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Abstract—We propose the use of statistical measures to

quantify robustness, uncertainty, and significance for Markovian

models of large magnitude seismic systems, and we also propose a

method for choosing the best of different models by using the

normalized measures in a discriminant function. We tested the

proposed methods on earthquakes occurring in an area around

Japan, divided into four regions; modeling the system as having

four states, where each state corresponds to the region where the

latest large earthquake, larger than a given threshold moment

magnitude, has occurred. Our results show that for the 7.0–7.3

threshold magnitude range the seismicity of this region does occur

according to a Markovian process, with optimum results for

threshold magnitude 7.1, whereas for magnitudes outside this range

seismicity is less Markovian.
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1. Introduction

Markovian models are a useful and widespread

tool in many fields of research, including linguistics,

communication, meteorology, economy, and others

(e.g. Fritchman, 1967; Grant & Steven, 1991;

Khmelev & Tweedie, 2001; Raible et al., 1999). In

seismology, Vere-Jones (1966) used a Markovian

model for aftershock occurrences, and Markovian

models have been used for seismic hazard estimates

for large earthquakes (Fujinawa, 1991; Hagiwara,

1975; Heng, 2002; Knopoff, 1971; Nava et al., 2005;

Patwardhan et al., 1980; Ramin, 2012; Ünal & Cel-

ebioglu, 2011; Votsi et al., 2010; Votsi et al., 2013;

Yildiz & Demir, 1999).

While in many applications, including some

seismological ones, there is abundant data allowing

reliable estimates of the transition probabilities

between states, in seismological applications, for the

case of large magnitude earthquakes the relative

paucity of major and great earthquakes compared

with the extension of most seismic catalogs limits the

reliability of the Markovian seismic hazard estimates.

Hence, it is of the utmost importance to determine

ways to quantify the reliability of hazard estimates,

and this is one of the themes we will touch in this

paper.

Since usually there is not a unique way of mod-

eling a given problem or system, another theme we

will consider is how to quantify the reliability mea-

sures and the results from each model, in order to

decide which model and/or set of parameters is

optimal within the limits permitted by the data.

2. Background

We present here a very short review of some basic

concepts about Markov chains that will be used in

what follows.

2.1. Markov Process

A finite Markov process is a stochastic process,

with a finite number Ns of states, sk; k ¼ 1; :::;Nsf g,

NS [ 1, for which the probability of transition from

the current state to a given state in the next trial

(which may be an occurrence or a time interval)

depends only on the current state, and not on any

previous states. Let skðnÞ be the state of the system at

the n’th trial, then
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Pr skðnþ1ÞjskðnÞ; skðn�1Þ; :::; skð0Þ
� �

¼ Pr skðnþ1ÞjskðnÞ
� �

;

ð1Þ

i.e., the system has no memory about the states that

occurred before the present one. Let skðnÞ ¼ i and

skðnþ1Þ ¼ j, then if the transition probabilities between

these states are always the same, independently of the

trial or time interval, the Markov chain is homoge-

neous, and we can write

Pr skðnþ1Þ ¼ jjskðnÞ ¼ i
� �

¼ p̂ij; ð2Þ

where the tilde denotes an exact or theoretical

probability.

2.2. Markovian Multiple Step Probabilities

Let the state at step m be skðmÞ ¼ i, then the

probability that n steps later the system will be in

state skðmþnÞ ¼ j, the n-step transition probability, is

given by

Pr skðmþnÞjskðmÞ
� �

¼ p̂
ðnÞ
ij ; ð3Þ

where p̂
ðnÞ
ij is an element of matrix P̂ðnÞ (Chapmann–

Kolmogorov equation).

If numbers p̂ ¼ p̂j; j ¼ 1; :::;NS

� �
exist, such that

lim
n!1

p̂
ðnÞ
ij ¼ p̂j; 8i;

XNS

j¼1

p̂j ¼ 1; ð4Þ

so that the limit transition probabilities

lim
n!1

P̂n ¼ P̂ ¼
p̂
..
.

p̂

8
<

:

9
=

;
ð5Þ

no longer depend on the current state, then the system

represented by the transition matrix is ergodic, and

the probabilities p̂j are called limiting or stationary

probabilities.

3. Empirical Estimation of Probabilities

When studying a real, supposedly Markovian

system, for which the transition probabilities cannot

be postulated or determined theoretically, the transi-

tion probabilities are estimated from the observed

Markov chain, i.e. from the finite observed sequence

of N þ 1 states values taken by the random variable S

skðnÞ; n ¼ 0; 1; 2; :::;N
� �

: ð6Þ

3.1. Transitions and Probabilities

The square transition matrix H is built by

counting the observed transitions among successive

states:

H ¼ hij; i; j ¼ 1; :::;NS

� �
; ð7Þ

where hij is the observed number of transitions from

state i to state j.

