CENTRO DE INVESTIGACIÓN CIENTÍFICA Y DE EDUCACIÓN SUPERIOR DE ENSENADA

PROGRAMA DE POSGRADO EN CIENCIAS EN ECOLOGÍA MARINA

Polimorfismo en el gen *DQ*β del Complejo Principal de Histocompatibilidad Clase II en tursiones *Tursiops truncatus* del Golfo de México y Mar Caribe

TESIS

que para cubrir parcialmente los requisitos necesarios para obtener el grado de MAESTRO EN CIENCIAS

Presenta:

JORGE EZEQUIEL MONTANO FRÍAS

Ensenada, Baja California, México

Diciembre de 2009

TESIS DEFENDIDA POR

Jorge Ezequiel Montano Frías

Y APROBADA POR EL SIGUIENTE COMITÉ

Dr. Axayácatl Rocha Olivares Director del Comité

Dr. Alexei Fedórovish Licea Navarro Miembro del Comité Dra. Gisela Heckel Dziendzielewski Miembro del Comité

M. en C. Eduardo Morteo Ortiz Miembro del Comité

Dr. Axayácatl Rocha Olivares

Coordinador del programa de posgrado en Ecología Marina

Dr. David Hilario Covarrubias Rosales Director de Estudios de Posgrado

10 de Diciembre de 2009

RESUMEN de la tesis de **Jorge Ezequiel Montano Frías**, presentada como requisito parcial para la obtención del grado de MAESTRO EN CIENCIAS en ECOLOGÍA MARINA. Ensenada, Baja California, México. Diciembre de 2009.

Polimorfismo en el gen *DQ*β del Complejo Principal de Histocompatibilidad Clase II en tursiones *Tursiops truncatus* del Golfo de México y Mar Caribe

Resumen aprobado por:

Dr. Axayácatl Rocha Olivares Director de Tesis

El Complejo Principal de Histocompatibilidad (MHC) es una familia multigénica que codifica glicoproteínas involucradas en el inicio de la respuesta inmune de los vertebrados. El nivel de polimorfismo de los genes MHC se encuentra estrechamente ligado a su función, por lo que niveles altos usualmente se asocian con una mayor capacidad inmune y protección del hospedero en contra de los patógenos. En esta tesis se analizaron secuencias del gen $DQ\beta$ (exón 2) del MHC-II de 48 tursiones *Tursiops truncatus* procedentes de 5 localidades costeras del sur del Golfo de México y Mar Caribe. La amplificación parcial del exón 2 DOβ mediante reacción en cadena de la polimerasa (PCR) proporcionó secuencias de 172 pb que no exhibieron más de dos alelos en cada individuo genotipificado (genotipo diploide). Se detectaron 27 alelos Tutr-DOB* utilizando PHASE 2.1.1, un algoritmo Bayesiano diseñado para la reconstrucción de haplotipos ambiguos en los individuos heterocigóticos. Estos alelos mostraron señales de homología con las secuencias DQB1 de los cetáceos, especialmente con aquellos de las familias Delphinidae, Phocoenidae e Iniidae. Las secuencias mostraron un alto valor de diversidad nucleotídica ($\pi = 7\%$) y marcos de lectura ininterrumpidos, lo que es consistente con loci MHC-II analizados en otros mamíferos relacionados (e.g. rumiantes). La heterocigosidad encontrada en cada localidad varió entre 0.78 y 0.98, mientras que para todas las localidades fue 0.86. Los resultados sugieren la influencia de la selección estabilizadora (selección positiva Darwiniana) sobre este gen a través de largos periodos de tiempo evolutivo, reflejada en una alta proporción de sustituciones no sinónimas en los codones involucrados en la fijación del péptido antigénico (PBR $d_N = 28.5\%$, p < 0.05) y un alto valor promedio de la razón entre sustituciones no sinónimas y sinónimas ($d_N / d_S = 6.4$). Además, se observó un patrón de evolución trans-específico dentro del suborden Odontoceti (cetáceos dentados) al encontrar alelos compartidos entre taxa divergentes. En general, el nivel de polimorfismo encontrado en estos tursiones fue alto en comparación con otras poblaciones de cetáceos de hábitos costeros, lo que sugiere la exposición a una alta diversidad de patógenos en su hábitat.

Palabras clave: polimorfismo MHC, gen $DQ\beta$, *Tursiops truncatus*, resistencia a patógenos, selección estabilizadora, Golfo de México y Mar Caribe

ABSTRACT of the thesis presented by **Jorge Ezequiel Montano Frías** as a partial requirement to obtain the MASTER OF SCIENCE degree in MARINE ECOLOGY. Ensenada, Baja California, México. December 2009.

Major Histocompatibility Complex II *DQ*β gene polymorphism in bottlenose dolphin *Tursiops truncatus* from Gulf of Mexico and Caribbean Sea

The Major Histocompatibility Complex (MHC) comprises a large multigene family coding for glycoproteins that play a key role in the induction of immune responses in vertebrates. The high level polymorphism observed in MHC loci is explained in terms of its protector function against a number of pathogens. In this study, the exon-2 of the $DO\beta$ gene (MHC-class II) was analyzed for 48 bottlenose dolphins Tursiops truncatus from five localities of the southern Gulf of México and Caribbean Sea. Partial amplification of the DQB locus (exon 2) comprising 172 bp sequences showed no more than two alleles per individual (diploid genotype). Overall, 27 Tutr-DQB* alleles were detected using PHASE 2.1.1, a Bayesian algorithm for haplotype reconstruction in heterozygous individuals. These alleles showed shared homology with cetacean DOB1 sequences, especially those of the Delphinidae, Phocoenidae and Iniidae. These sequences showed high within-species and between-species nucleotide diversity ($\pi = 7\%$) and uninterrupted reading frames consistent with functional class II loci found in related mammals (e.g. ruminants). Heterozygosity in each locality ranged from 0.78 to 0.98, and for all five localities was 0.86. Significantly higher nonsynonimous divergence at sites coding for peptide binding (PBR $d_N = 28.5\%$, p < 0.05) and a high overall ratio non-synonymous to synonymous substitutions $(d_N / d_S = 6.4)$ suggested that this locus was subject to balancing (positive Darwinian) selection over a long evolutionary time period. This evidence was supported by a pattern of trans-specific allele sharing within the suborder Odontoceti (toothed whales). Overall, the level of polymorphism in the $DQ\beta$ gene of these bottlenose dolphins was high compared to other cetacean populations inhabiting coastal waters, suggesting exposure to a high diversity of pathogens in their habitat.

Key words: MHC polymorphism, $DQ\beta$ gene, bottlenose dolphin, pathogen resistance, balancing selection, Gulf of Mexico & Caribbean Sea

En memoria de mi abuelo Manuel † mi ángel y guía

con amor a mi madre y mi hermanita mi inspiración y mi alegría

para mi estrella Abigail por cada mágico instante y por ser mi luz, única entre miles de millones...

...a los delfines por esta gran aventura molecular

Tursiops truncatus en la costa de Alvarado, Ver. Fotografía: Jorge E. Montano Frías. Julio 2006.

AGRADECIMIENTOS

Al Consejo Nacional de Ciencia y Tecnología (CONACyT) por el financiamiento otorgado para realizar los estudios de maestria durante mi estancia en Ensenada. Al Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), a los investigadores, estudiantes, personal académico, técnico y administrativo que fueron un gran apoyo durante esta investigación.

A los miembros de mi comité de tesis por sus valiosas aportaciones en esta investigación. Al Dr. Axayácatl Rocha por darme la oportunidad de adentrarme en el campo de la ecología molecular, por abrirme las puertas de su laboratorio y por los desafíos científicos. Al M. en C. Eduardo Morteo por encontrar nuevas interrogantes que motivaron esta investigación, por confiar en mí a lo largo de mi formación e impulsar mis sueños desde que conocimos a los delfines veracruzanos. Al Dr. Alexei Licea por las apasionantes discusiones en el ámbito de la inmunogenética. A la Dra. Gisela Heckel por sus acertados comentarios para "aterrizar" de lo molecular a lo ecológico. A la M. en C. Iris Segura por inspirarme durante el estudio genético de mis delfines y por apoyarme en todo momento como una hermana mayor.

A la Dra. Carmen Bazúa Durán, el M. en C. Eduardo Morteo Ortíz, el Dr. Alberto Delgado Estrella y la M. en C. Valentina Islas Villanueva por invitarme a participar en este proyecto.

Al Fondo Mixto CONACyT-Gobierno del Estado de Campeche por el financiamiento otorgado a la Dra. Carmen Bazúa Durán a través del proyecto CAMP-2003-C01-9102 para la obtención de biopsias de piel de *Tursiops truncatus* dentro del Área de Protección de Flora y Fauna Laguna de Términos. Para este muestreo fueron requeridos los permisos de la Dirección General de Vida Silvestre de la Secretaría del Medio Ambiente y Recursos Naturales SGPA/DGVS/01064 del 17 de febrero de 2006, SGPA/DGVS/00870 del 21 de febrero de 2007 y SGPA/DGVS/01344 del 12 de marzo de 2008, otorgados a la Dra. Carmen Bazúa Durán. A la empresa Vía Delphi S.A. de C.V. por el financiamiento otorgado al Dr. Alberto Delgado Estrella para la obtención de muestras de sangre de los tursiones en cautiverio.

A los colegas del laboratorio de Ecología Molecular y Evolutiva y a los investigadores del CICESE por el apoyo y aportación de ideas durante la realización del proyecto. Al M. en C. Rodrígo Morteo por el apoyo con los algoritmos computacionales. Al Dr. Eric Lynn de la Southwest Fisheries Science Center NOAA por la donación de la polimerasa de ADN *Phusion*.

A mis amigos Luis y Moni, al Cristian, a mi estrellita Abi y al *piccolo* por estar siempre presentes y brindarme una sonrisa. A mi familia, por todo lo significan para mi.

CONTENIDO

RE	SUMEN	i
Dee	dicatoria	<i>iii</i>
Ag	radecimientos	iv
Tab	ola de Contenido	v
Lis	ta de Figuras	vii
Lis	ta de Tablas	ix
Lis	ta de Abreviaturas	xi
I.	INTRODUCCIÓN	1
I.1	Estructura y función del Complejo Principal de Histocompatibilidad (MHC)	3
I.2	Evolución del MHC y generación de polimorfismo	9
I.3	Métodos para genotipificación del MHC	10
I.4	Estudios sobre polimorfismo del MHC en los cetáceos	11
I.5	Estudios genéticos de T. truncatus en el Golfo de México y Mar Caribe	15
I.6	Hipótesis	17
I.7	Objetivos	17
II.	MÉTODOLOGÍA	18
II.1	Esfuerzo de muestreo y colecta de tejidos	
II.2	Esfuerzo de laboratorio	19
II.2	.1 Extracción y purificación de ADN	19
	II.2.2 Amplificación y secuenciación del exón 2 DQβ (MHC-II)	20
II.3	Caracterización de secuencias exón 2 $DQ\beta$ de T. truncatus	24
	II.3.1 Alineamiento y edición de secuencias de los genotipos	24
	II.3.2 Análisis computacional para la reconstrucción de alelos	
	II.3.3 Análisis de homología entre secuencias DQβ	
II.4	Evaluación del polimorfismo en el exón 2 $DQ\beta$ de T. truncatus	27
II.4	.1 Diversidad molecular: de nucleótidos a aminoácidos	27
II.5	Efecto de selección en la divergencia de secuencias exón 2 $DQ\beta$	
II.6	Relaciones filogenéticas y patrón evolutivo trans-específico	29

CONTENIDO (continuación)

V. RESULTADOS	31
III.1 Esfuerzo de muestreo y colecta de tejidos	
III.2 Caracterización molecular del gen $DQ\beta$ en Tursiops truncatus	
III.2.1 Extracción, amplificación y secuenciación del exón 2 DQβ	
III.2.2 Comparación de secuencias Taq vs Phusion HF	35
III.2.3 Inferencia de alelos exón 2 $DQ\beta$ a partir de genotipos diploides	
III.3 Polimorfismo en el exón 2 $DQ\beta$ de Tursiops truncatus	41
III.4 Efecto de la selección en la divergencia de secuencias exón 2 $DQ\beta$	49
III.5 Reconstrucción filogenética y patrón evolutivo trans-específico	52
VI. DISCUSIÓN	55
IV. 1 Caracterización molecular del gen $DQ\beta$ en T. truncatus	56
IV.1.1 Comparación entre secuencias Taq y Phusion HF	56
IV.1.2 Reconstrucción de alelos con base en el método bayesiano PHASE	57
IV.2 Polimorfismo en el gen $DQ\beta$ de T. truncatus	
IV.3 Evidencias de selección estabilizadora sobre el gen DQβ	60
IV.4 Reconstrucción filogenética y patrón evolutivo trans-específico	62
IV.5 Implicaciones para la conservación de la especie	62
VII. CONCLUSIONES	64
VIII. LITERATURA CITADA	65
IX. APÉNDICES	74

LISTA DE FIGURAS

Figura		Página
1	Mapa genómico del Complejo Principal de Histocompatibilidad humano (HLA) en el que destacan las clases MHC-I y MHC-II, involucradas en la presentación de antígenos ante los linfocitos T.	4
2A	Diagrama de la estructura de una molécula MHC-I y su conformación tridimensional estabilizada con el péptido antigénico (modificado de Abbas <i>et al.</i> 2007).	5
2B	Diagrama de la estructura de una molécula MHC-II y su conformación tridimensional estabilizada con el péptido antigénico (modificado de Abbas <i>et al.</i> 2007).	5
3	Esquema representativo de la ruta de presentación de antígenos intracelulares mediante moléculas MHC-I ante los linfocitos T CD8 ⁺ citotóxicos (modificado de Abbas <i>et al.</i> 2007).	6
4	Esquema representativo de la ruta de presentación de antígenos extracelulares mediante moléculas MHC-II ante los linfocitos T CD4 ⁺ cooperadores (modificado de Abbas <i>et al.</i> 2007).	7
5A	Diagrama de los dominios $\alpha 1$ y $\alpha 2$ que conforman la c-I PBR en la molécula MHC-I, presentados desde una vista superior. Se muestran los aminoácidos que interactúan directamente con el péptido del antígeno (modificado de Abbas <i>et al.</i> 2007).	8
5B	Diagrama de los dominios $\alpha 1$ y $\beta 1$ que conforman la c-II PBR en la molécula MHC-II, presentados desde una vista superior. Se muestran los aminoácidos que interactúan directamente con el péptido del antígeno (modificado de Abbas <i>et al.</i> 2007).	8
6	Esquema del fenotipo costero de tursión <i>Tursiops truncatus</i> desde una vista lateral (tomado de <u>www.ascobans.org</u>)	15

TABLA DE FIGURAS (continuación)

Figura		Página
7	Fotografía tomada durante el procedimiento de obtención de biopsias de piel de tursión.	19
8	Esquema del mapa genómico $DQ\beta$ caracterizado para <i>T. truncatus.</i> (modificado de Yang <i>et al.</i> 2007).	21
9	Análisis de secuencias exón 2 $DQ\beta$ de <i>T. truncatus</i> con base en los cromatogramas (tomado de CodonCode Aligner). Se muestran los criterios empleados para detectar sitios polimórficos a partir de genotipos diploides y asignar un código degenerado.	25
10	Esquema de la reconstrucción de alelos en individuos heterocigotos a partir de alelos conocidos, con base en el método bayesiano empleado en PHASE (modificado de Stephens <i>et al.</i> 2001).	26
11	Diagrama de flujo que muestra la metodología utilizada para aislar y caracterizar las secuencias exón 2 $DQ\beta$ de <i>T. truncatus</i> .	29
12	Electroforesis en gel de agarosa al 1.5% teñido con EtBr que muestra la cantidad y calidad de los extractos de ADN genómico de tursiones de distintas localidades.	34
13A	Electroforesis en gel de agarosa al 1.5% teñido con EtBr que muestra los fragmentos MHC-II amplificados vía PCR con <i>Taq</i> .	35
13B	Electroforesis en gel de agarosa al 1.5% teñido con EtBr que muestra los fragmentos MHC-II amplificados vía PCR con <i>Phusion</i> HF.	35
14	Diagrama de variabilidad en las secuencias de aminoácidos traducidas de los alelos exón 2 <i>Tutr-DQB</i> * con respecto a las láminas β plegadas y la hélice α (modificado de Hayashi <i>et al.</i> 2003).	49
15	Reconstrucción filogenética de Máxima Verosimilitud (ML) – Neighbor Joining (NJ) entre las secuencias nucleotídicas exón 2 <i>Tutr-DQB</i> * inferidas para <i>T. truncatus</i> y otros odontocetos.	53-54

LISTA DE TABLAS

Tabla		Página
Ι	Estudios de variabilidad en el gen $DQ\beta$ MHC-II en diversas especies de cetáceos.	14
II	Características de los oligonucleótidos cebadores universales utilizados para la amplificación parcial del exón 2 del gen $DQ\beta$ MHC-II de mamíferos.	22
III	Tasas de error en la incorporación de nucleótidos por parte de las polimerasas de ADN <i>Taq</i> y <i>Phusion</i> HF. Condiciones estandarizadas para la realización de reacciones de PCR comparativas.	22
IV	Perfiles de termociclado programados para la amplificación parcial del exón 2 $DQ\beta$ mediante PCR con base en los requerimientos de cada polimerasa de ADN (<i>Taq</i> vs <i>Phusion</i> HF).	23
V	Colección de muestras de tursiones costeros procedentes del Golfo de México y Mar Caribe utilizadas para el análisis del gen $DQ\beta$ MHC-II.	31
VI	Esfuerzo de muestreo y de laboratorio. Se muestra el número de muestras obtenidas por localidad y el éxito obtenido en la extracción de ADN, la amplificación del exón 2 $DQ\beta$ con las polimerasas de ADN (<i>Taq</i> vs <i>Phusion</i> HF) y la secuenciación.	33
VII	Evaluación de la genotipificación de los tursiones con base en la proporción de nucleótidos distintos detectados en sitios polimórficos de secuencias <i>Taq</i> vs <i>Phusion</i> HF.	36
VIII	Resultado de la reconstrucción de alelos <i>Tutr-DQB</i> * a partir de genotipos diploides mediante la utilización del algoritmo computacional PHASE.	38-39

LISTA DE TABLAS (continuación)

Tabla		Página
IX	Frecuencia relativa de los 28 alelos <i>Tutr-DQB</i> * inferidos por localidad y promedio.	40
Х	Alineamiento de secuencias nucleotídicas de los alelos exón 2 <i>Tutr-DQB</i> * inferidos por PHASE. Se señalan los codones que codifican aminoácidos involucrados en la c-II PBR.	42-44
XI	Resultados de la genotipificación de los tursiones con base en las secuencias de mayor calidad obtenidas del ensayo con <i>Phusion</i> HF. Se muestran valores de diversidad genética por localidad y promedio.	45
XII	Alineamiento de secuencias de aminoácidos traducidos de los alelos exón 2 <i>Tutr-DQB*</i> . Se muestra la localización de los aminoácidos c-II PBR en las láminas β plegadas y la hélice α que conforman el dominio β 1 de la molécula MHC-II.	46-47
XIII	Análisis de polimorfismo en las secuencias nucleotídicas de los alelos exón 2 <i>Tutr-DQB</i> * y en las secuencias de aminoácidos correspondientes por localidad y total.	48
XIV	Evidencia de selección estabilizadora sobre las secuencias nucleotídicas de los alelos <i>Tutr-DQB</i> * con base en la obtención de razones d_N/d_S de los codones PBR, no PBR y totales.	51
XV	Prueba de neutralidad D de Tajima	48

х

ABREVIATURAS

Α	Adenina	PBR	Región de Fijación al Péptido
aa	Aminoácidos		(Peptide Binding Region)
ADN	Ácido desoxirribonucleico	PCR	Reacción en Cadena de la Polimerasa
ADNg	ADN genómico total		(Polymerase Chain Reaction)
ADNmt	ADN mitocondrial	pН	Potencial de Hidrógeno
APC	Células Presentadoras de Antígenos	SDS	Dodecil sulfato de sodio
	(Antigen Presenting Cells)	seg	Segundos
ARS	Sitio de Reconocimiento del Antígeno	Т	Timina
	(Antigen Recognition Site)	Taq	Thermus aquaticus
bp	Pares de bases nucleotídicas	TCR	Receptor de Linfocitos T
	(Base pair)		(T Cell Receptor)
BSA	Albúmina del suero vacuno	TE	Buffer Tris/EDTA
	(Bovine serum albumin)	TBE	Buffer Tris/Borato/EDTA
С	Citosina	Tutr	Tursiops truncatus
dNTPs	Desoxirribonucleótidos	U	Unidades
EtBr	Bromuro de Etidio	UV	Ultravioleta
EDTA	Ácido etilendiaminotetraacético	V	Voltios
G	Guanina	COI	Citocromo oxidasa I
Нр	Caballos de fuerza (Horse power)	kb	Kilobases
HCl	Ácido clorhídrico	kD	Kilodaltons
HF	Alta fidelidad (High fidelity)		
HLA	Antígeno leucocitario humano (Human Leucocyte Antigen)		
Ig	Inmunoglobulina		
LiCl	Cloruro de Litio		
Μ	Molar		
min	Minutos		
MgCl ₂	Cloruro de Magnesio		
МНС	Complejo Principal de Histocompatibilidad (<i>Major</i> <i>Histocompatibility Complex</i>)		
μl	Microlitros		
μg	Microgramos		
mg	Miligramos		
mМ	Milimolar		
NaCl	Cloruro de sodio		

Nanómetros

nm

I. INTRODUCCIÓN

En la actualidad, el número de estudios enfocados en la conservación de especies se ha incrementado por el uso de la información genética derivada de nuevos marcadores moleculares y por avances significativos en los métodos de análisis de datos con base en la teoría evolutiva y la genética de poblaciones (Godoy 2009). La información obtenida con diversos marcadores moleculares permite la descripción de patrones genéticos que son utilizados para estimar parámetros poblacionales como la heterocigosidad poblacional, el flujo genético entre poblaciones y la diferenciación genética de unidades taxonómicas (Avise 1995, Futuyma 1998). De manera simultánea, estos patrones han permitido detectar que la pérdida de potencial evolutivo, la depresión endogámica, la fusión mutacional (acumulación de alelos nocivos) y la susceptibilidad a enfermedades infecciosas son las principales amenazas que afectan la viabilidad de las especies (Amos y Balmford 2001, Borghans *et al.* 2004, Acevedo-Whitehouse y Cunningham 2006).

Un alto porcentaje de estos estudios ha empleado marcadores moleculares no codificantes y selectivamente "neutrales" (*e.g.* región control del ADNmt y microsatélites nucleares) para evaluar el grado de estructura genética poblacional y las relaciones evolutivas mediante la estimación de la diversidad genética entre individuos y poblaciones, desde una perspectiva no selectiva (Avise 1995, Hedrick 1994). Si bien el polimorfismo neutral refleja la pérdida pasiva de diversidad por efecto de la deriva genética o la depresión endogámica (Futuyma 1998), no aporta información que permita entender cómo operan los mecanismos de selección sobre la aptitud de los organismos conforme éstos interactúan con el ambiente o sobre su habilidad para adaptarse a los cambios ambientales (Avise 1995, Amos y Balmford 2001, Meyers y Bull 2002).

En este contexto, se ha sugerido que analizar sistemas genéticos sujetos a selección puede proporcionar evidencias sobre la variabilidad que impacta directamente en la aptitud de una especie (Amos y Balmford 2001, Cohen 2002, Piertney y Oliver 2006) y que el polimorfismo observado en dichos *loci* puede complementar la información obtenida en

loci neutrales para entender cómo interactúan las fuerzas de selección y deriva genética sobre la vulnerabilidad de las poblaciones (Yuhki y O' Brien 1990, Hedrick 1994).

Uno de los sistemas genéticos sujetos a selección más estudiados en los vertebrados mandibulados (Gnathostomata) es el Complejo Principal de Histocompatibilidad (MHC) (Flajnik y Kasahara 2001, Bernatchez y Landry 2003). Se trata de una familia de genes homólogos estrechamente ligados que se caracterizan por presentar altos niveles de polimorfísmo adaptativo y un elevado número de alelos con expresión codominante, los cuales intervienen en la presentación de antígenos y la regulación de la respuesta inmune ante enfermedades infecciosas (Kumanovics *et al.* 2003). Estos genes codifican un conjunto diverso de glicoproteínas transmembranales (moléculas MHC) que interactúan con algunas proteínas codificadas por otras familias multigénicas como la del Receptor de Linfocitos T (TCR) y de las Inmunoglobulinas (Ig), para identificar y eliminar a los antígenos que invaden al hospedero (Yuhki y O' Brien 1990, Hedrick 1994).

Los patrones de diversidad alélica observados en *loci* del MHC de algunas poblaciones de vertebrados pueden estar influenciados por el tamaño efectivo poblacional y la estructura genética (Munguía-Vega *et al.* 2007). Sin embargo, se ha sugerido que una alta diversidad alélica funcional del MHC es resultado de la selección estabilizadora derivada de la coevolución entre el hospedero y sus patógenos (Borghans *et al.* 2004) e incluso puede estar asociada con caracteres cuantitativos ligados a la aptitud y al comportamiento de los individuos (Piertney y Oliver 2006). Esta presión selectiva se manifiesta en el mantenimiento de alelos a través de largos periodos de tiempo evolutivo y en la elevada proporción de sustituciones no sinónimas en la Región de Unión al Péptido (PBR), dentro de la molécula MHC codificada (Hugues y Nei 1988, Hugues y Yeager 1998).

Considerando que las enfermedades infecciosas enfrentadas en el pasado podrían reflejar el número de alelos MHC acumulados en las poblaciones actuales (Hugues y Yeager 1998), se ha sugerido que una baja diversidad alélica en el MHC podría estar relacionada con una alta susceptibilidad a nuevos patógenos y por lo tanto a enfermedades infecciosas desconocidas hasta ahora (Bernatchez y Landry 2003). La caracterización de los

genes involucrados en la histocompatibilidad resulta clave para entender la microevolución del sistema inmunológico del hospedero con respecto a la presión selectiva ejercida por diversos agentes patógenos y condiciones ambientales contrastantes (Bernatchez y Landry 2003). En esta tesis se determinó el nivel de polimorfismo adaptativo presente en el gen $DQ\beta$ del MHC-II en los tursiones *Tursiops truncatus* que habitan las costas del sur del Golfo de México y Mar Caribe, con la intención de inferir la capacidad de respuesta inmune ante patógenos bacterianos.

I.1 Estructura y función del Complejo Principal de Histocompatibilidad (MHC)

El MHC es la región codificante más polimórfica localizada en el genoma de los vertebrados mandibulados y particularmente presenta una elevada tasa de sustituciones no sinónimas (Hughes y Nei 1988, Flajnik y Kasahara 2001, Bernatchez y Landry 2003). Estas mutaciones modifican las secuencias de aminoácidos involucradas en los procesos de inmunidad adaptativa, selección sexual y reconocimiento de parentesco (Amos y Balmford 2001, Bernatchez y Landry 2003, Acevedo-Whitehouse y Cunningham 2006, Piertney y Oliver 2006). Se trata de un sistema multialélico codominante que codifica un conjunto diverso de glicoproteínas transmembranales (moléculas MHC), cuya función principal es unirse únicamente a péptidos que provienen de la degradación de microorganismos invasores (antígenos extraños) o células infectadas (antígenos propios). Estos péptidos antigénicos son transportados por las moléculas MHC hacia el exterior de la membrana celular donde pueden ser reconocidos por los Linfocitos T, un tipo de glóbulos blancos involucrados en la generación de respuesta inmune ante enfermedades infecciosas, capaces de eliminar patógenos y células infectadas (Hedrick 1994).

La organización genómica del MHC de los vertebrados varía tanto en tamaño como en complejidad. En los mamíferos, el MHC está dividido en grupos de genes que codifican las moléculas de histocompatibilidad clase I (MHC-I), clase II (MHC-II), clase III (MHC-III) y una clase IV descubierta recientemente en humanos (Fig. 1). Estas moléculas MHC difieren en estructura, patrones de expresión en distintos tejidos y en el origen / destino de los

péptidos del antígeno que pueden procesar (Kumanovics *et al.* 2003). En los humanos, estos grupos de genes están estrechamente ligados en un solo cromosoma, pero tanto su presencia como el número de genes presentes por grupo es variable entre especies (Acevedo-Whitehouse y Cunningham 2006).

El análisis cristalográfico por rayos X de las moléculas MHC ha permitido conocer su estructura y la manera en que se unen al péptido antigénico (Stern 1994). Las moléculas de histocompatibilidad o glicoproteínas codificadas por los genes del MHC-I (*e.g.* A, B y C, Fig. 1) se expresan sobre la superficie de las células somáticas nucleadas y juegan un papel fundamental en la defensa inmune contra patógenos a nivel intracelular. En el retículo endoplásmico, estas moléculas se unen a los péptidos derivados de la degradación endógena de proteínas propias o extrañas (principalmente de antígenos virales), para presentarlos ante los linfocitos T citotóxicos CD8⁺ e iniciar la respuesta inmunológica (Fig. 2A y Fig. 3, Abbas *et al.* 2007).

Figura 1. Mapa genómico del MHC humano *Homo sapiens* (HLA) donde se observan las clases I, II, III y IV estrechamente agrupadas en el brazo corto del cromosoma 6. Los genes de las clases MHC-I y MHC-II codifican glicoproteínas encargadas de procesar y presentar los antígenos ante los linfocitos T CD8⁺ y CD4⁺, respectivamente. Los genes de las clases MHC-III y MHC-IV codifican proteínas que intervienen en la regulación de la inmunidad innata, la inflamación y la inmunomodulación (modificado de Acevedo-Whitehouse y Cunningham 2006).

Figura 2. Diagramas esquemáticos que ilustran las regiones extracelular, transmembranal y citoplasmática de las moléculas MHC. A) Las moléculas MHC-I están compuestas por una cadena α polimórfica unida no covalentemente a una cadena β 2-microglobulina no polimórfica. B) Las moléculas MHC-II están compuestas por una cadena α polimórfica y una cadena β polimórfica unidas no covalentemente. Los diagramas de cintas representan la estructura tridimensional de la región extracelular en las moléculas MHC-I y MHC-II sujetando el péptido de un antígeno, la cual fue resuelta mediante cristalografía por rayos X (modificado de Abbas *et al.* 2007).

En contraste, las moléculas de histocompatibilidad MHC-II presentan una distribución tisular muy restringida, ya que se expresan únicamente sobre la superficie de las células presentadoras de antígenos profesionales (pAPC) del sistema inmunológico (*e.g.* linfocitos B, células dendríticas, macrófagos y células epiteliales del timo) y están más involucradas en el monitoreo del ambiente extracelular. Las glicoproteínas MHC-II son codificadas por los subgrupos de genes DP, DQ y DR (Fig. 1) y pueden unirse a diversos péptidos extracelulares (principalmente de antígenos bacterianos) para presentarlos a los linfocitos T cooperadores CD4⁺ (Fig. 2B y Fig. 4), los cuales pueden iniciar la activación de otros linfocitos T que intervienen en la respuesta inflamatoria celular o pueden inducir a los linfocitos B para la producción de anticuerpos de respuesta inmune humoral (Hedrick 1994, Bernatchez y Landry 2003, Abbas *et al.* 2007).

