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Resumen de la tesis que presenta Cinthia Lizeth Velazquez Matus como requisito parcial para la obtención 
del grado de Maestra en Ciencias en Ecología Marina.  
 
 

Reconstruyendo la variabilidad temporal de las fuentes de carbono de la Ensenada del Sur de 
California y la influencia del cambio ambiental utilizando valores de δ13C de aminoácidos esenciales de 

un pequeño cetáceo. 
 

Resumen aprobado por: 

Dra. Rocio Iliana Ruiz-Cooley 
Directora de tesis  

Se evaluó la variabilidad interanual de δ¹³C en aminoácidos esenciales (AAEs) de delfines comunes 
(Delphinus delphis) capturados incidentalmente en pesquerías de redes agalleras en la Ensenada del Sur 
de California, E.U.A, entre 1990 y 2008, en relación con la temperatura del agua, la productividad primaria 
(Chl-a como proxy), el carbono inorgánico disuelto (CID) y el índice de surgencia costera (CUTI). Se 
analizaron 178 muestras de piel (tejido completo) y de estas, 30 muestras se usaron para el análisis de δ¹³C 
en AAEs. Los valores de δ¹³C en tejido completo no mostraron diferencias significativas entre años. En 
contraste, los valores de δ¹³C de AAEs revelaron patrones temporales distintos: lIsina, metionina y 
fenilalanina presentaron las mayores fluctuaciones (6–10‰), mostrando una tendencia hacia valores más 
ligeros, mientras que Leu mostró un enriquecimiento progresivo. Valina, Isoleucina y Treonina no 
evidenciaron cambios consistentes. En promedio, los valores de δ¹³CAAEs disminuyeron 3.5‰ entre 2000 y 
2008, una magnitud muy superior a la atribuible al efecto Suess (~0.2‰ por década), lo que sugiere que 
factores oceanográficos, más allá del forzamiento atmosférico, moldearon la señal isotópica. Los modelos 
aditivos generalizados (GAMs) identificaron a la temperatura, el CID y la Chl-a como los predictores más 
importantes, explicando hasta el 76% de la variabilidad isotópica. Estos resultados demuestran que los 
delfines comunes, al ser muestreadores biológicos del ecosistema, integran a través de su dieta la señal 
isotópica de los productores primarios. Estos valores de δ¹³CAAEs reflejan la variabilidad temporal del ciclo 
del carbono marino. A diferencia de enfoques tradicionales, como el δ¹³C de materia orgánica particulada, 
que puede verse influenciado por contribuciones bacterianas, o el δ¹⁵N del zooplancton, que refleja efectos 
tróficos, el uso de δ¹³CAAEs en depredadores tope proporciona una herramienta novedosa y más precisa 
para rastrear los cambios en la fijación de carbono por los productores primarios que sostienen la red 
alimentaria de la que se alimenta el depredador. Esta tesis resalta el potencial del análisis isotópico de 
aminoácidos esenciales en piel de delfín, centinelas del ecosistema que habitan, para comprender la 
dinámica del ciclo de carbono en respuesta a una alta variabilidad ambiental. 

 
 
 
 
 
 
 
 
 
Palabras clave:  fijación de carbono, depredador, centinela, variabilidad ambiental, isótopos. 
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Abstract of the thesis presented by Cinthia Lizeth Velazquez Matus as a partial requirement to obtain the 
Master of Science degree in Marine Ecology.  
 
 

Reconstructing temporal variability in carbon sources from the Southern California Bight and the 
influence of environmental change using essential amino acids δ13C values from a small cetacean 

 

Abstract approved by: 

Dra. Rocio Iliana Ruiz-Cooley 
Thesis Director 

Interannual variability of δ¹³C in essential amino acids (EAAs) of common dolphins (Delphinus delphis) 
incidentally caught in gillnet fisheries in the Southern California Bight, U. S., was evaluated between 1990 
and 2008, in relation to seawater temperature, primary productivity (Chl-a as a proxy), dissolved inorganic 
carbon (DIC), and the coastal upwelling transport index (CUTI). A total of 178 skin samples (bulk tissue) 
were analyzed, with a subset of 30 used for EAAs analysis. Bulk δ¹³C values showed no significant 
differences across years. In contrast, EAAs values revealed distinct temporal patterns: Lysine, methionine, 
and phenylalanine displayed the greatest fluctuations (6–10‰), trending toward lighter values, while 
leucine showed progressive enrichment. Valine, Isoleucine, and Threonine exhibited no consistent 
changes. On average, δ¹³CEAAs declined by 3.5‰ between 2000 and 2008, a magnitude far exceeding the 
Suess effect (~0.2‰ per decade), suggesting that oceanographic drivers beyond atmospheric forcing 
shaped the isotopic signal. Generalized additive models (GAMs) identified temperature, DIC, and Chl-a as 
the most important predictors, explaining up to 76% of isotopic variability. These results demonstrate that 
common dolphins are biological samplers of the ecosystem, integrating through their diet the isotopic 
signal of primary producers. δ¹³CEAAs values thus reflect the marine carbon cycle. Unlike traditional 
approaches, such as δ¹³C of particulate organic matter, which may be influenced by bacterial contributions, 
or δ¹⁵N of zooplankton, which reflects trophic-level effects, the δ¹³CEAAs in top predators offer a novel and 
more precise tool to trace changes in carbon fixation by the primary producers that support the food web 
where the predators forage.  This thesis highlights the potential of isotopic analysis of essential amino 
acids in dolphin skin, sentinels of the ecosystem they inhabit, to understand the dynamics of the carbon 
cycle in response to high environmental variability. 

 
 
 
 
 
 
 
 
 
 
 
 
Keywords: carbon fixation, predator, sentinel, environmental variability, isotopes.   
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Chapter 1. Introduction 

The California Current System (CCS) is a highly productive ecosystem that represents one of the major 

coastal upwelling zones. As such, it supports rich biodiversity and sustains one of the largest fisheries 

in the world (Checkley and Barth, 2009). The CCS encompasses the California Current (0-300 m deep), 

which transports cold, northern water masses equatorward along the continental slope of the west 

coast of North America, ultimately feeding into the North Equatorial Current (Lynn & Simpson, 1987). 

It is also influenced by relatively warmer poleward-flowing subsurface waters from the California 

Undercurrent, Davidson Current, and Southern California Countercurrent (Figure 9; Hickey, 1979).  The 

interplay of these major currents, along with the interannual variation in the intensity of coastal 

upwelling, influences primary biomass and food web dynamics (Carr, 2002). 

To understand the fluctuations in the physical and biochemical environment and their effect on marine 

communities, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program was 

established in 1949 to monitor the Southern California Bight (SCB), making it one of the most studied 

marine regions in the world (McClatchie, 2014). The oceanographic characteristics of the SCB are highly 

dynamic due to the effect of large-scale climatic events such as El Niño-Southern Oscillation (ENSO) 

(McGowan et al., 1998). Notably, extreme climatic events with positive temperature anomalies such 

as El Niño event (the warm phase of the ENSO), and recent marine heatwaves (MHWs) (McGowan, 

1998; Oliver et al., 2018), have had devastating impacts on marine communities, leading to biological 

mass mortality,  increase incidence of harmful algal blooms and shifts in species distribution across 

marine ecosystems (Bond et al., 2015; Cavole et al., 2016; McCabe et al., 2016; Di Lorenzo and Mantua, 

2016; Smale et al., 2019; Smith et al., 2022 ).  El Niño events and MHWs are expected to increase in 

frequency and duration (Frölicher et al., 2018; Oliver et al., 2021), in turn, such trends could reduce 

primary productivity, impact the foraging success of many species (Di Lorenzo et al., 2005; Cai et al., 

2014), and consequently drive major changes in the food web structure (Ruiz-Cooley et al., 2017, 

2024). Quantifying changes in primary production and carbon fixation through photosynthesis in 

response to environmental variation is essential for understanding ecosystem productivity and the 

state of food webs (Boyce et al., 2010; Cavole et al., 2016). 

In the SCB, phytoplankton abundance and species composition vary seasonally, inter-annually, and on 

interdecadal timescales showing remarkable shifts between anomalously warm and cold climatic 
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events (Kim et al., 2009). Separating the environmental impact of ENSO from those of other 

interannual environmental variations is challenging, as the intensity and timing of El Niño and La Niña 

(cold phase) vary over time within the highly complex CCS (Ware, 1995). Anomalous high sea surface 

temperatures (SST) and a reduction in the intensity of coastal upwelling induce a deeper thermocline, 

lower nutrient availability at the surface, which results in lower phytoplankton abundance (Kudela & 

Chavez, 2000). During these anomalous warm conditions, picophytoplankton (cells of < 2 μm in 

diameter) tend to dominate the phytoplankton community. In contrast, microphytoplankton (cells of 

> 20 μm in diameter; mainly diatoms and large dinoflagellates) favor higher biomass during cold 

conditions, i.e. La Niña, due to increased nutrient availability driven by intense upwelling (Masotti et 

al., 2011; Marañon et al., 2012). Spring to early summer is the most productive season of the year as 

pulsed upwelling and increasing daylight hours trigger phytoplankton blooms that sustain coastal food 

webs (Checkley & Barth, 2009). Hence, temporal variability in the phytoplankton community and 

primary production has critical implications for food web length, energy transfer efficiency, carbon 

sequestration, and ecosystem resiliency (Schlenger et al., 2018). However, quantifying these changes 

over time, particularly the fraction of organic carbon that enters and moves through pelagic food webs, 

remains challenging. 

In marine ecosystems, stable isotope analysis (SIA) of carbon (δ13C) is widely used to investigate carbon 

cycling processes. Across ecosystems, the δ13C values provide information about the origin of primary 

sources and transformations of inorganic and organic carbon (Peterson & Fry, 1987). The δ13C of 

particulate organic carbon (POC) from the euphotic zone is heavily influenced by phytoplankton since 

dissolved CO2 is used during photosynthesis (Jo et al., 2021). In the surface ocean, the δ13C values of 

dissolved inorganic carbon (DIC) range from 0.5‰ to 2.5‰ (Gruber et al., 1999) while those of 

particulate organic carbon (POC) range from -19 to -26‰ across a broad latitudinal gradient (Goericke 

& Fry, 1994). In deeper waters δ13C DIC values become lighter due to the remineralization of 

isotopically light POC that sinks from the surface (Tagliabue & Bopp, 2008). Regarding δ13C POC values 

are on average 1.4‰ lower than those observed in the upper euphotic zone (Close & Henderson, 

2020). 

These variations are the result of isotopic fractionation driven by external inputs and outputs, and 

biological activity (Tagliabue & Bopp, 2008). During photosynthesis, isotopic fractionation (εp) varies 

from 5‰ to 27‰, which depends on the concentration of aqueous CO₂, intracellular CO₂ levels, cell 

wall permeability, cellular carbon uptake, and metabolic pathways (Raven & Johnston, 1991; Laws et 
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al., 1995, 1997; Rau et al., 1996; Popp et al., 1998, 1999). Spatial and temporal variation in POC δ13C 

values is associated with shifts in temperature, light, CO2 concentrations, nutrient availability, growth 

rates, and community composition (Descolas-Gros & Fontugne, 1990; Rau et al., 1991; Sachs et al., 

1999; Burkhardt et al., 1999). The resultant POC δ13C values reflect the environmental conditions under 

which carbon fixation occurred during photosynthesis (Farquhar et al., 1982). 

Humans have altered the global carbon cycle, and the isotope ratios of atmospheric CO2 (Gruber et al., 

1999). The increase in CO2 emissions, since the Industrial Revolution, mainly due to the burning of 

fossil fuels and deforestation (Keeling et al., 1989), has caused a global decrease in δ13C values in the 

atmosphere and consequently in the ocean, a phenomenon known as the Suess effect (Gruber et al., 

2002). In 1860, the decline in δ¹³C DIC was about 0.07‰ per decade, but from 1970 it accelerated to 

0.18‰ per decade, or about 2.6 times faster (Sonnerup et al., 1999). Overall, the oceanic Suess effect 

represents approximately 65% of the observed variation in atmospheric CO₂ δ13C (0.27‰ per decade; 

Tagliabue & Bopp, 2008). 

