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Abstract 13 

 Measurements of the fractal dimensions and entropy of the spatial distribution of seismic 14 

sources correlate with measurements of the Gutenberg-Richter b-value but, although this 15 

parameter is related to the fractal dimension of the rupture areas distribution and to the entropy of 16 

the magnitude distribution,  there is no clear mechanism to relate it to epi- or hypocentral source 17 

distributions. A plausible relation between the b-value and the spatial source distributions is 18 

proposed and tested through Monte Carlo simulation on a cellular automaton model based on the 19 

premise that the probability of an earthquake occurring at a particular point in space is proportional 20 

to the stress at that point. Results showing the appropriate correlations are robust and not critically 21 

dependent on the values of the parameters of the model. 22 

Keywords: Gutenberg-Richter b-value, spatial fractal dimensions, spatial entropy, cellular 23 

automata, Monte Carlo simulation 24 
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Introduction 29 

 A parameter widely used to characterize magnitude distributions is the b-value of the 30 

Gutenberg-Richter (G-R) relation (Ishimoto & Ida, 1939; Gutenberg & Richter, 1944, 1954)  31 

(1) 32 

where 𝑁(𝑀) is the number of magnitudes ≥ 𝑀, 𝑀! is the completeness magnitude, the threshold 33 

above which all events are detected, 𝑁(𝑀!) =10" is the total number of data, and the b-value, 34 

which will be referred to henceforward as simply b, determines the proportion of large magnitudes 35 

to small ones (Richter, 1958). The G-R relation (1) is a reverse cumulative histogram, usually 36 

consisting of magnitudes rounded to ∆𝑀, corresponding to an exponential magnitude probability 37 

density function,  38 

(2) 39 

where  40 

(3) 41 

𝜇 is the mean of the exponential distribution, and (2) is defined for unrounded magnitudes 42 

𝑚 ≥ 𝑚! = 𝑀! −
∆$
%

, and usually ∆𝑀 = 0.1. 43 

log&'𝑁(𝑀) = 𝑎 − 𝑏	(𝑀 −𝑀!); 			𝑀 ≥ 𝑀! 

𝑝(𝑚) = 𝛽	e()	(,(,!)	, 

𝛽 = 	𝑏 ln(10) = 1 (𝜇 − 𝑚!)⁄ 	, 
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 The importance of b cannot be overemphasized because it is inversely related to the level 44 

of stress in a region (Scholz, 1968; Schorlemmer et al., 2005, El-Isa, Z., Eaton, D. (2014), Scholz, 45 

2015), which makes it useful for detecting magma chambers (Wiemer & McNutt, 1997; Wyss, 46 

1973; Wyss et al., 1997; Farías et al., 2023) and invaluable as a seismic precursor to large 47 

earthquakes, because it has been found to decrease before large earthquakes (e.g. Hirata, 1989; 48 

Ouchi and Uekawa, 1986; Dimitriu et al., 2000; Enescu & Ito, 2001; Nuannin et al., 2005;  Nanjo 49 

et al., 2012; Sharma et al., 2013; Gulia et al., 2016; Wang, 2016; Wang et al, 2016; Borgohain et 50 

al., 2018; Li & Chen, 2021; Trifonova et al, 2024). 51 

 A second observable used to characterize distributions is the fractal dimension; fractal 52 

distributions obey a power relation 53 

(4) 54 

where N is the number of objects measured with a characteristic linear dimension r, C is a 55 

proportionality constant, and D is the fractal dimension (Mandelbrot, 1967, 1983; Turcotte, 1989, 56 

1997; Goltz, 1997).  57 

 Based on the exponential distribution of magnitudes and the logarithmic relation between 58 

magnitudes and seismic moments that has slope c, with 𝑐 = 1.5 (Hanks and Kanamori, 1979), and 59 

the approximate relation between seismic moment 𝑀' and rupture area A 60 

(5) 61 

proposed by Kanamori and Anderson (1975), Aki (1981) proposed the relation  62 

(6) 63 

𝑁 =
𝐶
𝑟.		, 

𝐷 =
3𝑏
𝑐 = 2𝑏 

𝑀' = 𝛼𝐴//% 
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between the fractal dimension D of the seismic rupture areas and b (see Turcotte  (1997) for a nice 64 

derivation of (6)). But this relation does not refer to the spatial distribution of earthquakes or its 65 

fractality. Indeed, Hirata (1989) measured epicentral fractal dimensions and found that they do not 66 

agree with (6), while Wyss et al. (2004) find that (6) could be (very) approximately satisfied for  a 67 

locked region near Parkfield.  68 

 However, several studies have found that epicentral or hypocentral space distributions 69 

present fractal behavior (e.g., Goltz, 1977) and are, like most natural fractal phenomena, 70 

multifractal (e.g., Goltz, 1977; Turcotte, 1989; Geilikman et al., 1990; Hirabayashi et al., 1992). 71 