Figura 3. Ruta endógena de presentación del antígeno mediante moléculas MHC-I. 1) Producción de proteínas virales en el citoplasma. 2) Degradación proteolítica de las proteínas. 3) Transporte de los péptidos desde el citoplasma hacia el retículo endoplásmico (RE) mediado por moléculas TAP y biosíntesis de las cadenas α y β 2-microglobulina. 4) Ensamble del complejo péptido-MHC dentro del RE. 5) Expresión del complejo péptido-MHC en la superficie de una célula nucleada y reconocimiento por parte de los linfocitos T citotóxicos CD8⁺ (modificado de Abbas *et al.* 2007).

Las moléculas MHC-I son heterodímeros formados por la unión no covalente entre una cadena polipeptídica α (44-47 kD) codificada por un gen polimórfico del MHC-I (*e.g.* A, B o C) y una cadena β_2 -microglobulina (12 kD), cuyo origen no corresponde a los genes del MHC (Fig. 5A). La cadena polipeptídica α es codificada por siete exones (regiones codificantes), separados por seis intrones (regiones no codificantes). El exón 1 codifica el péptido líder, los exones 2-4 codifican los tres dominios extracelulares (α 1, α 2 y α 3), el exón 5 codifica la región transmembranal hidrofóbica y los exones 6-7 codifican la región citoplasmática. En la región extracelular de la molécula MHC-I los dominios α 1 y α 2 son polimórficos, mientras que el dominio α 3 se mantiene conservado. Los primeros dos dominios interactúan entre sí para formar una plataforma con ocho láminas β -plegadas antiparalelas que soportan dos hélices- α , conocida como la Región de Unión al Péptido de la clase I (c-I PBR, Fig. 5A), que además presenta sitios que interactúan con el complejo Receptor de los linfocitos T (TCR). El tercer dominio contiene el sitio de unión al correceptor CD8⁺ de los linfocitos T citotóxicos (Bjorkman y Parham 1990).

Figura 4. Ruta exógena de presentación del antígeno mediante moléculas MHC-II. 1) Obtención de proteínas de antígenos bacterianos del ambiente extracelular. 2) Procesamiento de las proteínas internalizadas en vesículas endosomales / lisosomales. 3) Biosíntesis de las cadenas α y β asociadas a la cadena invariante *li* en el retículo endoplásmico (RE). 4) Transporte de la molécula MHC-II hacia los endosomas que contienen los péptidos procesados. Degradación proteolítica de la cadena *li* y remoción de la cadena peptídica asociada a la cadena invariante (CLIP) por intervención de la molécula *DM* monomórfica. Unión de la molécula MHC-II con el péptido exógeno. 5) Expresión del complejo péptido-MHC sobre la superficie de las células presentadoras de antígeno profesionales (pAPC) y el reconocimiento por parte de los linfocitos T CD4⁺ cooperadores (modificado de Abbas *et al.* 2007).

En contraste, las moléculas MHC-II son heterodímeros formados por la unión no covalente entre una cadena polipeptídica α (32-34 kD) y una β (29-32 kD) (Fig. 5B). Estas cadenas son codificadas por dos diferentes genes polimórficos del MHC-II (*i.e. DQa y DQ* β), los cuales se encuentran físicamente muy próximos y en un fuerte desequilibrio de ligamiento (Slatkin 2000). En este caso, cada cadena polipeptídica es codificada por seis exones separados por cinco intrones. El exón 1 codifica al péptido líder, los exones 2-3 codifican los dos dominios extracelulares (α 1 y α 2, β 1 y β 2 respectivamente), el exón 4 codifica la región transmembranal y los exones 5-6 codifican la región citoplasmática. En la región extracelular, los dominios α 1 y β 1 son polimórficos, conforman la Región de Unión al Péptido de la clase II (c-II PBR, Fig. 5B) y presentan sitios que interactúan con el complejo TCR. El dominio β 2 se conecta con el correceptor CD4⁺ de los linfocitos T cooperadores (Brown *et al.* 1993, Stern *et al.* 1994).

Figura 5. Los aminoácidos polimórficos de las moléculas MHC están localizados en la hendidura formada por la PBR (esferas). A) En las moléculas MHC-I el polimorfismo se observa en los dominios $\alpha 1$ y $\alpha 2$ que forman la c-I PBR. B) En las moléculas MHC-II el polimorfismo se encuentra principalmente en el dominio $\beta 1$ que forma parte de la c-II PBR. Aproximadamente una tercera parte de los aminoácidos que forman la PBR están en contacto directo con el péptido del antígeno (modificado de Abbas *et al.* 2007).

La capacidad que presentan las moléculas histocompatibles MHC-I y MHC-II para detectar diversos agentes patógenos está relacionada con el nivel de polimorfismo presente en las secuencias nucleotídicas del exón 2 de cada gen, en el cual se encuentra codificada gran parte de la PBR (Hedrick 1994, Stern *et al.* 1994). Aunque existe una similitud estructural entre las moléculas MHC-I y MHC-II, ambas presentan una diferencia significativa que determina el tipo de péptidos antigénicos a los que pueden unirse para presentarlos posteriormente ante los linfocitos T. En el primer caso, la c-I PBR forma una hendidura cerrada en los extremos que restringe el tamaño de los péptidos antigénicos a los que puede asociarse (8-10 aminoácidos), mientras que la c-II PBR está abierta por los lados, de manera que puede unir péptidos más largos (13-25 aminoácidos).

Desde la perspectiva de la biología evolutiva, resulta interesante analizar la c-II PBR debido a que es la región principal sobre la cual actúan los mecanismos de selección responsables de mantener el polimorfismo adaptativo en *loci* del MHC (Hedrick 1994,

Garrigan y Hedrick 2003). Esta región exhibe un alto nivel de variación alélica funcional (polimorfismo) expresado en la cadena β de las glicoproteínas MHC-II y refleja variación fenotípica en la especificidad y resistencia a diversos patógenos y condiciones ambientales contrastantes (Hedrick 1994, Murray y White 1998, Bernatchez y Landry 2003, Borghans *et al.* 2004, Martínez-Agüero *et al.* 2006, Yang *et al.* 2007).

I.2 Evolución del MHC y generación del polimorfismo adaptativo

Algunos autores han sugerido que altos niveles de variabilidad alélica encontrados en las clases MHC-I y MHC-II de los mamíferos son resultado de la selección estabilizadora derivada de la coevolución del hospedero con sus parásitos y patógenos (Borghans *et al.* 2004, Bernatchez y Landry 2003, Flajnik y Kasahara 2001). Este tipo de selección basado en la exposición a enfermedades infecciosas se apoya en dos hipótesis contrastantes:

1) La hipótesis de sobredominancia o "ventaja del heterocigoto", en la que fenotipos expresados por los individuos heterocigotos son favorecidos por ser capaces de reconocer y resistir a una variedad más amplia de agentes patógenos que cualquiera de los individuos homocigotos, por lo que la heterocigosidad confiere una mayor inclusión adaptativa en la población (Doherty y Zinkernagel 1975).

2) La hipótesis de la selección negativa dependiente de la frecuencia o "ventaja de alelos raros", la cual propone que un alelo nuevo o raro puede tener alguna ventaja selectiva cuando se enfrenta a un patógeno nuevo. Es decir, si un alelo raro confiere ventajas sobre un alelo común entonces su frecuencia aumentará y conforme se hace más común la selección favorecerá a nuevas cepas de patógenos que no sean reconocidas por dicho alelo (coevolución). En cambio, si el patógeno pasa desapercibido aumentará su frecuencia y entonces la selección favorecerá a un alelo distinto, capaz de procesar y presentar a dicho patógeno para la generación de la respuesta inmune (Takahata y Nei 1990).

Los mecanismos de selección mediados por patógenos mencionados anteriormente son el principal factor, más no el único, en la generación y el mantenimiento del polimorfismo en el MHC (Bernatchez y Landry 2003). Existen otras fuerzas evolutivas como la mutación puntual o la conversión génica (recombinación intra-locus e inter-alelica) que pueden explicar altos niveles de polimorfismo en el MHC, e incluso algunos estudios han sugerido que los vertebrados utilizan señales que involucran al MHC para detectar a sus congéneres y evitar el apareamiento con éstos (endogamia), por lo que la selección sexual y el reconocimiento de parentesco también podrían aportar variabilidad en estos genes (Amos y Balmford 2001, Acevedo-Whitehouse y Cunningham 2006).

I.3 Métodos para genotipificación del MHC

La complicación más significativa en el análisis de secuencias nucleares se presenta cuando la fase gamética es incierta y ocurren múltiples polimorfismos en los individuos heterocigóticos. Cuando los individuos son homocigóticos para un locus dado o difieren únicamente en un sitio nucleotídico se pueden identificar sus alelos de manera inequívoca mediante la secuenciación directa de los productos de PCR. Sin embargo, cuando los individuos son heterocigóticos y presentan dos o más sitios variables no es posible determinar la fase gamética de los nucleótidos con base únicamente en la secuencia de un individuo dado (Clark 1990).

Se han descrito diversos métodos moleculares para separar los alelos MHC que constituyen a los individuos heterocigóticos, entre los que destacan la clonación de productos de PCR y los polimorfismos de conformaciones monocatenarias (SSCP). No obstante, estos métodos son intensivos y costosos por lo que su aplicación en estudios a gran escala es poco práctico (Zhang y Hewitt 2003, Sabbagh y Darlú 2005, Harrigan *et al.* 2008), aunado a que los fragmentos de ADN amplificados mediante PCR pueden estar sujetos a la sustitución de nucleótidos de manera artificial (Saiki *et al.* 1988). Se supone que los productos de PCR son homogéneos, aunque al amplificar secuencias de familias multigénicas como la del MHC se pueden generar productos de PCR heterogéneos, denominados "moléculas recombinantes", por la combinación artificial de dos secuencias diferentes (Saiki *et al.* 1988, Meyerhans *et al.* 1990).

En la actualidad, varias polimerasas de ADN están disponibles para realizar la técnica de PCR tales como *Taq*, *Vent*, *Pfu* y *Phusion*. Algunos estudios han estimado las tasas de error, los patrones de sustitución artificial (Cline *et al.* 1996, Slater *et al.* 1998, Kobayashi *et al.* 1999) y las frecuencias de recombinación de las mismas (Shafikhani *et al.* 2002). Las polimerasas de alta fidelidad son utilizadas para amplificar fragmentos de ADN que requieren un error mínimo, como los genes que codifican proteínas. No obstante, se ha generado cierta controversia con aquellas polimerasas que presentan corrección de lectura (*proofreading*) por la actividad de una exonucleasa *3'-5'*, ya que dependiendo de ciertos factores puede degradar los oligonucleótidos cebadores o el ADN plantilla y generar recombinación artificial (Shafikhani *et al.* 2002).

Una alternativa relativamente sencilla y económica para reconstruir alelos a partir de la secuenciación directa de productos de PCR de alta fidelidad es el uso de algoritmos computacionales. Diversos estudios han comprobado que PHASE 2.1.1 (Stephens *et al.* 2001, Stephens y Donelly 2003) es el algoritmo con mejor desempeño y precisión en la reconstrucción de alelos (Sabbagh y Darlú 2005, Harrigan *et al.* 2008, Agúndez *et al.* 2008), debido a que utiliza una aproximación Bayesiana y realiza cálculos basados en el algoritmo Cadenas de Markov Monte Carlo (MCMC).

I.4 Estudios sobre polimorfismo del MHC en los cetáceos

Una alta diversidad alélica funcional es característica de los genes del MHC para la mayoría de los vertebrados (Flajnik y Kasahara 2001). Por lo tanto, se ha sugerido que una baja diversidad observada en estos genes representa el principal factor de riesgo ante las enfermedades infecciosas (Acevedo-Whitehouse y Cunningham 2006). Los primeros estudios sobre la variabilidad del MHC en cetáceos se basaron en el análisis de los polimorfismos de longitud de fragmentos de restricción (RFLP) en los genes $DQ\alpha$, $DQ\beta$ y $DR\beta$ de las ballenas de aleta *Balenoptera physalus* y de Sei *B. borealis*. Se detectó una baja variabilidad en los tres loci de ambas especies en comparación con la de los mamíferos terrestres, lo que permitió a Slade (1992) argumentar sobre una baja presión de selección estabilizadora en el ambiente marino como resultado de una menor exposición a patógenos.

Murray y White (1998) y Murray *et al.* (1995) analizaron la variación en las secuencias exón 2 de los genes $DR\beta$ y $DQ\beta$ en poblaciones de beluga *Delphinapterus leucas* y narval *Monodon monoceros*. Los autores observaron niveles de polimorfismo relativamente bajos, pero tasas de sustitución no sinónima que evidenciaron el efecto de la selección positiva Darwiniana, consistente con la funcionalidad del locus $DQ\beta$ en la respuesta inmune. En otro estudio, Hayashi *et al.* (2003) amplificaron las secuencias nucleotídicas del gen $DQ\beta$ (exón 2) de 16 especies de cetáceos y encontraron que la frecuencia de sustituciones no sinónimas fue significativamente más alta que la frecuencia de sustituciones sinónimas, por lo que la variación en los aminoácidos relacionados a la c-II PBR fue considerablemente alta. Sus resultados también sugieren que la variabilidad en el gen $DQ\beta$ de los cetáceos es promovida por selección positiva Darwiniana.

Hayashi *et al.* (2006) analizaron las secuencias del gen $DQ\beta$ (exón 2) en marsopas sin aleta dorsal *Neophocaena phocaenoides* de las costas japonesas y encontraron valores altos de heterocigosidad con respecto a otros cetáceos. Una alta tasa de sustituciones no sinónimas para la c-II PBR sugiere que la selección estabilizadora ha mantenido la variabilidad en el locus $DQ\beta$ para esta especie de hábitos costeros, sin embargo no encontraron sobredominancia de heterocigotos. Los autores sugieren que el locus $DQ\beta$ ha estado sujeto a selección estabilizadora por un largo periodo de tiempo evolutivo y que en el periodo corto de tiempo ha sido influenciado por la deriva génica (selección neutral) en poblaciones pequeñas.

Yang *et al.* (2007) presentaron las secuencias nucleotídicas completas de los genes $DQ\beta$ y $DR\beta$ del MHC-II, así como las secuencias de aminoácidos para las dos especies de tursión (*Tursiops truncatus y T. aduncus*) del Pacífico occidental. Ambas especies difieren en dieta, carga parasitaria y hábitat por lo que argumentaron que ambas especies podrían representar un modelo natural a través del cual es posible examinar las consecuencias inmunogenéticas de la exposición a diferentes ambientes y patógenos que influyen sobre el MHC de los mamíferos marinos. En un análisis filogenético complementario revelaron que la divergencia encontrada en las secuencias MHC-II de ambas especies puede reflejar diferentes presiones selectivas entre los patógenos de aguas oceánicas (donde habita

T. truncatus) y los de aguas costeras (*T. aduncus*). A continuación se citan dos casos extremos de variabilidad en el gen $DQ\beta$ de cetáceos:

La variabilidad observada en las secuencias del exón 2 del gen $DQ\beta$ en el delfín de Héctor *Cephalorhynchus hectori* de Australia se encuentra dentro de las más bajas entre los mamíferos. Los patrones de variación en las secuencias han mostrado evidencia de selección sobredominante (*e.g.* ventaja del heterocigoto), típica de genes involucrados en resistencia a enfermedades (Heimeier *et al.* 2009).

Por otro lado, en un estudio analizaron la región control del ADNmt (420 pb) de la población del baiji o delfín del rio Yangtzé *Lipotes vexillifer* y encontraron también niveles muy bajos de diversidad haplotípica y nucleotídica. Sin embargo, revelaron un alto nivel de polimorfismo en el gen $DQ\beta$ MHC-II, debido quizá a que la pequeña población del baiji estaba adaptada a ambientes dulceacuícolas con un alto nivel de exposición a patógenos. Además, para esta especie se reportaron múltiples copias del locus $DQ\beta$ consistente con lo reportado para algunos misticetos, lo que sugiere que esta es una condición ancestral compartida con los rumiantes en la etapa temprana de divergencia con las otras especies de cetáceos (Yang *et al.* 2005). Como en otras poblaciones de vertebrados, el polimorfismo del MHC en determinadas poblaciones de mamíferos marinos está relacionado estrechamente con su historia demográfica y evolutiva (Hoelzel *et al.* 1999).

En la Tabla I se muestran algunos estudios de variabilidad en el gen $DQ\beta$ de diversas especies de cetáceos.

Diversidad			•••				d_N/d_S	
МНС	Especie	Método	N	A	He [Ho]	π	exón 2 [PBR]	Referencia
BAJA	Beluga, Narval	cl, sec, SSCP	233, 12	5, 1	n. a.	1.6	5.15 [n. a.]	Murray et al. 1995
	Vaquita	cl, sec, SSCP	25	1	n. a.	n. a.	n. a.	Munguía-Vega et al. 2007
	Ballena de aleta	cl, sec, SSCP	36	3	0.58 [0.55]	6.1	4.81 [∞]	Nigenda-Morales et al. 2007
	Marsopa sin aleta dorsal de Japón	cl, sec	160	8	0.78 [0.57]	1.2	∞ [∞]	Hayashi et al. 2006
MEDIA	Tursión	cl, sec	42	6	0.77 [0.66]	6.0	5.4 [10.6]	Yang et al. 2008
	Ballena piloto	cl, sec, SSCP	225	8	0.83 [0.54]	5.3	9.1 [15.1]	Heimeier 2009
	Baiji	cl, sec	18	43 ^{dup}	n. a.	n. a.	0.86 [7.66]	Yang et al. 2005
ALTA	Marsopa sin aleta dorsal de China	cl, sec, SSCP	195	14 ^{dup}	n. a.	n. a.	2.6 [4.3]	Xu et al. 2007
	Ballena jorobada	cl, sec, SSCP	35	23 dup	n. a.	n. a.	1.41 [7.0]	Baker et al. 2006
	Delfines del río Amazonas	cl, sec	2	2	n. a.	n. a.	n. a.	Martínez-Agüero et al. 2006
EXP	Misticetos y odontocetos	cl, sec	5, 11	10, 25	n. a.	n. a.	2.21 [16.4], 4.96 [22.0]	Hayashi et al. 2003
	Delfín franciscana y ballena franca	RT-PCR, sec	1, 2	1, 1	n. a.	n. a.	2.77 [n. a.]	Heinzelmann et al. 2009

Tabla I. Panorama general de variabilidad en el gen *DQ*β del MHC-II con base en estudios en diversas especies de cetáceos.

Código: N=número de muestras, A=número de alelos, He=heterocigosidad esperada, Ho=heterocigosidad observada, $\pi=diversidad$ nucleotídica $d_N / d_S=$ prueba de selección estabilizadora, cl=clonación, sec=secuenciación, SSCP= polimorfismo de conformación monocatenaria, dup=duplicación del gen, n. a.=no aplicable, EXP=fase experimental, RT-PCR= Reacción en cadena de la polimerasa en tiempo real.

I.5 Estudios genéticos de T. truncatus en el Golfo de México y Mar Caribe

El delfín nariz de botella, tonina o tursión (*Tursiops truncatus* Montagu 1821, Fig. 6) es uno de los cetáceos más estudiados debido a su extenso rango de distribución desde aguas tropicales a templadas y a su capacidad para adaptarse a la vida en cautiverio (Leatherwood y Reeves 1990), en donde se le ha entrenado con fines turísticos, terapéuticos o científicos (Reeves *et al.* 2003). Las poblaciones de *Tursiops truncatus* se han distinguido entre los cetáceos por su alto nivel de polimorfismo y por ser las únicas que habitan tanto en lagunas costeras, desembocaduras de ríos, esteros, bahías, así como en las zonas litoral, nerítica y oceánica (Reeves *et al.* 2003, Ortega-Ortiz *et al.* 2004).

Diversos estudios sobre la variación geográfica de la especie han coincidido en la distinción de dos ecotipos (costero y oceánico) que difieren en rango de distribución, morfología, química sanguínea, carga parasitaria, comportamiento y hábitos alimentarios (Leatherwood y Reeves 1990, Hersh y Duffield 1990, Walker *et al.* 1999). Los estudios genéticos se han enfocado en la evaluación de estructura poblacional y la variación molecular dentro de y entre las poblaciones costeras y oceánicas con fines de conservación, manejo y de aclaración taxonómica (Hoelzel *et al.* 1998, Torres *et al.* 2003, Krützen *et al.* 2004, Natoli *et al.* 2004, Sellas *et al.* 2005, Segura *et al.* 2006).

Figura 6. Ecotipo costero del tursión Tursiops truncatus (www.ascobans.org).

Estudios genéticos realizados a lo largo de las costas del Atlántico noroeste y la región norte del Golfo de México han evidenciado que las poblaciones costeras y oceánicas están genéticamente diferenciadas y que los tursiones costeros presentan una diversidad genética más baja que los tursiones oceánicos en ambas regiones (Hoelzel et al. 1998). Las poblaciones costeras del Atlántico noroeste también están diferenciadas genéticamente de las que habitan las costas del norte del Golfo de México y están conformadas por grupos residentes, migratorios y transeúntes (Hoelzel et al. 1998, Natoli et al. 2004, Sellas et al. 2005). Islas-Villanueva (2005) encontró que la diversidad genética en las poblaciones costeras de tursiones del sur del Golfo de México y Mar Caribe fue alta tanto en el genoma mitocondrial (región control del ADNmt) como en el nuclear (ADN microsatelital), siendo similar a la diversidad reportada para la especie en regiones vecinas como el norte del Golfo de México (Natoli et al. 2004), la costa oeste del Atlántico norte (Hoelzel et al. 1998) y la costa norte de Cuba (Pérez-Cao 1996, Fernández-Ruenes 2009). Cabe mencionar que en dicho estudio sólo se analizaron muestras de tursiones costeros varados o capturados para exhibición en cautiverio, por lo que se desconoce lo que ocurre con las poblaciones del ecotipo oceánico.

Con respecto al polimorfismo adaptativo, no se han realizado estudios sobre genes del MHC en poblaciones de cetáceos para el Golfo de México o el Mar Caribe, por lo que este proyecto es pionero en el estudio de la inmunogenética del tursión en ambas regiones. Se ha reconocido que el mantenimiento de variabilidad genética en el MHC representa un papel crítico en la respuesta inmune ante la rápida evolución de los agentes patógenos y que la ausencia de variabilidad en dichos genes puede incrementar la susceptibilidad a enfermedades infecciosas en las poblaciones naturales (Yuhki y O'Brien 1990). Por lo anterior, cuantificar la diversidad alélica funcional del gen $DQ\beta$ (MHC-II) de *Tursiops truncatus* permitirá determinar la capacidad que tienen las poblaciones costeras para detectar y contrarrestar a los antígenos bacterianos en el hábitat.

I.6 Hipótesis

Las poblaciones de tursiones *Tursiops truncatus* que habitan las costas del sur del Golfo de México y Mar Caribe muestran evidencia diferencial de selección estabilizadora en el gen $DQ\beta$ (MHC-II).

I.7 Objetivos

Objetivo General

Determinar el nivel de polimorfismo adaptativo del gen $DQ\beta$ (MHC-II) en *Tursiops truncatus* como un indicador de vulnerabilidad para las poblaciones costeras del sur del Golfo de México y Mar Caribe.

Objetivos Particulares

- 1. Evaluar la genotipificación del gen $DQ\beta$ en *T. truncatus* comparando una polimerasa de ADN rutinaria (*Taq*) contra una de alta fidelidad (*Phusion* HF) con actividad de corrección de lectura (*proofreading*).
- Inferir mediante análisis computacional los alelos del exón 2 DQβ que constituyen con mayor probabilidad a los genotipos heterocigotos.
- Caracterizar las secuencias nucleotídicas de los alelos exón 2 DQβ en T. truncatus con base en análisis comparativos de homología y patrones de sustitución de secuencias DQβ MHC-II caracterizadas previamente.
- Analizar las relaciones evolutivas entre los alelos del exón 2 DQβ de los tursiones del Golfo de México y Mar Caribe.
- 5. Estimar el efecto de la selección estabilizadora sobre las secuencias del exón 2 $DQ\beta$ de *T. truncatus*.

II. MÉTODOLOGÍA

II.1 Esfuerzo de muestreo y colecta de tejidos

Se colectaron muestras de diversos tejidos (piel, sangre, músculo) y extracciones de ADN genómico de tursiones silvestres, varados (muertos) o capturados (en cautiverio) procedentes de 5 localidades costeras del Golfo de México (Veracruz, Tabasco, Campeche) y Mar Caribe (Quintana Roo, Cuba). En Veracruz y Campeche se realizaron navegaciones de manera sistemática para la observación, fotoidentificación y obtención de biopsias de piel de tursión, mediante la colaboración entre el Instituto de Ciencias Marinas y Pesquerías de la Universidad Veracruzana (Laboratorio de Mamíferos Marinos, ICMP-UV), la Facultad de Ciencias de la Universidad Nacional Autónoma de México (Laboratorio de Acústica, UNAM) y el Laboratorio de Ecología Molecular y Evolutiva del CICESE.

Las navegaciones fueron realizadas a bordo de embarcaciones menores tipo "panga" (7 a 11 metros de eslora) con motores fuera de borda (60 a 115 Hp). La velocidad de navegación durante el esfuerzo de búsqueda fue normalmente baja (8 a 18 Km/h) lo cual permitió detectar a los delfines presentes en el área. Durante cada avistamiento, se realizó el conteo y fotomarcaje de los individuos mediante la técnica de fotoidentificación por captura-recaptura (Würsig y Jefferson 1990). Posteriormente, se procedió a la obtención de biopsias de piel utilizando una ballesta Barnett Panzer V (Barnett Outdoors, FL) y flechas modificadas con un cilindro colector de acero inoxidable de 25 mm de largo y 6 mm de diámetro, con 1 a 3 dientes internos (Krützen *et al.* 2002). Las flechas previamente esterilizadas fueron proyectadas sobre el dorso de los delfines adultos cuando emergieron para respirar cerca de la embarcación (2 a 5 m de distancia, Fig. 7). Las marcas naturales en la aleta dorsal y los costados permitieron distinguir a los individuos que eran muestreados. Las biopsias de piel fueron preservadas en alcohol al 95% o en una solución de DMSO al 20% y NaCl a saturación hasta el momento del análisis genético en el laboratorio (Amos 1997).

El resto de las muestras analizadas en este estudio corresponden a tursiones silvestres que fueron capturados en las costas de Paraíso (Tabasco), Isla Holbox (Quintana Roo), Laguna de Términos (Campeche) y Bahía de Caibarién (Cuba) para su exhibición en diferentes parques acuáticos. Los extractos de ADN genómico de los delfines en cautiverio fueron obtenidos previamente mediante la técnica con Fenol-Cloroformo y precipitación con etanol (Sambrook *et al.* 1998) a partir de muestras de sangre y facilitados para este estudio por la M. en C. Valentina Islas Villanueva y el Dr. Alberto Delgado Estrella (Islas-Villanueva 2005).

Figura 7. Obtención de biopsia de piel de *Tursiops truncatus*. Se observa una flecha que es proyectada por una ballesta desde la embarcación. Fotografía de Jorge E. Montano Frías.

II.2 Esfuerzo de laboratorio

II.2.1 Extracción y purificación de ADN

Se utilizó la técnica de extracción con sales de LiCl a saturación (Aljanabi y Martínez 1997) para obtener el ADN genómico de las biopsias de piel, músculo y sangre de los tursiones. Se realizó la digestión de ~30-50 mg del tejido homogeneizándolo en 300 µl de

buffer de extracción (NaCl 100 mM, Tris-HCL 50 mM, SDS 1%, EDTA 50 mM, pH 8.0) y 5 μ l de proteinasa K (10 mg ml⁻¹) para incubarlo a 55°C hasta que ocurriera la digestión total del tejido. Posteriormente, se sedimentaron las proteínas añadiendo 300 μ l de solución LiCl (5M), se separaron los compuestos orgánicos hidrofóbicos añadiendo 600 μ l de solución cloroformo: alcohol isoamílico (24:1) y se sedimentó el ADN genómico total agregando 50 μ l de solución acetato de sodio (3M, pH 5.2) y 900 μ l de etanol absoluto frío. Los productos de extracción obtenidos por centrifugación a 4°C se suspendieron en buffer TE 1x (Tris-Cl 10 mM, EDTA 1 mM, pH 8.0) y se almacenaron a -20°C.

La cantidad y la calidad del ADN genómico obtenido fueron verificadas mediante la técnica de electroforesis en gel de agarosa al 1.5% teñido con EtBr ($0.5 \ \mu g \ ml^{-1}$) y sometido a 95 V durante 50 minutos, utilizando TBE 0.5x como buffer electroforético (TBE 5x = Tris-Base 450 mM, ácido bórico 450 mM, EDTA 10 mM, pH 8.0). El alto peso molecular del ADN genómico extraído fue verificado al exponer el gel teñido en un transiluminador de luz ultravioleta (~320 nm), observando una intensidad de banda en función de la cantidad y calidad de ADN genómico total con relación a un marcador estándar de referencia (Hi-Lo DNA Marker, 50-10,000 pb BIONEXUS Inc.). Se realizaron diluciones de ADN en buffer TE 1x (1:10 y 1:100) dependiendo de la calidad y la cantidad de las extracciones obtenidas.

II.2.2 Amplificación y secuenciación del exón 2 DQB (MHC-II)

Se utilizó el ADN genómico purificado de cada individuo para realizar la amplificación parcial del segundo exón del gen $DQ\beta$ en *Tursiops truncatus* (Fig. 8), mediante la técnica de Reacción en Cadena de la Polimerasa (PCR). El fragmento amplificado codifica parte del dominio β 1 de la molécula MHC-II, el cual incluye los aminoácidos involucrados en la c-II PBR y presenta la mayor variabilidad con respecto a la especificidad sobre los péptidos de los antígenos que pueden ser reconocidos (Martínez-Agüero *et al.* 2006). Para descartar la amplificación de fragmentos de genes homólogos (*e.g. DM* β) fue necesario realizar un análisis de similitud que se describe más adelante.

Figura 8. Mapa del gen $DQ\beta$ caracterizado para *T. truncatus*. Las secuencias de color negro representan la longitud de las regiones codificantes (exones) y las de color gris son las regiones no codificantes (intrones) que no están a escala. Las flechas representan los sitios de iniciación y el sentido de cada oligonucleótido cebador (DQB1 y DQB2). Mediante la técnica de PCR se amplificó un fragmento de ~200 pb del exón 2 que codifica parte del dominio β 1 de la molécula MHC-II (modificado de Yang *et al.* 2007).

