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Abstract
We present a simple method for identification of seasonal components in GPS displacement time series. The method con-
siders two options for the treatment of long series, considering possible variability in the seasonal phases. The method also 
proposes a bootstrap scheme to deal approximately with series shorter than one period of the seasonal signal. Tests with 
synthetic data show that the method gives quite acceptable results, so that results from application to real data, although 
approximate, should be useful considering the inherent uncertainties in the data.
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Introduction

Global Positioning System (GPS) measurements are an 
extremely valuable source of data for a wide range of geo-
physical studies, many of which had to rely on imprecise or 
difficult to obtain and sparse data until not very long ago. 
GPS data is useful for studies ranging from different fields of 
tectonics (e.g. Blewitt and Lavalée 2002; Davis et al. 2006; 
Heflin et al. 2020; Ji et al. 2020) to seismology (e.g. Davis 
et al. 2006; Wernicke and Davis 2010; Gonzalez-Ortega 
et al. 2014). The present paper deals with application of 
GPS to studies in volcanology (e.g. Mann et al. 2002; Bartel 
et al. 2003; Miyagi et al. 2004; Puglisi and Bonforte 2004; 
Janssen 2007; Geirsson et al. 2017; Larson et al. 2010; Lee 
et al. 2015), where GPS data is used to monitor deforma-
tions in volcanic edifices, because these deformations can be 
related to magma of gas-related processes going on under-
ground, so that GPS measurements are useful for studying 

these volcanic processes and sometimes to anticipate pos-
sible eruptive activity.

The subject of the present study is to identify very large 
periodic (or semi-periodic) components due to seasonal sig-
nals (e.g., Dong et al. 2002; Ray et al. 2008; Tregoning and 
Watson 2009; Chen et al. 2013; He et al. 2017; Wang et al. 
2018), the causes of which can be many, e.g., Chanard et al. 
2020, and are outside the scope of this paper.

Because seasonal components present large amplitudes 
with respect to the amplitudes of background volcanic pro-
cesses, many methods to identify seasonal components have 
been proposed (e.g., Davis et al. 2006, 2012; Freymueller 
2009; Chen et al. 2013, 2020; Gruszczynska et al. 2017; He 
et al. 2017; Klos et al. 2019; Ji et al. 2020; and many others).

In the present paper, we contribute a simple-minded, 
intuitive approach to seasonal component identification. 
The analysis program we present identifies each seasonal 
component, and if desired, outputs a series consisting of the 
original one minus the seasonal component. If the seasonal 
component is the object of interest, it can be easily obtained 
by subtracting the resulting series from the original one.

Method

In what follows, we present a method for identifying sea-
sonal components, whether annual, semiannual, draconitic, 
etc. We will use a simple method to identify a periodic com-
ponent within a time series, based on the wonderful capacity 
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of Fourier analysis to identify a component with a given 
period, even in the presence of other periods and noise.

Let d =
{

di; i = 1, 2,… ,N
}

 be a time series having N ele-
ments sampled with sampling interval Δt , so that element di 
corresponds to time ti = t1 + (i − 1)Δt , where t1 is the time 
of the first element.

Let the period of the seasonal component to be identi-
fied, and perhaps later eliminated, be T, so there will be 
NT = R(T∕Δt) elements in one period, where R is the 
“rounding” function that assigns the integer closest to the 
real number argument. Hence, we will be really identifying 
the period NTΔt , which we will suppose to be close enough 
to T for practical purposes.

To eliminate the seasonal component two cases are con-
sidered. Case one is when series are at least one period long, 
N ≥ NT . It is well known that Fourier analysis can correctly 
characterize only periods that are submultiples of the total 
observation time, and other periods present in the sampled 
series are represented in terms of various submultiple peri-
ods. Thus, except for the case N = kNT , where k is some 
positive integer, straightforward application of the Fourier 
transform to the whole series is not appropriate to determine 
amplitude and phase of a seasonal component with period T.