Furthermore, changes in fractal dimensions have been observed before large earthquakes 72 

(Dongsheng et al., 1994; Dimitriu et al., 2000; Enescu and Ito, 2001; Bhattacharya et al., 2002; 73 

Márquez et al., 2012; Márquez-Ramírez, 2012), which gives precursory importance to measuring 74 

epicentral or hypocentral fractal dimensions. Huang and Turcotte (1988) present a model that 75 

simulates a 2D planar fault zone where the difference between stress and strength follows a fractal 76 

distribution and find that b correlates positively with the fractal dimension. 77 

 78 

 A third observable used to characterize distributions is the Shannon (1948) entropy,  79 

  (7) 80 

where 𝑃1 is the probability corresponding to element or class i, there are K elements, and 81 

(8) 82 

𝑆 = −F𝑃2 	 log% 𝑃2 	 ,
3

24&

 

F𝑃2 	= 1	.
3

24&

 



 5 

The logarithm can have any base; but base 2 is the one most commonly used for information 83 

purposes and yields an entropy expressed in bits, easy to interpret. The entropy, equal to the 84 

expected self-information (Fano, 1961), is a measure of the uncertainty in the distribution and can 85 

be measured against the entropy of a uniform distribution where 𝑝2 = 𝑝5 = 1 𝐾⁄  and 𝑆6 = log% 𝐾. 86 

 The entropy of the magnitude distribution with parameter 𝛽 and class width ∆𝑀, is related 87 

to 𝑏 = 𝛽 ln 10 as 88 

(9) 89 

(Nava, 2024), where the  commonly used ∆𝑀 = 0.01 can be considered a fixed, constant value. 90 

 It should be noted that relation (9) between b and entropy refers to the entropy of the 91 

magnitude distribution itself and does not refer to the spatial distribution of epi- or hypocenters of 92 

an earthquake data set. 93 

 The entropy of the spatial distribution of epicenters has been used as a measure of how 94 

“ordered” is this distribution (e.g., Bressan et al., 2017; Goltz, 1966; Goltz and Böse, 2002; Nava 95 

et al., 2021; Nicholson et al., 2000; Ohsawa, 2018), while other studies relate entropy as a measure 96 

of proximity to criticality (Rundle et al. 2019; Main and Al-Kindy, 2002; Sarlis et al, 2018; Vogel 97 

et al, 2020; Varotsos et al., 2023) 98 

Since both the spatial fractal dimensions and the spatial entropy of epicentral spatial 99 

distributions correlate with b (e.g., Chen et al, 2006; Roy et al., 2010), there must be a reason why 100 

b values are reflected in the characteristics of the spatial epicentral distributions. In the present 101 

𝑆 = 𝛽	∆𝑀	
e()	∆$

1 − e()	∆$
	 log% e − log%H1 − e()	∆$I	 
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paper we propose a possible mechanism that relates these three quantities, and we explore its 102 

possibilities through Monte Carlo simulations. 103 

 104 

The model 105 

 Since both epicentral and hypocentral distributions are observed to correlate with b, and 106 

epicentral locations are less uncertain than hypocentral ones, a 2D model, easily extended to 3D, 107 

will be considered here. Hence, we will refer to the spatial distribution of seismic sources as an 108 

epicentral distribution. 109 

 The model is a cellular automaton consisting of a grid that divides the study area into cells; 110 

the grid defines two matrices of dimensions 𝑁1 × 𝑁7, one containing the number of events 111 

occurring within each cell and the other containing the stress in each cell. The model operates 112 

based on the following premises: 113 

I. Each earthquake will rupture an area exponentially proportional to the magnitude and 114 

will release the stress in the ruptured area. The remanent stress can have some non-zero low value 115 

but as will be shown, this value is not very important, so we will consider it to be zero. 116 

This premise derives from the relation between seismic moment and rupture area 𝐴 117 