Se realizaron dos ensayos de PCR utilizando diferentes polimerasas de ADN (*Taq* y *Phusion* HF) y los oligonucleótidos cebadores universales DQB1 y DQB2 (Murray *et al.* 1995, Tabla II) en un termociclador DNA Engine Peltier Thermal Cycler modelo PTC0200 (BIORAD), bajo diferentes condiciones estandarizadas de PCR (Tabla III) y perfiles de termociclado (Tabla IV). Posteriormente, se verificó la cantidad y calidad de los productos de PCR mediante electroforesis en gel de agarosa al 1.5% con tinción de EtBr, como se describió anteriormente. Los productos de PCR se purificaron empleando los protocolos de ExoSAP-IT[®] (USB, OH) o mediante columnas QIAquick[®] PCR Purification Kit (QIAGEN, CA) siguiendo las respectivas instrucciones del fabricante.

Código	Secuencia 5'- 3'	Longitud	Localización	Referencia
DQB1 (Forward)	CTGGTAGTTGTGTCTGCACAC	21 pb	Codones 14 a 20 del exón 2	Murray et al. 1995
DQB2 (<i>Reverse</i>)	CATGTGCTACTTCACCAACGG	21 pb	Codones 78 a 84 del exón 2	Murray et al. 1995

Tabla II. Características de los oligonucleótidos cebadores utilizados para la amplificación parcial del exón 2 del gen *DQ*β en *Tursiops truncatus* (Yang *et al.* 2008) y otros cetáceos (Murray *et al.* 1995, Hayashi *et al.* 2003, Yang *et al.* 2005, Munguía-Vega *et al.* 2007).

Tabla III. Condiciones estandarizadas para la técnica de PCR. Se muestran las concentraciones finales de cada reactivo utilizado para la amplificación parcial del exón 2 del gen $DQ\beta$ de *Tursiops truncatus*. Se adecuaron las reacciones de PCR para realizar ensayos de amplificación utilizando dos tipos de ADN polimerasa (*Taq* y *Phusion* HF).

	Taq	Phusion HF
E	8.0 x 10 ⁻⁶	4.4 x 10 ⁻⁷
Reacciones	25 μl	20 µl
Buffer PCR	1x	1x HF
$MgCl_2$	2.5 mM	7.5 mM
dNTP's	0.28 mM	0.8 mM
Cebador DQB1	0.24 µM	0.5 μΜ
Cebador DQB2	0.24 µM	0.5 μΜ
BSA	0.8 µg/µl	-
ADN Polimerasa	0.75 U	0.4 U
ADN molde	2 a 4 µl [50-100 ng]	2 a 4 µl [50-100 ng]

Código: E=Tasa de error (Frecuencia de mutacion/longitud del fragmento/replicación)

Cada producto de PCR purificado fue secuenciado en ambas direcciones (forward y reverse) mediante el método ABI-PRISM[®] Dye-DeoxyTerminator BigDye[®] v3.1 (Applied Biosystems, CA). Se realizaron reacciones de secuenciación de 12 μ l constituidas de 3.5 μ l de producto de PCR purificado [50-100 ng], 3 μ l del oligonucleótido cebador [1 μ M], 1 μ l de BigDye y 4.5 μ l de agua destilada y esterilizada bajo el siguiente perfil de termociclado: un ciclo de desnaturalización inicial de 1 min a 94°C, seguido de 25 ciclos de 10 seg a 94°C, 10 seg a 50°C y 4 min a 60°C. Los fragmentos secuenciados con éxito fueron detectados en los secuenciadores automáticos Gene Analyzer ABI 377 o 3730 (Applied Biosystems, CA).

Tabla IV. Perfiles de termociclado programados para la amplificación parcial del exón 2 del gen $DQ\beta$ mediante la técnica de PCR. Los perfiles 1 y 2 fueron empleados para *Taq* polimerasa, el perfil 3 fue optimizado para *Phusion* HF polimerasa.

	Perfil 1 Yang <i>et al</i> . 2008		Haya	Perfil 2 shi <i>et al</i> . 2003	Perfil 3 <i>Phusion</i> HF		
Fase	Ciclos	Temperatura / Tiempo	Ciclos	Temperatura / Tiempo	Ciclos	Temperatura / Tiempo	
Desnaturalización inicial/activación	1	94°C / 10 min	1	95°C / 12 min	1	98°C / 30 seg	
Desnaturalización	10	94°C / 30 seg	40	95°C / 30 seg	35	98°C / 10 seg	
Anillamiento		64°C / 20 seg*		55°C / 45 seg		59°C / 30 seg	
Extensión		72°C / 30 seg		72°C / 45 seg		72°C / 15 seg	
Desnaturalización 2 Anillamiento 2	25	94°C / 40 seg 54°C / 30 seg					
Extensión 2		72°C / 30 seg					
Extensión final	1	72°C / 10 min	1	72°C / 10 min	1	72°C / 5 min	

* Disminuyendo la temperatura 1°C por cada ciclo ("Touch-Down" 64°C a 54°C).
II.3 Caracterización de secuencias exón 2 DQβ de T. truncatus

II.3.1 Alineamiento y edición de secuencias de los genotipos

Las secuencias nucleotídicas obtenidas a partir de los ensayos de PCR (*Taq* y *Phusion* HF) fueron evaluadas y alineadas manualmente con el software CodonCode Aligner v3.0.1 (CodonCode Corporation, MA) tomando como referencia las secuencias exón 2 $DQ\beta$ disponibles en GenBank para esta especie (EF690293~8, Yang *et al.* 2008). Únicamente las secuencias que presentaron un puntaje PHRED \geq 20 fueron consideradas para los análisis posteriores debido a que el número máximo de bases nucleotídicas asignadas con una baja calidad fue inferior al 1% (Lento *et al.* 2003, Heimeier *et al.* 2009).

Para evaluar la precisión en la genotipificación de los tursiones se verificó la complementariedad entre las secuencias forward y reverse (secuencia consenso) de cada fragmento amplificado, analizando los picos de fluorescencia en los cromatogramas. Se identificaron sitios heterocigóticos potenciales tomando como criterios: 1) un valor mínimo del 30% en la opción "llamado de picos secundarios", considerando como auténticos aquellos sitios que derivaron de más de dos amplificaciones de PCR independientes (Lento *et al.* 2003, Harrigan *et al.* 2008) y 2) las intensidades de fluorescencia de los sitios heterocigóticos fueron relativamente menores con respecto a los sitios homocigóticos adyacentes (Harrigan *et al.* 2008, Fig. 9). Cada sitio heterocigótico fue detectado como un "doble pico" al que le fue asignado un código degenerado (*e.g.* IUPAC, S = C o G, W = A o T, K = G o T, Y = C o T, M = A o C y R = A o G, Dixon *et al.* 1984).

El alineamiento entre las secuencias consenso *Taq* y *Phusion* HF de algunos tursiones permitió comparar y corregir los sitios variables dudosos con base en la actividad exonucleasa que presenta la polimerasa *Phusion* HF. Las secuencias corregidas de los genotipos homocigotos y heterocigotos fueron alineadas por sus similitudes utilizando el software CLUSTAL X (Thompson *et al.* 1997) para una segunda revisión y edición final de los sitios variables.

II.3.2 Análisis computacional para la reconstrucción de alelos

La rutina PHASE 2.1.1 (Stephens *et al.* 2001, Stephens y Donelly 2003) es un método basado en estadística Bayesiana incluido en el software DnaSP v5.10 (Rozas *et al.* 2003, Librado y Rozas 2009) que permite inferir la fase gamética de *loci* nucleares estrechamente ligados a partir de las secuencias de los genotipos. Este método requiere una lista de alelos conocidos a partir de los genotipos homocigóticos o con un solo sitio heterocigótico para determinar el par de alelos que con mayor probabilidad pertenecen a un genotipo con dos o más sitios heterocigóticos (individuo ambiguo 1). Simultáneamente, cuando otro genotipo heterocigótico (individuo ambiguo 2) no posee alguno de los alelos conocidos de la lista, la reconstrucción más plausible consiste en dos alelos similares, pero no idénticos, a dos de los alelos que tienen una alta frecuencia en la población (Fig. 10). La alta precisión de PHASE 2.1.1 se basa en que los alelos "sin resolver" *a priori* tienden a ser similares a los alelos conocidos y en que presenta un nuevo modelo que incorpora la presencia de recombinación (Harrigan *et al.* 2008), requerido para asignar alelos del MHC.

Figura 9. Comparación entre cromatogramas de un individuo homocigótico (*Tutr*CA06, arriba) y uno heterocigótico (*Tutr*CA16, abajo) amplificados con la polimerasa *Phusion HF*. Los sitios heterocigóticos están representados por un "doble pico" y presentan una altura menor que los picos de los sitios adyacentes del homocigoto. Se muestra el uso del código degenerado IUPAC (*e.g.* S, R, R, M) y un fragmento del oligonucleótido cebador DQB1 (derecha).

Individuo ambiguo 1
Genotipo 33334
32344
23334 22544
Individuo ambiguo 2
Genotipo - 22424
32444 33434
23434 22444

Figura 10. Reconstrucción de haplotipos (alelos) en individuos ambiguos con respecto a haplotipos conocidos (modificado de Stephens *et al.* 2001).

Las secuencias de los genotipos obtenidos se analizaron utilizando un modelo estocástico de recombinación basado en simulaciones con Cadenas de Markov Monte Carlo (MCMC). Se realizaron cinco réplicas preliminares de la rutina PHASE utilizando los valores prefijados para el número de iteraciones (100), el intervalo de reducción (1) y el número de muestreos que deben ser ignorados o "burn-in" (100). Adicionalmente se realizaron cinco réplicas con valores 10x modificados para el número de iteraciones y de "burn-in" (1000), 2x para el intervalo de reducción (2) y 10x para la longitud de la corrida final del algoritmo (Harrigan *et al.* 2008). Finalmente se generó una lista de alelos exón 2 $DQ\beta$ totales y por localidad con el software DnaSP 5.10 para los análisis genéticos posteriores (Rozas *et al.* 2003, Librado y Rozas 2009).

II.3.3 Análisis de homología entre secuencias DQB

Se confirmó que las secuencias nucleotídicas de cada alelo inferido por PHASE fueron homólogas al exón 2 $DQ\beta$ del MHC-II de los cetartiodáctilos mediante un análisis bioinformático de similitud utilizando la rutina *Blastn* del NCBI (National Center for Biotechnology Information, <u>http://www.ncbi.nlm.nih.gov/blast/Blast.cgi</u>). De esta manera fue posible descartar la amplificación del gen $DM\beta$ monomórfico involucrado también en la ruta de presentación del antígeno mediante moléculas MHC-II, como se mencionó anteriormente. De manera adicional, se corroboró la homología con las moléculas histocompatibles de clase II a partir de la traducción de secuencias nucleotídicas a secuencias de aminoácidos empleando la rutina *Blastx* (Stephen *et al.* 1997).

II.4 Evaluación del polimorfismo en el exón 2 DQβ de Tursiops truncatus

II.4.1 Diversidad molecular: de nucleótidos a aminoácidos

Como un indicador de diversidad genética, se estimaron los niveles de heterocigosidad esperada (H_e) bajo equilibrio de Hardy-Weinberg, empleando el software GenePop 4.0.7 (Raymond y Rousset 1995) para datos genotípicos. Este indicador se basa en la proporción de individuos que posee dos copias distintas de sus alelos (heterocigotos) en una población ideal en ausencia de fuerzas evolutivas. Una vez conocidas las secuencias nucleotídicas de los alelos del exón 2 $DQ\beta$ se estimaron los índices de diversidad nucleotídica y haplotípica para cuantificar el grado de polimorfismo. La diversidad nucleotídica (π) se define como la probabilidad de que al elegir dos nucleótidos homólogos al azar de una secuencia ambos sean diferentes (Nei 1987). La diversidad haplotípica (h) se define como la probabilidad de que al elegir dos nucleótidos al azar a partir de una muestra o población ambos sean diferentes (Nei 1987). La estimación de ambos índices de diversidad y sus errores estándar, así como las frecuencias alélicas para cada localidad fueron calculados con el software Arlequin v3.1 (Excoffier *et al.* 2006).

Las secuencias nucleotídicas del exón 2 $DQ\beta$ de los tursiones fueron traducidas a secuencias de aminoácidos empleando el software MEGA 4 (Tamura *et al.* 2007), con la finalidad de evaluar el polimorfismo de las moléculas MHC-II codificadas y detectar cambios en las propiedades fisicoquímicas de los aminoácidos involucrados en la PBR. El análisis de comparación entre cada par de secuencias *Tutr-DQB** permitió estimar el número de bases nucleotídicas diferentes por sitio y el número de aminoácidos diferentes por sitio (*p-distance*). De manera simultánea se analizaron los sitios conservados, variables

e informativos para parsimonia, así como el número de transiciones y transversiones por localidad y totales.

II.5 Efecto de selección en la divergencia de secuencias del exón 2 DQB

Las sustituciones no sinónimas producen cambios en las secuencias de aminoácidos por lo que pueden estar sujetas a selección, mientras que las sustituciones sinónimas son consideradas selectivamente neutrales por no causar reemplazo de aminoácidos (Nei y Gojobori 1986). Para investigar la influencia que tiene la selección estabilizadora sobre el polimorfismo del gen DQB se calculó la razón entre el número de sustituciones no sinónimas por sitio no sinónimo (d_N) y el número de sustituciones sinónimas por sitio sinónimo (d_S) utilizando el software MEGA 4 (Tamura *et al.* 2007). Un valor $d_N/d_S > 1$ es evidencia de selección diversificadora (selección positiva Darwiniana) ya que las mutaciones que incrementan la aptitud de los individuos se acumulan en la población. En el caso contrario, un valor $d_N / d_S < 1$ indica la influencia de la selección direccional purificadora, la cual selecciona en contra de las mutaciones nocivas. Este análisis de comparación entre pares de secuencias nucleotídicas fue calculado para los codones PBR, no PBR y totales acorde al método de Nei-Gojobori (Nei y Gojobori 1986) con el modelo de corrección de Jukes-Cantor para sustituciones múltiples. Los errores estándar fueron estimados mediante 500 pseudoréplicas de tipo Bootstrap no paramétrico y la significancia de estas razones fue probada mediante la prueba t de student.

Como análisis complementario, se realizó la prueba exacta de neutralidad *D* de Tajima, la cual compara diferencias en la estimación del parámetro poblacional theta θ , definido como el polimorfismo nucleotídico esperado bajo neutralidad [$\theta = 4N_e \mu$], donde N_e es el tamaño efectivo de la población y μ es la tasa de mutación (Tajima 1989). El parámetro θ puede estimarse mediante la diversidad nucleotídica (π) o el número de sitios polimórficos por sitios totales (p_s). Cuando hay un incremento en las frecuencias alélicas por efecto de la selección estabilizadora o la sub-estructuración de la población se espera que $\pi > p_s$ y los valores *D* de Tajima sean positivos. Por el contrario, cuando hay alelos nocivos dentro de la población se espera que $\pi < p_s$ y los valores *D* de Tajima sean negativos, resultado de la depuración selectiva o de cuellos de botella poblacionales. Los valores *D* de Tajima fueron calculados para los codones PBR, no PBR y totales con el software DnaSP v5.10 (Rozas *et al.* 2003, Librado y Rozas 2009) utilizando el número de sitios polimórficos (*S*). Se asignaron los límites de confianza suponiendo que los valores *D* siguen la distribución beta de la tabla 2 de Tajima (Tajima 1989). Los intervalos de confianza fueron calculados mediante simulaciones (1000 réplicas) utilizando el algoritmo coalescente (Hudson 1990) implementadas en el programa DnaSP v5.10 (Rozas *et al.* 2003, Librado y Rozas 2009).

II.6 Relaciones filogenéticas y patrón evolutivo trans-específico

Para reconstruir las relaciones evolutivas de los alelos exón 2 $DQ\beta$ de tursiones del Golfo de México y Mar Caribe con alelos homólogos de otras especies de cetartiodáctilos, se realizaron análisis filogenéticos bajo los criterios de Máxima Verosimilitud (ML) y Neighbor-Joining (NJ, Saitou y Nei 1987). Se determinó el modelo evolutivo de sustitución nucleotídica de mejor ajuste a los patrones de sustitución del gen $DQ\beta$ empleando el software Modeltest v3.7 (Posada y Crandall 1998). Dicho modelo y sus parámetros fueron utilizados directamente para la reconstrucción por ML con el software PAUP* 4.0b10 (Swofford 2002), realizando una búsqueda heurística de 1000 repeticiones y enraizando el árbol con la vaca *Bos taurus* como grupo externo (*BoLA-DQB*02*, U77787). Para la reconstrucción por NJ primero se calculó una matriz de distancias inter-alélicas que fue analizada por dicho algoritmo y la robustez estadística fue estimada con base en un análisis de tipo Bootstrap (1000 réplicas) utilizando el software PAUP* 4.0b10 (Swofford 2002).

En la Figura 11 se presenta un diagrama de flujo de la metodología utilizada en este trabajo.

Figura 11. Diagrama que muestra la metodología utilizada para aislar el ADN genómico, amplificar un fragmento del exón 2 $DQ\beta$ con distintas polimerasas de ADN y determinar mediante análisis computacional los alelos que codifican parte de la PBR en la molécula MHC-II de *Tursiops truncatus*.

III. RESULTADOS

III.1 Esfuerzo de muestreo y colecta de tejidos

Se colectaron muestras de piel, músculo, sangre y extracciones de ADNg de 55 tursiones silvestres, varados (muertos) o en condiciones actuales de cautiverio procedentes de 5 localidades costeras del sur del Golfo de México y Mar Caribe (Tabla V). El tamaño de muestra fue variable para Veracruz (n = 5), Tabasco (n = 9), Campeche (n = 22), Quintana Roo (n = 8) y Cuba (n = 9). La mayoría de las muestras obtenidas provienen de tursiones capturados y aclimatados en condiciones de cautiverio (54%), mientras que el resto son biopsias de delfines en vida libre, obtenidas mediante métodos no invasivos.

Código y nombre del individuo	Localidad de procedencia	Fuente de la muestra	Tipo de muestra
[TutrVE01] 20070613TtAL4B	Alvarado, Veracruz	Silvestre	Piel
[TutrVE02] 20070613TtAL4A	Alvarado, Veracruz	Silvestre	Piel
[TutrVE03] 20070815TtAL3A	Alvarado, Veracruz	Silvestre	Piel
[<i>Tutr</i> VE04] 20080423TtPS1A	PNSAV, Veracruz	Silvestre	Piel
[TutrVE05] 20070815TtAL3A	Alvarado, Veracruz	Silvestre	Piel
[TutrVE06] 20060317TtPS-A	PNSAV, Veracruz	Varamiento	Músculo †
[TutrVE07] 20081112TtAL-A	Alvarado, Veracruz	Varamiento	Músculo †
[TutrTA01] Kelem	Paraíso, Tabasco	Cautiverio (Xcaret)	Extracto ADN
[TutrTA02] Tt17	Paraíso, Tabasco	Cautiverio (Xcaret)	Extracto ADN
[TutrTA03] Palú	Paraíso, Tabasco	Cautiverio (Xcaret)	Extracto ADN
[TutrTA04] Kanab	Paraíso, Tabasco	Cautiverio (Xcaret)	Extracto ADN
[TutrTA05] Kin	Paraíso, Tabasco	Cautiverio (Xcaret)	Extracto ADN
[<i>Tutr</i> TA06] Ik	Paraíso, Tabasco	Cautiverio (Xcaret)	Extracto ADN
[TutrTA07] Tapish	Paraíso, Tabasco	Cautiverio (Xcaret)	Extracto ADN
[TutrTA08] Dzul	Paraíso, Tabasco	Cautiverio (Xcaret)	Extracto ADN
[TutrTA10] Huinic	Paraíso, Tabasco	Cautiverio (Xcaret)	Extracto ADN
[TutrCA01] 20061026TtLT3A	APFFLT, Campeche	Silvestre	Piel
[TutrCA02] 20061026TtLT4A	APFFLT, Campeche	Silvestre	Piel

Tabla V. Colección de muestras de tursiones costeros del Golfo de México y Mar Caribe. Cada individuo está representado por código, nombre, localidad de procedencia, fuente y tipo de muestras colectadas.

Tabla V. <i>Continuación</i>			
[TutrCA03] 20071030TtLT1A	APFFLT, Campeche	Silvestre	Piel
[TutrCA04] 20060806TtLT1B	APFFLT, Campeche	Silvestre	Piel
[TutrCA05] 20060806TtLT1A	APFFLT, Campeche	Silvestre	Piel
[TutrCA06] 20060804TtLT3A	APFFLT, Campeche	Silvestre	Piel
[TutrCA07] 20060804TtLT3B	APFFLT, Campeche	Silvestre	Piel
[TutrCA08] 20060805TtLT1A	APFFLT, Campeche	Silvestre	Piel
[TutrCA09] 20070802TtLT4B	APFFLT, Campeche	Silvestre	Piel
[TutrCA10] 20080304TtLT2A	APFFLT, Campeche	Silvestre	Piel
[TutrCA11] 20070731TtLT3A	APFFLT, Campeche	Silvestre	Piel
[TutrCA12] 20070802TtLT4A	APFFLT, Campeche	Silvestre	Piel
[TutrCA13] 20061026TtLT3B	APFFLT, Campeche	Silvestre	Piel
[TutrCA14] 20081114TtLT2A	APFFLT, Campeche	Silvestre	Piel
[TutrCA15] 20081114TtLT2B	APFFLT, Campeche	Silvestre	Piel
[TutrCA16] 20081114TtLT2C	APFFLT, Campeche	Silvestre	Piel
[TutrCA17] 20081114TtLT3A	APFFLT, Campeche	Silvestre	Piel
[TutrCA18] 20081115TtLT3A	APFFLT, Campeche	Silvestre	Piel
[TutrCA19] Risno	APFFLT, Campeche	Cautiverio (Via Delphi)	Sangre
[TutrCA20] Baxal	APFFLT, Campeche	Cautiverio (Via Delphi)	Sangre
[TutrCA21] Olin	APFFLT, Campeche	Cautiverio (Via Delphi)	Sangre
[TutrCA22] Ricardo	APFFLT, Campeche	Cautiverio (Via Delphi)	Sangre
[TutrQR01] Fanny	Holbox, Quintana Roo	Cautiverio (Xcaret)	Extracto ADN
[TutrQR02] Abril	Holbox, Quintana Roo	Cautiverio (Xcaret)	Extracto ADN
[TutrQR03] Chiquilá	Holbox, Quintana Roo	Cautiverio (Xcaret)	Extracto ADN
[TutrQR04] Polé	Holbox, Quintana Roo	Cautiverio (Xcaret)	Extracto ADN
[TutrQR05] Melissa	Holbox, Quintana Roo	Cautiverio (Xcaret)	Extracto ADN
[TutrQR06] Ixchel	Holbox, Quintana Roo	Cautiverio (Xcaret)	Extracto ADN
[TutrQR07] Maya	Holbox, Quintana Roo	Cautiverio (Xcaret)	Extracto ADN
[TutrQR08] Alux	Holbox, Quintana Roo	Cautiverio (Xcaret)	Extracto ADN
[TutrCU00] Pepe	Bahía de Caibarién, Cuba	Cautiverio (Six Flags)	Extracto ADN
[TutrCU01] Bayli	Bahía de Caibarién, Cuba	Cautiverio (Xcaret)	Extracto ADN
[TutrCU02] Kinich	Bahía de Caibarién, Cuba	Cautiverio (Xcaret)	Extracto ADN
[TutrCU03] Nicte-Há	Bahía de Caibarién, Cuba	Cautiverio (Xel-Ha)	Extracto ADN
[TutrCU04] Quiché	Bahía de Caibarién, Cuba	Cautiverio (Xel-Ha)	Extracto ADN
[TutrCU06] Itzmán	Bahía de Caibarién, Cuba	Cautiverio (Xel-Ha)	Extracto ADN
[TutrCU07] Chen	Bahía de Caibarién, Cuba	Cautiverio (Xel-Ha)	Extracto ADN
[<i>Tutr</i> CU08] Pax	Bahía de Caibarién, Cuba	Cautiverio (Xel-Ha)	Extracto ADN
[TutrCU09] Ajitzi	Bahía de Caibarién, Cuba	Cautiverio (Xcaret)	Extracto ADN
55 individuos	5 localidades	23 individuos silvestres, 30 varados.) en cautiverio y 2

Códigos: Tutr = Tursiops truncatus, VE = Veracruz, TA = Tabasco, CA = Campeche, QR = Quintana Roo, CU = Cuba, PNSAV = Parque Nacional Sistema Arrecifal Veracruzano y APFFLT=Área de Protección de Flora y Fauna Laguna de Términos, † = Tejido muscular degradado que no fue incluido en los análisis genéticos.

III.2 Caracterización molecular del gen DQβ en Tursiops truncatus

III.2.1 Extracción, amplificación y secuenciación del exón 2 DQβ

Se obtuvieron 53 extractos de ADN genómico de alta calidad a partir de las 55 muestras disponibles para este estudio (Tabla VI), los cuales presentaron longitudes mayores a los 10,000 pb comparando ambas técnicas de extracción de ADN (Fig. 12). Es probable que las muestras de tejido muscular de los tursiones varados en Veracruz no se encontraran en condiciones óptimas de preservación. A partir de los extractos de ADN genómico de cada tursión se realizaron ensayos comparativos de PCR con las polimerasas de ADN *Taq* o *Phusion* HF, obteniendo un éxito de amplificación del 90% y del 96%, respectivamente (Tabla VI). En ambos casos se obtuvieron productos amplificados con un tamaño esperado de ~200 pb, incluyendo los oligonucleótidos cebadores (Fig. 13). Es importante mencionar que la amplificación de los fragmentos de interés con ambos ensayos se repitió al menos en una ocasión para la mayoría de los individuos, esto con la intensión de incrementar la cantidad y la calidad de los productos amplificados y evitar artefactos de PCR como la dimerización de los oligonucleótidos cebadores o la amplificación de "dobles bandas" que pueden afectar las reacciones de secuenciación.

Tabla VI. Esfuerzo de muestreo y de laboratorio. Se presenta el número de muestras (N) colectadas por región, por localidad y los años de colecta, así como los porcentajes de éxito en las técnicas de extracción de ADN, amplificación parcial del exón 2 $DQ\beta$ (Taq vs. *Phusion* HF polimerasas) mediante técnica de PCR y la secuenciación directa de los fragmentos amplificados.

Región	Localidad	N	Extracción ADN	Amplificación (Taq/Phusion)	Secuenciación (Taq/Phusion)	Años de colecta
Golfo	Veracruz	7	6	5 / 6	4 / 5	2006 - 2008
de México	Tabasco	9	9	9 / 9	5 / 9	2000 - 2001
memeo	Campeche	22	21	18 / 19	13 / 17	2006 - 2008
Mar	Quintana Roo	8	8	8 / 8	5 / 8	2000 - 2001
Caribe	Cuba	9	9	9 / 9	4 / 9	2000 - 2001
		55	53 (96%)	48 / 51 (90% / 96%)	31 / 48 (65% / 94%)	

Figura 12. Electroforesis en gel de agarosa al 1.5% teñido con EtBr que confirma la calidad y cantidad de ADN genómico de los tursiones, aislado mediante las técnicas de extracción con LiCl a saturación o de Fenol-Cloroformo. La longitud de los extractos de ADN fue cotejada con un marcador estándar de referencia (Hi-Lo DNA Marker).

Las reacciones de secuenciación se prepararon en dirección forward y reverse, logrando obtener un porcentaje de éxito del 65% para el ensayo *Taq* y del 94% para el ensayo *Phusion* HF (Tabla VI). En ambos casos, el consenso entre secuencias forward y reverse de cada individuo confirmó la amplificación de un fragmento de 214 pb (incluyendo ambos oligonucleótidos cebadores) que corresponde al 79% del exón 2 *DQ*β del MHC-II en *T. truncatus*. Este fragmento se localiza entre los sitios nucleotídicos 135 al 348 con respecto al mapa del gen *DQ*β caracterizado para la especie (Yang *et al.* 2007, Apéndice I) y codifica una parte del dominio β 1 de la molécula MHC-II donde se ubican los aminoácidos involucrados en la c-II PBR, entre las posiciones 14 a 84 (Apéndice II). La genotipificación de cada tursión fue verificada y corregida al comparar el consenso de secuencias forward-reverse obtenidas con ambos ensayos de PCR, cuando fue posible (Tabla VII). Aquellos genotipos que no presentaron consenso de secuenciación en ambas direcciones fueron excluidos de los análisis genéticos por considerarse ambiguos, mientras el resto fueron clasificados como homocigotos o heterocigotos (fase gamética desconocida) con base en la evaluación de los cromatogramas.

Figura 13. Electroforesis en gel de agarosa al 1.5% teñido con EtBr que presenta la calidad y cantidad de los fragmentos del gen $DQ\beta$ amplificados con *Taq* polimerasa (A) o *Phusion* HF polimerasa (B) mediante la técnica de PCR. La longitud de los fragmentos de PCR obtenidos fue ~200 pb incluyendo los oligonucleótidos cebadores en relación a un marcador estándar de referencia (Hi-Lo DNA Marker).

III.2.2 Comparación de secuencias Taq vs Phusion HF

El alineamiento comparativo entre las secuencias consenso amplificadas con *Taq* y *Phusion* HF permitió verificar la autenticidad de los sitios variables al analizar fragmentos de 172 pb experimentales (excluyendo ambos oligonucleótidos cebadores). Este análisis reveló que el mayor porcentaje de errores de polimerización cometidos por la polimerasa rutinaria (*Taq*) ocurrió en los sitios PBR (54%) y en menor medida en los sitios no PBR (29%) de los genotipos heterocigotos (Tabla VII). En contraste, al analizar las secuencias de los genotipos homocigotos no se encontraron diferencias bajo ninguno de los criterios mencionados con anterioridad. Al cuantificar el número de sitios variables por secuencia se observó un incremento en la mayoría de las amplificaciones *Phusion* HF con respecto a las de *Taq*, excepto para el individuo *Tutr*CA01, el cual presentaba 6 sitios variables dudosos

antes de la corrección y finalmente fue definido como individuo homocigoto. Además, se detectó que las amplificaciones con *Taq* presentaron errores en los sitios 17, 18, 20, 24, 51, 81, 141 y 164 de manera consistente.

Tabla VII. Número de nucleótidos distintos entre las secuencias obtenidas con amplificaciones *Taq* y *Phusion* HF. Se incluyen únicamente las secuencias más confiables de los individuos heterocigotos y homocigotos para fines comparativos. Los sitios nucleotídicos se encuentran subdivididos entre aquellos que forman parte de los codones PBR, no PBR y totales.

