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Abstract—A crisp step function is not an adequate threshold

for studies of Markovian occurrence of large earthquakes, because

it can lead to missing or pseudo links in an observed sequence that

should be a Markov chain. A more realistic threshold is a fuzzy one

where there is a transition magnitude band, located between those

magnitudes that are too small for the earthquakes to be part of a

Markovian process and those who are certainly large enough for

the earthquakes to be part of it, where earthquakes may or may not

be part of the process. This fuzzy threshold is described by a

membership function that gives the probability of an earthquake

with a given magnitude belonging to the process. We propose a

membership function with probabilities in the transition band

proportional to the seismic moment. To estimate empirical transi-

tion probabilities when considering a fuzzy magnitude threshold,

we propose a counting strategy for the observed transitions and

justify it through Monte Carlo simulations. The counting strategy is

illustrated by application to the model from a previous seismic

study of the Japan area by testing, through Monte Carlo simula-

tions, how well the counting strategy results resemble optimum

estimations of the transition probabilities. The simulations are also

used to study the behavior of three Markovianity measures, and it is

found that the peak values of these measures are not useful in

identifying the true transition band, but that this band may be better

identified by using the whole set of values taken by each measure

for different transition band models. As an illustration, the mea-

sures were applied to real data from the previous study, a short set

corresponding to a single realization, and found that the behavior of

the measures does not agree with those expected from a crisp

threshold, but agree, within the limitations of the data, with either a

fuzzy threshold going from zero probability for magnitudes

M � 6:9 to probability one for M � 7:2 or from zero probability for

magnitudes M � 7:0 to probability one for M � 7:2.

Keywords: Markov process, Magnitude threshold, Fuzzy

thresholds, Seismic hazard.

1. Introduction

The Heaviside step function is a mathematical

concept and is not observed in natural phenomena,

yet stepwise magnitude thresholds are a common

feature of many seismological studies and in most

cases they play a quasi-magical role: earthquakes

with magnitudes above the threshold are the subject

of the study and the source of information, while

those with magnitudes below the threshold are dis-

carded, which implies that they contain no valuable

information. It would seem that earthquakes with

magnitudes above the threshold are a different

physical phenomenon from those with magnitudes

below it, and yet in many cases the magnitude

threshold is set because of data limitations (data may

be incomplete for magnitudes below a given thresh-

old, or not enough if only magnitudes above some

other given threshold are considered), and in some

cases may be set completely arbitrarily.

Another complication associated with step-wise

thresholds is that seismic magnitude determination is

subject to a large uncertainty due to factors such as

radiation pattern, directivity, paths through different

media, and many others, including measuring and

even numerical errors (e.g., Leptokaropoulos et al.,

2018; Ringdal, 1976; Werner & Sornette, 2008); this

uncertainty is the reason behind the customary

rounding of magnitudes to DM ¼ 0:1. And rounding

complicates the issue, because an earthquake with

unrounded magnitude 6:94999 (rounded to 6.9)

would be discarded by a stepwise threshold M � 7:0,

yet it cannot be physically very different from one

with unrounded magnitude 6:95000 (rounded to 7.0).

Considering the uncertainties, an earthquake with

rounded magnitude M cannot, generally, be certainly

very different from earthquakes with magnitudes

M � 0:1.

1 Seismology Department, Centro de Investigación Cientı́fica

y de Educación Superior de Ensenada, B. C., Ensenada, Baja

California, Mexico. E-mail: fnava@cicese.mx

Pure Appl. Geophys.

� 2024 The Author(s), under exclusive licence to Springer Nature Switzerland AG

https://doi.org/10.1007/s00024-024-03534-9 Pure and Applied Geophysics

http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-024-03534-9&amp;domain=pdf
https://doi.org/10.1007/s00024-024-03534-9


Also, when considering seismic magnitudes it is

necessary to take into account that sometimes an

earthquake with magnitude below the threshold may

be accompanied, close in time and space, by large

fore- and/or aftershocks having seismic moment

releases that summed to that of the main event may

result in a moment release episode (Quinteros et al.,

2014) with equivalent magnitude above the threshold,

and the episode should be considered as an event to

be included among those earthquakes having mag-

nitudes above it.

Hence, the commonly used Heaviside function

threshold is clearly seen to be inappropriate when

applied to magnitudes in seismic studies.

We will here consider the problem of magnitude

thresholds as applied to Markovian studies of seismic

hazard, because Markovian systems are considered in

many seismic hazard studies (e.g., Alvarez, 2005;

Anagnos & Kiremidjian, 1988; Cavers & Vasudevan,

2014, 2015; Fujinawa, 1991; Herrera et al., 2006;

Nava et al., 2005; Nishioka & Shah, 1980; Patward-

han et al., 1980; Ünal & Celebioglu, 2011; Votsi

et al., 2010, 2013).

The motivation for our study was an article by

Gutiérrez et al. (2021) who made a Markovian study

of the seismic hazard in an area around Japan, and we

will use their results and data to illustrate our

arguments.

