may be so small as to have no forecasting
value; (3) for too large �t , state S−1 (earthquakes in all re-
gions) will be dominant, and all probabilities different from
pS−1S−1 may be so small as to have no forecasting value;
(4) for a given catalog length, increasing �t diminishes the
number of sampled transitions and makes estimates of pi j

less robust; (5) �t should be large enough to allow interac-
tion among regions. Thus, once the regions and threshold
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magnitudes have been chosen, a preliminary estimation of
�t is based on the zeroes of θ00 − θS−1S−1 (the number of
transitions from state 0 to state 0 minus the number of tran-
sitions from state S − 1 to state S − 1) and of ξ0 − ξS−1 (the
total number of occurrences from state 0 minus the total
number of occurrences to state S − 1).

Once �t has been chosen, the initial time t0 is fixed
within the interval tmin − �t < t < tmin + �t , where
tmin is the time of the first earthquake with M ≥ Mr and
tmin − �t is covered by the catalog. The use of different
initial times allows the stability of the method to be assessed
by measuring the variation in results from one realization to
another (Nava et al., 2005).

The final choice of regions, time interval, and threshold
magnitudes is made empirically and is pragmatically deter-
mined by the combination of the parameters that results in
the best performance.

6. Performance Evaluation
For any method of hazard estimation, one direct measure

of its performance is the assessment of the probability it as-
signed to the actual outcome or outcomes. In our case, prior
to transition n, the system is in state i , and the probabilities
pi j constitute the hazard estimates for the next state; if state
k occurs, then the observed transition occurred with likeli-
hood p̂n = pik . The mean likelihood is

p̂ ≡
∑nt

n=1 p̂n

nt
, (4)

where nt is the number of realized transitions. According
to this measure, the best of several hazard estimate meth-
ods would be the one yielding the highest p̂. To assess
whether a given hazard estimate by itself is good, we can
measure its p̂ against the “natural” reference level, which
is the maximum entropy probability corresponding to the
null hypothesis of uniform probability, where all states are
equally likely to occur:

pU
i j ≡ u = S−1 = 〈pi j 〉. (5)

However, the p̂ measure does not take into account the
fact that the main object of hazard estimation is to forecast
earthquake occurrences so that society may be prepared for
them. A useful evaluation must take into account factors
such as the probability level of forecasts, multiple (and con-
tradictory) forecasts, false alarms, missed forecasts, among
many others. We will now define quantitative measures for
results that characterize the performance of a given method
or model.

We define a forecast as the statement that a given out-
come has a high probability of occurring. A probability is
considered to be high if it lies above a given threshold

px = fx u, (6)

where fx is a success factor which expresses the threshold
in terms of the uniform probability u. A forecast is suc-
cessful when an outcome with pi j > px occurs, and the
number of successful forecasts is nx . When a forecast is
not successful, then it is a false alarm (type I error), and the
number of false alarms will be denoted by nf.

The multiplicity, mi , is the number of elements larger
than px in row i of the transition probability matrix, i.e.,
the number of simultaneous forecasts. When mi = 0, there
is no forecast (no success or false alarm) and outcome i
is a missed event (type II error). The number of missed
events is nS = nt − np, where np is the number of transi-
tions for which there was a forecast, and nt is the total num-
ber of considered transitions. In order to be very strict with
successes, we divided each forecast success by the corre-
sponding multiplicity; for example, for mi = 2, a successful
forecast would count as half a success plus one false alarm,
while an unsuccessful one would count as two false alarms.

The regional error is the number of regions whose ac-
tivity (occurrence or non-occurrence of earthquakes) was
erroneously forecast.

All of the above counts are normalized by nt so that
performances with different lengths may be compared.

There is one last factor to consider, and this is the use-
fulness of the forecasts—i.e., the (non-)triviality of the
forecasts. There are two trivial cases. The first is when
the threshold magnitude is larger than the largest observed
one; in this case, the probability of no earthquakes at all,
p00 = 1, and all other probabilities are null. The second
trivial case is when the threshold magnitude is very small,
and pS−1S−1 = 1; however, this case is not so important
to us since we are interested in large earthquakes only. For
both trivial cases, the measures described above would yield
optimum values, but the forecasts would be completely use-
less because they would carry no information at all. Thus,
to avoid trivial, or close to trivial, cases, we need to pe-
nalize a hyperabundance of transitions ending in the 0 and
S − 1 states. This will be done by considering the dimin-
ishing information content of the corresponding transition
probabilities.