From a series with N elements, m = N − NT + 1 differ-
ent continuous segments one period long can be chosen, 
d(j) =

{

dj, dj+1,… , dj+NT−1
; j = 1,… ,m

}

 , and the Fourier 
transform of each of these series:

(only one spectral component, the fundamental, is 
needed) yields an amplitude A(j) and a phase � (j) measured 
with reference to tj . This phase is changed to a phase �(j) 
referred to the time of the first element of the series t1 as 
�(j) = � (j) − 2�fo

(

tj − t1
)

.
Transforms from different segments, as many as possi-

ble, are used because, as will be discussed below, seasonal 
signals are usually not invariant over time, which means the 
amplitude and phase determined from one segment may not 
be representative of the whole series.

Once amplitudes and phases have been computed, a first 
option consists of using the mean values of the m amplitudes 
and phases, A and � , respectively, to define an average sea-
sonal component as:

which gives good results for non-varying seasonal signals 
and yields estimates of the spread in A and � through their 
standard deviations. Figure 1 is an example of this option 
applied to a segment of a GPS displacement series from 
Colima volcano.

(1)D
(j)

1
=

j+NT−1
∑

q=j

e−i 2πfo(q−j)ΔtdqΔt,

(2)si = A + cos
[

2�fo
(

ti − t1
)

+ �

]

,

However, it has been observed that the seasonal signal in 
geodetic time series is not invariant (Tregoning and Watson 
2009; Davis et al. 2012; Chen et al. 2013; Ji et al. 2020; 
Tucikešić et al. 2020; Ruttner 2021), and different methods 
for characterizing the seasonal components are proposed in 
the papers referenced above.

Our approach to varying seasonal components is based 
on Eqs. (2) and (4) of Davis et al. (2012), who observe that 
a small segment of the time signal can be considered as 
belonging to a seasonal sinusoid if the amplitude does not 
change too rapidly over the period T  , in which case the sea-
sonal s(t) can be written as:

where fo = T−1 , A(t) and �(t) are instantaneous amplitude 
and total phase, respectively, and �(t) is the instantaneous 
phase offset, so that a variation in the instantaneous fre-
quency f (t) implied in Eq. (1) can be expressed through the 
variation in �(t) as:

keeping fo constant.
Thus, for each of the d(j) series, instantaneous ampli-

tudes A(j) and �(j) are determined from the Fourier trans-
form as mentioned above. Since each pair of these val-
ues is representative of the whole segment, the values 
are assigned to the middle element of the series, i.e., 
Aj+NT∕2−k

= A(j) and �j+NT∕2−k
= �(j) , where k = 0 for 

even NT and k = 1 for odd NT , and we have two series of 

(3)s(t) = A(t)cos�(t) = A(t)cos
[

2πfot + �(t)
]

,

(4)f (t) = fo +
1

2π

d�(t)

dt
,

Fig. 1   A Displacement GPS time series recorded at Colima volcano 
(blue) and seasonal component from the average phase and ampli-
tude option (red). B Resulting displacement after elimination of the 
seasonal component (black line) and original displacement (thin blue 
line)
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instantaneous parameters, A and � , to substitute in (3). The 
NT∕2 elements at each extreme are “tails” of the method 
and can either be discarded for series that are long enough 
so that information from the tails is not needed for inter-
pretation. For short or middle sized series, with lengths 
only a few times the tail length, the tails can be assigned 
the closest values, i.e., A(1) and �(1) at the beginning, and 
A(m) and �(m) at the end.

The seasonal component is then computed as:

Figure 2 shows an example of the application of this 
method to a long segment of GPS displacement data from 
the Colima Volcano, and Fig. 3 shows the instantaneous 
phases and amplitudes.

Case two is for series that are shorter than one period 
N < NT  . It is not feasible to characterize a signal with 
period longer than the total duration from direct appli-
cation of Fourier analysis, but we propose a bootstrap 

(5)si = Ai + cos
[

2�fo
(

ti − t1
)

+ �i

]

.

method to get an approximate characterization, based 
on the fact that the period of interest is already known 
(postulated).