Their system consists of four seismogenic regions

(Fig. 1) and is considered to change to a new state

whenever a ‘‘large’’ earthquake, i.e., an earthquake

with magnitude above a given threshold magnitude

MT , occurs within one of the regions, and the state

corresponds to the region it occurred in, so that the

system has Ns ¼ 4 states. The data set comprises

N=450 earthquakes with magnitudes in the

6:5�M � 9:2 range, occurred from June 2, 1905, to

November 13, 2015, reported in the International

Seismological Centre (ISC) catalog. The seismotec-

tonics of the area and the reasons for choosing the

four regions, are discussed in Gutiérrez et al. (2021),

so that they will not be discussed in depth here; to

give a rough picture, regions one and two are defined

by the seismicity due to the Japan and Kuriles tren-

ches, and the limit between these was determined

from seismicity sections that show different dips for

the Pacific plate subduction. Region three is

characterized by deep significant earthquakes and a

different trench azimuth from region two. Region

four contains the seismicity from the Ryuku and

Nankai trenches.

The system was expected to be Markovian based

on the premise that large earthquakes liberate enough

stress and strain to significantly modify the stress

field in the area and locally influence the tectonic

plates motion and, hence, the occurrence of future

earthquakes in neighboring areas (e.g. Lehner et al.,

1981; Tsapanos & Papadopoulou, 1999; Márquez

et al., 2002; Melbourne et al., 2002; Venkatamaran

and Kanamori, 2004; Riga & Balocchi, 2016; Spag-

notto et al., 2018).

Gutiérrez et al. (2021) obtained transition proba-

bility matrices for several threshold magnitudes using

stepwise trial thresholds and, to evaluate the results

for the different thresholds, they proposed measures

of reliability, robustness and Markovianity (how

much the hazard estimates differ from what would be

expected from the stationary probabilities discussed

below). They found that earthquakes with large

magnitudes do occur in a Markovian way, and that

Markovianity is larger for threshold magnitudes

Figure. 1
Map of the study area. The dashed lines enclose the four regions

corresponding to the four states of the system (modified from

Gutiérrez et al. (2021))

F.A. Nava and Q.J. Gutiérrez Pure Appl. Geophys.



between 7.0 and 7.4, with a maximum around 7.1;

they speculated that Markovianity was low for mag-

nitudes below 7.0 because data sets included too

many events that were not large enough to influence

the process and were not part of a Markovian chain,

and above 7.4 because too many events that did

influence the process were excluded.

Here, we propose that, even when magnitudes are

correctly estimated, earthquakes within a given

magnitude range may or may not be part of a

Markovian process, depending on the local distribu-

tion of stress and strength and, possibly, on

characteristics of each particular rupture and other

imponderables. Hence the set of Markovian earth-

quakes will be fuzzy (Aziz & Parthiban, 1996; Zadeh,

1965), and the threshold should be a gradual mem-

bership function (Zadeh, 1988) instead of a crisp,

stepwise one. We propose a way to estimate empiri-

cal transition probabilities for fuzzy Markovian

thresholds and use Monte Carlo methods to test the

estimation method.

2. Markovian Systems and Chains

We will now briefly review a few concepts of

Markovian systems that will be useful for our study

(extensive treatments are found in many texts, e.g.,

Barucha-Reid, 1960; Battaglia, 2007; Ching & Ng,

2006; Feller, 1968; Gnedenko, 1962; Parzen, 1960,

and many more).

A finite Markov process is a stochastic process,

with a finite number Ns of states,

fsk; k ¼ 1; � � � ;Nsg;Ns [ 1, for which the probability

of transition from the current state to a given state in

the next trial depends only on the current state, i.e.,

the system has no memory about the states that

occurred before the present one. Let the state at step

m be s½m� ¼ si and that at the next step be s½mþ1� ¼ sj,

then if the transition probabilities between these

states are always the same, independently of the trial

or time interval, the Markov process is homogeneous,

and we can write

Pr½s½mþ1� ¼ sjjs½m� ¼ si� ¼ bpij ð1Þ

where each bpij is an element of a square Ns � Ns

transition probability matrix (TPM) bP with elements

corresponding to the true transition probabilities of

the Markovian system. A sequence of state occur-

rences distributed according to bP is commonly

referred to as a Markov chain, because each occurring

state is linked to the previous one according to eqn.

(1).

If the state at step m is s½m� ¼ si, then the proba-

bility that n steps later the system will be in state

s½mþn� ¼ sj, the n-step transition probability, is given

by

Pr½s½mþn� ¼ sjjs½m� ¼ si� ¼ bp
ðnÞ
ij ð2Þ

where bp
ðnÞ
ij is an element of matrix bP

n
(Chapmann-

Kolmogorov equation).

If bP is ergodic, then

lim
n!1

bP
n ¼ bP ¼

bp
..
.

bp

2

4

3

5 ð3Þ

where bp ¼ ½bp1; bp2; � � � ; bpNs
�;
PNs

j¼1 bpj ¼ 1; the ele-

ments of bp, called limiting or stationary probabilities,

are the same for any initial state and depend only on

the total relative number of times each state occurs.

Hence, the stationary probabilities are not Markovian,

yet are representative of what would be expected if

the system were non-Markovian and will be useful

for comparison with the Markovianity measures

presented below.