The information (in bits) contained in a forecast with
probability p is commonly defined as I (p) = − log2(p)

(cf. Goldman, 1953), where 1 bit corresponds to p = 0.5,
which in turn corresponds to uniform probability in the bi-
nary case. Here, we will use ubit information units that
assign a value of 1 to the information in the uniform prob-
ability, i.e., I (p = u) = 1 ubit. If a total of Nt transitions
have been used to evaluate the transition probabilities, then
the probability of any transition ending in state 0 is

p0 =
∑

i pi0

Nt
, (7)

and, for p0 > u, all p̂i0 probabilities and forecast successes
are multiplied by I (p0) (in ubits) before being counted.
Observed p̂i S−1 probabilities and successes are qualified in
a similar way.

All measures except p̂ depend on the choice of success
factor; a large fx is desirable because we want forecasts
to be made for high probabilities. A large will minimize
false alarms, but a too large can so reduce the number
of forecasts (increasing the number of missed events) and,
hence, of successes, as to make the model almost useless.
A low fx will result in high multiplicity and yield a large
number of false alarms and increase the regional error (both
undesirable). So, the optimum value of fx has to be found
in order to obtain the best performance out of a given model
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(a given combination of system, �t , Mm
r , and MM

r ; for the
direct method Mm

r = MM
r = Mr ).

Choosing the method or model which yields the best per-
formance is not straightforward because there are usually
tradeoffs between desirable and undesirable traits that make
direct inspection and comparison impractical. Therefore,
we decided to make use of grading functions, i.e., mathe-
matical functions which take into account all relevant fac-
tors, weighted according to their relative size and impor-
tance, and combine them in such a way that desirable fea-
tures increase their value and undesirable ones decrease it.
Adjusting for relative size is necessary because we may
be comparing quantities with different orders of magnitude
(e.g., average probability versus normalized number of suc-
cesses or false alarms). Weighting for importance is largely
subjective, but it reflects a consensus of desirability for dif-
ferent traits; for instance, false alarms are quite undesirable
(for many obvious reasons), and it is usually preferable to
have fewer false alarms than more successes.

There is no rule to say which form a grading function
should take. We tried linear, non-linear, product, and mixed
grading functions, but in this work we show the results of
only two:

d0 = 0.8+5 p̂+
(

10nx − nf − e − ns

nt

)
+0.00001 fx , (8)

d1 = 1.0 +
(

(400 + 0.00002 fx ) p̂2 n2
x

nt (nf + e + ns)

)
. (9)

Of course, the absolute values from a grading function are
quite arbitrary and can be changed by modifying some of
the baseline or scaling parameters (chosen here so both
grades can be clearly seen when plotted using the same
scales). We are mostly interested in the relative values, or
relative optimum values (using always the same parameters
in the grading function, of course). However, some idea of
what the actual values do represent can be had by compar-
ison with grades obtained for the reference “null hypoth-
esis” Poisson (memory-less) and uniform (random guess)
models.

7. Forecasts and Aftcasts
In actual forecasting, the probability of the system state

for a time interval beginning at some given time is estimated
from all available data up to this time. A serious problem
is that a minimum number of transitions must be used to
achieve robust probability estimates, and this may not leave
enough transitions to have a representative sample for as-
sessing the model’s performance if the catalog is not long
enough. This was the case the application discussed below.
Consequently, a stopgap measure was adopted until enough
forecast transitions were observed, to aftcast all 384 avail-
able transitions, i.e., do “forecasts” for data already used in
estimating the probabilities and compare these results with
the true forecasts of 20 transitions (the forecast for tran-
sition number 365 was made from probabilities estimated
using the first 364 transitions; number 366 using transi-
tions up to 365, and so on). As will be shown, aftcast and
forecast performance evaluations roughly agree, but com-
parisons will be based mainly on aftcast results.

8. Application and Results
The models described in the preceding sections were ap-

plied to the Japan area, using data from the Japan Mete-
orological Agency (JMA) as reported by the International
Seismological Centre (ISC) for the period spanning January
1964 to May 2002.

