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Abstract
A closed relationship between the Gutenberg–Richter b-value (or � = bln10 ) and the information or Shannon entropy is 
found and checked through numerical evaluation of the entropy using exact probabilities derived directly from the magnitude 
exponential distribution. Comparison of the numerical evaluation of the entropy over a finite magnitude range makes 
it possible to assess the possible contribution to the entropy of real or hypothetical very large magnitudes, and these 
contributions are found to be quite small. The relationship is also compared with entropies calculated from synthetic data, and 
Monte Carlo simulations are used to explore the behavior of entropy determinations as a function of sample size. Finally, it is 
considered how, for the usual case of having data from a single realization, i.e., a single magnitude data set, since estimates of 
the entropy and of the Aki–Utsu b-value are measured in different ways, they are not redundant and may be complementary 
and useful in determining when a sample is large enough to give reliable results.
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Introduction

The Shannon, or information, entropy and the b-value of 
the Gutenberg–Richter distribution, both discussed in detail 
below, have become useful and widely used tools in the 
study of seismicity, because both seem to quantify behaviors 
of seismicity related to the levels of stress. Here, a relation-
ship between b and the entropy of the seismic magnitudes 
will be presented, some of its features will be discussed, and 
ways in which these measures can complement each other 
will be proposed.

In what follows unrounded magnitudes will be denoted by 
m and magnitudes rounded to ΔM by M (usually ΔM = 0.1).

The G–R b‑value

Ishimoto and Ida (1939) and Gutenberg and Richter (1944) 
observed that seismic magnitudes are distributed as:

where N(M) is the number of magnitudes ≥ M , and b 
describes the proportion of large magnitudes to small ones 
(Richter 1958). The magnitude origin has been shifted by 
Mc , the completeness magnitude, below which log10N(M) 
ceases to behave linearly due to insufficient coverage (e.g., 
Wiemer and Wyss, 2000). Although the physical meaning of 
the Gutenberg–Richter relation, and of related distributions 
of seismic energy and moment are still subject to discus-
sion (e.g., Wyss 1973; El-Isa and Eaton 2014), the b-value 
has been widely used to characterize seismicity in different 
regions in the world (e. g. Kagan 1999; Utsu 2002), and 
it has been proposed that b is related to the fractal dimen-
sion (Aki 1981; Hirata 1989; Wyss et al. 2004). There are 
many studies that relate b inversely to the level of stress 
and observe decreases in its value before large earthquakes 
(DeSalvio and Rudolph 2021; El-Isa and Eaton 2014; 
Enescu and Ito 2001; Frohlich and Davis 1993; Godano 
et al. 2024; Hu et al 2024; Lacidogna et al., 2023; Li and 
Chen 2021; Nanjo et al. 2012; Scholtz 2015; Schorlemmer 
et al 2005; Utsu 2002; Wang 2016; Wyss 1973; Wyss et al. 
2004; and many others), which gives b an important role in 
earthquake hazard estimation and forecasting.

b-values can be estimated directly from the slope of the 
linear range on the G–R histogram (e.g., Guttorp 1987; 

(1)log10 N(M) = a − b
(

M −Mc

)

; M ≥ Mc,
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Monterroso and Kulhanek, 2003), but frequently b-values 
are estimated from the mean magnitude (Aki 1965; Marzoc-
chi and Sandri 2003; Tinti and Mulargia 1987; Utsu 1965), 
and most studies use the Aki–Utsu maximum likelihood 
estimate:

where M is the observed mean of the data (Aki 1965; Utsu 
1965). This estimate shares with the entropy determinations 
the problem of determining mc , but otherwise it is based 
on the mean magnitude that, in a way, incorporates the 
information from all magnitudes. This measure is extremely 
easy to obtain but, unfortunately, many people use (2) as a 
magic formula without considering that the estimate will 
be good only if the observed M is close to the mean of the 
distribution � (compare (2) with (7)), which requires having 
a sample large enough to be representative (Geffers et al. 
2022; Marzocchi et al. 2020; Nava et al. 2017; Ogata and 
Yamashina 1986; Shi and Bolt 1982).