The empirical Markovian transition probabilities

from state i to state j are usually estimated as

pij ¼
hij

ni

; ð4Þ

where hij is the observed number of transitions from

state i to state j, and

ni ¼
X
Ns

j¼1

hij ð5Þ

is the total number of transitions that originated from

state i. The empirical Markovian transition proba-

bilities are expressed as a square Ns � Ns TPM P.
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3. Missing and Pseudo Links

Picture a geographic area under study, where

earthquakes are being generated according to a

Markovian process and the sequence of these earth-

quakes constitutes a Markovian chain; however, other

earthquakes not directly forming part of the Marko-

vian process are concurrently occurring in the area.

Hence, the sequence of all earthquakes from the area

will be a combination of events constituting the links

of the chain, minus missing links, events missing

from the chain possibly because they were discarded

for being below some threshold or because of the

uncertainties in magnitude determination, or for other

reasons, plus pseudo links that are events extraneous

to the chain.

Missing or pseudo links will influence the esti-

mation of the Markovian transition probabilities as

follows:

If a segment of the true chain is � � � ; si; sj; sk; � � �,
when counting transitions both hij and hjk will be

correctly increased by 1 each, but if the link con-

sisting of state sj is missing, the resulting sequence is

� � � ; si; sk; � � �, which will result in hik incorrectly

increased by 1, and in hij and hjk incorrectly not

increased.

On the other hand, if the true chain is

� � � ; si; sk; � � �, then when counting transitions hik will

be correctly increased by 1, but if a pseudo state sj

intrudes in between, the observed sequence will be

� � � ; si; sj; sk; � � � and both hij and hjk will be each

incorrectly increased by 1, and hik will be incorrectly

not increased.

The error caused by missing and pseudo links for

a typical Ns ¼ 4 TPM and a N ¼ 450 long series is

illustrated in Fig. 2; it is clear that the mean error per

transition probability is significant even for small

ratios of missing or pseudo links to the number of

data, and that errors due to pseudo links are consid-

erably larger than those due to missing links.

4. Fuzzy Thresholds and the Membership Function

We will use fuzzy magnitude thresholds to model

the mixture of Markovian and non-Markovian events

that can be expected in real seismicity, and will

propose a counting strategy, based on the fuzzy

threshold, to diminish the effects of missing or

pseudo links in the estimation of transition

probabilities.

Magnitude data in seismic catalogs are usually

rounded to DM ¼ 0:1, in what follows we shall

denote unrounded magnitudes by m and rounded

magnitudes by M. The magnitude fuzzy thresholds

will be defined by a membership function VðmÞ
(Zadeh, 1988), which is the probability that an event

with magnitude m belongs to the Markovian set.

We will characterize all thresholds by two roun-

ded magnitudes: MK0 and MK1, such that events with

rounded magnitudes M �MK0 are definitely too small

to be part of a Markovian chain and events with

rounded magnitudes M �MK1 are definitely large

enough to be links in a Markovian chain. Since from

a physical point of view it is reasonable to define a

membership function in terms of unrounded magni-

tudes, and since we will need such a function for the

Monte Carlo simulation of catalogs with fuzzy

thresholds, we note that the above limits correspond

to unrounded limits mU
K0 � MK0 þ DM=2 and

mU
K1 � MK1 	 DM=2. These limits define a transition

range where events with unrounded magnitudes

mU
K0\m\mU

K1 may stochastically belong to the

Markovian set, or not, with probability given by the

membership function in that range.

The threshold bandwidth

x ¼ ðMK1 	 MK0Þ=DM 	 1 ¼ ðmU
K1 	 mU

K0Þ=DM

ð6Þ

is the number of DM intervals spanned by the

threshold. For MK1 ¼ MK0 þ 0:1, x ¼ 0, the thresh-

old becomes a ‘‘crisp’’ step function.

It is not known what VðmÞ is like in the transition

band, but given that we associate the size of the

earthquakes with their probability of belonging to a

Markovian chain, we heuristically propose that it is

not unreasonable to suppose the membership proba-

bility to be proportional to the released seismic

moment M0, related to the moment magnitude MW

(Hanks & Kanamori, 1979) as.

log10 M0 ¼ 16:5 þ 1:5MW ð7Þ

in what follows we will suppose that all magni-

tudes are moment magnitudes and represent them by

F.A. Nava and Q.J. Gutiérrez Pure Appl. Geophys.



simply m or M. Thus, the moment membership

probability is given by

V mð Þ ¼

0; m�mU
K0

101:5m	10
1:5MU

K0

10
1:5MU

K1	10
1:5MU

K0

; mU
K0\m\mU

K1

1; ; m�mU
K1

8

>

>

<

>

>

:

ð8Þ

illustrated in Fig. 3.

Other possible membership functions may not

have physical significance, like a transition band

proportional to magnitude (because a magnitude is

not proportional to the earthquake size but to its

logarithm), or could be just handy commonly used

threshold functions, such as the widely used S-shaped

cosine-based function which gives a reasonable and

smooth gradual threshold without discontinuities or

sharp changes in slope. Different membership func-

tions can be tried to find which one gives best results

for a particular data set and thus represents best what

is happening in a given region. Here we will use only

the moment threshold membership function.

5. A Counting Strategy for Fuzzy Thresholds

Since, when analyzing an observed sequence, it is

not known a priori which events with magnitudes in

the transition range belong to the Markovian set, we

will propose a way of reducing the effects of missing

or pseudo links for a given trial threshold. Next, we

will try different trial thresholds to find which one

gives the best results and thus represents best the

actual threshold. We will now present our counting

strategy and later discuss how to measure and com-

pare results.

