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exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo
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Resumen de la tesis que presenta Ana Lućıa Ramos Barreto como requisito parcial para la obtención del
grado de Doctor en Ciencias en Ciencias de la Tierra con orientación en Sismoloǵıa.

Propagación de ondas śısmicas en medios fracturados saturados con fluidos

Resumen aprobado por:

Dr. Jonás de Dios de Basabe Delgado

Thesis director

El efecto de los fluidos dentro de las fracturas en la propagación de ondas elásticas sigue siendo un tema
complejo y actualmente investigado. En particular, relacionar viscosidad y densidad del fluido con el
comportamiento de las ondas en medios fracturados saturados con fluidos representa un desaf́ıo, y la
literatura actual no ofrece conclusiones definitivas. Además, la modelación numérica añade dificultades
por la pequeña escala de las fracturas frente a la longitud de onda. Para abordar estos desaf́ıos, este
estudio combina mediciones de laboratorio y simulaciones numéricas con el fin de investigar la influ-
encia de la viscosidad y densidad del fluido en la propagación de ondas P y S en medios fracturados
saturados. La configuración experimental consiste en el apilamiento de discos de aluminio para simular
fracturas paralelas horizontales, saturadas con aire, agua, aceite de silicón o miel, en configuraciones
de 1, 5 y 10 fracturas. Se determinaron las conformidades para regimen estático y dinámico, para las
componentes normal y tangencial, bajo condiciones secas y saturadas. Estas mediciones se incorporan
en simulaciones numéricas de propagación de ondas elásticas con el Método de Galerkin Discontinuo
con Penalización Interior (IP-DGM), con la integración del Modelo de Deslizamiento Lineal (LSM) para
representar fracturas expĺıcitamente. Los resultados experimentales indican que las conformidades son
mayores en el régimen estático que en el dinámico, y que ambas disminuyen conforme aumenta el
número de fracturas. Asimismo, se observa una diferencia marcada entre condiciones secas y saturadas.
En este último caso, la densidad del fluido se correlaciona positivamente con la velocidad de la onda
P, su coeficiente de transmisión y el factor de calidad. Para la onda S, estos parámetros presentan un
comportamiento cóncavo hacia arriba en función de la densidad del fluido. Las simulaciones numéricas
reproducen adecuadamente estas tendencias y permiten diferenciar con claridad los distintos fluidos. Sin
embargo, subestiman ligeramente la atenuación. Las simulaciones confirman que los fluidos más densos
favorecen la transmisión de las ondas al reducir el contraste de impedancia entre las interfaces de la
fractura, mejorando el acoplamiento y reduciendo retrasos en el arribo como la atenuación. En con-
junto, los resultados experimentales y numéricos demuestran la capacidad de IP-DGM combinado con la
conformidad de la fractura obtenidos experimentalmente, para modelar con precisión la propagación de
ondas en medios fracturados y saturados con fluidos viscosos. Esta metodoloǵıa proporciona información
valiosa sobre la sensibilidad de las ondas śısmicas a las caracteriticas de las fracturas y los fluidos que
las rellenan, con implicaciones importantes para el monitoreo śısmico de yacimientos fracturados y otras
aplicaciones geof́ısicas.

Palabras clave: Fracturas saturadas con fluidos, pruebas ultrasónicas, conformidad de fractura
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Abstract of the thesis presented by Ana Lućıa Ramos Barreto as a partial requirement to obtain the
Doctor of Science degree in Earth Science with orientation in Seismology.

Seismic wave propagation in fractured media saturated with fluids

Abstract approved by:

PhD Jonás de Dios de Basabe Delgado

Thesis Director

The effect of fluid within fractures on elastic wave propagation remains a complex and actively researched
topic. In particular, establishing clear relationships between fluid viscosity, density, and wave behavior in
fractured media presents significant challenges, with current literature offering no definitive conclusions.
Accurately modeling fractures in wave-propagation simulations is further complicated by their small
scale relative to the wavelength and other geological features. To address these challenges, combined
laboratory measurements and numerical simulations are used to investigate the effects of fluid proper-
tiesparticularly viscosity and densityon P- and S-wave propagation in fractured media. The experimental
setup consists of stacked aluminum discs to mimic parallel horizontal fractures, which are filled with air,
water, silicon oil, or honey. I examined configurations with 1, 5, and 10 fractures and determined static
and dynamic, normal and tangential fracture compliances under dry and saturated conditions. These
measurements are incorporated into elastic wave simulations using the Interior-Penalty Discontinuous
Galerkin Method (IP-DGM) coupled with the Linear Slip Model (LSM) to explicitly represent fractures.
Laboratory results show that P-wave velocity, transmission coefficient, and quality factor increase with
fluid density, while they decrease with increasing fracture number. For S-wave, the results reveal a
concave upward tendency on fluid density that is consistent across different fracture numbers. Fracture
compliance-both normal and tangential- differ between dry and saturated conditions and tend to decrease
as the number of fractures increases, with static values generally exceeding dynamic ones. Numerical
simulations show good consistency with experimental observations, successfully discriminating between
fluids, although numerical attenuation tends to be slightly underestimated. Furthermore, higher-density
fluids enhance wave transmission by reducing the impedance contrast across fracture surfaces, thereby
improving coupling and minimizing wave-front delays and amplitude attenuation. Overall, these find-
ings highlight the ability of IP-DGM, combined with laboratory-derived fracture parameters, to model
wave propagation in realistic fractured and fluid-saturated media accurately. This integrated approach
provides valuable insights into the sensitivity of seismic waves to fracture and fluid characteristics, with
important implications for seismic monitoring of fractured reservoirs and related applications.

Keywords: Fluid-filled fractures, ultrasonic tests, fracture compliance
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Chapter 1. Introduction

1.1 Fractures, and their effects on Seismic Wave Propagation

Fractures are critical structures that influence not only fluid dynamics and material strength but also

the propagation of seismic waves, which makes them key targets in subsurface characterization. Their

presence significantly impacts various geological and engineering applications, including hydrocarbon

extraction, geothermal energy, groundwater management, underground construction, and CO2 seques-

tration (Tsang et al., 2005, 2015; Iding & Ringrose, 2009). Understanding how seismic waves interact

with fractures provides a practical means for their detection and characterization (Tsvankin & Grechka,

2011).

Fracture properties influence seismic wave propagation through mechanisms such as scattering, atten-

uation, and velocity dispersion. Parameters like fracture density and orientation primarily control the

macroscopic response of the fractured medium. At the fracture scale, parameters such as aperture and

infill properties influence the mechanical behavior of individual fractures, and are encapsulated in the

concept of fracture compliance (or its inverse, stiffness). Fracture compliance, representing the ease of

normal or shear deformation across a fracture, thus integrates the effects of these local properties and

plays a critical role in controlling wave transmission and reflection, making it a central parameter in both

experimental and theoretical seismic analyses.

Fracture compliance, characterizes the mechanical response of a fracture to applied stress and is widely

used in both laboratory and modeling studies. It can be measured using static mechanical tests or

dynamic ultrasonic methods (Goodman et al., 1968; Pyrak-Nolte et al., 1987; Lubbe et al., 2008; Hobday

& Worthington, 2012), and is particularly sensitive to fluid properties, fracture roughness, and in situ

stress conditions. As such, compliance is a crucial parameter for interpreting wavefracture interactions

and assessing fracture properties from seismic data.

Seismic waves can be used to detect fracture zones and infer their properties, offering a non-invasive

approach to subsurface characterization. While extensive research has been conducted on dry fractures

(Pyrak-Nolte et al., 1990a; Cai & Zhao, 2000; Zhu et al., 2011), fewer studies have thoroughly explored

how fluid properties within fractures influence wave behavior. Laboratory experiments by Pyrak-Nolte

et al. (1990b) demonstrated that fluids within fractures can amplify both compressional and shear waves.

This amplification is attributed to the increased effective stiffness of the fracture and the viscous coupling
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between the fracture surfaces, which enhances wave transmission. Hsu & Schoenberg (1993) further

investigated the role of fluid properties by measuring fracture compliance under different saturations

(air and honey), demonstrating that it varies with fluid saturation and static stress. Furthermore, Guo

et al. (2018) developed a theoretical model to investigate how fluid properties in combination with

fracture thickness influence P-wave dispersion and attenuation through scattering. Using the Foldy

approximation and representation theorem, they linked these wave phenomena to the displacement

discontinuities across fluid-saturated fractures. Their results highlight the strong influence of fracture

thickness and fluid compressibility, while showing that viscosity effects were negligible under their tested

conditions.

Yang et al. (2019) experimentally studied the effects on P-waves of varying fracture thickness when

saturated with water. They further investigated the influence of different fluid-saturation percentages

within the fracture, considering water, light oils, and mixed compositions, on P-wave propagation in

the ultrasonic band (Yang et al., 2020). They observed that an increase in fracture thickness leads

to greater wave attenuation. For a specific fracture thickness, a higher proportion of water content,

compared to light oils, reduces wave attenuation, increases P-wave velocity, and increases transmission.

These variations were attributed to changes in the fluid compressibility and viscosity. Remarkably, these

studies found that liquids with lower viscosity exhibited greater wave transmission and reduced wave

attenuation across the medium.

However, these findings contrast from those of Clarke et al. (2020), who observed that increased vis-

cosity and bulk modulus of the saturating fluid resulted in greater P-wave velocities and reduced wave

attenuation. Their study, focusing on volcanic rocks, explored the impact of varying viscosity and bulk

modulus of the saturating fluid on P-wave attenuation and velocity. The discrepancies in these studies

may arise from the complexity of porous rocks, where multiple interactions between fluid-filled fractures

and the surrounding rock matrix complicate the direct influence of fluid-filled fractures embedded in an

elastic medium.

Numerical and theoretical research has complemented experimental findings, providing evidence of the

impact of fluid properties on fractures based on different models. A study by Zhu et al. (2012) used a

layered medium model in a numerical parametric study and concluded that fluid viscosity significantly

affects wave transmission, with higher viscosity leading to increased attenuation. In contrast, Rao &

Wang (2015) in their numerical study, found that seismic attenuation is only weakly sensitive to viscosity,

based on simulations involving fractures with varied physical properties.
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Collectively, experimental, numerical, and theoretical studies highlight the significant influence of fluid

properties on wave propagation in fractured media. The discrepancies observed across studies empha-

size the complexity of fracture-fluid interactions, particularly in porous rock matrices, where additional

interactions between the host medium and fractures can further influence wave behavior.

1.2 Models for seismic propagation in fractured media

In practical: inverse problems, seismic detection of fractures is often based on equivalent-media theories,

which mimic the seismic response of fractured rocks. These models simplify fractures by assuming

properties such as shape, aperture, length, surface roughness, and connectivity (Liu & Martinez, 2012).

Fractures may be substituted by ellipsoidal cracks, slip interfaces, displacement discontinuities or, more

complexly, as fractal networks. Some approaches based on equivalent-medium theories include the Muir

Model (Muir, 1972), which approximates fractures as aligned cracks in a homogeneous medium, and

the Hudson Model (Hudson, 1981), which treats fractures as penny-shaped cracks embedded in a solid

medium. These models aim to approximate fractured media by averaging fracture properties into an

effective homogeneous medium. The Linear-Slip Model (LSM) (Schoenberg, 1980) stands out for its

focus on displacement discontinuities across fractures and its ability to incorporate fracture compliance

offering a more detailed framework for modeling fracture behavior.

LSM is widely accepted for modeling fractures, particularly for describing the mechanical behavior of

fractures through discontinuity of the displacement across the fracture interface. The model is formu-

lated in terms of fracture compliance and does not rely on assumptions about the microstructure and

microgeometry of fractures (Bakulin et al., 2000). In addition to the displacement discontinuity, Pyrak-

Nolte et al. (1990b) introduced a velocity discontinuity to account for the effects of viscous coupling

due to the presence of fluids in fractures. This velocity discontinuity is described by a specific viscosity,

which is defined by the ratio between the stress across a fracture and the resulting velocity discontinuity.

While theoretical models provide valuable insights into fracture behavior. Numerical modeling enable

more flexible simulations of seismic wave propagation through fractured media, particularly when dealing

with irregular fracture geometries, heterogeneous material properties, and fluid interactions that are

difficult to capture with analytical models. However, accurately modeling seismic wave propagation

through fractured media is challenging for numerical simulations as well, due to the scale disparity

between fractures and the numerical grid resolution (Hall & Wang, 2012).
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A common method for simulating wave propagation in fractured media is to use an equivalent medium

(Schoenberg, 1980; Hudson, 1981). While this approach simplifies calculations, it does not capture the

individual discrete effects of fractures on elastic waves. Thus, it becomes less effective when fracture

spacing is comparable to or larger than the wavelength, as single or sparsely fractures can significantly

influence wave propagation (Pyrak-Nolte et al., 1990b).

An alternative approach is to explicitly model fractures within wave-equation simulations, maintaining

their mechanical influence on elastic waves. Several numerical methods have been developed for this

purpose. The Finite-Difference Method (FDM) is widely used but struggles with handling discontinuities

at interfaces (Coates & Schoenberg, 1995; Vlastos et al., 2003). Traditional Finite Element Methods

(FEM) are also common (Hughes, 1987), but they face challenges in capturing the discrete nature

of fractures, particularly when dealing with fluid-filled fractures where wave behavior is influenced by

both mechanical and hydraulic properties. The Spectral Element Method (SEM) offers high accuracy

but assumes continuity of the wave field at element interfaces (Komatitsch & Vilotte, 1998; Martin

et al., 2008). On the other hand, the Discontinuous Galerkin Method (DGM), while computationally

demanding, is particularly well-suited for modeling discrete fractures due to its ability to handle any type

of discontinuity in the wave field (De Basabe et al., 2008, 2016; Duru et al., 2019).

The Discontinuous Galerkin Method (DGM) was first used to model fractures in fractured media with the

incorporation of LSM under the scheme of the Interior-Penalty Discontinuous Galerkin Method (IP-DGM)

for elastic wave propagation by De Basabe et al. (2016). This integration allows fractures to be explicitly

modeled, preserving their discrete influence without averaging their effects, and accurately capturing

localized fracture dynamics. By incorporating LSM into IP-DGM, the flexibility and precision of elastic

wave simulations in complex geometries and fluid conditions are enhanced. A related implementation

using the Nodal Discontinuous Galerkin method was developed by Möller & Friederich (2019), where

fractures with various rheologies are modeled through additional numerical fluxes based on LSM.

DGM is a powerful numerical technique for simulating wave propagation in fractured media, particularly

due to its ability to explicitly model fractures. This makes DGM highly effective for representing complex

fracture geometries while minimizing numerical dispersion. A recent study by Pyrak-Nolte (2019) em-

ployed DGM to investigate wave propagation across single fractures in a 2D isotropic medium, analyzing

the impact of fracture geometry on wave attenuation. Other research, such as Pyrak-Nolte et al. (1990a)

and Rioyos-Romero et al. (2022), compared the effects of discrete fractures on seismic anisotropy using

LSM and the effective moduli method. These studies found that the effective moduli method fails to

capture the discrete nature of fractures, while LSM preserves the localized effects of fractures, effec-
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tively capturing anisotropy in wave propagation. In an elastic medium with parallel fractures, factors

such as wave frequency, fracture stiffness-to-seismic impedance ratio, and angle of incidence affect wave

velocities and transmission coefficientseffects that are lost in effective-medium models unless they are

modified with complex moduli, transforming the medium from elastic to viscoelastic.

1.3 Hypothesis and Research Objectives

Despite extensive research on wave propagation in fractured media, open questions remain regarding the

influence of fluid properties, particularly density and viscosity (here understood as the shear viscosity

of a Newtonian fluid), on fracture compliance and seismic wave behavior. Specifically, the relationship

between normal and tangential fracture compliance and fluid density requires further investigation. Ad-

ditionally, the effect of fluid viscosity on wave attenuation remains unclear, with conflicting findings in

existing literature.

From this context, the following research questions are posed: How does normal and tangential fracture

compliance relate to fluid density?, Can the normal-to-tangential compliance ratio serve as an effective

fluid indicator, and how does it scale with fluid density?, What is the relationship between seismic wave

attenuation and fluid viscosity?.

Hypothesis

Variations in fracture fluid density and viscosity produce measurable changes in normal and tangential

fracture compliance, which in turn control the propagation characteristics of P- and S-waves in fractured

media. If these compliance parameters are accurately quantified through laboratory experiments, they

can be used as inputs to numerical simulations to reproduce the observed wave behavior.

Objectives

To assess this hypothesis, the objectives of this study are:

� Quantify normal and tangential fracture compliance under controlled variations of fluid density

and viscosity using mechanical and ultrasonic laboratory measurements on artificial fractures in an

aluminum medium.

� Integrate the measured compliance parameters into numerical simulations based on the Interior-
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Penalty Discontinous Galerkin Method (IP-DGM) with the Linear Slip Model (LSM) to compare

synthetic seismograms with experimental results to assess the validity of the approach.

1.4 Outline

Chapter 2 provides an overview of the theoretical framework for this study. It explores the characteristics

of fractured media, fracture compliance, and the role of fluid-filled fractures in seismic wave propagation.