These anthropogenic CO2 emissions have caused ocean acidification and changes in the ocean's 

general circulation, resulting in a severe negative impact on marine ecosystems (Hoegh-Guldberg et 

al., 2007; Breitburg et al., 2018). Acidification processes drive coral bleaching and biodiversity loss, 

which directly and indirectly affect fish populations, animal migration patterns, reproductive success, 

global fisheries, and food security (Caldeira & Wickett, 2003; Hoegh-Guldberg & Bruno, 2010). In this 

context, the biological pump is of great importance to sequester carbon from the atmosphere to the 

deep ocean (Ducklow et al., 2001; Volk & Hoffert, 2013). Phytoplankton assimilate CO₂ through 

photosynthesis to create organic matter. When phytoplankton cells die, some of their carbon-rich cell 

fragments sink to deeper ocean layers as marine snow, effectively removing CO₂ from the atmosphere. 

As this particulate organic matter (POM) descends, it is further utilized by heterotrophs in the water 

column before accumulating in the sediments, where carbon can be stored for long periods (Longhurst 

& Harrison, 1989). The proportion of phytoplankton biomass that enters marine food webs through 

animal consumption and is transferred to top predators can reveal how carbon sources have varied 

over time and help to identify the environmental factors driving these changes. 

The phytoplankton community represents the base of pelagic food webs, and their δ13C values are 

considered baseline values, as they reflect the fixed carbon sources within a specific geographic area, 

time, and environmental conditions (Rau, 1991; Goericke & Fry, 1994).  These δ13C baseline values are 
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integrated by primary consumers through their diet and are subsequently transferred through the food 

web.  In a local community, the δ13C values in bulk tissue of consumers typically increase by 0.5 to 1‰ 

with each trophic level (DeNiro & Epstein, 1978). Therefore, δ13C values in bulk of animal tissues 

(including those of top predators) integrate and reflect information from the primary producers 

supporting the food web and their diet over a period that depends on the specific tissue analyzed 

(Tieszen et al., 1983). These values can reveal the carbon sources and pathways of energy and 

elemental flow through marine food webs (Hobson et al., 1994). In cetaceans, the skin is the most 

readily accessible tissue for sampling free-ranging individuals, and its turnover rate is on average 70 

days (Hicks et al., 1985). The δ13C and δ15N in the odontocete skin reflect information for a period of 

three months to potentially six months prior to sampling (Hicks et al., 1985; Browning et al., 2014; 

Ruiz-Cooley et al., 2014).  Nevertheless, δ13C in bulk tissues (bulk SIA) often lacks source specificity due 

to variable isotope discrimination and shifts in primary producers across space and time (McClelland 

& Montoya, 2002, Post, 2002). This limitation can hinder the interpretation of results, especially when 

baseline variability has not been characterized. 

To address these limitations, δ13C of individual amino acids (AAs) measured in animal tissues can 

effectively separate baseline variability from dietary effects (McClelland & Montoya, 2002; Popp et al., 

2007; Chikaraishi et al., 2009). The δ13C of AAs are grouped into essential AAs (EAAs, which cannot be 

synthesized by animals and must be obtained from the diet) and nonessential (NEAAs; that can be 

synthesized by animals) (McClelland & Montoya, 2002; Schmidt et al., 2003; Larsen et al., 2013). The 

δ13C values for EAAs reflect primary producers´ values, which can be detected in consumers from any 

trophic position (Larsen et al., 2013; Ohkouchi et al., 2015), including marine top predators (Newsome 

et al., 2010; Larsen et al., 2013; Ruiz-Cooley et al., 2014). As a result, the carbon backbones of EAAs 

serve as powerful tracers of primary producers, as δ13C EAAs values remain largely conserved as they 

are transferred from producers to apex predators (Larsen et al., 2009; Ohkouchi et al., 2015). However, 

not all EAAs have the same δ¹³C values, because AAs are synthesized through different metabolic 

pathways (such as glycolysis, the tricarboxylic acid (TCA) cycle, or the pentose phosphate pathway), 

which build their carbon skeletons (Brett et al., 2017). Additionally, phylogenetic differences among 

primary producers exist, which include variations in how they fix inorganic carbon (CO₂ or HCO₃⁻), and 

different AAs concentrations depending on the needs of specific phytoplanktonic communities 

(Kolmakova & Kolmakov, 2019), which influence their δ13C values. Consequently, variations in AAs 

isotopic values reflect both the biosynthetic pathways of individual AAs and the environmental 

conditions regulating photosynthesis. 
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Because consumers integrate these δ13C baseline values into their tissues through diet, predators serve 

as natural biological samplers of their environment (Ruiz-Cooley et al., 2014). They can reflect 

variability in both baseline values and trophic dynamics across space and time (Ruiz-Cooley et al., 

2017).  In the offshore CCS, sperm whale skin samples revealed a 3‰ decline in essential amino acid 

δ¹³C values from 1993 to 2005, pointing to rapid changes in the phytoplankton assimilation (Ruiz-

Cooley et al., 2014). While the Suess effect accounts for part of this decline (~0.2‰ per decade since 

1960, Francey et al., 1999), additional factors, such as shifts in the phytoplankton composition or 

altered nutrient dynamics, are likely contributors. In the SCB, Ruiz-Cooley et al. (2017) documented 

high variability in δ¹⁵N values of source- and trophic- amino acids using the short-beaked common 

dolphin (Delphinus delphis), as the ecosystem indicator, revealing a strong response of pelagic food 

webs to oceanographic disturbances as ENSO and climate change. 

In the present study, we quantified δ¹³C values from bulk tissue and individual AAs of the same 

predator, D. delphis, previously measured by Ruiz-Cooley et al. (2017) to reconstruct inter-annual 

changes in the carbon sources in the SCB. Specifically, δ13C values of EAAs produced by the 

phytoplankton community, where D. delphis forage, from 1991 to 2008, were analyzed. Because the 

carbon cycle has a central role in biogeochemical cycling, climate, and greenhouse CO2 in the 

atmosphere (Falkowski et al., 2000), tracking interannual variation in the δ13C values of EAAs has 

important implications for understanding how shifts in primary production influence the SCB food web 

over time. Because temperature, dissolved inorganic carbon, coastal upwelling, and primary 

productivity are key drivers of the marine carbon cycle (Rau et al., 1996; Tagliabue & Bopp, 2008; Wu 

et al., 2019), we can evaluate their relative influences on temporal variability in δ¹³C values of dolphin 

EAAs. This study provides a novel perspective on how long-term oceanographic variability and shifts in 

phytoplankton community composition are recorded in the δ¹³C of EAAs in dolphins, offering new 

insights into the role of top predators as sentinels of ecosystem change in the CCS. 

1.1 Hypothesis  

Temporal variability in δ¹³C values of EAAs in dolphin skin reflects environmental changes in the 

Southern California Bight. Lighter δ¹³C EAAs values are expected during cold, productive periods 

characterized by high chlorophyll a concentrations and strong upwelling. During these times, CO2 

exchange between the atmosphere and ocean is enhanced and mixing with subsurface waters that 
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have depleted δ¹³C DIC values due to remineralization as depth increases. Therefore, phytoplankton 

incorporates lighter carbon isotopes into their biomass, which is then reflected in the δ¹³C values of 

EAAs in dolphins. In contrast, heavier δ¹³C EAAs values are expected during warmer periods with weak 

upwelling and a stratified water column. 

1.2 Objectives 

1.2.1 Main objective 

Evaluate interannual variability from 1990 to 2008 of δ13C values of essential amino acids from 

common dolphins (Delphinus delphis) as indicators of changes in carbon fixation in relation to 

temperature, phytoplankton productivity, dissolved inorganic carbon, and coastal upwelling transport 

index in the Southern California Bight. 

1.2.2 Specific objectives 

Analyze time series of temperature, primary productivity (using Chl-a as proxy), dissolved inorganic 

carbon, and coastal upwelling transport index from 1990 to 2008 in Southern California Bight and 

describe patterns of variation. 

To assess how environmental variability influences the δ¹³C values of essential amino acids in dolphin 

skin and evaluate their potential as indicators of isotopic values produced by the phytoplankton 

community. 
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Chapter 2. Methodology 

2.1 Study area 

The Southern California Bight (Figure 1) is a region that includes coastal southern California, the 

Channel Islands, and the local portion of the Pacific Ocean. This region is influenced by the California 

Current (CC), the California Undercurrent (CU), and the Southern California Countercurrent (SCC) 

(Hickey, 1979). 

 

Figure 1. Map of Southern California Bight and sampling sites of Delphinus delphis represented with white dots; 
black crosses represent CalCOFI stations. 

 

The study area is delimited by the coordinates 32 and 34.5 °N and 121 and -117 °W. This quadrant 

comprises 29 stations where CalCOFI conducts samplings four times a year (black crosses in Figure 1). 
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2.2 Sample collection 

Skin samples of common dolphins (Delphinus delphis, n = 213) were collected from incidentally killed 

individuals from the drift and small mesh gillnet fisheries in Southern California Bight from 1990 to 

2008 (Figure 2).  These samples were previously analyzed by Ruiz-Cooley et al. 2017 and 2021, who 

focused on nitrogen and carbon isotope analysis of bulk tissue and δ¹5N of individual AAs. It was 

observed that females and males as well as adults and juveniles did not show differences in the isotopic 

niches of δ¹³C and δ¹5N, therefore, it is proposed that due to being highly social, they share the same 

habitat and feed on similar prey, in addition to recognizing intraspecific cooperative behavior as a 

feeding success strategy (Ruiz-Cooley et al., 2021). Based on this, it was decided to eliminate the 

offspring since they are isotopically different due to their dependence on maternal milk, and the 

analysis is focused on animals that feed on the ecosystem. Unpublished isotopic carbon data of 

individual amino acids from Ruiz-Cooley were used in the present study.  

2.3 Bulk Carbon Stable Isotope Analysis  

Of the 213 dolphin samples, 35 originating from calves were excluded, so data from adults were used, 

as they consume epipelagic and mesopelagic prey in the SCB and integrate primary producer values 

from the habitat where this species forages. Evidence from stomach content analysis revealed that the 

diet of D. delphis in SCB is dominated by squid, with Abraliopsis spp. as the most important prey, 

followed by Gonatus spp. Lanternfishes (Myctophidae) are also significant, with seven species among 

the top twelve prey items. Most other fish, including coastal pelagics as Pacific hake, jack mackerel, 

Pacific saury, northern anchovy, Pacific mackerel, and sardine, were of minor importance (Preti, 2020). 

The δ13C values were quantified in 178 samples of bulk skin from different adult dolphin individuals. 

All samples were stored frozen without any preservative at – 20°C. Skin tissue samples were lipid 

extracted with petroleum ether using the accelerator solvent extractor (ASE system). Skin samples 

were analyzed by using an isotope ratio mass spectrometer (IRMS, Thermo Finnigan Delta Plus), and 

δ13C from bulk skin tissues was obtained for each sample. Isotope ratios are expressed in standard 

notation (equation 1): 
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 δ13C = [(Rsample/Rstandard)-1] X 1000 (1) 
 
 

  

where Rsample is the ratio of 13Csample/12Csample and Rstandard is the ratio of 13Cstandard/12Cstandard (Vienna Pee 

Dee Belemnite (VPDB) is the international standard for carbon).  

2.4 Carbon CSIA of Amino Acids 

From the set of bulk tissue samples, a total of 30 samples were randomly selected for compound-

specific stable isotope analysis (CSIA) of individual amino acids AAs. The δ¹³C values of individual AAs 

were quantified from 30 skin samples from 1990 to 2008 (two samples per year, except for 1990, 1992, 

1994, 1999, 2001, 2004, 2006, 2007 with only one sample). EAAs and NEAAs were quantified following 

modified established protocols (Styring et al., 2012; Walsh et al., 2014). 