We assume that the magnitude of each event in a

catalog has been rounded to DM, and denote the

rounded magnitude by M; since the original unroun-

ded magnitude can have any value in the

½M 	 DM=2;M þ DM=2Þ range we will consider the

probability of an event with magnitude M belonging

Figure. 2
Average error per transition probability vs. proportion of missing (A) or pseudo (B) links; the thick blue line is the mean error for 225 Monte

Carlo realizations and the thin lines are the mean plus/minus one standard deviation

Figure. 3
The moment fuzzy threshold membership probability function for

x=3 transition band. The dashed horizontal lines represent the

average probabilities for each rounded magnitude step in the

transition range
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to the Markovian set to be the average of the prob-

abilities within the range

vðMÞ ¼ 1

DM

Z

MþDM=2

M	DM=2

VðmÞdm; ð9Þ

shown as dashed horizontal lines in Fig. 3. Thus, the

n’th event of the sequence will be characterized by its

observed state s½n�, its rounded magnitude M½n�, and its

Markovian membership probability v½n� ¼ vðM½n�Þ
The counting strategy for events with rounded

magnitudes consists of four points:

I. Each transition between consecutive events will

be counted according to the joint probability of both

starting and ending states belonging to the Markovian

set

w½n;nþ1� ¼ v½n�v½nþ1� ð10Þ

Obviously only events with non-zero probabilities

need be considered.

II. When v½nþ1� ¼ 1 the transition is achieved,

whatever the value of w½n;nþ1�, but if v½nþ1�\1 then

there is the possibility that state s½nþ1� is not a true

link, and that the Markovian transition is really from

state s½n� to state s½nþ2� with probability

w½n;nþ2� ¼ v½n�ð1 	 v½nþ1�Þv½nþ2� ð11Þ

because for this transition to be a link it is necessary

to include the probability that event n þ 1 is not

Markovian and, hence, not a link.

In general, transitions between non-consecutive

states will have a probability given by the product of

probabilities of the first and last events times the non-

occurrence probabilities of all intermediate events

w½n;nþk� ¼ v½n�ð1 	 v½nþ1�Þ � � � ð1 	 v½nþk	1�Þv½nþk�

ð12Þ

It is clear from eqn. (12) that there cannot be a

path that has a true link as an intermediate event.

III. The transition probabilities of all possible

paths leading to an event with unitary probability

should be considered and counted, because it is not

known which was the one that actually was followed;

there are 2k	1 different possible paths from an initial

state sn to a final state snþk.

IV. Each transition from a state s½n� to a state s½nþk�
will be counted as

hs½n�s½nþk� ¼ hs½n�s½nþk� þ w½n;nþk� ð13Þ

Now hij will not be the number of observed

transitions between states i and j, it will be the sum of

the probabilities corresponding to each observed

possible transition from state i to state j, calculated

according to eqn. (12). After all transitions have been

counted, the transition probabilities will be estimated

according to eqn. (4).

6. Monte Carlo Validation of the Counting Strategy

for Fuzzy Thresholds and Exploration of Three

Markovianity Measures

We will use Monte Carlo methods to explore the

effects of a fuzzy threshold on Markovian studies, by

generating a large number, Nr, of realizations of

synthetic catalogs consisting of sequences of

‘‘events’’ each one characterized by a magnitude and

a state.

As mentioned above, we will illustrate the appli-

cation of fuzzy thresholds and the counting

scheme using the same Markovian system used by

Gutiérrez et al. (2021), which consists of Ns ¼ 4

states, a sequence of N ¼ 450 earthquakes with

6:5�M � 9:2. From all earthquakes reported by the

same ISC catalog for the same period mentioned

before, we determined a G-R b-value b ¼ 0:928 for

use in eqn. (14).

For each realization, we first generate a sequence

of N Gutenberg-Richter distributed unrounded

magnitudes,

log10NCðmÞ ¼ a0 	 bðm 	 mU
K0Þ ð14Þ

where NCðmÞ is the number of earthquakes with

magnitudes �m, so that

PrðmÞ ¼ be	bðm	mU
K0
Þ;m�mU

K0 ð15Þ

where b ¼ b ln 10.

Events with unrounded magnitudes below the

transition range are considered non-Markovian, and

events with unrounded magnitudes above the

F.A. Nava and Q.J. Gutiérrez Pure Appl. Geophys.



transition range are automatically included in the

Markovian set.

For each unrounded magnitude in the transition

range a uniformly distributed pseudo-random number

in the (0,1) range is generated using the Matlab

rand.m function; if according to the membership

function (8) the magnitude’s probability of belonging

to the Markovian set is greater than the random

number, then the corresponding event is accepted as

belonging to the Markovian set; otherwise, it is

deemed non-Markovian.

Non-Markovian events are randomly assigned any

state, with uniform probability.

Each event in the Markovian set is assigned a

state according to the state of the previous Markovian

event and a postulated ‘‘true’’ TPM bP, so that the

Markovian events in the set constitute a Markov

chain (the state before the first Markovian event is

chosen randomly). We present results using as bP for

each postulated x and MK0 the corresponding

observed P for the Gutiérrez et al. (2021) data set,

because we felt they would be the more appropriate

to interpret the real data analysis and were adequate

to test the counting strategy. The counting strategy

was also tested using other bP TPMs with uniformly

satisfactory results.