It also introduces LSM as the framework to represent fracture effects. Chapter 3 presents a detailed

description of the laboratory experiments, including the experimental setup, methodologies employed

to estimate both static and dynamic fracture compliance; key parameters estimated for subsequent ap-

plication in the numerical modeling. Chapter 4 focuses on numerical modeling. outlining IP-DGM. It

describes the weak formulations used and the numerical models developed to simulate wave propagation

in fractured media saturated with fluids. Moving forward to Chapter 5, it presents the results obtained

from both laboratory experiments and numerical simulations. It includes fracture compliance measure-

ments, observed waveforms, key seismic parameters, and numerical analyses of displacement fields under

varying fracture number and fluid types, and also discusses the comparison of numerical simulations with

laboratory observations, and Chapter 6 presents the concluding remarks.
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Chapter 2. Theoretical background

Understanding the basic physics of seismic wave propagation is essential before addressing the more

complex case of fractured and fluid-filled media. This chapter begins with the fundamentals of seismic

wave propagation in elastic media, followed by a discussion of the main characteristic of fractured rocks

and the effects of fluid-filled fractures on wave behavior. The concepts of fracture compliance and the

theoretical model describing wave propagation across fractures, with emphasis on the Linear Slip Model.

2.1 Seismic wave propagation: basic concepts

Seismic waves propagate through the solid Earth because its materials, though rigid, can undergo internal

deformation. Any disturbance within the Earth or material can therefore generate seismic waves, which

carry information not only about the source of the waves but also about the properties of the materials

they travel across.

Ar the fundamental level, seismic wave propagation is governed by the relationship between stress and

strain tensor in the material. Stress represents the internal forces acting on a deformable continuous

medium, while strain quantifies the resulting deformation. In its simplest one-dimensional form, stress

and strain are proportional:

σ = Eε, (1)

where σ is stress, ε is strain and E is the stiffness of the material or Young’s modulus. This proportionality

illustrates that the way a material responds to deformation controls how seismic waves travel. A more

complete mathematical formulation, including the elastic wave equation and tensor-based stress-strain

relations is presented in Chapter 4.1.1.

The equation of motion for an elastic medium yields two solutions, representing the two types of elastic

waves. Body waves travel through the material or Earth’s interior and include: (a) Compressional

(P-) waves, with particle motion or displacement parallel to the propagation direction and (b) Shear

(S-) waves, with particle motion or displacement perpendicular to the propagation direction (Figure 1).

Their velocities depend on the medium’s elastic moduli and density:

Vp =

√
λ+ 2µ

ρ
, Vs =

√
µ

ρ
, (2)
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Where λ and µ are the Lamé parameters, and ρ is the density. These relations underscore that S-wave

propagation is only possible in media with nonzero shear modulus, explaining why fluids supports only

compressional waves. As body waves travel through the material, they undergo reflection, refraction

and mode conversion at interfaces where material properties change. In addition to body waves, there

exist surface waves, which propagates along the material’s surface and arise either from a type of S-

wave or form a combination of P- and S-waves. Surface waves typically produce the largest ground

displacements. The two principal are: Rayleigh waves, with retrograde elliptical particle motion in the

vertical plane, and love waves, characterized by horizontal shear motion confined to near-surface layers.

Figure 1. Displacements produced by P- and S- waves. P-wave produce displacement in the direction of wave propagation
and S-wave produce displacement perpendicular to the direction of wave propagation (Stein & Wysession, 2003).

The propagation of seismic waves is also affected by material anisotropy, which occurs when a medium

exhibits direction-dependent properties. In anisotropic media, wave velocity and attenuation vary with

direction, reflecting the alignment of minerals, fractures, or layering within the rock.

Finally, attenuation and dispersion provide additional insights into material properties. Attenuation

can result from viscoelastic behavior, scattering due to heterogeneities, or fluid-filled fractures, while

dispersion arises when wave velocity depends on frequency. These effects are key for linking laboratory

measurements, numerical simulations, and field observations in seismology and rock physics.

Since these effects are strongly influenced by discontinuities, it is natural to extend to fractured media.

It have long been recognized as a critical factor in controlling the mechanical and hydraulic behavior of

the Earth’s crust. Since the early studies in rock mechanics and reservoirs engineering in the mid-20th

century, researchers have worked to understand how fractures, whether isolated or in complex networks,

alter the propagation of seismic waves. Their presence can significantly modify the elastic response of

rocks, influence energy scattering and attenuation, and serves as pathways for fluid migration. Building
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on this, the following section outlines the main characteristics of fractures and their implications for

seismic wave behavior.

2.2 Fractured media: Characteristics and effect on seismic waves

Fractures can be described as natural rock discontinuities that occur when stresses exceed the rock’s

rupture strength (Aguilera, 1998). A fractured rock or geological formations is characterized by their

textural properties of their individual fractures in combination with their bulk rock properties. The

fracture-specific parameters include their density , extent, aperture, surface roughness and infill material,

which combined transform mechanical characteristics of an otherwise homogeneous, unfractured media

into those of the actual fractured formation.

Geometric properties include fracture density, extent, and aperture. Fracture density can vary with some

regions displaying higher concentration of fractures than others. The extent of a fracture ranges from

”small” cracks of few millimeters to large fissures or faults up to several kilometers. Aperture refers to

the separation between fracture surfaces, influencing the volume available for infill material.

Infill material refers to the substance occupying the space between fracture surfaces. Fractures may

contain fluidssuch as water, oil, or gasor solid materials, both of which modify their response to external

stress. Solid infill can result from erosion of the fracture walls by mechanical processes or from pre-

cipitated minerals deposited after fluid flow events. The type and phase of a fluid (liquid or gas) can

significantly influence the behavior of seismic waves (Berryman, 2007). For the purposes of this study,

only non-pressurized gas (air) and liquids are considered as infill materials.

Surface properties such as roughness ans shape irregularities also play a important role. Surface roughness

refers to the distribution of asperities on fracture surfaces, providing a measure of how irregular or uneven

the surface id. It reflects the extent and nature of deviations in asperity heights from a baseline or

reference plane (Choi et al., 2014; Smith, 2021). Rough fracture walls can scatter and diffract seismic

waves, altering their propagation. In this study, the roughness of fracture surfaces was characterized

using a laser profilometer.

Orientation is another defining feature of fractures. An orderly arrangement, such as parallel fractures,

can introduce anisotropy, in which the seismic waves direction of propagation interacts with fracture

orientation. This anisotropy is particularly pronounced in stress-aligned fracture systems. Additionally,
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scattering and diffraction at fracture surfaces contribute to wave attenuation and dispersion.

A useful parameter that synthesis some physical properties of the fractures, including their geometric

complexity into a mechanical response of a fractured media is the compliance (Choi et al., 2014) - section

2.3.

Seismic attenuation and fracture-related wave phenomena

Attenuation describes the energy lost by a seismic wave as it propagates. This loss manifests as reduced

amplitudes in higher-frequency components. Attenuation arises from four primary mechanisms: (1)

geometrical spreading; (2) energy partition at discontinuities, such as fractures; (3) energy loss due to

internal friction (intrinsic attenuation) and (4) wave interference or caused by small-scale heterogeneities

(Shearer, 2019).

Fractures, in particular, following the last three mechanisms for instances, scatters fracture surface fronts

producing a scattering attenuation (see figure 2). Fractures also significantly impact over wave features

including, energy partition, refraction and mode conversion.

Figure 2. Scattering process of an incident plane wave propagating across a chunk of random medium of dimension L. As
the plane wave progresses across the heterogeneous medium (represented by the space with colors blue, red, yellow and
green) scattering operates and deflects energy in all space directions (black arrows in the medium), and the transmission
wavefield is distorted and attenuated (Arora et al., 2011).
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Reflection occurs when part of the wave energy returns at the fractures, providing valuable insights into

subsurface structures. Refraction arises when waves are guided through fractures themselves; whereas

involves the passage of seismic energy completely through the fractured medium. Additionally, fractures

produce mode conversions, e.g., compressional wave converting to a shear wave. This study focuses only

on the transmitted portion of the wave that reaches the receiver after traveling through the fractured

medium.

2.2.1 Effect of fluid-filled fractures on seismic waves

The role of the fluids filling the fractures in seismic wave propagation is matter of current debate.

Laboratory and field experiments have shown that the presence of fluids significantly influences the

behavior of both P- and S-waves. In first approximation, the density and viscosity of the fluid can

introduce changes in attenuation, dispersion and velocity of seismic waves. The interaction between

seismic waves and fractures provides valuable insights into subsurface properties but also complicates

geophysical data interpretation.

Wave Attenuation: The presence of fluids within fractures is generally expected to increase the attenu-

ation (loss of energy) of seismic waves. This occurs because the fluids absorb and dissipate wave energy

as the waves pass through the fracture. In viscous fluids, attenuation arises not only from bulk compres-

sional effects but also from wave-induced shear deformation within small fluid volumes. As described by

Mavko et al. (2020), this mechanism causes acoustic waves in viscous fluids to be both dispersive and

attenuating, due to the shear contribution to wave-induced deformation. Experimental observations by

Wei et al. (2024) confirm that higher viscosity fluids, such as glycerin, tend to cause greater attenuation

compared to lower viscosity fluids like water. However, this relationship is not always straightforward.

Under certain conditionsparticularly in rocks with high permeability or clay contentvery high viscosity

fluids can suppress poroelastic fluid flow, leading to lower overall attenuation than predicted by conven-

tional theory (Gurevich et al., 2010; Best, 1992). These findings highlight that attenuation depends on

a complex balance between fluid viscosity, fracture, rock microstructure, and wave frequency, and may

not always follow intuitive trends.

Velocity Changes: Although this study remains within the framework of elastic modeling and does

not explicitly incorporate poroelastic effects, it is important to acknowledge the role of porosity in

modulating seismic waves velocities in fractured media. Fluid-filled fractures can significantly alter both
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P-wave and S-wave velocities, depending on the fluid properties such as density and viscosity. Ba

et al. (2023) found that, at full fluid saturation, P-wave velocity increases with confining pressure, while

attenuation decreases. However, higher porosity and permeability lead to increased attenuation. In gas-

water conditions, seismic velocity increases, and attenuation peaks at intermediate saturations due to

mesoscopic heterogeneities. These findings underscore the importance of fluid saturation and confining

pressure in governing wave velocities in fractured media.

Wave Delay: Fractures typically introduce delays in seismic wave propagation due to their increased

compliance (reduced stiffness), resulting in longer arrival times compared to intact rock. However, the

presence of fluids within these fractures can alter this behavior significantly. Laboratory experiments

by (Pyrak-Nolte et al., 1990b) demonstrated that the transmission of seismic waves across fractures

is closely related to fracture stiffness, which increases with fluid saturation. Although they did not

report arrival times explicitly, their displacement-discontinuity model shows that increasing the specific

stiffness of a fluid-saturated fracture reduces phase delays, allowing waves to travel faster across the

interface. This is particularly evident for P-waves, where fluid presence enhances coupling and leads

to improved transmission. Similarly, Yang et al. (2020) conducted ultrasonic experiments on fluid-filled

rock joints and observed that increasing the fluid contentespecially with waterconsistently led to higher

wave velocities across the joint. They attributed this effect to the increase in bulk modulus and viscous

coupling introduced by the fluid, which effectively stiffens the fracture and reduces its compliance. Taken

together, these studies indicate that while dry fractures typically delay wave arrivals, the presence of

fluidsdepending on their propertiescan mitigate this delay by enhancing fracture stiffness and facilitating

faster wave transmission.

Acoustic impedance: Fluid-filled fractures can make subsurface fracture more detectable in seismic

data by increasing the elastic contrast between the fracture and the surrounding rock matrix. This

contrast, especially when the fracture contains fluids with significantly different acoustic impedance

(e.g., water, oil, or gas), leads to stronger scattering and reflection of seismic waves. As a result, seismic

energy is more likely to be scattered or reflected back to the surface or sensors, making the fracture more

detectable in seismic imaging. Studies have shown that fluid-filled fractures cause amplitude anomalies,

travel-time delays, and waveform distortions that can be used to infer the presence, orientation, and

even the fluid content of the fractures (Pyrak-Nolte et al., 1990b; Schoenberg & Douma, 1988).

In general seismic waves are influenced by multiple factors, including the fluid properties (such as sat-

uration, viscosity, and density), the fracture characteristics, and the frequency and amplitude of the

seismic waves. The interaction between these factors shapes the overall response of the seismic waves.
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For example, even small amounts of gas (6% − 8%) can significantly alter attenuation and dispersion

characteristics (Wei et al., 2024), with viscosity playing a key role in both energy dissipation and fre-

quency shifts. Pimienta et al. (2016) found that fluid viscosity also affects Poissons ratio dispersion, with

significant frequency-dependent variations caused by the fluid presence, influencing the waves frequency

range.

2.3 Fracture compliance

Fracture compliance (Z) is a key parameter that integrates the main mechanical and geometrical proper-

ties of fracture, such as its surface roughness, contact area, and aperture into a single measure. It consists

of two components, normal compliance, describing deformation perpendicular to the fracture plane, and

tangential compliance, describing with shear deformation along the fracture plane (see sections 3.3.1).

In essence, compliance quantifies the fracture’s ability to deform under applied stress, providing a practical

characterization without requiring separate, detailed measurements of aperture, contact area ratio or

roughness Goodman et al. (1968).

Normal compliance describes the fracture’s ability to deform in response to a normal or perpendicular

stress. It is particularly important when considering the effect of fractures on wave propagation, as it

influences how fractures respond to compression or extension. Normal compliance can vary significantly

depending on the properties of the surrounding rock.

Tangential compliance, on the other hand, focuses on the fracture’s response to tangential or shear

stress. It is crucial for understanding how fractures slide or slip in response to shearing forces. Tangential

compliance can also be influenced by factors like surface roughness, fracture orientation, and the presence

of infill materials.

Formally, fracture compliance is defines as the proportionality constant between the discontinuity in

displacement across a fracture and the traction acting on it. [U ] denotes the relative displacement

across the fracture and τ γ the traction vector on the fracture plane, then:

[U ] = Zτ γ , (3)

where Z is the compliance matrix. In an isotropic fracture, this matrix reduces to two scalar components:
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the normal compliance Zn and the tangential Zt, which describe the response to normal and shear

tractions, respectively.

Both normal and tangential compliance can be evaluated under different loading conditions, giving rise

to the concepts of static and dynamic compliance. Static compliance reflects the deformation of the

fracture under steady or slowly applied stresses, whereas dynamic compliance captures its response to

oscillatory stresses such as those generated by seismic or ultrasonic waves. As highlighted by Pyrak-Nolte

(1996), these parameters form a critical link between the hydraulic, mechanical and seismic properties of

fractures, and are indispensable for realistic models of wave propagation in fractured media. The ratio

of normal-to-tangential compliance, for example, serve as an indicator of fluid presence within fractures

Liu et al. (2000).

Static compliance is typically determined through mechanical tests, such as uniaxial compression of

specimens containing fractures. In these tests, normal compliance is obtained as the inverse of the slope of

the displacement-stress curve, with loading and unloading segments revealing the fracture’s deformation

characteristics. Dynamic compliance, in contrast, is obtained from wave-base measurements. Seismic

and ultrasonic laboratory experiments transmit high-frequency waves through fractured specimens to

determine properties such as wave velocities and transmission coefficients, from which compliance can

be inferred. Notably, static compliance values are often larger than dynamic ones (Pyrak-Nolte, 2019;

Zhou et al., 2020). The table 1 present a compilation of laboratory and field estimates of normal and

tangential compliance to both static and dynamic evaluation found in the literature, illustrating the

range of values observed under different conditions.

2.4 Theory of elastic wave propagation across fractures

Although fracture effects on seismic waves are readily observable, their measurements can be influenced

by multiple scattering and other phenomena that depend on the signal’s wavelength as well as the size

and distribution of discontinuities. To capture these effects, several modeling approaches have been

developed, which can be categorized into three main types: scattering models, effective media models,

and displacement discontinuity models (Suarez-Rivera, 1992).

Scattering models are suited for material containing small cracks. They predict velocity changes caused

by the presence of cracks, as well as apparent attenuation due to energy scattering (Hudson, 1981).
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Table 1. Reported values of static and dynamic fracture compliance under different conditions. (Modify from Hobday &
Worthington (2012))

Compliance (m/Pa) Normal stress (MPa) Reference
Static

1.0× 10−13 1.0× 10−12 2.211.5 Rutqvist (1995)
9.0× 10−13 1.0× 10−10 2.211.5 Rutqvist (1995)

2.27× 10−12 10 Makurat et al. (1991))
5.6× 10−13 2.6× 10−12 2527 Makurat et al. (1991)
2.8× 10−13 1.0× 10−11 4 Pratt et al. (1977)
1.2× 10−13 2.0× 10−11 230 Zangerl et al. (2008)
1.2× 10−13 1.0× 10−11 10 Giwelli et al. (2009) )
5.0× 10−13 9.0× 10−11 10, 25 Barton (2006)
3.0× 10−13 1.0× 10−12 2.933 Pyrak-Nolte et al. (1987)

> 5.0× 10−11 1.5 Evans & Wyatt (1984)
1.3× 10−11 1.7× 10−10 1.0 Jung (1989)

Dynamic
7.8× 10−16 3.2× 10−14 10, 30 Lubbe et al. (2008)
5.0× 10−15 5.7× 10−14 10, 33 Pyrak-Nolte et al. (1990b)
8.3× 10−14 3.8× 10−13 1 Hardin et al. (1987)

3.5× 10−12 1 Lubbe & Worthington (2006)
2.0× 10−12 1 Myer et al. (1990)
1.7× 10−13 90 Prioul et al. (2007)
1.4× 10−12 Unknown Prioul et al. (2008)

In this models the seismic waves are assumed to be uniformly scattered by the cracks. The cracks

are small relative to the seismic wavelength and do not interact with one another. Additionally, the

models account for the effect of viscous damping caused by liquids contained within the cracks, which

contributes to intrinsic attenuation.