Let ni be the total number of transitions that

originated from state i

ni ¼
XNS

j¼1

hij; ð8Þ

and from all total transitions we form the vector

N ¼ ni; i ¼ 1; :::;NS½ �: ð9Þ

From the H and N matrices, the empirical

transition probability matrix (TPM),

P ¼ pij; i; j ¼ 1; :::;NS

� �
, is built as

pij ¼
hij

ni

; ð10Þ

so that

XNS

j¼1

pij ¼ 1; 8i: ð11Þ

This TPM, P, is the seismic hazard evaluation

resulting from the study, because if the system is

currently at some state i, the probability for the next

state being j is given by pij.

It should be remembered that Borel’s law of large

numbers tells us that pij given by (10) will tend to the

‘‘true’’ probability p̂ij when ni ! 1; an impossible

condition to attain when dealing with large magni-

tude earthquakes. In these applications it must be kept

in mind that probability estimates are based on only a

small number of realizations of a random process, so

that probability estimates carry uncertainties that

must be reckoned with when using seismic hazard
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estimates. How these uncertainties depend on the

number of transitions will be discussed later.

3.2. Empirical Stationary Probabilities

The empirical, approximate, stationary probabil-

ities, P, are obtained from Pn after a finite number of

steps, n, when convergence is achieved for a given

precision (i.e., for a given number of decimals), i.e.

for each column

pj ¼ p
ðnÞ
ij ; 8i; ð12Þ

then

P ¼
p
..
.

p

2

4

3

5; p � p1; p2; :::; pNS
½ � ð13Þ

The desired precision is mainly chosen according

to how many decimals may be considered possibly

significant in a probability estimate; a large number

of decimals is also subject to numerical noise. In what

follows we will consider precision to six decimal

places.

4. Methods for Measuring Stability, Robustness,

and Uncertainty of Markovian Probability

Estimations

A simple determination of transition probabilities

will not be very useful for seismic hazard evaluation

if there is no estimate about how reliable they are; in

what follows we will consider some aspects of this

problem that depend largely on the size of the sample

used for the probability estimation.

4.1. Stability

An empirical Markov probability estimation is

essentially a never-ending process, because any new

datum will, in general, change the estimations (the

only exception is when the new datum contributes to

a previous pij ¼ 1 probability, which is a rarity).

What follows is adapted from Nava et al. (2005).

Suppose we have determined a Markovian TPM,

and suppose the current state is state i, when a new

transition to state k occurs, the estimation of pij

changes from pij ¼ hij

�
ni to one increased estimate

pþ
ij ¼ hij þ 1

ni þ 1
; j ¼ k; ð14Þ

And NS � 1 diminished estimates

p�
ij ¼

hij

ni þ 1
; j 6¼ k: ð15Þ

The corresponding changes are

Dpþ
ij ¼ pþ

ij � pij ¼
1 � pij

ni þ 1
; j ¼ k; ð16Þ

and

Dp�
ij ¼ p�

ij � pij ¼
�pij

ni þ 1
; j 6¼ k; ð17Þ

the smaller the absolute values of these changes, the

more stable the probability estimates are.

These possible changes can be used as lower and

upper limits to the estimated probabilities, and these

possible variations should be taken into account

whenever considering a forecast. Thus, before event j

occurs the probabilities can be expressed as

p�
ij � pij � pþ

ij : ð18Þ

It is clear from (16) that the largest possible

change caused by a new transition results when the

transition is to the state with the smallest probability

(and the fewest transitions)

pim ¼ min pij; j ¼ 1; :::;NS

� �
, so that this is the prob-

ability to be used for the worst-case possible change

estimation. From (11),
P

j 6¼m

Dp�
ij ¼ �Dpþ

im, so that the

total largest possible absolute change for the whole

row is

Di ¼ 2Dpþ
im ¼ 2

1 � pim

ni þ 1
; ð19Þ

for the worst possible case, pim ¼ 0; Di depends

only on ni and ranges from a largest value of 1, for

ni ¼ 1, to 0 for ni ! 1.

However, ni ¼ 1 is an absurd proposition; a

distribution of NS states could hardly be estimated

from a single transition; which leads to the question

of what is a reasonable minimum value for ni. Since

we want a ni that would guarantee that the worst

possible change would not be too large, if we set the
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worst-case maximum allowable change to be less

than the uniform probability, Dmax
i \1=NS, then from

(19), ni [ 2NS � 1, so we will always require

ni � 2NS.

4.2. Robustness

We say that a Markovian hazard estimation from

state i is robust if the probabilities pij; j ¼ 1; :::;NS

� �

in the whole i’th row of matrix P are not substantially

changed by a new observation.