(10) 118 𝑀' = 𝜇𝑑̅𝐴	, 
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where 𝜇 is the rigidity and 𝑑̅ is the average slip on the fault (Aki, 1966). This relationship is also 119 

observed empirically; in their classic paper Wells and Coppersmith (1994) (W-C) find 𝐴 = 10"8!$ 120 

with 𝑎~ − 3.5 and 𝑐~0.9.  121 

Hence rupture area A and unrounded magnitudes 𝑚 will be related as 122 

 (11) 123 

where 𝑚! is the minimum unrounded magnitude 𝛼 and 𝐶 are constants. We will use 𝛼 = 1.7, 124 

which corresponds approximately to the c in W-C; setting 𝐶 = 1 defines a unit rupture area for the 125 

minimum magnitude, and we will consider this the area of one cell in the automaton, which would 126 

be ~0.16 km2 (W-C). Since we will be using 𝑁1 = 40 and 𝑁7 = 50, an event with 𝑀~7.4 would 127 

rupture almost all 2,000 cells, so we will use 𝑚,"9 = 7.4.  128 

 Since 𝐴 is a real number and the number of ruptured cells must be an integer, the number 129 

of ruptured cells will be calculated as 130 

 (12) 131 

 132 

We calculated first the number in the i dimension because we will be using 𝑁7 > 𝑁1 and errors will 133 

be smaller this way. Figure 1 shows 𝐴 and 𝐴! as a function of the magnitude 𝑀 for 𝛼 = 1.7 and, 134 

since the lines are almost undistiguishable the error 𝐴 − 𝐴! and the relative error (:(:!)
:

 are also 135 

shown. The 𝑛1 and 𝑛7 cells will be centered (as far as possible) around the cell where the earthquake 136 

occurred. 137 

𝐴 = 𝐶	𝑒;(,(,!)	, 

𝐴! = 𝑛1 × 𝑛7 	, 

𝑛1 = FixH√𝐴I	, 

𝑛7 = Round(𝐴 𝑛1⁄ ) 
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Figure 1. Rupture area 𝐴 and rupture cell area 𝐴<  as a function of magnitude (A).     The error 138 

𝐴 − 𝐴<  is shown in (B), and the relative error (𝐴 − 𝐴<) 𝐴⁄  is shown in (C).  139 

  140 

II. Each earthquake will cause stress concentrations on the borders of the rupture. One unit 141 

of stress will be added to each cell around the rupture. Since only the relative values of stress will 142 

be used, it is not necessary to assign any constant or proportionality or particular units to the stress. 143 

 The first two premises are illustrated in Figure 2 that shows the occurrence of three 144 

earthquakes on a surface with uniform stress. The panel on the left shows the earthquake locations 145 

and the right-hand side panel shows the stresses. The event at 𝑖 = 30, 𝑗 = 12 is an 𝑀 = 3.0 that 146 
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ruptures one cell; at 𝑖 = 20, 𝑗 = 30 is an 𝑀 = 5.5, and on its border, at 𝑖 = 15, 𝑗 = 25, occurred 147 

an 𝑀 = 4.5 event that released the left-hand corner stress concentrations due to the previous 148 

earthquake and increased the stresses where the borders intersect. 149 

 150 

Figure 2. Examples of the effects of the occurrence of earthquakes on the location (left) and stress 151 

(right) matrices of the automaton (see text for explanation).  152 

 153 

III. The  third premise is the key to the fractal location of the epicenters; we heuristically 154 

propose that each earthquake location, i.e., the cell to which an earthquake is assigned, should be 155 

randomly chosen with probabilities proportional to the stress in each cell. The epicentral location 156 

will be the center of the cell. 157 

 Thus, for each realization a set of 𝑁= = 𝑁' + 𝑁> magnitudes between 𝑚! and 𝑚9 is 158 

generated according to (2). The first 𝑁' events are used to prime an initially uniform stress field 159 
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matrix, and the locations of the following 𝑁> events are recorded in the number-of-events matrix 160 

(the catalog). 161 

 To determine which cell will host an event, a cumulative sum of all current stresses is 162 

calculated and normalized to one, a uniformly distributed random number in the [0,1] range is 163 

generated and a search is made for the cell corresponding to the random value (actually, instead of 164 

doing 𝑁1 × 𝑁7 divisions, the random number is multiplied by the largest cumulative value and then 165 

compared with the non-normalized cumulative). 166 

 Figure 3 shows the results of a realization with 𝑁' = 500 and 𝑁> = 1,000 events for 𝑏 =167 

0.8. Panel (A) shows a histogram of the 𝑁= exponentially distributed magnitudes, panel (B) shows 168 

the spatial distribution of the 𝑁> epicenters, and panel (C) shows the spatial distribution of stresses 169 

at the end of the realization, stresses distributed in size as shown in (D).    170 