Effective medium models treat a fractured rock mass as a homogeneous equivalent material with modified

elastic properties (O’Connell & Budiansky, 1977; Zimmerman & King, 1985; Sayers & Kachanov, 1991).

When these properties accurately represent the cracked medium, the predicted variations in seismic

velocity are equivalent to the those observed in the real rock. However, as the model assumes elastic

behavior, it does not account for attenuation, except for cases when the cracks are filled with liquids.

Displacement discontinuity models explicitly represent fractures as internal boundaries within an other-

wise elastic medium. Fractures are often idealized as infinitely long, planar interfaces. This framework

allows direct incorporation of mechanical propertiessuch as complianceinto wave propagation equations.

Among these approaches, the Linear Slip Model (LSM) is particularly well suited for this study, as

it provides a simple but rigorous frame to incorporate fractures into the equations of elastic wave

propagation.
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2.4.1 Linear slip model

The Linear Slip Model (LSM), originally proposed by Schoenberg (1980), idealizes a fracture as a

planar interface of negligible thickness relative to the seismic wavelength, with large separation between

asperities and between adjacent fractures. In this framework, the fracture is introduced mathematically

as a boundary condition: stresses remain continuous across the interface, but displacements exhibit a

discontinuity. As recalled in section 2.3, eq. 3, this discontinuity [U ] is linearly related to the traction

vector τ γ through the fracture compliance Z: [U ] = Zτ γ . For an isotropic fracture, this matrix reduces

to two components (Sayers, 2007):

Zij = Znninj + Zt(δij − ninj), (4)

with Zn denoting the normal compliance and Zt the tangential compliance.

In a physical sense the meaning of fracture compliance in the LSM can be schematically illustrated by a

spring (figure 3). In this analogy, a more compliant spring corresponds to a more deformable fracture,

where higher compliance implies lower stiffness and greater relative displacement across the interface.

Figure 3. Schematic representation of a fracture compliance with compliance η, h is the thickness which h → 0 in the
LSM. Figure taken from Möller & Friederich (2019).

The LSM has been extensively studied and validated both theoretically and experimentally (Schoenberg,

1980; Pyrak-Nolte et al., 1990b,a; Lubbe & Worthington, 2006; Lubbe et al., 2008; Myer et al., 1990).

It captures key fracture-induced effects on seismic waves, including changes in amplitude, frequency

content, and group delay. Since it is formulated within an elastic framework, the model is inherently

non-dissipative.

Nevertheless, dissipation can be incorporated. In classical applications, viscous fluids introduce energy

loss through a velocity discontinuity at the fracture interface (Pyrak-Nolte et al., 1990b). In this research,

however, fluid effects are embedded directly into the fracture compliance. By using dynamic compliance

values derived from laboratory measurements, attenuation is indirectly represented, without explicitly

modeling viscous or poroelastic mechanisms. Thus, attenuation is not explicitly modeled through viscous

or poroelastic mechanism, but rather approximated through the adaptation of the LSM.
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Chapter 3. Laboratory experiments

This chapter describes the laboratory work carried out at the Sistemas de Laboratorios Especializados

(SLE) at CICESE. The purpose of the experiments was to accurately estimate the compliance of single

and multiple fractures filled with different kinds of fluids. I employed two distinct experimental approaches

in this research: (1) deformation tests and (2) pulse transmission technique. The deformation tests

facilitated the estimation of static normal compliance, while the pulse transmission technique enabled

the determination of dynamic normal and tangential compliance. Moreover, the data recorded during

ultrasonic tests allowed me to quantitatively analyze key wave parameters, i.e., wave velocity, transmission

coefficient, and quality factor (Q). This analysis will offer valuable insights into the influence of viscosity

and density on wave behavior.

3.1 Experimental set-up: specimens

For the laboratory experiments I opted for aluminum cylinders due to its low-attenuation properties.

The experiments were conducted on four cylindrical specimens (aluminum type 6061). The specimens

included one non-fractured and three fractured specimens, with the fractured specimens containing one,

five, and ten equally-spaced fractures, respectively. To simulate fractures, I stacked aluminum discs of

varying thicknesses, as illustrated in Figure 4.

The height of each fractured specimen matches the height of the intact specimen, as shown in Figure

4. The specimens measure 76.08 mm in height and 38 mm in diameter. The mechanical properties of

the aluminum determined at the laboratory are: density ρ = 2702 kg/m3, dynamic Young’s modulus

E = 71.3 GPa, and Poisson’s ratio ν = 0.34. In addition the P- and S-wave velocities of aluminum,

also measured at the laboratory were 6432 and 3133 m/s respectively. These velocities resemble those

of low-permeability rocks such as limestone (P-wave velocity of 6315 m/s and S-wave velocity between

3170 and 3350 m/s) (Lubbe et al., 2008). This similarity further validates the aluminum as a material

for the experiments.

I conducted the experimental tests under both dry and saturated conditions. For saturated condition, a

small amount of fluid between the contact surfaces of each pair of discs were added. The fluids used

were water (18 µL), silicone oil (12 µL), and honey. Water and silicone oil were measured using a

micropipette; however, due to its high density, honey could not be measured with the same method.

Instead, its volume was carefully controlled using alternative means to maintain consistency across
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samples. Table 2 presents the properties of these fluids at room temperature. Here, viscosity refers

especifically to the shear viscosity of newtonian fluid, defines as the proportionality between shear stress

and strain rate, since only Newtonian fluids are considered in this work.

Figure 4. Aluminum specimens set, one intact (left) and the remaining are disc-stack models to mimic specimens with
horizontal parallel fractures (from left to right: 1, 5 and 10 fractures).

Table 2. Physical properties of liquids at room temperature (20◦C). Density ρf , shear viscosity ηf and bulk modulus Kf .

Fluid ρf (kg/m3) ηf (kg/m.s) Kf (GPa)

Air (Dry) 1.204 1.825× 10−5 1.01× 10−4

Silicon Oil 965.00 9.65× 10−3 1.6-1.8
Water 998.20 1.002× 10−3 2.0
Honey 1420.00 2000− 10000× 10−3 4.2-5.0

3.2 Experimental components

The experimental setup for the deformation and ultrasonic tests involved different components. The

primary device is the GCTS Rapid Triaxial Rock Testing System (RTR-2000), a servo-controlled loading

system capable of applying a maximum axial load of 210 MPa. In figure 5 the main components are

depicted, which are a box load frame, and the closed-loop servo control of the axial load actuator.

The RTR-2000 is integrated with the Ultrasonic Velocity Test System console (ULT-200), which facili-

tates the execution of ultrasonic tests. This system comprises two steel platens equipped with integrated

piezoelectric transducers, serving as wave sources and receivers (figure 6). The piezoelectric transducers
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have a natural central frequency of 1 MHz, corresponding to a P- and S- wavelength of 6.43 mm and

3.13 mm respectively. The data acquisition is through the software Computer Aided Ultrasonic Velocity

Testing Software (CATS) provided by GCTS.

Figure 5. Left: Servo-controlled GCTS Rapid Triaxial Rock Test RTR-2000, the red rectangle corresponds to the connection
base and load column. Right: connection base and load column where the platens and specimen are placed.

3.3 Deformation tests and static fracture compliance

The deformation tests involve conducting uniaxial compression tests on cylindrical aluminum specimens

(intact and fractured) placed between the steel platens. Honey was used to ensure good contact between

the platens and the specimen’s ends. In these tests, a compression load is applied in one principal

direction, normal to the fracture surface.

The specimens are initially fixed to a dual ring-frame structure to ensure precise alignment. Then, a pair

of Linear Variable Differential Transformers (LVDTs) with a resolution of 0.1 µm are carefully installed

on opposite sides of the ring frame (as illustrated in figures 5 and 7c). These LVDTs precisely measure

the uniaxial deformation during both the loading and unloading cycles applied to the specimens.
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After setting the LVDTs, the machine underwent calibration by performing a test on the intact specimen

to obtain the Young modulus of the aluminum. The test sequence comprises two stages, each involving

two loading/unloading cycles up to 50 MPa at a stress rate of 10 MPa/min. In the first, the objective

is to stabilize the entire system by eliminating excess axial displacement caused by the coupling between

the upper and lower discs with the platens. This coupling effect may introduce random variations in the

measurement, which this first stage effectively mitigates.

Figure 6. Ultrasonic velocity test system (ULT-200).

Figure 7. Schematic diagram of the experimental setup. (a) stack-disc for a specimen containing n horizontal-parallel
fractures, where: d, cylinder diameter, l, cylinder length,fi, i-th fracture, h, aluminum disc height. (b) configuration for the
ultrasonic tests and, (c) configuration for the normal deformation tests, local LVDTs mounted on the specimen.

Following stabilization, the second stage focuses on recording the deformation experience by the alu-

minum specimen against the applied normal stress. This entire sequence is repeated four times, with the

setup disassembled between each repetition to ensure the reproducibility of the results. The data ob-

tained is presented in the normal stress-axial displacement curves for the intact and fractured specimens

(Figures(8a, 8b, 8c).
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(a) 1 Fracture (b) 5 Fractures

(c) 10 Fractures

Figure 8. Uniaxial normal stress-axial displacement curves for the intact and fractured specimens. The curves show the
evolution of the axial deformation for each set of fractures versus normal stress. From these measurements, the normal
static compliance is estimated.

For the fractured specimens, the total normal deformation includes both the deformation of the intact

aluminum and the fractures. Thus, the final normal stress-displacement curve for each fractured specimen

used to determine the normal static compliance is derived by subtracting the stress-displacement curve

of the intact specimen (Goodman, 1976) as I will describe in the next section for clarity.

3.3.1 Static normal compliance determination

According to Goodman et al. (1968), the static normal compliance (inverse of the stiffness) is defined

as the ratio between the average displacement ∆d associated with the increment of applied stress ∆σ:

Zn =
∆d

∆σ
, (5)
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hence, the normal static compliance is obtained from the inverse slope of the normal stress-displacement

curves (Goodman et al., 1968; Pyrak-Nolte et al., 1990b; Zhou et al., 2020).

As I mentioned in the previous section, the determination of the normal static fracture compliance

involve the data from the normal stress-axial displacement curve. The axial deformation measured

on the fractured samples consists of two contributions: the deformation of the intact rock and an

excess deformation attributed to the fracture. Hence, the excess of deformation and the final stress-

displacement curve for each fractured specimen were obtained by subtracting the stress-displacement

curve of the intact specimen from that of the fractured specimen for each normal stress (Goodman et al.

(1968)). This excess deformation is commonly called fracture closure and increases as the fractures

compress (Liu (2005)). A graphic representation of this process is shown in figure 9.

Figure 9. Normal fracture compliance. (a) Diagram of uniaxial normal loading on fracture and (b) normal stress- axial
deformation curve of intact and fracture specimen and (c) and normal stress-fracture closure, and definition of normal static
compliance Zn (modified from Zhang et al. (2023)).

From the normal stress-fracture closure curves, I calculated the slope along the entire curve illustrating

the trend of the normal static fracture compliance. This compliance varies not only as a function of the

normal stress but as influenced by factor such as the number of fractures and the type of filling fluid as is

shown in figure 10. The data depicted in the figure correspond to the value of individual fractures within

each specimen, rather than reflecting the cumulative values across all fractures within the specimens.

After estimating the normal static compliance, the next step in the analysis involved the estimation of

the static tangential compliance, the second parameter needed to characterize fractures. This parameter

is estimated by relying on two models that establish the relationship between normal and tangential

compliance, i.e. the ratio compliance for dry fractures. In these models, fractures are modeled as planar

distributions of cracks.
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(a) Dry case (b) Water case

(c) Silicon Oil case (d) Honey case

Figure 10. Normal Static compliance-Uniaxial stress curves for fractured specimens. The curves show the evolution of
the normal static compliance versus normal stress. The plotted values for the cases of 5 and 10 fractures represent the
characteristics values of a single fracture within each specimen, rather than the aggregate values of all fractures present.

The first model (M1), conceptualizes a fracture as a planar distribution of small isolated areas of slip

or cracks (partial bond), while the second model (M2), establishes a fracture as a plane distribution of

imperfect contacts or a rough surface. Despite being originally developed for dry fractures, in this study

these models are extrapolated to fluid-filled fractures, as there are currently no available models in the

literature that specifically address this scenario. The corresponding fracture compliances ratio are given

by Liu et al. (2000), where ν is the Poisson’s ration of the rock matrix, defines as:

ν = −εlateral
εaxial

, (6)
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where εaxial is the axial strain and εlateral the strain perpendicular to the applied load:

M1:
Zn
Zt

= 1− ν

2
, (7)

M2:
Zn
Zt

=
1− ν
1− ν

2

. (8)

Therefore Zt for both aforementioned models is defined as:

M1: Zt = Zn
2

2− ν
, (9)

M2: Zt = Zn
(2− ν)

2(1− ν)
. (10)

3.4 Ultrasonic-pulse transmission

Ultrasonic pulse transmission is a technique used to study the propagation of ultrasonic waves across a

medium. In this technique, a pulse is generated by a transducer and directed into the material. The

waves travel through the material and are detected by another transducer on the opposite side. Hence

by analyzing the time it takes for the wave to travel through the material and the amplitude of the

transmitted or received signal, it is possible to investigate the effect of fluid-filled fractures on seismic

waves. Ultrasonic pulse transmission is commonly used because is a non-destructive testing method.

The aluminum specimens are placed between the steel platens as is shown in figures 5 and 7b and

subjected to ultrasonic pulse transmission tests. These tests were conducted at pressures up to 50

MPa, with signals recorded at 10 MPa intervals. After comparing the recorded signals, 20 MPa was

selected for further analysis because it provided optimal results, allowing for an adequate amount of

liquid in the fracture. The average fracture aperture is approximately 20µm under zero applied pressure,

corresponding to the roughness average of a polish aluminum disc and measured using the Keyence VR

5000 optical profilometer (Figure 11). Figure 12 illustrates the changes in amplitude and travel times for

P-waves in the intact, 1-fracture and 10 fractures dry cases. For the intact case, changes in amplitude

with pressure are almost imperceptible, while for the fractured cases, amplitude changes beyond 30MPa

became very small. The 20 MPa pressure ensures efficient wave propagation and high signal-to-noise

ratios, making it ideal for analyzing the effect of fluid properties on wave behavior, which is the primary

focus of this study.
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For propagation parallel to the fracture surface normal or to the symmetry axis there are a pure vertically

propagating P-wave and one vertically pure S-wave. Since the propagation is parallel to the axis of

symmetry of our media, both phase and group velocity will be the same (Hornby, 1998).

To reduce the noise-to-signal ratio, 16 digitized signals were stacked for each test. The waves were

recorded at a sampling rate of 40 MHz, ensuring high-resolution data acquisition with 16-bit precision.

The recording window spanned 100 µs.

The sources of the waves correspond to transducers placed inside the platens: one located in the center

for the P-wave and four surrounding it for the S-wave. The P-wave is employed to measure the normal

dynamic compliance, whereas the S-wave is utilized for determining the tangential dynamic compliance.

Prior to the acquisition of the P- and S-waves, I determined the delay time of the ultrasonic system,

including the piezoelectric transducers, performing a face-to-face test in which the platens were positioned

in such a way that their surfaces are directly facing each other (without a specimen between them). The

time delay for P- and S- waves are 13.15 µs and 23.78 µs, respectively.
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Figure 11. Surface roughness of an aluminum specimen used in this study.

3.4.1 Estimation of dynamic fracture compliance

The estimation of normal and tangential dynamic compliances involves the use of the elastic wave

measurements obtained from the ultrasonic transmission laboratory tests. These values are derived by

correlating the transmission coefficients of compressional and shear waves, incident normally on the

fractures.
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Figure 12. P-waveforms for the intact, 1-fracture, and 10-fractures under dry conditions, recorded at 10 MPa intervals, up
to a maximum pressure of 50 MPa.

From LSM (Schoenberg, 1980) (see 2.4.1), analytical expressions for the compliance-dependent trans-

mission coefficient are derived (see also Pyrak-Nolte et al., 1990b; Möllhoff et al., 2010). For a single

fracture, the norm of the PP and SS transmission coefficients are given by

|T 1
PP | =

2√
4 + (ZnζPω)2

, (11)

|T 1
SS | =

2√
4 + (ZtζSω)2

, (12)

where |T 1
PP | and |T 1

SS | represent the absolute value of the transmission coefficients, determined as the

ratio between waveform peak amplitudes in the time domain. Zn and Zt are the dynamic normal and

tangential compliances, ζP and ζS denote the P- and S-wave impedance, and ω = 2πf is the angular

frequency. For the case of N parallel fractures, Pyrak-Nolte et al. (1990a) proposed a simplified method

to determine the transmission coefficient across parallel fractures by ignoring multiple reflections. Hence,
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the overall transmission coefficients are expressed by the relations,

|TNPP | = |T 1
PP |N , (13)

|TNSS | = |T 1
SS |N . (14)

3.5 Ultrasonic measurements

3.5.1 Velocity

For the wave analysis, the waveforms of the intact specimen were used as a reference to compare with

the waveforms through fractured specimens. The wave velocities were calculated from the P- and S-

wave arrival times of transmitted ultrasonic pulses and the height of the specimens as:

V =
H

ts − to
, (15)

where H is the specimen length, ts is the travel time through the specimen, and to is the reference travel

time from the face-to-face test.

