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RESUMEN de la tesis de LUIS ALBERTO SÁNCHEZ PÉREZ, presentada
como requisito parcial para la obtención del grado de MAESTRO EN CIENCIAS en
CIENCIAS DE LA TIERRA con orientación en GEOFÍSICA APLICADA. Ensenada,
Baja California, Marzo de 2010.

REFLEXIÓN Y TRANSMISIÓN EN POROELASTICIDAD

Resumen aprobado por:

Dr. Pratap Narayan Sahay Sahay

Director de Tesis

El objetivo de la sismoloǵıa de reflexión es conocer el tipo de flúıdo presente en las
rocas, su volumen (porosidad) y su capacidad de fluir (permeabilidad). En la teoŕıa
poro-elástica, la porosidad y permeabilidad están contenidas de manera natural en las
ecuaciones constitutivas, y los componentes sólido y flúıdo tienen la misma importan-
cia. Sin embargo, las condiciones de frontera para dos medios porosos en contacto aun
no están bien definidas y esto es la razón por lo que la teoŕıa poro-elástica aún no se
aplica de manera importante en la śısmica de reflexión. En la literatura, existen dos
conjuntos de condiciones de frontera, propuestas por Deresiewicz y Sakalak (1963) y de
la Cruz y Spanos (1989). El primer conjunto le da más peso al contacto entre sólidos
como frontera, mientras que la segunda asume que la frontera es aquélla en la cual la
masa total es conservada.

En este trabajo se estudia el problema de valores a la frontera para el caso de reflexión
y transmisión de ondas rápidas longitudinales y de corte en medios porosos. Para su
solución se emplean las condiciones de fronteras previamente mencionadas. Para una
onda rápida longitudinal incidente con ángulo normal a la superficie de contacto, se
observa que en bajas frecuencias (debajo de la frecuencia cŕıtica de Biot en ambos
medios), los coeficientes de reflexión y transmisión son similares al emplear ambos con-
juntos de condiciones de fronteras y estos son equivalentes a los coeficientes obtenidos
con la teoŕıa visco-elástica. Sin embargo, en frecuencias altas, los coeficientes obtenidos
con la condiciones de fronteras en poroelasticidad están por debajo de los obtenidos con
la teoŕıa visco-elástica. Para el caso de una onda rápida de corte incidente con ángulo
normal a la superficie de contacto, los resultados son completamente diferentes. Por un
lado, al emplear las condiciones de fronteras propuestas por de la Cruz y Spanos (1989),
éstas predicen una fuerte reflexión a diferencia de los coeficintes obtenidos al emplear
las condiciones propuestas por Deresiewicz y Skalak (1963). Para el caso de una onda
rápida de corte incidente con ángulo diferente al normal, los coeficientes obtenidos con
ambas condiciones de fronteras son diferentes entre śı. Con base en resultados numéricos
obtenidos en esta tesis, se proponen experimentos en laboratorio diseñados para validar
los dos conjuntos de condiciones de frontera.
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ABSTRACT of the thesis presented by LUIS ALBERTO SÁNCHEZ PÉREZ,
in partial fulfillment of the requirements of the degree of MASTER IN SCIENCES in
EARTH SCIENCES with orientation in APPLIED GEOPHYSICS. Ensenada, Baja
California, March 2010.

REFLECTION AND TRANSMISSION IN POROELASTICITY

The ultimate aim of reflection seismology is to know the type of the saturating fluid,
its volume (i.e., porosity) and whether it will flow (i.e., permeability). The poroelastic
wave theory brings the role of the solid and fluid constituents on equal footing in a
natural way. The porosity and permeability are also explicitly present in this theory.
However, the applications of poroelastic theory to reflection seismology have not yet
happened in a substantial way. It is because the boundary conditions for two porous
media in contact are not yet well established. There are two competing schools of
thought on poroelastic boundary conditions, namely, due to Deresiewicz and Skalak
(1963) and due to de la Cruz and Spanos (1989). The former treats preferentially the
solid/solid contact surface as the boundary. The later regards the boundary as the
surface at which total mass is conserved.

In this work I have studied the reflection and transmission boundary value problems
associated with incident fast compressional and shear waves for both sets of boundary
conditions. For normal incident fast compressional wave, I observe that the reflection
and transmission coefficients for both boundary conditions are similar. In the low fre-
quency regime (defined by the Biot critical frequencies of the two media), they are akin
to those for the equivalent visco-elastic framework. In the high frequency regime, they
are below the response of the equivalent visco-elastic framework. For the fast shear wave
case there are distinct differences. The later predicts a strong reflection for fast shear
wave normal incident upon a planar fluid/fluid contact in a porous medium, whereas
the former shows no such sensitivity. For non-normal incident case, the predicted trends
for both boundary conditions are different from each other. Based upon numerical sim-
ulations that I have carried out, I have proposed a set of laboratory experiments to run
validity check on the two sets of boundary conditions.

Keywords: Wave propagation, poroelasticity, boundary conditions
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aśı como a los miembros del comité de tesis por su valiosa colaboración: Dr. Antonio

González Fernández y Dr. Gilberto López Mariscal.
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Chapter I

INTRODUCTION

I.1 Reflection and transmission in poroelasticity: the

next frontier

Seismic reflection processing and interpretation is about deducing the subsurface seismic

structure to map geological structures and reservoir architecture. Historically, travel-

time has been the geophysical observable in reflection seismology. The early era of

seismic exploration started with the acquisition of the vertical component of the wave

field. Since the measurement was a single component field, the acoustic ( i.e. scalar)

wave theory was used to analyze and model data. The acoustic model gave good re-

sults for non-complex geological structures, in particular, for near normal incidence in

layered structures.

By early 1980s the demand for oil had become increasingly high, consequently, it led

to the need to quantify new reservoirs in more complex geological areas. A new tech-

nology, namely, Amplitude Versus Angle of incidence (AVA) emerged to understand

reflection coming of non-near normal incidence. The amplitude of a wave field has

additional information about physical properties of materials from which it has been

reflected. This information permits a better interpretation of data than the analysis

based on travel-time alone. Indeed in a very short period, the seismic processing and

interpretation incorporated the AVA analysis as a part of the routine workflow.
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By late 1980’s, with the innovation of the three component sensors to record the total

wave field, a drastic change in reflection seismic practice took place. The capacity to

record the wave field completely, which is called multicomponent seismic, has allowed

the processing of data based on the elasticity (viscoelasticity) theory.

The elastic model proved to be a great improvement. It permits the analysis of con-

verted waves, and gives a basis to model velocity anisotropy. Over the past two decades,

based upon this theory, great steps have been made in the analysis of multicomponent

seismic data. However, an elastic model assumes a solid rheology, but a reservoir rock

is not exactly a solid. In fact, it is a solid matrix permeated by a network of pores

saturated with fluid. Moreover, the ultimate aims of the reservoir/reflection seismology

are to know what is the type of the saturating fluid (whether it is oil, or gas, or wa-

ter), what is its volume (i.e., what is the porosity) and whether it will flow (i.e., what

is the permeability). In any case, fluid properties, porosity and permeability, do not

explicitly enter in the framework of elasticity (viscoelasticity) theory. In fact, in the

framework of elasticity (viscoelasticity) theory, the seismic velocities and attenuations

are assumed to be related to these parameters through empirical relations, which are

based on laboratory studies carried out in the ultrasonic frequency band. On the other

hand, the poroelastic wave theory brings the role of the solid and fluid constituents on

equal footing in a natural way. The porosity and permeability are also explicitly present

in this theory. Thus, applications of poroelastic wave theory, starting with plane wave

reflection and transmission from a plane interface, are the next frontier in the analysis

of multicomponent seismic data.
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I.2 Predicaments in the applications of poroelastic-

ity to multicomponent seismology

The applications of poroelastic theory to reflection seismology have not yet happened

in a substantial way. It is because the boundary conditions for two porous media in

contact are not yet well established.

A poroelastic medium is composed of two-interacting continua, so at an interface of

two porous media there are four-interacting continua. Furthermore, from a pore-scale

perspective, an interface comprise of fluid/fluid and solid/solid contact surfaces, which

may separate out during deformation. In order to define the boundary conditions prop-

erly, an unique definition of interface (from a macroscopic point of view) and interactions

among continua that take place at it must be firmly established, theoretically as well

as experimentally. As of yet that has not happened. Consequently, the existing results

of poroelastic reflection and transmission coefficients cannot be applied with confidence.

There are two competing schools of thought on poroelastic boundary conditions, namely,

due to Deresiewicz and Skalak (1963) and de la Cruz and Spanos (1989). Both are based

upon theoretical considerations, and neither has been subjected to a rigorous experi-

mental corroboration.

Deresiewicz and Skalak (1963) boundary conditions are based upon conservation of

total energy across the interface. This work preferentially treats the solid/solid contact

surface as the interface and, on physical grounds, assumes the continuity of the normal

component of so called “fluid filtration velocity” across it. Also, the two algebraic terms
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constituting the expression of the energy flux are assumed to be individually continuous

across the interface, since their sum is supposed to be continuous. No physical meaning

can be ascribed to the separate continuity of these two terms, although, mathemati-

cally such a continuity is a possibility. Under these assumptions, continuity conditions

on solid velocity field, normal component of fluid filtration velocity, and total stress

and jump condition on fluid pressure are established. Furthermore, the jump condition

on fluid pressure introduces so-called “interface permeability” which supposedly spans

from zero to infinity. It can be viewed only as an adjustable parameter, because it

cannot be measured independently.

de la Cruz and Spanos (1989) framework regards a boundary between two porous me-

dia as the surface across which total mass of poro-continuum is conserved. In here, by

invoking the conservation of total mass and total momentum, continuity of the velocity

field (associated with the total mass flux) and the total stress are established. Further-

more, by using the concept of alignment, how the stresses on each phase interact with

the stress on each of the phases across the interface is described and two additional

sets of conditions on tractions are developed which contain an adjustable parameter.

However, Sahay (2009, private communications) has shown that these can be recast in a

form in which the adjustable parameter is no longer present, as well as the conservation

of total energy, which is not explicitly addressed in the original formulation, holds true.

The exhaustive and complete work on the boundary value problem on plane wave

reflection and transmission from a plane interface using Deresiewicz and Skalak (1963)

boundary conditions is due to Dutta and Odé(1982). However, there is no rigorous

published work on reflection and transmission coefficients with de la Cruz and Spanos
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(1989) boundary conditions. The lone paper on this topic is by the authors of these

boundary conditions themselves (de la Cruz and Spanos, 1993). In it, some numerical

results, without showing analytical developments, are reported. These results appear to

be drastically different from Deresiewicz and Skalak boundary conditions based results,

however, no direct comparison of the two is shown. The lack of details of the analytical

development makes it impossible to verify the results. Nevertheless, in the view of Sa-

hay (2009, private communications), one has to rework the reflection and transmission

boundary value problem with the (modified) de la Cruz and Spanos (1989) boundary

conditions.

Furthermore, a consistent framework of the Biot theory (Biot, 1956) must include

fluid viscous stress term into its constitutive equations, therefore, a reworking of the

reflection and transmission boundary value problems with both, the Deresiewicz and

Skalak (1963) and the de la Cruz and Spanos (1989), boundary conditions are war-

ranted. The details about this extension of the Biot theory are given in Sahay (2008)

and the resulting framework is known as viscosity-extended Biot theory. This frame-

work has been included in the 2009 edition of “The Rock Physics Hand Book” (G.

Mavko et al.), therefore, it may be taken as firmly established. Because of the missing

fluid strain-rate term, the classical Biot theory contains a shear wave process whose

velocity is zero. From the outset of the development of the Biot framework, because

of its non-propagating nature, it was not taken into consideration and the existence

of only two compressional (fast and slow) waves and a (fast) shear wave was assumed.

In the viscosity-extended Biot framework the second or slow shear is no longer non-

propagating, it appears akin to a viscous wave in fluid. In the seismic frequency band,

the fast compressional and shear waves are essentially in-phase motion of constituent
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phases and they are observed as the seismic P- and S- waves, respectively.

It is shown in Sahay (1996) that for dynamical purposes, the centre-of-mass and internal

fields (mass weighted vector sum and vector difference of solid and fluid displacement

fields, respectively) may be more appropriate. It is because the center-of-mass field,

which is associated with total linear momentum flux, describes the transport of trans-

lational kinetic energy; therefore, it represents three translational degrees of freedom of

material points. Geophones register translational degrees of freedom and measure the

field associated with total linear momentum, indeed they track the center-of-mass field.

The internal field is associated with spin (angular momentum about center-of-mass)

flux, it describes transport of rotational kinetic energy; therefore, it represents three

rotational degrees of freedom of material points. While the internal field is not detected

directly, its value can be ascertained from the registered center-of-mass field. Thus, the

viscosity-extended Biot theory stated in terms the centre-of-mass and internal fields

has to be taken for the purposes of wave propagation studies. A straightforward linear

transformation reformulates the description of the viscosity-extended theory stated in

terms of average solid and fluid displacements fields to the framework of the centre-of-

mass and internal fields. It turns out that the mathematical analysis also gets simplified

in this framework.

I.3 Objectives of the thesis and its outline

In the view of the above, boundary value problems for reflection and transmission of

(i) a fast compressional plane wave and (ii) a fast shear plane wave incident at a pla-

nar welded contact of two fluid saturated porous half-spaces which is subjected to (a)
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Deresiewicz and Skalak (1963) boundary conditions and (b) de la Cruz and Spanos

(1989) boundary conditions need to be worked out within the framework of viscosity-

extended Biot theory. I have carried out precisely that in this thesis. For consistency,

I have taken the Deresiewicz and Skalak (1963) boundary conditions that are amended

to include fluid viscous stress part and the reformulated de la Cruz and Spanos (1989)

boundary conditions that are conserving total energy flux explicitly. Hereafter, these

modified boundary conditions shall be referred as DS09 and dCS09 boundary condi-

tions, respectively.

In chapter II, boundary value problems for a plane fast compressional wave and a

plane fast shear wave incident at a welded planar contact of two poroelastic half-spaces

subjected to (a) DS09 and (b) dCS09 boundary conditions are worked out. Since there

are four reflected and four transmitted waves, a system of 8 equations is setup which

is solved numerically to yield the reflection and transmission coefficients as a function

of the angle of incidence and the frequency. A compact notation is employed that

allows mathematical expressions to have the appearance as of the linear elasticity. It

also provides an ease in the analytical developments and numerical computations. This

chapter is complemented by the list of symbols presented in Appendix A, a review of

the viscosity-extended Biot equations of motion presented in Appendix B and a critical

overview of the DS09 and dCS09 boundary conditions presented in Appendix C.

In chapter III, some numerical results for reflection and transmission coefficients are

presented. For normal incident fast compressional wave, I observe that the reflection

and transmission coefficients for both boundary conditions are similar to each other.