An estimate will be robust if possible changes are

small; hence, we define the robustness of row i as

qi ¼ 1 � Di ¼ 1 � 2
1 � pim

ni þ 1
: ð20Þ

Figure 1 illustrates how robustness increases

rapidly with ni for various pim; the actual value of

pim makes a significant difference for ni\50; in all

cases qi � 0:95 for ni � 39, and qi � 0:98 for ni � 99,

so that robustness is a real concern only for small

samples.

Low robustness means that there are not enough

observations to make a reliable transition probability

distribution estimate, so that only robust TPM rows

should be used for forecasting. Let us mention here

that many studies report only their P matrices,

without even mentioning how many data were used

to get it, let alone stating their N values, so that the

user has no idea about the reliability of the stated

transition probabilities. Since for a given N the ni

values may vary widely from one row to another, it is

extremely important that N should always be

reported.

For a measure of robustness for the whole TPM,

let us remember that the strength of a chain is that of

its weakest link, and use as an estimate of the whole

matrix robustness the value of the least robust row:

q ¼ min qi; i ¼ 1; :::;NSf g: ð21Þ

Another, different, aspect of robustness, not

treated here, is for estimates of states defined in time

or space or some other kind of intervals, is how much

the transition probabilities change if the starting time

or interval length or some other interval parameter is

slightly changed. If measured probabilities do no

change very much when intervals are slightly mod-

ified, then the system is stable.

4.3. Uncertainty and Sample Size

For many seismological applications, particularly

those dealing with large magnitude events, samples

tend to be small, often times of the order of a few

tens, while reliable estimation of the ‘‘true’’ proba-

bilities requires large samples. How small can a

sample be and still be useful, and how large are the

uncertainties associated with small samples, are

difficult questions that need to be considered in order

to estimate how reliable are the seismic hazard

estimates from any given study.

To illustrate this point, we can generate a TPM by

a random numerical realization of an N transitions

sample based on the ‘‘true’’ (postulated) transition

probabilities shown below

PT ¼

0:200000 0:600000 0:120000 0:080000

0:450000 0:250000 0:200000 0:100000

0:100000 0:150000 0:100000 0:650000

0:150000 0:200000 0:450000 0:200000

2

664

3

775;

a comparison of these ‘‘true’’ probabilities, pT
ij with

those resulting from the ‘‘observed’’ realization, pij,

of Sect. 3, shows at a glance that the ‘‘empirical’’

ones differ from the ‘‘true’’ ones; denoting the

absolute difference (error) by

eij ¼ pT
ij � pij

���
���: ð22Þ

To illustrate how estimation errors depend on

sample size, we use these ‘‘true’’ probabilities to do a

Monte Carlo estimation of the errors that may be

ξi 

10 30 50 70 90 110 130 150

ρ i 

0.7

0.75

0.8

0.85

0.9

0.95

1
p  =0.4im

p  =0.0im

Figure 1
Row robustness as a function of ni for pim ¼ 0:0; 0:1; 0:2; 0:3; 0:4
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expected from samples of different sizes. Figure 2

shows, on the left, the maximum and mean absolute

errors averaged over Nr ¼ 10; 000 realizations for

different sample sizes. For comparison, on the right

of Fig. 2 are shown the same errors for a uniform

probability matrix with pij ¼ 1=NS 8i; j.

It is clear that small samples can lead to quite

large deviations from the true transition probabilities

but, unless some additional information is available,

there is nothing to be done to improve the probability

estimates, except increasing the sample size. Unfor-

tunately, in many cases it is not possible to increase

the sample size because of catalog limitations; in

these cases, the possible differences from the true

probabilities are an important factor to take into

account when evaluating the trustworthiness of

forecasts based on the observed transition

probabilities.

For any given sample length, the magnitude of the

errors depends on the characteristics of the particular

matrix; they are larger for matrices close to uniform,

and are less for ‘‘spiky’’ matrices (matrices having

rows with one large probability and several small

ones). Hence, to correctly assess the uncertainty (the

possible errors) in our observed matrix P, let us

suppose that it is representative of the ‘‘true’’ TPM

that characterizes the Markovian system and accord-

ing to which, our particular observed realization was

randomly generated; then the errors in random chains

resulting from P should not be very different to those

for the true TPM.

To estimate the possible errors we use the Monte

Carlo approach: based on P, generate Nr realizations

of random chains N elements long; for each chain k

obtain the synthetic TPM P̂ and get the N2
S absolute

errors

ek;ij ¼ p̂ij � pij

�� ��; i; j ¼ 1; :::;NS; ð23Þ

finally, get the mean and the standard deviation of the

Ne ¼ NrN
2
S absolute errors. The mean absolute

expected estimation error due to sample size

e ¼ 1

Ne

XNr

k¼1

XNS

i¼1

XNS

j¼1

ek;ij: ð24Þ

4.4. Other Uncertainty Sources

Besides this basic uncertainty, other uncertainties

in probability estimations are associated to uncer-

tainties in the data. For instance, if transitions

between earthquake magnitudes or magnitude classes

are being studied, the fact that magnitudes are usually

rounded to one decimal place should be taken into

account; likewise, location uncertainties should be

considered when studying transitions in space, etc.