		Taq ≠	Phusion		
Individuos	Sitios PBR	Sitios no PBR	Sitios Totales	Sitios variables	Posición de sitios nucleotídicos diferentes
TutrVE04 (Het)	0	4	4	9 ≠ 13	17, 18, 20, 171
TutrTA02 (Hom)	0	0	0	$0 \neq 0$	-
TutrTA03 (Het)	1	3	4	15 ≠ 19	111, 116, 134, 141
TutrTA04 (Het)	0	1	1	13 ≠ 14	17
TutrTA07 (Het)	0	1	1	18 <i>≠</i> 19	141
TutrTA10 (Het)	5	3	8	5≠13	17, 18, 24, 29, 81, 108, 124, 140
TutrCA01 (Hom)	0	6	6	$6 \neq 0$	34, 74, 132, 159, 164, 172
TutrCA03 (Het)	0	1	1	18 <i>≠</i> 19	17
TutrCA06 (Hom)	0	0	0	$0 \neq 0$	-
TutrCA11 (Het)	3	1	4	1 ≠ 4	17, 24, 134, 162
TutrCA13 (Hom)	0	0	0	$0 \neq 0$	-
TutrCA14 (Het)	1	2	3	13 ≠ 16	52, 140, 141
TutrCA15 (Het)	3	1	4	15 ≠ 19	17, 23, 51, 81
TutrCA16 (Het)	0	0	0	13 ≠ 13	-
TutrCA17 (Het)	0	0	0	17 ≠ 17	-
TutrCA20 (Het)	3	2	5	17 ≠ 22	17, 20, 24, 51, 154
TutrQR02 (Het)	1	2	3	12 ≠ 15	18, 53, 164
TutrQR05 (Het)	0	1	1	18 <i>≠</i> 19	17
TutrCU00 (Het)	1	1	2	17 <i>≠</i> 19	17, 81
TutrCU01 (Het)	0	1	1	8≠9	165
TutrCU03 (Het)	4	6	10	12 ≠ 22	18, 20, 23, 51, 108, 110, 111, 116, 154, 164
TutrCU08 (Het)	1	1	2	13 ≠ 15	17, 51
	23/42	37/129	60/172		

Código: Individuos heterocigotos (Het) y homocigotos (Hom). Sitios totales (172 pb), sitios PBR (42 pb) y sitios no PBR (129 pb).

III.2.3 Inferencia de alelos exón 2 DQβ a partir de genotipos diploides

El alineamiento entre las secuencias consenso verificadas y corregidas (amplificadas con *Phusion* HF) permitió la identificación de 38 sitios variables que definieron 29 genotipos distintos, los cuales corresponden a los 10 tursiones homocigotos y 38 heterocigotos de fase gamética desconocida evaluados previamente.

La rutina PHASE 2.1.1 (Stephens *et al.* 2001, Stephens y Donelly 2003) permitió reconstruir mediante método bayesiano los dos alelos que con mayor probabilidad constituyen a los genotipos heterocigotos, dando como resultado 28 alelos potenciales del MHC-II para los tursiones costeros del Golfo de México y Mar Caribe (Tabla VIII). De los 28 alelos inferidos, 13 están compartidos (*Tutr-DQB*01, 02, 03, 04, 05, 06, 10, 14, 15, 17, 18, 19 y 21*) en 36 individuos, mientras que los 15 restantes son únicos (*Tutr-DQB*07, 08, 09, 11, 12, 13, 16, 20, 22, 23, 24, 25, 26, 27 y 28*) y se encuentran en 12 individuos. Los alelos que presentaron mayor frecuencia absoluta fueron *Tutr-DQB*01 y Tutr-DQB*03*, ya que fueron observados en 31 y 17 de los individuos analizados, respectivamente. El primero fue el alelo más común en Veracruz (20%), Tabasco (28%), Campeche (38%) y Cuba (44%), mientras que el segundo lo fue en Quintana Roo (38%) (Tabla IX).

Tabla VIII. Distribución de alelos exón 2 *Tutr-DQB* en 48 tursiones del Golfo de México y Mar Caribe (*Siguiente página*). Se muestra el resultado de la reconstrucción alélica con base en la rutina PHASE 2.1.1 (Stephens *et al.* 2001, Stephens y Donelly 2003). Los genotipos homocigotos están representados con un cuadro gris (*e.g. Tutr-DQB*01+Tutr-DQB*01* para el individuo TA08). Los genotipos heterocigotos presentan dos alelos distintos (*e.g. Tutr-DQB*01+Tutr-DQB*06* para el individuo CA08). En la parte inferior se muestran las frecuencias absolutas de cada alelo.

Individuos	0 1	0 2	0 3	0 4	0 5	0 6	0 7	0 8	0 9	1 0	1	Alelo 1 2	os Ti 1 3	<i>utr</i> - 1 4	-DQ 1 5	B* 1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	26	2 7	2 8
TutrVE01	+																							+				
TutrVE02										+															+			
TutrVE03														+	+													
TutrVE04	+																									+		
TutrVE05																											+	+
TutrTA01	+		+																									
TutrTA02			+																									
TutrTA03		+																			+							
TutrTA04	+																					+						
TutrTA05		+																										
TutrTA06	+				+																							
TutrTA07		+																			+							
TutrTA08	+																											
TutrTA10														+									+					
TutrCA01	+																											
TutrCA02			+	+																								
TutrCA03	+		+																									
TutrCA05	+				+																							
TutrCA06	+																											
TutrCA08	+					+																						
TutrCA10	+	+																										
TutrCA11	+					+																						
TutrCA12							+	+																				
TutrCA13	+																											
TutrCA14		l	+	+																								
TutrCA15	+		+																									
TutrCA16		+	+																									
TutrCA17	+								+																			
TutrCA19										+	+																	
TutrCA20												+	+															
TutrCA22														+	+													
TutrOR01	+		+																									
TutrOR02			+											+														
TutrOR03														+						+								
TutrOR04			+											+														
TutrOR05	+		+																									
TutrOR06			+																									
TutrOR07				+																								
TutrOR08	+				,														+									
TutrCU00	+		+																									
TutrCU00			+																+									
TutrCU02	+																											
TutrCU03																	+	+										
TutrCU04	+																											
TutrCU06																	+	+										
TutrCU07	+		+																									
TutrCU08	+	+	·																									
TutrCU09	+															+												
Frecuencia	31	7	17	4	2	2	1	1	1	2	1	1	1	6	2	1	2	2	2	1	2	1	1	1	1	1	1	1
					-	-	-	-	-	-	-			-			-	-	-	-	-	-	-					·

			Loc	alidades		
	VE	TA	CA	QR	CU	
Alelos	9	8	15	6	7	Promedio
Tutr-DQB*01	0.20	0.28	0.38	0.19	0.44	0.32
Tutr-DQB*02		0.22	0.06		0.06	0.07
Tutr-DQB*03		0.17	0.15	0.38	0.17	0.18
Tutr-DQB*04			0.06	0.13		0.04
Tutr-DQB*05		0.056	0.03			0.02
Tutr-DQB*06			0.06			0.02
Tutr-DQB*07			0.03			0.01
Tutr-DQB*08			0.03			0.01
Tutr-DQB*09			0.03			0.01
Tutr-DQB*10	0.10		0.03			0.02
Tutr-DQB*11			0.03			0.01
Tutr-DQB*12			0.03			0.01
Tutr-DQB*13			0.03			0.01
Tutr-DQB*14	0.10	0.06	0.03	0.19		0.06
Tutr-DQB*15	0.10		0.03			0.02
Tutr-DQB*16					0.06	0.01
Tutr-DQB*17					0.11	0.02
Tutr-DQB*18					0.11	0.02
Tutr-DQB*19				0.06	0.06	0.02
Tutr-DQB*20				0.06		0.01
Tutr-DQB*21		0.11			1	0.02
Tutr-DQB*22		0.06				0.01
Tutr-DQB*23		0.06				0.01
Tutr-DQB*24	0.10					0.01
Tutr-DQB*25	0.10					0.01
Tutr-DQB*26	0.10					0.01
Tutr-DQB*27	0.10					0.01
Tutr-DQB*28	0.10					0.01

Tabla IX. Frecuencia relativa de los 28 alelos *Tutr-DQB* por localidad y promedio. Los valores más altos están resaltados y los alelos únicos por localidad están enmarcados.

Código: VE=Veracruz, TA=Tabasco, CA=Campeche, QR=Quintana Roo, CU=Cuba.

El número de alelos inferidos por localidad varió de 6 a 15, encontrando que 9 alelos (*Tutr-DQB*01, 02, 03, 04, 05, 10, 14, 15 y 19*) están compartidos al menos entre dos localidades, mientras que el número de alelos únicos varió de 1 a 7. En ambos casos la localidad con mayor variabilidad alélica fue Campeche y la de menor fue Quintana Roo (Tabla IX).

III.3 Polimorfismo en el exón 2 DQβ de Tursiops truncatus

La heterocigosidad esperada (*He*) por localidad varió entre 0.78 y 0.98, con una *He* promedio de 0.86 (Tabla X). En todas las localidades, con excepción de Veracruz, la *He* excedió el valor de la heterocigosidad observada (*Ho*), sin embargo estos valores no fueron significativamente diferentes (p > 0.05). La diversidad nucleotídica (π) calculada para cada localidad varió entre 0.067 y 0.076, con una π promedio de 0.070 (7%). Los valores de diversidad haplotípica o alélica (*h*) son una medida equivalente a los valores de *He*.

Al analizar las secuencias nucleotídicas de los alelos *Tutr-DQB** se observó que en los 38 sitios variables identificados ocurrieron 47 sustituciones (Fig. 14), de las cuales 21 fueron transiciones (A \leftrightarrow G o C \leftrightarrow T) y 26 fueron transversiones (A \leftrightarrow T/C, G \leftrightarrow T/C, C \leftrightarrow A/G o T \leftrightarrow A/G) (Tabla XI). No se observaron mutaciones del tipo inserción-borrado de bases nucleotídicas. Al traducir las secuencias nucleotídicas a secuencias de aminoácidos se confirmó su correspondencia con el dominio β 1 del MHC-II, tomando como referencia la molécula HLA-DRB de humanos (Brown *et al.* 1993). La mayoría de las secuencias traducidas presentaron marcos de lectura ininterrumpidos (57 aminoácidos, Fig. 15), lo que sugiere su funcionalidad histocompatible *in vivo*. La excepción se presentó en el alelo *Tutr-DQB*08*, el cual exhibe un codón de terminación TAA ubicado en el codón de los sitios nucleotídicos 205, 206 y 207 (Fig. 14). En consecuencia, dicho alelo fue excluido en todos los análisis genéticos subsiguientes.

Tabla X. Alineamiento de secuencias nucleotídicas de los 28 alelos inferidos para *T. truncatus* del Golfo de México y Mar Caribe (*siguiente página*). La secuencia de referencia es *Tutr-DQB*01*. Los puntos y las letras representan nucleótidos idénticos o diferentes de la secuencia de referencia, respectivamente. Los codones que codifican aminoácidos involucrados en la PBR están sombreados (Hayashi *et al.* 2003). Las sustituciones sinónimas están enmarcadas en cuadros delgados y el resto de las sustituciones son no sinónimas. El cuadro grueso resalta un codón de terminación.

Alelos	1 5 6	111 555 789	111 666 012	111 666 345	111 666 678	111 677 901	111 777 234	111 777 567	111 778 890	111 888 123	111 888 456	111 888 789	111 999 012	111 999 345	111 999 678	122 900 901	222 000 234	222 000 567	222 001 890	222 111 123	222 111 456	222 111 789	222 222 012	222 222 345	222 222 678	222 233 901	222 333 234	222 333 567	222 334 890
Tutr-DQB*01	С	ACG	GAG	G CGG	GTG	CGG	GCC	ATG	AGC	AGA	TAC	ATC	TAT	AAC	CGG	GAG	GAG	TAC	GTG	CGC	TTC	GAC	AGC	GAC	GTG	GGC	GAG	TTC	CGG
Tutr-DQB*02							CT.	G	GAA									. T .											
Tutr-DQB*03							TT.	G	GA .					T				. T .										CA.	
Tutr-DQB*04							CT.	G			Α				- 			. TG											
Tutr-DQB*05							CT.	G	GAA									. T .											
Tutr-DQB*06							Τ		. C .																				
Tutr-DQB*07							CT.	G	A									. T .											
Tutr-DQB*08							. T .	G	GA.		. C .							A											
Tutr-DQB*09							. T .	G	GA .		. C .							. TA											
Tutr-DQB*10											С																		
Tutr-DQB*11							Τ		. C .																				
Tutr-DQB*12							TT.	G	GA .		С			T				. T .										CA.	
Tutr-DQB*13									. C .																				
Tutr-DQB*14							TG.		. C .		С																	. A .	
Tutr-DQB*15							TT.	G	GC .									. T .										С	
Tutr-DQB*16							TT.	G	GA .																			CA.	
Tutr-DQB*17							TG.		GC.		С			T				. T .										CA.	
Tutr-DQB*18							TT.	G	. A .																				
Tutr-DQB*19							TT.	G	GA.									. T .											
Tutr-DQB*20							TT.		. C .					T				. T .										С	
Tutr-DQB*21							CT.	G			Α							. TG											
Tutr-DQB*22							CA.	G																					
Tutr-DQB*23							. T .																						
Tutr-DQB*24							TT.	G	GA .									. T .											
Tutr-DQB*25							TT.	G	GA .									. T .										CA.	
Tutr-DQB*26							CA.	G																					
Tutr-DQB*27							CA.	G																					
Tutr-DQB*28							CT.	G			Α							. TG											

Figura 14 (continuación)

Alelos	222 444 123	222 444 456	222 444 789	222 555 012	222 555 345	222 555 678	222 566 901	222 666 234	222 666 567	222 667 890	222 777 123	222 777 456	222 777 789	222 888 012	222 888 345	222 888 678	222 899 901	222 999 234	222 999 567	223 990 890	333 000 123	333 000 456	333 000 789	333 111 012	333 111 345	333 111 678	333 122 901	333 222 234	333 222 567
Tutr-DQB*01	GCG	GTG	ACC	GAG	CTG	GGC	CGG	CGT	ACC	GCC	GAG	TAC	TGG	AAC	AGC	CAG	GAG	GAC	ATC	CTG	GAG	GAG	GAA	CGG	GCC	GCG	GTG	GAC	ACG
Tutr-DQB*02								. CG	GA.		AC.				$G \mathrel{..}$												С		
Tutr-DQB*03								. CG	GA.								Α					CG.	Α			. A .	С		
Tutr-DQB*04								G	G							. G .	Α		TA .			CT.	AG.			. A .			
Tutr-DQB*05								. CG	GA.		Α				G		Α									. A .	С		
Tutr-DQB*06																	Α									. A .			
Tutr-DQB*07								. CG	GA.		AC.				$G \mathrel{..}$												С		
Tutr-DQB*08								. CG	GA.				. TC				Α					CG.	Α			. A .	С		
Tutr-DQB*09								. CG	GA.								Α					CG.	Α			. A .	С		
Tutr-DQB*10																													
Tutr-DQB*11																	Α		С			CG.	C			. A .			
Tutr-DQB*12								. CG	GA .								Α		С			CG.	A . C			. A .	С		
Tutr-DQB*13																													
Tutr-DQB*14								G									Α		С			CG.	C . C			. A .			
Tutr-DQB*15								. CG	GA.																	. A .			
Tutr-DQB*16								. CG	GA.								Α		Τ			CG.	Α			. A .	С		
Tutr-DQB*17								. CG	GA.								Α		С			CG.	A.C			. A .	С		
Tutr-DQB*18								G			Α				G														
Tutr-DQB*19								. CG	GA.			С					Α					CG.		Τ		. AC	. G .		
Tutr-DQB*20								. CG	GA.								Α					CG.	Α			. A .			
Tutr-DQB*21								G	G							. G .	Α		TA .			CT.	Α			. A .			
Tutr-DQB*22								. CG	GA.		Α											CG.	Α			. AC			. G .
Tutr-DQB*23								. CG	GA.				. TC				Α					CG.	Α			. A .			
Tutr-DQB*24								. CG	GA.								Α					CG.	Α			. A .	С		
Tutr-DQB*25								. CG	GA.								Α					CG.	Α			. A .	С		
Tutr-DQB*26								. CG	GA.				. TC				Α									. AC			. G .
Tutr-DQB*27								. CG	GA .				. TC				Α									. A .			. G .
Tutr-DQB*28								G	G							. G .	Α					CT.	Α						

Tabla XI. Genotipificación y diversidad genética de los tursiones costeros del Golfo de México y Mar Caribe. Se presenta el número de individuos genotipificados con éxito, la proporción de genotipos homocigotos (*Hom*) y heterocigotos (*Het*), el número de alelos *Tutr-DQB inferidos*, los valores calculados de heterocigosidad observada (*Ho*), heterocigosidad esperada (*He*), diversidad haplotípica (*h*) y diversidad nucleotídica (π) para cada localidad y total. Los valores de heterocigosidad observada y esperada no fueron significativamente diferentes.

Localidad	No. de Genotipos	Proporción Hom / Het	No. de Alelos	Ho	Не	h	π
Veracruz	5	0 / 5	9	1.00	0.98	0.978 ± 0.054	0.071 ± 0.039
Tabasco	9	3 / 6	8	0.67	0.87	0.869 ± 0.049	0.076 ± 0.040
Campeche	17	3 / 14	15	0.82	0.84	0.838 ± 0.051	0.067 ± 0.034
Quintana Roo	8	2 / 6	6	0.75	0.82	0.817 ± 0.068	0.070 ± 0.037
Cuba	9	2 / 7	7	0.77	0.78	0.784 ± 0.085	0.068 ± 0.036
Total	48	10 / 38	28	0.79	0.86	0.857 ± 0.027	0.070 ± 0.037

La mayoría de las sustituciones observadas en el exón 2 $DQ\beta$ de *T. truncatus* fueron no sinónimas (21/23), ya que de los 38 sitios variables identificados, 15 fueron localizados en la primera posición, 16 en la segunda posición y 7 en la tercera posición de los codones que codifican a los aminoácidos de la molécula MHC-II. En este contexto, las diferencias nucleotídicas inter-alélicas variaron entre 1-13% (diferencia promedio del 8%), mientras que las diferencias en aminoácidos entre 0-23% (diferencia promedio del 15%). No se encontraron diferencias entre las secuencias traducidas de los alelos *Tutr-DQB*03* y *Tutr-DQB*25* debido a que difieren únicamente en una sustitución sinónima.

Tabla XII. Alineamiento de secuencias de aminoácidos de los alelos inferidos para *T. truncatus* del Golfo de México y Mar Caribe (*siguiente página*). La secuencia de referencia es *Tutr-DQB*01*. Los puntos y las letras representan aminoácidos idénticos o diferentes de la secuencia de referencia, respectivamente. Los residuos involucrados en la PBR están sombreados (Hayashi *et al.* 2003). Las sustituciones sinónimas están enmarcadas en cuadros delgados y el resto de las sustituciones son no sinónimas. El cuadro grueso resalta el codón de terminación en el alelo *Tutr-DQB*08*.

	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4 4	4	4	4	5	5	5	5	5	5	5	5	5	5	66	5 6	6	6	6	6	6	6	6	7	7	77	7	7	7	7
	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	5 6	5 7	7	8	9	0	1	2	3	4	5	6	7	8	9	0 1	1 2	3	4	5	6	7	8	9	0	1	2 3	<i>i</i> 4	5	6	7
Sustitución	=	=	=	-	=	ŧ	=	7	=	7	=	=	_	=	=	=	7	=	=	=	=	-	-	-	-			<i>‡</i> :	=	-	=	=	=	=	-	-	=	<i>≠</i> :		<i>‡</i> :	/ =		= 7	: #	<u> </u>		=	-		7	7	<u> </u>	= ≠	: =	=	7
Tutr-DQB*01	Т	Е	R	V	R	А	М	S	R	Y	Ι	Y	N	R	Е	Е	Y	V	R	F	D	S	Ľ) \	(3 H	ΞI	F	R	A	V	Т	Е	L	G	R	R	T.	A	E	ΥV	Wľ	V S	Q	E	D	Ι	L	Е	Е	E	R /	A A	I V	D	Т
Tutr-DQB*02	•	•			•	L	V	Е	•	•	•	•	·				F	•	•	•	•							•	•	•			•	•		•	Р	D	. '	Т		•	C	ì.	•	•		•	•				•	L	•	
Tutr-DQB*03						F	V	D									F										1	Η									Р	D							K				•	R	K		E	L		
Tutr-DQB*04						L	V			Ν							L																					А						R	. K		Y		•	L	R		E	÷ .		
Tutr-DQB*05						L	V	Е									F																				Р	D		K			C	ì.	Κ								E	L		
Tutr-DQB*06						S		Т		·		·					·	<u> </u>		•																	<u>.</u>	•							K			·			•		E			
Tutr-DQB*07						L	V	R									F																				Р	D	. '	Т			C	ì.										L		
Tutr-DQB*08						V	V	D		S							*																				Р	D			. I	7.			K					R	K		E	L		
Tutr-DQB*09						V	V	D		S							L																				Р	D							K					R	K		E	L		
Tutr-DQB*10										Н																																														
Tutr-DQB*11						S		Т																																					Κ		L			R	D		E			
Tutr-DQB*12						F	V	D		Н							F										1	Н									Р	D							K		L			R	N		E	L		
Tutr-DQB*13								Т																																																
Tutr-DQB*14						С		Т		Н																		Y																	K		L			R	Н		E			
Tutr-DQB*15						F	V	А									F	.]	L									Р	D															E			
Tutr-DQB*16						F	V	D																			1	Н									Р	D							K		F			R	K		E	L		
Tutr-DQB*17						С		А		Н].			F]	н									Р	D							K		L			R	N		E	L		
Tutr-DQB*18						F	V	Ν																																K			C	ì.												
Tutr-DQB*19						F	V	D									F																				Р	D		. :	Н.				K					R		W.	D	G		
Tutr-DQB*20						F		Т									F]	L									Р	D							Κ					R	K		E			
Tutr-DQB*21						L	V			Ν							L																			. [A						R	. K		Y			L	K		E			
Tutr-DQB*22						Н	V																														Р	D		K										R	K		D).		R
Tutr-DQB*23						V																															Р	D			. I	7.			Κ					R	K		E			
Tutr-DQB*24						F	V	D									F																				P	D							Κ					R	K		E	L		
Tutr-DQB*25						F	V	D									F										1	н									Р	D							K					R	K		E	L		
Tutr-DQB*26						Н	V																														Р	D			. I	7.			K								E) .		R
Tutr-DQB*27						Н	V																														Р	D			. I	7.			K								E			R
Tutr-DQB*28						L	V			Ν							L																			. [А						R	K					L	K					
						Ι	Lán	nina	a β2	2						L	ámi	na	β3																										Hé	élic	e-α									

La sustitución del aminoácido resultó en la conservación (=) o el cambio (≠) de sus propiedades fisicoquímicas (ver Apéndice III).

Tabla XIII. Polimorfismo en los alelos *Tutr-DQB*. Se muestra el número de alelos, sitios conservados (C), sitios variables (V) y sitios informativos para parsimonia (Pi) de las secuencias nucleotídicas y de aminoácidos por localidad y totales. Se incluye el número de sustituciones (m) y la proporción de transiciones (Ts) y transversiones (Tv).

			Sitios	nucleotíc	licos (17	2 pb)		Amino	oácidos (57 aa)
Localidad	Alelos	С	V	Pi	т	Ts	Τv	С	V	Pi
VE	9	145	27	22	34	13	21	40	17	14
TA	8	139	33	18	41	17	24	38	19	12
CA	14^{\dagger}	141	31	26	41	18	23	40	17	16
QR	6	142	30	11	37	17	20	40	17	6
CU	7	142	30	17	34	17	17	39	18	11
Totales	27^{\dagger}	134	38	33	47	21	26	36	21	19

Código: VE=Veracruz, TA=Tabasco, CA=Campeche, QR=Quintana Roo, CU=Cuba. †=Se excluyó el alelo Tutr-DQB*08

Al analizar las secuencias de aminoácidos que corresponden a los alelos *Tutr-DQB** se observó que en algunos sitios donde las sustituciones no sinónimas provocaron cambios en las propiedades fisicoquímicas coinciden con aquellos sitios que interactúan directamente con los péptidos del antígeno, denominados sitios PBR (*e.g.* 28, 30, 37, 47, 60, 65, 70, 71 y 74). En total se detectaron 17 sitios donde las sustituciones de aminoácidos no conservaron las propiedades fisicoquímicas, mientras que en los 36 sitios restantes si fueron conservadas (Tabla. XII, Apéndice III).

Con respecto a la estructura primaria de la molécula MHC-II, se detectó variabilidad en 11 de los 14 aminoácidos involucrados en la PBR (78%), mientras que sólo 10 de los 43 aminoácidos restantes fueron variables (22%). El histograma de variabilidad en las secuencias de aminoácidos también mostró que los residuos PBR exhiben mayor polimorfismo que aquellos ubicados fuera de esta región. Dicha variabilidad se encuentra concentrada principalmente en las láminas $\beta 2$, $\beta 3$ y en la hélice- α localizadas dentro del dominio $\beta 1$ de la molécula MHC-II (Fig. 16).

Figura 14. Diagrama de variabilidad en las secuencias de aminoácidos traducidas a partir de los alelos *Tutr*-DQB del Golfo de México y Mar Caribe. Las barras negras indican los aminoácidos que interactúan directamente con el péptido del antígeno (residuos PBR). Los rectángulos sombreados indican la posición de los aminoácidos en las láminas β -plegadas o en la hélice- α del dominio β 1 en la molécula MHC-II (modificado de Hayashi *et al.* 2003).

III.4 Efecto de la selección en la divergencia de secuencias exón 2 DQβ

En términos generales, se detectaron evidencias de selección estabilizadora (selección positiva Darwiniana) sobre el exón 2 del gen $DQ\beta$ al obtener razones $d_N/d_S > 1$ para todas las localidades con base en el análisis de los sitios PBR, no PBR y totales (Tabla XII). En particular, estos análisis hacen evidente que la selección diversificadora está actuando sobre los sitios PBR de la molécula MHC-II de *T. truncatus* considerando que la razón d_N/d_S es una prueba conservativa de selección positiva.

Las secuencias de los alelos *Tutr-DQB** presentaron una proporción de sustituciones no sinónimas por sitio no sinónimo $d_N = 10.3\%$ significativamente mayor que la de sustituciones sinónimas por sitio sinónimo $d_S = 1.6\%$ (p < 0.05). Esta diferencia fue más pronunciada al analizar los codones PBR, ya que se obtuvo un valor $d_N = 28.5\%$ considerable y significativamente mayor que $d_S = 4.3\%$ (p < 0.05). Para los codones no PBR el valor $d_N = 5.3\%$ también fue significativamente mayor que el de $d_S = 0.7\%$ (p < 0.05), aunque los valores absolutos fueron un orden de magnitud menores con respecto a los codones PBR. Las razones d_N/d_S para los codones PBR, no PBR y totales fueron 6.6, 7.5 y 6.4, respectivamente. De manera comparativa, el porcentaje promedio de d_N en los codones PBR fue 5.4 veces mayor que en los codones no PBR.

Las razones d_N/d_S calculadas para los codones PBR revelaron que Tabasco (7.6) y Quintana Roo (7.3) presentan los valores más altos, mientras que el valor más bajo fue observado en Campeche (4.3), a pesar ser la muestra con mayor número de alelos por localidad. Para los codones no PBR las razones d_N/d_S con valor más alto se observaron en Tabasco (7.8) y Campeche (7.0), mientras que el más bajo fue para Quintana Roo (3.3).

Tabla XIV. Efecto de la selección diversificadora sobre alelos del exón 2 $DQ\beta$ de *T. truncatus*. Se muestra el número de sustituciones no sinónimas por sitio no sinónimo (d_N), el número de sustituciones sinónimas por sitio sinónimo (d_S) y las razones d_N / d_S para los codones PBR, no PBR y totales. Los valores $d_N y d_S$ están expresados en porcentaje y los números entre paréntesis son los errores estándar calculados por 500 réplicas Bootstrap.

		Codones PBR				Codones no PBR				Todos los codones		
Loc	A	d_N	d_S	d_N/d_S	d	l_N	d_S	d_N/d_S	d_N	d_S	d_N/d_S	
VE	9	30.7 (7.3)	4.7 (5.0)	6.5	4 (2	.6 .1)	0.0 (0.0)	x	10.1 (2.5)	1.0 (0.9)	10.1	
TA	8	30.5 (8.0)	4.0 (2.9)	7.6	6 (2	.3 .3)	0.8 (0.9)	7.8	11.6 (2.7)	1.5 (0.9)	7.7	
CA	14^{\dagger}	28.6 (8.9)	6.7 (5.8)	4.3	5 (2	.6 .2)	0.8 (0.9)	7.0	10.6 (2.7)	2.1 (1.3)	5.0	
QR	6	31.5 (9.1)	4.3 (3.8)	7.3	5 (2	.6 .4)	1.7 (1.9)	3.3	11.2 (2.9)	2.3 (1.6)	4.9	
CU	7	28.9 (8.0)	4.3 (3.5)	6.7	5 (2	.8 .1)	0.9 (0.9)	6.4	10.7 (2.7)	2.1 (1.4)	5.0	
Total	27^{\dagger}	28.5 (7.5)	4.3 (3.6)	6.6	5 (2	.3 .1)	0.7 (0.7)	7.5	10.3 (2.3)	1.6 (1.0)	6.4	

Código: VE=Veracruz, TA=Tabasco, CA=Campeche, QR=Quintana Roo, CU=Cuba. $A=N^{\circ}$ de alelos †=Exclusión del alelo Tutr-DQB*08.

Localidad	N	V	Exón 2 (172 pb)	Codones PBR (42 pb)	Codones no PBR (130 pb)
Veracruz	5	27	1.318 * [-1.33 a 1.21]	1.220 [-1.44 a 1.43]	1.343 [-1.44 a 1.49]
Tabasco	9	33	0.666 [-1.34 a 1.15]	0.653 [-1.37 a 1.36]	0.634 [-1.32 a 1.21]
Campeche	17	33	1.599* [-1.39 a 1.28]	1.681 * [-1.38 a 1.34]	1.307 [-1.43 a 1.40]
Quintana Roo	8	30	0.512 [-1.19 a 1.25]	0.460 [-1.27 a 1.30]	0.553 [-1.45 a 1.32]
Cuba	9	30	0.640 [-1.22 a 1.31]	0.661 [-1.36 a 1.23]	0.372 [-1.44 a 1.31]
Totales	48	38	1.164 [-1.26 a 1.28]	1.293 [-1.35 a 1.42]	0.798 [-1.34 a 1.45]

Tabla XV. Valores de la prueba de neutralidad *D* de Tajima para las secuencias *Tutr-DQB* de cada localidad con base en el número de sitios polimórficos (V). Los intervalos de confianza (95%) se construyeron generando una distribución nula *D* de Tajima con 1000 simulaciones de coalescencia bajo la hipótesis de neutralidad.

* = p < 0.05

Al analizar todos los codones, las razones d_N / d_S más altas fueron encontradas en Veracruz (10.1) y Tabasco (7.7), mientras que el resto de las localidades presentaron valores inferiores (4.8 a 5.0). Cabe mencionar que no existió diferencia significativa entre los valores d_N y d_S cuando se analizaron los codones no PBR de Quintana Roo.

Los valores no significativos de la prueba de neutralidad D de Tajima sugieren que el patrón de sustituciones nucleotídicas en casi todas las secuencias *Tutr-DQB** es congruente con la hipótesis de neutralidad (ausencia de selección) al no considerar la funcionalidad histocompatible y a pesar de encontrar sólo valores D positivos en todas las localidades (Tabla XIII). Sin embargo, se encontraron valores significativamente positivos en Campeche y Veracruz en contraste con las demás localidades. Para la primera localidad las secuencias de los codones PBR y totales dieron un valor D significativamente positivo, mientras que para la segunda localidad únicamente la secuencia completa resultó significativamente positiva.