In the low frequency regime (defined by the Biot critical frequencies of the two media),
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they are akin to those for the equivalent visco-elastic framework. In the high frequency

regime, they predict below the response of the equivalent visco-elastic framework. For

non-normal incident case, the predicted trends for both boundary conditions are differ-

ent from each other.

In chapter IV, I present remarks about the scope of this work. Based upon numerical

simulations that I have carried out, I have proposed a set of laboratory experiments to

run validity check on the two sets of boundary conditions.
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Chapter II

PLANE WAVE REFLECTION AND
TRANSMISSION IN POROELASTICITY

In this chapter the boundary value problems for reflection and transmission of a fast

compressional plane wave, as well as, a fast shear plane wave across a planar interface

of two fluid saturated porous half-spaces that is subjected to (i) modified Deresiewicz

and Skalak (1963) boundary conditions and (ii) modified de la Cruz and Spanos (1989)

boundary conditions are stated and their solutions are developed. The details about

the boundary conditions are presented in Appendix C. The cartesian coordinate system

is the natural framework here.

II.1 Statement of the problems

Let there be two porous half-spaces in welded contact such that the boundary is marked

by the plane z = 0. Let the regions z ≤ 0 and z ≥ 0 are occupied by the half-spaces

labeled as “a” and “b”, respectively. The positive z-axes is taken pointing downwards

(see Figure 1), so “a” and “b” are the upper and the lower half-spaces, respectively.

Henceforth, (a) and (b) shall label the half-spaces as superscripts on field quantities

and as subscripts on material properties.

Let a monochromatic plane wave, which may be fast compressional or fast shear, inci-

dent at the boundary from the upper half-space.
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Figure 1. Geometry and the incident and scattered wave fields. The solid black line is the
incident fast compressional (PI) wave (that can be fast shear (SI) wave also). The solid
and dash-dot blue line denote the scattered fast (PI) and slow (PII) compressional waves,
respectively. The solid and dash-dot red line correspond to fast (SI) and slow (SII) shear
waves, respectively.

Figure 2. Wave vector with respecto to the direction of propagation.
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Let u(a) =
(
um(a) ui(a)

)T
and u(b) = (um(b) ui(b))T, where T stands for transpose, be

the fields in the upper and the lower half-spaces, respectively. Here um’s and ui’s stand

for centre-of-mass and internal fields, respectively, which are the mass weighted vector

sum and the vector difference of the average displacement field of the solid and the fluid

phases.

The governing equations of motion for fields , in the framework of viscosity-extended

Biot theory (Sahay 2008) of poroelasticity, in the frequency domain read (see Appendix

B for additional details):

α
(a)
∇(∇ · u(a))− β

(a)
∇×∇×u(a) + ω2u(a) = 0 for z ≤ 0, (1)

and

α
(b)
∇(∇ · u(b))− β

(b)
∇×∇×u(b) + ω2u(b) = 0 for z ≥ 0. (2)

α’s and β’s are 2×2 matrices associated with P- and S-motions, respectively. The ele-

ments of these matrices have dimensions of velocity squared and their explicit expres-

sions, in terms of constituents’ material properties and frequency, are given by equations

(184) through (187), (199), and (200). The constitutive equations corresponding to the

two regions read:

τ
(a)
jk = Ω

(a)
ρ

(a)

{(
α

(a)
−2β

(a)

)
u

(a)
ll δjk + 2β

(a)
ŭ

(a)
jk

}
for z ≤ 0, (3)

and

τ
(b)
jk = Ω

(b)
ρ

(b)

{(
α

(b)
−2β

(b)

)
u

(b)
ll δjk + 2β

(b)
ŭ

(b)
jk

}
for z ≥ 0. (4)

Here, τ jk =
(
τm

jk τ i
jk

)T
and τm

jk is the centre-of-mass or total stress and τ i
jk is the

internal stress. ujk =
(
um

jk ui
jk

)
where um

jk and ui
jk are the strain field associated with

centre-of-mass and internal fields, respectively (˘on strain field denotes its deviatoric
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part). Ω’s and ρ’s are 2×2 diagonal matrices. Ω’s are dimensionless matrices that

contain the Biot relaxation frequency (Ωi) and there are defined by equation (201). ρ’s

are density matrices and there are defined by (172).

For the first set of two problems, corresponding to incident fast compressional and

shear waves, the fields satisfy the boundary conditions due to Deresiewicz and Skakal

(1963) generalized for fluid viscosity (see Appendix C.1.4), which are expressed as fol-

lows

〈
T−1u̇

〉
= 0 (5)〈

TTτ jkn̂j −Du̇
〉

= 0. (6)

Henceforth, the bra-ket symbol, 〈 〉 , represents the jump in the quantity within its

argument. The matrix T is defined in terms of constituents’ properties in equation

(230).

For the second set of two problems, corresponding to incident fast compressional and

shear waves, the fields satisfy de la Cruz and Spanos (1989) boundary conditions re-

formulated by Sahay (2009, personal communications) (see Appendix C.2.2) which are

expressed as follows

〈G u〉 = 0, (7)

〈H τ jkn̂j〉 = 0, (8)

where the matrices G and H are defined in terms of constituents’ physical properties

in equations (261) and (262), respectively.
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II.2 The solution

At first, the general solutions for equations of motion (1) and (2) are developed in

terms of a complete set of orthonormal basis functions. Thereafter, those solutions are

plugged into the boundary conditions to solved for arbitrary constants which are the

desired reflection and transmission coefficients.

Equations of motion (1) and (2) are a 6 × 6 system of coupled 2nd order partial dif-

ferential equation. For plane wave problems under consideration, field quantities can

be taken independent of one of the coordinates. That still leaves them to be a 4 × 4

system of coupled 2nd order PDE. In order to solve them, the vector decomposition

of wave fields in terms of curl-free and divergence-free parts is carried out. Thereby, a

2× 2 matrix Helmholtz equations for each potential set are obtained. By employing a

normal co-ordinate transformation, the each matrix Helmholtz equations are decoupled

into two scalar Helmholtz equations. For those a solution is seeked in terms a complete

set of orthonomal harmonic exponential functions, which are also viewed as plane waves.

The analysis in the subsections II.2.1 through II.2.4 pertain equally to the both equa-

tions of motion (1) and (2). For the clarity of notation, the subscript and the super-

scripts (a) and (b) labeling the half-spaces are dropped.

II.2.1 Decoupling of equations of motion

For 2D case, say, independent of y coordinate, the vector decomposition

u = ∇Φ +∇× (ŷΨ) (9)
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is introduced where potentials are

Φ =
(
Φm,Φi

)T
and

Ψ =
(
Ψm,Ψi

)T
.

It uncouples equations of motion (1) and (2) into curl-free (compression) and divergence-

free (shear) parts by rendering a 2 × 2 matrix Helmholtz equation for each set of

potentials

α∇2Φ + ω2Φ = 0, (10)

β∇2Ψ + ω2Ψ = 0. (11)

II.2.2 Decoupling of the matrix Helmholtz equation for po-

tentials

P Potentials

The matrix Helmoltz equations for P potentials are

(
α∇2 + ω2I

)
Φ = 0 (12)

The above equations is diagonalized by introducing the transformation

Φ = Rαφ where φ = (φI, φII)T, (13)

Rα =
(
rα

I
, rα

II

)
and Lα =

(
lα

I
, lα

II

)
, (14)

where Rα and Lα are the right- and left- eigenvector matrices of the non-symmetric

second order α matrix such that they are orthonormal to each other,

LT
α Rα = I, (15)
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and diagonalize the α matrix,

LT
α α Rα = Λα ≡

α2
I

0

0 α2
II

 . (16)

The pair (α2
I
, α2

II
) are the eigenvalues of the α matrix, given by

α2
I
, α2

II
=

Trα ±
√

Tr2
α − 4∆α

2
=

Trα

2

(
1±

√
1− 4

∆α

Tr2
α

)
. (17)

Here Trα and ∆α stand for the trace and the determinant of the α matrix, respectively.

This normal coordinate transformation of equation (12) is obtained by substituting

equation (13) into it, followed by the application of LT
α upon it from the left, and

using the identities (15) and (16). This yields the following set of two decoupled scalar

Helmholtz equations for the transformed field φ

(
Λα∇2 + ω2I

)
φ = 0, i. e.,

α2
I

0

0 α2
II

∇2

φI

φII

+ ω2

φI

φII

 =

0

0

 . (18)

The decoupled potential fields φI (fast P) and φII (slow P) propagate with complex

velocities α
I
and α

II
, respectively. The wave field vectors corresponding to these are the

right eigenvectors of the α matrix

rαI
=

1

NαI

 1

γαI

 (19)

and

rαII
=

1

NαII

 γαII

1

 , (20)

where γαI
= (α2

I
− αmm)/αmi and γαII

= αmi/(α
2
II
− αmm). NαI

=
(
1 + γ2

αI
αmi/αim

)1/2

and NαII
=
(
1 + γ2

αII
αim/αmi

)1/2
are the normalizations constants. φ = LT

αΦ expresses
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how the center-of-mass and internal fields contribute to these two waves, where the left

eigenvectors of the α matrix are

lαI
=

1

NαI

 1

γαI

αmi

αim

 (21)

and

lαII
=

1

NαII

 γαII

αim

αmi

1

 . (22)

S Potentials

The matrix Helmoltz equation for the shear potentials pair

(
β∇2 + ω2I

)
Ψ = 0 (23)

can be diagonalized by introducing the transformation

Ψ = Rβ ψ where ψ = (ψI ψII)T, (24)

and

Rβ =
(
rβI
, rβII

)
(25)

and

Lβ =
(
lβI
, lβII

)
(26)

are, respectively, right- and left- eigenvector matrices of the non-symmetric second order

β matrix such that they are orthonormal to each other,

LT
β Rβ = I, (27)

and diagonalize the β matrix,

LT
β β Rβ = Λβ ≡

β2
I

0

0 β2
II

 . (28)
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The pair (β
I

2, β
II

2) are the eigenvalues of the β matrix, given by

β
I

2, β
II

2 =
Trβ ±

√
Tr2

β − 4∆β

2
=

Trβ

2

(
1±

√
1− 4

∆β

Tr2
β

)
. (29)

Here Trβ and ∆β stand for the trace and the determinant of the β matrix, respectively.

This normal coordinate transformation of equation (23) is obtained by substituting

equation (24) into it, followed by the application of LT
β upon it from the left, and

using the identities (28) and (29). This yields the following set of two decoupled scalar

Helmholtz equations for the transformed field ψ

(
Λβ∇2 + ω2I

)
ψ = 0, i. e.,

β2
I

0

0 β2
II

∇2

ψI

ψII

+ ω2

ψI

ψII

 =

0

0

 . (30)

The decoupled potential fields ψI (fast S) and ψII (slow S) propagate with complex

velocities β
I
and β

II
, respectively. The wave field vectors corresponding to these are the

right eigenvectors of the β matrix

rβI
=

1

NβI

 1

γβI

 and rβII
=

1

NβII

 γβII

1

 , (31)

where γβI
= (β2

I
− βmm)/βmi and γβII

= βmi/(β
2
II
− βmm). NβI

=
(
1 + γβI

2
βmi/βim

)1/2

and NβII
=
(
1 + γβII

2βim/βmi

)1/2
are the normalizations constants. ψ = LβT

Ψ expresses

how the center-of-mass and internal fields contribute to these two waves, where the left

eigenvectors of the β matrix are

lβI
=

1

NβI

 1

γβI

βmi

βim

 (32)

and

lβII
=

1

NβII

 γβII

βim

βmi

1

 . (33)
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II.2.3 Plane wave solution for decoupled potentials

The horizontal slownesses are taken to be the free parameters. The appropriate plane

wave solution for scalar Helmholtz equation pairs (18) and (30) thus read

φ± =

 φI±

φII±

 = eiωpx

 e±iωqαI
z 0

0 e±iωqαII
z


 a±

I

a±
II


= eiω(px I ± Qα z)a±, (34)

and

ψ± =

 ψI±

ψII±

 = eiωpx

 e±iωqαI
z 0

0 e±iωqαII
z


 b±

I

b±
II


= eiω(pI± Qβ z)b±. (35)

I is 2×2 identity matrix. The ± signs label the upgoing and the downgoing wave fields,

respectively. The associated vertical slownesses are defined by

q2
αI

=
1

α2
I

− p2, q2
αII

=
1

α2
II

− p2, (36)

and

q2
βI

=
1

β2
I

− p2, q2
βII

=
1

α2
II

− p2. (37)

a±
I
, a±

II
, b±I , and b±

II
are arbitrary constants,

Qα =

 qαI
0

0 qαII

 , Qβ =

 qβI
0

0 qβII

 , (38)

and

Q2
α = (Λα)−1 − p2I, Q2

β = (Λβ)−1 − p2I. (39)

It should be noted that in (34) and (35) solutions for each potentials are decoupled. It

is written in vectorial form for mathematical convenience later.
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II.2.4 Expressions of displacements and stresses in terms of

decouple potentials

From equations (12) and (3 or 4) the tangential and vertical components of displace-

ments and stresses are

ux = ∂xΦ− ∂zΨ (40)

uz = ∂zΦ + ∂xΨ (41)

τ xx = Ωρ
[(
α∇2 − 2β∂2

z

)
Φ− 2β∂xzΨ

]
(42)

τ xz = Ωρ
[
2β∂xzΦ + β

(
∇2 − 2∂2

z

)
Ψ
]

(43)

τ zz = Ωρ
[(
α∇2 − 2β∂2

x

)
Φ + 2β∂xzΨ

]
(44)

Using identities Φ = Rαφ and Ψ = Rβψ (see equations 14 and 24, respectively), the

above equations are rewritten in terms of decoupled potentials φ and ψ as

ux = Rα∂xφ−Rβ∂zψ (45)

uz = Rα∂zφ+ Rβ∂xψ (46)

τ xx = Ωρ
[(
αRα∇2 − 2βRα∂2

z

)
φ− 2βRβ∂xzψ

]
(47)

τ xz = Ωρ
[
2βRα∂xzφ+ βRβ

(
∇2 − 2∂2

z

)
ψ
]

(48)

τ zz = Ωρ
[(
αRα∇2 − 2βRα∂2

x

)
φ+ 2βRβ∂xzψ

]
(49)
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Plugging in the elemental solutions (34 ) and (35 ) for potentials, the expressions of

displacements and stresses are obtained as below

ux = iωpRαφ± ∓ iωRβQβψ
± (50)

uz = ±iωRαQαφ
± + iωpRβψ± (51)

τ xx = −ω2Ωρ[(αRα(Λα)−1 − βRαQ2
α)φ± ∓ 2pβRβQβψ

±]