When constructing a synthetic catalog it is known

which events are Markovian, so for each realization a

reference ‘‘empirical’’ TPM PR is built according to

eqn. (4) using only and all events in the Markovian

chain. According to Borel’s law of large numbers, PR

should tend to bP when the chain length tends to

infinity but, due to the relatively short span covered

by seismic catalogues, observed sequences of large

earthquakes cannot be very long, so that PR will not,

in general, equal bP, yet it is the best possible esti-

mation obtainable from a given sequence, since it

includes all events in the Markovian set and no events

outside it. Hence, PR will be an optimal estimate used

as the reference to evaluate the performance of the

counting strategy that does not ‘‘know’’ which events

in the transition band are links and which are not.

Finally, magnitudes are rounded to one decimal

place, as usual in seismological catalogs, and one

realization of a synthetic catalog is ready to be ana-

lyzed in the same way as a real catalog.

For each model threshold (called henceforward

simply model), consisting of given bandwidth x,

MK0, and ‘‘true’’ TPM bP, Nr ¼ 1000 realizations of a

synthetic catalog were generated, each realization

consisting of N ¼ 450 events with magnitudes that

after rounding were in the [6.5, 9.2] range; the upper

limit is the magnitude of the great 11 March 2011

Tohoku earthquake, the largest earthquake recorded

in the area. Each realization was analyzed, using the

counting strategy described above, for each of the

trial bandwidths xT ¼ 0,1; 2,3, and for trial lower

bounds MT
K0 ¼ 6.4,6.5; � � � ; 7.0,7.1.

For each realization, the ‘‘observed’’ TPM P was

estimated according to the counting strategy, and the

root-mean-square difference between P and PR,

DrmsP, was estimated; this difference is a measure of

how well the counting strategy is performing.

Three of the Markovianity measures used by

Gutiérrez et al. (2021) were also evaluated for each

realization, to test their usefulness in identifying

characteristics of the model. The considered mea-

sures are: M6, which is the power to which a TPM has

to be elevated to converge to stationary state proba-

bilities, i.e., to have all rows equal, to 6 decimal

places; the difference between the Shannon (1948)

entropies of the system and of the reference proba-

bility distribution P ¼ ½p1; p2; � � � ; pNs
�T eqn. (3),

defined as

S ¼ SP 	 SP ð16Þ

where

SP ¼ 	
X
Ns

i¼1

X
Ns

j¼1

pijlog2pij ð17Þ

and

SP ¼ 	4
X
Ns

j¼1

pjlog2pj ð18Þ

and the mean Relative Entropy or Kullback–Leibler

Distance (Kullback & Leibler, 1951), between the

probability distribution and the reference probability

distribution P :

j ¼ 1

Ns

X
Ns

i¼1

X
Ns

j¼1

pijlog2

pij

pj

� �

ð19Þ
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which is always well-defined because P has no null

elements; j ¼ 0 when P and P are identical. The

other two measures in Gutiérrez et al. (2021) were not

evaluated here because they are closely related to S

and j.

Mean values of the above-mentioned measures,

obtained from the analysis of the Nr realizations, are

used to see how well the Markovianity measures

identify the characteristics of the different thresholds.

Here, for reasons of space, we will show in

Figs. 4, 5, 6, 7 how the probabilities are adjusted and

how the measures behave for MK0 ¼ 6:9 only, to

illustrate the effects of different bandwidths. In each

figure the postulated ‘‘real’’ threshold MK0 and MK1

are shown at top left in (a) and other graphs show

mean values of the results of the Nr realizations for

each trial MT
K0; graph (b) shows DrmsP, and graphs

(A) to (D) show measures corresponding to NK0, M6,

S, and j, respectively.

Graph (b) is very important, because it shows in

Figs. 4, 5, 6, 7 that for all actual fuzzy thresholds, the

counting strategy, applied to the rounded magnitudes

series, for which it is not known which events are

links in the chain and which are not, results, for the

right combination of x and MT
K0, in the best estimate,

i.e. the one closest to the optimal, which indicates

that this strategy is indeed working as it should.

These results will be summarized in Fig. 8.

Results for an actual crisp x ¼ 0 threshold at

MK0 ¼ 6:9 and N ¼ 450 are shown in Fig. 4; we

chose this combination of parameters because they

correspond to the preferred result in Gutiérrez et al.

(2021), for a crisp threshold at their

MT ¼ 7:0 ¼ MK1. Trial xT ¼ 0 has a sharp peak at

MT
K0 ¼ 6:9 for all measures, which is to be expected

because both real and trial thresholds are crisp. These

peaks tell us that the measures suggested heuristically

by Gutiérrez et al. (2021) do work for a crisp

threshold and supports their speculation that mea-

surements for too low MT
K0 include too many pseudo

links, while those for too large MT
K0 lose too many

real links. The asymmetric behavior on the sides of

the peak suggests that the effect of pseudo links is

larger than that of missing links.

Since the actual threshold width is not known a

priori, different trial bandwidths should be used, and

the measurements for wider trial bandwidths are also

shown in Fig. 4. Although these measurements are

not appropriate for the actual x ¼ 0, they also show

smaller peaks for the right MT
K0, except for M6 with

x ¼ 3 that peaks at MT
K0 ¼ 6:8.