The way in which the system, time interval, and threshold
magnitudes were chosen has already been discussed in Sec-
tion 5. Four regions, shown in Fig. 2, were chosen: Kurile
Islands (0), Central Japan (1), SE Japan (2), and Ryukyu
Islands (3), defining 16 system states (Table 1). This is the
same system for which Nava et al. (2005) applied the direct
counting method to a combination of �t = 0.10 yr (384
transitions), and Herrera et al. (2006) applied the mixed
counting method. Here, we use the same parameters with
the aim of being able to directly compare the results ob-
tained by the different methods.

The perceptrons were trained according to Eq. (3) using
diverse values for the initial weights wi j and the learning
rate η. We found that, for our data, bias inputs rapidly di-
minished to negligible values so that their presence did not
significantly influence the results; hence, in what follows,
we use no bias. The activation function we used is the iden-
tity (purelin) function f (x) = x , which simply transmits
the output of each neuron.

For our application, the performance of these perceptrons
is limited by the inconsistencies in the transition history;
therefore, we cannot expect exact prediction. Consequently,
we normalize the output to allow a probability interpreta-
tion; this normalization does not change the performance.
In order to conserve the probabilistic interpretation of the
W matrix, negative wi j values were changed to zero after
each correction step, and the matrix was then normalized
by rows.

Perceptron performance depends heavily on the learning
rate; underlearning with a very small η ∼ n−1

t (where nt

is the total number of transitions) leads to weights almost
equal to the Markovian transition probabilities. This sim-
ilarity indicates that the same probabilistic estimation can
be obtained for two methods with different philosophies.
Given that the estimation of the perceptron with a pure line
activation function is equivalent to a least-squares estima-
tion (Bishop, 1995), it is particularly interesting that the per-
ceptron gives values similar to those of a model that simply
counts the occurrences. Naturally, the forecasting perfor-
mance of this perceptron is identical to that of the direct
counting method. The immediate question is whether the
weights from the slow-learning perceptron are the ones that
yield the best performance. The answer is a categorical no,
because the results shown below indicate that other models
of perceptron, with different combinations of initial values
and learning rate, give quite better results. Perceptron per-
formance improves as η increases, reaches a peak, and then
starts degrading for too large values of η (overlearning).

A search was made for the optimal parameter values, i.e.,
the ones that resulted in the highest grades for each model.
These optimal grades were compared to see how the mixed
perceptron method compared with the direct one and with
the direct counting methods and to choose the best model
for issuing useful forecasts. The following figures show
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Fig. 2. Seismicity in the study zone reported in the ISC/JMA (January 1964–May 2002), and the four regions of the system.

Table 1. System states: decimal (left) and binary (right) showing which regional states (0 or 1) it comprises.

Status Region Status Region

3 2 1 0 3 2 1 0

0 0 0 0 0 8 1 0 0 0

1 0 0 0 1 9 1 0 0 1

2 0 0 1 0 10 1 0 1 0

3 0 0 1 1 11 1 0 1 1

4 0 1 0 0 12 1 1 0 0

5 0 1 0 1 13 1 1 0 1

6 0 1 1 0 14 1 1 1 0

7 0 1 1 1 15 1 1 1 1

results obtained from our analysis.
Figure 3 shows the performance of the direct perceptron

as a function of Mr , for the particular case of identity func-
tion f (x) = x , initial weight values wi j = 0.00001 ∀ i, j
and learning rate η = 0.10.

For aftcasts (Fig. 3, left) the grading functions indicate
that the direct perceptron performs better than the direct
counting method for various Mr values (the dashed lines in-
dicate the optimum values for the direct counting method);
the d0 grades show considerable improvements for Mr ≥
6.1, with a peak at Mr = 6.1; the fx . The grading function
values for these threshold magnitudes are shown in Table 2.

For forecasts (Fig. 3, right), the direct perceptron does
give better results than the direct counting method—in all
aspects and for all magnitudes of Mr considered in this
analysis. The values of both grading functions are higher
than those obtained with the direct counting method (dashed
lines).