The information entropy

Another important statistical–probabilistical concept is 
Shannon’s definition of the information entropy, S, of a 
process characterized by K states or classes of events, each 
having probability Pi , with:

as:

(Shannon 1948), where the logarithm can have any base; 
we will use base 2 because it is the one most commonly used 
for information purposes and yields an entropy expressed in 
bits, easy to interpret. Capital letters have been used for the 
probabilities to emphasize that they are not densities, and 
in this definition it is implicitly assumed that 0 ≤ Pi ≤ 1 , 
so that log2Pi ≤ 0∀i . Each term in the first sum in (4) is the 
contribution to the total entropy S of the probability of each 
rounded magnitude class, called entropy score by Harte and 
Vere-Jones (2005), and will be denoted by si , where i is the 
index of the class, or generally as s.

In Fano (1961) the self-information of an event with 
probability Pi is given by:

(2)b =
log10 (e)

M − mc

,

(3)
K
∑

i=1

Pi = 1,

(4)S = −

K
∑

i=1

Pi log2 Pi ≡

K
∑

i=1

si

(5)Ii = − log2 Pi,

the entropy (4) can be recognized as the expected self-infor-
mation of the process. Although the self-information ranges 
from zero to infinity, the contribution to the entropy from 
any probability ranges from zero, for both s(0) and s(1) , to 
the maximum s(e−1) = 0.530738 bit, as shown in Fig. 1. This 
point will be retaken later.

The concept of entropy has been widely used in 
seismology, particularly through the Principle of Maximum 
Entropy (PME), to study distributions, recurrence 
relationships, model stress fields, estimate seismic hazard, 
etc. (Bookstein 2021; Berrill and Davis 1980; De Santis 
et al. 2011; Dong et al. 1984; Feng and Luo 2009; Janes, 
1957; Main and Naylor 2008; Mansinha and Shen 1987; 
Shen and Mansinha 1983; Telesca et al 2004). Other studies 
use entropy as an indicator of proximity to criticality (Main 
and Al-Kindy 2002; Vogel et al 2020), some using so-called 
natural time (Ramírez-Rojas et al. 2018; Rundle et al. 2019; 
Sarlis et  al 2018; Varotsos et  al. 2004; Varotsos et  al., 
2022; Varotsos et al. 2023), many using other definitions 
of entropy, and some for seismic electric signals (Varotsos 
et al. 2006). Entropy has also been used to study the spatial 
distribution of seismic sources (e.g., Bressan et al. 2017; 
Goltz, 1966; Goltz and Böse 2002; Nava et  al. 2021; 
Nicholson et al. 2000; Ohsawa 2018) and to study noise 
(e.g., Lyubushin 2021).

It is because of the possible usefulness of both the 
b-parameter and the magnitude entropy that it is important 
to explore the relationship between these two observables.

The entropy of seismic magnitude 
distributions

Let the process considered in the information entropy be 
the seismic magnitudes and the classes be the classes of a 
magnitude histogram, and let us see what can the entropy be 

Fig. 1  Contribution of each particular probability value to the 
entropy. The dotted line indicates the position of the maximum for 
P = e

−1 . The shaded area indicates the entropy for the range of prob-
abilities corresponding to magnitude distributions with b ≤ 1.5 and 
ΔM = 0.1 (discussed below)
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expected to be like by assuming that the magnitudes obey a 
G–R distribution.

The G–R relation (1) is a reverse cumulative histogram 
corresponding to an exponential magnitude probability 
density function,

where � is the mean of the exponential distribution, and, 
since it should be related to all magnitudes that contribute 
to the rounded ones, is defined for unrounded magnitudes 
m ≥ mc , where mc = Mc − ΔM∕2.

Let the classes considered in (3) correspond to the 
magnitudes rounded to ΔM = 0.1 , and let the probability of 
the class of a given rounded magnitude Mi , where M1 = Mc , 
be Pi.