When using a magnitude threshold, errors in magni-

tude determination may cause either ‘‘gaps’’ in the

data or the inclusion of events that should not

participate, both of which result in erroneous appar-

ent transitions.

The effects of uncertainties in the data on the

transition probabilities may be hard, or impossible, to

estimate in closed form, but estimates can be made

0

0.1

0.2

ɛ

Model:Uniform    
Mean 
Max 

N

0

0.1

0.2

Model:True    

Mean 
Max 

ɛ

0 400 800 12000 400 800 1200

N

N =10000    r N =10000    r

Figure 2
Mean (circles) and maximum (diamonds) absolute errors; the dashed line below and above each curve are the corresponding � one standard

deviations. On the left, we use true probabilities PT , and on the right we use a uniform probability matrix
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using the Monte Carlo approach, where random

(hopefully realistic) variations are applied to the data,

and likely variations to the probabilities are estimated

from the results of a very large number of

realizations.

5. Methods for Measuring Markovianity

The results of a Markovian hazard estimation will

be significant only if the studied system, as seen

through the chain observed for the model employed,

turns out to be indeed Markovian, which means that

the estimated transition probabilities do depend on

the current state.

Hence, the Markovian results should be checked

versus those of the null hypothesis, H0, which is that

the observed transitions and the resulting transition

probabilities, are due to chance and do not depend on

the initial state. The probability transition matrix that

does not depend on the initial state and comes

immediately to mind is the uniform TPM, U, where

each row is the uniform distribution, i.e.

uij ¼ 1=NS; 8i; j. However, in order to be more strict,

we will use the more realistic H0 TPM of stationary

state occurrence probabilities P (13).

The differences in constitution and properties

between the Markovian, P, and the H0, P, matrices

will be called the Markovianity of the model and of

the system it represents.

We will propose five measures of Markovianity

based on easily evaluated differences; they are

examples of possible measures and the readers may

wish to establish their own measures. In order to

determine how significant a difference is, it is nec-

essary to know the range of each measure; some

limits can be ascertained theoretically while others

can be estimated from the H0 distribution. Some of

the theoretical limits are not practical because of data

limitations and of the properties of Markovian TPMs,

in which case we will use observed limits.

5.1. Markovianity from Convergence to Stationary

State Probabilities

A simple and straightforward way of quantifying

the Markovianity of a TPM is by measuring how

many times has a TPM to be multiplied by itself to

achieve the stationary probabilities with a given

precision (the probabilities in each column being

equal to a given number of decimals, for all

columns). We will denote this measure by Mp, where

p specifies the number of decimal places for which

agreement is required. As mentioned above, we

consider six decimals a reasonable precision, so that

we will work with M6.

This is a very important measure because it

measures how important the influence of an initial

state is, based on how many transitions, are necessary

to lose the memory of an initial state, in contrast to

stationary probabilities where multiplication of P by

itself yields P again.

5.2. Markovianity from Absolute Differences with P

Let the absolute difference between an element of

P and the corresponding element of P be

dij ¼ pij � pj

�� ��; ð25Þ

then, the total mean absolute difference for a given

matrix is

d ¼ 1

N2
S

XNS

i¼1

XNS

j¼1

dij; ð26Þ

and will have a minimum value of zero when the row

probabilities are equal to the stationary ones.

5.3. Markovianity from Bhattacharyya Overlap of P

and P

The Bhattacharyya coefficient (Battachatyya,

1943) measures the overlap between two statistical

probability distributions; the overlap between the

Markovian transition probabilities and the stationary

ones for row i of the TPM is

bi ¼
XNS

j¼1

ffiffiffiffiffiffiffiffiffi
pijpj

p
; i ¼ 1; :::;NS; ð27Þ

and 0� bi � 1; it equals one for pij ¼ pj;8j, and

would equal zero when non-zero probabilities in one

distribution correspond to zero probabilities in the

other distribution, which cannot happen because there

are no zero probabilities in p.
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Since we are interested in differences rather than

overlaps, we will define the non-overlap for row i as

bi ¼ 1 � bi ¼ 1 �
XNS

j¼1

ffiffiffiffiffiffiffiffiffi
pijpj

p
; i ¼ 1; :::;NS; ð28Þ

and the Bhattacharyya mean non-overlap for the

whole matrix will be

b ¼ 1

NS

XNS

i¼1

bi; ð29Þ

b ¼ 0 for P ¼ P (total overlap), and will have

largest values (always\ 1) when non-overlap

between P and P is high.