The arrival times were manually picked from the recorded waveforms or seismograms and corrected by

subtracting the delay time of the system. The velocity uncertainty was estimated according to Hornby

(1998), considering a specimen length of 76.08 mm with a precision of 0.005 mm. I estimated an

absolute error of velocity measurement of 11.28 ±m/s and 2.78 ±m/s for a P- and S- wave propa-

gation respectively. Therefore the relative error in the velocity estimation for the intact specimen is

approximately 0.42% for P-wave velocity of 6432 m/s and 0.21% for S-wave velocity of 3139 m/s.

Error Analysis: Velocity measurements

Considering that velocities are estimated by using travel times of transmitted ultrasonic pulses (eq. 15),

expressing the uncertainty in terms of partial derivatives gives us an expression that can be used for the

error analysis,

∆V =
∂V

∂H
∆H +

∂V

∂ts
∆ts +

∂V

∂to
∆to (16)

where ∆ts and ∆to are the errors in the travel time picks for the measured and reference travel times and

∆H is the magnitude of the error in the specimen length measurement. By substituting the explicitly
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expression for velocity and simplifying the partial derivatives in eq. 16, it is obtained:

∆V =
∆H

ts − to
+H

∣∣∣∣ ∆ts
(ts − to)2

∣∣∣∣+H

∣∣∣∣ ∆to
(ts − to)2

∣∣∣∣ (17)

Assuming symmetric uncertainty in the time picks (i.e., ∆t = |∆ts| = |∆to|), eq. 17 can be simplified

to compute the maximum absolute error in velocity:

∆V =
∆H

ts − to
+ 2H

∆t

(ts − to)2
(18)

Eq. 18 is the final form used to estimate the maximum velocity uncertainty in this study.

3.5.2 Transmission Coefficient

In assessing wave transmission through fractured media, the wave transmitted through an intact specimen

serves as the reference incident pulse. This approach minimizes the impact of the interfaces between

the intact specimen and transducers on wave propagation. Wave transmission is typically quantified

using the transmission coefficient, which is the ratio of the amplitudes of the transmitted and incident

waves. In the context of this study, the transmission coefficient is determined using the peak-to-peak

amplitude of the first arriving pulses (Möllhoff et al., 2010; Yang et al., 2020). This parameter is useful

as it describes the amplitude of the transmitted wave across a fractured specimen relative to the intact

specimen, providing information about seismic propagation and wave behavior in different fluid-filled

fractured specimens

T =
Aft
Ait

. (19)

where Aft and Ait are the peak-to-peak wave amplitudes of the pulse transmitted through the fractured

and intact specimens, respectively.

3.5.3 Quality factor Q

The quality factor, Q, is a measure of how dissipative the material is, i.e., it quantifies how effectively a

material attenuates seismic waves and is a dimensionless quantity. A lower Q indicates greater dissipation,

and vice versa. In this study, the Spectral Ratio Method was used to estimate the quality factor Q. This
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method analyzes waveforms in the frequency domain. I followed the procedure outlined in Toksöz et al.

(1979), and Pyrak-Nolte et al. (1990b), see also Yang et al. (2020); Zhou et al. (2020).

The Spectral Ratio Method was applied specifically to the first arrival pulse, which was isolated from

the initial portion of the transmitted P- and S-waveforms. This initial portion includes the first arrival

pulse and subsequent reflections from various interfaces within the medium. To isolate the first arrival

pulse for the analysis, a cosine taper with a window width between 3.5 and 4.4 µs was applied. This

tapering process ensures that the selected time window minimizes any signal spectrum distortion.
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Figure 13. Selected initial arrival wave (raw waveform) and tapered waves for a 10-fractured specimen for different fluid.
Waves were tapered by a cosine.
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Figure 14. Summary of Spectral Ratio method used for Q-estimation.

Figures 13a and 13b show the original initial waves and tapered waves selected by cosine taper for 10-

fracture specimens for the different fluids used in this study. With the signals tapered the next step is

to determine the amplitude spectra by the Fast Fourier Transform (FFT). This spectral information is

used to quantify the wave attenuation through the quality factor Q by using the spectral ratio method

(Toksöz et al., 1979). This method has been widely use in the literature (e.g. Pyrak-Nolte et al.,

1990b; Yang et al., 2019) and measure the attenuation relative to a reference sample which has very

low attenuation (aluminum intact-specimen). The expressions for the plane seismic wavefields, for the

reference (intact) and fractured specimens are given as:

Ai(f) = Aoi(x)e−αixeı̇(ωt−kix) (20)

and

Af (f) = Aof (x)e−αfxeı̇(ωt−kfx), (21)

where x is the travel path length, f is the frequency, Aoi and Aof are geometrical factors, k is the

wavenumber, and α is the frequency-dependent attenuation coefficient. The subscripts i and f refer to

the intact and fractured specimens, respectively. It is assumed that α is a linear function of frequency,

thus one can write it as:

α(f) = γf, (22)

where γ is a constant related with Q by

Q =
π

γν
. (23)



31

Therefore the ratio of the Fourier amplitudes is:

ln
Ai
Af

= γffx+ ln
Aoi
Aof

, (24)

When Aoi
Aof

is independent of frequency, and assuming the same geometry for both the intact and fractured

specimens, then Aoi = Aof , and Q, the quality factor can be determined by:

ln
Ai
Af

= γffx (25)

ln
Ai
Af

=
π

Qν
fx, (26)

γf is determined from the slope of the line fitted to ln(Aoi/Aof ) versus frequency (Figure 14).
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Chapter 4. Numerical Modeling

In the context of seismic wave propagation, the Discontinuous Galerkin Method (DGM) is particularly

valuable because it allows for the use of discontinuous functions at element boundaries, enabling the

analysis of displacement fields within media containing faults and fractures (De Basabe et al., 2016).

This method has been widely used to approximate the elastodynamic equation in seismic studies. In this

thesis, numerical simulation of ultrasonic wave propagation in both intact and fractured specimens were

conducted using DGM to complement findings from laboratory experiments.

This chapter provides an overview of DGM, then introduce the weak formulation used in DGM for the

wave equation, specifically the interior Penalty (IP-DGM) form and finally provide a summary of the

parameters used in the numerical simulations.

4.1 Discontinous Galerkin method

DGM is a class of finite element methods for solving partial differential equations by approximating solu-

tions with discontinuous, piecewise polynomials as basis functions, unlike typical finite element methods.

The original problem is decomposed into a set of subproblems, each associated with a disjoint finite

element mesh, where each mesh element determines a single subproblem, and appropriate conditions

connect these subproblems (see Figure 15). The global solution over the entire computational domain is

then obtained by summing the contribution from all mesh elements, enabling DGM to effectively handle

sharp gradients, discontinuities, and complex boundary conditions (Lähivaara, 2010).

This method was first introduced in 1973 to solve the hyperbolic neutron transport equation (Reed &

Hill, 1973), in the late eighties, Cockburn et al. (2000) connected the discontinuous Galerkin method

with high-order Runge-Kutta-type time integration schemes. DGM were later extended to other fields

of physics and engineering such us meteorology, modeling of shallow water, electromagnetism, gas

dynamics, among many others, and its popularity increased since the early 1990s.

Initially, the general strategy for solving hyperbolic differential equations using the first-order form with

DGM involved discretizing the differential equation in space using a flux-based formulation and in time

using Runge-Kutta methods (De Basabe, 2011). In the field of seismic wave propagation, the first

application was published by Käser & Dumbser (2006).
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Figure 15. Discontinous elements with interface solution uh for the element Th in a nonoverlaping system (mosaic) of the
domain Ω. Modified from Fidkowski & Chen (2020).

Also around the 1970s, independently, the Galerkin method was applied to elliptic and parabolic equations

using discontinuous finite elements. These approaches were generally known as interior penalty IP

methods, and their development remained independent from the DG methods for hyperbolic equations.

The IP methods arose from the observation that, just as Dirichlet boundary conditions could be imposed

weakly instead of being built into the finite element space, so interelement continuity could be attained

in a similar fashion. This makes it possible to use spaces of discontinuous piecewise polynomials for

solving second order problems (Arnold et al., 2000).

Some discontinuous Galerkin methods proposed for wave propagation include: Incomplete Interior

Penalty (IIPG) (Dawson et al., 2004), the Non-symmetric Interior Penalty Galerkin (NIPG) (Rivière

et al., 1999), and the Symmetric Interior Penalty Galerkin (SIPG) (Wheeler, 1978; Arnold, 1982).

Within this framework, incorporating fractures is straightforward, as the degrees of freedom of each

element in the model are independent. DGM allow to simulate the presence of single fractures in a

natural way, instead of using effective medium theories. De Basabe et al. (2016) proposed a scheme that

incorporates fractures using Schoenberg’s LSM (Schoenberg, 1980) within IP-DGM for wave propagation.

The method utilizes discontinuous basis functions and an additional penalty term in the weak formu-

lation to enforce continuity where required (Rivière, 2008). It has been successfully applied to elastic

wave propagation. Its advantages include (a) the ability to handle unstructured meshes, (b) ease of

parallelization on high-performance computers, (c) the capability to model large volumes of fractures

with a high degree of precision, (d) versatility in incorporating various types of boundary conditions such
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as Dirichlet, Neumann, or Robin, (e) the ability to include arbitrary topography and heterogeneities using

irregular grids (De Basabe et al., 2016).

4.1.1 Weak Formulation of the Elastic Wave Equation : Non-fractured media

Elastic wave equation

An elastic wave arises when particles within a medium are displaced due to a mechanical perturbation

and it is mathematically represented by the momentum equation for an elastic continuum:

ρ Ü = ∇ · σ + f , (27)

where U = U(x , t) is the displacement field, Ü = ∂2U/∂t2 is the acceleration, ρ = ρ(x ) denotes

the density, σ = σ(x , t) is the stress tensor, and f (x , t) represents the source vector. We require a

relationship between stress and strain, which is given by Hooke’s law:

σ = C : ε, (28)

where C is the fourth-order stiffness tensor or the elasticity tensor, the operator : denotes the double-dot

product, and ε is the strain tensor, defined in terms of the displacement by:

ε =
1

2

(
∇U +∇UT

)
. (29)

For linear, isotropic media, the stress-strain relationship, equation 28, takes the form:

σij(U) = λδij∂kUk + µ(∂iUj + ∂jUi), (30)

where λ = λ(x ) and µ = µ(x ) are the Lamé parameters, and δij is Kronecker’s delta. Substituting

equation 30 into equation 27 yields the elastic wave equation for an isotropic and elastic domain in
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vector notation:

ρÜ −∇λ(∇ · U)−∇µ(∇U +∇UT ) = f in Ω× (0, T ]

τ (U) = 0 on ∂Ω

U = U̇ = 0 for t = 0,

(31)

where Ω ⊂ Rd is the physical domain, d is the number of physical dimensions (2 or 3), τ (U) = σ(U) ·n

is the traction vector, ∂Ω is the external boundary of Ω, n is a unitary vector normal to ∂Ω, and (0, T ]

is the time domain.

To derive the weak formulation, the wave equation 31 is discretized by partitioning the computational

domain into smaller elements. To proceed with the formulation, let me introduce the necessary notation

and mathematical framework (see figure 16), following De Basabe et al. (2008, 2016), which will be

used to construct the weak form of the wave equation.

� Ωh: Finite element partition of the domain Ω.

� Γh: The set of all faces between the elements in Ωh.

� Γc ⊂ Γh: The subset of all faces where the displacement field is continuous.

� Γf ⊂ Γh: The subset of faces representing fractures, where Γc ∪ Γf = Γh and Γc ∩ Γf = ∅.

� {.} denotes the average of the function on γ ∈ Γh.

� [.] denotes the jump of the function on γ ∈ Γh.

� γ is the edge between elements E1 and E2.

Therefore, the average and jump of a scalar function u over γ are given by:

{u} =
1

2
(u |E1 +u |E2) and [u] = u |E1 −u |E2 . (32)

A vector space X = Xd, is introduced, where X = span{φi}Ni=1, φi are the discontinuous basis functions

and N is the total number of these functions.

The first step in solving for u ∈ X is to multiply equation 31 by a vector test function v ∈ X, and

perform an element-wise integration to obtain

∂tt

∫
E
ρu · vdx −

∫
E

(∇λ(∇ · u) · v −∇µ(∇u +∇uT ) · v)dx =

∫
E
f · vdx . (33)
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Using the corollary of the Gauss divergence theorem:

∫
Ω
ϕ∇ · u =

∫
∂Ω
ϕu · n −

∫
Ω
∇ϕ · u , (34)

It is applied to equation 33 to get the corresponding equation with boundary terms

∂tt

∫
E
ρu · v dx +

∫
E

(
λ(∇ · u)(∇ · v) + µ(∇u +∇uT ) : ∇v

)
dx

−
∫
γ

(
λ(∇ · u)v + µv(∇u +∇uT )

)
· n dγ

=

∫
E
f · v dx . (35)

The second step involves handling the boundary integral over γ. This integral is not well defined

due to the discontinuity of u across element interfaces. To address this, it is applied the property

[ξψ] = {ξ}[ψ]+[ξ]{ψ} for γ ∈ Γc, which yields to the following expression, representing the contribution

of the integral over the interface between adjacent elements. Due to the physical requirement of traction

continuity across element interfaces, the jumps in the traction vector must be zero, therefore:

J cγ(u, v) =

∫
γ
{τ γ(u)} · [v ]dγ −

∫
γ
{τ γ(v)} · [u ]dγ

+
R

|γ|

∫
γ
{λ+ 2µ}[u ] · [v ] dγ. (36)

Where, R and S are the penalty and symmetry parameters respectively, added without loss of generality

and for stability. S takes values of 0, 1, or -1 depending on the specific formulation of IP-DGM (S=0

for IIPG, S=-1 for SIPG, and S=1 for NIPG). The formulation used by De Basabe et al. (2016) is SIPG

(S=1).

Hence, the weak formulation for the wave equation is:

∑
E∈Ωh

(
(ρ∂ttu , v)E + BE (u , v)

)
+
∑
γ∈Γc

J cγ(u , v) =
∑
E∈Ωh

(f , v)E , ∀ v ∈ X (37)

where

(u, v)E =

∫
E
u · v dx , (38)

BE(u, v) =

∫
E

(
λ(∇ · u)(∇ · v) + µ(∇u +∇uT ) : ∇v

)
dx . (39)
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Figure 16. A depiction of a domain Ω consisting of 6 discs, each represented by a different color. An element E shares
edges with other elements within the same disc and with elements from neighboring disc. γc denotes the edge where the
displacement field is continuous, while γf represents the edge where the displacement field is discontinuous (indicating a

fracture). Jcγ(u,v) refers to the penalty term associated with continuous edges, and Jfγ(u,v) represent the term for the
linear slip condition at a fracture edges (yellow line).

4.1.2 Weak formulation : fractured media of the Elastic Wave Equation

Within the framework of the weak formulation, some interfaces between elements can be selectively

treated as discontinuous, allowing fractures to be naturally incorporated into the model without altering

the mesh structure. This approach accommodates natural discontinuities or jumps in the medium and

wavefield, which commonly occur around fractures. To account for the presence of fractures, the term

J fγ(u, v) is introduced in the weak formulation of the wave equation Eq. (37). At the fracture interfaces,

i.e, for γ ∈ Γf , the symmetry and penalty terms are ommited, as the displacement field is discontinuous.
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In this case, the fracture contribution is:

J fγ(u, v) =

∫
γ
{τ γ(u)} · [v ]dγ. (40)

Substituting the expression of the traction average in this equation with equation 3, yields

J fγ(u, v) =

∫
γ
Z−1[u ] · [v ] dγ. (41)

Therefore the weak formulation including fracture is:

∑
E∈Ωh

(
(ρ∂ttu , v)E + BE (u , v)

)
+
∑
γ∈Γc

J cγ(u , v) +
∑
γ∈Γf

J fγ(u , v) =
∑
E∈Ωh

(f , v)E , ∀ v ∈ X. (42)

4.2 Numerical models

The numerical simulations were computed using a code that implements IP-DGM to solve seismic wave

propagation, explicitly including fractures under the LSM scheme. The code developed by De Basabe

(2009) is written in C++ and incorporates various methods for spatial and temporal discretization of

the acoustic or elastic wave equation in 2D and 3D. Among these methods, IP-DGM is available in

different versions: acoustic, elastic, acoustic-elastic, fractured, anisotropic and anisotropic-fractured.