Given that the best results of the aftcast performance
of the direct perceptron are for Mr = 6.1, we decided
to explore the performance of the mixed perceptron for
MM

r = 6.1. We found that, as for the counting methods,

the mixed perceptron does not perform better than the direct
perceptron. These results lead to the speculation that when
the information at a given threshold magnitude is sufficient
for a good performance of the direct methods, the smaller
magnitudes do not contribute a significant quantity of infor-
mation. However, for greater threshold magnitudes, when
the direct method is no longer quite efficient, the mixed per-
ceptron does significantly improve the results.

Figure 4 shows the grades of the mixed perceptron for
MM

r = 6.2 as a function of Mm
r ; the horizontal dashed

lines indicate the (optimum) values for the direct perceptron
for Mr = 6.2. It can be clearly seen that for aftcasts
(left), the mixed perceptron gives better results than the
direct perceptron for several values of Mm

r ; both grading
functions show improvements for Mm

r = 5.7, 5.8, 6.0, with
the maximum at 6.1. For forecasts, the mixed perceptron
does give better results than the direct perceptron in all
aspects and for all the considered values of Mm

r .
Figure 5 shows the (color scale-coded for the online ver-

sion and gray scale-coded for the print version) transition
probability matrices W from the direct perceptron for Mr =
6.2 (left), and from the mixed perceptron for Mm

r = 6.1 and
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Fig. 3. Optimum grades for the direct perceptron as a function of Mr for aftcasts (left) and forecasts (right). Dashed lines are the best values for the
direct counting method.

Table 2. Best results of state aftcasting for both perceptrons (direct and mixed) for high magnitudes. nt is the number of transitions, fx is the success
factor, nx is the number of successes, pb and is the Bernoulli binomial probability of observing nx successes in nt transitions with uniform probability
u.

Perceptron Mr nt fx nx d0 d1 pb

Direct Mr = 6.1 384 5.0 54 1.814 1.124 1.7 · 10−8

Direct Mr = 6.2 384 6.2 43 1.647 1.077 8.9 · 10−5

Direct Mr = 6.3 384 6.0 39 1.569 1.059 9.6 · 10−4

Direct Mr = 6.4 384 6.5 37 1.527 1.047 2.7 · 10−3

Direct Mr = 6.5 384 7.5 32 1.487 1.035 2.0 · 10−3

Mixed MM
r = 6.1 & Mm

r = 5.7 384 4.5 51 1.670 1.098 2.3 · 10−7

Mixed MM
r = 6.2 & Mm

r = 6.1 384 5.0 49 1.816 1.112 1.2 · 10−6

Mixed MM
r = 6.3 & Mm

r = 5.7 384 6.5 44 1.733 1.084 4.6 · 10−5

Mixed MM
r = 6.4 & Mm

r = 5.8 384 6.2 39 1.654 1.063 9.6 · 10−4

Mixed MM
r = 6.5 & Mm

r = 6.1 384 6.5 33 1.554 1.043 1.4 · 10−2

Table 3. Best results of state forecasting for both perceptrons for high magnitudes. Quantities are the same as in Table 2.

Perceptron Mr nt fx nx d0 d1 pb

Direct Mr = 6.1 20 6.0 4 2.980 1.769 2.6 · 10−2

Direct Mr = 6.2 20 6.0 3 1.864 1.130 9.3 · 10−2

Direct Mr = 6.3 20 9.0 2 1.737 1.069 2.3 · 10−1

Direct Mr = 6.4 20 9.0 2 1.737 1.069 2.3 · 10−1

Direct Mr = 6.5 20 4.0 2 1.492 1.035 2.3 · 10−1

Mixed MM
r = 6.1 & Mm

r = 5.5 20 6.0 6 4.469 5.194 9.4 · 10−4

Mixed MM
r = 6.2 & Mm

r = 5.5 20 6.0 7 4.407 5.715 9.4 · 10−4

Mixed MM
r = 6.3 & Mm

r = 5.8 20 9 4 3.520 3.092 2.6 · 10−2

Mixed MM
r = 6.4 & Mm

r = 5.8 20 9 4 3.520 3.092 2.6 · 10−2

Mixed MM
r = 6.5 & Mm

r = 5.8 20 9 4 3.598 4.185 2.6 · 10−2

MM
r = 6.2 (right). It can be seen that, although the overall

shape is the same, maxima differ between them; the differ-
ences between them are due to the information contributed
by the earthquakes with Mm

r ≤ M < MM
r .