First, we compute an incomplete transform with K = N 
as in (6):

which results in approximate amplitude A[0] and phase �[0] , 
where [0] indicates that it is the zero’th iteration.

Next, the “missing” data are computed as:

for y = 0 . These extrapolated data are appended to the origi-
nal series, and a new “complete” transform is calculated 
using (6) with K = NT to obtain A[1] and �[1].

The process is iterated, replacing at each iteration the 
previously interpolated data by the new ones, until for some 

(6)D1 =

K
∑

q=1

e−i2πfo(q−1)ΔtdqΔt,

(7)di = A[y] + cos
[

2�fo
(

ti − t1
)

+ �[y]
]

; i = N + 1,… ,NT ,

Fig. 2   A Displacement GPS 
time series recorded at Colima 
volcano (blue) and seasonal 
component from varying phase 
method (red); dotted lines 
indicate the tails of the fit. B 
Resulting displacement after 
elimination of the seasonal 
component (black line) and 
original displacement (thin blue 
line)

Fig. 3   Blue lines are A instan-
taneous phase and B amplitude 
for the seasonal fit shown in 
Fig. 2. Horizontal red lines 
indicate the mean values and 
dotted lines are the mean ± one 
standard deviation
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y iteration, A[y] − A[y−1] < 𝜖A and 𝜙[y] − 𝜙[y−1] < 𝜖𝜙 , where 
�A and �� are convergence criteria (we use �A = 0.001mm 
and �� = 0.001◦ ) or a maximum number of iterations is 
reached (we use ymax = 2000 , but for all cases having a rea-
sonable length, estimates converge after at most a few tens 
of iterations).

After convergence, the seasonal component is computed 
from:

and subtracted from the original series.
Figure 4 shows an example of this bootstrap fitting to the 

first 300 elements of the signal shown in Fig. 1. A compari-
son of both the fitted seasonal component and the resulting 
series shows that our approximate iterative fitting works 
quite well.

Synthetics and discussion

To keep this paper at a reasonable length, only a few 
examples of application to real data were shown here, but, 
although results look nice, it is not possible to judge from 
real data whether seasonal components were correctly iden-
tified, since it is not known a priori which, if any, are pre-
sent in the data. It is necessary to test the proposed method 

(8)si = A[y] + cos
[

2�fo
(

ti − t1
)

+ �[y]
]

; i = 1, ..N,

with synthetic signals that consist of, or incorporate, known 
components.

The method was implemented as a MATLAB program, 
diseas.m, which can be found in http://​cicese.​repos​itori​
oinst​ituci​onal.​mx/​jspui/​handle/​1007/​3925. Also found at 
the same address is a complementary program, syntseas.m, 
which generates synthetic series with one or several different 
periods and corresponding original phases, and the option 
of varying the phase in time for each period, by adding (or 
subtracting) a quantity that changes in time as a sine function 
with a chosen period. The synthetics program can also add to 
the seasonals a trend, and add random noise, either normally 
or uniformly distributed, with a chosen standard deviation. 
Evaluating the effects of a trend in the data is important 
because it represents a signal with longer “period” than the 
duration of the time series and, being the double integral of 
a Dirac delta function, has a Fourier spectrum ∝ f −2 , which 
means that it can be an important factor in the treatment of 
short series.

Instructions for the use of the abovementioned programs 
are included in the corresponding headers, and the programs 
themselves are user-friendly. Thus, interested readers can 
use the attached programs to reproduce the results we will 
now show, and get figures showing how seasonal compo-
nents are fitted.