Each version utilizes the Finite Difference method (FDM), the 4th-order Runge-Kutta method (RK-4),

and the 4th-order Lax-Wendroff method (LWM-4) for time stepping. This method was validated and

tested by De Basabe et al. (2016), who used it to generate synthetic seismograms for a set of horizontal

fractures to simulate the reflection and transmission of waves at fracture and at fracture interface waves.

The approach also enables exploration of anisotropic effects of fractures on propagating elastic waves

(Vasilyeva et al., 2019; Vamaraju et al., 2020; Rioyos-Romero et al., 2022). More recently, it has been

applied to investigate elastic wave propagation through cylinders with fluid-filled fractures using IP-DGM,

as presented in Ramos-Barreto et al. (2025).

The code is structured to allow flexibility in adjusting parameters, making it adaptable for various test

scenarios. Therefore, the experimental setup used in the laboratory has been replicated. To model the

conditions of the laboratory experiments, I examine the three-dimensional elastic wave equation. In this

section, I provide an overview of the input parameters, which are categorized into three main groups:
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(a) model parameters, (b) background parameters, and (c) fracture parameters.

a. Model parameters

Model parameters are those involved in the simulations, including the physical model, physical dimen-

sions, numerical method, polynomial degree of the basis functions for the numerical method and mesh

type. For the Discontinuous Galerkin method, additional parameters are specified, such as method type,

penalty, basis type, time stepping, maximum time and the stability condition for time stepping CFL

(Courant-Fiederich-Lewy), condition for convergence. The specific parameters used in the simulations

are as follow:

� PHYSICAL MODEL : FRACTURED

� DIMENSIONS : 3

� METHOD : DG (DISCONTINUOUS GALERKIN)

� POLY. ORDEN : 3

� MESHFILE : Exodus II mesh file

The structured 3D cylindral mesh used in the numerical simulations was generated with Cubit Version

13.1, by Sandia National Laboratories1 (Figure 17). The mesh consist of 807,030 hexahedral elements,

designed to ensure that the interfaces between the elements closely align with the height of the aluminum

disc, explicitly incorporating fractures in the simulations. Although the mesh is cylindrical, the simulations

are conducted in a Cartesian coordinate system (x,y,z). The element’s size are chosen to avoid numerical

dispersion, ensuring sampling ratios of at least 5 nodes per wavelength for S-waves and at least 11 nodes

per wavelength for P-waves. The remaining parameters in this group are:

DG parameters

� DGTYPE : SIPG

� DGPENALTY : 50

� BASISTYPE : NODAL-GLL (Gauss-Lobatto-Legendre)

Time Stepping parameters

� TSMETHOD : 2nd order Finite Difference

1https://cubit.sandia.gov/

https://cubit.sandia.gov/
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� TMAX : 50 µs

� CFL : 0.01

Figure 17. Finite-element mesh created with Cubit for the simulations. A wave, generated from a source positioned at the
top of the cylinder, propagates through the model and is recorded by the receiver at the bottom.

b. Background parameters

To best mimic the laboratory experimental conditions, the seismic source is modeled as a vector point

source centered at the top of the model. The receiver (where the seismogram is recorded) centered at

the bottom of the model (see Figure 17). This source generates a directional impulse producing a 1

MHz pulse: a downward impulse in the z-direction for P-wave and in the x-direction for S-wave. The

time function of the source is a Ricker wavelet, which is similar to the second derivative of the Gaussian

function.

The code produces three types of outputs: snapshots, seismograms, and traces. Snapshots represent

the wavefield at a specific time, while seismograms are time functions that record the wave field at a
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point, and traces are seismograms recorded along a set aligned points. I selected a single seismogram,

specifying its location.

The surface of the physical domain, a cylinder, is left without absorbing boundaries to replicate the

reflections observed in laboratory experiments. This cylindrical domain is defined by the mesh described

earlier, the background matrix was modeled using the properties determined in laboratory tests of the

intact aluminum specimen. These properties include a P-wave velocity of 6425 m/s, S-wave velocity of

3140 m/s, and a density of 2702 kg/m3.

Source and receiver parameters

� SRCTYPE : Point Source

� SRCFUNC : Ricker pulse 2nd derivative

� PKFREQ : 1.0 MHz

� SRCLOC : Source location (X,Y,Z) - Top of the cylinder

� SRCVECTOR : Polarization of the wave

� NSEISMO : 1 - Number of seismograms

� SEISMO : Location of seismogram recording (X,Y,Z) -Bottom of the cylinder

Boundary conditions

� FREESURF : Free Surface

� BC : Neumman (Boundary Coditions)

Domain parameters

� VP : 6425 m/s - Background P-wave velocity

� VS : 3140 m/s - Background S-wave velocity

� RHO : 2702 kg/m3 Background density

c. Fracture parameters

As noted throughout the document, fractures are defined by the compliance they add to the background

material. These are systematically incorporated into the simulation, requiring inputs for the number of

fractures, their normal and tangential compliances (estimated from P- and S-waves data obtained via
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the ultrasonic pulse tests, see section 3.4.1), and their specified location by x, y and z coordinates in

the code. Recall that, as I mentioned in the model parameter section, the simulations are performed in

Cartesian coordinate system.

� NFRACTURES : Number of fractures (1,5 or 10)

� ZTi : Tangential compliance for i-th fracture in m/Pa

� ZNi : Normal compliance for i-th fracture in m/Pa

� FRACXi : X coordinates of the i-th fracture

� FRACYi : Y coordinates of the i-th fracture

� FRACZi : Z coordinates of the i-th fracture

Figure 18 is a simplified flowchart that illustrates the interaction between the laboratory experiments re-

sults and numerical modeling, showing how laboratory-derived seismograms and fracture key parameters

(compliances) serve as inputs to numerical simulations, enabling a comparison of key wave parameters

(wave velocity, transmission coefficient, and quality factor) between experimental and simulated results.
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Figure 18. Simplified representation of the flow for the numerical modeling.
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Chapter 5. Results

This chapter presents the results of laboratory experiments and numerical modeling aimed at under-

standing the effect of fluid properties, specifically viscosity and density, on wave propagation in fluid-filled

fractures. Mechanical and ultrasonic tests were conducted on aluminum specimens, including one non-

fractured and three fractured samples with one, five, and ten fractures, respectively. These fractures,

filled with water, silicon oil and honey, were oriented perpendicular to wave propagation.

The first part of the experimental results focuses on determining fracture compliance, the critical property

that characterizes fractures, it is derived from mechanical and ultrasonic tests on aluminum specimens.

By analyzing how fracture compliance changes depending on the type of fluid and number of fractures,

we gain insight into how fluid properties interact with fractures. The second part of the experiments

shows how the fluids, along with the number of fractures, impact wave velocity, transmission coefficients,

and attenuation.

Finally, these experimental findings were complemented by numerical simulations, which replicated the

experimental conditions.

5.1 Experimental results

5.1.1 Fracture compliances of fracture specimens

Fracture compliance is a parameter that measures how easily a fracture deforms under stress, reflecting

the mechanical response of fractures to applied forces. In this research, I determined both static and

dynamic fracture compliance. The static compliance was obtained through mechanical test at a constant

pressure and the dynamic compliance was derived from P- and S-waves seismograms recorded at a fixed

pressure.

Interesting trends emerge when I examine the relationships between fracture compliances and fluid prop-

erties, specifically fluid density and viscosity. Figure 20 displays the normal and tangential components

of the dynamic and static compliances as a function of the saturating fluid density for different numbers

of fractures. This figure shows that for both normal and tangential components, the static are higher

than the dynamic compliances. Figures 20a and 20c display the normal and tangential dynamic compli-

ances. The normal dynamic compliances range from ∼ 9.32×10−15 to 5.87×10−14 m/Pa, whereas the
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tangential range from ∼ 1.27× 10−14 to 3.76× 10−14 m/Pa. Notably, the normal dynamic compliance

has a significant variation depending on whether the fracture is filled with air or liquids. In contrast, the

tangential dynamic compliance appears to be less sensitive to the presence of fluid. Both the normal

and tangential components of dynamic compliance exhibit a general decreasing trend as the fluid density

and number of fractures increase.

Figures 20b and 20d show the static compliance’s normal and tangential components against fluid density.

The normal static compliance was determined by the slope of the tangent of the stress-displacement

curves, as explained in section 3.3.1. Meanwhile, the static tangential compliances were approximated

using equations 7 and 8. In comparison with the dynamic compliances, the static compliances exhibit a

much narrower range of values regardless of the kind of fluid. Notice that the static compliances for the

water case are higher than those for silicon oil, breaking the trend.

The trends in figures 20a and 20c show that the dynamic fracture compliance and fluid density are

inversely proportional. Namely, higher fluid density yields lower values of fracture compliance. In contrast,

a distinct trend is not apparent when fracture compliance is plotted against fluid viscosity; this relationship

does not exhibit a clear and consistent pattern. However, the relation is more complicated in the static

case because the pattern is disrupted by water as the infilling fluid.

Figure 19 shows the Zn/Zt ratios for the dynamic compliances. Note that the ratio of the fluid-filled

fractures is below 0.6, whereas the dry cases have ratios above 1.0. The low Zn/Zt ratios in the fluid-filled

fractures can be attributed to the low dynamic normal compliance, as shown in figure 20a.

The static and dynamic compliances determined in this study agree with previously reported data available

in the literature for different rock types (Table 3), supporting the use of aluminum samples as a proxy

for rocks in our study.

5.1.2 Observed waveforms

The observed waveforms obtained from the ultrasonic experiments for the intact and fractured specimens

subjected to an uniaxial normal stress of 20 MPa are displayed in figures 21 and 22 respectively. The

waveforms exhibit an initial direct P- and S- wave transmitted pulse, followed by reflections from the

fractures and boundaries. Intact specimens (with no fractures) show the larger amplitude, while fluid-

filled fractures cause a reduction in amplitude and an increase in waveform distortion.
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Figure 19. Measured Zn/Zt ratio from laboratory experiments at 20 MPa. Icons in colors red (1 fracture), green (5
fractures), and blue (10 fractures) correspond to this study, as well as the open and filled circles denoted as M1 and M2
(equations 7 and 8). The black asterisks correspond to data from Hsu & Schoenberg (1993). Error bars in the figure
represent the standard deviation associated with the mean value of the Zn/Zt ratio. (a) Zn/Zt for all fluids, and (b)
magnified view of the black rectangle from (a).

(a) Zn (b) Zn

(c) Zt (d) Zt

Figure 20. Fracture compliances versus density of the saturating fluid for the three fracture sets. (a) Dynamic normal
compliance, (b) Static normal compliance, (c) Dynamic tangential compliance, and (d) Static tangential compliance. M1:
Model where fractures are considered as planar distribution of small isolated areas of slip or cracks, and M2: Model where
fractures are considered as planar distribution or imperfect facial contacts or a rough surface. Error bars in the figure
represent the standard deviation associated with the mean value of the corresponding compliance value Z.
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This indicates that the waves interact differently depending on the material properties of the infill. Both

P- and S- waves exhibit attenuation in amplitude as the number of fractures increases. With 1 fracture,

the waves are less scattered and maintain higher amplitudes, while with 5 and 10 fractures, the amplitude

decreases. The increased attenuation with more fractures highlight that both types of waves are affected

by the cumulative interaction with multiple fractures.

Table 3. Dynamic and Static compliances values for fracture from open literature.

Rock Type Environment Normal Compliance Tangential Compliance Density Normal stress Reference
(m/Pa) (m/Pa) (kg/m3) (MPa)

Dynamic
Shale Dry 8.33× 10−13 — 2585 20 Zhou et al. (2020)
Granite Dry 1.0× 10−12 — 2807 20 Zhou et al. (2020)
Limestone-1 Dry 1.14× 10−14 2.92× 10−14 — — Lubbe et al. (2008)
Limestone-2 Dry-ground 1.03× 10−14 3.74× 10−14 2662 — Lubbe et al. (2008)
Limestone-2 Dry-polished 2.66× 10−15 6.00× 10−15 2662 — Lubbe et al. (2008)
Limestone-2 wet (honey) 7.60× 10−16 2.82× 10−14 2662 — Lubbe et al. (2008)
Granite (E35) Dry 5.0× 10−14 1.61× 10−13 2650 20 Pyrak-Nolte et al. (1990b)
Granite (E30) Dry 4.16× 10−14 8.33× 10−14 2650 20 Pyrak-Nolte et al. (1990b)
Granite (E35) Wet (water) 4.0× 10−14 — 2650 20 Pyrak-Nolte et al. (1990b)
Granite (E30) Wet (water) 3.86× 10−14 — 2650 20 Pyrak-Nolte et al. (1990b)
Aluminum Dry 3.46× 10−14 - 3.39× 10−14 - 2702 20 This study

6.68× 10−14 5.16× 10−14

Aluminum wet (water) 9.68× 10−15 - 3.42× 10−14 - 2702 20 This study
1.44× 10−14 4.12× 10−14

Aluminum wet (Sil. Oil) 1.45× 10−14 - 4.41× 10−14 - 2702 20 This study
1.62× 10−14 9.95× 10−14

Aluminum wet (honey) 7.00× 10−15 - 2.70× 10−14 - 2702 20 This study
1.46× 10−14 3.46× 10−14

Static
Granite (E35) Dry 1.0× 10−12 — 2650 2.9-30 Pyrak-Nolte et al. (1987)

3.03× 10−13

Granite Dry 1.0× 10−13 — — 2.2 -11.5 Rutqvist (1995)
1.0× 10−12

Granite Dry 5.6× 10−13 — — 25 - 27 Makurat et al. (1991)
2.6× 10−12

Aluminum Dry 1.02× 10−13 - — 2702 20 This study
2.06× 10−13 —

Aluminum wet (water) 9.86× 10−14 - — 2702 20 This study
1.69× 10−13

Aluminum wet (Sil. Oil) 7.03× 10−14 - — 2702 20 This study
1.01× 10−13

Aluminum wet (honey) 2.41× 10−14 - — 2702 20 This study
6.03× 10−14

For P- waves, when comparing different fluid types, the air-filled fractures (green line) generally exhibit

the lowest amplitude, while water, silicon oil, and honey show intermediate amplitudes, with honey

(orange) producing slightly higher amplitudes than water (blue) and silicon oil (magenta) across the

various number of fractures. Higher-density fluids tend to produce larger amplitudes because they

reduce the impedance contrast between the aluminum solid medium and the fluid, allowing more energy

to be transmitted through the fractures. Specifically, for P-wave amplitudes, in the case of a single
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fracture, the percentage of amplitude reduction compared to the intact sample ranges from 62.55% for

the dry case to only 8.47% for honey. For 5 and 10 fractures these values ranges from 99% for dry

cases to 20% for honey respectively. Regarding the effect of the number of fractures, for 1 fracture,

the waveforms are relatively smooth and similar for all fluids. However, as the number of fractures

increases, scattering becomes more pronounced, especially for higher viscosity fluids like silicon oil and

honey. These fluids show greater amplitude variations and waveforms distortions compared to water and

air. The reduction in amplitude is also accompanied by an increase in P-wave travel times, which are

delayed as fluid density decreases. For instance, in the case of a dry sample with one fracture, the travel

time increases by 0.74%, whereas with honey, it only increases by 0.26%. This difference becomes more

pronounced as the number of fractures increases, reaching 4.21% for dry and 0.69% for honey in the

case of 10 fractures.

Regarding S-waves, the amplitude decay follows a similar trend to the P-wave in that it decreases as

the number of fractures increases. However, the S-wave amplitudes are generally lower compared to

P-waves, especially in the 10-fracture case, where the signal is significantly attenuated for all fluid

types, with reductions ranging from 84% for the dry case to 72.66% for the honey case. In addition

to amplitude reduction, S-wave travel times are delayed as the number of fractures increases and fluid

density decreases. These delays are generally smaller than those observed for P-wave, ranging from

0.28% to 1.08% for the dry case and from 0.22% to 0.52% for the honey case as the number of fractures

increases from 1 to 10.

Unlike the P-wave, the S-waveforms become more spread out as the number of fractures increases. In

the case of air-filled fractures (green line), the amplitude behavior differs from that of P-waves; the

S-waves amplitudes does not decrease as significantly in the air-filled case. Honey (orange) and silicon

oil (magenta) cases exhibit more distinct amplitudes compared to water (blue) and air (green), especially

in the 5 and 10 fracture cases. With 10 fractures, the fluids water and air show greater smoothing of

the waveforms and reduced amplitude, while more viscous fluids like silicone oil and honey result in more

distinct waveforms, though with scattering.

5.1.3 Wave velocities

Fractures typically increase the compliance of the surrounding matrix, leading to a reduction in seismic

velocities which is associated with the delays in arrival times mentioned in the previous section.
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Figure 21. Observed P- waveforms through both intact and fractured specimens with single and multiple fluid-filled
fractures under an uniaxial normal stress of 20MPa. All the amplitudes are normalized to the maximum amplitude of the
intact specimen. The frequency of the ultrasonic transducer is 1MHz, which corresponds to P-wavelength λ = 6.43 mm.