= −ω2Ωρ
[(

RαΛα(Λα)−1 − βRα
(
(Λα)−1 − p2I

))
φ± ∓ 2pRβΛβQβψ

±]
= −ω2Ωρ

[(
RαΛα(Λα)−1 − βRα

(
LαT

α−1 Rα − p2I
))
φ± ∓ 2pRβΛβQβψ

±
]

= −ω2Ωρ
[(

I− βα−1 − p2β
)
Rαφ± ∓ 2pRβΛβQβψ

±] (52)

= −ω2Ωρ[((α− 2β)RαQ2
α + p2αRα)φ± ∓ 2pβRβQβψ

±]

τ xz = −ω2Ωρ[±2pβRαQαφ
± + βRβ

(
(Λβ)−1 − 2Q2

β

)
ψ±]

= −ω2Ωρ[±2pβRαQαφ
± − βRβ

(
(Λβ)−1 − 2p2

)
ψ±]

= −ω2Ωρ[±2pβRαQαφ
± −

(
I− 2p2β

)
Rβψ±] (53)

= ω2Ωρβ[∓2pRαQαφ
± + Rβ(Q2

β − p2)ψ±]

τ zz = −ω2Ωρ
[(
αRα(Λα)−1 −2βRαp2

)
φ±±2pβRβQβψ

±]
= −ω2Ωρ

[(
I−2p2β

)
Rαφ±±2pβRβQβψ

±] (54)

= ω2Ωρ
[(
−p2αRα +2p2βRα −αRαQ2

α

)
φ±∓2pβRβQβψ

±]
where the superscript ± in potentials φ and ψ denotes the upgoing or downgoing wave

direction as illustrated in Figure 2. Based on the above results, for each mode the
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associated expressions of displacements and stresses are listed in tabular form below.

ux

uz

τ xx

τ xz

τ zz

Fast P

φI±

iωp rα
I

±iω qα
I
rα

I

−ω2Ωρ (I− βα−1 − p2β) rα
I

∓2ω2p qα
I
Ωρβ rα

I

−ω2Ωρ (I−2p2β) rα
I

Slow P

φII±

iωp rα
II

±iω qα
II
rα

II

−ω2Ωρ (I− βα−1 − p2β) rα
II

∓2ω2p qα
II
Ωρβ rα

II

−ω2Ωρ (I−2p2β) rα
II

(55)

Fast S

ψI±

∓iω qβ
I
rβ

I

iωp rβ
I

±2ω2pβ2
I
q

β
I
Ωρ rβ

I

ω2Ωρ (I− 2p2β) rβ
I

∓2ω2pq
β
I
Ωρβ rβ

I

Slow S

ψII±

∓iω qβ
Ii
rβ

II

iωp rβ
II

±2ω2pβ2
II
q

β
II
Ωρ rβ

II

ω2Ωρ (I− 2p2β) rβ
II

∓2ω2pq
β
II
Ωρβ rβ

II

These are utilized in writing down the explicit expressions for displacement and stresses

associated with both incident cases, which are development in the next two sections.

For clarity, notations for the amplitude of reflection and transmission potential are

explained in table I. The first and second subscripts stand for the nature of incident

and scattered wave fields, respectively. The symbol w stands for P
I
, P

II
, S

I
or S

II
.
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Table I. Notations for amplitudes of reflection and transmission potentials.

Reflection coefficients Transmission coefficients

r
wP

=

 r
wP

I

r
wP

II

 t
wS

=

 t
wS

I

t
wS

II



r
wS

=

 r
wS

I

r
wS

II

 t
wP

=

 t
wP

I

t
wP

II



II.2.5 Displacements and stresses associated with an incident

down-going PI-wave for both media

Iin
P

I
is the amplitude vector (1 0)T associated with the incident down-going fast com-

pressional wave in the medium “a”. With the aid of expressions of displacements and

stresses for modes given in (55) and using the notations for reflection and transmission

amplitude given in table I, for top medium “a”

u(a)
x = iωpRα

(a)e
iω(pIx+Qα(a)

z)
Iin
P

I
+ iωpRα

(a)e
iω(pIx−Qα(a)

z)
r

P
I
P

+iωRβ
(a)Qβ(a)

e
iω(pIx−Qβ(a)

z)
r

P
I
S

for z ≤ 0, (56)

u(a)
z = iωRα

(a)Qα(a)
e

iω(pIx+Qα(a)
z)
Iin
P

I
− iωRα

(a)Qα(a)
e

iω(pIx−Qα(a)
z)
r

P
I
P

+iωpRβ
(a)e

iω(pIx−Qβ(a)
z)
r

P
I
S

for z ≤ 0, (57)
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τ (a)
xz = −ω2Ω(a)ρ(a)

[
2pβ(a)R

α
(a)Qα(a)

e
iω(pIx+Qα(a)

z)
Iin
P

I

−2pβ(a)R
α
(a)Qα(a)

e
iω(pIx−Qα(a)

z)
r

P
I
S

−
(
I− 2p2β(a)

)
Rβ

(a)e
iω(pIx−Qβ(a)

z)
r

P
I
S

]
for z ≤ 0, (58)

τ (a)
zz = −ω2Ω(a)ρ(a)

[(
I−2p2β(a)

)
Rα

(a)e
iω(pIx+Qα(a)

z)
Iin
P

I

+
(
I−2p2β(a)

)
Rα

(a)e
iω(pIx−Qα(a)

z)
r

P
I
P

−2pβ(a)R
β
(a)Qβ(a)

e
iω(pIx−Qβ(a)

z)
r

P
I
S

]
for z ≤ 0. (59)

For medium “b”

u(b)
x = iωpRα

(b)e
iω(pIx+Qα(b)

z)
t

P
I
P

−iωRβ
(b)Qβ(b)

e
iω(pIx+Qβ(b)

z)
t

P
I
S

for z ≥ 0, (60)

u(b)
z = iωRα

(b)Qα(b)
e

iω(pIx+Qα(b)
z)
t

P
I
P

+iωpRβ
(b)e

iω(pIx+Qβ(b)
z)
t

P
I
S

for z ≥ 0, (61)

τ (b)
xz = −ω2Ω(b)ρ(b)

[
2pβ(b)R

α
(b)Qα(b)

e
iω(pIx+Qα(b)

z)
t

P
I
P

−
(
I− 2p2β(b)

)
Rβ

(b)e
iω(pIx+Qβ(b)

z)
t

P
I
S

]
for z ≥ 0, (62)

τ (b)
zz = −ω2Ω(b)ρ(b)

[(
I−2p2β(b)

)
Rα

(b)e
iω(pIx+Qα(b)

z)
t

P
I
P

+2pβ(b)R
β
(b)Qβ(b)

e
iω(pIx+Qβ(b)

z)
t

P
I
S

]
for z ≥ 0. (63)
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II.2.6 Displacements and stresses associated with an incident

down-going SI-wave for both media

Iin
S
I

= (1 0)T is the amplitude of the incident fast shear wave. For top medium “a”

u(a)
x = −iωRβ

(a)Qβ(a)
e

iω(pIx+Qβ(a)
z)
Iin
S
I
+ iωRβ

(a)Qβ(a)
e

iω(pIx−Qβ(a)
z)
r

S
I
S

+iωpRα
(a)e

iω(pIx−Qα(a)
z)
r

S
I
P

for z ≤ 0, (64)

u(a)
z = iωpRβ

(a)e
iω(pIx+Qβ(a)

z)
Iin
S
I
+ iωpRβ

(a)e
iω(pIx−Qβ(a)

z)
r

S
I
S

−iωRα
(a)Qα(a)

e
iω(pIx−Qα(a)

z)
r

S
I
P

for z ≤ 0, (65)

τ (a)
xz = −ω2Ω(a)ρ(a)

[
−
(
I− 2p2β(a)

)
Rβ

(a)e
iω(pIx+Qβ(a)

z)
Iin
S
I

−
(
I− 2p2β(a)

)
Rβ

(a)e
iω(pIx−Qβ(a)

z)
r

S
I
S

−2pβ(a)R
α
(a)Qα(a)

e
iω(pIx−Qα(a)

z)
r

S
I
P

]
for z ≤ 0, (66)

τ (a)
zz = −ω2Ω(a)ρ(a)

[
2pβ(a)R

β
(a)Qβ(a)

e
iω(pIx+Qβ(a)

z)
Iin
S
I

−2pβ(a)R
β
(a)Qβ(a)

e
iω(pIx−Qβ(a)

z)
r

S
I
S

+
(
I−2p2β(a)

)
Rα

(a)e
iω(pIx−Qα(a)

z)
r

S
I
P

]
for z ≤ 0. (67)

For medium “b”

u(b)
x = −iωRβ

(b)Qβ(b)
e

iω(pIx+Qβ(b)
z)
t

S
I
S

+iωpRα
(b)e

iω(pIx+Qα(b)
z)
t

S
I
P

for z ≥ 0, (68)

u(b)
z = iωpRβ

(b)e
iω(pIx+Qβ(b)

z)
t

S
I
S

+iωRα
(b)Qα(b)

e
iω(pIx+Qα(b)

z)
t

S
I
P

for z ≥ 0 (69)

τ (b)
xz = −ω2Ω(b)ρ(b)

[
−
(
I− 2p2β(b)

)
Rβ

(b)e
iω(pIx+Qβ(b)

z)
t

S
I
S

+2pβ(b)R
α
(b)Qα(b)

e
iω(pIx+Qα(b)

z)
t

S
I
P

]
for z ≥ 0, (70)

τ (b)
zz = −ω2Ω(b)ρ(b)

[
2pβ(b)R

β
(b)Qβ(b)

e
iω(pIx+Qβ(b)

z)
t

S
I
S

+
(
I−2p2β(b)

)
Rα

(b)e
iω(pIx+Qα(b)

z)
t

S
I
P

]
for z ≥ 0. (71)
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II.2.7 Some Notations

In order to simplify algebraic manipulation and computation, I define the following

notations which have been used henceforth. These quantities are 2× 2 matrices and its

elements have dimensions of acoustic impedance.

K = 2pΩρβRαQα (72)

M = Ωρ
(
I−2p2β

)
Rβ (73)

N = Ωρ
(
I−2p2β

)
Rα (74)

J = 2pΩρβRαQα (75)

L = Ωρ
(
I−2p2β

)
Rβ (76)

S = Ωρ
(
I−2p2β

)
Rα (77)

Zα = ΩραRαQα (78)

Zβ = ΩρβRβQβ (79)

In the following, the system of equations for reflection and transmission coefficients are

set up for the four cases, namely, DS09 and dCS09 subjected to incident PI and SI. In

each case, the set of the eight equations are rearranged into a matricidal form to have

the following general structure,
A B

C D




r

t

 =


p

q

 (80)

where r = (r
wP

r
wS

)T and t = (t
wP

t
wS

)T are the reflection and transmission coeffi-

cients vectors to be determined. Both r and t contain four elements (further notations

are explained in table I). The A,B,C, and D are 4 × 4 matrices, and, p and q are

four element vectors that depend on the incident field. For completeness, the modified
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Deresiewicz and Skalak (1963) boundary conditions (5) and (6) are expressed, for 2D

problem under considerations, as follows

u(a)
x = T(a)T

−1
(b)u

(b)
x (81)

u(a)
z = T(a)T

−1
(b)u

(b)
z (82)

TT
(a)τ

(a)
xz + D(a)u

(a)
x = TT

(b)τ
(b)
xz + D(b)u

(b)
x (83)

TT
(a)τ

(a)
zz + D(a)u

(a)
z = TT

(b)τ
(b)
zz + D(b)u

(b)
z . (84)

For 2D problem under considerations, the modified de la Cruz and Spanos (1989)

boundary conditions (7) and (8) are expressed as follows

u(a)
x = G−1

(a) G(b)u
(b)
x , (85)

u(a)
z = G−1

(a) G(b)u
(b)
z , (86)

τ (a)
xz = H−1

(a) H(b)τ
(b)
xz, (87)

τ (a)
zz = H−1

(a) H(b)τ
(b)
zz. (88)

II.2.8 8× 8 system of equations for the DS09 boundary condi-

tions: Incident fast P-wave

In equations (81) through (84), using the formulas developed in §II.2.5 and evaluating

at z = 0, followed by some rearrangements, the resulting system of equations is

26666666666666666664

−pRα
(a) −Rβ

(a)
Qβ(a)

pT(a)T
−1
(b)

Rα
(b) −T(a)T

−1
(b)

Rβ
(b)

Qβ(b)

Rα
(a)Qα(a) −pRβ

(a)
T(a)T

−1
(b)

Rα
(b)Qα(b) pT(a)T

−1
(b)

Rβ
(b)

“
TT

(a)K(a)− pD(a)R
α
(a)

” “
TT

(a)M(a)−D(a)R
β
(a)

Qβ(a)

” “
TT

(b)K(b)+pD(b)R
α
(b)

”
−

“
TT

(b)M(b)+D(b)R
β
(b)

Qβ(b)

”
“
D(a)R

α
(a)Qα(a)−TT

(a)N (a)

” “
2pTT

(a)Z
β
(a)
−pD(a)R

β
(a)

” “
TT

(b)N (b)+D(b)R
α
(b)Qα(b)

” “
2pTT

(b)Z
β
(b)

+pD(b)R
β
(b)

”

37777777777777777775

26666666666666666664

rPIP

rPIS

tPIP

tPIS

37777777777777777775
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=

26666666666666666664

pRα
(a)I

in
PI

Rα
(a)Qα(a)I

in
PI

TT
(a)K(a) + pD(a)R

α
(a)I

in
PI

TT
(a)N (a) + D(a)R

α
(a)Qα(a)I

in
PI

37777777777777777775

(89)

From the above, the terms of the block matrix representation (eqn 80) are read as

A =


−pRα

(a) −Rβ
(a)Qβ(a)

Rα
(a)Qα(a)

−pRβ
(a)

 (90)

B =


pT(a)T

−1
(b) Rα

(b) −T(a)T
−1
(b) Rβ

(b)Qβ(b)

T(a)T
−1
(b) Rα

(b)Qα(b)
pT(a)T

−1
(b) Rβ

(b)

 (91)

(92)

C =


(
TT

(a)K(a) − pD(a)R
α
(a)

) (
TT

(a)M(a) −D(a)R
β
(a)Qβ(a)

)
(
D(a)R

α
(a)Qα(a)

−TT
(a)N (a)

) (
2pTT

(a)Z
β
(a)− pD(a)R

β
(a)

)
 (93)

D =


(
TT

(b)K(b) + pD(b)R
α
(b)

)
−
(
TT

(b)M(b) + D(b)R
β
(b)Qβ(b)

)
(
TT

(b)N (b) + D(b)R
α
(b)Qα(b)

) (
2pTT

(b)Z
β
(b) + pD(b)R

β
(b)