Concisely, 2 mgs of lyophilized and well-homogenized skin tissue were dissolved in 6N HCl, placed into 

amber vials, flushed with N2, sealed, and hydrolyzed in an oven at 150 °C for 70 min. Samples were 

dried at 60 °C under a gentle flow of N2, the remaining solids were re-suspended in 0.4 M HCl and 

stored at -20 °C until derivatization. Prior to derivatization, an internal reference material, L-

norleucine, dissolved in 0.4M HCl, was added to the hydrosylates, followed by methanol and pyridine. 

Finally, methyl chloroformate (derivatizing reagent) was added, and the solution was vortexed for 30 

seconds. After ten minutes, chloroform was added and vortexed again. The organic layer was removed, 

dried over sodium sulfate, and re-suspended in chloroform prior to analysis.  

The δ13C values were measured by gas chromatography-combustion isotope-ratio mass spectrometry 

(GC-C-IRMS). CSIA of AAs was performed on a Thermo Trace gas chromatograph coupled to a Delta V 

Advantage IRMS via a GC IsoLink combustion interface (Thermo Electron, Bremen, Germany). During 

measurement, provisional values were calculated by comparison to a pure reference gas (N2). Each 

sample was run twice to observe variability among chromatograms and obtain individual AAs δ13C 

values.  
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2.5 Environmental variables 

Time series of environmental variables were constructed to evaluate patterns of temporal variation in 

δ¹³C values of EAAs in relation to changes in the environment. We selected four environmental 

variables that are likely to influence the isotopic variation of EAAs: water column temperature, primary 

productivity (Chl-a as a proxy), dissolved inorganic carbon (DIC) concentration, and a coastal upwelling 

transport index (CUTI). 

2.5.1 Temperature 

Sea water column temperature (°C) data were obtained from the CalCOFI database available at: 

https://calcofi.org/data/oceanographic-data/bottle-database/, download date: February 2025. The 

temperature was averaged from 0 to 50 m depth at each station (one data point every 10 m). This 

average value represents the first 50 m of the euphotic zone, considering that the deep chlorophyll 

maximum (DCM) typically occurs around 30 meters depth (Chow et al., 2013). This depth encompasses 

the peak phytoplankton biomass within the euphotic zone, providing a meaningful approximation of 

the thermal conditions relevant to primary production. The values from all stations for that cruise were 

then averaged (a value representative of the season, since only four CalCOFI cruises are made per 

year). 

2.5.2 Chlorophyll a (Chl-a) 

Chl-a concentration (µg/L) data were obtained from the CalCOFI database available at: 

https://calcofi.org/data/oceanographic-data/bottle-database/, download date: February 2025. Chl-a 

was measured fluorometrically in seawater samples collected at CalCOFI stations. Seawater is collected 

from various sampling depths using 10-liter Niskin bottles attached to a 24-place CTD-Rosette frame. 

The Chl-a concentration was averaged from 0 to 50 m depth at each station (one data point every 10 

m). The values from all stations for that cruise were then averaged (a value representative of the 

season, since only four CalCOFI cruises are made per year). 
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2.5.3 DIC (Dissolved Inorganic Carbon) 

DIC data were obtained from the CalCOFI database (https://calcofi.org/data/oceanographic-

data/dic/). There is no complete record for our study period; data are available from 1990 to 1993 only 

for station 90.70 from the CalCOFI, and an average value from four stations for 2008 (sampling depth 

~10 m). There is another station outside our study area (i.e., 90.90), which is more oceanic, but has 

DIC data from 1990 to 2001. Therefore, we decided to incorporate this information as no other data 

was available. For the years 2002 to 2007, no records exist. The missing data were modeled as a 

function of water temperature using a Bayesian approach. For more details on how the missing values 

were calculated, see Appendix B. 

2.5.4 Upwelling Index (CUTI) 

The Coastal Upwelling Transport Index (CUTI) quantifies the total volume of water being upwelled or 

downwelled over a specified period, reflecting the vertical volume flux entering or exiting the surface 

mixed layer (units: volume of vertical transport per second per meter of coastline). CUTI measures the 

total vertical movement of water through the base of the mixed layer by combining two processes: 

Ekman and geostrophic transport. Ekman transport is driven by alongshore winds and wind stress curl, 

which causes surface waters to spread apart or converge, leading to vertical flow. Geostrophic 

transport results from pressure gradients along the coast that move water across the shore, also 

contributing to vertical movement. Together, these processes determine the overall vertical flux of 

water in the system. CUTI data are available at a 1˚ spatial resolution along the U.S. West Coast (31–

47˚N; Jacox et al., 2018), with each grid cell extending 75 km offshore. For this study, we used data 

from the 33˚N bin, which aligns with the center of our study region. CUTI database is available at: 

https://mjacox.com/upwelling-indices/, download date: February 2025. 

2.5.5 Interpolation of environmental data 

To obtain a continuous daily series of environmental variables, a linear interpolation was performed 

on the observed data for temperature, chlorophyll concentration, upwelling index (CUTI), and 

dissolved inorganic carbon (DIC). To do this, a daily sequence of dates was generated, spanning from 
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the first to the last available record (07-1989 to 10-2008, 87 records). Subsequently, the approx() 

function in R (R Core Team, 2024) was used to interpolate the values of each variable on the intervening 

days between observations. This method assumes a linear change between successive measurements 

and allows for the construction of a time series with daily resolution, which facilitates the subsequent 

analysis of trends, seasonality, and relationships with the δ¹³C values of the dolphin samples. 

2.5.6 Time lag  

The transfer time required for carbon isotopic ratios from primary producers to transfer through the 

food web to dolphins is not precisely known but is estimated to range from 4 to 5 months. Additionally, 

the isotopic half-turnover time in dolphin skin tissue is 24.16 ± 8.19 days (Giménez et al., 2016). 

Therefore, on average, the isotopic signal is integrated over approximately 5 to 6 months from the 

base of the food web to the dolphin's skin. Consistent with this estimate, Ruiz-Cooley et al. (2017) also 

found that a 6-month lag provided the best predictor of the isotopic signal in historical data. 

Considering this, the average daily values of the environmental variables from the prior 5 to 6 months 

to the dolphin sampling date were calculated, starting from the dolphin sampling date. That is, a 

monthly average value for each of the environmental variables was assigned to each of the dolphin 

samples, which were subsequently compared with the isotopic values of the amino acids in each 

sample. Most dolphin samples were collected in winter, so applying the 5-6-month lag to the 

oceanographic variables corresponds to summer oceanographic conditions. 

2.5.7 Anomaly calculation 

To evaluate interannual variability in environmental conditions, monthly anomalies were calculated 

from an 18-year daily time series. Daily values were first aggregated into monthly means. A long-term 

monthly climatology was then created by averaging each calendar month for the entire 18-year period. 

Calculating anomalies reveals how much a variable´s value in a specific month deviates from its long-

term average for that month, allowing us to identify unusual variations or atypical events. Anomalies 

were obtained by subtracting the corresponding monthly climatological mean from each monthly 



13 

mean (equation 2), effectively isolating deviations from typical seasonal conditions and highlighting 

anomalous environmental events. 

 A = Mmean – C (2) 

 

where A = anomaly; Mmean = monthly mean (month of our interest); C = Climatology (monthly mean of 

the entire time series), that is, the average of all the Januaries, or all the Febuaries over the 18-year 

time series, depending on the month of interest. 

2.5.8 Database 

A database is created with the 29 dolphin samples, their respective isotopic values of EAAs, and values 

of environmental variables for that day and the corresponding anomaly. 

2.6 Statistical analysis 

Descriptive statistical analyses of bulk and essential amino acid δ¹³C values, along with environmental 

variables, were conducted in RStudio version 4.4.0 (R Core Team, 2024) to characterize the dataset. 

Normality and homogeneity of variances were assessed using Shapiro–Wilk and Bartlett tests, 

respectively. Boxplots were generated to visualize isotopic variation and compare patterns among 

amino acids. Pearson correlation matrices were then used to quantify the strength and direction of 

linear relationships, providing an overview of potential associations between δ¹³C values of EAAs and 

environmental parameters, and guiding subsequent analyses. 

To investigate potential non-linear relationships, Generalized Additive Models (GAMs) were applied to 

assess the temporal response in δ¹³C EAAs values in relation to temperature, primary productivity, 

coastal upwelling, and DIC. GAMs extend traditional linear models by using smooth functions 

(“splines”) to capture complex patterns without assuming a predefined functional form, making them 

well-suited for ecological and oceanographic studies where relationships are often non-linear and 

influenced by temporal or seasonal dynamics.  
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Chapter 3. Results 

3.1 Bulk Carbon Isotope Analysis  

The δ13C values of 178 bulk skin tissues of Delphinus delphis from 1990 to 2008 ranged from -16.38 to 

-20.05 ‰, with an average of -18.27 ‰ (Figure 2). The lowest variability was observed in 1998 and 

2007, while the highest variability was found in 1991 and 2002 (more than 3‰). The data were 

normally distributed (n = 178, alpha=0.05, p>0.05) and homoscedastic (alpha=0.05, p > 0.05). An 

ANOVA was carried out to determine if there were differences between years. It was observed that 

there were no statistically significant differences between years (alpha=0.05, p>0.05). 

 

Figure 2. Boxplots of bulk δ13C of skin samples of common dolphins (Delphinus delphis, n=178) from 1990 to 
2008. 

3.2 Carbon Compound Specific Isotope Analysis of Amino Acids 

The δ13C values of 12 individual AAs were quantified from 30 skin samples of common dolphins (Ddel) 

collected from 1990 to 2008 (Table 3). One sample collected in 1994 was excluded from the analysis 

as it represented an outlier. The outlier identification was based on the interquartile range (IQR) 
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method with a threshold of 1.5 × IQR, implemented in R. Of the 12 quantified amino acids, five were 

NEAAs: alanine (Ala), aspartic acid (Asp), glutamic acid (Glx), glycine (Gly), and proline (Pro); and seven 

were EAAs: isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), valine 

(Val) and threonine (Thr).  

Glx, Gly, Lys Phe, and Thr did not exhibit a normal distribution (alpha = 0.05, p < 0. 05), and the data 

also violated homoscedasticity assumptions (alpha = 0.05, p < 0. 05). Therefore, the nonparametric 

Kruskal-Wallis test (analogue of one-way analysis of variance) was use to evaluate differences between 

groups (p = 2.2e-16). To identify where these differences occurred, the Wilcoxon test was used to 

perform pairwise comparisons between groups, with p-values adjusted for multiple comparisons using 

the Bonferroni method (see the matrix, Figure 10). 

These results can be visualized graphically in the boxplot (Figure 3). Panel A shows bulk values, and 

panels B and C show the boxplots of NEAAs and EAAs, respectively (descriptive statistics in Table 4). 

The δ13C values of individual AAs varied between -2.52‰ (Glx) to -30.42‰ (Phe). Regarding the δ13C 

NEAAs (panel B), these show more enriched values compared to the EAAs in general, except for Thr 

(an essential amino acid), which has the most enriched average of all AAs (mean=-5.37 ± 1.64‰), 

followed by Gly and Glx (mean=-7.44 ± 3.56‰ and mean=-8.47± 3.53‰, respectively). In fact, these 

three AAs did not exhibit statistically significant differences according to the Wilcoxon test (Figure 10), 

so we could say that Thr showed greater similarity to NEEAAs than with EAAs. Gly and Glx also are the 

NEAAs with the greatest variability in their values (range= 11.94 and 11.18 ‰, respectively). On the 

contrary, Pro is the AA that had the lowest variation among AAs (range= 1.96‰).  