5.4. Markovianity from Matrix Entropy

Since a Markovian TPM should be less homoge-

neous, i,e, less disordered, than the TPM for uniform

probability or than one having the same probability

independently of the current state, an H0 system, we

can use a measure of orderliness, like the entropy, to

measure the difference between a markovian system

and the H0 one.

The Shannon, or information, entropy of the i’th

row of the P matrix is defined as (Shannon, 1948)

SP
i ¼ �h

XNS

j¼1

pij log2 pij; ð30Þ

where h is a conventional positive constant that

relates entropies calculated using logarithms with

different bases; we will choose h ¼ 1, so that the

entropy will be expressed in bits. According to

Shannon’s (1948) definition of the (‘‘surprise’’) self-

information of a probability estimate, the information

of the transition from state i to state j is

Iij ¼ � log2 pij; ð31Þ

so that SP
i is the expected value of the information in

row i, and we will consider the total entropy of the

TPM, P, to be the sum

SP ¼
XNS

i¼1

SP
i : ð32Þ

When pij tends to zero or to one, the corresponding

term in (30) tends to zero, so that very low or very

high probabilities contribute little to the entropy;

actually, the entropy attains its maximum value,

equal to NS log2 NS, for the uniform probability dis-

tribution with pij ¼ 1=NS; 8i; j, and its minimum

value would be zero for P constituted of ones and

zeros.

While it is possible to take the uniform probability

entropy as a reference, it is more realistic to take as

reference entropy the entropy of the state stationary

probabilities, which are the same for any row so that

the total reference entropy is

Sp ¼ �NS

XNS

j¼1

pj log2 pj: ð33Þ

The difference between the observed entropy (32)

and the null hypothesis reference entropy (33),

S ¼ SP � Sp; ð34Þ

will be our measure of the orderliness of a

Markovian system compared with that of a system

that does not depend on the current state.

5.5. Markovianity from Kullback–Leibler Distance

The Relative Entropy or Kullback–Leibler Dis-

tance (Kullback & Leibler, 1951), between the

distribution pi ¼ pi1; pi2; :::; piNS
½ � and the reference

probability distribution p ¼ p1; p2; :::; pNS
½ �, is

defined as

ji ¼
XNS

j¼1

pij log2

pij

pj

	 

; ð35Þ

and the mean K–L distance for the whole P matrix is

j ¼ 1

NS

XNS

i¼1

ji ¼
1

NS

XNS

i¼1

XNS

j¼1

pij log2

pij

pj

	 

; ð36Þ

which is always well-defined because p has no null

elements. j ¼ 0 when P and P are identical.

6. Method for Evaluating a Model Through Measure

Normalization and Discriminant

As mentioned before, the various measures we

use to qualify a model, robustness, uncertainty and
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Markovianity, have different units, magnitudes, lim-

its, and behaviors, so we will now propose ways of

normalizing them so as to make the information each

one of them provides compatible with the informa-

tion from the others. The normalizations we propose,

are adapted to the particular system we are studying;

other researchers considering similar or different

systems may wish to make their own normalization

schemes.

As mentioned above, we will normalize all mea-

sures to the range from zero (worst case, undesirable)

to one (perfect, desirable). Since all measures are

different, and have different value ranges, normal-

izations are accordingly different, and are designed so

as to differentiate between good and bad values in the

actual observed ranges, although taking into account

theoretical limits whenever possible.

Of course there is not a unique way to do the

normalizations, so that the ones we present here

should be considered as suggestions; other normal-

ization ways and/or functions can be chosen by each

researcher.

6.1. Robustness

As an indicator of the robustness of the whole

TPM (Sect. 4.2), we use the minimum robustness

(21). Robustness q tends to one as ni increases and,

since the minimum acceptable ni is 2NS, its minimum

value is

q0 ¼ 1 � 2

2NS þ 1
: ð37Þ

Hence, the normalized robustness is

q̂ ¼ q� q0

1 � q0

: ð38Þ

6.2. Uncertainty and Sample Size

The minimum uncertainty (Sect. 4.3) is, of

course, cero, but as was mentioned in Sect. 4.3 the

necessary number of samples is not attainable for the

kind of applications we are considering here; hence,

we will use as minimum error e0 the smallest e for the

whole group of models. Let us use as largest

allowable error above which there is no confidence

in the measured probabilities, ex ¼ 1=2NS, and com-

pute the normalized error e as

ê ¼ 1 � e�e0

ex�e0
; e0 � e� ex

0;e[ ex

�
: ð39Þ

6.3. Markovianity from Stationary State

Probabilities Convergence

We define the measure Mp (Sect. 5.1) as the

number of times that a TPM has to be multiplied by

itself in order to achieve the stationary probabilities

with a given precision Mp, where p specifies the

number of decimal places. Here, we will work with

M6.