III.5 Reconstrucción filogenética y patrón evolutivo trans-específico

El análisis de homología realizado con la herramienta *Blastn* (Stephen *et al.* 1997) reveló que los 27 alelos funcionales *Tutr-DQB** inferidos en este estudio comparten gran similitud con las secuencias *DQ* β MHC-II de algunos cetáceos de las familias Delphinidae, Phocoenidae e Iniidae (> 94%) y con algunas especies de artiodáctilos (~80%). Por otro lado, el resultado obtenido con la herramienta *Blastx* (Stephen *et al.* 1997) reveló que las secuencias de estos alelos traducidas a aminoácidos presentan similitudes con el dominio β 1 MHC-II de las familias Delphinidae, Monodontidae, Phocoenidae e Iniidae (> 92%). De manera adicional, los 4 alelos detectados en los individuos homocigotos (*Tutr-DQB*01, 02, 03 y 04*) no presentaron similitudes con las secuencias del gen *DM* β de otros mamíferos, por lo que se descartó la posibilidad de su amplificación durante la PCR.

La reconstruccion de las relaciones filogenéticas entre las secuencias exón 2 $DQ\beta$ MHC-II de *T. truncatus* con respecto a las de otros odontocetos correspondieron al modelo evolutivo HKY85+I+G (Hasegawa *et al.* 1985), con los parámetros –ln L = 1415.0988, P inv= 0.3526, $\gamma = 0.3971$. El filograma Neighbor-Joining resultante mostró que las secuencias *Tutr-DQB** del Golfo de México y Mar Caribe han sostenido un patrón de evolución trans-específica, característica de los alelos con funcionalidad histocompatible (Fig. 15).

Figura 15. Reconstrucción filogenética de Máxima Verosimilitud (ML) - Neighbor-Joining (NJ) que indica el patrón de evolución trans-específico de las secuencias exón 2 *Tutr-DQB** (172 pb) del Golfo de México y Mar Caribe con respecto a las de otros odontocetos (*siguiente página*). El árbol se construyó bajo el modelo de sustitución nucleotídica HKY85+I+G. La robustez del análisis se evaluó mediante 1000 réplicas Bootstrap y los valores >50% se localizan en los nodos. Los números de acceso de las secuencias obtenidas de Genbank fueron los siguientes: *Souza chinensis* EU399218~19, *Globicephala macrorhynchus* AB164226~28, *Cephalorhynchus hectori* EU24809, *Orcaella brevirostris* AB164223, *Neophocaena phocaenoides* AB164212, -16, -18, *Grampus griseus* AB164222, *Delphinus delphis* AB164220, *Phocoena phocoena* AB164211, *Phocoena sinus* AY170897, *Mesoplodon carlhubbsi* AB164210, *M. stejnegeri* AB164209, *Physeter catodon* AB164208, *Delphinapterus leucas* U16989~90, *Monodon monoceros* U16991, *Lagenorhynchus obliquidens* AB164224, *Lipotes vexillifer* AY177283, -91, *Tursiops aduncus* EF507876, *T. truncatus* EF690293~98 y *Bos taurus* U77787 como grupo externo.

⁵³

IV. DISCUSIÓN

Considerando la gran diversidad de patógenos a los que se enfrentan los mamíferos marinos durante su ciclo de vida y que como hospederos deben efectuar una respuesta inmune adecuada contra dichos patógenos, se puede percibir la importancia adaptativa y ecológica que tienen los genes del MHC. Estos genes son los más polimórficos entre los vertebrados debido a la elevada tasa de sustituciones no sinónimas que presentan (Hughes y Nei 1988), las cuales modifican las secuencias de aminoácidos e incluso las propiedades fisicoquímicas de las moléculas MHC que intervienen en los procesos de inmunidad adaptativa, selección sexual y reconocimiento de parentela (Piertney y Oliver 2006, Acevedo-Whitehouse y Cunningham 2006). En este sentido, el MHC representa el sistema genético mejor conocido para estudiar cómo la selección natural interactúa con otras fuerzas evolutivas tales como la deriva genética y la migración para moldear la adaptación de las poblaciones a las condiciones locales (Bernatchez y Landry 2003).

Uno de los objetivos más atractivos en la investigación del MHC consiste en elucidar la interacción entre condiciones ambientales específicas y el genotipo MHC de los organismos, así como su expresión y funcionalidad, con la intención de documentar las consecuencias de dicha interacción sobre la selección sexual y la aptitud individual (Bernatchez y Landry 2003). Una cuestión relevante para la conservación de cetáceos y otras especies marinas radica en que las enfermedades infecciosas ejercen una de las principales fuerzas selectivas que influyen en la aptitud de los individuos de una población (Acevedo-Whitehouse y Cunningham 2006). Debido a la fuerte presión selectiva que los agentes patógenos pueden ejercer sobre los parámetros reproductivos y demográficos de las poblaciones, resulta clave caracterizar los componentes genéticos de inmunidad del hospedero con la intención de explicar cómo ocurren las variaciones funcionales de resistencia ante las enfermedades infecciosas (Acevedo-Whitehouse y Cunningham 2006).

Aunque estas razones justifican el esfuerzo que representa la obtención de evidencias que permitan entender la influencia de estos genes con valor adaptativo, aún son escasos los estudios sobre su variabilidad en las poblaciones de cetáceos. Este hecho puede deberse a la dificultad que significa colectar muestras adecuadas provenientes de especies estrictamente protegidas o clasificadas como amenazadas (NOM-059-ECOL-2001, IUCN 2009) y al alto costo de los métodos convencionales de laboratorio (Harrigan *et al.* 2008).

IV. 1 Caracterización molecular del gen DQβ en T. truncatus

IV.1.1 Comparación entre secuencias Taq y Phusion HF

Cuando se amplifican secuencias de familias multigénicas pueden generarse productos de PCR conocidos como "moléculas recombinantes" (Saiki et al. 1988, Meyerhans et al. 1990). En el caso de genes tan polimórficos como los del MHC, es fundamental evitar la variabilidad producida por artefactos de PCR (Kobayashi et al. 1999), particularmente en aquellos genes involucrados en la respuesta inmune ante agentes patógenos. Algunos autores han descrito que las polimerasas de alta fidelidad pueden generar moléculas recombinantes por su actividad de corrección de lectura dependiente de exonucleasas, ya sea porque el fragmento de ADN plantilla está degradado (Meyerhans et al. 1990), es relativamente grande (>1.5 kb, Kobayashi et al. 1999) o es fragmentado por la exonucleasa e incorporado al azar por la polimerasa en función del número de ciclos de amplificación (>20 ciclos, Zylstra et al. 1998, Judo et al. 1998). Por estas razones, para caracterizar el gen DQβ de T. truncatus y evitar la recombinación debida a PCR se utilizó la polimerasa de ADN de alta fidelidad (Phusion HF) con menor tasa de error en la incorporación de nucleótidos reportada en el mercado (Phusion HF < Pfu < Vent < Taq, Cline et al. 1996, Slater et al. 1998), aunado al pequeño tamaño del fragmento de ADN objetivo (exón 2 $DQ\beta$ = 214 pb) y el número mínimo de ciclos de amplificación recomendados por el fabricante (25 ciclos).

La genotipificación de individuos *T. truncatus* utilizando *Phusion* HF reveló la presencia de un par de alelos por individuo heterocigoto al observar únicamente "dobles picos" de fluorescencia en el consenso de cromatogramas. Este resultado confirmó la amplificación exitosa de un locus $DQ\beta$ único, consistente con lo reportado para esta especie (Yang *et al.* 2007, Yang *et al.* 2008) y otros odontocetos (Murray *et al.* 1995, Hayashi *et al.* 2003, Hayashi *et al.* 2006, Martínez-Agüero *et al.* 2006, Munguía-Vega *et al.* 2007, Heimeier

2009). En contraste, algunos autores han descrito la duplicación del locus $DQ\beta$ en los misticetos (Baker *et al.* 2006), el baiji (Yang *et al.* 2005) y la marsopa sin aleta dorsal de China (Xu *et al.* 2007), lo que sugiere una condición ancestral compartida con los rumiantes en la etapa temprana de divergencia con el resto de los cetáceos dentados (suborden Odontoceti, Baker *et al.* 2006).

Uno de los objetivos particulares de este estudio fue realizar un análisis comparativo entre secuencias del exón 2 $DQ\beta$ de *T. truncatus* amplificadas con *Taq* o *Phusion* HF para evaluar el desempeño de la primera polimerasa en la genotipificación de los tursiones. Este análisis reveló que el mayor porcentaje de errores cometidos por *Taq* se localizó en los sitios PBR involucrados en el reconocimiento de antígenos y no de manera aleatoria como se había reportado en secuencias de la región COI del ADNmt (1000 pb, Kobayashi *et al.* 1999). En el mismo contexto, Yang *et al.* (2005) reportaron el más alto nivel de polimorfismo en el MHC de los cetáceos al detectar 43 alelos $DQ\beta$ en sólo 18 delfines baiji. No obstante, estos autores solo pudieron confirmar 8 alelos en distintos individuos o clonas, pero no pudieron descartar errores potenciales en la incorporación de nucleótidos de los 35 alelos restantes debido a la utilización de la polimerasa *Taq*.

IV.1.2 Reconstrucción de alelos con base en el método bayesiano PHASE

La identificación correcta de un alelo MHC requiere la obtención de al menos dos secuencias nucleotídicas idénticas derivadas de productos de PCR independientes, esto para poder distinguir entre mutaciones puntuales y artefactos de PCR (Harrigan *et al.* 2008). En el presente estudio, se detectaron 28 alelos potenciales *Tutr-DQB** en 48 tursiones costeros del sur del Golfo de México y Mar Caribe mediante análisis computacional. La precisión en la reconstrucción de alelos con base en el algoritmo bayesiano PHASE 2.1.1 (Stephens *et al.* 2001, Stephens y Donelly 2003) fue confirmada al encontrar identidad entre algunas de las secuencias inferidas y aquellas caracterizadas previamente en otros odontocetos. Por ejemplo, los alelos *Tutr-DQB*03* y 26 resultaron idénticos a dos alelos *DQ*β publicados para el delfín jorobado del Indo-Pacífico *Sousa chinensis* (Mo 2008, datos no publicados),

mientras que los alelos *Tutr-DQB*02, 04, 09, 16, 19 y 22* fueron idénticos a seis alelos *DQ* β reportados para el tursión oceánico del Pacífico Occidental *T. truncatus* (Kita *et al.* 2007). El resto de los alelos inferidos en este estudio presentó altos niveles de homología (94-98%) con otros alelos *DQ* β de las familias Delphinidae, Phocoenidae e Iniidae (Kita *et al.* 2007, Yang *et al.* 2008, Hayashi *et al.* 2003, Yang *et al.* 2007, Hayashi *et al.* 2006, Yang *et al.* 2005, Heimeier *et al.* 2009).

Con base en el número de alelos compartidos entre las poblaciones del sur del Golfo de México y Mar Caribe, aunado a la identidad con otros alelos caracterizados previamente se podría sugerir que al menos 13 de los 28 alelos *Tutr-DQB** son auténticos, mientras que el resto, por tratarse de alelos raros deberían ser confirmados mediante las técnicas de clonación y secuenciación para descartar que sean artefactos de PCR.

IV.2 Polimorfismo en el gen $DQ\beta$ de T. truncatus

La diversidad genética encontrada en las poblaciones de tursiones costeros del sur del Golfo de México y Mar Caribe es considerablemente alta en comparación con la de otros cetáceos de hábitos costeros, analizando tanto marcadores moleculares neutrales (*e.g.* región control del ADNmt, Islas-Villanueva 2005) como marcadores sujetos a selección (*e.g.* $DQ\beta$ MHC-II, en este estudio). En un estudio previo de genética poblacional, Islas-Villanueva (2005) encontró 20 haplotipos distintos al amplificar 332 pb de la región control del ADNmt de 45 tursiones y obtuvo altos valores promedio de diversidad haplotípica (h = 0.810) y nucleotídica ($\pi = 0.027$). De manera congruente, en el presente estudio se detectaron 27 alelos *Tutr-DQB** funcionales al analizar 48 tursiones procedentes de las costas de Veracruz, Tabasco, Campeche, Quintana Roo y Cuba, obteniendo también altos valores promedio de heterocigosidad (He = 0.86), diversidad haplotípica (h = 0.857) y nucleotídica ($\pi = 0.070$).

No obstante, el nivel de diversidad genética obtenido mediante el uso de marcadores moleculares neutrales no siempre mantiene una relación directa con el nivel obtenido por marcadores sujetos a selección. En este contexto, Rosel y Rojas-Bracho (1999) no observaron

variabilidad en 322 pb de la región control del ADNmt al analizar 43 vaquitas *Phocoena sinus* endémicas del alto Golfo de California. Este resultado fue consistente con lo reportado por Munguía-Vega *et al.* (2007) quienes detectaron un único alelo *Phsi-DQB** funcional fijado para esta población en peligro crítico de extinción (CR, IUCN 2009). Por otro lado, Yoshida *et al.* (2001) encontraron 10 haplotipos distintos al amplificar 345 pb de la región control del ADNmt de 174 marsopas sin aleta dorsal de Japón *Neophocaena phocaenoides*, mientras que Hayashi *et al.* (2006) detectaron 8 alelos *Neph-DQB** funcionales en 160 de esos individuos. En contraste, Yang *et al.* (2003) reportaron niveles muy bajos de diversidad haplotípica y nucleotídica en el baiji o delfín del Río Yangtzé *Lipotes vexillifer* al analizar fragmentos de 420 pb en la región control del ADNmt. Este resultado fue controversialmente contradictorio con el estudio de Yang *et al.* (2005), quienes reportaron el mayor nivel de polimorfismo en el gen *DQ* β de los cetáceos al detectar 43 alelos *Live-DQB** funcionales en sólo 18 individuos de una población aparentemente extinta en la actualidad (IUCN 2009).

El número total de alelos exón 2 *Tutr-DQB** (27 inferidos en este estudio fue superior al encontrado en poblaciones de beluga *Delphinapterus leucas* y narval *Monodon monoceros* (Murray *et al.* 1995, Murray *et al.* 1999), marsopa sin aleta dorsal de Japón y China *Neophocaena phocaenoides* (Hayashi *et al.* 2006, Xu *et al.* 2007), delfín de Héctor *Cephalorhynchus hectori* y calderón de aletas cortas *Globicephala macrorhynchus* (Heimeier *et al.* 2009), entre otras (ver Tabla I). Sin embargo, fue inferior al número de alelos reportados para el delfín del río Yangtse o baiji *Lipotes vexillifer* (*Yang et al.* 2005), especie en la que se encontró duplicación del locus *DQ*β.

Una explicación sobre estos patrones de variabilidad del MHC-II podría estar relacionada con la exposición a diferentes agentes patógenos como sugiere Slade (1992). Murray *et al.* (1995) se apoyaron en esta hipótesis para explicar que las diferencias entre las poblaciones de beluga del Ártico (5 alelos entre 43 individuos, He = 0.69) y las que habitan las costas canadienses (4 alelos entre 190 individuos, He = 0.38) podrían corresponder a los distintos patógenos que han enfrentado. Hayashi *et al.* (2006) analizaron poblaciones de marsopa sin aleta dorsal que habitan las aguas someras de las costas japonesas, donde hay una alta exposición a patógenos por las descargas hacia el mar (8 alelos entre 160 individuos,
He = 0.78). Un caso extremo de variabilidad en el MHC fue reportado para el extinto delfín del río Yangtzé o baiji (43 alelos entre 18 individuos) al encontrar duplicación en el gen $DQ\beta$, posiblemente como consecuencia de la adaptación a ambientes de agua dulce con un relativo alto nivel de exposición a patógenos (Yang *et al.* 2005). El único valor de *He* comparable con el de este estudio fue reportado por Hoelzel *et al.* (1999) para la foca elefante del sur (8 alelos entre 109 individuos, He = 0.84).

La diversidad haplotípica de las secuencias exón 2 *Tutr-DQB** analizadas en este estudio fue notablemente alta (h = 0.857) considerando que un valor h = 1 implicaría que todos los alelos de la muestra fueran diferentes. La diversidad nucleotídica promedio ($\pi = 0.070$) obtenida entre estas secuencias se encuentra entre los valores más altos reportados para poblaciones de cetáceos como la beluga ($\pi = 0.016$, Murray *et al.* 1995), la marsopa sin aleta dorsal ($\pi = 0.021$, Hayashi *et al.* 2006) y el tursión ($\pi = 0.060$, Yang *et al.* 2008).

En el caso del alelo *Tutr-DQB*08* se observó un codón de terminación que sugiere la pérdida de funcionalidad histocompatible *in vivo*, razón por la cual fue excluido de todos los análisis. En la actualidad no se han publicado secuencias de pseudogenes del MHC-II en especies de odontocetos por lo que el individuo heterocigoto (*Tutr*CA12) al que pertenece este alelo se convierte en candidato para clonación *a posteriori*, con la finalidad de verificar la autenticidad del pseudogen.

IV.3 Evidencias de selección estabilizadora sobre el gen DQβ

El efecto que tiene la selección estabilizadora sobre el mantenimiento de polimorfismo en el gen $DQ\beta$ MHC-II de *T. truncatus* fue evidenciado al obtener valores d_N / d_S significativamente positivos para todas las localidades analizadas del sur del Golfo de México y Mar Caribe. El exceso de sustituciones no sinónimas fue más notable en los codones que interactúan directamente con los péptidos del antígeno (sitios PBR, $d_N = 28.5$) en contraste con aquellos que no lo hacen (sitios no PBR, $d_N = 5.3$). Hugues y Nei (1989) han sugerido que esta contrastada proporción se debe a que la tasa de evolución ha sido más rápida para los sitios no sinónimos debido a la acción que ejerce la selección estabilizadora al favorecer nuevas variantes e incrementar la diversidad del MHC (Bernatchez y Landry 2003). Estudios previos que encontraron bajos niveles de variabilidad en el MHC de algunas especies de mamíferos marinos en comparación con mamíferos terrestres (Slade 1992, Murray *et al.* 1995) argumentaron un nivel reducido de diversidad de micro-parásitos en el ambiente marino, el cual podría disminuir la presión de selección estabilizadora para mantener la variabilidad del MHC (Slade 1992).

Este argumento reflejaría una tasa inferior de sustituciones no sinónimas en los sitios PBR de los mamíferos marinos en contraste con la observada en los mamíferos terrestres. Sin embargo, la proporción de sustituciones no sinónimas en las secuencias exón 2 *Tutr-DQB** de este estudio es similar al reportado en el MHC-II de mamíferos terrestres (revisar Murray y White 1998) e incluso superior a la de algunos cetáceos (ver razones d_N/d_S , Tabla I). Por lo tanto, se permite sugerir que existe presión de selección positiva sobre el gen $DQ\beta$ de *T. truncatus* y debatir la hipótesis de reducción de presión selectiva en ambientes marinos, principalmente en zonas costeras.

Esta evidencia de selección estabilizadora fue corroborada únicamente en Campeche y Veracruz al encontrar valores D de Tajima significativamente positivos, en contraste con el resto de las localidades donde el patrón de sustituciones nucleotídicas fue congruente con la hipótesis de neutralidad (Tajima 1989), debido quizá a la alta proporción de sustituciones sinónimas encontrada en comparación a las de otros cetáceos.

Aunque se han encontraron algunas excepciones, la mayoría de los estudios sobre genes involucrados en la histocompatibilidad de clase II en los cetáceos indican que la selección estabilizadora y la selección positiva Darwiniana han sido determinantes en la conformación de los patrones de diversidad nucleotídica en genes del MHC (Garrigan y Hedrick 2003). Con base en Borghans *et al.* (2004), la selección estabilizadora sobredominante (*e.g.* ventaja del heterocigoto) podría no ser suficiente para explicar el alto nivel de polimorfismo encontrado en el gen $DQ\beta$ de los tursiones costeros del Golfo de México y Mar Caribe. La variabilidad aditiva detectada como un alto número de alelos raros podría explicarse mediante la coevolución entre hospederos y patógenos diferentes en cada localidad.

IV.4 Reconstrucción filogenética y patrón evolutivo trans-específico

Una evidencia adicional del efecto que tiene la selección estabilizadora sobre el gen $DQ\beta$ de los odontocetos en una escala de tiempo evolutiva fue encontrada en forma de patrón evolutivo trans-específico al analizar la reconstrucción filogenética. El hecho de que algunas especies de odontocetos compartan alelos $DQ\beta$ sugiere que este gen ha estado bajo influencia de la selección estabilizadora sobredominante (*e.g.* ventaja de heterocigotos) por un largo periodo de tiempo evolutivo. La reconstrucción filogenética derivada de las secuencias del exón 2 $DQ\beta$ de *T. truncatus* y otras especies de odontocetos no reflejó las diferencias taxonómicas establecidas en base a criterios morfológicos o marcadores neutrales (Nikaido *et al.* 2001, Martínez-Agüero *et al.* 2006), ya que tanto las especies como algunas familias están intercaladas dentro de los mismos linajes alélicos. Se piensa que este patrón indica la influencia de la selección estabilizadora a través de la sobredominancia de heterocigotos (Huges y Nei 1989, Takahata y Nei 1990).

Aparentemente, las secuencias del locus $DQ\beta$ -1 del MHC-II divergen más rápido que otras secuencias nucleares. Este hecho sugiere la posibilidad de que sean diferentes patrones de selección los que están influyendo sobre los genes MHC de los organismos y podría explicar las supuestas inconsistencias en la reconstrucción filogenética obtenida a partir de marcadores moleculares selectivamente neutrales entre los cetáceos (Nikaido *et al.* 2001, Martínez-Agüero *et al.* 2006).

IV.5 Implicaciones para la conservación de la especie

La variabilidad en los genes del MHC puede ser un indicador de la historia natural de las poblaciones y su viabilidad a futuro, por lo que la información que derive de su análisis permitirá contestar una amplia gama de preguntas sin resolver en biología evolutiva y de la conservación. Esto se debe a que dicha variabilidad refleja procesos adaptativos y evolutivos relevantes dentro y entre las poblaciones (Yang *et al.* 2007). No obstante, se debe mencionar que la variabilidad encontrada en un locus completo o en una parte de este no es una medida

que permita definir la variabilidad en el resto de *loci* MHC (Murray y White 1998) y que las conclusiones obtenidas únicamente de una fracción del complejo inmunogenético deben tomarse con cautela (Acevedo-Whitehouse y Cunningham 2006).

Aún considerando la escasez de estudios que relacionan la asociación entre alelos del MHC de mamíferos marinos y las enfermedades que prevalecen en las poblaciones silvestres, la identificación de nuevos alelos y el análisis de su funcionalidad histocompatible pueden proporcionar herramientas adecuadas para el manejo o la conservación de estas poblaciones (Heinzelmann *et al.* 2009). Por otro lado, la contaminación química puede estar vinculada a la deficiencia inmunológica en los mamíferos marinos, por lo que evaluar el polimorfismo del MHC-II en poblaciones de delfines puede ser de gran utilidad para estimar su resistencia a posibles perturbaciones antropogénicas (Flores-Ramírez *et al.* 2004).

CONCLUSIONES

- La utilización de la polimerasa de ADN *Phusion* HF en combinación con el algoritmo computacional PHASE 2.1.1 representa un método alternativo confiable, eficaz y de bajo costo para la genotipificación del MHC, particularmente el exón 2 del gen *DQ*β.
- El nivel de polimorfismo adaptativo observado en los tursiones costeros *Tursiops* truncatus del sur del Golfo de México y Mar Caribe es consistente con el alto nivel de polimorfismo neutral descrito previamente y sugiere la exposición a una alta diversidad de patógenos en su hábitat.
- 3. La reconstrucción filogenética de los alelos *Tutr-DQB** caracterizados en este estudio presentó un patrón de evolución trans-específico con respecto a los de otras especies del suborden Odontoceti (cetáceos dentados), lo que sugiere la influencia de la selección estabilizadora en la retención de linajes alélicos a través de largos periodos de tiempo evolutivo.
- 4. Las secuencias de aminoácidos correspondientes a los alelos *Tutr-DQB** sugieren evidencia de funcionalidad histocompatible.

VI. LITERATURA CITADA

- Abbas, A.K., A.H. Lichtman y S. Pillai. 2007. *Cellular & Molecular Immunology* 6th Ed. Saunders Elsevier Inc. 566 p.
- Acevedo-Whitehouse, K. y A.A. Cunningham. 2006. Is MHC enough for understanding wildlife immunogenetics? *Trends in Ecology and Evolution* 21(8): 433-438.
- Agúndez, J.A.G., K. Golka, C. Martínez, S. Selinski, M. Blaszkewicz y E. Gacía-Martín. 2008. Unraveling ambiguous NAT2 genotyping data. Clinical Chemistry 54(8): 1390-1394.
- Aljanabi, S.M. e I. Martínez. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. *Nucleic Acids Research* 22: 4692-4693.
- Amos, W. 1997. Marine mammal tissue sample collection and preservation for genetic analyses. En: Dizon, A.E., S.J. Chivers y W.F. Perrin (eds.). *Molecular Genetics of Marine Mammals*, Special Publication 3 of the Society of Marine Mammalogy, 107-113 p.
- Amos, W. y A. Balmford. 2001. When does conservation genetics matter? *Heredity* 87: 257-265.
- Avise, J.C. 1995. Mitochondrial DNA polymorphism and a connection between genetics and demography of relevance to conservation. *Conservation Biology* 9(3): 686-690.
- Baker, C.S., M.D. Vant, G.M. Lento, M.L. Dalebout, S.J. O'Brien y N. Yuhki. 2006. Diversity and duplication of *DQB* and *DRB*-like genes of the MHC in baleen whales (suborder: Mysticeti). *Immunogenetics* 58:283-296.
- Bernatchez, L. y C. Landry. 2003. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? *Journal of Evolutionary Biology* 16: 363-377.
- Bjorkman, P.J. y P. Parham. 1990. Structure, function and diversity of Class I Major Histocompatibility Complex molecules. *Annual Review of Biochemistry* 59: 253-288.
- Borghans, J.A.M., J.B. Beltman y R.J. de Boer. 2004. MHC polymorphism under hostpathogen coevolution. *Immunogenetics* 55:732–739.
- Bowen, L., B.M. Aldridge, F. Gulland, J. Woo, W. Van Bonn, R. DeLong, J.L. Stott y M.L. Johnson. 2002. Molecular characterization of expressed *DQA* and *DQB* genes in the California sea lion (*Zalophus californianus*). *Immunogenetics* 54: 332-347.

- Brown, J.H., T.S. Jardetzky, J.C. Gorga, L.J. Stern, R.G. Urban, J.L. Strominger y D.C. Wiley. 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-*DR1. Nature* 364: 33-39.
- Castro-Prieto, A. del C. 2006. Caracterización molecular del Complejo Principal de Histocompatibilidad Clase I en la vaquita (*Phocoena sinus*). Tesis de maestría en ciencias. Centro de Investigación Científica y Educación Superior de Ensenada. México. 112 p.
- Cohen, S. 2002. Strong positive selection and habitat-specific amino acid substitution patterns in MHC from an estuarine fish under intense pollution stress. *Molecular Biology and Evolution* 19: 1870-1880.
- Clark, A.G. 1990. Inference of haplotypes from PCR-amplified samples of diploid populations. *Molecular Biology and Evolution* 7: 111–122.
- Cline, J., J.C. Braman y H.H. Hogrefe. 1996. PCR fidelity of *Pfu* DNA polymerase and other thermostable DNA polymerases. *Nucleic Acids Research* 24(18): 3546-3551.
- Dixon, H.B.F, A. Cornish-Bowden, C. Liébecq, K.L. Loening, G.P. Moss, J. Reedijk, S.F. Velick y J.F.G. Vliegenthart. 1984. Nomenclature and symbolism for amino acids and peptides. IUPAC IUB. *Pure & Applied Chemistry* 56(5): 595-624.
- Doherty, P.C. y R.M. Zinkernagel. 1975. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. *Nature* 256: 50-52.
- Excoffier, L., G. Laval y S. Schneider. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. *Evolutionary Bioinformatics Online* 1:4750.
- Fernández-Ruenes, G. 2009. Análisis de la variabilidad genética y de la estructura poblacional del delfín Tursiops truncatus (Montagu, 1821) en localidades del Archipiélago Sabana-Camagüey, Cuba. Tesis de Diploma. Facultad de Biología, Universidad de la Habana, Cuba. 54 p.
- Finnzymes Phusion High-Fidelity DNA polymerase instruction manual version 1.5. 2007.
- Flajnik, M.F. y Kasahara, M. 2001. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. *Immunity* 15(3): 351-362.
- Flores-Ramírez, S.J., R.D. Miller y J. Urbán-Ramírez. 2004. Major Histocompatibility Complex I polymorphism in a cetacean: the gray whale (*Eschrichtius robustus*). *Marine Mammal Science* 20: 262-273.

- Futuyma, D.J. 1998. *Evolutionary Biology* 3rd Edition. Sinauer Associates, Inc. Publishers. Sunderland, U.S.A. 763 p.
- Garrigan, D. y P.W. Hedrick. 2003. Detecting adaptive molecular polymorphism: Lessons from the MHC. *Evolution* 57(8): 1707-1722.
- Godoy, J.A. 2009. La genética, los marcadores moleculares y la conservación de especies. *Ecosistemas* 18(1): 23-33.
- Harrigan, R.J., M.E. Mazza y M.D. Sorenson. 2008. Computation vs. cloning: evaluation of two methods for haplotype determination. *Molecular Ecology Resources* 8: 1239-1248.
- Hayashi, K., S. Nishida, H. Yoshida, M. Goto, L.A. Pastene y H. Koike. 2003. Sequence variation of the *DQB* allele in the cetacean MHC. *Mammal Study* 28: 89–96.
- Hayashi, K., H. Yoshida, S. Nishida, M. Goto, L.A. Pastene, N. Kanda, Y. Baba y H. Koike. 2006. Genetic variation of the MHC *DQB* locus in the finless porpoise (*Neophocaena phocaenoides*). *Zoological Science* 23: 147-153.
- Hedrick, P.W. 1994. Evolutionary Genetics of the Major Histocompatibility Complex. *The American Naturalist* 143(6): 945-964.
- Heimeier, D. 2009. Comparative diversity at the Major Histocompatibility Complex in two dolphin species. Tesis de doctorado en filosofía de ciencias biológicas. Universidad de Auckland. 250 p.
- Heimeier, D., C.S. Baker, K. Russell, P.J. Duignan, A. Hutt y G.S. Stone. 2009. Confirmed expression of MHC class I and class II genes in the New Zealand endemic Hector's dolphin (*Cephalorhynchus hectori*). *Marine Mammal Science* 25(1): 68-90.
- Heinzelmann, L., M. Tavares, P.H. Ott, I.M.B. Moreno y J.A.B. Chies. 2009. MHC class II expression in skin biopsies from the franciscana dolphin *Pontoporia blainvillei* and the southern right whale *Eubalaena australis*. *Journal of the Marine Biological Association of* the United Kingdom 89(5): 1009-1013.
- Hersh, S.L. y D.A. Duffield. 1990. Distinction between northwest Atlantic offshore and coastal bottlenose dolphins based on hemoglobin profile and morphometry. En: S. Leatherwood y R.R. Reeves (eds). *The bottlenose dolphin*. Academic Press. San Diego, CA. 129-139 p.
- Hoelzel, A.R., C.W. Potter y P.B. Best. 1998. Genetic differentiation between parapatric nearshore and offshore populations of the bottlenose dolphins. *Proceedings of the Royal Society of London* 265: 1177-1183.