Figure 6 shows the behavior of the grading function for

MM
r = 6.5 as a function of Mm

r . The mixed perceptron per-
forms consistently better than the direct perceptron for both
aftcasts and forecasts, with a very conspicuous maximum
for forecasts at Mm

r = 6.2.
The ratio r = (d(mixed)

0 − d(direct)
0 )/d(direct)

0 for aftcasts
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Fig. 4. Optimum grades for the mixed perceptron with MM
r = 6.2 as a function of Mm

r , for aftcasts (left) and forecasts (right). Dashed lines are the best
values for the direct perceptron.

Fig. 5. Transition probability matrices. Left: Direct perceptron for Mr = 6.2. Right: Mixed perceptron for Mm
r = 5.7 and MM

r = 6.2.

of the whole catalog (384 transitions) and forecasts of 20
transitions shows that the mixed method gives hazard es-
timations that are 10% better than the estimates obtained
using the direct method (for aftcast and threshold magni-
tudes Mr = 6.2 and MM

r = 6.2, respectively). For forecasts
and threshold magnitudes of Mr = 6.1 and MM

r = 6.1,
respectively, r indicates an improvement of 50% in hazard
estimations of the mixed perceptron over the direct one.

9. Discussion
The new methods proposed here yield better results than

the straightforward counting methods (Nava et al., 2005;
Herrera et al., 2006). These new methods yield useful
and reliable seismic hazard estimates from the statistical
analysis of seismicity catalogs, and they are adaptable to
different seismogenic areas.

In order to compare our results with those from Herrera
et al. (2006), we used their grading functions. The re-
sults in Tables 2 and 3 show that d1 behaves like d0 in all
cases, but it is less sensitive; therefore, we will use only
d0 to discuss the performance of our methods. In order
to quantify the relative performances, we will use the ratio
rp,c = (dperceptron

0 − dcount
0 )/dcount

0 for the best cases.

(1) Direct estimates:

a) Aftcasts: for Mr = 6.1, dcount
0 = 1.699 (Herrera

et al., 2006, table 2), and dperceptron
0 = 1.814,

which yields rp,c = 0.068; i.e., the perceptron
aftcasts are 6.8% better than those from direct
counting.

b) Forecasts: for Mr = 6.1, dcount
0 = 2.794 (Herrera

et al., 2006, table 3), and dperceptron
0 = 2.980,
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Fig. 6. Optimum grades for the mixed perceptron as a function of Mm
r for afcasts (left) and forecasts (right). Dashed lines are the best values for direct

perceptron for Mm
r = 6.5.

which yields rp,c = 0.067.

(2) Mixed estimates:

a) Aftcasts: for Mm
r = 5.7 and MM

r = 6.3,
dcount

0 = 1.680 (Herrera et al., 2006, table 2), and
dperceptron

0 = 1.733, which yields rp,c = 0.032.
b) Forecasts: for Mm

r = 5.8 and MM
r = 6.3 or 6.4,

dcount
0 = 3.327 (Herrera et al., 2006, table 3), and

dperceptron
0 = 3.520, which yields rp,c = 0.058.

It is important to underline that, although for the higher
magnitudes the values of the grading functions observed by
the mixed perceptron are not as large as in the optimum
cases (MM

r = 6.2 for aftcast and MM
r = 6.1 for fore-

cast), they are better than those observed by the direct meth-
ods. For example, the mixed perceptron for the forecast for
Mm

r = 6.1 and MM
r = 6.5 is 4.5% higher than the direct

perceptron for Mr = 6.5. A major result is that the mixed
method permits the forecasting magnitude limit of a given
catalog to be extended, thereby enabling the seismic hazard
for slightly larger, more important events to be estimated.

10. Conclusions
Our application of all proposed methods to the Japan

area for aftcasts of the whole catalog and forecasts of 20
transitions yielded extremely satisfactory results that have
negligible probabilities of being obtained by pure random
guessing or by a memory-less model. Of all the methods
proposed, the mixed perceptron gives the best results, par-
ticularly in terms of estimating the hazard for earthquakes
with MM

r = 6.5. This means that for the Markovian process
under consideration perceptron learning is more efficient in
extracting the statistical information in catalogs than direct
counting methods.
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