In order to normalize this measure, we note that

its minimum value is zero, and it has no a-priori

upper value; hence, we will use as upper value, M6x,

the maximum observed value for the whole model

set, and normalize as

M̂6 ¼ M6

M6x
: ð40Þ

6.4. Markovianity from Absolute Differences

Between P and P

The minimum value that the mean absolute

difference d (26) (Sect. 5.2) can take is obviously

zero when P ¼ P; we will use as maximum value, dx,

the highest observed value for the whole model set,

and normalize as

d̂ ¼ d
dx : ð41Þ

6.5. Markovianity from Bhattacharyya Non-overlap

of P and P

In Sect. 5.3 the Bhattacharyya mean non-overlap

of the P and P row distributions, b, was defined by

(29); this measure equals zero for pij ¼ pj; 8j, but the

theoretical maximum of one is not realistic, because p
has no null elements. Hence we will use as

maximum, bx, the highest observed value, and

normalize as

Q.J. Gutierrez Peña et al. Pure Appl. Geophys.



b̂ ¼ b
bx : ð42Þ

6.6. Markovianity from Matrix Entropy

The entropy difference S (Sect. 5.4) has a max-

imum value of zero for SP ¼ Sp, but the minimum

value of �Sp is not realistic because SP is never zero;

hence, we will use as minimum value Sm the lowest

observed entropy value for the whole model set, and

normalize as

Ŝ ¼ 1 � S � Sm

�Sm
: ð43Þ

6.7. Markovianity from Kullback–Leibler Distance

(From Sect. 5.5) The relative entropy j equals

cero for pij ¼ pj; 8j, but its maximum value is not

realistic; we will use the maximum observed value

for the whole model set as jx, and normalize as

ĵ ¼ j
jx

: ð44Þ

6.8. Discriminant

We have proposed 7 normalized measures that

rate different aspects of a Markovian study, all

ranging from 0 (bad) to 1 (good). A sum of all

measures, divided by seven, can be an estimate of the

overall goodness of the study, but, since not all

measures are equally important, we will assign to

each a weight that rates its relative importance, to

define a discriminant

Q ¼ wqq̂þ weêþ wM6
M̂6 þ wdd̂þ wbb̂þ wSŜ

þ wjĵ; ð45Þ

where
X

wð�Þ ¼ 1: ð46Þ

Actually, we subjectively assign relative impor-

tance values qð�Þ from which weights are derived as

wð�Þ ¼ qð�Þ
�P

qð�Þ.

7. Application

We now proceed to apply our proposed measures

and discriminant-based scoring to models of a real

seismic system, in order to show how they work and

to show how they can extract information about the

applicability of Markovian seismic hazard studies.

7.1. System and States

We will consider a system consisting of a

seismically active geographical area, divided into

NS regions corresponding to major, seismically

active, tectonic features. Each state of the system

corresponds to the region where the latest large

earthquake (above a given threshold magnitude MT )

has occurred. For instance, if the latest large earth-

quake occurred in region number one, the system is

currently in state one; if the next large earthquake

occurs in region three, the system will now be in state

three, and one transition from state one to three has

occurred.

The rough physical idea behind our model is that

large and great earthquakes have rupture areas and

seismic slips large enough to locally or regionally

influence the ongoing plate motions and, hence, the

future seismicity. Whether or not this hypothesis is

correct will be shown by the Markovianity or non-

Markovianity of our results.

7.2. Study Area and Regions

We chose as an example of application of our

evaluation method a study area that includes Japan

and the main subduction zones around it, because this

area combines features such as high seismicity [on

average there is one MW ¼ 7 earthquake per year

(Matsu’ura, (2017)], several seismic networks which

together add up to more than 2000 instruments

(seismometers, accelerometers, and GPS) (Okada

et al., 2004), and a seismic instrumental catalog with

more than 100 years of recording. Also, although

tectonic processes in Japan are complex, they are

relatively simpler than those of other areas in the

western Pacific plate having similar seismicity rates.

Japan is located in a four-plate convergence zone,

where two oceanic plates interact with two
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continental plates. The oceanic Pacific Plate subducts

under the Amur, Okhotsk, and Philippine Sea plates,

with relative speeds of about 9 cm/year, 9 cm/year,

and 5 cm/year, respectively (Ismail-Zadeh et al.,

2013); whereas the Philippine Sea plate subducts

under the Amur plate with relative speed of about

5 cm/year (Fig. 3a).

Based on the tectonics and seismicity of Japan, we

chose four regions, each one corresponding to a

major subduction process, shown in Fig. 3b; the

largest number of regions appropriate to the number

of large earthquakes. Regions one and two corre-

spond to the subduction of the Pacific plate beneath

the Okhost and the Amur plates, respectively

(Ishibashi, 2004). In order to pinpoint the boundary

between these two regions, we used hypocenters from

earthquakes with magnitudes MW [ 0 from the

USGS catalog to make four seismic profiles parallel

to the trench to observe the subduction of the Pacific

plate (Fig. 3c). The profiles show different dips for

the southwestern and the northeastern parts of the

Pacific plate, and the change of dip coincides with the

change of azimuth in the trench.