Concerning the EAAs, Lys exhibited the highest variation (range= 10.34‰) and the second most 

enriched δ13C values (mean=-14.66 ± 3 ‰), only below threonine (mean= - 5.37‰). On the other hand, 

Val is the EAA with the lowest variation (range= 2.75‰), followed by Leu (range= 3.94‰). Phe is the 

AA with the most depleted values among AAs (mean=-26.12 ± 1.64 ‰), followed by Met (mean=-25.91 

± 1.47‰). There were no statistically significant differences between these two EAAs (Figure 10). For 

detailed information on the means, maximum and minimum values, standard deviation, variance, and 

range of each AAs, see Table 4. 
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Figure 3. Boxplot of stable isotope values δ13C of bulk and EAAs of skin samples of common dolphins (Delphinus 
delphis, n=29) from 1990 to 2008.  (A) Bulk δ13C; (B) The δ13C values of non-essential AAs: alanine (Ala), aspartic 
acid (Asp), glutamic acid (Glx), glycine (Gly), proline (Pro); and (C) The δ13C values of essential-AAs: isoleucine 
(Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), valine (Val), and threonine (Thr). 

3.3 Temporal Trends of EAAs 

A time series was constructed by plotting δ13C values of EAAs against sampling years to examine 

temporal patterns (Figure 11). To evaluate the general temporal trends in the δ¹³C values of EAAs, 

simple linear regressions were performed using year as the predictor variable (Figure 12). This 

approach allows us to assess whether each amino acid showed a significant increase or decrease over 

time. The goal was to identify long-term patterns of isotopic variation potentially linked to 

environmental or ecological changes.  

The linear regression analysis revealed distinct temporal patterns in δ¹³C values among the EAAs 

(Figure 12). Specifically, Lys, Met, and Phe showed statistically significant decreasing trends over time, 

indicating a gradual decline in their δ¹³C values. Conversely, Leu exhibited a significantly increasing 

trend. In contrast, Val, Thr, Ile, and the overall mean of EAAs did not demonstrate significant temporal 

trends. The adjusted R² values for these models were very low to moderate (Table 5), suggesting that 

while time explains part of the variation in δ¹³C values, other environmental or biological factors likely 

contribute substantially.  
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A smoothed trend line (using a locally weighted regression, or LOESS) was plotted to better visualize 

short-term fluctuations and non-linear patterns in δ¹³C values over time (Figure 4). This allowed for a 

more detailed examination of potential variations not captured by the linear model.  

Leu, Lys, and Phe had the most enriched δ¹³C values in 2002. Lys and Phe exhibited lower δ¹³C values 

after 2002; their most depleted δ¹³C values occurred in late 1998. Ile and Met exhibited similar 

patterns, with a positive peak in 1996 and a general trend toward lighter values thereafter; however, 

this shift was more pronounced in Met. Thr did not show a clear trend, although the notably low values 

in 1997 and 2004 stood out. Val also showed no clear temporal pattern. 

Regarding the ranges of variations, notable differences among AAs were evident. Val exhibited the 

least variation, fluctuating by only 2‰ throughout the time series, while Lys showed much greater 

variability, with fluctuations of up to 10‰. The remaining EAAs displayed intermediate variability, 

ranging between 3‰ and 6‰. All AAs δ¹³C values were plotted using a uniform y-axis scale of 8‰, 

except for Lys, for which this was not feasible due to its high variability. 

Figure 4. Time series of δ13C values for each EAA in skin samples of common dolphins (Delphinus delphis) from 1990 
to 2008. A smooth tendency blue line was added. The gray shade represents the 95% confidence interval. Every black 
dot represents the dolphins' capture date. 
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3.4 Environmental variables 

Time series of temperature (average value from 0 to 50 m depth), and primary productivity (using Chl-

a as a proxy, average value from 0 to 50 m depth), dissolved inorganic carbon (DIC) and the coastal 

upwelling transport index (CUTI) were constructed to understand patterns of temporal variation in 

δ13C values of EAAs of common dolphin’s skin samples in relation to changes in the environmental from 

1990 to 2008 (Figure 5). Each panel presents the monthly anomalies of a given variable, calculated 

relative to the long-term climatological mean (indicated by the dashed horizontal line at zero). This 

approach emphasizes deviations from baseline conditions, enabling the identification of interannual 

to decadal variability and potential regime shifts. 

Column water temperature anomalies exhibit moderate interannual variability throughout the study 

period. The most pronounced positive anomaly occurs around 1998–1999, exceeding +2.5 °C and 

reflecting a strong warming event associated with a major El Niño. Before this, temperature anomalies 

fluctuated modestly around the mean. After 2000, most years show negative anomalies. For Dissolved 

Inorganic Carbon (DIC), a pronounced negative phase is observed from 1991 to 1994, with anomalies 

dropping below −10 µmol/kg. A recovery phase began in the mid-1990s, transitioning to 

predominantly positive anomalies after 1999. From 2000 onwards, DIC has remained consistently 

above the long-term average. At first glance, an inverse relationship between temperature anomalies 

and dissolved inorganic carbon can be detected. To determine the strength of this relationship, a linear 

regression was performed with an R2 of 0.28 (Figure 13).  

This indicates a significant, but not very strong, linear relationship. Regarding primary productivity, 

Chl-a concentrations display negative anomalies from 1990 to 1994, followed by a slight increase from 

1995 to 1997. Two major peaks are evident, one in 1999 and another around 2001. From 2000 

onwards, Chl-a has remained consistently above the mean in most years.  

The CUTI series reflects short-term oceanographic dynamics and appears less influenced by long-term 

trends compared to the other variables, although it may indirectly contribute to observed variations 

in DIC and Chl-a. 
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Similar to the previous graph, Figure 6 presents temporal trends in environmental variables, but this 

time includes a six-month lag, along with δ¹³C values of Phe and the average δ¹³C values of Phe, Met, 

Leu, and Lys. Each point corresponds to the date of dolphin capture. The δ¹³C trend for Phe closely 

mirrors that of the average for Phe, Met, Leu, and Lys of δ¹³C values. The pattern reveals a slight 

enrichment in δ¹³C after 2000, followed by a sharp decline around 2003–2004, and then consistently 

lighter values through 2008.  

Figure 5. Time series of environmental variables. Data on temperature, Chl-a, and DIC were obtained from the 
CalCOFI database available at https://calcofi.org/data. Data of CUTI were obtained from 
https://mjacox.com/upwelling-indices. Solid lines represent monthly anomalies of a given variable, calculated 
relative to the long-term climatological mean. Abbreviations: dissolved inorganic carbon (DIC), coastal upwelling 
transport index (CUTI). 
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Figure 6. Time series of environmental variables, same as Figure 5 but including 5-6 months lag and δ¹³C values 
of phenylalanine and δ¹³C EAAs (mean of Phe, Met, Leu, and Lys δ¹³C values). Dots represent the dolphins' capture 
date. Data on temperature, Chl-a, and DIC were obtained from the CalCOFI database available at 
https://calcofi.org/data. Data of CUTI were obtained from https://mjacox.com/upwelling-indices. Solid lines 
represent monthly anomalies of a given variable, calculated relative to the long-term climatological mean. 
Abbreviations: dissolved inorganic carbon (DIC), coastal upwelling transport index (CUTI). 

3.5 Correlation matrix 

A Pearson correlation matrix was constructed using standardized data for all δ¹³C values of the EAAs 

and the environmental variables, as an initial step to explore their relationships (Figure 7). Four of the 
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seven EAAs showed a strong and significant correlation (r > 0.30) with dissolved inorganic carbon (Met, 

Phe, Ile, and Leu), while only methionine showed a correlation with the upwelling index. When 

comparing amino acids, lysine and phenylalanine showed the highest correlation (r = 0.80), followed 

by isoleucine with methionine (r = 0.74), and isoleucine with phenylalanine (r = 0.71). 

3.6 General Additive Models (GAM) 

To evaluate the nonlinear relationship between environmental variables and the δ¹³C values of EAAs, 

Generalized Additive Models (GAMs) were applied. GAMs are a flexible extension of linear models that 

allow for the modeling of non-linear relationships between a response variable and one or more 

predictors. For each amino acid, 12 GAM configurations were tested (see models in Table 6).  

The first five models included the amino acid as the response variable and each environmental variable 

separately, along with a time index representing the temporal structure of the data. The remaining 

models combined different environmental variables in various configurations. The results of each of 

the models were summarized in tables (Table 7). From these results, the amino acids that presented 

the best fit, given by the AIC and R2 values, were selected and presented in Table 1. 

Table 1. Best-Fitting GAM Models. 

AA AIC R2 

Phe 47 0.91 

Lys 102 0.85 

Leu 49 0.80 

Met 69 0.80 

Abbreviations: amino acid (AA), Akaike Information Criterion (AIC), and coefficient of determination (R2). 
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Figure 7. Correlation matrix between environmental variables and δ¹³C values of EAA.s. All data were standardized. 
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Subsequently, the average isotopic values of these four amino acids were calculated, and three GAM 

models were run (Table 2). 

Table 2. Summary of the General Additive Models in common dolphins δ¹³C EAAs mean from the Southern 
California Bight, U.S. 

Model Description AIC R2 

Model 1 mean ~ s(time_index)+ s(Temp.) + s(DIC) 73.5 0.73 

Model 2 mean ~ s(time_index)+ s(Temp.) + s(DIC) + s(Chl-a) 69.5    0.76      

Model 3 mean ~ s(time_index)+ s(Temp.) + s(DIC) + s(Chl-a)+ s(CUTI) 70.1    0.76      

Abbreviations: temperature (Temp), chlorophyll a (Chl-a), dissolved inorganic carbon (DIC), coastal upwelling 
transport index (CUTI), average of Phe, Lys, Leu, and Met δ¹³C values (mean), Akaike's Information Criterion (AIC), 
and coefficient of determination (R²). 

 

The best model is number 2, which includes the temporal index, temperature, dissolved inorganic 

carbon, and chlorophyll a. The model explains 76.3% of the variation of δ¹³C EAA mean. The most 

detailed summary of the statistical results of this model can be seen in Table 8. The model indicates 

that δ¹³C EAAs mean varies nonlinearly with time, temperature, and carbon, and linearly with 

chlorophyll. All these effects are statistically significant, suggesting that environmental variation in 

these variables significantly influences the isotopic values of EAAs. The estimated effect of each 

predictor on δ¹³C values is shown in Figure 8. The horizontal axis represents the observed range of each  

 

Figure 8. Resultant trends of δ¹³C EAAs mean in response to the effect of each environmental variable using 
General Additive Models, and assuming the other variables remain constant. 



24 

variable, and the vertical axis shows the expected change in δ¹³C EAAs mean in response to that 

variable, holding all other variables constant. The solid line is the GAM-fitted relationship, while the 

shaded band corresponds to the 95% confidence interval. 

The analysis of each predictor variable revealed distinct patterns in relation to the δ¹³C EAAs mean. 

The temporal trend, represented by the Time index, exhibited an inverted U-shape. The δ¹³C values 

increased slightly during the first half of the series (1990–1998), reached a peak around 1998, and then 

declined toward 2008. The narrow confidence interval indicates high certainty in this pattern, 

highlighting a significant non-linear temporal effect that may reflect changes in carbon sources or 

oceanographic conditions over time. 

Temperature showed a gentle, U-shaped relationship with δ¹³C, which is relatively weak. Within the 

13.5–15.5°C range, the effect was nearly flat or slightly negative, while above 16°C, the effect appeared 

to become positive, although with increasing uncertainty at the extremes. This suggests a subtle, non-

linear influence of temperature, with a potential minimum around 15.8°C. Dissolved inorganic carbon 

exhibited a more pronounced U-shaped pattern. Negative effects on δ¹³C EAAs mean were observed 

until approximately 1995, after which the relationship shifted toward positive values. Intermediate DIC 

values tended to deplete δ¹³C, whereas extremely low or high values produced more positive effects. 