Figure 22. Observed S- waveforms through both intact and fractured specimens with single and multiple fluid-filled fractures
under an uniaxial normal stress of 20MPa. All the amplitudes are normalized to the maximum amplitude of the intact
specimen. The frequency of the ultrasonic transducer is 1MHz, which corresponds to S-wavelength λ = 3.13 mm.
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Figures 23a and 23b shows the relationship between P- and S-wave velocities, the density of the infill

material, and the number of fractures. I observe that, as the density of the fluid increases, P-wave

velocities increase, demonstrating effective saturation of the fractures with the fluids, while S-wave

velocities decrease initially and then increase upon the fluid density. For example, in the case with ten

fractures, the P-wave velocity increases from 5926 m/s for the dry case to 6362 m/s for honey, while

the S-wave velocity rises from 3084 m/s for the dry case to 3119 m/s for the honey case, with the lower

value of 3067 m/s for the silicon oil case.

Conversely, as the number of fractures increases, wave velocities decrease. For instance, the average

P-wave velocity for specimens with silicone oil infill ranges from 6401 m/s for one fracture to 6234

m/s for ten fractures. Additionally, the P-wave velocity approaches the value observed in the intact

specimen (6432 m/s) as the fluid density increases. For P-waves, the percentage difference with respect

to the intact sample is consistently larger compared to S-waves across different fluid types and fracture

numbers. For example, with 10 fractures in dry conditions, the reduction in P-wave velocity is 7.86%,

while the reduction in S-wave velocity is 1.77%. In the honey case with 10 fractures, the P-wave velocity

reduction is 1.08%, while the S-wave velocity reduction is 0.67%.

S-waves show a relatively smaller percentage difference, particularly in the 1 and 5 fracture cases, where

the reductions are minimal compared to P-waves. For example, with 1 fracture, the S-wave velocity

reduction for dry conditions is 0.31%, while the P-wave reduction is 1.29%. These observations indicate

that the effect of fractures and fluid properties is more pronounced on P-wave velocities, especially with

an increased number of fractures. While S-wave velocities also decrease with fractures, the percentage

difference remains relatively smaller across the different fluid types and fracture cases. Both wave types

are affected by fractures and fluid properties, however, P-waves experience a more significant reduction

in velocity, particularly in cases with more fractures and in dry conditions.
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(a)

(b)

Figure 23. P- and S- wave velocity, versus fluids density for the three fractured samples. 1 fracture: red; 5 fractures:
green; 10 fractures: blue. Error bars in the figure represent the standard deviation associated with the mean value of the
P- and S-wave velocity.
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5.1.4 Transmission Coefficient and quality factor Q

I estimated the P- and S-wave transmission coefficients across fractured specimens using equation 19.

The resultant values are presented in figures 24a and 24b, which illustrates the transmission coefficient

as a function of fluid density. For both waves, the transmission coefficient decreases as the number of

fractures increases, for a single fracture, the transmission coefficient remains relatively high, even with

lower-density fluids. However, as the number of fractures increases to 5 or 10, the impact on wave

transmission becomes greater, especially for fluids with lower densities.

The transmission coefficient for P-wave increases as fluid density rises. Through all fracture cases (1,

5 and 10 fractures), denser fluids like honey and water show higher transmission coefficient, indicating

more effective wave transmission. In contrast, in the dry case, the transmission is significantly lower,

particularly for the case of 5 and 10 fractures, which shows a substantial wave attenuation in the

absence of fluid. Even as the number of fractures increases, higher-density fluid continue to enhance

the transmission coefficient. In dry conditions, the transmission coefficients range from 0.37 for a single

fracture to 0.001 for ten fractures. Saturating fractures with fluids increases wave transmission, the

coefficient values range from 0.892 to 0.915 for single fractures, from 0.688 to 0.899 for five fractures,

and from 0.344 to 0.793 for ten fractures. The higher transmission coefficients are associated with honey

as the infill material. Therefore, denser fluids facilitate better P-wave transmission across the fractured

media by reducing the interaction of the wave with the fracture voids.

S-wave transmission coefficients exhibit a different trend compare to P-waves. For S-waves, the trans-

mission coefficient in the dry case remain similar to those for fluids, showing less sensitivity to fluid

density. It means, that S-wave is less affected by fluid presence in the fractures than P-wave. The values

of this coefficient for the cases of air and honey (low and high density) are 0.793 to 0.899, 0.160 and

0.273 for 1 and 10 cases respectively. In addition, it is noticeable in the figures that P-wave transmis-

sion coefficient exhibit a substantial gap between the dry case and fluid-filled fractures, while S-waves

maintain relatively consistent values across different fluids, including the dry case. These results show a

greater sensitivity of P-waves to fluid presence and density in fractured media.

The reasons for the increase in the amplitude transmission (i.e., low attenuation) in fractures saturated

with liquids in contrast to the dry cases include the following: (a) the open spaces resulting from

the contact between the roughness of the surfaces of the aluminum discs in contact are filled with

different types of fluid, enhancing the coupling and transmission of the wave, and (b) liquids decrease
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the acoustic-impedance contrast as the density increases, reducing scattering and reflections.

(a)

(b)

Figure 24. Transmission coefficients for P- and S-wave of fractured specimens versus density of the saturating fluids for
the three fracture sets; 1 fracture: red, 5 fractures: green, 10 fractures: blue. Error bars in the figure represent the standard
deviation associated with the mean value of the P- and S-wave transmission coefficient.
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The quality factor Q is inversely related to the energy lost due to different mechanisms such as scattering,

absorption, and transmission in the medium. A higher Q indicates less attenuation, meaning the medium

is more efficient at preserving wave energy. In this study, the quality factors for P- and S- wave, Qp, and

Qs, were calculated using the Spectral Ratio Method, equation (26). Figures 25a and 25b show the P-

and S-wave quality factor as a function of fluid density.

The Qp values increase with fluid density in all cases. In the dry conditions, they are notably lower,

particularly in specimens with greater number of fractures, reflecting higher attenuation and reduced wave

transmission efficiency due to scattering and energy losses caused by multiple unfilled discontinuities. The

number of fractures has a pronounced effect on Qp, for example, in the 10-fracture case (blue icons), the

quality factor starts very low in the dry case but increases significantly with fluid saturation. With only 1

fracture (red icons), the Qp is generally higher, even in dry conditions, showing that fewer fractures lead

to less attenuation. As I mentioned before, denser fluids such as honey help to preserve wave energy, due

to the enhanced coupling and reduced scattering effects. Qs exhibits a distinct pattern as fluid density

increases: it initially decreases before rising. Overall, Qs values are smaller than Qp, indicating that

S-waves experience more attenuation than P-waves under similar experimental conditions. This trend is

consistent across varying number of fractures, with higher-density fluids like honey, showing higher Qs

values and better energy preservation. The values of Qs shows a much smaller difference between dry and

liquid-saturated cases, indicating that S-wave is less sensitive to changes in fluid density compared to Qp.

The lower Q values for S-wave compared to the P-wave (Qp) indicate that S-wave is more attenuated.

In summary, both Qp) and Qs quality factors are influenced by fluid density. Qp generally increases with

fluid density, exhibiting a greater difference between dry and liquid cases due to its compressional nature.

In contrast, Qs shows a different trend, it exhibits only minor variations, reflecting its shear-dominated

nature and lower sensitivity to fluid properties. Despite this, Qs generally experiences higher attenuation

in fluid-saturated media. Denser fluids mitigate attenuation effects for both wave types, leading to higher

quality factors and better energy preservation overall.

For comparison, figure 26 shows the relationship between Qp and fluid viscosity, serving as example of

the irregular trend observed across wave properties such as velocity and transmission coefficient for both

P- and S- waves. Unlike the clear trend observed with fluid density, the relationship between Qp and

viscosity does not follow a regular pattern. For example, water, despite being less viscous than silicon

oil and honey, exhibits higher Qp values. This irregularity suggests that viscosity alone may not directly

govern Qp; instead, it could interact with other properties, such as fluid density and fracture number, in

a more complex manner.
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(a)

(b)

Figure 25. P- and S-wave quality factor, Qp and Qs, versus density of the saturating fluids for the three fracture sets; 1
fracture: red, 5 fractures: green, 10 fractures: blue. Error bars in the figure represent the standard deviation associated
with the mean value of the P- and S-wave quality factor.
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Figure 26. P-wave quality factor, Qp, versus fluid viscosity for the three fractured samples; 1 fracture: red, 5 fractures:
green, 10 fractures: blue. Error bars in the figure represent the standard deviation associated with the Qp mean value.

5.2 Numerical results

5.2.1 Key wave parameters : Wave velocities, Transmission Coefficient and Quality
Factor Q

These results were generated using the dynamic compliances estimated from laboratory ultrasonic tests

under uniaxial normal stress at 20 MPa. In the numerical simulations, the same boundary conditions

as in the laboratory experiments were applied, allowing for direct comparison between experimental

observations and modeled wave propagation behavior.

Figures 27 and 28 show the P- and S-waveforms respectively, from the numerical simulations, including all

fluids and fracture cases. Both the P- and S-wave waveforms are normalized to the maximum amplitude

of the intact specimen, allowing for a direct comparison of the effects of different fluids (honey, silicon

oil, water and air) and the presence of fracture. The numerical simulations successfully capture the

general trends in wave behavior, such as amplitude reduction and phase shifts with increasing fracture

numbers, in correspondence with the laboratory waveforms presented in figures 21 and 22.
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Figure 27. Simulated P-waveforms through intact and fractured specimens from numerical simulations using dynamic
compliances estimated from laboratory ultrasonic tests as inputs. All the amplitudes are normalized to the maximum
amplitude of the intact specimen. These results should be compared with those in figure21.
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Figure 28. Simulated S-waveforms through intact and fractured specimens from numerical simulations using dynamic
compliances estimated from laboratory ultrasonic tests as inputs. All the amplitudes are normalized to the maximum
amplitude of the intact specimen. These results should be compared with those in figure22.

The P-wave (Figure 27) generally shows a more regular attenuation pattern, with denser fluids preserving

more energy. Additionally, phase shifts and travel times are predictable as the fracture number increases.

The S-wave (Figure 28), in particular, shows distinct behavior in terms of amplitude reduction and
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phase delay, especially for fractures filled with fluids of different viscosities and densities. For example,

in the case of more viscous fluid like honey, the energy transmission is better, therefore it shows a

higher amplitude in the numerical results, while in the experimental results, the energy transmission is

notably diminished. This discrepancy highlights the limited sensitivity of the S-wave to fluid and fracture

properties, leading to less predictable transmission behavior compared to the P-wave.

Overall, both P- and S-wave simulations show good correspondence with the experimental data, capturing

key trends in amplitude reduction and travel time delay, confirming that dynamic compliances used

effectively reflect the fracture properties and fluid distinctions. However, the simulations for S-wave

reveal more deviation from the experimental results, possibly due to the complex shear behavior of the

fluids and fractures.

Figures 29a, 30a, 31a, display the results for wave velocity, transmission coefficient, and quality factor

as functions of fluid density for P-wave, while Figures 29b, 30b, 31b show the corresponding results for

S-wave. In these figures, open icons represent numerical results, while solid icons indicate laboratory

results. These figures show a trend consistent with the laboratory results, indicating that dynamic

compliances accurately capture the effect of fluid density on wave propagation by using LSM to model

fractures filled with fluids.

The percentage differences in P-wave velocity for all fracture sets with various fluids are under 5%.

However, the differences are larger for the transmission coefficient and quality factor Qp. For the

transmission coefficient, the percentage difference is below 13% for liquids and generally increases with

the number of fractures. In the dry case, the percentage difference became increasingly negative as the

number of fractures increased, indicating less attenuation in numerical simulations than in laboratory

tests.

The quality factor, Qp, exhibit notable variability. In dry conditions, the percentage differences range from

-55.63% to 57.78%, with larger discrepancies pointing to significantly less attenuation in the numerical

simulations. In contrast, with liquid-saturated fractures, the difference for Qp is narrower (21.71% to

53.13%). The percentage difference in the transmission coefficient and Qp consistently shows lower

values for honey and higher values for dry cases.

In parallel, the S-wave parameters reveal a distinct response to fluid properties and the number of

fractures. The S-wave velocities generally align closely between laboratory and numerical results, with

percentage differences remaining minimal (under 3%) across all cases, indicating that Vs is less sensitive

to fluid type and number of fractures compared to the P-wave.For the transmission coefficient, the
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deviations are more substantial, particularly with an increase in the number of fractures. In dry conditions,

the transmission coefficient differences become highly negative, especially with more fractures as its value

is 2.5 times larger than the experimental, showing that the numerical model underestimates S-wave

transmission loss, particularly in the presence of multiple fractures and viscous fluids like silicon oil.

The quality factor Qs for S-wave show moderate variability, with differences that increase with the

number of fracture and vary with fluid type. Under dry conditions, discrepancies in Qs are generally

bigger, because the numerical model underestimates attenuation. This means that amplitude reduction

is less pronounced in the simulations compared to the laboratory experiments, particularly in cases with

multiples fractures.

These observation about S-wave reveals that while the model performs robustly for S-wave velocities,

it exhibits limitations in replicating the transmission and attenuation characteristics of S-wave in fluid-

filled fracture media. The transmission coefficient and quality factor for S-wave are sensitive to the fluid

viscosity and density but differ from the experimental results.
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(a) Vp

(b) Vs

Figure 29. P- and S-wave velocity as a function of fluid density, open icons correspond to the numerical results and filled
icons to laboratory tests. Error bars in the figure represent the standard deviation associated with the mean value of the
Vp and Vs.
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(a) TCp

(b) TCs

Figure 30. Transmission Coefficient for P- and S-wave as a function of fluid density, open icons correspond to the numerical
results and filled icons to laboratory tests. Error bars in the figure represent the standard deviation associated with the
mean value of the transmission coefficient.
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(a) Qp

(b) Qs

Figure 31. Quality factor Qp and Qs as a function of fluid density, open icons correspond to the numerical results and
filled icons to laboratory tests. Error bars in the figure represent the standard deviation associated with the mean value of
the Q.
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5.2.2 Displacement field

In this section, to illustrate the wave field propagation behavior and its interactions with fractures, I

present snapshots of the displacement field obtained from the numerical simulations, the color scale used

in this section indicates displacement amplitudes (blue for negative and red for positive displacement).

These figures are reproduced from Ramos-Barreto et al. (2025).

Figure 32 shows the simulated wavefield in a 3D cylindrical domain at t = 49 µs, capturing the magnitude

of the displacement field for both the P- and S-wave components. Figure 32a illustrates the propagation

of the P-wave, characterized by compressional motion, while figure 32b, which involves shear motion

perpendicular to the direction of propagation. The visualizations highlight the differences in wavefront

geometry and propagation between the two types of waves.

(a) Magnitude of the displacement field for P-
wave.

(b) Magnitude of the displacement field for S-
wave.

Figure 32. Wavefield in a 3D cylindrical domain at t = 49 µs.

I did a closer examination of the displacement field snapshots to observe how wave propagation behaves

under different number of fractures (1, 5 and 10 fractures) and fluid types. The results are presented in

two cases: (a) constant fluid with varying numbers of fractures, and (b) constant number of fractures

with different fluid type. Each case is shown for both P- and S- waves.
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To make a reliable comparison between wave types, different times were selected for the P- and S-

waves. These times are based on the velocity ratio Vp/Vs, so the wavefields are captured at comparable

propagation distances.

5.2.2.1 Varying fracture number

Figure 33 shows the vertical displacement field uz for three different numbers of fractures and two fluid

types: air (top row) and honey (bottom row). These fluids represent the extreme casesair with low

density and low viscosity, and honey with high density and high viscosityhighlighting the impact of fluid

properties on wave propagation.

As the number of fractures increases, wave scattering becomes more pronounced, particularly in the air-

filled models. The strong impedance contrast and lower values of viscosity lead to distinct interference

patterns and disruption of the coherent wavefront. In contrast, the honey-filled cases exhibit smoother

wavefields. The higher density and viscosity reduces reflections and scattering, enabling more efficient

energy transmission and preserving wavefront coherency even in densely fractured media.

Figure 34 shows the horizontal displacement field ux, highlighting S-wave propagation through models

with different numbers of fractures with air and honey fluids, representing contrasting cases.

Compared to the P-wave results (Figure 33), the S-wave displacement fields exhibit greater consistency

across fluid types. The general wavefront shapes, reflection patterns, and spatial energy distributions

remain similar between air- and honey-filled fractures. The main distinction is in amplitude: honey-filled

cases show slightly stronger displacement, reflecting improved energy transmission due to the higher

density and viscosity of honey. However, these effects are subtle, consistent with the expected lower

sensitivity of S-waves to fluid properties.

As the number of fractures increases (left to right), the wavefields show minor variations, but overall

coherence and symmetry are preserved. This further supports the observation that S-waves are less

affected by fracture infill properties (Yang et al., 2024), particularly in contrast to the more fluid-sensitive

P-wave fields.
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(a) uz; fn = 1; air (b) uz; fn = 5; air (c) uz; fn = 10; air

(d) uz; fn = 1; honey (e) uz; fn = 5; honey (f) uz; fn = 10; honey

Figure 33. Vertical displacement uz snapshots at t = 28 µs, on the x-z plane for different number of fractures (fn) and
fluid types. The top row corresponds to air-filled fractures, while the bottom row corresponds to honey-filled fractures.
From left to right, the fracture spacing decreases.
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(a) ux; fn = 1; air (b) ux; fn = 5; air (c) ux; fn = 10; air

(d) ux; fn = 1; honey (e) ux; fn = 5; honey (f) ux; fn = 10; honey

Figure 34. Horizontal displacement ux snapshots at t = 49 µs, on the x-z plane for different number of fractures (fn)
and fluid types. The top row corresponds to air-filled fractures, while the bottom row corresponds to honey-filled fractures.
From left to right, the fracture spacing decreases.
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5.2.2.2 Varying fluid type

Figures 35 and 36 present the vertical and horizontal displacement fields (uz and ux) for a fixed fracture

number (fn = 1), with varying fluid infills: air, water, silicone oil, and honey.