- Hudson, R.R. 1991. Gene genealogies and the coalescent process. En: D. Futuyma y J. Antonovics (eds). *Oxford surveys in evolutionary biology* 7: 1-44.
- Hugues, A.L. y M. Nei. 1988. Pattern of nucleotide substitution at Major Histocompatibility Complex class I loci reveals overdominant selection. *Nature* 335: 167-170.
- Hugues, A.L. y M. Yeager. 1998. Natural selection and the evolutionary history of Major Histocompatibility Complex loci. *Frontiers in Bioscience* 3: 509-516.
- Hughes, A.R., B.D. Inouye, M.T.J. Johnson, N. Underwood y M. Vellend. 2008. Ecological consequences of genetic diversity. *Ecology Letters* 11:609-623.
- Islas-Villanueva, V. 2005. Genética de poblaciones y filogeografía de toninas *Tursiops truncatus* en el sur del Golfo de México y el Caribe. Tesis de maestría en ciencias biológicas. Instituto de Ecología. Universidad Nacional Autónoma de México. 90 p.
- IUCN. 2009. IUCN Red List of Threatened Species version 2009.2 <www.iucnredlist.org>. Downloaded on 13 November 2009.
- Judo, M.S., A.B. Wedel y C. Wilson. 1998. Stimulation and suppression of PCR-mediated recombination. *Nucleic Acids Research* 26(7): 1819-1825.
- Kita, Y.F., M. Watanabe, T. Shiina, A. Tanaka, H. Ohizumi, K. Hosomichi, T. Iwasaki, M. Ota, H. Inoko, S. Bahram y S. Tanaka. 2007. The determination of community structure of offshore-type bottlenose dolphin (*Tursiops truncatus*) by population genetic analysis. Unpublished. NCBI GenBank.
- Kobayashi, N., K. Tamura y T. Aotsuka. 1999. PCR error and molecular populations genetics. *Biochemical Genetics* 37: 317-321.
- Krützen, M., Barre, L.M., Möller, L.M., Heithaus, M.R., Simms, C. y Sherwin, W.B. 2002. A biopsy system for small cetaceans: darting success and wound healing in *Tursiops* spp. *Marine Mammal Science* 18: 863–878.
- Krützen, M., W.B. Sherwin, P. Berggren y N. Gales. 2004. Population structure in an inshore cetacean revealed by microsatellite and mtDNA analysis: Bottlenose dolphins (*Tursiops sp.*) in Shark Bay, Western Australia. *Marine Mammal Science* 20(1): 28-47.
- Kumanovics, A., T. Takada y K.F. Lindahl. 2003. Genomic organization of the mammalian MHC. *Annual Review of Immunology* 21: 629-657.
- Lento, G.M., C.S. Baker, V. David, N. Yuhki, N.J. Gales y S.J. O'Brien. 2003. Automated single-strand conformation polymorphism reveals low diversity of a Major Histo-

compatibility Complex class II gene in the threatened New Zealand sea lion. *Molecular Ecology Notes* 3: 346-349.

- Librado, P. y J. Rozas. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25: 1451-1452.
- Leatherwood, S. y R.R. Reeves. 1990. *The Bottlenose Dolphin*. Academic Press. San Diego, CA. 653 p.
- Martínez-Agüero, M., S. Flores-Ramírez y M. Ruiz-García. 2006. First report of Major Histocompatibility Complex class II loci from the Amazon pink river dolphin (genus *Inia*). *Genetics and Molecular Research* 5(3): 421-431.
- Meyerhans, A., J.P. Vartanian y S. Wain-Hobson. 1990. DNA recombination during PCR. *Nucleic Acids Research* 18(7): 1687-1691.
- Meyers, L.A. y J.J. Bull. 2002. Fighting change with change: adaptive variation in an uncertain world. *Trends in Ecology and Evolution* 17:551-557.
- Munguía-Vega, A., Y. Esquer-Garrigos, L. Rojas Bracho, R. Vázquez-Juárez, A. Castro-Prieto y S. Flores-Ramírez. 2007. Genetic drift vs. natural selection in a long-term small isolated population: Major Histocompatibility Complex class II variation in the Gulf of California endemic porpoise (*Phocoena sinus*). *Molecular Ecology* 16: 4051-4065.
- Murray, B.W., S. Malik y B.N. White. 1995. Sequence variation at the Major Histocompatibility Complex locus *DQB* in beluga white whales (*Delphinapterus leucas*). *Molecular Biology and Evolution* 12:582–593.
- Murray, B.W. y B.N. White. 1998. Sequence variation at the Major Histocompatibility Complex *DRB* loci in beluga (*Delphinapterus leucas*) and narwhal (*Monodon monoceros*). *Immunogenetics* 48: 242-252.
- Natoli, A., V.M. Peddemors y A.R. Hoelzel. 2004. Population structure and speciation in the genus *Tursiops* based on microsatellite and mitochondrial DNA analyses. *Journal of Evolutionary Biology* 17: 363-375.
- Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press. New York. 512 p.
- Nei M. y F. Tajima. 1981. DNA polymorphism detectable by restriction endonuclease. *Genetics* 97: 145-163.
- Nei, M. y T. Gojobori. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. *Molecular Biology and Evolution* 3:418-426.

- Nigenda-Morales, S., S. Flores-Ramírez, J. Urbán-R. y R. Vázquez-Juárez. 2007. MHC *DQB*1 polymorphism in the Gulf of California fin whale (*Balaenoptera physalus*) population. *Journal of Heredity* 99(1): 14-21.
- Nikaido, M., F. Matsuno, H. Hamilton, R.L. Brownell Jr., Y. Cao, W. Ding, Z. Zuoyan, A.M. Shedlock, R.E. Fordyce, M. Hasegawa y N. Okada. 2001. Retroposon analysis of major cetacean lineages: The monophyly of toothed whales and the paraphyly of river dolphins. *Proceedings of the National Academy of Sciences* 98(13): 7384-7389.
- NOM-059-ECOL-2001. Norma oficial mexicana que determina las especies y subespecies de flora y fauna silvestres terrestres y acuáticas en peligro de extinción, amenazadas, raras y las sujetas a protección especial y que establece especificaciones para su protección. Diario Oficial de la Federación. Miércoles 6 de marzo de 2002, segunda sección: 1-78 (2002).
- Ortega-Ortiz, J., A. Delgado-Estrella y A. Ortega-Argueta. 2004. Mamíferos marinos del Golfo de México: Estado actual del conocimiento y recomendaciones para su conservación. En: Caso, M., I. Pisanty y E. Ezcurra. *Diagnóstico ambiental del Golfo de México*, Volumen I. INE-SEMARNAT. 135-160 p.
- Pérez-Cao, H. 1996. Genética-bioquímica poblacional del delfín tonina *Tursiops truncatus* (Montagu, 1821) de Cuba. Tesis de Diploma. Facultad de Biología, Universidad de la Habana, Cuba. 64 pp.
- Piertney, S.B. y M.K. Oliver. 2006. The evolutionary ecology of the Major Histocompatibility Complex. *Heredity* 96: 7-21.
- Posada, D. y K.A. Crandall. 1998. Modeltest: testing the model of DNA substitution. *Bioinformatics* 14 (9): 817-818.
- Raymond M. y F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. *Journal of Heredity* 86: 248-249
- Reeves, R.R., B.D. Smith, E.A. Crespo y G.N. di Sciara. 2003. Dolphins, Whales and Porpoises: 2002-2010 Conservation Action Plan for the World's Cetacean. IUCN-SSC Cetacean Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK. 139 p.
- Rosel, P.E. y L. Rojas-Bracho 1999. Mitochondrial DNA variation in the critically endangered vaquita *Phocoena sinus* Norris and McFarland, 1958. *Marine Mammal Science* 15(4): 990-1003.
- Rozas, J., J.C. Sánchez-Del Barrio, X. Messegyer y R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. *Bioinformatics* 19: 2496-2497.

- Saiki, R.K., G.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis y H.A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science* 239(4839): 487-491.
- Saitou, N. y M. Nei. 1987. The Neighbor-joining method: A new method for reconstructing Phylogenetic Trees. *Molecular Biology and Evolution* 4(4): 406-425.
- Sambrook, J., E.T. Fritsch y T. Maniatis. 1998. *Molecular Cloning, A Laboratory Manual* (2nd Edition): Cold Spring Harbour Laboratory Press.
- Segura, I., A. Rocha-Olivares, S. Flores-Ramírez y L. Rojas-Bracho. 2006. Conservation implications of the genetic and ecological distinction of *Tursiops truncatus* ecotypes in the Gulf of California. *Biological Conservation* 133: 336-346.
- Sellas, A.B., R.S. Wells y P.E. Rosel. 2005. Mitochondrial and nuclear DNA analyses reveal fine scale geographic structure in bottlenose dolphins (*Tursiops truncatus*) in the Gulf of Mexico. *Conservation Genetics* 6: 715-728.
- Shafikhani, S.2002. Factors affecting PCR-mediated recombination. *Environmental Microbiology* 4(8): 482-486.
- Slade, R.W. 1992. Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology. *Proceedings of the Royal Society* of London B: Biological Science 249:163–171.
- Slater, M., S. Selman, B. Mogilevsky, H. Ammons y J. Harnett. 1998. *Pfu* DNA Polymerase: A High Fidelity Enzyme for Nucleic Acid Amplification. *Promega Notes* 68: 1-7.
- Slatkin, M. 2000. Balancing selection at closely linked, overdominant loci in finite population. Genetics 154(3): 1367-1378.
- Stephen F.A., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller y D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research* 25: 3389-3402.
- Stephens, M., N.J. Smith y P. Donelly. 2001. A new statistical method for haplotype reconstruction from population data. *The American Journal of Human Genetics* 68: 978–989.
- Stephens, M. y P. Donelly. 2003. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. *The American Journal of Human Genetics* 73: 1162–1169.

- Stern, L.J., J.H. Brown, T.S. Jardetzky, J.C. Gorga, R.G. Urban, J.L. Strominger y D.C. Wiley. 1994. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. *Nature* 368: 215.
- Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* 123: 585-595.
- Takahata, N. y M. Nei. 1990. Allelic genealogy under overdominant and frecuency-dependent selection and polymorphism of Major Histocompatibility Complex loci. *Genetics* 124: 967-978.
- Tamura, K., J. Dudley, M. Nei y S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Molecular Biology and Evolution* 24: 1596-1599.
- Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin y D.G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research* 25:4876-4882.
- Torres, L.G., P.E. Rosel, C. D'Agrosa, A.J. Read. 2003. Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. *Marine Mammal Science* 19: 502-514.
- Walker, J.L., C.W. Potter y S.A. Macko. 1999. The diets of modern and historic bottlenose dolphin populations reflected through stable isotopes. *Marine Mammal Science* 15: 335-350.
- Würsig, B. y T.A. Jefferson. 1990. Methods of Photo-identification for small cetaceans. *Report of the International Whaling Commission*, Special Issue 12: 43-52.
- Xu, S., P. Sun, K. Zhou y G. Yang. 2007. Sequence variability at three MHC loci of finless porpoises (*Neophocaena phocaenoides*). *Immunogenetics* 59: 581-592.
- Yang, G., S. Liu, W.H. Ren, K. Zhou y F. Wei. 2003. Mitochondrial control region variability of baiji and the Yangtze finless porpoises, two sympatric small cetaceans in the Yangtze River. *Acta Theriologica* 48: 469-483.
- Yang, G., J. Yan, K. Zhou y F. Wei. 2005. Sequence variation and gene duplication at MHC DQB loci of Baiji (*Lipotes vexillifer*), a chinese river dolphin. *Journal of Heredity* 96(4): 310-317.
- Yang, W., L. Chou y J. Hu. 2007. Molecular Characterization of Major Histocompatibility Complex class II DQB and DRB Genes in Bottlenose Dolphins (*Tursiops truncatus* and *T. aduncus*) from the Western Pacific. *Zoological Studies* 46(6): 664-679.

- Yang, W., J. Hu y L. Chou. 2008. Sequence Variation of MHC class II DQB Gene in Bottlenose Dolphin (*Tursiops truncatus*) from Taiwanese Waters. *Taiwania* 53(1): 42-50.
- Yoshida, H., M. Yoshioka, M. Shirakihara y S. Chow. 2001. Population structure of finless porpoises (*Neophocaena phocaenoides*) in coastal waters of Japan based on mitochondrial DNA sequences. *Journal of Mammalogy* 82(1): 123-130.
- Yuhki, N., S.J. O'Brien. 1990. DNA variation of the mammalian Major Histocompatibility Complex reflects genomic diversity and population history. *Proceedings of the National Academy of Sciences USA* 87: 836-840.
- Zhang, J., S. Kumar y M. Nei. 1997. Small-sample tests of episodic adaptive evolution: a case study of primate lysozymes. *Molecular Biology and Evolution* 14(12): 1335-1338.
- Zylstra, P., H.S. Rothenfluh, G.F. Weiller, R.V. Blanden y E.J. Steele. 1998. PCR amplification of murine immunoglobulin germline V genes: Strategies for minimization of recombination artefacts. *Immunology and Cell Biology* 76: 395-405.

VII. APÉNDICES

Apéndice I. Alineamiento de secuencias nucleotídicas de los 28 alelos Tutr- $DQ\beta^*$ (172 pb) inferidos en los tursiones costeros del Golfo de México y Mar Caribe con respecto al mapa genómico $DQ\beta$ caracterizado para la especie (alelos *Tutr-DQB*01~03_ARNm*, EF017815 y EF507877~78, Yang *et al.* 2007). Los puntos y las letras representan nucleótidos idénticos o diferentes de la secuencia de referencia *Tutr-DQB*01_ARNm*, respectivamente. Se muestran los sitios de inicio de cada exón (\downarrow), la ubicación de los oligonucleótidos cebadores DQB2 y DQB1 (\Box) y los codones que codifican aminoácidos involucrados en la PBR (^) con base en Hayashi *et al.* 2003.

	Ex	ón 1																												
	¥			111	111	111	122	222	222	223	333	333	333	444	444	444	455	555	555	556	666	666	666	777	777	777	788	888	888	889
	123	456	789	012	345	678	901	234	567	890	123	456	789	012	345	678	901	234	567	890	123	456	789	012	345	678	901	234	567	890
Tutr-DQB*01_ARNm	ATG	тст	GGG	ACG	GTG	GCT	СТА	CAG	ATC	CCC	AGA	GGC	CTT	TGG	ACA	ACA	GCT	GTG	ATG	GTG	ATG	CTG	ACG	GTG	CTG	AGC	ACC	CCA	GAG	GCT
Tutr-DQB*02_ARNm Tutr-DOB*03_ARNm	• • •	•••	• • •	•••	***	•••	• • •	•••	•••	•••	•••	•••	•••	***	•••	• • •	•••	•••	•••	•••	***	•••	• • •	•••	•••	•••	•••	• • •	•••	•••
Tutr-DOB*01																														
Tutr-DQB*02																														
Tutr-DQB*03																														
Tutr-DQB*04																														
Tutr-DQB*06																														
Tutr-DQB*07																														
Tutr-DQB=08																														
Tutr-DOB*10																														
Tutr-DQB*11																														
Tutr-DQB*12																														
Tutr-DQB*13 Tutr-DOB*14																														
Tutr-DQB*15																														
Tutr-DQB*16																														
Tutr-DQB*17																														
Tutr-DQB*10																														
Tutr-DQB*20																														
Tutr-DQB*21																														
Tutr-DQB*22 Tutr-DOB*23																														
Tutr-DOB*24																														
Tutr-DQB*25																														
Tutr-DQB*26																														
Tutr-DQB*27																														
1461 545 25																														
							F 4	- 2																						
							↓ ^{Exó}	n 2																						
	000	000	000	111	111	111	↓ ^{Exó} 111	n 2 111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111
	999 123	999 456	999 789	111 000 012	111 000 345	111 000 678	↓ 111 011 901	n 2 111 111 234	111 111 567	111 112 890	111 222 123	111 222 456	111 222 789	111 333 012	111 333 345	111 333 678	111 344 901	111 444 234	111 444 567	111 445 890	111 555 123	111 555 456	111 555 789	111 666 012	111 666 345	111 666 678	111 677 901	111 777 234	111 777 567	111 778 890
	999 123	999 456	999 789	111 000 012	111 000 345	111 000 678	↓ 111 011 901	n 2 111 111 234	111 111 567	111 112 890	111 222 123	111 222 456	111 222 789	111 333 012	111 333 345	111 333 678	111 344 901	111 444 234	111 444 567	111 445 890	111 555 123	111 555 456	111 555 789	111 666 012	111 666 345	111 666 678	111 677 901	111 777 234	111 777 567 ^	111 778 890
Tutr-DQ8*01_ARNm	999 123 GAG	999 456 GGC	999 789 AGA	111 000 012 GAC	111 000 345 TCT	111 000 678 CCA	↓ ^{Exó} 111 011 901 CAG	n 2 111 111 234 GAT	111 111 567 TTC	111 112 890 TTG	111 222 123 ATC	111 222 456 CGT	111 222 789 CAT	111 333 012 ATG	111 333 345 GGC	111 333 678 ATG	111 344 901 TGT	111 444 234 TAC	111 444 567 TTC	111 445 890 ACC	111 555 123 AAC	111 555 456 GGC	111 555 789 ACG	111 666 012 GAG	111 666 345 CGG	111 666 678 GTG	111 677 901 CGG	111 777 234 GGC	111 777 567 ^ ATG	111 778 890 AGC
Tutr-DQB*01_ARNm Tutr-DQB*02_ARNm Tutr-DQB*03_ARNm	999 123 GAG	999 456 GGC	999 789 AGA	111 000 012 GAC	111 000 345 TCT	111 000 678 CCA	↓ 111 011 901 CAG 	n 2 111 111 234 GAT	111 111 567 TTC	111 112 890 TTG	111 222 123 ATC	111 222 456 CGT	111 222 789 CAT	111 333 012 ATG	111 333 345 GGC 	111 333 678 ATG	111 344 901 TGT	111 444 234 TAC	111 444 567 TTC 	111 445 890 ACC	111 555 123 AAC	111 555 456 GGC	111 555 789 ACG	111 666 012 GAG	111 666 345 CGG	111 666 678 GTG	111 677 901 CGG	111 777 234 GGC	111 777 567 ATG 	111 778 890 AGC
Tutr-DQ8°01_ARNm Tutr-DQ8°02_ARNm Tutr-DQ8°03_ARNm Tutr-DQ8°01	999 123 GAG	999 456 GGC	999 789 AGA	111 000 012 GAC	111 000 345 TCT 	111 000 678 CCA C	↓ Exó 111 011 901 CAG 	n 2 111 111 234 GAT	111 111 567 TTC 	111 112 890 TTG 	111 222 123 ATC 	111 222 456 CGT 	111 222 789 CAT	111 333 012 ATG 	111 333 345 GGC 	111 333 678 ATG	111 344 901 TGT	111 444 234 TAC	111 444 567 TTC 	111 445 890 ACC	111 555 123 AAC	111 555 456 GGC 	111 555 789 ACG	111 666 012 GAG 	111 666 345 CGG 	111 666 678 GTG 	111 677 901 CGG 	111 777 234 GGC CA.	111 777 567 ATG 	111 778 890 AGC
Tutr-DQ8°01_ARNm Tutr-DQ8°02_ARNm Tutr-DQ8°03_ARNm Tutr-DQ8°01 Tutr-DQ8°02 Tutr-DQ8°02	999 123 GAG 	999 456 GGC 	999 789 AGA	111 000 012 GAC 	111 000 345 TCT	111 000 678 CCA C	↓ Exó 111 011 901 CAG 	n 2 111 234 GAT 	111 111 567 TTC 	111 112 890 TTG 	111 222 123 ATC T	111 222 456 CGT 	111 222 789 CAT	111 333 012 ATG 	111 333 345 GGC 	111 333 678 ATG 	111 344 901 TGT 	111 444 234 TAC	111 444 567 TTC 	111 445 890 ACC	111 555 123 AAC	111 555 456 GGC 	111 555 789 ACG 	111 6666 012 GAG 	111 666 345 CGG 	111 666 678 GTG 	111 677 901 CGG 	111 777 234 GGC CA. .C. CT.	111 777 567 ATG G	111 778 890 AGC GAA
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04	999 123 GAG 	999 456 GGC	999 789 AGA	111 000 012 GAC	111 000 345 TCT 	1111 000 678 CCA C	↓ Exó 111 011 901 CAG 	n 2 111 111 234 GAT 	111 111 567 TTC 	111 112 890 TTG 	111 222 123 ATC T 	111 222 456 CGT 	111 222 789 CAT 	111 333 012 ATG 	111 333 345 GGC 	111 333 678 ATG 	111 344 901 TGT 	111 444 234 TAC 	111 444 567 TTC 	111 445 890 ACC 	111 555 123 AAC 	111 555 456 GGC 	111 555 789 ACG 	111 666 012 GAG	111 666 345 CGG 	111 666 678 GTG 	111 677 901 CGG 	111 777 234 GGC CA. .C. CT. TT. CT.	111 777 567 ATG G G G	111 778 890 AGC GAA GA.
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*05	9999 123 GAG 	9999 456 GGC 	9999 789 AGA	111 000 012 GAC 	111 000 345 TCT 	111 000 678 CCA C	LEXÓ 111 011 901 CAG 	n 2 111 111 234 GAT 	111 111 567 TTC 	111 112 890 TTG 	111 222 123 ATC 	111 222 456 CGT 	111 222 789 CAT 	111 333 012 ATG 	111 333 345 GGC 	111 333 678 ATG 	111 344 901 TGT 	111 444 234 TAC	111 444 567 TTC 	111 445 890 ACC	111 555 123 AAC	111 555 456 GGC 	111 555 789 ACG 	111 666 012 GAG 	111 666 345 CGG 	111 666 678 GTG 	111 677 901 CGG 	111 777 234 GGC CA. .C. CT. TT. CT.	111 777 567 ATG G G G G	111 778 890 AGC GAA GA. GAA
Tutr-DQ8*01_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*02 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*05	9999 123 GAG 	9999 456 GGC 	9999 789 AGA 	111 000 012 GAC 	111 000 345 TCT 	111 000 678 CCA C 	Exó 111 011 901 CAG 	n 2 1111 234 GAT 	1111 1111 567 TTC 	111 112 890 TTG 	111 222 123 ATC T T	111 222 456 CGT 	111 222 789 CAT 	111 333 012 ATG 	111 333 345 GGC TT. 	111 333 678 ATG 	111 344 901 TGT 	111 444 234 TAC 	111 444 567 TTC 	111 445 890 ACC 	111 555 123 AAC	111 555 456 GGC 	111 555 789 ACG 	111 666 012 GAG	111 666 345 CGG 	111 666 678 GTG 	111 677 901 CGG 	111 777 234 GGC CA. .C. CT. TT. CT. TC.	111 777 567 ATG G G G G	111 778 890 AGC GAA GA. GAA .C.
Tutr-DQ8°01_ARNm Tutr-DQ8°02_ARNm Tutr-DQ8°03_ARNm Tutr-DQ8°01 Tutr-DQ8°03 Tutr-DQ8°03 Tutr-DQ8°05 Tutr-DQ8°06 Tutr-DQ8°06 Tutr-DQ8°07 Tutr-DQ8°08	999 123 GAG 	9999 456 GGC	9999 789 AGA 	111 000 012 GAC 	111 000 345 TCT 	111 000 678 CCA C	↓ Exó 111 011 901 CAG 	n 2 1111 234 GAT 	1111 1111 567 TTC 	111 112 890 TTG 	111 222 123 ATC T 	111 222 456 CGT 	111 222 789 CAT 	111 333 012 ATG 	111 333 345 GGC 	111 333 678 ATG 	111 344 901 TGT 	111 444 234 TAC	111 444 567 TTC 	111 445 890 ACC	111 555 123 AAC	111 555 456 GGC 	111 555 789 ACG 	111 6666 012 GAG	111 6666 345 CGG 	111 666 678 GTG 	111 677 901 CGG 	111 777 234 GGC CA CT.T.C.T.T.	111 777 567 ATG G G G G G G	111 778 890 AGC GAA GA. GAA .C. A
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*08 Tutr-DQ8*08	999 123 GAG 	9999 456 GGC 	9999 789 AGA 	111 000 012 GAC 	111 000 345 TCT 	111 000 678 CCA C C	Exó 111 901 CAG 	n 2 111 111 234 GAT 	111 567 TTC 	111 112 890 TTG 	111 222 123 ATC 	1111 222 456 CGT 	111 222 789 CAT 	111 333 012 ATG 	111 333 345 GGC TT. 	111 333 678 ATG 	111 344 901 TGT 	111 444 234 TAC 	111 444 567 TTC 	1111 445 890 ACC 	111 555 123 AAC	111 555 456 GGC 	111 5555 789 ACG 	111 6666 012 GAG	111 666 345 CGG 	111 666 678 GTG 	111 677 901 CGG 	111 777 234 GGC CA. .CT. TT. CT. TC. TT. T.	111 777 567 ATG G G G G G G G	111 778 890 AGC GAA GA. GAA GA. GA. GA.
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*07 Tutr-DQ8*08 Tutr-DQ8*09 Tutr-DQ8*10	999 123 GAG 	9999 456 GGC 	9999 789 AGA 	111 000 012 GAC 	111 000 345 TCT 	111 000 678 CCA C C	Exó 111 901 CAG 	n 2 111 234 GAT 	111 567 TTC 	111 112 890 TTG 	1111 2222 123 ATC 	111 222 456 CGT 	111 222 789 CAT 	111 333 012 ATG 	111 333 345 GGC TT. 	111 333 678 ATG 	111 344 901 TGT 	111 444 234 TAC 	111 444 567 TTC 	111 445 890 ACC 	111 555 123 AAC 	111 555 456 GGC 	111 5555 789 ACG 	111 666 012 GAG 	111 666 345 CGG 	111 666 678 GTG 	111 677 901 CGG 	111 777 234 GGC ::A. C. C. T. T. C. T. T. C.	111 777 567 ATG G G G G G G G	111 778 890 AGC GAA GA. GAA GA. GA. GA.
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*02 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*07 Tutr-DQ8*07 Tutr-DQ8*07 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*12	9999 123 GAG 	9999 456 GGC 	999 789 AGA 	111 000 012 GAC 	1111 0000 345 TCT 	1111 0000 6778 CCA C 	↓ Exó 111 901 CAG 	n 2 1111 1111 234 GAT 	1111 1111 567 TTC 	1111 112 890 TTG 	1111 222 123 ATC 	111 222 456 CGT 	111 222 789 CAT	1111 333 012 ATG 	1111 3333 GGC 	111 333 678 ATG 	111 344 901 TGT 	1111 444 234 TAC 	111 444 567 TTC 	1111 445 890 	111 555 123 AAC 	1111 5555 4566 	1111 5555 789 ACG 	1111 666 012 GAG	1111 666 345 CGG	111 666 678 GTG	1111 677 901 CGG 	111 777 234 GGC : CA. C. CT. T. T. C. CT. T.	1111 777 567 G G G G G G G	1111 778 890 AGC GAA GA. .C. .C. GA
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*12 Tutr-DQ8*13	999 123 GAG 	999 456 GGC 	999 789 AGA 	1111 000 012 GAC 	1111 0000 345 TCT 	1111 0000 678 CCA C 	Exó 111 901 CAG 	n 2 1111 1111 234 GAT 	1111 1111 567 TTC 	1111 112 890 TTG 	1111 222 123 ATC 	111 222 456 CGT 	1111 2222 789 CAT 	111 333 012 ATG 	111 333 345 GGC 	111 333 678 ATG 	111 344 901 TGT 	1111 444 234 TAC 	111 444 567 TTC 	1111 445 890 ACC 	111 555 123 AAC 	1111 555 456 GGC 	111 555 789 ACG 	1111 666 012 GAG	1111 6666 345 CGGG	111 666 678 GTG	111 677 901 CGG	111 777 234 GGC :: С.С. СТ. Г.С. СТ. Г. С. СТ. Г. С. СТ. Г. С. СТ. Г. С.	111 777 567 ATG G G G G G G G	111 778 890 AGC GAA GA. GAA GA. GAA GA. GAA. GA.
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*12 Tutr-DQ8*13 Tutr-DQ8*14	9999 123 GAG 	999 456 GGC 	9999 789 AGA 	1111 000 012 GAC 	1111 0000 345 TCT 	1111 0000 678 CCA C 	Exó 1111 011 901 CAG 	n 2 1111 1111 234 GAT 	1111 1111 567 TTC 	1111 112 890 TTG 	1111 2222 123 ATC 	111 222 456 CGT 	1111 222 789 CAT 	111 333 012 ATG 	1111 3333 345 GGC 	1111 333 678 ATG 	111 344 901 TGT 	1111 444 234 TAC 	1111 444 567 TTC 	1111 445 890 ACC 	111 555 123 AAC 	111 555 456 GGC 	1111 5555 789 ACG 	111 666 012 GAG	1111 6666 345 CGGG	111 666 678 GTG	111 677 901 CGG 	111 777 234 GGCCTT.T.TT.TT.TT.	111 777 567 ATG G G G G G G G	111 778 890 AGC GAA GA. GAA GA. GAA GA. GAA GA. GA.
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15	9999 123 GAG 	9999 456 GGC 	9999 789 AGA 	1111 000 012 GAC 	1111 0000 345 TCT 	1111 0000 678 CCA C C 	Exó 1111 011 901 CAG 	n 2 1111 1111 234 GAT 	1111 1111 567 TTC 	1111 112 890 TTG 	1111 2222 123 ATC T 	1111 2222 456 CGT 	1111 222 789 CAT 	1111 3333 012 ATG 	1111 3333 345 GGC TT. 	1111 333 678 ATG 	1111 344 901 TGT 	1111 444 234 TAC 	1111 444 567 TTC 	1111 445 890 ACC 	1111 5555 1233 AAC 	1111 5555 456 GGC 	1111 5555 789 ACG 	111 666 012 GAG	111 666 345 CGG	111 666 678 GTG	1111 677 901 CGG	111 777 234 GGC	1111 777 567 G G G G G G G G.	1111 778 890 AGC GAA .C. GAA .C. GAA .C. .C. GCA. .C. GCA
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*17	9999 123 GAG 	9999 456 GGC 	9999 789 AGA 	1111 000 012 GAC 	1111 0000 345 TCT 	1111 0000 678 CCA C C 	Exó 1111 0111 901 CAG 	n 2 1111 1111 234 GAT 	1111 1111 567 TTC 	1111 112 890 TTG 	1111 2222 123 ATC 	1111 2222 456 CGT 	1111 222 789 CAT 	1111 3333 012 ATG 	1111 3333 345 GGC TT. 	1111 3333 678 ATG 	1111 344 901 TGT 	1111 444 234 TAC 	1111 444 567 TTC 	1111 445 890 ACC 	1111 5555 1233 AAC 	1111 555 456 660 	111 555 789 ACG	111 666 012 GAG	111 666 345 CGG	111 666 678 GTG	1111 677 901 CGG	1111 777 GGC :: CA.C. CT. T. C. CT. T. T. C. CT. T. T	1111 777 567 G G G G G G G G.	1111 778 890 AGC GAA .C. GAA .C. GAA .C. GA. .C. GA. .C. GA. .C. GC. GC.
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*17 Tutr-DQ8*18	999 123 GAG 	9999 456 GGC 	999 789 AGA 	1111 000 012 GAC 	1111 0000 345 TCT 	1111 0000 678 CCA C 	Exó 1111 0111 901 CAG 	n 2 1111 1111 234 GAT 	1111 1111 567 TTC 	1111 112 8900 TTG 	1111 2222 123 ATC 	1111 222 456 CGT 	1111 222 789 CAT 	1111 333 012 ATG 	1111 3333 345 GGC 	1111 333 678 ATG 	1111 344 901 TGT 	1111 444 234 TAC	1111 444 567 TTC 	1111 445 890 ACC 	1111 555 123 AAC 	1111 555 400 660 	111 555 789 ACG	111 666 012 GAG	1111 6666 345 CGG	1111 666 678 GTG	1111 677 901 CGG	11177734 GG ::A.C.C.F.F.C.F.C.F.F.C.F.F.C.F.F.F.F.F.F.	1111 7777 6.7 ATG G G G G G G G	1111 778 890 AGC GAA .C. A GAA .C. A GAA .C. GAA .C. GAA .C. GAA .C. GAA .C. GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*14 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*18 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19	999 123 GAG 	9999 456 GGC 	999 789 AGA 	1111 000 012 GAC 	1111 0000 345 TCT 	1111 0000 6778 CCCA 	Exó 1111 011 901 CAG 	n 2 1111 1111 234 GAT 	1111 1111 567 TTC 	1111 112 8900 TTG 	1111 222 123 ATC 	1111 2222 456 CGT 	1111 2222 789 CAT 	1111 333 012 ATG 	1111 3333 GGC 	1111 333 678 ATG 	1111 344 901 TGT 	1111 444 234 TAC	1111 444 567 TTC 	1111 445 890 ACC 	1111 555 123 AAC 	1111 5555 4566 GGC 	1111 5555 789 ACG 	1111 666 012 GAG	1111 6666 345 CGGG	1111 666 678 GTG	1111 677 901 CGG	111772 GC :CA. C.C.F.F.C.F.F.C.F.F.F.F.F.F.F.F.F.F.F.	1111 7777 6.7 G G G G G G	1111 778 890 AGC GAA GA. GAA GA. GAA GA. GAA GA. GAA GA. GAA GA. GAA GA. GAA GA. GAA GA. GAA GA. GAA GA. GAA GAA
Tutr-D08*01_ARNm Tutr-D08*02_ARNm Tutr-D08*02_ARNm Tutr-D08*01 Tutr-D08*02 Tutr-D08*03 Tutr-D08*03 Tutr-D08*06 Tutr-D08*06 Tutr-D08*06 Tutr-D08*09 Tutr-D08*10 Tutr-D08*11 Tutr-D08*11 Tutr-D08*13 Tutr-D08*15 Tutr-D08*15 Tutr-D08*15 Tutr-D08*15 Tutr-D08*15 Tutr-D08*17 Tutr-D08*18 Tutr-D08*18 Tutr-D08*18 Tutr-D08*18 Tutr-D08*18 Tutr-D08*19 Tutr-D08*21	9999 123 GAG 	999 456 GGC 	999 789 AGA 	1111 000 012 GAC 	1111 0000 345 TCT 	1111 0000 678 CCA C 	Exó 1111 011 901 CAG 	n 2 1111 1111 234 GAT 	1111 1111 567 TTC 	1111 112 890 TTG 	1111 222 123 ATC T 	1111 2222 456 CGT 	1111 2222 789 CAT 	1111 333 012 ATG 	1111 333 GGC 	1111 333 678 ATG 	1111 344 901 TGT 	1111 444 234 TAC 	1111 444 567 TTC 	1111 445 890 ACC 	1111 555 123 AAC 	1111 5555 4566 GGC	1111 5555 789 ACG 	1111 666 012 GAG	1111 6666 345 CGG	1111 666 678 GTG 	1111 677 901 CGG	1117723 GC :CA.C.C.F.F.C.F.C.F.F.C.F.F.F.F.F.F.F.F.F	1111 7777 ATG G G G G G G G	1111 7788 890 GAA GA. GAA GA. GA. GA. GA. GA. GC. GC. GC. GC. GA. GC. GA. GC. GC. GA. GC. GC. GA. GC. GC. GC. GAA
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*17 Tutr-DQ8*21 Tutr-DQ8*20 Tutr-DQ8*22	9999 123 GAG 	9999 456 GGC 	9999 789 AGA 	1111 000 012 GAC 	1111 0000 345 TCT 	1111 0000 678 CCA C 	Exói 1111 011 901 CAG 	n 2 1111 1111 234 GAT 	1111 1111 567 TTC 	1111 112 890 TTG 	1111 2222 123 ATC 	1111 2222 456 CGT 	1111 2222 789 CAT 	1111 333 012 ATG 	1111 333 GGC 	1111 3333 678 ATG 	1111 344 901 TGT 	1111 444 234 TAC 	1111 4444 567 TTC 	1111 445 890 ACC 	1111 555 123 AAC 		1111 5555 789 ACG 	1111 6666 012 GAG	1111 6666 345 CGG	1111 666 678 GTG 	1111 677 901 CGG	11177234 GC::A.O.C.F.F.C.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F	1111 7777 ^ A ATG G	1111 7788 890 GAA GA. GAA GA. GA. GA. GA. GA. GA. GA.
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*20 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21	9999 123 GAG 	9999 456 GGC 	999 789 AGA 	1111 000 012 GAC 	1111 000 345 TCT 	111 000 678 CCA C 	Exói 1111 011 901 CAG 	n 2 1111 1111 234 GAT 	1111 1111 567 TTCC 	1111 1122 8900 TTTG 	1111 2222 123 ATC 	1111 2222 456 CGT 	1111 2729 789 CAT 	1111 3333 012 ATG 	1111 3333 GGC TT. 	111 333 678 ATG 	1111 344 901 TGT 	1111 444 234 TAC 	1111 4444 567 TTC 	1111 445 8900 ACC 	1111 1555 123 AAC 	1111 5456 GG	1111 5555 789 ACG 	1111 666 012 GAG	1111 666 345 CGG	1111 6666 678 GTG 	1111 677 901 CGG		1111 7777 567 ATG GGGGGGGGGG	1111 7788 890 AGC GAA GA GAA GA GAA GA GA. GA GA. GA
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*18 Tutr-DQ8*19 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*23 Tutr-DQ8*23 Tutr-DQ8*23 Tutr-DQ8*24	9999 123 GAG 	9999 456 GGC 	9999 789 AGA 	1111 0000 012 GAC 	1111 000 345 TCT 	1111 0000 678 CCA C 	Exói 111 011 011 901 CAG 	n 2 1111 234 GAT 	1111 567 TTC 	1111 1112 8900 TTTG 	1111 2222 123 ATCC T -	1111 2222 456 CGT 	1111 2222 789 CAT 	1111 3333 012 ATG 	1111 3333 345 GGC TT. 	1111 333 678 ATG 	1111 344 901 TGT 	1111 444 234 TAC 	1111 4444 567 TTC 	1111 445 890 ACC 	1111 5555 123 AAC 	1111 5555 4566 GGC 	1111 5555 789 ACG 	1111 666 012 GAG	1111 666 345 CGG	111 666 678 GTG 	1111 677 901 CGG		1111 7777 567 A TGGGGGGGGGG.	1111 778 890 AGC GAA GA. :GAA GA. :C. GAA GA. :C. GAA GA. :C. GAA GA. :C. GAA GA. :C. GAA GA. :C. GAA GA. :C. GAA
Tutr-D08*01_ARNm Tutr-D08*02_ARNm Tutr-D08*02_ARNm Tutr-D08*01 Tutr-D08*02 Tutr-D08*03 Tutr-D08*03 Tutr-D08*04 Tutr-D08*06 Tutr-D08*06 Tutr-D08*09 Tutr-D08*10 Tutr-D08*11 Tutr-D08*11 Tutr-D08*11 Tutr-D08*13 Tutr-D08*14 Tutr-D08*15 Tutr-D08*15 Tutr-D08*15 Tutr-D08*15 Tutr-D08*18 Tutr-D08*12 Tutr-D08*12 Tutr-D08*12 Tutr-D08*21 Tutr-D08*21 Tutr-D08*21 Tutr-D08*22 Tutr-D08*23 Tutr-D08*24 Tutr-D08*26	9999 123 GAG 	9999 456 GGC 	9999 789 AGA 	1111 0000 012 GAC 	1111 0000 345 TCT 	1111 0000 678 CCA C 	Exói 111 011 901 CAG 	n 2 1111 1234 GAT 	1111 567 TTC 	1111 1112 8900 TTTG 	1111 2222 123 ATCC T -	1111 2222 456 CGT 	1111 222 789 CAT 	1111 3333 012 ATG 	1111 3333 345 GGC TT. 	1111 333 678 ATG 	1111 344 901 TGT 	1111 444 234 TAC 	1111 444 567 TTC 	1111 445 890 ACC 	1111 5555 123 AAC 	1111 5555 4566 GGC 	1111 5555 789 ACG 	1111 666 012 GAG	1111 666 345 CGG	111 666 678 GTG 	1111 677 901 CGG		1111 567 A TG GGGGGGGGGGGGGGG	1111 778 890 AGC GAA GA. GAA GA. GAA GA. C. GAA GA. C. GAA GA. C. GAA GA. C. GAA GA. C. GAA GA. C. GAA GA. C. GAA GA. C. GAA GAA GA. C. GAA GAA GAA GAA GAA GAA GAA GAA GAA GA
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*20 Tutr-DQ8*22 Tutr-DQ8*24 Tutr-DQ8*24 Tutr-DQ8*24 Tutr-DQ8*24 Tutr-DQ8*25 Tutr-DQ8*27	9999 123 GAG 	9999 456 GGC 	9999 789 AGA 	1111 0000 012 GAC 	1111 0000 3455 TCT 	1111 0000 678 CCA C 	Exói 111 901 901 CAG 	n 2 111 111 234 GAT 	1111 567 TTC 	1111 112 890 TTG 	1111 2222 123 ATC 	1111 2222 456 CGT 	1111 222 789 CAT 	1111 3012 ATG 	1111 333 345 GGC TT. 	1111 333 678 ATG 	1111 344 901 TGT 	1111 444 234 TAC	1111 444 567 TTC 	1111 445 890 ACC 	1111 5555 123 AAC 	1111 5555 456 GGC 	1111 5555 789 ACG 	1111 666 012 GAG	1111 6666 345 CGG	111 666 678 GTG 	1111 677 901 CGG		111 7777 ATG GGGGGGGGGGGGGG	1111 778 890 GAA GA. GAA GA. GAA GA. C. GAA GA. C. GA. GA. GA. GA. GA. GA. GA. GA. GA. GA