Chl-a displayed a clear negative linear relationship with δ¹³C EAAs mean. Higher Chl-a concentrations, 

which serve as a proxy for primary productivity, correspond to lighter δ¹³C values.   
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Chapter 4. Discussion 

4.1 Bulk Carbon Isotope Analysis 

Delphinus delphis typically follows a relatively constant distribution range, suggesting that the overall 

foraging areas remain relatively constant due to site fidelity and recurrent use of specific ocean zones 

(Ball et al., 2017). In the SCB, common dolphins use both coastal and oceanic regions based on visual 

sighting (Douglas et al., 2014; Henderson et al., 2014; Campbell et al., 2015). Hence, D. delphis 

integrates and reflects the isotopic composition of phytoplankton from this overall large region in 

Southern California, supporting the use of the CalCOFI data to investigate temporal trends.  Since δ¹³C 

in marine consumers primarily reflects primary producer values (Peterson and Fry, 1987), the lack of 

significant differences in bulk δ¹³C values of D. delphis skin between years suggests relative stability in 

the main carbon sources throughout the study period (1990–2008). 

This stability suggests that despite SCB being an ecosystem with high seasonal oceanographic 

variability, such as upwelling and interannual climate oscillations like ENSO (McClatchie, 2014), no 

drastic changes in phytoplankton isotopic composition occurred during the study period. This is 

consistent with previous observations showing no major variations in phytoplankton biomass or 

community structure (Venrick, 2012). Likewise, multidecadal records of zooplankton δ¹⁵N (commonly 

used to investigate variability in the nitrogen cycle despite accruing trophic effects) demonstrate that 

baseline values have remained constant over decades, with some fluctuations associated with specific 

climate anomalies (Ohman et al., 2012). For example, during the 1998 El Niño, a δ¹⁵N enrichment of 

approximately 2‰ was measured across all AAs and zooplankton groups, and values quickly returned 

to their previous values in 1999 during the La Niña event (Décima et al., 2013). 

Stable isotope analysis of carbon in bulk tissue, however, may fail to detect subtle interannual 

variations in the carbon source because it integrates the total isotopic signal of all compounds present 

in the tissue (proteins, lipids, and carbohydrates), without distinguishing among them or accounting 

for their different metabolic pathways (Post, 2002; Fry, 2006). This limitation is particularly relevant in 

dynamic marine environments, where short-term environmental shifts may not be captured in bulk 

tissue values. Conversely, the results of δ¹³C EAAs measured from predators resident from a given 
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ecosystem are expected to reveal carbon baseline shifts (Ruiz-Cooley et al. 2014) considering that EAAS 

can be synthesized only by primary producers (Larsen et al., 2013)  

4.2 Carbon CSIA of Amino Acids 

The δ¹³C values of EAAs and NEAAs were consistently distinct and exhibited substantial variability 

within each group (Figure 3). Overall, NEAAs tended to be more enriched in ¹³C than EAAs, in 

agreement with the general expectation that NEAAs reflect a mixture of primary production sources 

and metabolic routing from dietary carbon, whereas EAAs preserve the isotopic composition of the 

primary producers at the base of the food web (McMahon et al., 2010). An interesting exception to 

this general pattern was Thr, an EAA that exhibited the most enriched δ¹³C mean value among AAs, 

clustering isotopically with NEAAs rather than with other EAAs. Similar deviations for δ¹³C values of Thr 

have been reported in other marine consumers. Notably, in beluga whales, Thr δ¹³C values differed 

significantly between skin and muscle tissues, suggesting that tissue-specific turnover rates or post-

synthetic modifications may contribute to its enriched δ¹³C mean value (Matthews et al., 2024). These 

authors suggested that Thr should be used with caution in EAA studies due to its variable δ¹³C values. 

Recall, the biosynthesis of EAAs occurs exclusively in primary producers, and once transferred 

throughout the food webs, their δ¹³C values change very little (ΔC < 1‰) (DeNiro & Epstein, 1978). This 

stability has been confirmed in both controlled experiments and field studies across various systems, 

including algae–copepod–fish (Liu & Cai, 2017), sponge–sea slug (Takizawa et al., 2020), and penguin–

herring food chains (McMahon et al., 2015a). Therefore, the δ¹³C values of EAAs measured in dolphins 

should reflect the average value of the biosynthetic pathways of the original primary producers 

integrated over a period. The AAs isotopic fractionation patterns would depend on the characteristics 

of the phytoplankton community (e.g., composition, size, and biomass) and the environmental 

conditions under which carbon was fixed. 

Within the EAAs, Lys displayed the highest δ¹³C variability (up to 10 ‰), which may be linked to its 

distinctive metabolic routing. Because the carbon skeleton of Lys is routed through metabolic 

pathways with limited exchange into the central carbon pool (e.g., pyruvate or α-ketoglutarate 

intermediates; O’Connell, 2017), it may retain its original δ¹³C values from the phytoplankton 

community. Consequently, Lys may reflect shifts in the isotopic composition of primary producers 
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directly, and with greater amplitude, than other AAs whose carbon skeletons are more extensively 

scrambled through central metabolism. 

This is consistent with δ¹³C values of individual AAs in marine organisms because EAA, particularly Lys, 

Phe, and Thr, reflect δ¹³C values from autotrophs that supported the food web where animals feed 

(Larsen et al., 2020, Yun et al., 2022). Such δ¹³C values of EAAs are minimally influenced by animal 

metabolism and trophic steps, as demonstrated in controlled feeding experiments (McMahon et al., 

2015b; Liu & Cai, 2017). These patterns were confirmed in the field using complex samples from 

estuaries and samples of pelagic predators where the unique EAAs δ¹³C values allowed to discriminate 

the main carbon sources (Larsen et al., 2013). Therefore, the EAAs δ¹³C values quantified from each 

dolphin skin sample reflect a 6-month average δ¹³C value of the phytoplankton community prior to 

collection. These EAAs isotope values are expected to be sensitive to major ecological shifts in the 

physical environment (especially DIC, given that CO2 is essential for photosynthesis), nutrient regimes, 

and changes in the composition and biomass of the phytoplankton community.  

Val, Leu, and Ile exhibited much narrower isotopic variation (~ 3‰). These AAs are branched-chain 

EAAs (BCAAs) and are characterized by highly conserved metabolic pathways, which likely explain their 

relatively low variability compared to other EAAs (Takizawa, 2020). Phe and Met were the most 

depleted AAs, with no significant isotopic difference between them. This aligns with the well-

established role of Phe as a conservative baseline tracer that undergoes minimal trophic enrichment 

(Larsen et al., 2013; McMahon, 2015; Sabadel et al., 2019).  

The pronounced inter-AAs variability observed here likely reflects a combination of factors, including 

differences in metabolic routing among AAs and temporal shifts in the baseline δ¹³C of primary 

producers driven by environmental variability, which will examined in greater detail below. 

4.3 Temporal Trends of EAAs 

Time series of EAAs δ¹³C values varied interannually (Figure 4), except for Val, which was the only amino 

acid that showed no trend over time, with a variation range within 2 ‰. Some EAAs showed similar 

patterns among them, while others were distinct, suggesting that each AA responds differently to long-

term environmental variability. Because the EAAs δ¹³C values reflect the environmental conditions 
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under which carbon fixation occurred during photosynthesis (Farquhar et al., 1982), such 

heterogeneous patterns were expected considering that each EAAs follow different metabolic routes 

depending on its origin, structure, and function (Takizawa et al., 2020). Indeed, the LOESS smoothed 

trends (Figure 4) revealed pronounced non-linear fluctuations. 

Lys, Met, and Phe showed the greatest variation in δ¹³C values among AAs, therefore, the greatest 

response to environmental variability overtime (6 to 10 ‰). Thr, despite having a similar variation 

range to Met or Phe (6 ‰), did not show any trend. As such, no two EAAs showed the same pattern of 

variation, but they did share some similarities. For example, Phe, Lys, and Leu showed their most 

enriched values in 2002, a year in which an El Niño event occurred. This would be consistent with our 

hypothesis that during warm anomalies, higher δ¹³C values are expected due to a decrease in CO2 

solubility in seawater, higher water column stratification, and weak upwellings that influence the 

phytoplankton community to incorporate more 13C during carbon fixation.  

Met is another EAA that showed notable variation over the time series (6‰); however, its pattern of 

variation is distinct. Its highest enrichment occurred in December 1997, coinciding with an El Niño 

event, which had begun in June of that year, also consistent with our hypothesis. After this point, Met 

showed a clear trend toward lighter values. Ile shares a similar pattern to Met, but with smother 

isotopic shifts (3‰). 

Taken together, these results suggest that Phe, Lys, and Met, act as robust tracers of long-term 

baseline δ¹³C variability, while others, such as Val and Thr, appear less reliable for this purpose.  

Therefore, we use the temporal trends of δ¹³C, specifically of Phe, Lys, and Met, with concurrent 

environmental and oceanographic records to examine which and how key environmental drivers shape 

the isotopic trajectories.  

4.4 Environmental Variables Trends 

The environmental time series reveal patterns (Figure 5) consistent with the known oceanographic 

dynamics of the CCS during the study period (1990-2008). One of the most documented events due to 

its consequences was the 1997-1998 El Niño (Chavez et al., 2002), which is manifested in our time 

series with positive water temperature anomalies above +2.5 °C at the end of 1997. In line with this, 
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negative anomalies were observed in DIC and primary productivity (Chl-a) values. Subsequently, at the 

end of 1998, a drastic change was observed in all environmental series, coinciding with a La Niña event, 

where negative water temperature anomalies, positive DIC anomalies due to an increased CO2 

dissolution rate, as well as an increase in primary productivity were present. From this point on, it is 

observed that the temperature in most years remains with negative anomalies, while the DIC and 

primary productivity maintain positive anomalies. These temporal patterns coincide with multiple 

records that indicate a structural change in the environmental dynamics around 1999-2000, consistent 

with a regime shift in the CCS (Chavez et al., 2002; McGowan et al., 2003; Peterson & Schwing, 2003). 

This change is associated with the negative phase of the Pacific Decadal Oscillation (PDO), which is 

characterized by relatively cooler sea surface temperatures on the west coast of North America, 

causing similar conditions observed during La Niña events (Mantua et al., 1997; Mantua & Hare, 2002). 

Consistent with the oceanographic regime shift documented by Peterson and Schwing (2003), we 

observed (1) temperature anomalies transitioned from positive to predominantly negative values after 

2000, indicating a cooler average state; (2) DIC showed a clear phase change, with persistently positive 

anomalies after 1999, suggesting increased inorganic carbon availability in the water column; and (3) 

Chl-a anomalies rose consistently, remaining above the mean in most years after 2000. These results 

are consistent with intensified upwelling and greater nutrient supply in the region during the PDO cold 

phase. 

Although the CUTI primarily reflects short-term variability and does not exhibit a clear long-term trend, 

its indirect influence on phytoplankton may help explain the observed increases in both productivity 

and DIC. Taken together, the coherence among these variables supports the occurrence of an 

ecosystem regime shift in the late 1990s, with direct implications for baseline conditions influencing 

isotopic signals at higher trophic levels. 

4.5 Variability in EAAs δ¹³C values in response to environmental factors 

Because the EAAs δ¹³C values reflect the environmental conditions under which carbon fixation 

occurred during photosynthesis (Farquhar et al., 1982), they serve as reliable tracers of primary 

production dynamics across temporal and spatial scales, providing a record of baseline isotopic 

variability of the food web. The regime shifts in temperature, DIC, and primary productivity (Chl- a) 
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observed before and after 2000 (Figure 5) likely contributed to significant changes in the 

phytoplankton community (Venrick, 2002; 2012), which may help explain the overall higher mean δ¹³C 

values prior to 2000 and the lower values observed thereafter (Figure 4). 

To assess the effect of these large-scale environmental changes on the δ¹³C EAAs composition of 

dolphin skin, we next explored the statistical associations between δ¹³C values of Ess and the 

environmental variables. This analysis was conducted in two steps: first, by examining linear 

associations through a Pearson correlation matrix, and second, by applying GAMs to capture potential 

nonlinear responses. The correlation matrix (Figure 7) provided an initial overview of the associations 

between δ¹³C values of EAAs and environmental variables. Several AAs, including Met, Phe, Ile, and 

Leu, showed significant positive correlations with DIC, suggesting that variability in baseline carbon 

availability may be an important driver of isotopic values. Met exhibited a positive correlation with the 

upwelling index, reflecting its potential sensitivity to this index. Among AAs, strong pairwise 

correlations (e.g., Lys–Phe, Ile–Met) suggest similar sensitivity to environmental conditions. 