Figure 5 illustrates the effects of a larger thresh-

old bandwidth, x ¼ 1, for the same MK0 ¼ 6:9. The

measures for xT ¼ 1 peak for MT
K0 ¼ 7:0, halfway

between MK0 and MK1. xT ¼ 0 also peaks for MT
K0 ¼

7:0 with larger extreme values than xT ¼ 1, and

could be incorrectly interpreted as corresponding to a

crisp threshold with MK0 ¼ 7:0.

The x ¼ 2 threshold for MK0 ¼ 6:9 is shown in

Fig. 6. For M6 the correct xT ¼ 2 peaks at

MT
K0 ¼ 7:0, but S and j feature no peaks. This is an

effect of the small number of events used; the same

calculations using N ¼ 1000 events (not shown here)

feature clear peaks for MT
K0 ¼ 7:0, except for xT ¼ 0

that peaks for MT
K0 ¼ 7:1. Also notable is the fact that

the peak values do not identify the correct MK0.

Figure 7 shows the x ¼ 3 threshold for

MK0 ¼ 6:9. Measures show no peaks for N ¼ 450,

but this is again an artifact of the small number of

events; using N ¼ 1000 events (not shown here)

results in peaks for MT
K0 ¼ 7:0 for the correct xT ¼ 3,

but also in larger peaks for MT
K0 ¼ 7:1 for the smaller

trial bandwiths.

Repetition of the Monte Carlo simulations intro-

ducing small variations in the various P’s, does not

substantially change the results.

Figure 8 summarizes the result, mentioned above,

that in all cases, the correct trial bandwidth results in

the smallest differences between measured P and

optimal Pr for MT
K0 ¼ MK0, which supports the

appropriateness of the proposed counting strategy for

probability estimation. Note that the second-best

value corresponds in each case to the model that is

closest to the correct one.

7. Application of the Counting Strategy to a Real

Catalog

Having validated our counting strategy through

Monte Carlo simulation, we will now illustrate its

application to a real set of data. In what follows, it

should be kept in mind that a serious limitation in
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Figure. 4
Results of Monte Carlo simulation of a crisp, x ¼ 0 threshold at MK0 ¼ 6:9 (a) for Nr ¼ 1,000 realizations of N ¼ 450 events each; mean

values for Nr realizations are shown for DrmsP (b), NK0 (A), M6 (B), S (C), and j (D), plotted versus the trial MT
K0. The different lines

correspond to different trial threshold bandwidths xT as indicated in the legends
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Figure. 5
Results of Monte Carlo simulation of a x ¼ 1 threshold at MK0 ¼ 6:9 (a) for Nr ¼ 1000 realizations of N ¼ 450 events each; mean values for

Nr realizations are shown for DrmsP (b), NK0 (A), M6 (B), S (C), and j (D), plotted versus the trial MT
K0. The different lines correspond to

different trial threshold bandwidths xT as indicated in the legends

F.A. Nava and Q.J. Gutiérrez Pure Appl. Geophys.



statistical studies of large earthquakes is the size of

the sample; as larger Mk0 values are considered the

number of pertinent events, i.e. the effective sample

length, NK0, shown in plot (A) of the figures,

Figure. 6
Results of Monte Carlo simulation of a x ¼ 2 threshold at MK0 ¼ 6:9 (a) for Nr ¼ 1000 realizations of N ¼ 450 events each; mean values for

Nr realizations are shown for DrmsP (b), NK0 (A), M6 (B), S (C), and j (D), plotted versus the trial MT
K0. The different lines correspond to

different trial threshold bandwidths xT as indicated in the legends
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decreases rapidly, so there are not enough data to get

reliable results for large Mk0 and/or x. This is the

case for the data set we are considering, hence, since

no method can extract information from unavailable

data, a definitive threshold determination can hardly

be expected, but application of the method to the

available data gives suggestive results, to be ratified

or rebutted when more data are available and is an

Figure. 7
Results of Monte Carlo simulation of a x ¼ 3 threshold at MK0 ¼ 6:9 (a) for Nr ¼ 1,000 realizations of N ¼ 450 events each; mean values

for Nr realizations are shown for DrmsP (b), NK0 (A), M6 (B), S (C), and j (D), plotted versus the trial MT
K0. The different lines correspond to

different trial threshold bandwidths xT as indicated in the legends

F.A. Nava and Q.J. Gutiérrez Pure Appl. Geophys.



illustration of the capabilities of the proposed

method.

Figure 9 shows the results of applying our

counting strategy to the data set used in Gutiérrez

et al. (2021) for the same trial bandwidths and

thresholds employed above; as mentioned above, the

set comprises N=450 earthquakes with magnitudes in

the 6:5�M � 9:2 range. The lines for xT ¼ 0 cor-

respond to those of Fig. 4 of Gutiérrez et al. (2021),

who used only a crisp threshold; their trial threshold

magnitudes, MT , are equivalent to our MT
K1 ¼ MT

K0 þ
0:1 for this bandwidth.