I	Exón	2																												
	111	111	111	111	111	111	122	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222	222
	123	456	888 789	012	345	999 678	900	234	567	890	123	456	789	012	345	678	233 901	234	567	334 890	123	444	444 789	012	345	555 678	566 901	234	567	667 890
		٨		٨					٨	٨									۸									٨		
Tutr-DQB*01_ARNm Tutr-DOB*02_ARNm	AGA	TAC	AIC	IAI	AAC	CGG	GAG	GAG	TAC	GIG	CGC	TIC C	GAC	AGC	GAC	GIG	GGC	GAG	IIC	CGG	GCG	GIG	ACC	GAG	CIG	GGC	CGG	CCG	GAC	GCC
Tutr-DQB*03_ARNm			G																									. G.	AC.	
Tutr-DQB*01	• • •	•••	•••	• • •	•••	• • •	• • •	• • •	·÷·	• • •	• • •	• • •	•••	• • •	• • •	•••	• • •	•••	•••	•••	• • •	•••	• • •	• • •	•••	• • •	•••	.GT	AC.	•••
Tutr-DOB*02					ΞŤ				÷÷					:::					ĊĂ.											
Tutr-DQB*04		Α							.TG																			. G.	.c.	
Tutr-DQB*05	• • •	•••	•••	•••	•••	• • •	•••	•••	.т.	•••	•••	• • •	•••	• • •	•••	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	· ;;		•••
Tutr-DOB*07									.т.																				AC.	
Tutr-DQB*08		.c.							A																					
Tutr-DQB*09 Tutr-DOB*10		÷c.	• • •	•••	•••		•••	•••	• TA		•••	***	•••	•••	•••	•••	***	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	· · · ·	۰	•••
Tutr-DQB*11																												GT	AC.	
Tutr-DQB*12		с			т			• • •	.т.					• • •	• • •	• • •		•••	CA.	•••	• • •	•••	• • •		•••	• • •	•••	• • • •	:	
Tutr-DQB*13 Tutr-DOB*14		÷	• • •	•••	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••	•••		•••		•••	•••	•••	•••	•••	•••	•••	•••	. 61	AC.	• • •
Tutr-DQB*15									.т.										č											
Tutr-DQB*16		···	• • •	• • •	···÷	• • •	• • •	• • •	· ÷ ·		•••	• • •	• • •	• • •	•••	• • •	• • •	•••	CA.	•••	• • •	•••	• • •	•••	•••	• • •	•••	• • •	•••	• • •
Tutr-DQB*17 Tutr-DOB*18		····							:1:					:::					СА.									G.	AC.	
Tutr-DQB*19									.т.																					
Tutr-DQB*20	• • •		• • •	• • •	т	• • •	• • •	• • •	· Ţ.	• • •	• • •	• • •	•••	• • •	• • •	•••	• • •	•••	с	• • •	• • •	• • •	• • •	• • •	•••	• • •	•••	· ; ·	· ; ·	•••
Tutr-DOB*22		A							. 16								111											. G.	.c.	
Tutr-DQB*23																														
Tutr-DQB*24	• • •	•••	•••	•••	•••	•••	•••	•••	·Ţ.	• • •	•••	• • •	•••	• • •	•••	•••	• • •	•••	÷	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
Tutr-DOB*26									:::																					
Tutr-DQB*27									· <u></u>					• • •		•••				•••		•••	• • •		•••		•••	• • •	• • •	
Tutr-DQB*28	• • •	Α	•••	•••	•••	•••	•••	•••	.TG	•••	•••	• • •	•••	• • •	•••	•••	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	.G.	.c.	•••
	222	222	222	222 888	222	222 888	222 899	222 999	222 999	223 990	333 000	333 000	333 000	333	333 111	333 111	333 122	333 222	333 222	333 223	333 333	333 333	333	333 444	333 444	333 444	333 455	333	333	333 556
	222 777 123	222 777 456 ^	222 777 789 ^	222 888 012	222 888 345	222 888 678	222 899 901 ^	222 999 234	222 999 567	223 990 890 ^	333 000 123	333 000 456 ^	333 000 789 ^	333 111 012	333 111 345	333 111 678 ^	333 122 901	333 222 234	333 222 567	333 223 8 <u>90</u>	333 333 123	333 333 456	333 333 789 ^	333 444 012	333 444 345	333 444 678	333 455 901 ^	333 555 234 ^	333 555 567	333 556 890 ^
Tutr-DQ8*01_ARNm	222 777 123 GAG	222 777 456 ^ TAC	222 777 789 ^ TTC	222 888 012 AAC	222 888 345 AGC	222 888 678 CAG	222 899 901 ^ AAG	222 999 234 GAC	222 999 567 ATC	223 990 890 ^ CTG	333 000 123 GAG	333 000 456 ^ CAG	333 000 789 ^ GAA	333 111 012 CGG	333 111 345 GCC	333 111 678 ^ GCG	333 122 901 GTG	333 222 234 GAC	333 222 567 ACG	333 223 8 <u>90</u> GTG	333 333 123 TGC	333 333 456 AGA	333 333 789 ^ CAC	333 444 012 ^ AAC	333 444 345 TAC	333 444 678 AGG	333 455 901 ^ ATT	333 555 234 ^ GAT	333 555 567 GAG	333 556 890 ^ ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm	222 777 123 GAG	222 777 456 ^ TAC	222 777 789 ^ TTC 	222 888 012 AAC	222 888 345 AGC	222 888 678 CAG	222 899 901 ^ AAG	222 999 234 GAC	222 999 567 ATC	223 990 890 ^ CTG	333 000 123 GAG	333 000 456 ^ CAG	333 000 789 ^ GAA	333 111 012 CGG	333 111 345 GCC	333 111 678 ^ GCG 	333 122 901 GTG	333 222 234 GAC	333 222 567 ACG	333 223 890 (^ GTG 	333 333 123 TGC	333 333 456 AGA	333 333 789 ^ CAC	333 444 012 ^ AAC	333 444 345 TAC	333 444 678 AGG	333 455 901 ^ ATT	333 555 234 ^ GAT 	333 555 567 GAG	333 556 890 ^ ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01	2222 7777 1233 GAG	222 777 456 ^ TAC	222 777 789 ^ TTC .GG .GG	222 888 012 AAC 	222 888 345 AGC	222 888 678 CAG 	222 899 901 AAG G	222 999 234 GAC 	222 999 567 ATC 	223 990 890 ^ CTG 	333 000 123 GAG 	333 000 456 ^ CAG G	333 000 789 ^ GAA 	333 111 012 CGG 	333 111 345 GCC 	333 111 678 ^ GCG 	333 122 901 GTG 	333 222 234 GAC 	333 222 567 ACG 	333 223 890 <u>A</u> GTG 	333 333 123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC	333 444 012 ^ AAC	333 444 345 TAC	333 444 678 AGG	333 455 901 ^ ATT	333 555 234 ^ GAT 	333 555 567 GAG 	333 556 890 ^ ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*02 Tutr-DQ8*03	222 777 123 GAG AC.	222 777 456 ^ TAC	222 777 789 ^ TTC GG .GG	222 888 012 AAC	222 888 345 AGC	222 888 678 CAG	222 899 901 ^ AAG G G	222 999 234 GAC	222 999 567 ATC	223 990 ^ CTG 	333 000 123 GAG 	333 000 456 ^ CAG G G	333 000 789 ^ GAA 	333 111 012 CGG 	333 111 345 GCC 	333 111 678 ^ GCG 	333 122 901 GTG C	333 222 234 GAC	333 222 567 ACG	333 223 890 (^ GTG 	333 333 123 TGC 	333 333 456 AGA	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	333 455 901 ^ ATT 	333 555 234 ^ GAT 	333 555 567 GAG 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04	2222 7777 1233 GAG AC.	222 777 456 ^ TAC 	222 777 789 ^ TTC .GG .GG .GG .GG	222 888 012 AAC 	222 888 345 AGC G	222 888 678 CAG 	222 899 901 ^ AAG G G	222 999 234 GAC 	222 999 567 ATC TA.	223 990 890 ^ CTG 	333 000 123 GAG 	333 000 456 CAG G .G. .T.	333 000 789 ^ GAA A AG.	333 111 012 CGG 	333 111 345 GCC 	333 111 678 ^ GCG .A. .A.	333 122 901 GTG C C	333 222 234 GAC 	333 222 567 ACG 	333 223 890 A GTG 	333 333 123 TGC 	333 333 456 	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	333 455 901 ^ ATT 	333 555 234 ^ GAT 	333 555 567 GAG 	333 556 890 ^ ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*05	2222 777 123 GAG AC. A	222 777 456 ^ TAC 	2222 777 789 TTC .GG .GG .GG .GG	222 888 012 AAC 	2222 888 345 AGC G G	222 888 678 CAG 	222 899 901 ^ AAG G G	222 999 234 GAC 	222 999 567 ATC TA.	223 990 890 ^ CTG 	333 000 123 GAG 	333 000 456 CAG G G G	333 000 789 ^ GAA A AG.	333 111 012 CGG 	333 111 345 GCC 	333 111 678 GCG .A. .A. .A.	333 122 901 GTG C C	333 222 234 GAC 	333 222 567 ACG 	333 223 890 A GTG 	333 333 123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	333 455 901 ^ ATT 	333 555 234 ^ GAT .G. 	333 555 567 GAG 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-Q8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*06	2222 777 123 GAG AC. AC.	222 777 456 ^ TAC 	2222 7777 ^789 TTC .GG .GG .GG .GG .GG .GG	222 888 012 AAC	2222 888 345 AGC G G	222 888 678 CAG 	2222 899 901 ^ AAG G G G	222 999 234 GAC	222 999 567 ATC TA. 	223 990 890 CTG 	333 000 123 GAG 	333 000 456 CAG G G G G G G	333 000 789 ^ GAA A AG. 	333 111 012 CGG	333 111 345 GCC 	333 111 678 GCG .A. .A. .A. .A.	333 122 901 GTG C C C	333 222 234 GAC 	333 222 567 ACG 	333 223 890 (A GTG 	333 333 123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	333 455 901 ^ ATT 	333 555 234 A GAT 	333 555 567 GAG 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*01 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*08	2222 777 123 GAG AC. AC.	222 777 456 ^ TAC 	2222 7777 789 ^ TTC GG .GGG .GGG .GGG .GGG .GGG 	222 888 012 AAC	222 888 345 AGC G G	2222 888 678 CAG .G.	2222 8999 AAGG G G G	2222 999 234 GAC	2222 999 567 ATC TA.	223 990 890 ^ CTG	333 000 123 GAG 	333 000 456 CAG G G G G G G G	3333 000 789 A GAA AG. A	333 111 012 CGG 	333 111 345 GCC	333 111 678 GCG .A. .A. .A. .A.	333 122 901 GTG C C C C C	333 222 234 GAC	333 222 567 ACG	333 223 67G 	333 333 123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG	333 455 901 ^ ATT 	333 555 234 ^ GAT 	333 555 567 GAG 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*08 Tutr-DQ8*09 Tutr-DQ8*09 Tutr-DQ8*09	2222 7777 123 GAG AC. AC.	222 777 456 ^ TAC	2222 7777 789 ^ 	2222 888 012 AAC	222 888 345 G G G	222 888 678 CAG .G.	2222 899 901 AAG G G G	2222 999 234 GAC	222 999 567 ATC TA.	223 990 890 ^ CTG	333 000 123 GAG	333 0000 4566 - CAG G G G G G G G G	333 000 789 GAA A A A A A	333 111 012 CGG 	333 111 345 GCC	333 111 678 ^ GCG .A. .A. .A. .A. .A. .A.	333 122 901 GTG C C C C	333 222 234 GAC	333 222 567 ACG	333 223 890 GTG 	333 333 123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	333 455 901 ^ ATT 	333 555 234 ^ GAT 	333 555 567 GAG 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*11	2222 777 123 GAG AC. AC.	222 777 456 A TAC	2222 7777 789 ^ GG GG GG GG GG GG GG GG GG	222 888 012 AAC	2222 888 345 G G G	2222 888 678 CAG .G.	2222 899 901 A G G G G G	222 999 234 GAC	2222 9999 567 ATC TA. C.	223 990 890 ^ CTG	333 000 123 GAG 	333 000 456 CAG G G G G G G G	333 000 789 ^ GAA AG. A A A A	333 111 012 CGG 	333 111 345 GCC	333 111 678 ^ GCG .A. .A. .A. .A. .A. .A.	333 122 901 GTG C C C C C	333 222 234 GAC	333 222 567 ACG	333 223 890 (A GTG 	333 333 123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	333 455 901 ATT 	333 555 234 ^ GAT 	333 555 567 GAG 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*09 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*12	2222 777 123 GAG AC. AC.	222 777 456 ^ TAC	2222 7777 	222 888 012 AAC	2222 8888 345 G G G	2222 8888 678 CAG .G.	2222 899 901 ^ G G G G	2222 9999 234 GAC	2222 9999 567 ATC TA. C	223 990 890 ^ CTG 	333 000 123 GAG 	333 3000 456 CAG G	333 000 A GAA AG. A A A A A A A	333 111 012 CGG 	333 111 345 GCC	333 111 678 ^ GCG .A. .A. .A. .A. .A. .A. .A. .A.	333 122 901 GTG C C C C C C C C	333 222 234 GAC	333 222 567 ACG 	333 223 890 A GTG 	333 3123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG	333 455 901 ^ ATT 	333 555 234 ^ GAT 	333 555 567 GAG 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*02 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*07 Tutr-DQ8*07 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*13	2222 777 123 GAG AC. AC. 	222 777 456 ^ TAC	2222 7777 	222 888 012 AAC	2222 8888 345 G G G	222 888 678 CAG .G.	2222 8999 001 A AAG G G G G	222 999 234 GAC	222 999 567 ATC TA. C C	223 990 890 ^ CTG 	333 000 123 GAG 	333 0056 ^ CAGGGGGGGGGG	333 000 A GAA AG. A A A A A	333 111 012 CGG 	333 111 345 GCC 	333 111 678 ^ GCG .A. .A. .A. .A. .A. .A. .A. .A. .A	333 122 901 GTG C C C C C C	333 222 234 GAC	333 222 567 ACG 	3333 223 890 GTG 	333 3123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC	333 444 678 AGG 	333 455 901 ^ ATT 	333 555 234 ^ GAT 	333 555 567 GAG 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*02 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*07 Tutr-DQ8*07 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*14 Tutr-DQ8*15	2222 777 123 GAG AC. AC. 	222 777 456 ^ TAC	2222 7777 789 .GG .GG .GG .GG .GG .GG .GG .GG .GG .G	222 888 012 AAC	2222 888 345 G G G	2222 888 678 CAG 	2222 8999 001 ^ AAAG G G G G G	222 999 234 GAC	222 999 567 ATC TA. C C	223 990 890 ^ CTG	333 000 123 GAG 	333 0056 ~ CAGGGGGGGG.	333 000 789 A GAA A A A A A A	333 111 012 CGG 	333 111 345 GCC	3333 1111 678 ^ GCG .A. .A. .A. .A. .A. .A. .A. .A. .A	333 122 901 GTG C C C C C C	333 222 234 GAC	333 222 567 ACG	3333 223 890 GTG 	333 123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	333 455 901 ^ ATT 	333 555 234 ^ GAT 	333 555 567 GAG 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15	2222 7777 123 GAG AC. AC. 	2222 777 456 ^ TAC	2222 7777 789 .GG .GG .GG .GG .GG .GG .GG .GG .GG .G	2222 888 012 AAC	2222 888 345 G G G	2222 888 678 CAG 	2222 899 AAG G G G G G G	2222 9999 234 GAC	2222 9999 567 TA. C C T	223 990 A CTG 	333 000 123 GAG	333 0000 4 56 GGGG GGG GG	333 000 789 A GAA A A A A A A	333 111 012 CGG 	333 111 345 GCC	3333 1111 678 ^ GCG .A. .A. .A. .A. .A. .A. .A. .A. .A	3333 122 901 GTG C C C C C C C	333 222 234 GAC	333 222 567 ACG	333 890 GTG 	333 123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	333 455 901 ^ ATT 	3333 555 234 ^ GAT 	333 555 567 GAG 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*09 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*14 Tutr-DQ8*16 Tutr-DQ8*17 Tutr-DQ8*18	2222 777 123 GAG AC. AC. 	2222 777 456 ^ TAC	2222 7777 789 TTC .GG GG GG GG GG .GG GG	2222 888 012 AAC	2222 8888 345 G G G	2222 8888 678 CAG 	2222 899 AAG G G G G G	2222 9999 234 GAC	2222 9999 567 TA. C C TA. 	223 990 890 ^ CTG	333 000 123 GAG	333 0000 4 56 GG.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.	333 000 789 ^ GAA A A A C.C A A A A	333 111 012 CGG 	333 111 345 GCC	333 111 678 ^ GCG .A. .A. .A. .A. .A. .A. .A. .A. .A	3333 122 901 GTG C C C C C C C	333 222 234 GAC	3333 222 567 ACG	333 890 GTG 	333 333 123 TGC 	333 333 456 AGA 	333 333 789 ^ CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	333 455 901 A ATT 	3333 555 234 ^ GAT 	333 555 567 	333 556 890 ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-Q8*03_ARNm Tutr-Q8*03 Tutr-DQ8*02 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-Q8*05 Tutr-Q8*05 Tutr-Q8*07 Tutr-Q8*09 Tutr-Q8*09 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-Q8*13 Tutr-Q8*15 Tutr-Q8*15 Tutr-Q8*16 Tutr-Q8*18 Tutr-Q8*18 Tutr-Q8*18 Tutr-Q8*19	2222 7777 123 GAG AC. AC. AC. A	2222 7777 4566 ^ TAC 	2222 7777 7899 ^ TTC:	2222 888 012 AAC	2222 8888 345 G G G G G	2222 888 678 CAG 	2222 899 901 ^ G G G G G G G G	222 999 234 GAC	222 999 567 ATC TA. C T C	223 990 890 ^ CTG	333 000 123 GAG	333 000 456 C AG G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G	333 000 789 ^ GAA A A A A A A A	333 111 012 CGG 	333 111 345 GCC	333 111 678 ^ GCG .A. .A. .A. .A. .A. .A. .A. .A. .A	333 122 901 GTG C C C C C C C	333 222 234 GAC	3333 222 567 ACG	333 223 890 A GTG 	333 333 123 TGC 	333 333 456 AGA 	333 333 789 A CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	333 455 901 ^ ATT 	333 555 2344 ^ GAT 	333 555 567 -	333 556 890 ^ ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*03_ARNm Tutr-Q8*03_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*02 Tutr-DQ8*02 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*07 Tutr-DQ8*10 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*17 Tutr-DQ8*17 Tutr-DQ8*17 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19	2222 7777 123 GAG A A A A	2222 777 456 ^ TAC 	2222 7777 *****************************	2222 888 012 AAC	2222 888 345 G G G G G	2222 888 678 CAG 	2222 899 901 ^ G G G G G G G	222 999 234 GAC	222 999 567 ATC TA. C. T. 	223 990 890 ^ CTG	333 000 123 GAG 	333 000 456 C AG	333 000 789 A GAA A A A A C.C C.C A A	333 111 012 CGG 	333 111 345 GCC	333 1111 678 A GCG .A. .A. .A. .A. .A. .A. .A. .A.	333 122 901 GTG C C C C C C C	333 222 234 GAC	333 222 567 ACG	333 223 890 A GTG 	333 333 123 TGC 	333 333 456 AGA 	333 333 789 A CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG 	3333 455 901 ^ ATT 	333 555 234 ^ GAT 	333 555 567 -	333 556 890 A ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*14 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*22	2222 7777 123 GAG A A A A	2222 7777 4566 ^ TAC 	2222 7777 * * C.GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	222 888 012 AAC	2222 8888 345 G G G G	2222 888 678 CAG 	2222 899 901 ^ AAG G G G G G G G	222 999 234 GAC	2222 9999 567 ATC C C C TA. TA.	223 990 890 ^ CTG	333 000 123 GAG	333 000 45 < CAG G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G	333 000 789 A GAA A A A A A A	333 111 012 CGG 	333 111 345 GCC	333 1111 678 ^ GCG .A. .A. .A. .A. .A. .A. .A. .A.	333 122 901 GTG C C C C C C C	333 222 234 GAC	333 222 567 ACG 	333 223 890 GTG 	333 333 123 TGC 	333 333 456 AGA 	333 333 789 A CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 AGG	333 455 901 ~ ATT 	3333 5555 234 A GAT 	333 555 567 GAG 	333 556 890 A ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*19 Tutr-DQ8*18 Tutr-DQ8*12 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*23	2222 7777 123 GAG AC. AC. AC. AC. A. 	2222 7777 4566 ^ TAC 	2222 7777 * * * * * * * * * * * * * * *	222 888 012 AAC	222 888 345 G G G G	2222 888 678 CAG 	2222 899 901 A AAG G G G G G G G G G	2222 9999 234 GAC	2222 9999 567 TA. C. C. TA. TA. TA.	223 990 890 ^ CTG	333 000 123 GAG	33000 45 < CAG	333 000 789 ^ GAA A A A A A A	333 111 012 CGG 	333 111 345 GCC	333 1111 678 ^ GCG .A. .A. .A. .A. .A. .A. .A. .A.	333 122 901 GTG C C C C C C C	333 222 234 GAC	333 222 567 	333 223 890 GTG 	333 3123 TGC 	333 333 456 AGA 	333 333 /89 /A CAC 	333 444 012 ^ AAC 	333 444 345 TAC 	333 444 678 	333 455 901 ^ ATT 	3333 5555 GAT 	333 555 567 -	333 556 890 ^
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*14 Tutr-DQ8*16 Tutr-DQ8*16 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*23 Tutr-DQ8*23 Tutr-DQ8*23 Tutr-DQ8*24	2222 777 123 GAG AC AC AC AC AC AC	2222 7777 456 ^ TAC C	222 7777 ^ C : : : : : : : : : : : : : : : : : :	222 888 012 AAC	2222 888 345 G G G G	2222 888 678 CAG 	2222 8999 AAG G G G G G G G.	222 999 234 GAC	2222 9999 567 TA. C C TA. TA. TA.	223 990 ^ CTG 	333 000 123 GAG	333 0056 < CAG	333 0000 789 AA AGA A 	333 111 012 CGG 	333 111 345 GCC	3333 1111 678 6CG .A. .A. .A. .A. .A. .A. .A. .A.	333 122 901 GTG C C C C C C C	333 222 234 GAC	333 222 567 ACG 	333 223 890 GTG 	333 3123 TGC 	333 333 456 AGA 	333 333 789 	333 444 	333 444 345 TAC 	333 444 678 	333 455 901 ^ ATT 	3333 5555 4 GAT 	333 555 567 GAG 	333 556 890 ^ ACC
Tutr-DQ8*01_ARNm Tutr-DQ8*03_ARNm Tutr-Q8*03_ARNm Tutr-Q8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-Q8*07 Tutr-DQ8*07 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*14 Tutr-DQ8*15 Tutr-DQ8*16 Tutr-DQ8*16 Tutr-DQ8*17 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*12 Tutr-DQ8*12 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*23 Tutr-DQ8*24 Tutr-DQ8*26	2222 777 123 GAG AC. A. A. A. A.	222 777 456 ^ TAC	2222 7777 ^ C	2222 8888 012 AAC	2222 888 345 G G G	2222 888 678 CAG .G. 	2222 8999 A G G G G G G G G G G G G G G G G G	222 999 234 GAC	2222 9999 567 ATC TA. C TA. TA. 	223 990 890 ^ CTG 	333 000 123 GAG 	33004^ AG	333 0000 789 A A A A A A A A A	333 111 012 CGG 	333 111 345 GCC	333 111 678 6CG .A. .A. .A. .A. .A. .A. .A. .A.	3333 1222 901 GTG C C C C C C C	333 222 234 GAC	333 222 567 ACG 	333 890 A GTG 	333 333 123 TGC 	333 333 456 	333 789 ^ CAC 	333 444 012 	333 444 345 TAC 	333 444 678 	333 455 901 ATT 	333 555 234 ^ GAT 	3333 555 567 GAG 	333 556 890 A CC
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*14 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*12 Tutr-DQ8*12 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*24 Tutr-DQ8*24 Tutr-DQ8*24 Tutr-DQ8*26 Tutr-DQ8*26 Tutr-DQ8*26 Tutr-DQ8*27	2222 7777 123 GAG AC. AC. AC. AC. AC. 	2222 777 456 ^ TAC 	222 7777 7789 < TC :	222 888 012 AAC 	2222 8888 345 G G G G	2222 8888 678 CAG 	2222 8999 AAG G G G G G G G.	222 999 234 GAC	2222 9999 567 ATC TA. C C C TA. 	223 990 ^ CTG 	333 000 123 GAG 	30056 < AG	333 000 789 A. A. A. A. A. A. A. A. A. A. A. A. A.	333 111 012 CGGG 	333 111 345 GCC	3333 1111 678 6CG 	333 122 901 GTG C C C C C C C	333 222 234 GAC	3333 222 567 ACG 	333 223 6 GTG 	333 123 TGC 	333 333 456 AGA 	333 333 789 CAC 	333 444 012 ^^ 	333 444 345 	333 444 678 AGG 	333 455 901 ^ 	333 555 234 ^ GAT 	333 555 567 -	333 556 8900 ACC