Because Pearson correlation only captures linear associations (Figure 7), it may overlook more 

complex, nonlinear relationships that are common in ecological and oceanographic systems. For this 

reason, the use of GAMs represents a critical step forward (Figure 8), as GAMs allow for flexible, data-

driven modeling of nonlinear patterns without imposing restrictive assumptions about functional form. 

The GAM (Figure 9) identified the best-fitting model as one that included time index, temperature, 

DIC, and Chl-a, collectively explaining 76.3% of the variation in the δ¹³C EAAs mean. This outcome 

underscores that isotopic variability cannot be attributed to a single environmental factor but rather 

results from the combined and potentially interacting effects of multiple drivers. Notably, the GAM 

framework detected nonlinear responses that were not evident in the correlation matrix alone, 

highlighting the added value of this modeling approach for capturing complex ecological dynamics with 

a nonlinear nature, offering a more ecologically realistic representation of the processes shaping EAAs 

δ¹³C variation. 

Assuming other variables remained constant, the estimated effect of temporal trend (with time index, 

as the predictor) followed an inverted U-shape (Figure 9), with δ¹³C values peaking around 1998 and 

declining thereafter until 2008. This peak coincides with the strong 1997–1998 El Niño, while the 

subsequent depletion in δ¹³C coincides with the regime shift of 1999–2000, which marked a transition 

toward cooler, more productive conditions. The progressive depletion in δ¹³C EAAs after 1998 suggests 
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that the phytoplankton community incorporated mainly 12C. The processes that may have contributed 

to this trend could be enhanced upwelling after the regime shift which likely increased the input of 

subsurface DIC, which is typically more depleted in ¹³C compared to surface waters. Changes in 

phytoplankton community composition could also contribute significantly to the observed shift. The 

presence of  large diatoms and the relative increase of dinoflagellates and smaller phytoplankton cells  

after 1999 (Venrick, 2012) may have contributed to lighter δ¹³C values, as smaller cells generally exhibit 

higher isotopic fractionation during carbon fixation (Burkhardt et al., 1999), and smaller phytoplankton 

cells were overall present during warm conditions like El Niño 1997-98 in the SCB (Venrick, 2012).  

The δ¹³C values of EAAs were overall stable from 13 to 15 °C but a pronounced U-shaped shift of ~3‰ 

was documented between 15 and 16.5 °C, indicative of an important threshold in the carbon cycle of 

the SCB (Figure 8). After 15 °C, the δ¹³C values decrease continuously with increasing temperatures 

until reaching ~ 16°C and became positive towards warmest extremes. This pattern was unexpected 

given that llighter EAAs δ¹³C values were expected during cold conditions since the CO2 exchange 

between the atmosphere and ocean tend to increase (Rau et al., 1997), hence, the availability of 12C 

also increase, that should induce lower δ¹³C values in the phytoplankton. The heavier EAAs δ¹³C values 

at the warmest temperature were consistent with our initial hypothesis considering that lower CO2 

dissolution occurs in the ocean followed by weak upwellings and higher water column stratification. 

Interestingly, the latter pattern was only observed at extremely warm temperatures. This pattern 

suggests that the carbon fixed by phytoplankton community between 13 and 15 °C remains relatively 

constant consistent with the average mean temperature value of 14.7°C ± 1.08 (SD) over the two 

decades of study in the SCB. However, the presence of the strong 1997-98 El Niño event, that induced 

temperature at 17 to 19 °C (Figure. B4), likely had major effects in the community composition and 

size of the phytoplankton, its physiology (e.g. light inhibition), and the biochemical processes involved 

in the creation of metabolites like AAs. 

The GAM results further highlight the strong influence of both DIC and Chl-a on δ¹³C EAAs variability 

(Figure 9), reflecting the interplay between carbon supply and biological demand. The partial effect of 

DIC exhibited a U-shaped response, with depleted δ¹³C values at intermediate concentrations (~1996 

mmol/kg) and enriched values at both low and high extremes. This non-linear pattern is consistent 

with physiological mechanisms of phytoplankton carbon isotope fractionation, where fractionation 

efficiency (εₚ ) depends on the balance between CO₂ availability and growth rate (Rau et al., 1997; 

Goericke & Fry, 1994; Laws, 1995; Burkhardt et al., 1999). At intermediate DIC, carbon is neither 
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limiting nor in excess, allowing cells to maximize fractionation and produce lighter isotopic signals (Rau 

et al., 1997). By contrast, at low DIC, carbon limitation constrains uptake, whereas at high DIC, rapid 

growth or reliance on bicarbonate via carbon concentrating mechanisms reduces fractionation, both 

resulting in enriched δ¹³C signatures (Raven & Johnston, 1991). 

Meanwhile, Chl-a had a consistent linear negative effect on δ¹³C EAAs mean, suggesting that periods 

of elevated primary productivity were associated with lighter isotopic values. This is in agreement with 

our hypothesis that periods of high productivity, driven by upwelling, are associated with lighter 

isotopic signals. This likely reflects the preferential uptake of isotopically lighter CO₂ by phytoplankton 

under conditions of elevated nutrient supply and gas exchange. These pulses are likely to coincide with 

changes in phytoplankton community structure, favoring smaller cells with larger surface-to-volume 

ratios, which are known to exhibit stronger fractionation (Burkhardt et al., 1999). 

After 2000, the phytoplankton community of the SCB underwent a drastic shift in taxonomic 

composition and bloom timing, although total chlorophyll biomass did not decline (Venrick, 2012). The 

seasonal peak shifted from spring to summer, accompanied by a sharp reduction in large diatoms 

(notably Chaetoceros spp.) and a relative increase in dinoflagellates and smaller phytoplankton cells. 

These changes suggest that while primary production levels remained relatively stable, the structure 

of the phytoplankton community was altered with direct implications for the use of CO2 during the 

photosynthesis process and AAs synthesis. 

The findings based on δ¹³C of EAAs in common dolphins complement previous work by Ruiz-Cooley et 

al. (2017), who analyzed δ¹⁵N of source AAs in the same dolphin time series to reconstruct temporal 

variation. The δ¹⁵N from these AAs reflects the nitrogen sources used by phytoplankton.  Source-AAs 

(N) and EAAs (C) both preserve the isotopic signal of primary producers, making them reliable tracers 

of baseline variability (Larsen et al., 2013; McMahon & McCarthy, 2016). They reflect shifts in nutrient 

sources of C and N and phytoplankton composition because they undergo little fractionation 

throughout the food web. Source-AAs δ¹⁵N values showed high interannual variability and reflected 

changes in nitrogen assimilation by primary producers. These source-AAs δ¹⁵N values were relatively 

higher after the 2000 regime shift indicative of higher NO3 assimilation or a higher influence of the 

underwater current that bring heavier δ¹⁵N NO3 values (Ruiz-Cooley et al., 2017), while our EAAs δ¹³C 

were lower after 2000. Therefore, we are finding an opposing response in the carbon and nitrogen 

cycles to the regime shift where the phytoplankton community is central to both biogeochemical 
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cycles.  These variability in δ¹⁵N source-AAs and our δ¹³C EAAs trend suggest that the post-2000 changes 

affected both the basal isotopic signatures of primary producers (as reflected in δ¹³C EAAs) and the 

vertical structure of the food web (as inferred from δ¹⁵N source AAs). This dual evidence underscores 

the sensitivity of common dolphins to ecosystem level changes, highlighting their role as sentinels that 

integrate both baseline and trophic processes within the SCC. 

The post-2000 restructuring of the phytoplankton community in the SCB, and its imprint on the δ¹³C 

values of EAAs in common dolphins, highlights the importance of local food web pathways in 

determining consumer isotopic signals. However, these coastal dynamics are embedded within 

broader, basin-scale processes that also affect offshore ecosystems. In this study, we detected a 

decline in δ¹³C values in common dolphins after 1999, a trend that is consistent with a previous study 

using δ¹³C EAAs from sperm whales (Physeter macrocephalus), that inhabits the offshore CCS (Ruiz-

Cooley et al., 2014). There a continuous decline in both δ15N and δ13C values was observed from 1993 

to 2005 with a total shift of 3‰ for δ¹³C EAAs. Similarly, we found that the δ13C EAAs mean showed a 

decline of 3.5‰ starting in 2002 (Figure 7); however, this trend was not continuous, with particularly 

slight lower values in 2004, followed by an enrichment towards 2007, and then a decline again to 

milder values in 2008 (Figure 7). On the other hand, when analyzing the trend for Lys individually, it 

showed a variation of up to 7‰ between 2002 and 2008, making it the AA with the greatest range of 

variation in our study and may be the most sensitive indicator of environmental variability. 

While both species exhibit isotopic depletion, the period and the magnitude of δ13 EAAs differ. This 

discrepancy suggests that the underlying mechanisms driving the carbon cycle are different for the 

offshore and coastal CCS, specifically the SCB. In the offshore CCS, sperm whales feed primarily on 

mesopelagic prey, which ultimately depends on primary production from the euphotic zone, among 

other biogeochemical processes that include bacterial degradation. The decline in δ¹³C values observed 

in sperm whale tissues was attributed to shifts in SST, nutrient supply, and phytoplankton community 

structure in the outer CCS (Ruiz-Cooley et al., 2014). Such patterns are consistent with regional 

evidence of long-term shifts in nutrient dynamics (Bograd et al., 2008), increased stratification and 

shoaling of the thermocline (Palacios et al., 2004), and basin-scale climate variability, PDO and El Niño–

Southern Oscillation (ENSO) (Chavez et al., 2002; Checkley & Barth, 2009).  

The magnitude of the δ¹³C decrease in sperm whales and dolphins EAAs exceeds what would be 

expected from the Suess effect alone (~0.2‰ per decade; Francey et al., 1999), indicating that regional 
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oceanographic processes amplify the global anthropogenic signal. The similarity in isotopic trajectories 

across these two distinct ecosystems suggests that δ¹³C depletion represents a pervasive regional 

signal, potentially driven by the combined influence of large-scale climate forcing and global carbon 

cycle perturbations. Comparable declines in δ¹³C have been reported in other marine systems and 

attributed to both the Suess effect and regional declines in primary productivity (Rau et al., 1989; 

Schell, 2001).  

Common dolphins inhabit coastal habitats strongly influenced by upwellings. Specifically, the SCB is 

highly dynamic given the influence of mesoscale eddies, seasonal upwelling, interannual variability 

(ENSO), and the interplay between the California Current and Countercurrent.  The decline observed 

in δ¹³C EAAs values of dolphins likely reflects shifts in phytoplankton composition, particularly the 

increase of smaller phytoplankton in the latter half of the study period, as well as the Suess effect, 

although the latter alone cannot explain the magnitude of change. Variability in the intensity and 

timing of coastal upwelling, as documented in previous studies (Venrick, 2012; Jacox et al., 2014; 

Bograd et al., 2015), plays a central role as well. Unlike the relatively homogeneous offshore habitat of 

sperm whales possibly dominated by nano and picophytoplankton, the coastal zone is characterized 

by strong spatiotemporal variability, which may result in more heterogeneous temporal isotopic 

responses as observed in zooplankton δ¹⁵N  values (Ohman et al., 2012), common dolphin δ¹⁵N  source 

AAs (Ruiz-Cooley et al. 2017), and δ¹³C EAAs of dolphins (this study).  