)
 (94)

p =


pRα

(a)I
in
P

I

Rα
(a)Qα(a)

Iin
P

I

 (95)
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q =


TT

(a)K(a) + pD(a)R
α
(a)I

in
P

I

TT
(a)N (a) + D(a)R

α
(a)Qα(a)

Iin
P

I

 (96)

II.2.9 8× 8 system of equations for the DS09 boundary condi-

tions: Incident fast S-wave

In equations (81) through (84), using the formulas developed in §II.2.6 and evaluating

at z = 0, followed by some rearrangements, the resulting system of equations is26666666666666666664

Rβ
(a)

Qβ(a)
pRα

(a) T(a)T
−1
(b)

Rβ
(b)

Qβ(b)
−pT(a)T

−1
(b)

Rα
(b)

−pRβ
(a)

Rα
(a)Qα(a) pT(a)T

−1
(b)

Rβ
(b)

T(a)T
−1
(b)

Rα
(b)Qα(b)

“
D(a)R

β
(a)

Qβ(a)
−TT

(a)M(a)

” “
pD(a)R

α
(a)−TT

(a)K(a)

” “
D(b)R

β
(b)

Qβ(b)
+TT

(b)M(b)

”
−(pD(b)R

α
(b)+TT

(b)K(b))

(2pTT
(a)Z

β
(a)
−pD(a)R

β
(a)

) (D(a)R
α
(a)Qα(a)−TT

(a)N (a)) (pD(b)R
β
(b)

+2pTT
(b)Z

β
(b)
) (D(b)R

α
(b)Qα(b) +TT

(b)N (b))

37777777777777777775

26666666666666666664

rSIS

rSIP

tSIS

tSIP

37777777777777777775

=

26666666666666666664

Rβ
(a)

Qβ(a)
IinSI

pRβ
(a)

IinSI

(D(a)R
β
(a)

Qβ(a)
+ TT

(a)M(a))I
in
SI

(pD(a)R
β
(a)

+ 2pTT
(a)Z

β
(a)

)IinSI

37777777777777777775

(97)

where the terms for the block matrix (equations 80) are given by

A =


Rβ

(a)Qβ(a)
pRα

(a)

−pRβ
(a) Rα

(a)Qα(a)

 (98)

B =


T(a)T

−1
(b)R

β
(b)Qβ(b)

−pT(a)T
−1
(b)R

α
(b)

pT(a)T
−1
(b)R

β
(b) T(a)T

−1
(b)R

α
(b)Qα(b)

 (99)
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C =


(
D(a)R

β
(a)Qβ(a)

−TT
(a)M(a)

) (
pD(a)R

α
(a)−TT

(a)K(a)

)

(2pTT
(a)Z

β
(a)−pD(a)R

β
(a)) (D(a)R

α
(a)Qα(a)

−TT
(a)N (a))

 (100)

D =


(
D(b)R

β
(b)Qβ(b)

+TT
(b)M(b)

)
−(pD(b)R

α
(b)+TT

(b)K(b))

(pD(b)R
β
(b)+2pTT

(b)Z
β
(b)) (D(b)R

α
(b)Qα(b)

+TT
(b)N (b))

 (101)

p =


Rβ

(a)Qβ(a)
Iin
S
I

pRβ
(a)I

in
S
I

 (102)

q =


(D(a)R

β
(a)Qβ(a)

+ TT
(a)M(a))I

in
S
I

(pD(a)R
β
(a) + 2pTT

(a)Z
β
(a))I

in
S
I

 (103)

II.2.10 8×8 system of equations for the dCS09 boundary con-

ditions: Incident fast P-wave

In equations (85) through (88), using the formulas developed in §II.2.5 and evaluating

at z = 0, followed by some rearrangements, the resulting system of equations is

−pRα
(a) −Rβ

(a)Qβ(a)
pG−1

(a) G(b)R
α
(b) −G−1

(a) G(b)R
β
(b)Qβ(b)

Rα
(a)Qα(a)

−pRβ
(a) G−1

(a) G(b)R
α
(b)Qα(b)

pG−1
(a) G(b)R

β
(b)

J (a) L(a) H−1
(a) H(b)J (b) −H−1

(a) H(b)L(b)

−S(a) 2pZβ
(a) H−1

(a) H(b)S(b) 2pH−1
(a) H(b)Z

β
(b)





r
P
I
P

r
P
I
S

t
P
I
P

t
P
I
S



=



pRα
(a)I

in
P

I

Rα
(a)Qα(a)

Iin
P

I

J (a)I
in
P

I

S(a)I
in
P

I



(104)
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where the terms for the block matrix representation (equation 80) are given by

A =


−pRα

(a) −Rβ
(a)Qβ(a)

Rα
(a)Qα(a)

−pRβ
(a)

 (105)

B =


pG−1

(a) G(b)R
α
(b) −G−1

(a) G(b)R
β
(b)Qβ(b)

G−1
(a) G(b)R

α
(b)Qα(b)

pG−1
(a) G(b)R

β
(b)

 (106)

C =


J (a) L(a)

−S(a) 2pZβ
(a)

 (107)

D =


H−1

(a) H(b)J (b) −H−1
(a) H(b)L(b)

H−1
(a) H(b)S(b) 2pH−1

(a) H(b)Z
β
(b)

 (108)

p =


pRα

(a)I
in
P

I

Rα
(a)Qα(a)

Iin
P

I

 (109)

q =


J (a)I

in
P

I

S(a)I
in
P

I

 (110)
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II.2.11 8×8 system of equations for the dCS09 boundary con-

ditions: Incident fast S-wave

In equations (85) through (88), using the formulas developed in §II.2.6 and evaluating

at z = 0, followed by some rearrangements, the resulting system of equations is

Rβ
(a)Qβ(a)

pRα
(a) G−1

(a) G(b)R
β
(b)Qβ(b)

−pG−1
(a) G(b)R

α
(b)

−pRβ
(a) Rα

(a)Qα(a)
pG−1

(a) G(b)R
β
(b) G−1

(a) G(b)R
α
(b)Qα(b)

−L(a) −J (a) H−1
(a) H(b)L(b) −H−1

(a) H(b)J (b)

2pZβ
(a) −S(a) 2pH−1

(a) H(b)Z
β
(b) H−1

(a) H(b)S(b)





r
S
I
S

r
S
I
P

t
S
I
S

t
S
I
P



=



Rβ
(a)Qβ(a)

Iin
S
I

pRβ
(a)I

in
S
I

L(a)I
in
S
I

2pZβ
(a)I

in
S
I


where the terms for the block matrix representation (equation 80) are given by

A =


Rβ

(a)Qβ(a)
pRα

(a)

−pRβ
(a) Rα

(a)Qα(a)

 (111)

B =


G−1

(a) G(b)R
β
(b)Qβ(b)

−pG−1
(a) G(b)R

α
(b)

pG−1
(a) G(b)R

β
(b) G−1

(a) G(b)R
α
(b)Qα(b)

 (112)

C =


−L(a) −J (a)

2pZβ
(a) −S(a)

 (113)
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D =


H−1

(a) H(b)L(b) −H−1
(a) H(b)J (b)

2pH−1
(a) H(b)Z

β
(b) H−1

(a) H(b)S(b)

 (114)

(115)

p =

 Rβ
(a)Qβ(a)

Iin
S
I

pRβ
(a)I

in
S
I

 (116)

q =


L(a)I

in
S
I

2pZβ
(a)I

in
S
I

 (117)

II.2.12 Reflection and transmission coefficients for potentials

For all four cases under considerations, the algebraic equations for reflection and trans-

mission coefficients for potentials have the form stated in (80). In (80), by eliminating

the transmission coefficients from equations, the reflection coefficients are obtained as

below.

B−1A r + t = B−1p

D−1C r + t = D−1q

r = (B−1A−D−1C)−1(B−1p−D−1q) (118)

Likewise, the transmission coefficients are

r +A−1B t = A−1p

r + C−1D t = C−1q

t = (A−1B − C−1D)−1(A−1p− C−1q) (119)
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The expressions (118) and (119) are used to compute the reflection and transmission

coefficients.

II.2.13 Displacement potential

The analyzed solutions for the coefficient amplitudes described in the previous subsec-

tions are related to potential. In practice, we are interested in coefficient amplitudes

related to displacement and velocity particle-motion . The displacement amplitudes are

obtained when the particle displacements are measured with respect to the direction of

the wave vector, they have the following expressions:

Table II. Displacement amplitude

Potential Amplitude Displacement Amplitude

rwP
I

rwP
I

VP
I

Vw

rwP
II

rwP
II

VP
II

Vw

rwS
I

rwS
I

VS
I

Vw

rwS
II

rwS
II

VS
II

Vw

twP
I

rwP
I

VP
I

Vw

twP
II

rwP
II

VP
II

Vw

twS
I

rwS
I

VS
I

Vw

twS
II

rw S
II

VS
II

Vw

where V stands for velocities and w = P
I
,P

II
, S

I
or S

II
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II.2.14 Energy flux

Utilizing results of §II.2.4, for each mode, the associated expressions of velocities and

stresses are listed below.

vx

vz

τ xx

τ xz

τ zz

Fast P

φI±

e
iω(px±qα

I
z)
φI

0

ω2p rα
I

±ω2 qα
I
rα

I

−ω2Ωρ (I− βα−1 − p2β) rα
I

∓2ω2p qα
I
Ωρβ rα

I

−ω2Ωρ (I−2p2β) rα
I

Slow P

φII±

e
iω(px±qα

II
z)
φII

0

ω2p rα
II

±ω2 qα
II
rα

II

−ω2Ωρ (I− βα−1 − p2β) rα
II

∓2ω2p qα
II
Ωρβ rα

II

−ω2Ωρ (I−2p2β) rα
II

Fast S

ψI±

e
iω(px±qβ

I
z)
ψI

0

∓ω2 qβ
I
rβ

I

ω2p rβ
I

±2ω2pβ2
I
q

β
I
Ωρ rβ

I

ω2Ωρ (I− 2p2β) rβ
I

∓2ω2pq
β
I
Ωρβ rβ

I

Slow S

ψII±

e
iω(px±qβ

II
z)
ψII

0

∓ω2 qβ
Ii
rβ

II

ω2p rβ
II

±2ω2pβ2
II
q

β
II
Ωρ rβ

II

ω2Ωρ (I− 2p2β) rβ
II

∓2ω2pq
β
II
Ωρβ rβ

II



35

For the energy flux associated with the center of mass field, we need the quantities that

are associated with that field only. This can be achieved by applying the projection

vector PT = (1 0), from left, on the quantities listed above (T stands for transposed).

For a down-going fast P-wave, with slowness vector S = (p, qα
I
) and amplitude φ

0
, they

take the form

vm
x = ω2 Γm

x eiω(S·x−t) φ
0
,

vm
z = ω2 Γm

z eiω(S·x−t) φ
0
,

τm
xx = −ω2 Λm

xx e
iω(S·x−t) φ

0
,

τm
xz = −ω2 Λm

xz e
iω(S·x−t) φ

0
,

τm
zz = −ω2 Λm

zz e
iω(S·x−t) φ

0
. (120)

In the above, for clarity, the following notations have been utilized

PT p rα
I ≡ Γm

x ,

PT qα
I
rα

I ≡ Γm
z ,

PT Ωρ
(
I− βα−1 − p2β

)
rα

I ≡ Λm
xx,

PT 2p qα
I
Ωρβ rα

I ≡ Λm
xz,

PT Ωρ
(
I−2p2β

)
rα

I ≡ Λm
zz. (121)

The corresponding energy flux is

Jm
k = −<

(
τm

jkv
m
j

)
=

ω4

4

(
Λm

jke
iω(S·x−t) φm

0
+ Λm∗

jk e
−iω(S∗·x−t) φm∗

0

)
(
Γm

k e
iω(S·x−t) φm

0
+ Γ∗ke

−iω(S∗·x−t) φm∗
0

)
. (122)

The mean of the energy flux vector J̄k is

J̄k =
ω

2π

∫ 2π
ω

0

Jkdt, (123)
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which leads to

J̄k =
ω4

4
φm

0
φm∗

0

(
Λm

jkΓ
m∗
k + Λm∗

jk Γm
k

)
eiω(S−S∗)·x. (124)

For completeness, Γm’s and Λm’s associated with other wave fields are listed as follows.

Γm
x

Γm
z

Λm
xx

Λm
xz

Λm
zz

Up-going Fast P

φI−

PT prα
II

−PT qα
I
rα

II

−PT Ωρ (I− βα−1 − p2β) rα
II

PT 2p qα
I
Ωρβ rα

II

−PT Ωρ (I−2p2β) rα
II

Down-going Slow P

φII+

PT prα
II

PT qα
II
rα

II

−PT Ωρ (I− βα−1 − p2β) rα
II

−PT 2p qα
II
Ωρβ rα

II

−PT Ωρ (I−2p2β) rα
II

Up-going Slow P

φII−

PT prα
II

−PT qα
II
rα

II

−PT Ωρ (I− βα−1 − p2β) rα
II

PT 2p qα
II
Ωρβ rα

II

−PT Ωρ (I−2p2β) rα
II
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Γm
x

Γm
z

Λm
xx

Λm
xz

Λm
zz

Down-going Fast S

ψI+

−PT qβ
I
rβ

I

PT p rβ
I

PT 2pβ2
I
q

β
I
Ωρ rβ

I

PT Ωρ (I− 2p2β) rβ
I

−PT 2pq
β
I
Ωρβ rβ

I

Up-going Fast S

ψI−

PT qβ
I
rβ

I

PT p rβ
I

−PT 2pβ2
I
q

β
I
Ωρ rβ

I

PT Ωρ (I− 2p2β) rβ
I

PT 2pq
β
I
Ωρβ rβ

I

Down-going Slow S

ψII+

−PT qβ
Ii
rβ

II

PT p rβ
II

PT 2pβ2
II
q

β
II
Ωρ rβ

II

PT Ωρ (I− 2p2β) rβ
II

−PT 2pq
β
II
Ωρβ rβ

II

Up-going Slow S

ψII−

PT qβ
Ii
rβ

II

PT p rβ
II

−PT 2pβ2
II
q

β
II
Ωρ rβ

II

PT Ωρ (I− 2p2β) rβ
II

PT 2pq
β
II
Ωρβ rβ

II
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Chapter III

SOME NUMERICAL RESULTS

In this chapter, results of a set of numerical computations for reflection and transmis-

sion coefficients are reported. They highlight some of the implicit features of the DS09

and dCS09 boundary conditions.

For display purposes, the reflection and transmission coefficients are presented in terms

of normal energy flux associated with the centre-of-mass and internal components of the

wave fields. The preference for normal energy flux over displacement potential has been

made for ease in presentation. The choice of the centre-of-mass component of the wave

field is because it is the field that is recorded by the sensors. To show relative motion

of fluid with respect to solid frame, normal energy flux of the internal component of

the wave fields are also plotted.