Region three contains the seismicity and tectonic

structures corresponding to the interaction between

the Pacific and Philippine Sea plates (Lallemand,

2016). Region four contains the seismicity and

tectonic structures of the Philippines and Amur plates

interaction (Lee & Kim, 2016).

7.3. Magnitude Thresholds and Results

To illustrate the measuring, scoring, and discrim-

inant scheme, we will build different models using

the same regions and different threshold magnitudes,

and will choose the threshold magnitude that results

in the best compromise between Markovianity and

number of data.

We will use data from the ISC seismic catalog

(1904–2016), which reports magnitudes MW � 5:5 so

that we can be certain that magnitudes above MW ¼
6:5 will be complete. In what follow we will use

threshold magnitudes, MT , ranging from MW ¼ 6:5,

below which (as will be seen later) events are too

small to significantly affect plate motion, to

MW ¼ 7:4, which is the largest magnitude for which

we have enough data to meet the ni � 2NS

requirement.

Table 1 shows the total number of transitions N,

and the H; N; p and P matrices for all considered

threshold magnitudes. Note that, although P embod-

ies the final results of the study, H and N are essential

for evaluating the results.

Now, let us see how results differ for different

threshold magnitudes, and whether there are results

that would be useful hazard estimates.

For the first row, transitions from state one, let us

remember that region one is close only to region two,

so that we can expect these two regions to have

strong interaction. As expected, probabilities p11 and

p12 are consistently larger than the rest, with p11

larger for MT\6:7 and p12 larger for MT � 6:7.

For the second row, p22 has the highest probability

for MT\7:0, and the highest probability for larger

MT is p21.

For row three p32 [ p33 for MT\7:0, after which

p33 is higher (except for MT � 7:3). Curiously, for

MT � 6:7p31 [ p34 although region 4 is closer to

region 3 than region 1.

For the fourth row, p42 is always the largest and

p43 the smallest. It appears as if regions three and four

interact through region 2.

Something to note is the low probability of p34

and p43, despite that regions 3 and 4 are geograph-

ically close together yet do not interact with each

other as regions 1 and 2 do.

To decide which is the best model, i.e., which is

the optimal threshold magnitude, we will proceed to

evaluate the stability, accuracy, and Markovianity

measures.

Figure 4 shows the number of transitions (top left)

for reference, and the values of the seven different

measures for each threshold magnitude, and clearly

shows the problem of judging which model is best,

because measures have different magnitudes, units

and characteristics, i.e., some measures are good

when their values are high (q; M6; d; b and j) and

others when their values are low (e and S).

Figure 5 shows the normalized measures; now,

for all of them high values are desirable and low ones

are undesirable. Measures that depend more or less

directly on the number of samples decrease with

magnitude, while Markovianity measures present
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high values for magnitudes 7.1 to 7.3. Since the

normalizations are linear, the measures do not change

shape on normalization; their units change, and some

measures with negative values are now positive.
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Table 1

M6 and H; N; p and P matrices for all considered threshold magnitudes
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The next step is to apply the discriminant (45)

using the normalized measures for different threshold

magnitudes, in order to choose the optimal threshold

magnitude. We will show the discriminant behavior

for different tentative weights sets.

Figure 6 shows the discriminant values for equal

weights for all measures. The peak discriminant value

is for MT ¼ 7:3, with MT ¼ 7:1 a very close second.

Considering e to be the most important measure,

because it measures the expected uncertainty associ-

ated with sample size, and large uncertainties make

results unreliable, we assign to this measure thrice the

importance of the other measures, which results in the

discriminant values shown in Fig. 7; MT ¼ 7:1 is the

optimal threshold magnitude for this weights set.

Now, considering that M6, although not as

important as e, is also a very important measure

(for reasons mentioned above), we assign it twice the

importance of the remaining measures. The resulting

discriminant values are shown in Fig. 8, where MT ¼
7:1 is again the optimal magnitude.

Finally, we present a last set obtained from the

previous one by giving to d and S one and half times

the importance of b and j. It could be argued that

they measure similar things but the first two are more

direct, as shown in Fig. 9 where the peak discrimi-

nant value is for MT ¼ 7:1.

Since weights are assigned subjectively, it is

important to assign them carefully, sparingly, and

according to explainable, and defensible, reasons;

particularly if a change in weights leads to a change
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in the choice of the best model. According to these

criteria, and seeing that all weight sets, excepting the

equal weights one, result in discriminants with

maxima for MT ¼ 7:1, and that other reasonable

changes to these weights sets do not lead to a

different preferable threshold magnitude, we choose

the weight set in Fig. 8 as the simplest one that takes

into account the most important features of the

various measures, and the model with MT ¼ 7:1 as

the most reliable one.