In the uz snapshots (Figure 35), P-wave behavior is strongly influenced by fluid type. As fluid density

and viscosity increase, the wavefronts become uniform and less distorted. Air-filled fractures exhibit

stronger reflections, higher scattering, and more distinct interfaces, whereas honey-filled fractures show

reduced distortion and enhanced wave transmission.

In contrast, ux, Figure (36) are largely insensitive to fluid changes. While denser fluids slightly en-

hance amplitude, the overall wavefront shape and spatial energy distribution remain consistent across all

cases. This reinforces the lower sensitivity of S-waves to fracture fill properties, as expected from their

propagation mechanism.

5.3 Comparison between numerical and laboratory results

The numerical results (open icons) for P-wave velocity, transmission coefficient and quality factor, shown

in figures 29a, 30a and 31a, align closely with the laboratory results (filled icons), especially for P-wave

velocity. This agreement between numerical and laboratory results not only validates the modeling

approach but also confirms that the dynamic compliance values derived from ultrasonic pulse experiments

effectively capture the influence of fluid properties on wave propagation. The close match for P-wave

velocity highlights the ability of the numerical simulation to accurately replicate wave arrival times and

their dependency on fluid density.

However, as seen in figures 30a and 31a, the percentage difference and discrepancies are more pronounced

for the transmission coefficient and quality factor. This suggests that while compliance from laboratory

experiments, combined with the numerical approach, provide a reliable baseline for wave dynamics, they

may not fully account for attenuation mechanism observed in laboratory experiments. This highlights

the challenges in simulating energy loss and wave attenuation, especially with multiple fractures and

varying fluid types.
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(a) uz; fn = 1; air (b) uz; fn = 1; water

(c) uz; fn = 1; Sil. Oil (d) uz; fn = 1; honey

Figure 35. Displacement field uz at t = 28 µs, on the x-z plane fixed fracture number (fn = 1) with the four different
infill fluids (a) air, (b) water, (c) silicon oil, and (d) honey.
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(a) ux; fn = 1; air (b) ux; fn = 1; water

(c) ux; fn = 1; Sil. Oil (d) ux; fn = 1; honey

Figure 36. Displacement field ux at t = 49 µs, on the x-z plane for a fixed fracture number (fn = 1) with the four
different infill fluids (a) air, (b) water, (c) silicon oil, and (d) honey.
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For S-wave, the numerical simulations show a trend consistent with laboratory results in terms of fluid

density but slightly overestimate the S-wave transmission coefficient and quality factor (Qs). As with P-

wave, this indicates that the model does not adequately account well for wave attenuation mechanisms.

In the fluid-filled fractures, especially with silicon oil, the gap between numerical and laboratory results

become more pronounced.

The overestimated values of transmission coefficient and quality factors (Qp and Qs) in the numerical

simulations compared to laboratory experiments, suggest reduced attenuation in the simulated medium.

This is expected, as LSM assumes an idealized representation of fractures. However, this assumption does

not hold for liquid-filled fractures. The overestimation of the transmission coefficient is more significant

for S-waves than for P-waves, as S-wave could be more sensitive to additional factors, such as fracture

surface roughness, and are not fully influenced by fluid properties. This, along with the simplified fracture

representation in the numerical approach, leads to discrepancies between the numerical and laboratory

results. Overall, these findings indicate that while LSM captures the general wave behavior, it does

not fully account for fluid-induced attenuation, especially with fluids like silicon oil. Incorporating an

additional term into the complianceone that adjusts for fluid propertiescould enhance the model’s ability

to represent the increased stiffness and energy loss associated with fluid-filled fractures, as proposed by

Schoenberg (1980), Pyrak-Nolte et al. (1990a), and Möller & Friederich (2019).

While LSM assumes an idealized elastic representation and does not explicitly account for viscous energy

dissipation, the numerical results nonetheless reflect key attenuation trends observed in the laboratory.

this is particularly notable considering that this study was able to capture the general trend of attenuation

reduction using the elastic formulation.

Despite these differences, the comparison between numerical and laboratory results validates the use of

dynamic compliance values derived from ultrasonic pulse techniques. These values effectively distinguish

between fracture infill materials, demonstrating the strength of the compliance-based approach while

pointing to areas for further refinement to better represent attenuation effects observed in laboratory

settings.
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5.4 Effect of fluid properties and fracture number on wave propagation
and compliance

Unlike previous studies that primarily focused on single fracture under different effective stresses in dry

and saturated conditions, often using water as the saturating fluid (Pyrak-Nolte et al., 1990b) or varying

the volumes of liquid and air (Yang et al., 2020), in our experimental setup, we increased the fluid

volume by increasing the number of fractures, while maintaining a constant pressure. Additionally, we

investigated the effects of different fluids in the fractures. Figures 21 and 22 show the effect of a fluid-

filled fracture on elastic wave propagation. These figures exhibit that (a) the amplitude of the transmitted

pulse increases with higher fluid density, compared to the dry case, but it consistently remains lower than

that of the intact specimen, and (b) P- and S-wave arrival times increase when fluid density decreases.

This is consistent with previous findings (Place et al., 2016; Yang et al., 2019, 2020) and confirms that

the wave amplitude is highly dependent on the fluid density.

About the relationship between fluid viscosity and wave attenuation in fluid-filled fractures, it has been

suggested that higher fluid viscosity leads to increased wave attenuation (Yang et al., 2019). However,

this is not the case in my experiments (see figure 26). I observed that, as fluid viscosity increases,

the attenuation caused by fluid-filled fractures decreases. This is because the higher-viscosity fluids can

transmit the waves more effectively, resulting in reduced wave attenuation. Therefore, the increased

viscosity leads to a more effective coupling of the waves with the surrounding material, allowing for

better transmission and less energy loss.

The ratio of normal to tangential fracture compliance, denoted as Zn/Zt, serves as a fluid indicator (Liu

et al., 2000) and plays an important role in characterizing fluid behavior within fracture systems. Figure

19 illustrates how this ratio varies as a function of fluid density. The data shows that the ratio decreases

as the density of the fluid increases. For the dry case, the Zn/Zt values are greater than 1.0, between

2.57 < Zn/Zt < 3.32 as shown by circular markers. In contrast, for fluid-saturated cases the ratio falls

between 0.29 < Zn/Zt < 0.56, marked by triangles, squares and diamonds. These results are compared

with data from Hsu & Schoenberg (1993), who determined this ratio using honey as saturating fluid

between lucite plates. They reported a ratio between 0.8 and 1.0 for a saturation of 0 to 25 %, whereas,

for a saturation of 100 %, the value is approximately 0.1. Notably, for honey as the saturating fluid, my

results are in accordance with those from Hsu & Schoenberg (1993) at 20 MPa. This indicates near

or complete saturation within the fractures in my experiments, despite open boundary conditions that

allow fluids to escape.
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I compare the values from this study with the theoretical Zn/Zt ratios for the dry case. These theoretical

ratios are determined using equations 7 and 8. These equations are based on models in which fractures

are treated as a planar distribution of cracks. In figure 19, these models are labeled M1 and M2,

respectively, with open and filled black circles. I found that the presence of multiple fractures, as

opposed to a single fracture, particularly in LSM, improves the statistical representation. It means that

the individual interaction of each fracture produces an accumulative effect. For instance, for the dry

case, the ratio for ten fractures is 2.57, which is significantly higher than theoretical predictions (M1

and M2) yielding ratios of 0.83 and 0.79, respectively. It is worth noting that, due to the absence of

theoretical relationships between normal and tangential compliance for fluid-filled fractures, I was only

able to compute ratios for the dry case.

In summary, as is shown in figure 19, there is a clear decrease in the Zn/Zt ratio as fluid density increases,

with additional complexity introduced by the number of fractures present in the specimen. Moreover,

the roughness and irregularities of fracture surfaces in the lab samples may contribute to this trend.

These surface characteristics reduce tangential compliance more than normal compliance, potentially

amplifying the observed Zn/Zt ratios in multi-fracture systems.

There is limited available information regarding the comparisons of static and dynamic compliances.

According to Pyrak-Nolte et al. (1990b) and Pyrak-Nolte (2019), single natural fractures show higher

static compliance compared to dynamic compliance, typically three times greater. Also, Zhou et al.

(2020) correlated normal static and dynamic fracture compliance. Using artificial rock fractures with

shale and granitic rocks, they found that static compliance exceeded dynamic compliance, with the ratio

approaching 2 at around 20 MPa of normal stress and gradually nearing 1 with increasing stress. Our

findings agree with the observation made by Pyrak-Nolte et al. (1990b); Zhou et al. (2020), confirming

that static compliance is consistently higher than dynamic compliance. This consistency applies to both

normal and tangential components. However, the specific ratio varies depending on the type of fluid.

Both static and dynamic compliances are influenced by void volume content (Pyrak-Nolte, 2019), as

demonstrated by the significant change when transitioning from air to fluid-filled cases. In the dynamic

normal compliance (see Figure 20a), a clear trend is observed with fluid density: compliance decreases

significantly as fluid density increases. This indicates that denser fluids, such as honey, make the fracture

less compliant. In contrast, the static normal compliance (see Figure 20b) shows a different pattern.

For static compliance, the trend breaks down with water which exhibits a larger compliance than silicon

oil, despite its lower density. This deviation can be explained by fluid viscosity and its influence on void

space within the fracture. Silicon oil’s higher viscosity allows it to stay within the fracture, filling void
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space and resulting in a lower static compliance. Water, with its lower viscosity, flows out more easily,

creating a larger effective void space and therefore increasing static compliance.

Interestingly, dynamic compliance shows the opposite trend, with water being less compliant than silicon

oil. This suggests that, while void volume content plays a role that is related to density, it is not the

dominant factor in dynamic compliance. In the dynamic case, the higher density of water increases

fracture stiffness, making it less compliant than silicon oil even though the void volume content may be

higher. This underscores the role of fluid properties in determining compliance behavior, with viscosity

influencing static compliance and density being more influential in dynamic compliance.

Tables 4 and 5 summarize the range of values for the static/dynamic compliance ratio for the different

types of fluids, for normal and tangential components. In general, there is no clear pattern between this

ratio and the fluid density. However, in dry cases for normal component, regardless of the number of

fractures, the ratio falls within a relatively narrow range of variability between 2.25 and 3.52. In contrast,

the range for fluid cases spans a broader range, from 4.87 to 18.20. The highest values correspond to

water and the lowest are associated with honey. For the tangential component, the range of variability

is broader in both, dry and fluid cases. For the dry case, the range is from 8.06 to 14.13 and for the

fluid cases lies between 2.23 to 12.64.

The difference in the observed ratio of static/dynamic normal compliance primarily arises from the

nature of each experiment. For example, in the case of water and silicon oil, having the lowest density

between the liquids, the notably high ratio in the normal component is a consequence of a substantial

displacement or fracture closure, leading to significant static normal compliance values. Interestingly,

regardless of the fluid type, the case involving ten fractures yields the lowest ratio. This suggests that,

as the number of fractures increases, both static and dynamic normal compliances tend to converge. As

the tangential static compliances were derived from normal static values by using the relations 7 and

8, the values of the ratio static/dynamic tangential component falls within a common range without

significant variations within the models.

Table 4. Ratio of normal static to dynamic compliance

Type of fluid 1 fracture 5 fractures 10 fractures

Dry 3.52 2.25 2.59
Sil. Oil 9.00 8.73 6.30
Water 18.20 18.07 13.80
Honey 6.47 5.81 4.87
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Table 5. Ratio of tangential static to dynamic compliance

Type of fluid 1 fracture 5 fractures 10 fractures

M1 M2 M1 M2 M1 M2

Dry 14.13 14.77 8.69 9.09 8.06 8.42
Sil. Oil 3.25 3.40 5.02 5.25 4.30 4.49
Water 12.09 12.64 8.79 9.19 7.66 8.01
Honey 4.47 4.68 2.23 2.33 2.29 2.39

Key wave parameters

The key wave parametersvelocity, transmission coefficient, and quality factorare essential for character-

izing wave behavior in fractured systems filled with fluids. These parameters provide insights into the

stiffness of the medium, the influence of fluid properties on wave propagation, the energy transmitted

across fractures, and the mechanisms of wave energy dissipation.

Ultrasonic data from this study reveal that P-wave velocity, transmission coefficient, and quality factor

(Qp) correlate positively with the density of the saturating fluids (Figures 23a, 24a, 25a). For dry

fractures, these parameters show lower values due to the absence of fluid, resulting in greater effective

compliance. In contrast, fractures filled with fluids exhibit an increase in these parameters. The observed

trends in P-wave velocity align with previous findings by Yang et al. (2020), confirming that key wave

parameters are strongly dependent on fluid properties.

However, discrepancies arise when considering the transmission coefficient and quality factor for P-waves

in fluid-filled fractures. These variations can be attributed to the interplay between fluid density, viscosity,

fracture thickness and fracture spacing (average distance between parallel fracture). For instance, Yang

et al. (2020) observed a positive correlation between transmission coefficient and fluid density, which is

consistent with my results. However, they also reported an inverse relationship between viscosity and

both transmission coefficient and quality factor. In contrast, my experiments show an opposite trend

specifically with the liquids: lower viscosity fluids resulted in lower transmission and lower Qp, similar to

observations by Clarke et al. (2020).

The quality factor is inversely related to the amount of energy lost due to scattering, absorption, and

transmission in the medium. A higher Q means less attenuation, indicating that the medium is more

efficient at preserving wave energy during propagation. The general trend for the three fluids observed

in Qp of this study (figure 26) show a more complex relationship between viscosity and Qp than a simple

positive or negative correlation suggesting a non-uniform relationship between viscosity and quality factor.
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However, the differences between my results and those of other studies can be explained by the distinct

experimental setups used, particularly fracture characteristics such as their number, distribution and

size. Yang et al. (2020) employed cylindrical specimen with a single fracture of finite thickness (6 mm),

while Clarke et al. (2020) investigated cylindrical specimens with distributed cracks. In contrast, this

study examines cylindrical specimens with one and multiple fractures, with thicknesses on the order of

micrometers.

Although wave attenuation is expected in viscous media, the experimental conditions in this study suggest

that the wavelength and fracture thickness may prevent the wave from fully interacting with the fluid

due to the high frequency of the seismic wave. This likely minimizes the effect of viscosity, allowing

density and bulk modulus to dominate. As a result, the fractures behave as if they are stiffer, reducing

the impedance contrast and explaining the observed discrepancies. Regarding the number of fractures,

it is difficult to make direct comparisons, as most studies focus on a single fracture. However, in this

study, the observed trend remains consistent: while the key wave parameters follow the same general

pattern, their values decrease as the number of fractures increases. This can be attributed to the complex

interaction of the wave with multiple fractures along the specimen, which results in a more significant

scattering and energy dissipation. For all samples used in these experiments, the fracture spacing ranges

between 1 and 13 times the seismic wavelength (λ), placing them in a regime where scattering effects are

strongly influenced by interference between waves interacting with adjacent fractures. This relationship

further explains the observed increase in attenuation with increasing number of fractures (decreasing

fracture spacing).

For S-wave in fluid-filled fractures, it might initially be anticipated that fluid saturation would have little

effect on their transmission. However, this expectation is not entirely supported by our observations as

well as by Pyrak-Nolte et al. (1990b). Significant variations and distinct behavior are evident. Unlike

P-waves, where the key wave parameters exhibit a wide range of values that effectively distinguish

between dry and fluid cases, S-waves show a narrower variation range. This suggests that S-waves are

less sensitive to the presence of fluids, with their values in dry cases being relatively similar to those in

fluid-saturated cases.

The transmission of S-waves is also facilitated by the connected asperities of the fracture surfaces, which

maintain mechanical contact even in the presence of fluids. These asperities contribute to the overall

compliance of the fractures, enabling the propagation of shear waves regardless of fluid saturation.

The general trend for the key S-wave parameters exhibits a concave upward dependency on fluid density
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irrespective of the number of fractures (see figures 23b, 24b, 25b). This trend suggest that silicon oil

for S-wave, as the infilling material, makes the fracture more compliant compared to the other liquids

and even to the dry case. The possible explanation to this behavior could be a combination of the

viscoelastic nature of the silicon oil, increased tangential dynamic compliance, and weaker interaction

with the fracture surface.

Unlike denser fluids (water and honey), the viscoelastic behavior of the silicon oil might reduce the shear-

wave coupling between the fracture walls, resulting in higher tangential compliance, leading to reduced

S-wave amplitudes, transmission coefficient and quality factor (Qs) compared to the other fluids.