To cover the entire frequency spectrum of interest in exploration seismology (see table

I), the results are displayed for 1 Hz to 100 MHz band. The Biot critical frequency,

which marks the transition from viscous coupling regime to inertial coupling regime,

is indicated on the frequency axes as a red and blue triangles for top and bottom

half-spaces, respectively.



39

Table III. Spectrum for seismic methods

Method Frequency band

Surface-seismic 1 Hz -102 Hz

Tomography /VPS 102 Hz - 103 Hz

Well logging 103 Hz - 104 Hz

Ultrasonic (Laboratory) 105 Hz - 107 Hz

At first, I present an intriguing paradox about energy conservation exhibited by

boundary conditions. Thereafter, I present the results that show that for a non-normal

incidence the response of two boundary conditions are quite different, although, for

normal incidence they show similar responses. Finally, I show the results of numerical

experiment for angle-dependence.

III.1 Paradox on normal energy flux of the centre-

of-mass component of the wave fields

I take the case of a porous frame whose top and bottom halves are saturated with oil

and water, respectively. This is the case of two porous half-spaces with identical frame

properties in perfect contact, i.e., porosities on both sides are same and pores of two

sides are completely aligned at the interface. In the terminology of Deresiewicz and

Skalak (1963) framework, it is the open pore case. The interface permeability for this

case is to be taken as infinity. For computation purposes, I have assigned a value of

ks = 1020. The frame and fluid properties are listed in Appendix A.
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Figure 3. Sum of the normal energy fluxes of the centre-of-mass components of all scattered
fields. The dashed blue line and dashed-dot red line correspond to the DS09 and dCS09
boundary conditions respectively. The values are scaled by the normal energy flux for the
incident wave. The energy is conserved at low frequencies but not at high frequencies by
both boundary conditions. The transition is around the Biot critical frequencies (plotted as
red and blue triangles for top and bottom half-spaces respectively).
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In figure 3, the sum of normal energy flux associated with the centre-of-mass com-

ponent of all reflected and transmitted waves for a normal incident fast compressional

wave is presented. For comparison purposes, the responses of the equivalent viscoelastic

half-spaces in welded contact is also presented in dashed-dot green line. The properties

of equivalent visco-elastic half-space were worked out according to the formulas pre-

sented in Appendix B.

The Figure 3 shows that, for both DS09 and dCS09 boundary conditions, the nor-

mal energy fluxes for all scattered fields added up to unity only in low frequency band.

As one approaches the Biot critical frequencies, both curves start shooting down from

the expected unity value. Ultimately, in the frequency band beyond the Biot critical

frequencies, they stabilize to a constant value which is less than unity. However, the

corresponding viscoelastic curve has always an unity value.

What has been displayed in the figure 3 is exactly what a sensor would track as seis-

mic response. It seems paradoxical that the registered seismic responses in the seismic

frequency band would be conservative, whereas in the ultrasonic band it would not be.

If properties corresponding to a weak frame is taken, the Biot critical frequency may

migrate to the lower frequency regime, and thus non conservation of energy may appear

even in regular seismic data.

A validity check

In order to test the validity of the code, in the above example, I replaced the saturating

fluid oil in the upper half-space by water. Thus, in a real sense, there is no a longer

physical boundary.
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For both DS09 and dCS09 boundary conditions, the incident fast compressional wave

is expected to appear entirely as transmitted compressional P-wave, without suffering

any conversions to other kind of wave fields. Figure 4 precisely shows that.

Figure 4. Total transmission for the water water contact.

In view of the above, the paradox on normal energy flux of the centre-of-mass compo-

nent of the field is not a numerical error of the code; if the poroelastic framework is

true, then one is expected to observe such a paradox in the register seismic data.

In Figure 5 the normal components of total energy flux, centre-of-mass part of en-

ergy flux, and internal part of energy flux, sum over all reflected and transmitted wave

fields are plotted for both, DS09 and dCS09, boundary conditions. It shows that, in-

deed internal part of energy is involve in the total balance of energy. The right bottom

panel of the Figure 7 clearly shows that the deficit in the energy flux of the centre-of-

mass component is correlated to the increment of the energy flux of the internal part

of the transmitted slow compressional wave. The energy flux for centre-of-mass part

that are undershooting from the unity. Upon including the internal part contributions,
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the deficit is wiped out. In fact, the total energy curve are slightly overshooting over

the unity. This overshoot may be numerical because of the use of homogeneous plane

wave decomposition in this work. The internal field part is highly attenuating, so for

properly accounting it one may have to use in-homogeneous plane wave decomposition.

Figure 5. Normal component of total energy flux of scattered fields (the sum of centre-of-
mass and internal fluxes all reflected and transmitted waves) as the function of frequency
showing how Deresiewicz and Skalak (1963), and de la Cruz and Spanos (1989) boundary
conditions stand up to the principle of energy conservation. The centre-of-mass, internal
component and total energy fluxes corresponding to DS09 are plotted as dashed blue line,
dotted magenta line and dashdot green line, respectively. The centre-of-mass, internal
component and total energy flux corresponding to dCS09 are plotted as dashdot red line,
dotted yellow line and dashdot black line, respectively. The equivalent visco-elastic case is
in dashdot green line.
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Figure 6. Normal component of the centre-of-mass part of the energy fluxes for scattered
fields. Top and bottom panels on left-hand side correspond to the reflected and transmitted
fast P-wave, while the top and bottom right-hand side panels correspond to the reflected
and transmitted slow P-wave. It should be observed that as the energy fluxes of slow-wave
processes are increasing, the energy fluxes in the fast-waves are decreasing as function of
frequency.
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Figure 7. Normal component of the internal parts of the energy fluxes for scattered fields.
Top and bottom panels on left-hand side correspond to the reflected and transmitted fast
P-wave, while the top and bottom right-hand side panels correspond to the reflected and
transmitted slow P-wave. It should be observed that as the energy in the centre-of-mass
part of fast waves (Figure 6, left hand-side panels) is decreasing as function of frequency,
the internal energy part of slow-wave processes is increasing (right hand-side panels of this
figure).



46

III.1.1 Normal incident fast shear wave

Commonly it is belived that a shear wave is not affected by fluids. So if the solid-frames

of the two sides of the interface are the same, no boundary is expected for S-waves, no

matter what are the saturating fluids. In our set-up frame properties on the two sides

are the same, therefore a complete transmission is expected.

For the fast-wave plotted in the figure 8, the DS09 shows the expected results. The

dCS09 framework predicts a strong reflection according a less transmission in low fre-

quency regime. However, at high frequencies, the effect of fluid disappears, such as

observed in the below figure.
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III.2 Non-normal incidence case

In this subsection I report results about non-normal incidence fast waves. For demostra-

tion purposes, I take the incident angle to be θ = 20. The set up of porous half-spaces

is the same as previous section.

III.2.1 Incident fast compressional wave

The two left-hand panels in the top of Figure 9 show that for low frequencies the dCS09

has weaker transmission and stronger reflection compared to DS09, and DS09 response

is akin to the equivalent visco-elastic case. For high frequencies the DS09 and dCS09

response tends to be similar and below the visco-elastic curve. The two left-hand panels

in the bottom show the presence of converted shear waves for the dCS09 whereas for

DS09 they are not present.

III.2.2 Incident fast shear wave

For the case of an inicident fast shear wave at non-normal incidence, the dCS09 plotted

in figure 10, shows a similar behavior as the normal incidence case in the subsection

III.2.1.



49

Figure 9. In the four top panels, the energy flux corresponding to the centre-of-mass com-
ponent for scattered P-wave, while in the four bottom panels the energy flux corresponding
to the centre-of-mass component for an incident to scattered S-wave are shown.
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Figure 10. In the top four panels the energy flux corresponding to the centre-of-mass
component for scattered S-wave are presented, while in the bottom four panels the energy
flux corresponding to the centre-of-mass component for scattered P-wave are shown.
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Likewise, the converted fast P-wave in the two left-hand side panels in the bottom

of Figure 10 predicts conversions of energy from S-waves into P-waves for dCS09 case.

The results for DS09 (and visco-elastic framework) show no conversion.

III.2.3 Amplitude analysis angle-dependence

A new methodology to determine physical properties of media at low frequencies is

called AVO (Amplitude vs Offset), or more properly AVA (Amplitude vs Angle of

incidence). It is a method that uses the pre-stack data to detect the presence of hy-

drocarbons in the resorvoir. Forward modeling of AVA is the best way to validate data

and interpret results.

This subsection introduce an analysis of the displacement amplitude for an incident

fast P-wave with respect to angle of incidence for a given frequency. For comparison,

the previous case of the oil/water contact is analyzed. At first, I fixed the frequency

at 20 Hz (see Figures 11 through 14) which is a regular seismic frequency employed in

exploration. In here, it can be observed that the DS09 and the visco-elastic case tends

to be similar, such as observed in previous example. At second, I fixed the frequency at

500 KHz (see Figures 15 through 18) which is a frequency used in laboratory studies.

This results are comparable with the high frequencies regime in Figure 7, where the

DS09 and dCS09 curve tends to be similar and they are different with respect to the

visco-elastic case.

The left-hand sides plots in the next figures correspond to the displacement amplitude,

while the right-hand side plots are its corresponding phases.
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Chapter IV

CONCLUSIONS

In this chapter, I shall summarize the main accomplishments of this work and present

recommendations for future works.

Based upon the analytical solutions and numerical computations for reflection and

transmission boundary value problems associated with incident fast compressional and

shear plane waves for (a) modified Deresiewicz and Skalak (1963) boundary conditions

(DS09) and (b) modified de la Cruz and Spanos (1989) boundary conditions (dCS09)

that I have carried out in the preceding chapters, I conclude the following:

I. In the low frequency regime (defined by the Biot critical frequencies of the two

media), a loss is observed for the sum of energy flux for centre-of-mass components,

no matter which boundary conditions is chosen. However, when the energy of

the internal components is also taken into the account, the total energy flux is

conserved for all frequencies. In spite of that there is energy conservation one

is likely to observe an apparent loss in real data, since a sensor tracks only the

centre-of-mass field.

II. For normal incident fast compressional wave, the reflection and transmission coeffi-

cients for both boundary conditions are similar. In the low frequency regime, they

are akin to those for the equivalent visco-elastic framework. In the high frequency

regime, they are below the response of the equivalent visco-elastic framework.
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III. For a fast P incident wave at non-normal incidence at low frequencies, the DS09

is closely similar to the visco-elastic case, while the dCS09 framework shows the

strong reflection. For high frequencies, the reflection coefficients with DS09 and

dCS09 tend to be similar, but these are less than in the visco-elastic case.

IV. In the case for normal as well as non-normal incident fast S-wave, there are distinct

differences between the two sets of boundary conditions. In low frequency band,

dCS09 predicts a strong reflection for a fast shear wave incident upon a fluid/fluid

contact in a porous medium, whereas DS09 shows no such sensitivity. Although,

in high frequency band both show similar responses.

I make the following recommendations for future works:

• The block matrix method that I have utilized may present numerical instability

in the computation due to singular matrix inversions. For such cases, a different

approach may be utilized to improve the results. Also, inhomogeneous plane wave

decomposition may be employed.

• In order to compare the theory, I recommend carrying out calculations of reflection

and transmission coefficients as well as energy flux with the original field variables,

i.e., fluid and solid displacement fields.

• The numerical simulator that I have developed can compute reflection and trans-

mission coefficients at any frequency for any angle of incidence. This may be

utilized to design a variety of laboratory experiments to run validity check on the

results of the two sets of boundary conditions.
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Appendix A

SYMBOLS

Table IV. Biot theory field quantities

êj unit vector in jth direction

us = êju
s
j averaged displacement field vector of solid-frame

us
jk = 1

2
(us

j,k + us
k,j) solid-frame strain tensor

ŭs
jk = us

jk− 1
3
us

llδjk trace-free part of solid-frame strain tensor

uf = êju
f
j averaged displacement field vector of fluid

vf
jk = ∂tu

f
jk = 1

2
(∂tu

f
j,k + ∂tu

f
k,j) fluid (macroscopic) strain-rate tensor

v̆f
jk = vs

jk− 1
3
vs

llδjk trace-free part of macroscopic fluid strain-rate tensor

ζ = −η
0
(uf

jj − us
jj) increase of fluid content

τ s
jk macroscopic solid stress tensor

τ f
jk macroscopic fluid stress tensor

pf = − 1
3η0
τ f

jj macroscopic fluid pressure



64

Table V. Dynamical field quantities

um
j = msus

j + mfuf
j center-of-mass displ. field

ui
j = us

j − uf
j internal displacement field

um
jk = msus

jk + mfuf
jk centre-of-mass strain tensor

ui
jk = us

jk − uf
jk internal strain tensor

ŭm
jk = um

jk− 1
3
um

ll δjk trace-free part of centre-of-mass strain tensor

ŭi
jk = ūm

jk− 1
3
ūm

ll δjk trace-free part of internal strain tensor

τm
jk = τ s

jk + τ f
jk total stress tensor of porous medium

τ i
jk = mfτ s

jk −msτ f
jk internal stress tensor of porous medium

uj = (um
j ui

j)
T

ujk = (um
jk ui

jk)
T

τ jk = (τm
jk τ i

jk)
T

Table VI. Microscopic parameters

ρs = solid unperturbed density

ρf = pore fluid unperturbed density

Ks = solid-mineral bulk modulus

µs = solid-mineral shear modulus

Kf = pore fluid bulk modulus

ξf = pore fluid bulk viscosity

µf = pore fluid shear viscosity
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Table VII. Macroscopic parameters

K0 dry solid-frame bulk modulus

µ0 dry solid-frame shear modulus

η
0

unperturbed porosity

φ
0

= 1− η
0

unperturbed volume fraction of solid

κ permeability

S tortuosity factor
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Table VIII. Derived parameters

α
K

= 1− K0

Ks
Biot bulk coefficient

M = (
η
0

Kf
+

α
K
−η

0

Ks
)−1 fluid storage coefficient

αµ = 1− µ0

µs Biot shear coefficient

ρm = φ
0
ρs + η

0
ρf total density

ρr = (1/φ
0
ρs + 1/η

0
ρf)

−1
reduced density

ρ12 = −(S−1)η0ρf induced mass-coefficient

ρi = ρr−ρ12=(S−mf)η0
ρf modified reduced density

ms = φ
0
ρs/ρm solid mass fraction

mf = η
0
ρf/ρm fluid mass fraction

ds = φ
0
ρs/ρi = ms

mf

1
S−mf

df = η
0
ρf/ρi = 1

S−mf

νf = µf/ρf fluid kinematic shear viscosity

H0 = K0 + 4
3
µ0 dry-frame P-wave elastic modulus

Hc = K0 + 4
3
µ0 + α2

K
M Gassmann P-wave elastic modulus

Ωb = η
0
νf/κ Biot critical frequency

Ωi = dfΩb Biot relaxation frequency

ΩfP =Kf/(ξf + 4
3
µf) free-fluid compressional relaxation frequency

ΩflP =η
0
M/(

η
0
M

Kf
ξf + 4

3
µf) fluid comp. relax. freq. in the deformable frame

Ωα =Hc/(
η
0
M

Kf
ξf + 4

3
µf) saturated-frame comp. relaxation frequency

ΩfS =Kf/µf free-fluid shear relaxation frequency
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Table IX. Derived parameters (Continuation)

ΩflS =η
0
M/µf fluid shear relax. freq. in the deformable frame

Ωβ =µ0/µf saturated-frame shear relaxation frequency

α2
s =

Ks+
4
3
µs

ρs
miniral P-wave velocity (squared)

β2
s = µs

ρs
miniral S-wave velocity (squared)

α2
0

= H0

φ0ρs
dry-frame P-wave velocity (squared)

β2
0

= µ0

φ0ρs
dry-frame S-wave velocity(squared)

α2
c = Hc

ρm
Gassmann P-wave velocity (squared)

β2
c = µ0

ρm
Gassmann S-wave velocity(squared)

α2
I fast P-wave velocity (squared)

α2
II slow P-wave velocity (squared)

β2
I fast S-wave velocity (squared)

β2
II slow S-wave velocity (squared)
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Appendix B

VISCOSITY-EXTENDED BIOT
THEORY

In this chapter for completeness, at first, I summarize the elements of equations of mo-

tion of the Biot theory. Thereafter, the viscosity-extended Biot theory is summarized,

which is based upon Sahay (2008) and Solorza and Sahay (2009).