We are now faced with the problem of choosing

the best model, i.e., the values Mk0 and x, that would

best fit the observed data. As mentioned above,

except for the case of the unrealistic crisp threshold,

the peak values of the measured statistics do not

occur for Mk0, and the correct x is unknown. How-

ever, the synthetics show that the way in which the

transition from non-Markovian to Markovian occurs

for each trial bandwidth as MT
K0 increases is different

for different true bandwidths. Hence, we will try to

identify the correct parameters for the observed real

system, by comparing the whole curves in Fig. 9 with

those of synthetic models. In what follows we will

only show the comparison with two crisp thresholds:

the preferred one of Gutiérrez et al. (2021) and one

with the next higher MK0, and the comparisons with

the three fuzzy models that best fit the data.

It should be emphasized at this point that the data

correspond to only one (very short) realization of a

stochastic process, so that the results will not

necessarily conform to those shown above for means

from the synthetics. Hence, we will use the means

from Monte Carlo simulations that used the same

amount of data as guides and consider their standard

deviations. A further problem is that for the largest

xT values the results for large MT
K0 are not reliable

due to the small amount of data.

Figures 11, 12, 13, 14, 15 (see appendix) show,

each for a given bandwidth x and for the trial MT
K0

values used above, a comparison between the

observed measures and the synthetic means together

with their standard deviations.

Figure 11 shows, for the crisp threshold x ¼ 0 for

MK0 ¼ 6:9, the comparison between the synthetics

(Fig. 4) and the observed data (Fig. 9). All observed

measures peak for MT
K0 ¼ 7:0 and the measures for

the smaller MT
K0 values behave in completely differ-

ent manner from the synthetics. Clearly, this model is

not appropriate to the data.

Since the observed measures for x ¼ 0 peak at

MT
K0 ¼ 7:0, it is necessary to try the crisp model for

MK0 ¼ 7:0. The comparison is shown in Fig. 12

where peaks now coincide (although the peak for M6

is not well defined) but the value for S is too high

while that for j is too low, and the behaviors at lower

MT
K0 values do not agree. This model is not appro-

priate to the data either.

Other crisp threshold models do not agree with

the data either, so larger bandwidths will be tried

now.

The observed measures for x ¼ 1 (Fig. 9) do not

fit at all the model for MK0 ¼ 6:9 (not shown here),

but the measures for MK0 ¼ 7:0 s with x ¼ 1

(Fig. 13) fit the data reasonably in the MT
K0 ¼ 6:6–7:0

range, after which there are not enough data. There

are not enough data for comparison with larger MK0

values for this bandwidth.

Figure 14 shows the comparison for the x ¼ 2

and MK0 ¼ 6:9 threshold. Agreement is reasonable in

the MT
K0 ¼ 6:6–7:0 range, but measured values are

not reliable for MT
K0 ¼ 7:0.

Our widest bandwidth x ¼ 3 is shown in Fig. 15

for MK0 ¼ 6:9; although fit is much better for the

lower MT
K0 range, M6 is a very bad fit and there were

not enough data for observed estimations above

MT
K0 ¼ 6:9.

Figure. 8
Comparison of DrmsP for Mk0 ¼ 6:9 and different bandwidths x
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Thus, from the comparisons we can conclude that

a crisp threshold is not compatible with the observed

measures, which agrees with our contention that

sharp thresholds are not reasonable in nature.

Within the limitations imposed by the small

number of data, we tentatively identify models

MK0 ¼ 6:9 with x ¼ 2 and MK0 ¼ 7:0 with x ¼ 1;

as those that best adjust the observed measurements.

More data would be needed to make a reliable choice

between these two models, but it is clear that a fuzzy

threshold is preferable to a crisp one.

8. Discussion and Conclusions

It is unreasonable to suppose that the threshold

between seismic magnitudes that constitute a

Markovian process, and those that do not, can be

adequately modeled by a crisp step-function, partic-

ularly when considering the uncertainties in

magnitude determination and the effects of rounding.

Hence it is necessary to use fuzzy thresholds to model

the process. We heuristically propose a membership

function with probability proportional to seismic

moment in the transition band.

Figure. 9
Application of the counting strategy to real data from Japan. NK0, is shown in (A); M6, S, and j are shown in (B), (C), and (D), respectively,

plotted versus the trial MT
K0. The different lines correspond to different trial threshold bandwidths xT indicated in the legends
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The usual method for evaluating empirical tran-

sition probabilities assumes all events in the observed

sequence above a given threshold are links in a

Markov chain; we propose a counting strategy for

fuzzy thresholds based on the probabilities of being

Markovian of the events in the sequence and justify

the strategy through Monte Carlo simulations. The

counting strategy can be applied to any membership

function.

The appropriateness of the counting strategy was

validated by applying it to synthetic state chains

created according to different threshold models and,

in all cases, the difference between estimated and

optimal TPMs was smallest for the combination of

trial parameters that matched those of the model. The

Monte Carlo simulations show that peaks in the

Markovianity measures are not good indicators of

threshold magnitudes, so the whole shape of the

measure vs. MT
K0 should be used to identify the

threshold.

Next, we applied the counting strategy to a set of

real data, and found that the measures from the real

data show features resembling some of the simula-

tions, but do not correspond closely and

unequivocally to any one of them; which is not sur-

prising since the observed data constitute only one

very short realization of a random process, and any

one realization can be expected to differ from the

mean of many realizations. The very short length of

the data chain precludes exploring models with large

threshold magnitudes and/or wide acceptance

bandwidths.