Commonly, Pi is approximated from (6) as:

(e.g., Rundle et al. 2019); a better procedure will be 
proposed below, but for now let us digress to discuss some 
reported results based on this approximation.

The Entropy of a Continuous Distribution

Substitution of (8) in (4) yields:

which can be written as:

On letting ΔM → 0 the first term on the right side of (10) 
becomes what Shannon (1948) defined as the entropy of a 
continuous distribution for a process having probability 
density distribution p(m):

which we will denote by Sc to differentiate it from what 
would be the limit of the entropy in (10). Formula (11), 
without the minus sign, corresponds to what Wiener (1948) 
defined as the amount of information of p(M), not as entropy. 
Shannon (1948) states that “The entropies of continuous 
distributions have most (but not all) of the properties of the 
discrete case.”, and it is clear they differ in this case, because 
the second term on the right-hand side of (10) has not been 

(6)p(m) = �e−�(m−mc),

(7)� = b ln (10) = 1∕(� − mc),

(8)Pi ≈ p
(

Mi

)

ΔM

(9)S = −

K
∑

i=1

p
(

Mi

)

ΔM log2
[

p
(

Mi

)

ΔM
]

,

(10)S = −

K
∑

i=1

p
(

Mi

)

log2 p
(

Mi

)

ΔM − log2 ΔM.

(11)Sc = −

∞

∫
−∞

p(m) log2 p(m)dm,

included in the limit and this term grows as ΔM decreases 
and tends to infinity as ΔM → 0 (Mansinha and Shen 1987). 
Goldman (1953) is aware of the −log2ΔM term, but states 
that it cancels out, which is certainly not the case for the 
problem at hand. Thus, SC (11) is not the limit of S (4).

A problem with SC is that the meaning of −log2p(m) is 
not clear, because the definitions of self-information and 
information entropy refer to mass probabilities, not to 
densities. For exponential distributions, unless 𝛽 < 1 , i. e., 
b < 1∕ln10 ≈ 0.43429448 , which is an unrealistic value, 
the integral in (11) will include a range with p(m) > 1 that 
would imply negative information and contribute negative 
entropy.

Equation  (11) has been used in several studies (e.g., 
De Santis et al. 2011; Main and Burton, 1964; Posadas 
et  al., 2002; Posadas et  al. 2021; Shen and Mansinha 
1983) with varying results, some of them not applicable 
to the original definition of information entropy. For 
example, De Santis et al. (2011) obtained the relationship 
SC = log(eloge) − logb , which, although appropriate for 
(11), differs from entropy estimates obtained from (4), 
implies an unrealistic upper limit bmax = elog10e=1.1805 , 
and so illustrates the perils of using (11). A useful 
relationship between entropy and b needs to be based on the 
original definition of entropy (4).

Entropy of exponential distributions and its 
relationship with b

Although this paper is oriented toward seismic magnitude 
distributions, what follows is applicable to any exponential 
probability distribution.

Coming back to Eq. 4, instead of using the approximation 
(8), the exact probability corresponding to the class of a 
rounded magnitude Mi can be calculated exactly as:

which results in:

To show how this probability estimation compares with 
the approximation shown before in 2.1, (8) can be written as:

so both (13) and (14) consist of the same exponential mul-
tiplied by different factors that are shown in Fig. 2 for vari-
ous values of b. Both factors differ by very little for small 

(12)Pi ≡ P
(

Mi

)

=

Mi+ΔM∕2

�
Mi−ΔM∕2

�e−�(m−mc)dm,

(13)
P
i
=e−�(Mi

−m
c)
(

e
�

ΔM

2 − e
−�

ΔM

2

)

=e−�(Mi
−M

c)
(

1 − e
−�ΔM

)

≡ e
−�(Mi

−M
c)ΔM

P
.

(14)�e−�(Mi−mc)ΔM = e−�(Mi−Mc)�e−�ΔM∕2ΔM,
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b-values, but for large b-values ΔMp is appreciably larger 
than the factor in (14), which shows that it is worthwhile to 
use the exact probability from (13).