B.1 Biot Theory

For homogeneous and isotropic elastic solid matrix with interconnected pores filled with

a newtonian fluid, the theory of wave propagation was developed by Biot (1956). The

governing equations of motion are

φ
0
ρs

0

∂2us
j

∂t2
= τ s

jk,k + Ij, (125)

η
0
ρf

0

∂2uf
j

∂t2
= τ f

jk,k − Ij. (126)

Here (us
j) and (uf

j) are the averaged displacement fields of solid-frame and fluid respec-

tively. η
0

is the unperturbed porosity and φ
0

= 1 − η
0

is the unperturbed volume

fraction of solid phase. ρs
0

and ρf
0

are the solid and fluid density respectively.

The Biot stress tensor are constructed utilizing the concept of elastic deformation en-

ergy potential. They are stated in the notation of Biot (1962) as follows

τ s
jk = K0us

llδjk + 2µ0ŭs
jk −

(
α

K
− η

0

)
pfδjk. (127)

τ f
jk = −η

0
pfδjk (128)
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where K0 and µ0 the bulk and shear modulus respectively, and the everage fluid pressure,

pf , is

pf = −M (α
K
us

ll − ζ) . (129)

The solid-frame strain tensor, us
jk, is 1

2

(
us

j,k + us
k,j

)
, and ŭs

jk is its trace free part, ex-

pressed by

ŭs
jk = us

jk −
1

3
us

llδjk. (130)

ζ is interpreted as increase of fluid content and it is the divergence of the difference of

fluid and solid displacements, that is

ζ = −η
0

(
uf

ll − us
ll

)
. (131)

The Biot bulk coefficient, α
K
, and the fluid storage coefficient, M, are linked to the bulk

moduli of the constituent solid, Ks, and the constituent fluid, Kf , as

α
K

= 1− K0

Ks
, (132)

and

1

M
=
η

0

Kf
+
α

K
− η

0

Ks
, (133)

with η
0
≤ α

K
≤ 1.

Ij is the drag force that the two phases impart on each other in equal but opposite

direction. Biot constructed the drag force term utilizing the concepts of dissipation

function and kinetic energy density function, expressed as follows

Ij = −η
0
ρf

0
Ωb∂

∂t

(
us

j − uf
j

)
+ ρ12 ∂

2

∂t2
(
us

j − uf
j

)
. (134)

Ωb = η
0
νf/K, where νf is the pore-fluid kinematic shear viscosity (i. e. fluid shear

viscosity scaled by its density) and K is the permeability, which is known as the Biot
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critical frequency. The ρ12 is the induced mass-coefficient which is linked to tortuosity,

S, as

ρ12 =−(S−1)η
0
ρf

0
. (135)

Biot theory excludes the fluid viscous stress part in its macroscopic fluid stress

tensor (equation 128), therefore, viscous loss mechanism within the pore fluid is not

taken into account here. For a porous medium filled with a highly viscous fluid, such as

heavy crude oil or bitumen, the viscous loss within the pores fluid may be of importance.

Furthermore, the lack of viscous loss mechanism within the pores fluid makes the

framework mathematically inconsistent or incomplete, because it makes two (out of

six) degrees of freedom redundant. The usual practices have been to ignore these re-

dundant degrees of freedom and to analyze this theory in the domain of the remaining

four degrees of freedom. As the result, one assumes the existence of only three waves,

two compression waves and a shear-wave.

B.1.1 Constitutive equations by volume-averaging method

By employing averaging theorems developed by Slatery (1967) and Whitaker(1967), the

constitutive equations at macro-scale are established by averaging poro-scale constitu-

tive equations (de la Cruz and Spanos, 1985; Sahay et al., 2001, Spanos 2002). This is

an alternative method to construct poroelastic constitutive equations.

The constitutive equations for the solid and fluid constituents at the pore scale are
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described by the linear elasticity and the newtonian rheology, respectively, as follows

σs
jk = Ksδjku

s
ll + 2µsŭs

jk. (136)

σf
jk = −pfδjk + πf

jk, (137)

where ŭs
jk is the trace-free part of the pore-scale solid strain tensor, ŭs

jk = us
jk − 1

3
us

llδjk,

and the pore-scale fluid pressure is

∂tp
f = −Kfvf

ll, (138)

where vf
j = ∂tu

f
j. Ks and and µs are the bulk and shear moduli of solid grain; Kf is the

bulk modulus of pore fluid.

The viscous stress tensor πf
jk incorporates viscous relaxation within the pore fluid.

It is taken to be related to fluid strain-rate tensor as below

πf
jk = ξfδjkv

f
ll + 2µf v̆f

jk, (139)

where ξf and µf are the bulk and shear viscosities of the fluid and v̆f
jk is the trace-free

part of pore-scale fluid strain-rate tensor v̆f
jk = vf

jk − 1
3
vf

llδjk.

When the macroscopic constitutive equations are deduced from the constitutive equa-

tions for solid and fluid constituents at the microscopic scale by using the the method

of volume averaging, the fluid strain-rate term is introduced in a natural way. They

was first derived by de la Cruz and Spanos (1985). They are

τ s
jk = Ksδjk

[
φ

0
us

ll −
(
η − η

0

)]
+ 2µs

(
φ

0
ŭs

jk +Djk

)
, (140)

τ f
jk = −η

0
pfδjk + ξfδjk

(
η0v

f
ll + ∂tη

)
+ 2µf

(
η

0
v̆f

jk − ∂tDjk

)
. (141)
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where the underline piece is the incorporated fluid viscous loss term. The macroscopic

fluid-pressure equation obtained by the method of volume averaging reads

η
0
∂tp̄

f = −Kf
(
η0v

f
ll + ∂tη

)
. (142)

The term η − η
0

is

η − η
0

= − 1

V

∫
Asf

us
l n̂l dA, (143)

and the Asf represents the pore interface contained in the averaging volume V and the

unit normal n̂l points from solid to fluid phase.

The term η − η
0

is the area integral of dilatation motion, i.e. motion perpendicular to

the pore boundaries. Hence, it is interpreted as the sum of motion of pore interfaces in

its normal direction, per unit volume of the porous medium.

The term Dij is viewed as the sum over the pore-boundary deviatoric motion, i.e.,

the sum of interfacial motion along itself, in a unit volume of the porous medium,

expressed as follows

Dij =
1

V

∫
Asf

1

2

(
us

in̂j + us
jn̂i −

2

3
δiju

s
l n̂l

)
dA. (144)

The terms η − η
0

and Dij are yet to be defined to complete the description at macro-

scale.

B.1.2 Viscosity-extended Biot theory

By assuming the area integral term of dilatation motion of pore interface η − η
0

to be

related to the difference of the solid and fluid pressure as

η − η
0

= −φ
0

(
αk − η

0

)
K0

(
ps − pf

)
(145)
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and the area integral of the deviatoric motion of the pore interface Dij to be solely

linearly dependent of the deviatoric (or trace free-part) part of solid stress τ s
ij as

Dij = −
(
αk − η

0

)
2µ0

τ s
jk (146)

where αµ is the Biot shear coefficient and its explicit form is

αk = 1− µ0

µs
(147)

Sahay (2008) showed that the V-A expressions for solid stress (eq 12) are reduced to

Biot’s expressions for solid stress (eq 3) and fluid pressure (eq 5).

Substituting the expression for pf from equation 15 and the expression for ps from

equation 13, using the identity φ
0
psτ s

ll permits it to be rewritten in terms of solid

macroscopic dilatation and fluid macroscopic pressure as

η − η
0

= −
(
αk − η

0

)(
us

ll +
1

Ks
pf

)
. (148)

Likewise, obtaining the expression for the deviatoric (or trace free-part) of solid stress

τ s
jk f (eq 13) and substituting it into equation 19, the pore-boundary deviatoric term

Djk is rewritten as

Dij = −
(
αk − η

0

)
ŭs

jk. (149)

Equation 15 renders the Biot fluid-pressure equation 5 when the porosity equation

21 is substituted into it. Plugging the expression for porosity equation( eq 21) and

pore-boundary deviatoric term (eq 22) into equation 11, we obtain the Biot solid-stress

tensor (eq 3). When equations 21 and 22 are substituted into equation 14, the fluid-

stress tensor is obtained as

τ f
jk = −η

0
pfδjk − η

0

ξf

Kf
∂tp

fδjk + 2µf
{
η

0
∂t ŭ

f
jk +

(
αµ − η

0

)
∂t ŭ

s
jk

}
, (150)
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where vs = ∂tu
s. The underlined piece is the incorporated fluid viscous stress-tensor

term, thus, the link with the Biot’s equations is established. It shows that the pres-

sure rate as well as the fluid and solid shear strain rate play an important role in fluid

stress when the pore-fluid viscosities are taken into account, and this approach is called

Viscosity-extended Biot theory.

The modified Biot constitutive equations (eq 3 and eq 23), on eliminating pressure

terms by solid and fluid volumetric strains using equation 5, then reads in compact

notation as τ s
jk

τ f
jk

 =
(
Kb + ξb∂t

) us
ll

uf
ll

 δjk + 2
(
µb + νb∂t

) ŭs
jk

ŭf
jk

 , (151)

where the following definitions have been employed K0 +
(
α

K
− η

0

)2
M (α

K
− η

0
)η

0
M

(α
K
− η

0
)η

0
M η2

0
M

 ≡ Kb, (152)

1 0

0 0

µ0 ≡ µb, (153)

 0 0

α
K
− η

0
η

0

 η
0
M

Kf
ξf ≡ ξb, (154)

and

 0 0

αµ − η
0
η

0

µf ≡ νb. (155)

By setting the bulk and shear viscosities vanishing, the matrices incorporating fluid

viscous relaxation processes, ξb and νb, are dropped and the classical Biot constitutive

relation is recovered. The incorporation of fluid viscous relaxation terms render the form

of this modified constitutive relation to be a 2×2 matrix generalization of viscoelastic
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constitutive relation.

B.1.3 Viscosity-extended Biot theory in terms of natural dy-

namical fields

The above are expressed in terms of solid and fluid displacement, however, seismic

sensors do not register solid and fluid phase motions solely, but they in fact register the

mass weighted vector sum of the motion of fluid and solid constituents (Sahay, 1995;

Sahay, 1996). The proper fields of dynamical purposes are the mass weighted vector

sum and vector difference of solid and fluid displacement fields. They are known as

centre-of-mass and internal displacement fields, respectively.

Center-of-mass (um
j ) and internal (ui

j) fields defined as

(um
j ui

j)
T

= m−1 (us
j uf

j)
T

, (156)

and its stresses are given by(
τm

jk τ i
jk

)T
= mT

(
τ s

jk τ f
jk

)T
, (157)

where T denotes transpose. The transformation matrix is defined by

m =

 1 mf

1 −ms

 , (158)

and the solid- and fluid- mass fractions are expressed as

ms =
φ

0
ρs

ρm

, (159)

mf =
η

0
ρf

ρm

, (160)

where ρm and ρr are the total and reduced densities of the porous medium given by

ρm = φ
0
ρs + η

0
ρf , (161)

1/ρr = 1/φ
0
ρs + 1/η

0
ρf , (162)
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where the modified reduced density is expressed as

ρi =ρr−ρ12. (163)

The viscosity-extended constitutive relation (eq 151) is reformulated in terms of natural

dynamical fields as τm
jk

τ i
jk

= (K + ξ∂t)

 um
ll

ui
ll

 δjk + 2 (µ+ ν∂t)

 ŭm
jk

ŭi
jk

 , (164)

where

mTKbm ≡ K, mTξbm ≡ ξ, mTµbm ≡ µ, and mTνbm ≡ ν. (165)

Utilizing the identity φ0
ρs 0

0 η
0
ρf

m = (mT)−1

ρm 0

0 ρr

 (166)

the equations of motion (125 and 126) in terms of natural dynamical field are expressed

as ρm 0

0 ρr

 ∂2
t

 um
j

ui
j

 =

1 0

0 1


τm

jk,k

τ i
jk,k

+

0 0

0 1

 Ij, (167)

where the drag force term, Ij, in terms of the dynamical fields, is

Ij = −η
0
ρfΩb ∂tu

i
j + ρ12 ∂

2
t
ui

j. (168)

Introducing the notation

uj =
(
um

j ui
j

)T
, (169)

and

τ jk =
(
τm

jk τ i
jk

)T
, (170)

the equations of motion are rewritten in compact form as

ρ ∂2
t uj + η

0
ρfΩb I0 ∂tuj = τ jk,k, (171)
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where ρ is the density matrix

ρ =

 ρm 0

0 ρi

 , (172)

and I0 is 2×2 matrix whose element (2,2) is unity and rest of the elements are equal to

zero, that is

I0 =

 0 0

0 1

 . (173)

The constitutive relation (eq 164) is rewritten as

τ jk = (K + ξ∂t)ullδjk + 2 (µ+ ν∂t) ŭjk. (174)

Notationally the equations of motion (171) and the constitutive relation (174) are analog

to equations in elasticity theory, however density and elastic parameters in poroelasticity

are 2×2 matrices. Plugging eq (174) into eq (171), and introducing the “extended

dynamical vector” u whose elements are centre-of-mass and internal field vectors,

u = êjuj = êj(u
m
j ui

j)
T, (175)

where êj is the unit vector in jth direction, and applying ρ−1 from the left, the viscosity-

extended Biot equations of motion (171) are cast in vectorial notation. They read

I∂2
t u + ΩiI0∂tu = (Cα+Nα∂t)∇ (∇ · u)− (Cβ+Nβ∂t)∇×∇× u (176)

where

η
0
ρf

ρi

≡ df (177)

φ
0
ρs

ρi

≡ ds (178)
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and Biot relaxation frequency corresponding to the dissipation due to fluid flow with

respect to the solid-frame and contains a permeability term. Its explicit expression is

dfΩb ≡ Ωi. (179)

I is the 2× 2 identity matrix,

ρ−1

(
K +

4

3
µ

)
≡ Cα, (180)

ρ−1µ ≡ Cβ, (181)

ρ−1

(
ξ +

4

3
ν

)
≡ Nα, (182)

and

ρ−1ν ≡ Nβ. (183)

The elements of the second-order Cα and Cβ matrices have dimensions of velocity

squared and they contain the frame shear modulus and frame and fluid densities. The

elements of the second-order Nα and Nβ matrices have dimensions of kinematic viscosity

and they contain the fluid shear viscosity. After some rearrangements, the explicit

expressions of these are

Cα = α2
c

1 mf

(
1− α

K

η
0

α2
fl

α2
c

)
df

(
1− α

K

η
0

α2
fl

α2
c

)
df (mf + ε)

 (184)

Nα = α2
c

 Υ −
(
η

0
−mfΥ

)
−dsΥ ds

(
η

0
−mfΥ

)
 1

Ωα

(185)

Cβ = β2
c

 1 mf

df dfmf

 (186)

Nβ = β2
c

 αµ −
(
η

0
−mfαµ

)
−dsαµ ds

(
η

0
−mfαµ

)
 1

Ωβ

. (187)
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The details of the derivations of eqs (184-185) are in Appendices A and B, respectively.