First, we will show a compilation of results from seasonal 
identification in long series Fig. 5 shows � , the rms fit error 

Fig. 4   A Short segment of the displacement GPS time series recorded 
at Colima volcano shown in Fig.  1 (blue) and seasonal component 
from boot-strapping method (red). The yellow lines are the fits for the 
9 iterations needed to attain convergence. B Resulting displacement 
after elimination of the seasonal component. Fit and resulting series 
can be compared with the equivalent segment in Fig. 1

Fig. 5   Fit rms error � between true and estimated yearly seasonals for 
different series lengths N. Blue lines are the total error for the whole 
series and dashed red lines are the error excluding the tails

http://cicese.repositorioinstitucional.mx/jspui/handle/1007/3925
http://cicese.repositorioinstitucional.mx/jspui/handle/1007/3925
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between true and estimated seasonals, for a yearly seasonal 
with T = 1year , amplitude A = 5.0mm , and initial phase 
�0 = 33.0◦, forvariousserieslengthsN  . The first seasonal 
long series model, L0, a sine curve without noise, phase 
variations, or trend, is not illustrated because the identifica-
tion is exact and errors are zero up to at least six decimal 
places.

Seasonal model L1 (Fig. 5A) illustrates the effect of add-
ing normally distributed random noise with 0.5 mm standard 
deviation to L0 (random number generator seed = 88). The 
error corresponding to the whole series is plotted as a con-
tinuous blue line, and the red dashed line is the error with-
out including the tails. Error increases as the series grows 
longer, i. e., as more noise is added, but it is always very 
small, smaller than the noise standard deviation.

Seasonal model L2 (Fig. 5B) is L0 with added trend of 
1.0mm/yr . The error is null outside the tails and the total 
error decreases as the series grows and tails become smaller 
in relation to the total length.

Seasonal model L3 (Fig. 5-C) shows the effect of adding 
varying phase to L0 as:

where Δ� is the maximum increment (or decrement if nega-
tive) that is attained at time �∕4 after t1 . The example fea-
tures Δ� = 20◦ and � = 5yr . The error for no tails is quite 
small, and the error with tails decreases as tails get relatively 
smaller.

Finally, model L4 (Fig. 5D) includes both varying phase 
and trend. Again, trend does not increase the error for the 
segments without tails, but it produces some error within 
the tails. Adding noise to L4 (not shown) does not result in 
a significant increase in error.

In the examples shown above, we have added fairly large 
amounts of noise, phase variation and trend, yet errors 
remain small, with the largest ones being less than ~ 0.04 of 
the seasonal range (here 10 mm), and the difference between 
postulated and adjusted seasonals is quite small.

Next, we use synthetics to test the bootstrap scheme 
(referred to from here on as BSS) for identifying seasonal 
components of a given period in short series with durations 
less than one period. The wisdom of trying to do this may 
be questioned, because Fourier analysis tells us that it cannot 
be done exactly. However, it is not uncommon for observed 
time series to have gaps due mainly to power shortages or 
instrument malfunction; a problem complicated by the fact 
that access to GPS stations located on volcanoes may be 
complicated because of weather factors or because of the 
volcanic activity itself. Hence, it is not uncommon to have 
relatively short data segments that may be important to 
the interpretation of the volcanic activity, and many times 
some overall curvature in the data segment will indicate the 

(9)� = �0 + Δ�sin
2π

�
(t − t1),

presence of a seasonal component that must be extracted 
for the data to be useful. Hence, we propose to identify, 
albeit approximately, seasonal components in short series, 
and application of the BSS to synthetic series will let us 
estimate how reliable the results will be depending on the 
length of the series.

Figure 6 shows how parameters A and � are identified 
(plots A and B, respectively), the number of iterations to 
convergence (plot C), and, most important, the rms error 
between the true seasonal component and the identified one 
(plot d), for different series lengths N from 25 to 364. This 
example uses a series having the same characteristics as 
the one used previously, T = 1year , amplitude A = 5.0mm , 
and initial phase �0 = 33.0◦ ; we will not consider varying 
phases.

Since the most important question is whether the BSS 
works at all, we consider as model S0 the above mentioned 
seasonal with no noise or trend added. The results for this 

Fig. 6   Estimated amplitude A (A) and phase � (B), number of itera-
tions to convergence N

it
 (C), and rms fit error between true and esti-

mated seasonals � (D) for four different models as a function of series 
length N. Model S0 is a simple sinusoid, model S1 is model S0 plus 
normally distributed random noise, model S2 is model S0 plus a 
trend, and model S3 is model S2 plus noise. In (C), the approximate 
N
it
 values for very short series are written rather than plotted in order 

to see the details for longer series
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basic model are shown as blue lines with circles, and it is 
clear that the BSS works very well even for quite small N.