Substituting probability (13) in (4) yields:

which is the expression for the entropy that will be used to 
calculate the theoretical entropy corresponding to a given 
magnitude distribution, to illustrate how the elements of 
the magnitude distribution contribute to the entropy, and 
to estimate through Monte Carlo simulation, what can be 
expected from data samples of different sizes.

To obtain an estimate for the theoretical value of S, let 
K → ∞ in (15) because the theoretical G–R distribution does 
not have an upper limit; this limit will be discussed below. 
Equation (15) can then be written as:

(15)S = −

K
∑

i=1

e−�(Mi−Mc)ΔMP log2

[

e−�(Mi−Mc)ΔMP

]

,

or:

The sum in the second right-hand term of (16) is the total 
probability equal to unity. In the first right-hand term, the 
factor (Mi −Mc) takes values 0ΔM, 1ΔM, 2ΔM, 3ΔM,… , so 
the sum written explicitly as:

can be recognized as the series representation of:

for x = −ΔM� . Hence, the total entropy of an exponential 
distribution with parameter � expressed in bits is:

Equation  (19) is a closed, analytic expression for 
the information entropy of an exponential distribution 
with parameter � and class width ΔM . For a magnitude 
distribution, since  ΔM = 0.1 can be considered to be a 
set, constant value, (19) can be considered a direct relation 
between S and � (or b = �log10e ). Although � has been used 
in the derivation of (19), results will be expressed in terms 
of b, because it is a more familiar parameter and its global 
average value, a good reference, is conveniently very close 
to 1.0 (e.g., El-Isa and Eaton 2014).

The direct, closed, relationship (19) between the b-value 
and the magnitude entropy is shown in Fig. 3. Figure 3 

S = −

∞
∑

i=1

e
−�(Mi

−M
c)ΔM

P

[

−�
(

M
i
−M

c

)

log2 e + log2 ΔMP

]

,

(16)

S = ΔM
P
log2 e

∞
∑

i=1

−�
(

M
i
−M

c

)

e
−�(Mi

−M
c)

− log2 ΔMP

∞
∑

i=1

e
−�(Mi

−M
c)ΔM

P
.

(17)0 − 1ΔM�e−1ΔM� − 2ΔM�e−2ΔM� − 3ΔM�e−3ΔM�−,

(18)ΔM�
d

dx
(1 − ex)−1 = ΔM�

ex

(1 − ex)2
,

(19)S = �ΔM
e−�ΔM

1 − e−�ΔM
log2 e − log2

(

1 − e−�ΔM
)

.

Fig. 2  Comparison of the factors that multiply an exponential to eval-
uate or estimate probabilities

Fig. 3  Relationship between 
b and S (blue line), the dashed 
lines indicate the range of 
observed b values
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also shows the range of entropies for reasonable b-values: 
from S = 2.98 bit for b = 1.5 to S = 4.08 bit for b = 0.7 ; a 
range of − 1.1 bit for a b range of 0.8. This range has been 
chosen to illustrate the results because, although b-values 
in the  0.3 ≤ b ≤ 2.5 range have been reported (El-Isa and 
Eaton 2014), for estimates based on magnitudes scaling as 
MW (Hanks and Kanamori 1979; Kanamori 1983) b = 0.7 
is an adequate lower limit for global b-values ( Frohlich 
and Davis 1993) and an upper limit of b = 1.5 has pro-
posed on physical grounds by Olsson (1999). Relationship 
(19) does not imply any maximum limit for b but tends 
asymptotically to zero as b grows.

Figure 3 shows that S increases as b decreases and, since 
as mentioned in the introduction b is inversely related to 
the state of stress in the medium, entropy appears to be 
directly related to said state of stress; indeed, since low 
b corresponds to probabilities being less concentrated 
around mc , the significant probabilities are spread over a 
larger magnitude range, so the medium can be considered 
as being less ordered which means higher entropy.