The derivations of (186) and (187) are straightforward.

α2
c

=
Hc

ρm

(188)

and

β2
c

=
µ0

ρm

(189)

are called Gassmann P- and S- wave speed (squared), respectively.

Ωα =
Hc

η
0
M

Kf
ξf + 4

3
µf

. (190)

Ωβ =
µ0

µf

(191)

are the saturated-frame relaxation frequency for P- and S- process, respectively.

Here,

Hc = K0 +
4

3
µ0 + α2

K
M, (192)

is the Gassmann P-wave elastic modulus.

The term

ε =

(
1− 2

α
K
mf

η
0

)
α2

fl

α2
c

(193)

is a positive quantity less than unity, and the term

Υ = α
K

+(αµ− α
K
)
4

3

ΩflP

ΩflS

(194)

is bounded as α
K
≤ Υ ≤ αµ.

α2
fl =

η
0
M

ρf

(195)
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is identified as the velocity (squared) of sound in fluid in the presence of deformable

solid-frame.

ΩflP =
η

0
M

η
0
M

Kf
ξf + 4

3
µf

(196)

and

ΩflS =
η

0
M

µf

(197)

are identified as, respectively, fluid P-modulus and fluid S-modulus relaxation frequen-

cies in the presence of deformable solid-frame.

The factorization of velocity (square) and relaxation frequency terms in eqs 184-187

enable the elements of the resulting matrices to be bounded by unity, which provide an

easement in mathematical analysis.

B.1.4 Frequency domain representation

In frequency domain eq (176) reads as

α∇ (∇ · u)− β∇×∇×u + ω2u = 0 (198)

where α and β are non-symmetric second-order matrices associated with P- and S-

motion, respectively, whose elements are dimentionally equal to velocity squared. They

are expressed as follows

α = Ω−1 (Cα− iωNα) ≡

 αmm αmi

αim αii

 , (199)

β = Ω−1 (Cβ− iωNβ) ≡

 βmm βmi

βim βii

 , (200)
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where Ω is a 2×2 diagonal matrix associated with the Biot relaxation frequency Ωi

I + i
Ωi

ω
I0 ≡ Ω. (201)

where I is the 2× 2 identity matrix and I0 is the diagonal matrix diag(0, 1). Utilizing

the definitions (180-183), the stresses (174) now read

τ jk = ρ [{(Cα−iωNα)− 2 (Cβ−iωNβ)} ullδjk + 2 (Cβ−iωNβ) ŭjk]

which, in the view of definitions (199-200), are expressed as

τ jk = Ωρ {(α− 2β) ullδjk + 2β ŭjk} . (202)
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Appendix C

SEISMIC BOUNDARY CONDITIONS IN
POROUS MEDIA

The boundary conditions define the field quantities across the surface of a material

discontinuity. For the case wherein there is no imbedded sources or sinks of energy at

the interface, they are simply the statements of the conservation of the fundamental

quantities, namely, mass, linear momentum, angular momentum and energy.

In classical elasticity, for the case of a welded contact, boundary conditions are stated

as the continuity of the velocity field and the traction field. The conservation of mass

across an interface requires the continuity of normal component of velocity. The conti-

nuity of tractions is the statement about the conservation of linear momentum across

an interface. The conservation of angular momentum further requires the continuity of

tangential components of velocity field; although in literature this continuity is often

ascribed to kinematic requirement of “no-slip”. The continuity of energy flux is required

for conservation of energy, which is automatically satisfied on account of the continuity

of velocity and traction fields. In the context of classical elasticity, if the conservation of

energy hold true at an interface, it automatically guarantees the conservation of mass

and linear momentum.

For a porous-porous welded contact, the two interacting continua nature of the media

pose two additional complexities. Firstly, given the fluid-fluid and solid-solid contact



83

surfaces may move away from each other as media deform, how an unique interface, in

a macroscopic sense, is to be defined on which conservation of total mass, total mo-

mentums and total energy would hold true. Secondly, at an interface, in a macroscopic

sense, a phase (solid or fluid) from one side may exert force on the other side, not only

upon a phase its own kind but the other also, one needs a basis to quantify such phasic

interactions.

The earliest set of boundary conditions for porous-porous welded contact is due to

Deresiewick and Skalak (1963). This work is based upon the consideration of the con-

servation of total energy. Although, authors do recognize that the fluid-fluid contact

surface indeed separate off the solid-solid contact surface, but they heuristically take

the latter to be the surface across which total energy flux is conserved. They have pro-

posed two set of boundary conditions, namely, “open pore” and “partially open pore”.

The latter contains an adjustable parameter that is known as “interface permeability”.

The other competing set of boundary conditions is due to de la Cruz and Spanos

(1989). They have suggested that macroscopic interface has to be the surface across

with total mass is conserved. They show that across this interface, the conservation of

mass and linear momentum yield the continuity of normal component of mass weight

vector sum of the solid and fluid velocities and total tractions; for the continuity of

the tangential components of that mass weighted velocity field they invoke “no slip”

condition. By utilizing Newton’s third law of motion, they have quantified how the

stresses on each phase interact with the stress on each of the phases across the interface

and have developed two additional conditions on tractions. These equations contain a

parameter to describe “overlap” among the phases on two sides of an interface.
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A critical overview of the Deresiewick and Skalak (1963) boundary conditions, along

with its extension that includes fluid viscous stress tensor part, is presented in the next

section. Next, the de la Cruz and Spanos (1989) boundary conditions are outlined

along with its extension by Sahay (2009, private communications). This extension re-

cast them in a form in which the “overlap” parameter is no longer present. Also, in this

form the conservation of total energy, which is not explicitly addressed in the original

formulation, holds true. These critical overviews are from unpublished notes of Sahay.

C.1 Deresiewicz and Skalak (1963) boundary con-

ditions

The boundary conditions due to Deresiewicz and Skalak (1963) are based upon of the

conservation of total energy. They showed that to conserve total energy across an

interface the normal energy flux has to remain continuous, and for which they found

that 〈(
τ s

jku̇
s
j + τ f

jku̇
f
j

)
n̂k

〉
= 0 (203)

must hold true. Here, n̂k denotes the unit normal to the interface separating two

dissimilar porous media and the bra-ket symbol, 〈 〉 , represents the jump in the quantity

within its argument. To have consistency with the classical Biot theory, the viscous

shear stress part of the fluid stress tensor was not taken into consideration by them.

Retaining only the hydrostatic part of the fluid stress tensor, they took

τ f
jk = −η0p

fδjk. (204)
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At first, they assumed (implicitly) that the two terms in equation (203) have to be

individually continuous, i. e., 〈
τ s

jku̇
s
jn̂k

〉
= 0, (205)

and 〈
η0p

fδjk u̇f
jn̂k

〉
= 0. (206)

The term τ s
jkn̂k is the traction vector for solid phase. The term δjku̇

f
jn̂k = u̇f

kn̂k ≡ u̇f
⊥

is the component of fluid velocity normal to the interface. Clearly, the expression in

equation (205) is the dot product of solid phase traction vector and solid velocity field.

Likewise, the expression in equation (206) is the dot product of the porosity weighted

fluid pressure and the normal component of fluid velocity field. For equations (205) and

(206) to hold true, each element of the products must be continuous. Those amount

to the continuity of solid traction vector, solid velocity field, porosity weighted fluid

pressure, and normal component of fluid velocity. They are stated as

〈
τ s

jkn̂k

〉
= 0, (207)〈

u̇s
jn̂k

〉
= 0, (208)〈

η0p
f
〉

= 0, (209)〈
u̇f
⊥
〉

= 0. (210)

Deresiewicz and Skalak (1963) concluded that the above set of boundary conditions

are of limited value. It was because, on physical grounds, they insisted that mass of

fluid at the interface must be conserved. For that the relative normal flow of fluid with

respect to solid frame, η0

(
u̇f
⊥ − u̇s

⊥
)
, must remain continuous across the interface. This

constrain is compatible with equations (207) through (210) only if porosity remains

unchanged across the interface or there is no relative motion between fluid and solid-
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frame at the interface. The quantity

η0

(
u̇f

j − u̇s
j

)
≡ ẇj (211)

is recognized as “fluid filtration velocity”. It should be noted that the continuity of the

normal component of fluid filtration velocity implicitly suggests that solid-solid contact

surface has been taken as the interface which is also obvious from the cartoons presented

by Deresiewicz and Skalak (see Figures 2 and 3).

C.1.1 Open pore case

In order to incorporate “fluid filtration velocity” into the statement of energy conser-

vation, they re-wrote the expression of energy flux. In equation (203) the addition and

subtraction of the term η0p
fδjku̇

s
j yields

(
τ s

jku̇
s
j − η0p

fδjku̇
s
j + η0p

fδjku̇
s
j − η0p

fδjku̇
f
j

)
n̂k. (212)

By regrouping terms for total stress, τ jk = τ s
jk − η0p

fδjk, and filtration velocity (see

equation 211) it is ((
τ s

jku̇
s
j − η0p

fδjk

)
u̇s

j − pfδjkη0

(
u̇f

j − u̇s
j

))
n̂k, (213)

or (
τ jku̇

s
j − pfδjkẇj

)
n̂k. (214)

In the above, assuming the continuity of each term individually they proposed

〈
u̇s

j

〉
= 0, (215)

〈τ jkn̂k〉 = 0, (216)

〈ẇ⊥〉 = 0, (217)〈
pf
〉

= 0. (218)



87

They asserted that these are the boundary conditions for the case when fluid is able

to freely flow across the interface and coined the named “open pore” to this set. Their

cartoon illustration of this case is reproduced in Figure 19.

Figure 19. Open pore case, adapted from Deresiewicz and Skalak (1963)

C.1.2 Partially open pore case

Deresiewicz and Skalak (1963) further suggested that there shall be cases when fluid is

not completely free to flow across the interface. As an illustration they presented the

cartoon shown in Figure 20. They argued that when the hydraulic contact between

Figure 20. Partially open pores, adapted from Deresiewicz and Skalak (1963)

two porous media is imperfect, the boundary condition (218) will not hold true because

of the difference in fluid pressure across the interface. On physical reasoning, they
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generalized equation (218) by proposing that the differential fluid pressure must be

linearly related to the normal component of filtration velocity at the interface, i. e.,

〈
pf
〉

=
1

k
DS

ẇ⊥ (219)

k
DS

is the proportionality constant which has the dimensions of permeability and it is

known as “interface permeability”. It is taken to span from 0 ≤ kDS ≤ ∞. k
DS

= ∞

represents the open pore case as it yields equation (218). The equations (215) through

(217) and (219) are the final set of boundary conditions proposed by Deresiewicz and

Skalak.

However, according to them, k
DS

= 0 corresponds to the seal pore case (see Figure

21). For that they suggested to take equations (215) and (216) as is, and to replace

equations (217) and (219) by the conditions of the vanishing normal component of fluid

filtration velocity at the interface for each side.

Figure 21. Close pores, adapted from Deresiewicz and Skalak (1963)
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C.1.3 Generalization of Deresiewicz and Skalak (1963) bound-

ary conditions for fluid viscous stress tensor (DS09)

In order to have consistency with the viscosity-extended Biot framework, the viscous

shear stress part of the fluid stress tensor, which was dropped in equation (204), has to

be re-incorporated and the boundary conditions have to be reworked. Accordingly, one

finds that in the boundary equations (215 through 217 and 219) the fluid pressure term

has to be replaced by the fluid stress tensor term and the normal component of fluid

filtration velocity has to be replaced by the filtration velocity vector. The derivations

are straightforward. The viscosity generalized Deresiewicz and Skalak (1963) boundary

conditions read

〈
u̇s

j

〉
= 0, (220)

〈τ jkn̂k〉 = 0, (221)

〈ẇj〉 = 0, (222)〈
σf

jkn̂k

〉
=

1

k
DS

ẇj (223)

where σf
jk =

τ f
jk

η0
, and it is the fluid stress per unit area. For mathematical convenience

later, equations (220) and (222) on velocity fields are lumped as

〈
u̇s

j

ẇj

〉
=

 0

0

 , (224)

and equations (221) and (223) on tractions are viewed as

〈
τ jkn̂k

σf
jkn̂k

〉
=

 0 0

0 1
k
DS


 u̇s

j

ẇj

 (225)
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C.1.4 DS09 boundary conditions in term of natural dynamical

fields

Transformation matrices

By using the definition of fluid filtration velocity given in equation (211), the state

vector in Deresiewicz and Skalak (1963) framework, (us
j wj)

T, is found to be related to

Biot theory state vector, (us
j uf

j)
T, as follows us

j

uf
j

 = B

 us
j

wj

 , B =

 1 0

1 1
η0

 . (226)

In the above, employing the transformation (156) between the Biot theory state vector,(us
j uf

j)
T,

and the natural dynamical state vectors, (um
j ui

j)
T, yields us

j

wj

 = B−1M︸ ︷︷ ︸
T−1

 um
j

ui
j

 , (227)

where the matrix M is defined in (158). After some algebraic multiplications, the

transformation matrix T is

T−1 =

 1 mf

0 −η0

 , (228)

where mass fractions, mf and ms, are defined in equations (160) and (159), respectively.