Thus, with respect to seismic hazard in the study

area, we can say from the TPM for MT ¼ 7:1 that:

after a large earthquake in region one, the next one

will most probably occur in region two; an event in

region 2 will most probably either repeat in region 2

or be followed by an event in region one; an event in

region 3 will most probably repeat or, with a smaller

probability, be followed by one in region one, but a

following event in region 4 is quite improbable;

finally, an event in region 4 will probably be followed

by one in region two or region one, but has very small

probability of being followed by one in region three.

As mentioned in previous paragraphs, for the

optimal model there is a strong interaction between

region one (Kuril trench) and two (Japan trench);

both regions have in common that most earthquakes

are shallow and do not exceed 150 km in depth

(Fig. 3d), which may be due to the fact that these

trenches are of the Chilean type, so there is strong

coupling of the tectonic plates in this region (Uyeda

& Kanamori, 1979). We think that the strong

interaction between region one and two may be due

to the proximity of both regions and to the shallow

seismicity. We mentioned that region three (Izu-

Bonin trench) has strong interaction with itself; in

this region the shallow seismicity is low and most of

the seismicity is located in a range of 200–500 km

depth, this may be caused by the weak coupling

between the Pacific and Philippine plates, since the

Izu-Bonin trench is of the Mariana type (Uyeda &

Kanamori, 1979) and the great depth of the earth-

quakes in this region may be a factor for the strong

interaction with itself and for the weak interaction

with the other regions. The largest interaction of

region four is with region two, the seismicity in

region four is shallow (does not exceed 150 km) and

there is a gap in the seismicity where the fossil ridge

subducts below the Amuria plate; in this region the

trench is of the Chilean type; the large interaction

between regions two and four may again be due to

their proximity and shallow seismicity.

But a seismic hazard estimation is not the only

result from this application; our measures and

discriminant tell us something about the seismic

process itself and about the applicability of a

Markovian model to the study region. All Marko-

vianity measures have low values for MT\7:0 and

for MT [ 7:3, which can be explained by remember-

ing that each threshold magnitude results in a

different Markov chain. Depending on where they

occur and on the prevalent stress conditions in the

hypocentral region, events with MW\7:0 may not be

large enough to significantly influence the plate

motions, so that some links in the observed chains

may not be actually related to the Markovian

interaction. At the other extreme, while very large

earthquakes are certain to influence plate motion, by

considering too large a threshold magnitude we are

discarding events that should be reckoned with, i.e.,

there are missing links in the observed chain. Hence,

it seems that a Markovian study is applicable to the

region for the 7.1 to 7.3 magnitude range, and the M6

measure tells us that a Markovian model applies best

to the study region for threshold magnitudes 7.1 and

7.2, that give the best tradeoff between extraneous

and missing links in the Markov chains.

8. Conclusion

It is not possible to determine whether results

from a Markovian seismic hazard study are useful

and reliable if only the transition probabilities matrix,

P, is reported; measures quantifying uncertainty,

robustness, and Markovianity of the transition prob-

abilities or, at least, either the transitions matrix H or

the N matrix together with the total number of tran-

sitions N, should also be reported.

We propose a set of measures for Markovian

models that, based on the above mentioned infor-

mation, quantify robustness, uncertainty, and

Markovianity. Also, since different measures have

different units, magnitudes, and behaviors, we
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propose a way to normalize them in order to make

them comparable.

Usually there is not an unique way to model a

given system, models can be very different from each

other, but even models having the same characteris-

tics but different sets of parameters can result in

widely varying hazard estimations; hence, it is very

important to be able to decide which among the

proposed models is the best one. We propose a way to

choose among different models by applying the

above mentioned normalized measures through use of

a discriminant.

As an example, we applied our measures and

decision method to an area around Japan; the system

was modeled as having four states corresponding to

which of four regions has the most recent earthquake

above a given threshold magnitude, and we explored

models with threshold magnitudes from MW ¼ 6:5 to

MW ¼ 7:4. Our results show optimum tradeoff

between reliability and Markovianity for MT ¼ 7:1.

The expected behavior of the system is discussed in

the previous section.

Our results show that nearby regions with shallow

earthquakes will have strong interaction between

them, on the other hand, regions with deep earth-

quakes will have strong interaction with themselves

and weak interaction with other regions.

Our measures also shed some light on the system

itself; our results indicate that for magnitudes smaller

than 7.0 or larger than 7.3 the system is less

Markovian than for the 7.0–7.3 magnitude range,

which can be explained by spurious or missing links

in the observed transition chains, respectively.

Of course, the measures, normalizations, and

discriminant we propose are not unique, and the

readers can implement their own to evaluate the

results of Markovian seismic hazard analysis. What-

ever the measures used, we exhort all Markovian

seismic hazard studies to report their transition

matrices N, so that others may evaluate their results.
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