Numerical entropies over a finite magnitude range

Now the results of (19) will be checked against numerical 
results from (4) to make sure that our entropy vs. b 
relationship is valid, and to see how results for finite K 
differ from those for K → ∞ . Although the G–R relation 
does not contemplate an upper limit for M, there are 
physical limits to how large a magnitude can be, so it is 
important to consider how results from a finite magnitude 
range differ from those of an infinite one. It is also 
important to consider the role of large magnitudes in the 
entropy determinations.

The very interesting problem of a maximum possible 
magnitude has been widely addressed (e.g., Beirlant et al., 
2019; Chinnery and North 1975; Kijko 2004; Kijko and 
Singh 2011; Smith 1976; Sornette 2009) and manners of 
dealing with modified G–R distributions or using other 
distributions have been proposed (e.g., Cornell and 
Vanmarke, 1969; Cosentino et al. 1977; Holschneider et al. 
2011; Lomnitz-Adler and Lomnitz 1979; Main and Burton 
1984; Main 1996). The problem of a maximum magnitude 
is outside the scope of this paper, but it will be seen that 
the effects of very large magnitudes on entropy estimates 
are quite low and the possible existence, or not, of very 
large earthquakes does not affect the results shown here.

To corroborate the results of (19), the entropy of the 
magnitude distribution will be computed by evaluating 
exactly from (13) the probabilities for rounded magnitudes 
in a finite magnitude range, and using these probabilities 
to evaluate (4). The 2.0 ≤ Mi ≤ 9.0 range has been chosen 
to illustrate the probabilities, because M 2.0 is not an 

uncommon Mc and because M 9.0 is sufficiently rare as to 
be a practical upper limit because magnitudes much larger 
than 9.0 (including infinite ones) are not realistic.

Next, these exact theoretical probabilities will be used 
to calculate each term:

in the sum (4) and finally S =
∑K

i=1
si will be computed and 

compared with the analytic total entropy values.
Figure 4 shows in (A) the theoretical probability mass 

distribution for three representative b-values; (B) shows the 
s(Mi) corresponding to the probabilities shown in (A), and 
(C) shows the entropies computed using (4). Strictly speak-
ing, the entropies correspond to the (larger) markers at the 
end of each curve, but the cumulative s leading to the total 
entropies is also shown, to illustrate its different behaviors 
for different b-values. The dotted horizontal lines in (C) cor-
respond to the analytical entropies.

For the smallest magnitudes s is largest for the higher b, 
but about one magnitude unit above Mc the roles are reversed 
and the entropies for smaller b-values grow faster and 
soon the entropy for the smallest b is the largest of all. All 

(20)si ≡ s
(

Mi

)

= −Pi log2 Pi,

Fig. 4  Exact numerical probabilities a, corresponding information 
scores b and entropies c, for three representative b-values and a finite 
magnitude range. Panel c shows the numerical entropy values as large 
symbols over the largest magnitude, and the analytical entropies as 
dotted lines; also shown are the cumulative s values
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entropies tend asymptotically to their theoretical values, with 
the largest b-values approaching it earlier. The magnitudes 
that make more difference are those in the 3.0 ≤ M ≤ 5.0 
range.

As shown in Fig. 4 (A), large magnitudes have very 
small probabilities which are close to the left end of the 
shaded area in Fig. 1 and contribute very little to the total 
entropy, as shown in (B) and (C). Hence, the presence of 
magnitudes above 6.5 or 7.0 is not necessary for obtaining 
good, approximate estimates of S.

The numerical values for the total entropies differ from 
the analytic ones by only 4.2 × 10−5 for b = 0.8 , 2.0 × 10−6 
for b = 1.0 , and 9.0 × 10−8 for b = 1.2 , differences too 
small to be of practical concern. As would be expected 
from the properties of the exponential distribution, shifting 
the magnitude range while conserving the same width, to 
1.5 ≤ Mi ≤ 8.5 , say, results in exactly the same entropy 
estimates.

Estimates do change if the range is enlarged, for example, 
considering the 1.5 ≤ Mi ≤ 9.0 range (five classes wider) 
reduces the differences between numerical and analytical to 
1.7 × 10−5 for b = 0.8 , 6.7 × 10−7 for b = 1.0 , and 2.4 × 10−8 
for b = 1.2 , because of the contributions from the extra five 
terms in (15).