Despite the relatively limited information available on S-wave behavior in fluid-filled fractures, a recent

study by Yang et al. (2024) presents intriguing observations of S-waves in fluid-saturated media. They

investigate how varying water saturation levels influence S-wave propagation and attenuation across

clay-rich rock fractures filled with kaolinite-dominant gouges (2-mm thickness). Ultrasonic experiments

revealed that S-wave velocity fluctuates slightly with water saturation, and that spectral amplitudes and

seismic quality factors are affected differently. Notably, S-waves exhibit less sensitivity to water saturation

compared to P-waves, with trends in velocity, frequency, and attenuation attributed to the skeletal frame

properties of the medium, as opposed to the fluid-particle interactions that dominate P-wave behavior.

In many ways, our results align with and expand upon the findings of Yang et al. (2024). While their

study highlights the dependence of S-wave behavior on the skeletal frame in clay-rich fractures, our

results demonstrate the significant role of infilling fluid properties, particularly for viscoelastic fluids

like silicon oil. This additional information enhances the understanding of how fluid type and density

influence the mechanical response of fractures to S-wave propagation.
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Chapter 6. Conclusions

This study tested the hypothesis that variations in fluid density and viscosity produce measurable changes

in fracture compliance, thus controlling the propagation of P- and S-waves in fractured media. Therefore,

laboratory experiments and numerical simulations were integrated to evaluate the influence of fluid-filled

fractures on seismic wave behavior.

Laboratory ultrasonic experiments demonstrated that normal fracture compliance decreases with increas-

ing fluid density, while tangential compliance shows limited sensitivity. This confirm a strong inverse

relationship between fluid density and normal compliance, supporting the hypothesis that fracture com-

pliance is sensitive to fluid properties.

The normal to tangential compliance ratio effectively distinguishes between dry and fluid-filled fractures,

confirming its potential as a fluid indicator, although differences among fluids of similar density remain

small. Additionally, the presence of multiple fractures resulted in a cumulative effect that amplifies the

influence of fluid properties.

Laboratory experiments showed that the relationship between wave attenuation and fluid viscosity is

complex and cannot be described by a monotonic trend. This finding highlight the role of viscosity in

controlling energy dissipation.

Incorporating the laboratory compliance values into the Interior Penalty Discontinous Galerkin Method

(IP-DGM) simulations successfully reproduced key features observed in the laboratory seismograms. P-

waves were particularly sensitive to fluid density due to acoustic impedance contrasts, whereas S-waves

remained unaffected.

The accurate quantification of compliance enabled the simulations to capture amplitude decay and arrival

time delays, demonstrating that the laboratory derived values are both robust and practically useful for

predictive modeling of wave propagation in fractured media.

This work present the first laboratory-derived compliance values within IP-DGM simulations, establishing

a predictive framework that integrates controlled experimental measurements with advanced numerical

modeling. The results confirm that fracture compliance is a key parameter linking fluid properties to

seismic wave behavior and that combining experiments with numerical modeling improves the ability to

model wave propagation in fluid-saturated fractured media.

While attenuation is not explicitly modeled in the elastic formulation of the LSM, the incorporation of
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laboratory derived dynamic compliances allow its influence to be indirectly quantified, enabling good

comparison with experimental results. However, discrepancies in amplitude attenuation suggest that

LSM could be improved by incorporating additional compliance corrections to better represent fluid

effects.

This discrepancies highlight directions for future research, including testing fluids relevant to the oil

industry, improving the LSM to better capture attenuation and transmission coefficients, and extending

the approach to more realistic subsurface fracture networks.

Overall, this study demonstrates that accurately measured fracture compliance serves as a robust bridge

between fluid properties and seismic response, providing a validated methodology to integrate experimen-

tal observations into predictive numerical simulations. By linking laboratory measurements to numerical

modeling, this framework enhances our understanding of seismic wave propagation in fractured media

and provides a foundation for future studies in more complex subsurface environments.
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Käser, M. & Dumbser, M. (2006). An arbitrary high-order discontinuous galerkin method for elastic waves
on unstructured meshesi. the two-dimensional isotropic case with external source terms. Geophysical
Journal International, 166(2), 855–877. https://doi.org/10.1111/j.1365-246X.2006.03051.x.

https://doi.org/10.1093/gji/ggy406
https://doi.org/10.1190/1.3509782
https://doi.org/10.1111/j.1365-246X.2012.05360.x
https://doi.org/10.1029/JB092iB08p07989
https://doi.org/10.1029/JB092iB08p07989
https://doi.org/10.1111/j.1365-2478.2011.01000.x
https://doi.org/10.1111/j.1365-2478.2011.01000.x
https://doi.org/10.1029/97JB02380
https://doi.org/10.1029/97JB02380
https://doi.org/10.1190/1.1443487
https://doi.org/10.1111/j.1365-246X.1997.tb04507.x
https://doi.org/10.1111/j.1365-246X.1997.tb04507.x
https://doi.org/10.1046/j.1365-2478.2001.00272.x
https://doi.org/10.1046/j.1365-2478.2001.00272.x
https://doi.org/10.1111/j.1365-246X.1981.tb02662.x
https://doi.org/10.1111/j.1365-246X.1981.tb02662.x
https://doi.org/10.1016/j.egypro.2009.01.263
https://doi.org/10.1016/j.egypro.2009.01.263
https://doi.org/10.1016/0148-9062(89)91978-5
https://doi.org/10.1111/j.1365-246X.2006.03051.x


82

Komatitsch, D. & Tromp, J. (1999). Introduction to the spectral element method for three-dimensional
seismic wave propagation. Geophysical journal international, 139(3), 806–822. https://doi.org/

10.1046/j.1365-246x.1999.00967.x.

Komatitsch, D. & Vilotte, J.-P. (1998). The spectral element method: an efficient tool to simulate the
seismic response of 2d and 3d geological structures. Bulletin of the seismological society of America,
88(2), 368–392. https://doi.org/10.1785/BSSA0880020368.

Lähivaara, T. (2010). Discontinuous galerkin method for time-domain wave prob-
lems. [Thesis Doctor of Philosophy, University of Eastern Finland]. Disponible en:
https://erepo.uef.fi/server/api/core/bitstreams/60fd9dac-7ab3-4a5a-8741-abc6e12dec74/content.

Leviant, V., Kvasov, I., & Petrov, I. (2019). Numerical modeling of seismic responses from fractured
reservoirs by the grid-characteristic method. Society of Exploration Geophysicists.

Liu, E. (2005). Effects of fracture aperture and roughness on hydraulic and mechanical properties
of rocks: implication of seismic characterization of fractured reservoirs. Journal of Geophysics and
Engineering, 2(1), 38. https://doi.org/10.1088/1742-2132/2/1/006.

Liu, E., Hudson, J. A., & Pointer, T. (2000). Equivalent medium representation of fractured rock.
Journal of Geophysical Research: Solid Earth, 105(B2), 2981–3000. https://doi.org/10.1029/19
99JB900306.

Liu, E. & Martinez, A. (2012). Seismic Fracture Characterization: Concepts and Practical Applications
(EET 8). Earthdoc.

Lubbe, R., Sothcott, J., Worthington, M., & McCann, C. (2008). Laboratory estimates of normal and
shear fracture compliance. Geophysical Prospecting, 56(2), 239–247. https://doi.org/10.1111/

j.1365-2478.2007.00688.x.

Lubbe, R. & Worthington, M. (2006). A field investigation of fracture compliance. Geophysical Prospect-
ing, 54(3), 319–331. https://doi.org/10.1111/j.1365-2478.2006.00530.x.

Makurat, A., Barton, N., Tunbridge, L., & Vik, G. (1991). The measurement of the mechanical and hy-
draulic properties of rock joints at different scales in the stripa project. Publikasjon-Norges Geotekniske
Institutt, 182, 541-548.

Martin, R., Komatitsch, D., Blitz, C., & Le Goff, N. (2008). Simulation of seismic wave propagation
in an asteroid based upon an unstructured mpi spectral-element method: Blocking and non-blocking
communication strategies. In Palma, J. M. L. M., Amestoy, P. R., Daydé, M., Mattoso, M., & Lopes,
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Toksöz, M., Johnston, D. H., & Timur, A. (1979). Attenuation of seismic waves in dry and saturated
rocks: I. laboratory measurements. Geophysics, 44(4), 681–690. https://doi.org/10.1190/1.14

40969.

https://doi.org/10.1093/gji/ggac014
https://doi.org/10.1093/gji/ggac014
https://doi.org/10.1090/conm/329
https://doi.org/10.1023/A:1011591328604
https://doi.org/10.1016/0148-9062(95)00039-J
https://doi.org/10.1016/0020-7683(91)90027-D
https://doi.org/10.1190/1.2780777
https://doi.org/10.1121/1.385077
https://doi.org/10.1111/j.1365-2478.1988.tb02181.x
https://doi.org/10.1111/j.1365-2478.1988.tb02181.x
https://doi.org/10.1190/1.1440969
https://doi.org/10.1190/1.1440969


85

Tsang, C.-F., Bernier, F., & Davies, C. (2005). Geohydromechanical processes in the excavation damaged
zone in crystalline rock, rock salt, and indurated and plastic claysin the context of radioactive waste
disposal. International Journal of Rock Mechanics and Mining Sciences, 42(1), 109–125. https:

//doi.org/10.1016/j.ijrmms.2004.08.003.

Tsang, C.-F., Neretnieks, I., & Tsang, Y. (2015). Hydrologic issues associated with nuclear waste
repositories. Water Resources Research, 51(9), 6923–6972. https://doi.org/10.1002/2015WR01

7641.

Tsvankin, I. & Grechka, V. (2011). Seismology of azimuthally anisotropic media and seismic fracture
characterization. Society of Exploration Geophysicists.

Vamaraju, J., Sen, M. K., De Basabe, J., & Wheeler, M. (2020). A hybrid galerkin finite element method
for seismic wave propagation in fractured media. Geophysical Journal International, 221(2), 857–878.
https://doi.org/10.1093/gji/ggaa037.

Vasilyeva, M., De Basabe, J., Efendiev, Y., & Gibson Jr, R. (2019). Multiscale model reduction of the
wave propagation problem in viscoelastic fractured media. Geophysical Journal International, 217(1),
558–571. https://doi.org/doi.org/10.1093/gji/ggz043.

Vlastos, S., Liu, E., Main, I. G., & Li, X.-Y. (2003). Numerical simulation of wave propagation in media
with discrete distributions of fractures: effects of fracture sizes and spatial distributions. Geophysical
Journal International, 152(3), 649–668. https://doi.org/10.1046/j.1365-246X.2003.01876.x.

Wei, Q., Han, D.-H., Li, H., Wang, J., Wang, Y., & Chen, J. (2024). Effects of fluid saturation and
viscosity on seismic dispersion characteristics in berea sandstone. Geophysics, 89(5), MR251–MR263.
https://doi.org/10.1190/geo2023-0350.1.

Wheeler, M. F. (1978). An elliptic collocation-finite element method with interior penalties. SIAM
Journal on Numerical Analysis, 15(1), 152–161. https://doi.org/10.1137/0715010.

Wu, C., Harris, J. M., Nihei, K. T., & Nakagawa, S. (2005). Two-dimensional finite-difference seismic
modeling of an open fluid-filled fracture: Comparison of thin-layer and linear-slip models. Geophysics,
70(4), T57–T62. https://doi.org/10.1190/1.1988187.

Yang, H., Duan, H., & Zhu, J. (2019). Ultrasonic p-wave propagation through water-filled rock joint:
an experimental investigation. Journal of Applied Geophysics, 169, 1–14. https://doi.org/10.1

016/j.jappgeo.2019.06.014.

Yang, H., Duan, H.-f., & Zhu, J. (2020). Effects of filling fluid type and composition and joint orientation
on acoustic wave propagation across individual fluid-filled rock joints. International Journal of Rock
Mechanics and Mining Sciences, 128, 104248. https://doi.org/10.1016/j.ijrmms.2020.1042

48.

Yang, H., Duan, H.-F., Zhu, J., & Zhao, Q. (2024). Water effects on elastic s-wave propagation
and attenuation across single clay-rich rock fractures: Insights from ultrasonic measurements. Rock
Mechanics and Rock Engineering, 57(4), 2645–2659. https://doi.org/10.1007/s00603-023-0

3712-6.

Yousef, B. & Angus, D. (2016). When do fractured media become seismically anisotropic? some
implications on quantifying fracture properties. Earth and Planetary Science Letters, 444, 150–159.
https://doi.org/10.1016/j.epsl.2016.03.040.

https://doi.org/10.1016/j.ijrmms.2004.08.003
https://doi.org/10.1016/j.ijrmms.2004.08.003
https://doi.org/10.1002/2015WR017641
https://doi.org/10.1002/2015WR017641
https://doi.org/10.1093/gji/ggaa037
https://doi.org/doi.org/10.1093/gji/ggz043
https://doi.org/10.1046/j.1365-246X.2003.01876.x
https://doi.org/10.1190/geo2023-0350.1
https://doi.org/10.1137/0715010
https://doi.org/10.1190/1.1988187
https://doi.org/10.1016/j.jappgeo.2019.06.014
https://doi.org/10.1016/j.jappgeo.2019.06.014
https://doi.org/10.1016/j.ijrmms.2020.104248
https://doi.org/10.1016/j.ijrmms.2020.104248
https://doi.org/10.1007/s00603-023-03712-6
https://doi.org/10.1007/s00603-023-03712-6
https://doi.org/10.1016/j.epsl.2016.03.040


86

Zangerl, C., Evans, K., Eberhardt, E., & Loew, S. (2008). Normal stiffness of fractures in granitic
rock: A compilation of laboratory and in-situ experiments. International journal of rock mechanics
and mining sciences, 45(8), 1500–1507. https://doi.org/10.1016/j.ijrmms.2008.02.001.

Zhang, Z., Zhu, J., & Deng, J. (2023). A comparative study for determining rock joint normal stiffness
with destructive uniaxial compression and nondestructive ultrasonic wave testing. Journal of Rock
Mechanics and Geotechnical Engineering, 15(7), 1700–1712. https://doi.org/10.1016/j.jrmg

e.2022.10.010.

Zhao, J., Cai, J., Zhao, X., & Li, H. (2006). Experimental study of ultrasonic wave attenuation
across parallel fractures. Geomechanics and Geoengineering: An International Journal, 1(2), 87–103.
https://doi.org/10.1080/17486020600834613.

Zhou, J., Zhang, L., Qi, S., & Yang, D. (2020). Empirical ratio of dynamic to static stiffness for
propped artificial fractures under variable normal stress. Engineering geology, 273, 105683. https:

//doi.org/10.1016/j.enggeo.2020.105683.

Zhu, J., Zhao, X., Li, J., Zhao, G., & Zhao, J. (2011). Normally incident wave propagation across
a joint set with the virtual wave source method. Journal of Applied Geophysics, 73(3), 283–288.
https://doi.org/10.1016/j.jappgeo.2011.01.012.

Zhu, J., Zhao, X., Wu, W., & Zhao, J. (2012). Wave propagation across rock joints filled with viscoelastic
medium using modified recursive method. Journal of Applied Geophysics, 86, 82–87. https://doi.
org/10.1016/j.jappgeo.2012.07.012.

Zimmerman, R. W. & King, M. S. (1985). Propagation of acoustic waves through cracked rock. In
Research & engineering applications in rock masses: proceedings of the 26th US Symposium on Rock
Mechanics, South Dakota School of Mines & Technology, Rapid City, 26–28.

https://doi.org/10.1016/j.ijrmms.2008.02.001
https://doi.org/10.1016/j.jrmge.2022.10.010
https://doi.org/10.1016/j.jrmge.2022.10.010
https://doi.org/10.1080/17486020600834613
https://doi.org/10.1016/j.enggeo.2020.105683
https://doi.org/10.1016/j.enggeo.2020.105683
https://doi.org/10.1016/j.jappgeo.2011.01.012
https://doi.org/10.1016/j.jappgeo.2012.07.012
https://doi.org/10.1016/j.jappgeo.2012.07.012

	Abstract in spanish 
	Abstract 
	Dedication 
	Acknowledgments 
	List of figures 
	List of tables 
	Chapter Introduction
	Fractures, and their effects on Seismic Wave Propagation
	Models for seismic propagation in fractured media
	Hypothesis and Research Objectives
	Outline


	Chapter Theoretical background
	Seismic wave propagation: basic concepts
	Fractured media: Characteristics and effect on seismic waves
	Effect of fluid-filled fractures on seismic waves

	Fracture compliance
	Theory of elastic wave propagation across fractures
	Linear slip model



	Chapter Laboratory experiments
	Experimental set-up: specimens
	Experimental components
	Deformation tests and static fracture compliance
	Static normal compliance determination

	Ultrasonic-pulse transmission
	Estimation of dynamic fracture compliance

	Ultrasonic measurements
	Velocity
	Transmission Coefficient
	Quality factor Q



	Chapter Numerical Modeling
	Discontinous Galerkin method
	Weak Formulation of the Elastic Wave Equation : Non-fractured media
	Weak formulation : fractured media of the Elastic Wave Equation

	Numerical models


	Chapter Results
	Experimental results
	Fracture compliances of fracture specimens
	Observed waveforms
	Wave velocities
	Transmission Coefficient and quality factor Q

	Numerical results
	Key wave parameters : Wave velocities, Transmission Coefficient and Quality Factor Q
	Displacement field
	Varying fracture number
	Varying fluid type


	Comparison between numerical and laboratory results
	Effect of fluid properties and fracture number on wave propagation and compliance


	Chapter Conclusions
	Bibliography 