 11 

Figure 3. Example of a realization of  𝑁= = 1500 events with magnitudes for 𝑏 = 0.8 distributed 171 

as shown in (A) and the resulting spatial distribution of 𝑁> = 1,000 epicenters (B) and of the 172 

dimensionless stress (C). The small number in brackets above (C) is the seed of the random number 173 

generator. 174 

 175 
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Figure 4. Example of a realization of  𝑁= = 1500 events with magnitudes for 𝑏 = 1.2 distributed 176 

as shown in (A) and the resulting spatial distribution of 𝑁> = 1,000 epicenters (B) and the 177 

dimensionless stress (C). The small number in brackets above (C) is the seed of the random number 178 

generator. 179 

 180 
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 Figure 4 shows the same features as Figure 6, for 𝑏 = 1.2; the stress histogram in (D) has 181 

been plotted using the same scales as the corresponding one in Figure 3 to show the differences 182 

between them. The realizations shown in Figures 3 and 4 both used the same series of pseudo-183 

random numbers, so all differences are due only to the difference in b.    184 

 For each realization, fractal dimensions and entropy are measured on the spatial epicentral 185 

distribution as described below. 186 

 Most natural fractal phenomena are not monofractal (Turcotte, 1989; Geilikman et al., 187 

1990; Hirata and Imoto, 1991; Hirabayashi et al., 1992) so fractal measures that count the number 188 

of neighbors around a point or a source in different ways, result in different dimension estimates.  189 

 Here, we will calculate the fractal dimensions following the methods described in 190 

Grassberger and Procaccia (1983a), Pawelzik and Schuster (1987a,b), Harte (2001), and others 191 

that, based on Rényi’s (1961) information measures, define the q’th order dimension as  192 

 (13) 193 

where q is the order, r is the size, and 𝜙? is the slope of the linear fit to the log 𝐶?(𝑟) vs. log 𝑟 plot. 194 

 (14) 195 

is the correlation integral (Hentschell and Procaccia, 1983; Pawelzik and Schuster, 1987a, b; 196 

Grassberger & Procaccia, 1993; Grassberger, P. (2007)). 197 

 Since (13) cannot be used for 𝑞 = 1, 𝐷& is calculated from 198 

𝐷? =
1

𝑞 − 1 lim@→B
log 𝐶?(𝑟)
log 𝑟 ≈

𝜙?
𝑞 − 1	, 

𝐶?(𝑟) = lim
C→B

1
𝑁Fc

1
𝑁 − 1FHH𝑟 − e𝑥1 − 𝑥7eI

7D1

g

?(&C

14&

∝ 𝑟." 
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 (15) 199 

(see details in Márquez et al., 2012). 200 

 Although q can range from −∞ to ∞, the dimensions for 𝑞 > 0 are the ones emphasizing 201 

denser regions and those for small q are the most sensitive (Hirabayashi et al, 1992). We will not 202 

measure 𝐷' because this measure is not appropriate for working with cells (unless there is an 203 

enormous number of them) because all events corresponding to any one cell are located at exactly 204 

the same point. 205 

 For the example shown in Figure 3, for 𝑏 = 0.8,  𝐷& = 0.9428, and 𝐷% = 0.9049, while 206 

for the example for 𝑏 = 1.2, shown in Figure 4,  𝐷& = 1.0575, and 𝐷% = 1.0436, both dimensions 207 

larger than the corresponding ones for 𝑏 = 0.8. 208 

 209 

 To compute the entropy, the probability for cell 𝑘 = (𝑖 − 1)𝑁1 + 𝑗 is estimated as 210 

 (16) 211 

so condition (8) is fulfilled, and formula (7) is applied. Note that null probabilities do not contribute 212 

to the entropy.   213 

 A reference value is the entropy for a uniform distribution; if probability were the same for 214 

all cells, then 215 

𝑝2 =
𝑛2
𝑁>
	, 

𝐷& = lim
@→'

lim
C→B

1
𝑁∑ log m 1

𝑁 − 1∑ HH𝑟 − e𝑥1 − 𝑥7eI7D1 nC
14&

log 𝑟  
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𝑆6 = −F
1
𝑁9E

log%
1
𝑁9E

= log%𝑁9E

C#$

24&

 216 

𝑆6 = 10.9658 217 

 For the examples shown above 𝑆 = 9.544	bit for 𝑏 = 0.8, and is smaller than 𝑆 =218 

9.5745	bit, for 𝑏 = 1.2. 219 

 220 

 For any given parameter set, results vary slightly for different pseudo-random number 221 

series (generated using different ‘seeds’ in the Matlab rand.m algorithm), so we use Monte Carlo 222 

simulation to do 𝑁@ = 200 realizations of any given parameter set for b values in the 0.8 to 1.2 223 

range  (Bhattacharya et al. (2002) report an observed range from 0.7 to 1.3) to see whether the 224 

mean values of the fractal dimensions and the entropy show a particular behavior depending on b. 225 