For reference, the entropy of a uniform distribution with 
K classes is:

so for the example, with range 2.0 ≤ Mi ≤ 9.0 and K = 71 , 
the entropy of the uniform distribution, i.e., the largest 
possible entropy, would be SU = 6.15 bit, some 2.26 bit 
larger than the entropy for b = 0.8.

The total entropies are distinctly larger for the smaller 
b-values, which means that measuring entropies can be a 
good method for identifying regions of low or large b, that 
is, of large or low stress.

Numerical entropy from samples

Next, it will be seen how entropy measured from samples 
compares to the entropy computed from exact probabilities, 
and how it depends on the sample size; the samples will be 
synthetics from random simulations, for the same magnitude 
range and the three representative b-values used above.

For each b-value, N exponentially distributed random 
magnitudes are generated as:

where r is a uniformly distributed pseudo-random number 
in the zero to one range, and

(21)SU = −

K
∑

i=1

1

K
log2

1

K
= log2 K,

(22)m = mc − ln (1 − r ∗ �)∕�,

maps this range onto the range that results in probabilities 
mc ≤ m ≤ mx.

With these magnitudes, a histogram with classes 
ΔM wide, corresponding to the rounded magnitudes, is 
constructed and the number of events in each class n(Mi) 
is counted. The probabilities are estimated as:

(c.f. Feng and Luo 2009) and used in (20) to calculate 
the si values and thence S.

Figure 5 shows simulations for three b-values, each hav-
ing N = 5000 magnitudes, a reasonably good-sized sam-
ple. The magnitude histograms  n(Mi) are shown in (A), 
and the contributions s(Mi) are shown in (B); the cumula-
tives for s and the entropies are shown in (C), together 
with the theoretical entropies.

A comparison of panels (C) of Figs. 4 and 5 shows 
very good agreement between entropies from theoretical 
and simulated magnitudes, both converging nicely to the 
analytic entropies from (19).

(23)� = 1 − e�(mc−mx)

(24)Pi = n(Mi)∕N

Fig. 5  Numerical probabilities from a synthetic sample of 5,000 mag-
nitudes a, corresponding information scores b and entropies c), for 
three representative b-values and a finite magnitude range. Panel c 
shows the numerical entropy values as large symbols over the larg-
est magnitude, and the analytical entropies as dotted lines; also shown 
are the cumulative s values
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The simulations shown in Fig. 6 are like those of Fig. 5, 
but for a much smaller sample of N = 500 magnitudes. 
The histograms in the (A) and (B) panels show clear dif-
ferences from the respective graphs in Fig. 5; differences 
are less apparent between panels (C), but there is a notice-
able difference for the entropy corresponding to the largest 
b = 1.2 , which is well below the analytic entropy.

Monte Carlo simulations and sample size

Monte Carlo simulations are used to characterize how 
numerical entropies depend on sample size, each simula-
tion consisting of Nr = 5000 realizations, like those shown 
in the previous section, of magnitude samples of different 
sizes, from N = 250 to N = 5000 . The means and standard 
deviations of the Nr entropies calculated for each combina-
tion of b and N are shown in Fig. 7.

Figure 7 shows the mean calculated S as a thick line with 
a particular color and symbol for each b-value and shows the 
mean plus/minus one standard deviation as thin lines and 
the true analytical value as a dotted line in the correspond-
ing color. In order to interpret correctly the information in 

the standard deviations it is necessary to determine how the 
entropy values are distributed, and Fig. 8 shows an example 
of these distributions for b = 1.0 and N = 5000 , which tells 
us that the values can be considered to be normally distrib-
uted around the mean.