Taking the above into account, we find that the

empirical results resemble most the simulations for

Figure. 10
Transition probability matrices shown row by row; PG is shown as the dashed red line with circles, P is the blue line with diamonds for

MK0 ¼ 6:9 and x ¼ 2 (left) and for MK0 ¼ 7:0 and x ¼ 1 (right), and the reference uniform probability pU ¼ 0:25 is the dotted black line
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MK0 ¼ 6:9 with x ¼ 2 and MK0 ¼ 7:0 with x ¼ 1 so

we conclude that, within the limitations of the data,

the Markovian behavior of the seismicity in the

Japanese area is best modeled by a fuzzy threshold

0.1 to 0.2 magnitude units wide.

Use of these models to estimate the Markovian

seismic hazard in the Japan area instead of the

Gutiérrez et al. (2021) crisp threshold model, changes

the Markovian transition probabilities from their

PG ¼
0:2083 0:4792

0:3667 0:2667

0:1458 0:1667

0:1833 0:1833
0:3000 0:2000

0:2000 0:4000

0:3333 0:1667

0:0857 0:3143

2

6

4

3

7

5

to, for MK0 ¼ 6:9 and x ¼ 2;

P ¼
0:2457 0:4334

0:3248 0:2718

0:1504 0:1705

0:1829 0:2205
0:2730 0:2219

0:2697 0:4288

0:4151 0:0900

0:0478 0:2538

2

6

4

3

7

5;

or, for MK0 ¼ 7:0 and x ¼ 1;

P ¼
0:3000 0:3667

0:3429 0:2286

0:1333 0:2000

0:1714 0:2571
0:1667 0:2778

0:2727 0:4545

0:4444 0:1111

0:0454 0:2273

2

6

4

3

7

5:

Figure 10 illustrates the probabilities for our

preferred models as compared with the probabilities

for the crisp threshold PG, and with the reference

uniform probabilities. Note that, although the fuzzy

thresholds are somewhat similar, but not equal, their

TPMs are very much alike and differ in the same

ways from the PG probabilities. Hence, in describing

the probability changes from crisp to fuzzy we will

use the plural to refer to both fuzzy threshold

probabilities.

After an event in Region 1, the probabilities of it

repeating in the same region are increased, while

those of being followed by an event in Region 2 (the

largest in the TPM) are decreased; those for transi-

tions to the other farther regions remain essentially

the same.

After an event in Region 2, the probabilities of a

repetition decrease slightly, while those of a transi-

tion to Region 4 increase slightly.

After an event in Region 3, the probabilities of a

repetition, the largest, increase considerably, while

those of a transition to Region 4 decrease

significantly.

After an event in Region 4, the probabilities of a

repetition or to a transition to Region 3 decrease

significantly, while, surprisingly, those for a transi-

tion to Region 1 increase.

We submit that, despite the limitations of working

with a single short observed chain, the estimates of

transition probabilities from fuzzy thresholds are

preferable to those from a crisp threshold, because

their models are more realistic and because they fit

the synthetic results better.

The counting strategy might be useful in some

other applications where crisp thresholds are not

acceptable.
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Figure. 11
Synthetic threshold with x ¼ 0 and MK0 ¼ 6:9 (a) and differences between estimated TPMs and optimum TPMs (b). Number of magnitudes

used in the analysis as a function of trial initial magnitude MT
K0 (A). Comparison of observed measures, blue lines with circles in (B) to (D),

with synthetic Monte Carlo means (thick black lines) and means plus/minus one standard deviation (thin black lines) for the threshold
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Figure. 12
Synthetic threshold with x ¼ 0 and MK0 ¼ 7:0 (a) and differences between estimated TPMs and optimum TPMs (b). Number of magnitudes

used in the analysis as a function of trial initial magnitude MT
K0 (A). Comparison of observed measures, blue lines with circles in (B) to (D),

with synthetic Monte Carlo means (thick black lines) and means plus/minus one standard deviation (thin black lines) for the threshold

F.A. Nava and Q.J. Gutiérrez Pure Appl. Geophys.



Figure. 13
Synthetic threshold with x ¼ 1 and MK0 ¼ 7:0 (a) and differences between estimated TPMs and optimum TPMs (b). Number of magnitudes

used in the analysis as a function of trial initial magnitude MT
K0 (A). Comparison of observed measures, blue lines with circles in (B) to (D),

with synthetic Monte Carlo means (thick black lines) and means plus/minus one standard deviation (thin black lines) for the threshold
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Figure. 14
Synthetic threshold with x ¼ 2 and MK0 ¼ 6:9 (a) and differences between estimated TPMs and optimum TPMs (b). Number of magnitudes

used in the analysis as a function of trial initial magnitude MT
K0 (A). Comparison of observed measures, blue lines with circles in (B) to (D),

with synthetic Monte Carlo means (thick black lines) and means plus/minus one standard deviation (thin black lines) for the threshold
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Figure. 15
Synthetic threshold with x ¼ 3 and MK0 ¼ 6:9 (a) and differences between estimated TPMs and optimum TPMs (b). Number of magnitudes

used in the analysis as a function of trial initial magnitude MT
K0 (A). Comparison of observed measures, blue lines with circles in (B) to (D),

with synthetic Monte Carlo means (thick black lines) and means plus/minus one standard deviation (thin black lines) for the threshold
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