The next model, S1, is model S0 with added normally 
distributed random noise with 0.5 mm standard deviation, 
and is plotted as red dashed lines with diamond markers. 
Although noise slightly distorts the phase and amplitude 
identification, the BSS error is still quite small all the way 
to lengths ~ 225 samples and is small for lengths as short 
as ~ 50.

Model S2 is model S0 with added trend of 1.0mm/yr ., 
and is plotted as a black dotted line with triangle markers, 
and it is clear in Fig. 6 that a trend superposed on the sea-
sonal components causes large errors in the BSS. The values 
obtained for A and � differ significantly from the true values, 
but these differences appear to cancel somewhat, because the 
resulting � , although much larger than for the trendless case, 
is much smaller than the differences in A. The case is pretty 
much the same for model S3, which is S2 with normal noise 
added, and curiously the presence of noise reduces slightly 
the differences and errors, particularly for small N values.

It should be pointed out that even the largest values of 
� ∼ 0.289 , occurring for N ∼ 225 , amount only to about 
0.029 of the total range of the seasonal signal, which indi-
cates that, although the BSS is an approximate method, it 
can yield useful results.

For short series that are close in time to other larger 
series, it should be possible to complement the results of 
BSS with the seasonal identifications from the longer series.

A curious feature of BSS is that the number of iterations 
needed for convergence, Nit , appear to depend only on the 
length of the signal, and are essentially equal for all models, 
except for extremely short series with 50 or less elements, 
and even then they differ among models by only a small 
number of iterations.

The main assumption behind the method presented here 
is that the seasonal signals can be represented as a sinu-
soid, an assumption common to most of the papers dealing 
with seasonal identification (e.g. Blewitt and Lavallée 2002; 
Ding et al. 2005; Davis et al. 2006, 2012; Bogusz and Fig-
urski 2014). This assumption is essential for short series, 
where variability is hard or impossible to appreciate, but it 
is relaxed in the variable phase approach for long series, and 
long real series usually do show at least some variability.

The real signals shown in the examples were low-pass 
filtered, using a Butterworth filter (Hamming 1977) with 
reference frequency fc = 20yr−1 and filter order NB = 4 , 
before the seasonal identification was done; but it turns out 
that results do not change significantly if the identification 
method is applied directly to unfiltered signals, and the 
resulting signals filtered afterwards.

The averages approach works very well for long invariant 
series or for series longer than one period but short enough 
so that invariancy is not a major issue. For long variant 

series, the varying phase approach results in better fits, but 
for real data, it is impossible to tell whether the fit may be 
including in it any non-seasonal features.

In any case, since the method employs one-period-long 
segments, it is imperative that long periods be identified and 
eliminated before shorter ones.

Conclusions

We have presented a simple-minded intuitive method for 
identifying seasonal components in GPS displacement time 
series. The method uses an approach based on multiple 
transforms, each of a one-period segment of the time series, 
appropriate for long series, which can take into account 
non-stationarity of the seasonal components, and features 
a scheme to deal with series somewhat smaller than one 
period of the seasonal component.

Unlike other more sophisticated and complicated meth-
ods, the method presented here has the advantage of simplic-
ity, so that it is possible to recognize how the components 
are identified in the processed series.

Results are, of course, approximate, but considering the 
length limitations and the usual noise in the real data it has 
been applied to, it would not be practical to complicate sea-
sonal signal identification to achieve a better, but meaning-
less, precision.

Two MATLAB programs, one to do the seasonal compo-
nents identification, and another to generate synthetic signals 
to test the identification program and methods, are given in 
full. Interested readers can test and evaluate the method by 
themselves using these programs.
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