Figure 7 shows that the entropy estimated from samples 
smaller than –200 will almost certainly be undervalued, 
particularly for low b. Entropies corresponding to b-values 
differing by as much as 0.1 cannot be distinguished with 
0.7 confidence for samples smaller than about 350 for low b 

Fig. 6  Numerical probabilities from a synthetic sample of 500 mag-
nitudes A, corresponding information scores B and entropies C, for 
three representative b-values and a finite magnitude range. Panel C 
shows the numerical entropy values as large symbols over the larg-
est magnitude, and the analytical entropies as dotted lines; also shown 
are the cumulative s values

Fig. 7  Monte Carlo analysis of entropies S determined from synthetic 
samples for different sample sizes N. Thick lines with different colors 
and symbols, corresponding to representative b-values are the means 
of 5,000 realizations for each combination of b and N. The thin lines 
show the means plus/minus one standard deviation, and the horizon-
tal dotted lines indicate the analytical entropies

Fig. 8  Histogram of N
r
= 5,000 Monte Carlo entropy determinations 

for b = 1.0 and magnitudes in the 2.0 ≤ M ≤ 9.0 range (blue line); 
the vertical red line shows the mean value, and the vertical dashed 
line is the analytical S value. The thin line is a normal distribution for 
the observed standard deviation �

S
 multiplied by N

r
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and about 550 for high b, and distinguishing them with 0.95 
confidence requires –1,500 and –3,00 samples, respectively.

For samples –2000 to –2500, mean values underestimate 
the analytical entropy by –0.01 bit, and for samples of 
5000 the underestimations go from 0.0067 bit for b = 0.8 
to 0.0051 bit for b = 1.2 , with standard deviations –0.02 
bit. For the larger samples, the means tend to the analytical 
entropies very slowly, and including larger magnitudes does 
not help very much because their number is very small and, 
as shown in Figs. 1, 5, and 6, their contribution to the total 
entropy is almost insignificant.

Standard deviations diminish slowly, and even for large 
samples –5,000 the standard deviation corresponding 
to b = 0.8 , �S = 0.0201 , is –0.005 of the mean value 
S = 3.8778 , while for b = 1.2 , �S = 0.0202 is –0.0061 of 
the mean value S = 3.2978 . These normalized standard 
deviations are smaller than the corresponding ones for 
b-values estimated by the Aki–Utsu method for the same 
synthetic samples used to evaluate the entropies.

Figure  7 shows that, although entropies evaluated 
over a finite magnitude range should be smaller than the 
analytical ones, the entropies measured from samples 
could be overvalued and thus be slightly larger.

Measured entropies and b‑values for single trials

It has been discussed how entropies are measured from 
data, and Figure  7 shows how the measurements can 
expected to agree with the real values, but in practice 
the real values are not known nor are there thousands 
of realizations; usually the data correspond to a single 
realization and there is no way of knowing how well it 
conforms to the behavior of the means shown above.

Since there is an explicit relation between S and b, it 
would seem that their measures would be redundant but 
this is not exactly the case because they are measured in 
different ways. b-value measurements (2) depend only on 
M , while entropy estimations depend on the values of all 
entropy scores si.

In order to illustrate how single realizations agree with, 
or differ from, the means of many realizations and from 
the true values, let us look at four examples of single 
sample realizations, and see how each single realization 
depends on sample size. All realizations share exactly 
the same parameters and differ only in the number used 
as seed for the pseudo-random number generator. Each 
realization was a set of NT = 5,000 magnitudes, and we 
obtained estimates of S, using (24) and (4), and b, using 
(2), for subsets of N = 500, 600, 700,… , 5,000 , and from 
each b, we calculated the entropy using (19).

The examples are shown in Fig. 9, where panels (C) 
plot the histograms of the total NT  magnitudes to show 
that the synthetic magnitudes are indeed exponentially 
distributed. Panels (B) show the estimated b-values and, 
for reference, the true b-value, while panels (A) show the 
estimated entropies as blue circles, the analytic entropy 
corresponding to the true b, and show as asterisks the 
entropies computed from the estimated b-values.