 The same pseudo-random number series and the same parameter sets are used for each b 226 

value, so the different values of dimensions and entropy resulting for different b values are only 227 

due to the differences in b.  228 

 229 
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Figure 5. For the parameter set shown in the title (the small number within brackets is the pseudo-230 

random number generator seed), panel (A) shows mean epicentral fractal dimensions < 𝐷& > and 231 

< 𝐷% > as solid lines, the dotted lines indicate  < 𝐷& > ±𝑠.% 2⁄  and < 𝐷% > ±𝑠.& 2⁄ , where 𝑠.% 232 

and 𝑠.& are the standard deviations of 𝐷& and 𝐷%, respectively. The solid line in (B) is the mean 233 

entropy < 𝑆 > and the dotted lines indicate < 𝑆 > ±𝑠F, where 𝑠F is the standard deviation of 𝑆.  234 

 235 

 Our principal result is shown in Figure 5 that clearly illustrates that the means (solid lines 236 

with markers) of both the fractal dimensions 𝐷& and 𝐷% (A) and of the entropy 𝑆 (B) correlate 237 

nicely with b. Although the standard deviations are large, particularly for the fractal dimensions, 238 

clearly results for low b differ from those for high b. Multifractality, the difference between the 239 

different dimension measures D1 and D2 (Dimitriu et al, 2000), also increases slightly as b 240 

decreases. 241 

 242 
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Figure 6. Same parameter set as in Figure 5 but using a different seed shown within brackets in the 243 

title. All conventions are the same as in Figure 5. 244 

 245 

 An immediate question is whether the results shown above are an isolated or unique result 246 

due to a particular parameter set, and the answer is a rotund ‘No’. Although details vary for 247 

different seeds or parameter sets and the resulting curves can be somewhat less smooth 248 

(particularly the fractal dimensions ones) than the ones shown in Figure 5, varying parameter sets 249 

or seeds result all in similar behaviors of dimensions and entropy with respect to b.  250 

 To illustrate this assertion, Figure 6 shows the results of using the same parameter set 251 

shown in Figure 5 but using a different seed. Figure 7 shows results for the same parameter set and 252 

seed of Figure 5, except for a lower 𝛼 = 1.5. Figure 8 shows results for a different grid having 253 

45 × 45 cells instead of the 50 × 40 of Figure 5. Clearly, different combinations of parameters or 254 
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different random number series all show very similar behaviors of dimensions and entropy with 255 

respect to b. 256 

 257 

Figure 7. Same parameter set as in Figure 5, except for 𝛼 = 1.5. All conventions are the same as 258 

in Figure 5. 259 

 260 
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Figure 8. Same set of parameters as in Figure 5, except for a different shape of 45 × 45 cells. All 261 

conventions are the same as in Figure 5. 262 

 263 

Discussion 264 

 We present a very simple model based on the two commonplace assumptions: first, that the 265 

rupture area of and earthquake is related exponentially to the magnitude and that the stress in the 266 

rupture area is decreased; second, that the rupture will cause increased stress near its borders, plus 267 

a third quite reasonable assumption that the probability of an earthquake occurring at a particular 268 

place is proportional to the stress in it. The resulting spatial distribution of epicenters presents both 269 

multifractal and entropy behavior that positively correlates with the magnitude b-values. 270 

 The model is a cellular automaton and Monte Carlo simulations are employed to ensure 271 

that results are not dependent on any particular set of parameters and/or pseudo-random numbers. 272 
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Results are quite robust and do not largely depend on any parameter value; all results for different 273 

parameter sets and random numbers show the correlation between fractal dimensions and entropy 274 

with b. 275 

 It should be mentioned that Huang and Turcotte (1988) modeled a relation between a 276 

postulated fractal distribution of the difference between stress and strength in a planar 2D mesh, 277 

where earthquakes occurred when a critical value of the difference was reached, with b; but it is a 278 

very different model from the one presented here. They postulated the stresses and strengths 279 

together with their fractal distribution and obtained b as a result.  In our much simpler model, we 280 

start from a realistic, commonplace b distribution and by assuming the location proportional to the 281 

stress obtain fractal epicentral distributions. 282 

 We do not claim to have found the one true mechanism that relates b with the fractal 283 

dimensions and entropy of spatial epicentral distributions, but we present a reasonable, simple, 284 

and straightforward mechanism that gives results that agree well with the observed behavior of 285 

these quantities.  286 

 287 
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