							. L Exó	n 3																						
	333 666 123	333 666 456	333 666 789	333 777 012	333 777 345	333 777 678	333 788 901	333 888 234	333 888 567	333 889 890	333 999 123	333 999 456	333 999 789	444 000 012	444 000 345	444 000 678	444 011 901	444 111 234	444 111 567	444 112 890	444 222 123	444 222 456	444 222 789	444 333 012	444 333 345	444 333 678	444 344 901	444 444 234	444 444 567	444 445 890
Tuta DOR#01 ADM	TT A		CTC	c.c	<i>ccc</i>		CTC	~~~	CCT		CTC	100	ATC	тес			100		c.c	CCT	CTA		c .c	C 1/C	AAC	CTC	CTC	CTC	TCC	100
Tutr-DOB*01_ARNm		GCG		CAG		CGA		GAA		ACA		ACC	AIC			GCC	AGG	ACA	GAG	GCT		AAC	CAC	CAC	AAC			GIC	IGC	ACG
Tutr-DQB*03_ARNm	с	Α									• • •					т														т.,
Tutr-DQB*01 Tutr-DOB*02																														
Tutr-DQB*03																														
Tutr-DQB*04																														
Tutr-DQB*06																														
Tutr-DQB*07																														
Tutr-DQB=08																														
Tutr-DQB*10																														
Tutr-DQB*11 Tutr-DOB*12																														
Tutr-DQB*13																														
Tutr-DQB*14																														
Tutr-DQB*16																														
Tutr-DQB*17																														
Tutr-DQB*18 Tutr-DQB*19																														
Tutr-DQB*20																														
Tutr-DQB*21 Tutr-DOB*22																														
Tutr-DQB*23																														
Tutr-DQB*24																														
Tutr-DOB*26																														
Tutr-DQB*27																														
Tutr-DQB-28																														
	444	444	444	444	444	444	444	444	444	444 778	444 888	444	444	444 999	444 999	444 999	455 900	555 000	555 000	555 001	555 111	555 111	555 111	555	555	555	555 233	555 333	555 333	555 334
Tutr-DQB≑01_ARNm	444 555 123 GTG	444 555 456 ACA	444 555 789 GAT	444 666 012 TTC	444 666 345 TAT	444 666 678 CCA	444 677 901 GGC	444 777 234 CAG	444 777 567 ATC	444 778 890 AAA	444 888 123 GTT	444 888 456 CGG	444 888 789 TGG	444 999 012 TTC	444 999 345 CGG	444 999 678 AAT	455 900 901 GAC	555 000 234 CAG	555 000 567 GAG	555 001 890 GAG	555 111 123 ACA	555 111 456 GCT	555 111 789 GGC	555 222 012 GTT	555 222 345 GTG	555 222 678 TCC	555 233 901 ACC	555 333 234 CCT	555 333 567 CTT	555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm	444 555 123 GTG	444 555 456 ACA	444 555 789 GAT	444 666 012 TTC	444 666 345 TAT	444 666 678 CCA	444 677 901 GGC	444 777 234 CAG	444 777 567 ATC	444 778 890 AAA	444 888 123 GTT	444 888 456 CGG	444 888 789 TGG	444 999 012 TTC	444 999 345 CGG	444 999 678 AAT	455 900 901 GAC	555 000 234 CAG	555 000 567 GAG	555 001 890 GAG	555 111 123 ACA	555 111 456 GCT	5555 111 789 GGC	555 222 012 GTT	555 222 345 GTG	555 222 678 TCC	555 233 901 ACC	555 333 234 CCT	555 333 567 CTT	555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-D8*03_ARNm Tutr-D8*01	444 555 123 GTG 	444 555 456 ACA	444 555 789 GAT	444 666 012 TTC 	444 666 345 TAT	444 666 678 CCA	444 677 901 GGC	444 777 234 CAG	444 777 567 ATC	444 778 890 AAA	444 888 123 GTT 	444 888 456 CGG	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG	444 999 678 AAT	455 900 901 GAC	5555 000 234 CAG	555 000 567 GAG	555 001 890 GAG	555 111 123 ACA	5555 111 456 GCT	555 111 789 GGC 	5555 222 012 GTT 	555 222 345 GTG	5555 222 678 TCC	5555 233 901 ACC	555 333 234 CCT	5555 333 567 CTT 	555 334 890 ATT
Tutr-DQB*01_ARNm Tutr-DQB*02_ARNm Tutr-DQB*03_ARNm Tutr-DQB*01 Tutr-DQB*02	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 CGG 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	555 000 234 CAG	555 000 567 GAG 	555 001 890 GAG 	555 111 123 ACA 	555 111 456 GCT 	555 111 789 GGC 	555 222 012 GTT 	555 222 345 GTG 	555 222 678 TCC 	555 233 901 ACC 	555 333 234 CCT 	555 333 567 CTT 	555 334 890 ATT
Tutr-DQ8°01_ARNm Tutr-DQ8°02_ARNm Tutr-DQ8°03_ARNm Tutr-DQ8°01 Tutr-DQ8°03 Tutr-DQ8°03 Tutr-DQ8°04	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 CGG 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	555 000 234 CAG 	555 000 567 GAG 	555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 2222 012 GTT 	555 222 345 GTG 	555 222 678 TCC 	555 233 901 ACC 	5555 333 234 CCT 	5555 333 567 CTT 	555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*05	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA	444 677 901 GGC 	444 777 234 CAG	444 777 567 ATC	444 778 890 AAA 	444 888 123 GTT 	444 888 456 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT	455 900 901 GAC	5555 000 234 CAG 	555 000 567 GAG 	555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 2222 012 GTT 	555 222 345 GTG 	5555 2222 678 TCC 	555 233 901 ACC 	5555 333 234 CCT 	5555 3333 567 CTT 	555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT	444 666 678 CCA	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 CGG 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	555 000 234 CAG 	555 000 567 GAG 	555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 2222 012 GTT 	5555 2222 345 GTG 	5555 2222 678 TCC 	555 233 901 ACC 	5555 3333 234 CCT 	5555 3333 567 CTT 	555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*08	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 CGG 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	555 000 234 CAG 	555 000 567 GAG 	555 001 890 GAG 	555 111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 2222 012 GTT 	555 222 345 GTG 	5555 2222 678 TCC 	5555 233 901 ACC 	5555 333 234 CCT 	5555 3333 567 CTT 	555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*08 Tutr-DQ8*08 Tutr-DQ8*08	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	4555 900 901 GAC	5555 000 234 CAG 	555 000 567 GAG 	555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 4556 GCT 	5555 1111 789 GGC 	5555 222 012 GTT 	555 222 345 GTG 	5555 222 678 TCC 	555 233 901 ACC 	5555 333 234 CCT 	5555 3333 567 CTTT 	555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*11	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 CGG 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	555 000 234 CAG 	5555 000 567 GAG 	555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 2222 012 GTT 	555 222 345 GTG 	555 222 678 TCC 	5555 2333 901 ACC 	5555 3333 234 CCT 	5555 3333 567 CTT 	555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*09 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*12	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 CGG 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	5555 000 234 CAG 	5555 000 567 GAG 	5555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 2222 012 GTT 	555 222 345 GTG 	5555 2222 678 TCC 	5555 2333 901 ACC 	5555 3333 234 CCT 	5555 3333 567 CTT 	5555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*13	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	5555 000 234 CAG 	5555 000 567 GAG 	5555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 2222 012 GTT 	5555 2222 345 GTG 	5555 2222 678 TCC 	5555 2333 901 ACC 	5555 3333 234 CCT 	5555 3333 567 CTT 	5555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*07 Tutr-DQ8*07 Tutr-DQ8*07 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*15	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC	5555 000 234 CAG 	5555 000 567 GAG 	5555 0011 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 2222 012 GTT 	5555 2222 345 	5555 2222 678 TCC 	5555 2333 901 ACC 	5555 3333 234 CCT 	5555 3333 567 CTT 	5555 334 890 ATT
Tutr-DQ8*01_ARMm Tutr-DQ8*02_ARMm Tutr-DQ8*03_ARMm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*16 Tutr-DQ8*16 Tutr-DQ8*15	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 CGG 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	5555 000 234 CAG 	5555 000 567 GAG 	555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 2222 012 GTT 	5555 222 345 GTG 	5555 222 678 TCC 	5555 233 901 ACC 	5555 333 234 CCT 	5555 333 567 CTT 	5555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*16 Tutr-DQ8*17 Tutr-DQ8*17	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 CGG 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	5555 000 234 CAG 	5555 000 567 GAG 	5555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 222 012 GTT 	5555 222 345 GTG 	5555 222 678 TCC 	5555 233 901 ACC 	5555 333 234 CCT 	5555 333 567 CTT 	5555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*09 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 -	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	5555 000 234 CAG 	5555 000 567 GAG 	5555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 222 012 GTT 	5555 2222 345 	5555 222 678 TCC 	5555 2333 9011 ACC 	5555 3333 234 CCT 	5555 3333 567 CTT 	5555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*08 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*12 Tutr-DQ8*13 Tutr-DQ8*14 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*21	444 555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 -	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC	5555 0000 234 CAG 	5555 000 567 GAG 	555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 789 GGC 	5555 2222 012 GTT 	5555 2222 345 	5555 2222 678 TCC 	5555 2333 9011 ACC 	5555 3333 234 CCT 	5555 3333 567 CTT 	555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*05 Tutr-DQ8*07 Tutr-DQ8*07 Tutr-DQ8*10 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*19 Tutr-DQ8*20 Tutr-DQ8*20 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*22	444 555 123 GTG 	444 555 456 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 CCA 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	5555 0000 234 CAG 	555 000 567 GAG 	555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 7899 GGC 	5555 2222 012 GTT 	555 222 345 GTG 	5555 2222 678 TCC 	555 233 901 ACC 	5555 3333 234 CCT 	5555 3333 567 CTT 	5555 3344 8900 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*07 Tutr-DQ8*07 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*16 Tutr-DQ8*15 Tutr-DQ8*16 Tutr-DQ8*17 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*19 Tutr-DQ8*20 Tutr-DQ8*22 Tutr-DQ8*23 Tutr-DQ8*24	444 555 123 GTG 	444 555 456 	444 5555 789 GAT 	444 666 012 TTC 	444 666 345 	444 666 678 CCA 	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	555 000 234 CAG 	555 000 567 GAG 	555 001 890 GAG 	5555 1111 123 ACA 	555 111 456 GCT 	5555 1111 7899 GGC 	5555 2222 012 GTT 	555 222 345 GTG 	5555 2222 678 TCC 	555 233 901 ACC 	5555 3333 234 CCT 	5555 3333 567 CTT 	5555 334 890 ATT
Tutr-DQ8*01_ARMm Tutr-DQ8*02_ARMm Tutr-DQ8*03_ARMm Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*03 Tutr-DQ8*05 Tutr-DQ8*06 Tutr-DQ8*09 Tutr-DQ8*10 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*14 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*15 Tutr-DQ8*16 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*19 Tutr-DQ8*18 Tutr-DQ8*19 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*23 Tutr-DQ8*24 Tutr-DQ8*25	444 555 123 GTG 	444 555 456 ACA 	444 5555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 -	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	4444 888 456 	444 888 789 TGG 	444 9992 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	555 000 234 CAG 	5555 000 567 GAG 	555 001 890 GAG 	5555 1111 123 ACA 	555 111 456 GCT 	5555 1111 7899 GGC 	5555 2222 012 GTT 	5555 2222 345 	5555 222 678 TCC 	5555 233 901 ACC 	5555 333 234 CCT 	5555 3333 567 CTT 	5555 334 890 ATT
Tutr-DQ8*01_ARNm Tutr-DQ8*02_ARNm Tutr-DQ8*03_ARNm Tutr-DQ8*01 Tutr-DQ8*01 Tutr-DQ8*03 Tutr-DQ8*04 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*06 Tutr-DQ8*10 Tutr-DQ8*10 Tutr-DQ8*11 Tutr-DQ8*13 Tutr-DQ8*13 Tutr-DQ8*14 Tutr-DQ8*15 Tutr-DQ8*16 Tutr-DQ8*16 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*18 Tutr-DQ8*12 Tutr-DQ8*21 Tutr-DQ8*21 Tutr-DQ8*22 Tutr-DQ8*25 Tutr-DQ8*25 Tutr-DQ8*25 Tutr-DQ8*25 Tutr-DQ8*26	4444 5555 123 GTG 	444 555 456 ACA 	444 555 789 GAT 	444 666 012 TTC 	444 666 345 TAT 	444 666 678 -	444 677 901 GGC 	444 777 234 CAG 	444 777 567 ATC 	444 778 890 AAA 	444 888 123 GTT 	444 888 456 	444 888 789 TGG 	444 999 012 TTC 	444 999 345 CGG 	444 999 678 AAT 	455 900 901 GAC 	5555 000 234 CAG 	5555 000 567 GAG 	5555 001 890 GAG 	5555 1111 123 ACA 	5555 1111 456 GCT 	5555 1111 7899 GGC 	5555 2222 012 GTT 	5555 2222 345 	5555 222 678 TCC 	5555 233 901 ACC 	5555 333 234 CCT 	5555 3333 567 CTT 	5555 3344 890 ATT

	Exón 3	3																												
	555	555	555	555	555	555	555	555	555	555	555	555	555	555	555	555	555	555	555	556	666	666	666	666	666	666	666	666	666	666
	444	444	444	555	555	555	566	666	666	667	777	777	777	888	888	888	899	999	999	990	000	000	000	111	111	111	122	222	222	223
	123	456	789	012	345	678	901	234	567	890	123	456	789	012	345	678	901	234	567	890	123	456	789	012	345	678	901	234	567	890
Tutr-DQB*01_ARNm	AGA	AAT	GGG	GAC	TGG	ACC	TTC	CAG	ATG	CTT	GTG	ATG	CTG	GAA	ATG	ACT	CCC	CAG	CAA	GGA	GAT	GTC	TAC	ACC	TGC	CAA	GTG	GAG	CAC	CCC
Tutr-DQB*02_ARNm																														
Tutr-DQB*03_ARNm																										т				
Tutr-DQB*01																														
Tutr-DQB*02																														
Tutr-DQB*03																														
Tutr-DQB*04																														
Tutr-DQB*05																														
Tutr-DQB*06																														
Tutr-DQB*07																														
Tutr-DQB*08																														
Tutr-DQB*09																														
Tutr-DQB*10																														
Tutr-DQB*11																														
Tutr-DQB*12																														
Tutr-DQB*13																														
Tutr-DQB*14																														
Tutr-DQB#15																														
Tutr-DQB#16																														
Tutr-DQB#1/																														
Tutr-DQB#18																														
Tutr-DQB#19																														
Tutr-DQB#20																														
Tutr-DQB#21																														
Tutr-DQB#22																														
Tutr-DQB#23																														
Tutr-DQB=24																														
Tutr-DQB#25																														
Tutr-DQB*26																														
Tutr-DQB#27																														
Tutr-DQB*28																														

Ew	án.	4
EX		4

	666	666	666	666 444	666 444	666 444	666 455	666	666	666	666	666	666	666	666	666	666 788	666 888	666 888	666 889	666	666	666	777	777	777	777	777	777	777
	123	456	789	012	345	678	901	234	567	890	123	456	789	012	345	678	901	234	567	890	123	456	789	012	345	678	901	234	567	890
															2.2															
Tutr-DQB*01_ARNm	AGC	СТС	CAG	AGT	CCC	ATC	ATG	GTG	GAG	TGG	TGG	GCA	CAG	TCT	GGA	TCT	GCC	CAG	AGC	AAG	ATG	CTG	AGT	GGT	GTT	GGG	GGC	TTT	GTG	CTG
Tutr-DQB*02_ARNm																														
Tutr-DQB*03_ARNm																c														
Tutr-DQB*01																														
Tutr-DQB*02																														
Tutr-DQB*03																														
Tutr-DQB*04																														
Tutr-DQB*05																														
Tutr-DQB*06																														
Tutr-DQB*07																														
Tutr-DQB*08																														
Tutr-DQB*09																														
Tutr-DQB*10																														
Tutr-DQB*11																														
Tutr-DQB*12																														
Tutr-DQB*13																														
Tutr-DQB*14																														
Tutr-DQB*15																														
Tutr-DQB*16																														
Tutr-DQB*17																														
Tutr-DQB*18																														
Tutr-DQB*19																														
Tutr-DQB*20																														
Tutr-DQB*21																														
Tutr-DQB*22																														
Tutr-DQB*23																														
Tutr-DQB*24																														
Tutr-DQB*25																														
Tutr-DQB*26																														
Tutr-DQB*27																														
Tutr-DQB*28																														

																		Exó	n 5	Exón 6
	777	777	777	777	777	777	777	777	777	777	777	777	777	777	777	777	777	777	777	777
	222	222	222	222	222	222	344	444	444	445	666	555	666	666	666	666	677			778
	123	156	780	012	345	678	001	234	567	800	123	456	789	012	345	678	001	234	567	890
	123	450	/05	012	545	0/0	501	2.34	507	050	123	450	105	012	545	0/0	501	2.54	507	050
Tutr-DQB*01_ARNm	GGG	CTG	ATC	TTC	стс	GGG	CTG	GGT	стс	ATC	ATC	CGT	CAC	AGG	AGC	CAG	AAG	GGG	CAC	TGA
Tutr-DQB*02_ARNm																				
Tutr-DQB*03_ARNm																				
Tutr-DQB*01																				
Tutr-DQB*02																				
Tutr-DQB*03																				
Tutr-DQB*04																				
Tutr-DQB*05																				
Tutr-DQB*06																				
Tutr-DQB*07																				
Tutr-DQB*08																				
Tutr-DQB*09																				
Tutr-DQB*10																				
Tutr-DQB*11																				
Tutr-DQB*12																				
Tutr-DQB*13																				
Tutr-DQB*14																				
Tutr-DQB*15																				
Tutr-DQB*16																				
Tutr-DQB*17																				
Tutr-DQB*18																				
Tutr-DQB*19																				
Tutr-DQB*20																				
Tutr-DQB*21																				
Tutr-DQB*22																				
Tutr-DQB*23																				
Tutr-DQB*24																				
Tutr-DQB*25																				
Tutr-DQB*26																				
Tutr-DQB*27																				
Tutr-DQB*28																				

Apéndice II. Alineamiento de secuencias de aminoácidos (57 aa) traducidas a partir de los 28 alelos *Tutr-DQβ** inferidos en los tursiones costeros del Golfo de México y Mar Caribe con respecto a la cadena polipeptídica β caracterizada para la especie (alelos *Tutr-DQB*01~03_ARNm*, EF017815 y EF507877~78, Yang *et al.* 2007). Los puntos y las letras representan aminoácidos idénticos o diferentes de la secuencia de referencia *Tutr-DQB*01_ARNm*, respectivamente. Se muestran los sitios de inicio de cada dominio (\downarrow) y la ubicación de los aminoácidos involucrados en la PBR (^) con base en Hayashi *et al.* 2003 y el sitio de terminación encontrado en el alelo *Tutr-DQB*08* (*).

	ل Péptido líder	r		🕁 Dominio 🖡	1				
	•			12345678	11111111 9012345678 ^ ^ ^	122222222 9012345678 ^	2333333333 9012345678 ^ ^ ^ ^	344444444 9012345678 ^	455555555 9012345678
Tutr-DQB*01_ARNm	MSGTVALQIP	RGLWTTAVMV	MLTVLSTPEA	EGRDSPQDFL	IRHMGMCYFT	NGTERVRGMS	RYIYNREEYV	RFDSDVGEFR	AVTELGRPDA
Tutr-DQB*02_ARNm								. SG	
Tutr-DQB*03_ARNm					FF	HV.	M		RT.
Tutr-DQB*01						A			RT.
Tutr-DQB*02						LVE	F.		
Tutr-DQB*03						FVD	F.	H.	
Tutr-DQB*04						LV.	.NL.		RA.
Tutr-DQB*05						LVE	F.		
Tutr-DQB*06						S.T			RT.
Tutr-DQB*07						LVR	F.		
Tutr-DQB*08						VVD	.S*.		
Tutr-DQB*09						VVD	.SL.		
Tutr-DQB*10						A	.H		RT.
Tutr-DQB*11						S.T			RT.
Tutr-DQB*12						FVD	.HF.	H.	
Tutr-DQB*13						A.T			RT.
Tutr-DQB*14						C.T	.H	Y.	RT.
Tutr-DQB*15						FVA	F.	L.	
Tutr-DQB*16						FVD		H.	
Tutr-DQB*17						C.A	.HF.	H.	
Tutr-DQB*18						FVN			RT.
Tutr-DQB*19						FVD	F.		
Tutr-DQB*20						F.T	F.	L.	
Tutr-DQB*21						LV.	.NL.		RA.
Tutr-DQB*22						HV.			
Tutr-DQB*23						V			
Tutr-DQB*24						FVD	F.		
Tutr-DQB*25						FVD	F.	H.	
Tutr-DQB*26						HV.			
Tutr-DQB*27						HV.			
Tutr-DQB*28						LV.	.NL.		RA.

111111111 111111111 111111111 111111111 111111111 111111111 1111111111 1111111111 1111111111 1111111111 111111111 1111111111 11111111111 111111111111111111111111111111111111
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Tutr-DQ8*03_ARNm
Tutr-DQ8*03_ARNm W
Tutr-DQ8*01
Tutr-DQ8*02 T.W.G.EEL. Tutr-DQ8*03 .WRK.EL. Tutr-DQ8*04 .W.R.Y.LR.E Tutr-DQ8*05 K.W.GEEL. Tutr-DQ8*06 .WEE Tutr-DQ8*07 T.W.G.EE Tutr-DQ8*08
Tutr-DQ8*03
Tutr-DQ8*04
Tutr-DQ8*06 K. W.G E E
Tutr-DQ8*06
Tutr-DQ8*08
Tutr-DQ8*09
Tutr-DQ8*10
Tutr-DQ8*11 .WL. RDE Tutr-DQ8*12 .WL. RNEL Tutr-DQ8*13 .WE Tutr-DQ8*14 .WE Tutr-DQ8*15 .WE Tutr-DQ8*15 .WE
Tutr-Q8*12
Tutr-DQ8*13 WE E Tutr-DQ8*14 WL. .RHE Tutr-DQ8*15 WE E
Tutr-DQ8*14WLRHE
Tutr-008*15
The population of the provide the second secon
IUTT-DQB"16WFKKEL
Tutr-DQB*17WLRNEL
Tutr-DQB*18 K.W.G.EE
Tutr-DQB*19 .HWR.W.DG
Tutr-DQB#20WRKE
Tutr-DQB#21WR.YLKE
Tutr-DQB#22 K.WERKDR
lutr-008*23
Tutr-DQB*24
IUCT-DQD*23W
14LT −2QB−220

					↓ Región ↓ Transmembr	anal		↓ Región ↓ Citoplasmática
	1111111111 4555555555 9012345678	1111111111 5666666666 9012345678	1111111111 677777777 9012345678	1111111111 7888888888 9012345678	1111111111 89999999999 9012345678	1222222222 9000000000 9012345678	2222222222 0111111111 9012345678	2222222222 1222222222 9012345678
Tutr-DQB*01_ARNm	RNGDWTFQML	VMLEMTPQQG	DVYTCQVEHP	SLQSPIMVEW	WAQSGSAQSK	MLSGVGGFVL	GLIFLGLGLI	IRHRSQKGH*
Tutr-DOB*03_ARNm			н.					
Tutr-DOB*01								
Tutr-DQB*02								
Tutr-DQB*03								
Tutr-DQB*04								
Tutr-DQB*05								
Tutr-DQB≑06								
Tutr-DQB*07								
Tutr-DQB*08								
Tutr-DQB#09								
Tutr-DQB#10								
Tutr-DQB-11								
Tutr-DQB-12								
Tute_DOR:14								
Tute DOR:14								
Tute_DOB#16								
Tute_DOB#17								
Tutr-DOB#18								
Tutr-DOB#19								
Tutr-DOB*20								
Tutr-DOB*21								
Tutr-DOB*22								
Tutr-DOB*23								
Tutr-DOB#24								
Tutr-DQB*25								
Tutr-DQB*26								
Tutr-DQB*27								
Tutr-DQB*28								

Símbolo	Abreviatura	Aminoácido	Propiedades fisicoquímicas
А	Ala	Alanina	No polar / Grupo R alifático
С	Cys	Cisteína	Polar / Grupo R sin carga
D	Asp	Ácido aspártico	Polar / Grupo R con carga (-)
Е	Glu	Ácido glutámico	Polar / Grupo R con carga (-)
F	Phe	Fenilalanina	No polar / Grupo R aromático
G	Gly	Glicina	No polar / Grupo R alifático
Н	His	Histidina	Polar / Grupo R con carga (+)
Ι	Ile	Isoleucina	No polar / Grupo R alifático
K	Lys	Lisina	Polar / Grupo R con carga (+)
L	Leu	Leucina	No polar / Grupo R alifático
М	Met	Metionina	No polar / Grupo R alifático
Ν	Asn	Aspargina	Polar / Grupo R sin carga
Р	Pro	Prolina	No polar / Grupo R alifático
Q	Gln	Glutamina	Polar / Grupo R sin carga
R	Arg	Arginina	Polar / Grupo R con carga (+)
S	Ser	Serina	Polar / Grupo R sin carga
Т	Thr	Treonina	Polar / Grupo R sin carga
V	Val	Valina	No polar / Grupo R alifático
W	Trp	Triptofano	No polar / Grupo R aromático
Y	Tyr	Tirosina	No polar / Grupo R aromático

Apéndice III. Simbología, nomenclatura y propiedades fisicoquímicas de los aminoácidos (Dixon *et al.* 1984, Lehninger 2005).