As mentioned above, the realizations in Fig. 9 differ only 
in the random number seed and illustrate how a realization 
corresponding to some set of real data can vary randomly 
while being a product of a given conditions on a given 
seismic system. The two upper examples show “expected” 
behaviors, with values varying considerably for short 
samples and gradually converging to a value close to the true 
one, albeit one (upper left) from above and the other (upper 
right) from below. The example at lower left does converge 
but does not reach the true value, and the example at lower 
right does not converge to the true value at all. It should 
be said that most realizations behave more like the good 
examples, so that many different seeds were tried before the 
ugly example at lower right was obtained.

All the examples show that for small data sets the 
measured entropies and those estimated from the b-values 
differ very much for small samples, but run almost parallel 
for large samples. Entropies from b estimates are larger 
than measured ones, but that is to be expected because 
of the finite magnitude range. Thus, it is proposed that, 
although related and calculated from the same data, 
entropy and b measurements are not just scaled versions 
of each other, because they are calculated in different ways 
that are sensitive to different kinds of errors, and when 
both measurements are correct they should agree within 
the limitations. Hence, the differences between directly 
estimated entropies and those estimates from b-values can 
help us determine when samples are adequate and results 
are trustworthy.

As an example of how the entropy and Aki–Utsu b-value 
estimates are not necessarily equivalent, consider the 
contribution of a very large magnitude. Let a data set have 
N − 1 elements, and let the entropy determined from the 
sample be:

and the b-value be:

where M[N−1] =
1

N−1

∑N−1

i=1
Mi . Now, let the next magnitude 

MN be large enough so that it stands alone in a class, then, 

(25)S[N−1] =

N−1
∑

i=1

pi log2 pi,

(26)b[N−1] =
ln 10

M[N−1] − mc

,
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because there is only one event in the class, its probability 
will be 1/N, so

(27)S[N] =
N − 1

N
S[N−1] +

N − 1

N
log2

N − 1

N
+

1

N
log2

1

N

and the change of entropy does not depend on the value of 
MN , as long as it is large enough to stand alone in a class. 
On the other hand,

(28)b[N] =
ln 10

M[N−1] − mc +
1

N

(

MN −M[N−1]

)

Fig. 9  Four examples of entropy and b-value determinations from 
single realizations of N

T
= 5,000 synthetic exponentially distrib-

uted magnitudes, taken N elements at a time. The c panels show 
the magnitude histograms for the total N

t
 data, the b panels show 

the b-values estimated using (2) with M determined from N data 

(blue circles) and the true b-value (dashed red line). The a panels 
show as blue circles the entropies determined for each N data, and 
as asterisks the entropies estimated from the measured b-values 
in b, using (19); the analytical entropy corresponding to the true 
b is shown as a dashed red line
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does depend on the actual value of MN . Hence, unless N is 
very large, the effect of a large magnitude is different for 
entropies and for b-values.

Discussion and Conclusions

A closed analytical relationship between the b-value (or � ) 
that characterizes the magnitude G–R distribution, or any 
other exponential distribution, and the information entropy 
of the distribution has been derived (19). The relationship 
was checked by means of the numerical evaluation of the 
entropy computed using the exact probabilities derived from 
the distribution.

Neither the G–R distribution nor the associated 
exponential distributions contemplate a maximum 
magnitude, it was possible to evaluate the effect of working 
with a finite magnitude range on the entropy, and it was 
found that, because very small probabilities contribute very 
little to the entropy, the difference between the analytical and 
the finite range entropies is quite small.

Next, the results of the relationship were compared with 
entropies estimated from synthetic sets of exponentially 
distributed random data, and very good agreement was 
found.

Using Monte Carlo simulations, the accuracy and 
precision for entropy evaluations as a function of sample size 
were explored. The evaluations were found to be distributed 
normally around their means, which allows setting familiar 
confidence limits to the power of discriminating between 
different values of the entropy.

Although b-values and entropies are formally related, 
their evaluations from the data are done by different methods 
and so are affected differently by different characteristics 
of the data, particularly for small data sets. Hence, it is 
proposed that entropy and G–R b-value measurements can 
be complementary and help to estimate when a sample is 
large enough for results to be reliable.
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