Taken together, the comparison between sperm whales and common dolphins underscores the utility 

of top predators as biological sentinels of ecosystem change (Ruiz-Cooley et al. 2014, 2017, Wiley et 

al., 2013) and provide a finer resolution in δ¹³C in AAs than using the bulk tissue. The consistent δ¹³C 

depletion across habitats provides robust evidence of ongoing alterations in the carbon cycle within 

the CCS, reinforcing the value of isotopic monitoring as a tool to detect and attribute biogeochemical 

change in marine ecosystems. 
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Chapter 5. Conclusions 

This study provides the first long-term reconstruction (1990–2008) of δ¹³C values in EAAs of common 

dolphins from SCB, revealing that these compounds act as sensitive tracers of baseline carbon fixation 

under changing environmental conditions. While bulk δ¹³C values of dolphin skin showed little 

interannual variation, δ¹³C values of individual EAAs, particularly Lys, Met, and Phe, displayed 

pronounced fluctuations that tracked major environmental changes. These patterns highlight the 

stronger capacity of EAAs compared to bulk isotopes to resolve subtle but ecologically meaningful 

shifts in phytoplankton carbon sources. 

The combined effects of DIC, Chl-a, and temperature indicate that δ¹³C EAAs variability in dolphins 

integrates the physiological responses of primary producers to environmental change. Lighter isotopic 

values emerge when DIC and productivity interact to maximize fractionation, particularly under high-

biomass conditions with intermediate DIC levels, whereas enriched signals occur under carbon 

limitation or during rapid growth with high DIC, when fractionation efficiency declines. These results 

underscore the value of δ¹³C EAAs as sensitive tracers of the balance between carbon supply and 

demand in the SCB. The post-2000 depletion of up to 3.5‰ far exceeded the expected atmospheric 

Suess effect, underscoring the dominant role of regional oceanographic processes in driving isotopic 

variability. This study demonstrates that common dolphins function as biological sentinels, integrating 

carbon cycle variability across decades and offering a valuable tool to monitor ecosystem change in 

dynamic coastal systems. 
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Appendix 

Appendix A 

Tables 

Table 3. Stable isotope values of individual EAAs in skin samples of common dolphins (Delphinus delphis) from 
1990 to 2008. 

Year Ile SD Ile Leu SD leu Lys SD Lys Met SD Met Phe SD Phe Val SD Val Thr SDThr 

1990 -19.4 0.52 -25.34 0.36 -13.52 0.59 -27.83 0.54 -25.27 0.77 -22.45 0.42 -8.10 0.69 

1991 -17.64 0.54 -24.4 0.25 -11.98 0.32 -24.89 0.61 -25.06 0.6 -21.79 0.41 -5.74 0.64 

1991 -17.89 0.19 -24.93 0.45 -13.36 0.47 -26.46 0.51 -26.08 0.12 -22.47 0.19 -6.41 0.25 

1992 -18.37 0.26 -25.07 0.39 -13.21 0.29 -25.43 0.02 -26 0.1 -22.01 0.44 -6.74 1.18 

1993 -17.55 0.35 -24.76 0.42 -13.16 0.44 -26.64 0.28 -25.04 0.09 -22.03 0.47 -5.17 0.61 

1993 -17.3 0.24 -24.29 0.16 -11.66 0.06 -25.9 0.16 -24.87 0.3 -21.59 0.34 -5.17 0.00 

1995 -17.28 0.85 -26.33 1.52 -17.82 2.03 -22.72 0.75 -25.17 0.77 -22.28 0.7 -5.10 1.99 

1995 -15.48 0.51 -25.9 0.16 -16.53 0.04 -23.68 1.01 -24.21 0.7 -21.48 0.31 -3.61 1.00 

1996 -17.44 1.38 -26.29 0.05 -17.74 1.28 -24.9 3.76 -25.5 0.29 -22.25 0.37 -9.54 3.48 

1996 -15.53 1.3 -24.56 2.05 -14.93 2.12 -22.57 1.44 -24.66 0.82 -21.27 1.16 -3.22 0.18 

1997 -17.47  -25.44  -16.31  -24.15  -25.69  -23.39  -4.11  

1997 -17.53 0.12 -25.26 0.44 -16.18 0.15 -25.12 0.48 -26.61 0.13 -21.86 0.25 -4.45 0.25 

1998 -19.92  -24.94  -21.31  -26.18  -30.42  -21.75    

1998 -17.66 0.52 -23.73 0.31 -12.83 1.08 -25.24 0.58 -25.01 0.4 -20.84 0.04 -4.41 0.28 

1999 -18.78 0.17 -23.8 0.14 -12.82 0.01 -27.1 0.79 -26.08 0.11 -21.43 0.22 -4.70 0.51 

2000 -17.41 1.35 -23.64 0.46 -12.52 0.57 -25.62 0.33 -25.27 0.2 -22.28 0.07 -6.28 0.56 

2000 -17.65 0.25 -23.51 0.11 -12.36 0.98 -26.27 1.15 -25.17 0.88 -21.65 0.95 -4.21 0.96 

2001 -17.5 1.86 -23.2 0.66 -12.12 0.34 -26.04 0.2 -25.03 0.14 -21.04 0.42 -4.07 0.29 

2002 -17.91 0.49 -22.39 0.62 -10.97 0.39 -25.53 0.32 -24.19 0.29 -20.64 0.1 -3.45 0.81 

2002 -16.81 0.13 -22.84 0.5 -11.1 0.85 -25.14 0.36 -24.8 0.07 -21.73 0.52 -3.94 0.94 

2003 -17.77 0.76 -23.25 0.74 -11.92 0.85 -25.56 0.15 -24.82 0.48 -21.93 0.28 -4.57 0.30 

2003 -17.29 0.35 -23.28 0.21 -11.98 0.6 -26.3 0.57 -25.29 0.08 -22.72 0.05 -4.46 0.26 

2004 -18.82 0.55 -25.86 0.41 -18.36 1.02 -26.61 0.74 -27.56 0.34 -22.9 0.39 -9.32 0.20 

2005 -18.48 1.17 -25.36 1.7 -18.64 4.16 -26.05 2.11 -28.48 3.28 -21.91 0.89 -6.07 0.06 

2005 -18.88 0.64 -24.05 0.98 -16.91 0.63 -28.93 0.38 -27.59 0.25 -21.54 0.74 -5.94 1.09 

2006 -18.43 1.12 -23.82 1.11 -16.82 1.19 -27.84 0.19 -27.74 0.89 -21.36 0.87 -5.23 1.55 

2007 -18.68 0.61 -24.71 1.35 -19.44 1.48 -27.24 0.9 -29.14 1.06 -23.06 1.49 -6.25 0.41 

2008 -18.08 0.93 -23.13 1.43 -17.58 0.42 -27.6 0.06 -27.95 1.13 -21.15 0.18 -3.45 0.44 

2008 -18.89 0.13 -23.78 0.61 -19.86 0.52 -27.88 0.09 -28.86 0.92 -22.46 0.21 -6.61 1.38 

Abbreviations: Standard deviation (SD), Isoleucine (Ile), leucine (Leu), Lysine (Lys), methionine (Met), 
phenylalanine (Phe), valine (Val) and threonine (Thr). 
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Table 4. Descriptive statistics of bulk and amino acid carbon stable isotope values. 

AA Mean Maximum value Minimum value Standard deviation Variance Range 

Bulk -18.331071 -17.08 -19.86 0.67504918 0.4556914 2.78 

Ala -15.479655 -13.81 -17.36 0.97217533 0.94512488 3.55 

Asp -15.257241 -12.65 -18.52 1.58568123 2.51438498 5.87 

Glu -8.4727586 -2.52 -13.7 3.53013547 12.4618564 11.18 

Gly -7.4427586 -3.1 -15.04 3.55788049 12.6585135 11.94 

Pro -14.592414 -13.57 -15.53 0.64773592 0.41956182 1.96 

Ile -17.856552 -15.48 -19.92 0.97017405 0.94123768 4.44 

Leu -24.408966 -22.39 -26.33 1.06423797 1.13260246 3.94 

Lys -14.963448 -10.97 -21.31 3.01697611 9.10214483 10.34 

Met -25.911034 -22.57 -28.93 1.48661011 2.21000961 6.36 

Phe -26.122759 -24.19 -30.42 1.63522366 2.6739564 6.23 

Val -21.905517 -20.64 -23.39 0.65661244 0.4311399 2.75 

Thr -5.368571 -3.22 -9.54 1.6455680 2.7078942 6.32 

Abbreviations: amino acid (AA), alanine (Ala), aspartic acid (Asp), glutamic acid (Glu), glycine (Gly), and proline 

(Pro)Isoleucine (Ile), leucine (Leu), Lysine (Lys), methionine (Met), phenylalanine (Phe), valine (Val) and threonine 
(Thr). 

 

Table 5. Summary of linear regressions of δ¹³C of EAAs. 

Amino 
Acid 

Slope 
(Estimate) 

Significance  
(p-value) 

Adjusted 
R² 

Temporal 
Trend 

Interpretation 

Phe -0.000455 0.002 0.277 Significant 
negative 

Clear decrease over time. 

Met -0.000338 0.014 0.173 Significant 
negative 

Moderate temporal decline. 

Lys -0.000604 0.033 0.126 Significant 
negative 

Weak but significant negative trend. 

Leu +0.000237 0.017 0.164 Significant 
positive 

Slight but significant increase over 
time. 

Val +0.000021 0.746 -0.033 Not significant No temporal trend detected. 

Thr +0.000088 0.584 -0.026 Not significant No temporal change detected. 

Ile -0.000132 0.157 0.038 Not significant Non-significant negative trend. 

EAA 
mean 

-0.000163 0.198 0.026 Not significant The average shows no clear trend, 
possibly due to cancellation. 

Abbreviations: essential amino acid (EAA), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), 

phenylalanine (Phe), valine (Val) and threonine (Thr). 
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Table 6. General Additive Models. 

Model Description 

Model 1 AA ~ s(Time index) 

Model 2 AA ~ s(Temp) 

Model 3 AA ~ s(DIC) 

Model 4 AA ~ s(CUTI) 

Model 5 AA ~ s(Chl-a) 

Model 6 AA ~ s(Temp) + s(DIC) 

Model 7 AA ~ s(Temp) + s(DIC) + s(Chl-a) 

Model 8 AA ~ s(Temp) + s(DIC) + s(CUTI) 

Model 9 AA ~ s(Temp) + s(DIC) + s(Chl-a) + s(CUTI) 

Model 10 AA ~ s(Time index) + s(Temp) + s(DIC) + s(Chl-a) 

Model 11 AA ~ s(Time index) + s(Temp) + s(DIC) + s(Chl-a) + s(CUTI) 

Model 12 AA ~ s(Time index) + s(Temp) + s(DIC) 

Abbreviations: amino acid (AA), temperature (Temp), chlorophyll a (Chl-a), dissolved inorganic carbon (DIC), 
coastal upwelling transport index (CUTI). 

 

Table 7. GAMs summary of individual amino acids. 

Phenylalanine Lysine 

Modelo AIC R2 Deviance_exp Modelo AIC R2 Deviance_exp 

Modelo_1 91.63115 0.60922264 0.69439475 Modelo_1 126.6231 0.61096164 0.68768772 

Modelo_2 115.49483 -0.0260396 0.01060464 Modelo_2 150.6016 0.00534006 0.05964694 

Modelo_3 111.83422 0.09563438 0.12793315 Modelo_3 150.5824 -0.010728 0.02536947 

Modelo_4 113.69837 0.05322633 0.10683654 Modelo_4 149.4288 0.03505702 0.07665322 

Modelo_5 116.36074 0.05763188 0.22512753 Modelo_5 150.8332 -0.0049679 0.04723123 

Modelo_6 111.72055 0.13574028 0.20789635 Modelo_6 151.4881 0.00811381 0.10116715 

Modelo_7 99.23934 0.52814799 0.69798228 Modelo_7 132.6929 0.56080684 0.71930048 

Modelo_8 113.32348 0.1092236 0.2107638 Modelo_8 148.753 0.21012419 0.43701578 

Modelo_9 101.35996 0.49737187 0.69338436 Modelo_9 104.0566 0.82389285 0.94335961 

Modelo_10 65.78198 0.8526237 0.9358072 Modelo_10 105.7968 0.83024426 0.91521338 

Modelo_11 47.98793 0.91000022 0.97358322 Modelo_11 105.4459 0.83114611 0.92278122 

Modelo_12 101.35996 0.49737187 0.69338436 Modelo_12 102.962 0.84615088 0.92063194 

Isoleucine Leucine 

Model AIC R2 Deviance_exp. Model AIC R2 Deviance_exp. 