In here, the identity ms + mf = 1 has been employed for symplicifcations. Likewise,

after some algebraic manipulations, the traction vector in Deresiewicz and Skalak (1963)

framework, (τ jkn̂k σf
jkn̂k)

T, is found to be related to the traction vector in natural

dynamical framework, (τm
jkn̂k τ i

jkn̂k)
T, as follows τ jkn̂k

σf
jkn̂k

 = TT

 τm
jkn̂k

τ i
jkn̂k

 , (229)
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where

TT =

 1 0

mf

η0
− 1

η0

 . (230)

In the above, the transformation relation (157) is employed, and τm
jk and τ jk are the

symbols for the same quantity, the total stress.

Transformed DS09 boundary conditions

By using the transformation relations (227) and (229), the boundary equations (224)

and (225) are, respectively,

〈
T−1

 u̇m
j

u̇i
j

〉 =

 0

0

 , (231)

and 〈
TT

 τm
jkn̂k

τ i
jkn̂k

〉 =

 0 0

0 1
k
DS

T−1

︸ ︷︷ ︸
 u̇m

j

u̇i
j

 (232)

where

D =

 0 0

0 1
k
DS

T−1 =

 0 0

0 − η0

k
DS

 . (233)

By setting
(
um

j ui
j

)T ≡ u and
(
τm

jk τ i
jk

)T ≡ τ jk, introduced earlier in (169) and (171),

and (0 0)T ≡ 0, the above are written in a compact form as

〈
T−1u̇

〉
= 0, (234)〈

TTτ jkn̂j −Du̇
〉

= 0 (235)

Equations (234) and (235) shall be referred as DS09 boundary conditions, henceforth.



92

C.2 de la Cruz and Spanos (1989) boundary condi-

tions

The boundary conditions due de la Cruz and Spanos (1989) are based upon conservation

of total mass and total linear momentum and the application of Newton’s third law of

motion to describe how the stresses on each phase interact with the stress on each of

the phases across the boundary.

C.2.1 Continuity of total mass

de la Cruz and Spanos started with the well established equations of mass balance for

multi-phasic medium. For the solid and fluid bi-phasic medium, those equations read

as below

∂

∂t
((1− η)ρs) = ∂j((1− η)ρsu̇

s
j), (236)

∂

∂t
(ηρf) = ∂j(ηρf u̇

f
j). (237)

They showed that by adding the above two equations one obtains

∂

∂t
((1− η)ρs + ηρf︸ ︷︷ ︸

ρm

) = ∂j((1− η)ρsu̇
s
j + ηρf u̇

f
j)︸ ︷︷ ︸

ρm (msu̇s
j+mf u̇

f
j)

). (238)

The term, (1 − η)ρs + ηρf , on the left-hand side of equation, is recognized as total

density of poro-continuum, ρm. On right-hand side of equation, ρm is factored out

and the remaining term, with the aid of mass fractions introduced earlier in (160) and

(159), is written as msu̇
s
j +mf u̇

f
j, which is the vector sum of mass weighted solid and

fluid velocity fields. They pointed out that since the above equation is obviously the

equation of balance of total mass of poro-continuum, the vector sum of mass weighted

solid and fluid velocity fields has to be recognized as the velocity associated with the
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linear momentum flux. Thereupon, they suggested that if total mass of poro-continuum

has to conserve across the interface, then the normal component of this velocity field

must remain continuous, i. e.,

〈
msu̇

s
⊥ +mf u̇

f
⊥
〉

= 0. (239)

They argued that the macroscopic interface between two porous media has to be taken

as the surface across which total mass is conserved, not the fluid-fluid or solid-solid

contact surfaces. Furthermore, on the basis of the macroscopic nonslip, they assumed

that tangential component of this velocity field should also remain continuous which

lead to 〈
msu̇

s
j +mf u̇

f
j

〉
= 0. (240)

C.2.2 Continuity of total linear momentum

de la Cruz and Spanos (1989) showed that by adding the equation of motion for solid

frame and fluid constituent given in equations (125) and (126), respectively, one obtains

∂

∂t
(ρ(msu̇

s
j +mf u̇

f
j)) = ∂k(τ

s
jk + τ f

jk). (241)

They argued since the left-hand side term is the rate of change of total linear momentum,

equation (241) is the statement of conservation total of linear momentum, therefore,

the sum,τ s
jk + τ f

jk, has to be taken as the total stress1, τm
jk, of poro-continuum. There-

upon, they suggested that if the total linear momentum has to be conserved across the

interface, then total traction of poro contimuum must remain continuous, i. e.,

〈(
τ s

jk + τ f
jk

)
n̂k

〉
= 0. (242)

1τ jk and τm
jk are notations for the same quantity, the total stress of poro-continuum.
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C.2.3 Newton’s third law of motion and balance of phasic

forces

Equation (242) implies that the total forced exerted on the interface by a side is bal-

anced by an equal and opposite force exerted on the interface by the other side. This

is the statement of Newton’s third law of motion. de la Cruz and Spanos (1989) have

asserted that as Newton’s third law is operational on the totality of the phasic forces,

it must hold true for how phasic forces are individually balanced at the interface. On

this basis they suggested two additional conditions on tractions as below.

At interface, a given phase from one side overlaps with the both phases on the other

side. Say, ηa be average area, per unit circle, of the fluid phase in the side “a” that is

in contact with the fluid and solid phases in the side “b”. Without loss of generality, it

may be viewed as the unperturbed porosity of the side “a”. Let P and Q be the average

area of the overlap of the fluid in the side “a” with the fluid and solid phases in the

side “b”, respectively. Then, force exerted by medium “b” on the fluid phase in “a” is

Pσ
f(b)
jk n̂k +Qσ

s(b)
jk n̂k, (243)

where σ
f(b)
jk n̂k and σ

s(b)
jk n̂k stand for force exerted, per unit area, by fluid and solid phases

on the side “b”, respectively. Clearly, in the view of Newton’s third law, this must be

balanced by forces exerted by the fluid phase in the side “a”, i. e.,

Pσ
f(b)
jk n̂k +Qσ

s(b)
jk n̂k = ηaσ

f(a)
jk n̂k, (244)

where σ
f(a)
jk n̂k is the force exerted, per unit area, by the fluid phase on the side “b”. The

reciprocal interaction, the balance of forces exerted by medium “a” on fluid in medium
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“b” and vice-versa, results into

Pσ
f(a)
jk n̂k +Rσ

s(a)
jk n̂k = ηbσ

f(b)
jk n̂k, (245)

where ηb is the average area per unit circle of the fluid phase in the side “b” and R is

the average area of overlap of the fluid in the side “b” with the solid phase in the side “a”.

By definition, P + Q = ηa and P + R = ηb. Setting the average area of overlap of

the fluids on two side, P = ηaηbβ, where β spans from 0 ≤ β ≤ 1
η
[a/b]

and η
[a/b]

stands

for the greater of ηa and ηb, one finds Q = ηa(1 − ηbβ) and R = ηb(1 − ηaβ). Using

these definitions of overlap areas, and employing the notations of phasic stresses

τ
f(a)
jk = ηaσ

f(a)
jk , τ

s(a)
jk = (1− ηa)σ

s(a)
jk etc., (246)

equations (244) and (245) are written as

τ
f(a)
jk n̂k = ηaβτ

f(b)
jk n̂k +

ηa (1− ηbβ)

1− ηb

τ
s(b)
jk n̂k, (247)

τ
f(b)
jk n̂k = ηbβτ

f(a)
jk n̂k +

ηb (1− ηaβ)

1− ηa

τ
s(a)
jk n̂k, (248)

Equations (240), (242), (247) and (248) constitute the set of boundary conditions of

the de la Cruz and Spanos (1989) framework.

C.2.4 Reformulated de la Cruz and Spanos boundary condi-

tions (dCS09)

By convention, boundary conditions must be such that they also conserve total energy

at the interface. de la Cruz and Spanos (1989) have not touched upon this issue explic-

itly. Sahay (2009, private communications) has showed that by subjecting equations

(247) and (248) to the continuity of total traction (242), one finds that they are simply
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the statement about continuity of fluid traction acting on per unit area. The continuity

of solid traction (per unit area) is also implicit with the continuity of the total traction

and fluid traction (per unit area), and thus it in not an independent condition. Fur-

thermore, he has shown that given total mass, total traction, and fluid traction (per

unit area) are continuous, the conservation of energy requires that the fluid velocity

field must also remain continuous. The derivations are shown below.

By using the identities τ
f(a)
jk + τ

s(a)
jk = τ

(a)
jk , and τ

f(b)
jk + τ

s(b)
jk = τ

(b)
jk in equations (247) and

(248), the solid traction parts are eliminated. Upon further rearrangements they read,

in terms of fluid traction and total traction, as

τ
f(a)
jk n̂k −

ηa(β − 1)

1− ηb

τ
f(b)
jk n̂k = ηa

(
1− ηb(β − 1)

1− ηb

)
τ

(b)
jk n̂k, (249)

τ
f(b)
jk n̂k −

ηb(β − 1)

1− ηa

τ
f(a)
jk n̂k = ηb

(
1− ηa(β − 1)

1− ηa

)
τ

(a)
jk n̂k. (250)

On the basis of the continuity of total traction (242), setting τ
(a)
jk n̂k = τ

(b)
jk n̂k ≡ τ jkn̂k

in the above and solving for the fluid stresses yields

τ
f(a)
jk n̂k = ηaτ jkn̂k, (251)

τ
f(b)
jk n̂k = ηbτ jkn̂k. (252)

Recalling that τ f
jk is the force extered by the fluid phase upon η part of the unit area

(see 246), the above equations may be viewed as the continuity of σf
jkn̂k, the force

exerted by the fluid phase upon an unit area,

< σf
jkn̂k > = 0, (253)

which the final form of equations (247) and (248). It is to be noted that overlap

parameter, β, is no longer present in this form. Finally, subjecting the continuity of
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normal energy flux (203) to the conditions of (240), (242), and (253), yields

〈
(mf − η)

(
u̇s

j − u̇f
j

)〉
= 0. (254)

Thus, equations (240), (242), (253) and (254) are the reformulated de la Cruz and

Spanos boundary conditions.

Using the definition for fluid mass fraction (159)

(mf − η) = −η
(

1− ρf

ρm

)
= −η(1− η)

ρs − ρf

ρm

= −η∆ρ, (255)

where (1 − η)ρs−ρf

ρm
≡ ∆ρ may be view as buoyancy of the poro-continuum, equation

(260) can be viewed in terms of filtration velocity (equation 211) as

〈∆ρwj〉 = 0. (256)

C.2.5 dCS09 boundary conditions in terms of natural dynam-

ical fields

By using the transformation introduced in (156) and (157), the reformulated de la

Cruz and Spanos (equations 240, 242, 253 and 254), in terms of natural dynamical field

variables, are as follows

〈
um

j

〉
= 0, (257)〈

τm
jkn̂j

〉
= 0, (258)〈(

(mf − η) τm
jk − τ i

jk

)
n̂j

〉
= 0, (259)〈

(mf − η) ui
j

〉
= 0. (260)
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Equations (257) and (260) are viewed in a matricial form as

〈 1 0

0 mf − η


︸ ︷︷ ︸

G

 um
j

ui
j

〉 =

 0

0

 , or 〈G u〉 = 0. (261)

where
(
um

j ui
j

)T ≡ u introduced earlier in 169 and (0 0)T ≡ 0. Likewise, equations

(258) and (259) in a matricial form are

〈 1 0

mf − η −1


︸ ︷︷ ︸

H

 τm
jkn̂j

τ i
jkn̂j

〉 =

 0

0

 or 〈H τ jkn̂j〉 = 0. (262)

where
(
τm

jk τ i
jk

)T ≡ τ jk (see 171). Henceforth, equations (261) and (262) are referred

as dCS09 boundary conditions.
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Appendix D

PHYSICAL PROPERTIES

The following data are used in the numerical computation.

Table X. Solid-frame properties

solid density: ρs = 2.65 ×10+03
(

kg
m3

)
,

mineral frame P-velocity: vps
= 5.694×10+03

(
m
s

)
,

mineral frame S-velocity: vss = 3.796×10+03
(

m
s

)
,

dry frame P-velocity: vp0
= 1.500×10+03

(
m
s

)
,

dry frame S-velocity: vs0
= 1.700×10+03

(
m
s

)
,

permeability K = 10 ×10−13 (m2) ,

porosity: η
0

= 0.3,

tortuosity factor: S = 4
3
,
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Table XI. Fluid properties

Gas

density: ρf
0

= 100 ×10+03
(

kg
m3

)
,

shear viscosity: µf = 15.0×10−06 (Pa·s) ,

bulk viscosity: ξf = 35 ×10−06 (Pa·s) ,

bulk modulus: Kf = 22 ×10+08 (Pa) ,

Air

density: ρf
0

= .121×10+03
(

kg
m3

)
,

shear viscosity: µf = 18.0×10−06 (Pa·s) ,

bulk viscosity: ξf = 35 ×10−06 (Pa·s) ,

bulk modulus: Kf = 15 ×10+06 (Pa) ,

Oil

density: ρf
0

= .900×10+03
(

kg
m3

)
,

shear viscosity: µf = 1.00×10−03 (Pa·s) ,

bulk viscosity: ξf = 2.8 ×10−03 (Pa·s) ,

bulk modulus: Kf = 0.5 ×10+09 (Pa) ,

Water

density: ρf
0

= 1.00×10+03
(

kg
m3

)
,

shear viscosity: µf = 1.00×10−03 (Pa·s) ,

bulk viscosity: ξf = 2.8 ×10−03 (Pa·s) ,

bulk modulus: Kf = 2.4 ×10+09 (Pa) ,
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Appendix E

NATURE OF WAVE FIELDS

In order to illustrate the nature of wave fields, for a sample of Berea sandstone saturated

with different fluids, namely, water, oil and gas, velocity and attenuation (Figure 22)

along with the associated ratio of centre-of-mass and internal displacement fields (Figure

23) as well as the ratio of solid and fluid displacement fields (Figure 24) are shown.

The Biot critical frequencies for each kind of fluid are marked by a down arrow on the

frequency axis in their corresponding colors. The physical properties of the sample are

listed in Appendix A.
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