Modelo_1 75.00545 0.36313202 0.4852867 Modelo_1 65.70753 0.62500868 0.71044149 

Modelo_2 83.03252 0.1506246 0.3001264 Modelo_2 90.79711 -0.0336561 0.00326023 

Modelo_3 81.36715 0.10146643 0.1335569 Modelo_3 80.00109 0.38930195 0.5334653 

Modelo_4 85.3868 -0.0321223 0.00473919 Modelo_4 89.79246 0.00732177 0.04924872 

Modelo_5 85.52426 -0.0370264 1.02E-05 Modelo_5 90.74172 -0.0316838 0.00516201 
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Modelo_6 81.01261 0.22288717 0.3811602 Modelo_6 80.98533 0.28570581 0.33672682 

Modelo_7 82.37556 0.12824809 0.226033 Modelo_7 81.85689 0.29483678 0.38199437 

Modelo_8 83.75682 0.0839305 0.1844623 Modelo_8 78.42057 0.4421906 0.60956168 

Modelo_9 83.36329 0.1838021 0.3912328 Modelo_9 56.75024 0.74172774 0.89524862 

Modelo_10 78.08188 0.32806868 0.5134229 Modelo_10 60.58501 0.70590024 0.81087113 

Modelo_11 75.67782 0.40786965 0.6287061 Modelo_11 60.61319 0.70928953 0.82419418 

Modelo_12 76.75981 0.34670091 0.5071766 Modelo_12 49.14392 0.80631249 0.90603797 

Methionine Valine 

Model AIC R2 Deviance_exp. Model AIC R2 Deviance_exp. 

Modelo_1 86.87636 0.59350264 0.67428796 Modelo_1 62.31007 -0.0008124 0.05283527 

Modelo_2 104.95975 0.22329269 0.35143088 Modelo_2 62.82513 -0.0349898 0.00197408 

Modelo_3 101.47643 0.26453223 0.32478393 Modelo_3 62.60724 -0.0272428 0.00944444 

Modelo_4 104.92686 0.13769291 0.16848959 Modelo_4 62.34952 -0.0055122 0.04457329 

Modelo_5 109.96623 -0.0259588 0.01068263 Modelo_5 61.97388 0.00523273 0.05228509 

Modelo_6 102.12444 0.32342531 0.47453854 Modelo_6 63.74604 -0.035539 0.03842805 

Modelo_7 100.69885 0.33224321 0.44626379 Modelo_7 64.51603 -0.024051 0.09580023 

Modelo_8 100.09385 0.37626917 0.52680094 Modelo_8 65.38238 -0.0627228 0.05214829 

Modelo_9 96.3161 0.48160584 0.66234884 Modelo_9 66.04572 -0.0454761 0.12033399 

Modelo_10 69.50715 0.79840884 0.90854314 Modelo_10 65.7126 -0.0458669 0.10354269 

Modelo_11 81.62055 0.686521 0.7929342 Modelo_11 66.49114 -0.0352851 0.16522742 

Modelo_12 82.79627 0.6748246 0.7883398 Modelo_12 64.467 -0.0156865 0.11152326 

Threonine 

 

Model AIC R2 Deviance_exp. 

Modelo_1 112.2599 0.09968608 0.1636131 

Modelo_2 114.9403 -0.018448 0.01792519 

Modelo_3 115.4639 -0.0370018 3.39E-05 

Modelo_4 114.972 -0.0050427 0.04713501 

Modelo_5 115.4634 -0.0369842 5.09E-05 

Modelo_6 116.2402 -0.0323908 0.04135138 

Modelo_7 118.0894 -0.068119 0.04632231 

Modelo_8 117.5316 -0.0477698 0.06449129 

Modelo_9 119.4518 -0.0852903 0.07386235 

Modelo_10 111.0504 0.24941846 0.4480719 

Modelo_11 111.9775 0.23732736 0.461632 

Modelo_12 115.708 0.04262475 0.1783874 

*The shaded line indicates the model with the best fit. 
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Table 8. GAM summary of EAAs mean. 

Term edf F p-value Interpretation 

Time index 3.10 11.28 0.0003 
Highly significant non-linear temporal variation. The relationship with time is 

not straight and may include curves such as peaks or troughs. 

Temperature 6.02 3.72 0.0151 Complex and significant relationship (indicated by edf > 1). 

DIC 3.35 4.77 0.0108 Non-linear relationship with DIC is also significant, but less complex. 

Chl-a 1.00 7.96 0.0129 
Linear relationship (edf ≈ 1) but significant. In this case, the GAM found that 

the best way to model this variable was with a straight line. 

Abbreviations: general additive model (GAM), dissolved inorganic carbon (DIC), chlorophyll a (Chl-a),effective 
degrees of freedom (edf). 

 

 

Figures 

 

Figure 9. Map of the California Current System, taken from Checkley & Barth, 2009. 
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Figure 10. Pairwise comparisons between amino acids. Dark boxes indicate that there are no statistically 
significant differences (p-value > 0.05); empty boxes mean statistically significant differences (p<0.05). 

 

 

 

Figure 11. Time series of δ13C values of EAAs of skin samples of common dolphins (Delphinus delphis) from 1990 
to 2008. Isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), valine (Val), and 
threonine (Thr). 
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Figure 12. Linear regression of δ13C values of EAAs. 

 

 

Figure 13. Linear regression of temperature and dissolved inorganic carbon. 

 

At the 95% confidence level (alpha = 0.05) and with an R2 = 0.28, a moderate fit was concluded, as 

only 27.8% of the data explained the model: Yi = -0.55305 + 0.01962xi + Ei 
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Regarding the Pearson coefficient (R = 0.53), a moderate linear association can be described between 

the DIC variable (Y) and Temperature (X). Only 27.8% of the variability in DIC is explained by 

temperature. This indicates a significant, but not very strong, relationship. Water temperature has a 

negative and statistically significant effect on dissolved inorganic carbon (DIC) (β = -5.51, p < 0.001). 

However, the linear model explains only 27.8% of the observed variation in DIC, suggesting that other 

variables also influence its behavior. 



54 

Appendix B 

Modeling Missing DIC Data 

The study period for this project spans from 1990 to 2008; however, no dissolved inorganic carbon 

(DIC) data are available between 2002 and 2007. To supplement this information, a Bayesian multiple 

regression model was fitted based on water temperature (averaged from 0 to 50 m depth) and other 

predictors, including a linear time variable, a cyclical spline for monthly variability, and a first-order 

autoregressive term to capture temporal autocorrelation of the residuals. 

Data 

All available temperature and DIC data for our study area in the CalCOFI database (available at: 

https://calcofi.org/data/oceanographic-data/, accessed February 2025), spanning the period from 

1983 to 2021, were used to increase the sample size and thus the accuracy of the estimates of missing 

DIC values. For temperature, the data are constant for this entire time series, with four values per year 

(one for each season). The average water temperature value from 0 to 50 m depth was calculated for 

each station sampled by the CalCOFI cruise (29 stations located within our study area). All station 

values were then summed to obtain an average value per cruise that is representative of the season. 

In the case of DIC, information is available from 1983 to 2001 and from 2008 to 2021. DIC data from 

1983 to 1993 are only available for line 90 (stations 90.70 and 90.90) and at a sampling depth of ~10 

m. Since 2008, data from lines beyond line 90 were available in our study area and at several depths; 

however, only data from ~10 m depth and line 90 were considered to ensure consistency with the data 

from 1983 to 2001. In total, 176 temperature data points and 122 DIC data points were used to 

calibrate the model. 

Predictors 

The model was run using the brms package in R software version 4.4.0. Missing DIC data were modeled 

based on three components (equation 3): 
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1. Water temperature (linear predictor). 

2. Time index: Captures linear trends over time. 

3. s(month): This is a cyclical spline (basis spline) that models monthly variation. If this value is close to 
zero, it means the model does not detect significant seasonality. If it is high, it indicates marked 
changes in DIC over the months of the year. 

 

Formula: DIC ~ Temperature + time index + s 
 

(3) 

and an autocorrelation structure: AR[1] 

The first-order autoregressive (AR[1]) term captures the temporal autocorrelation in the residuals, 

which is particularly important in time series where consecutive observations are often correlated. 

This term is not part of the formula as a predictor but is incorporated into the model as a structural 

component. In the brms package, this term is applied not to the data themselves, but to the model 

residuals to capture their temporal dependence. First-order means that the value of the residual at 

time t depends on the residual at time t – 1 (equation 4). Its general formula is: 

 

εt=ϕ1⋅εt−1+ηt 
 

(4) 

Where: 

εt: residual at time t 
ϕ1: AR coefficient 
ηt: random error 

Results 

The Bayesian model provided a good fit to the data, capturing both central tendencies and variability 

in the response. The results indicate that the model has a high predictive capacity, with an R²=0.75 

(95% CI: 0.71, 0.78). Four Markov chains were used, each with 10, 000 iterations (5,000 warm-up and 

5,000 sampling iterations), for a total of 10,000 subsequent samples.  
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Model diagnostics confirmed adequate convergence of the chains (R̂ ≈ 1.00) and sufficient effective 

sample sizes (ESS>1000). A Student distribution was used due to evidence of outliers. The posterior 

distribution of the parameter ν (degrees of freedom) was estimated at 10.06 (95% CI = 2.80, 32.19), 

suggesting the presence of heavy tails in the residuals. This indicates that the data tend to include 

extreme values, making the Student-t distribution more appropriate and robust than the normal 

alternative. 

Posterior predictive checks 

The histogram (Figure 14) of the residuals shows an approximately symmetric distribution centered on 

zero, with no evidence of marked bias. Although heavy tails were observed in the data, suggesting the 

presence of extreme values, the use of a Student distribution for the model family adequately captured 

this characteristic. This is supported by the QQ (quantile-quantile) plot, where the residuals reasonably 

follow the line expected under the theoretical distribution, with only slight deviations at the extremes. 

Figure 14. QQ plot and histogram of residuals. 
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Taken together, these results suggest that the model fits the data structure well, including the 

variability in the extreme values. 

The Average Scatter Plot (Figure 15) compares the observed mean of the response variable (y) with 

the simulated means based on the model's predictions (yrep). The graph visually shows that the 

model's predicted mean is consistent with the observed mean in the data. 

 

Figure 15. Average scatter plot. The dotted line is the observed mean of the actual data (mean(y)). The dots 
represent the means of the simulated predictions of each subsequent sample (mean (yrep[i, ]) for each i). 

 

The overlaid density plot compares the distribution of the simulated data (yrep) under the model with 

the actual data (y) (Figure 16). Because the posterior distributions (yrep) reasonably match that of y, 

the model has a good fit. 
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Figure 16. Overlaid density plot of the observed variable (y: black line) and model predictions (yrep: blue lines). 

 

A credible negative effect of temperature on DIC was identified (estimate = −3.50; 95% CI: −4.74, 

−1.91), indicating that a 1°C increase in temperature is associated with an average decrease of 3.5 units 

in DIC. The time index presented a significant sustained positive effect (95% CI: 0.12, 0.21), suggesting 

an upward trend of 0.17 units in DIC per year throughout the study period. The monthly variability 

component (cyclical spline) showed moderate seasonal variation (estimate = 0.19, 95% CI: 0.07, 1.09) 

in DIC values throughout the year, i.e., DIC tends to vary with the month of the year, but this variation 

does not dominate the overall pattern. Temporal autocorrelation (AR) was moderate in magnitude, 

estimated at 0.51 (95% CI: 0.36, 0.58), meaning that there is moderate autocorrelation between the 

residuals from one month and those from the previous month, justifying its inclusion to improve the 

validity of the inferences. Overall, this model provided robust estimates of missing DIC values for the 

2002–2007 period, considering the temporal structure and the relationship with available temperature 

data (Figure 17).
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Figure 17. DIC and temperature time series from 1983 to 2021. In DIC the dotted line shows modeled values. 


